Patent application title: Botulinum Neurotoxin Serotype B Activatable Botulinum Neurotoxin Serotype Bs
Inventors:
Lance E. Steward (Irvine, CA, US)
Melvin S. Oka (Yardley, PA, US)
Assignees:
Allergan, Inc.
IPC8 Class: AC12N952FI
USPC Class:
435220
Class name: Acting on peptide bond (e.g., thromboplastin, leucine amino-peptidase, etc., (3.4)) proteinase derived from bacteria
Publication date: 2012-05-10
Patent application number: 20120115205
Abstract:
The specification discloses modified Clostridial toxins comprising a
Clostridial toxin substrate cleavage site located within the di-chain
loop region; polynucleotide molecules encoding such modified Clostridial
toxins comprising a Clostridial toxin substrate cleavage site located in
the di-chain loop region; and method of producing modified Clostridial
toxins comprising Clostridial toxin substrate cleavage site located
within the di-chain loop region.Claims:
1. A recombinantly modified BoNT/A comprising an enzymatic domain having
a zinc-dependent endopeptidase activity which targets a
synaptosomal-associated protein of 25 kDa (SNAP-25), a translocation
domain, a binding domain and a modified di-chain loop region, the
modified di-chain loop region intervening between the enzymatic domain
and the translocation domain; wherein the di-chain loop region
modification comprises a BoNT/A substrate cleavage site from a SNAP-25 of
at least six amino acids in length located within the di-chain loop
region that is proteolytically cleaved by the enzymatic domain of the
recombinantly modified BoNT/A; and wherein expression of the
recombinantly modified BoNT/A within a cell results in single chain to
di-chain conversion of the recombinantly modified BoNT/A due to
proteolytic cleavage of the BoNT/A substrate cleavage site.
2.-9. (canceled)
Description:
[0001] This patent application is a continuation of U.S. patent
application Ser. No. 12/434,074 filled on May 1, 2009 which is a
continuation and claims priority pursuant to 35 U.S.C. §120 to U.S.
patent application Ser. No. 11/533,223 filed on Sep. 19, 2006, a patent
application that claims priority pursuant to 35 U.S.C. §119(e) to
U.S. provisional patent application Ser. No. 60/718,616 filed on Sep. 19,
2005, each of which is hereby incorporated by reference in its entirety.
[0002] The ability of Clostridial toxins, such as, e.g., Botulinum neurotoxins (BoNTs), BoNT/A, BoNT/B, BoNT/C1, BoNT/D, BoNT/E, BoNT/F and BoNT/G, Tetanus neurotoxin (TeNT), Baratium neurotoxin (BaNT) and Butyricum neurotoxin (BuNT) to inhibit neuronal transmission are being exploited in a wide variety of therapeutic and cosmetic applications, see e.g., William J. Lipham, COSMETIC AND CLINICAL APPLICATIONS OF BOTULINUM TOXIN (Slack, Inc., 2004). Clostridial toxins commercially available as pharmaceutical compositions include, BoNT/A preparations, such as, e.g., BOTOX® (Allergan, Inc., Irvine, Calif.), Dysport®/Reloxin®, (Beaufour Ipsen, Porton Down, England), Linurase® (Prollenium, Inc., Ontario, Canada), Neuronox® (Medy-Tox, Inc., Ochang-myeon, South Korea) BTX-A (Lanzhou Institute Biological Products, China) and Xeomin® (Merz Pharmaceuticals, GmbH., Frankfurt, Germany); and BoNT/B preparations, such as, e.g., MyoBloc®/NeuroBloc® (Elan Pharmaceuticals, San Francisco, Calif.). As an example, BOTOX® is currently approved in one or more countries for the following indications: achalasia, adult spasticity, anal fissure, back pain, blepharospasm, bruxism, cervical dystonia, essential tremor, glabellar lines or hyperkinetic facial lines, headache, hemifacial spasm, hyperactivity of bladder, hyperhidrosis, juvenile cerebral palsy, multiple sclerosis, myoclonic disorders, nasal labial lines, spasmodic dysphonia, strabismus and VII nerve disorder.
[0003] The increasing use of Clostridial toxin therapies in treating a wider range of human afflictions necessitates increasing the efficiency with which these toxins are produced. However, meeting the needs for the ever increasing demand for such toxin treatments may become difficult. One outstanding problem is that all Clostridial toxins need to be converted into the di-chain form of the molecule in order to achieve optimal activity. Historically, this conversion has been done in one of two ways. The first method simply purifies a Clostridial toxin from the bacterial strain itself, thereby relying on the naturally-occurring endogenous protease used to convert the single-chain form of the toxin into the di-chain form. The second method utilizes an exogenous protease that converts the single-chain form into the di-chain by either taking advantage of a fortuitous cleavage site found in the appropriate location or by genetically engineering a protease cleavage site of commonly used, commercially available exogenous proteases. However, there are several drawbacks to both of these methods. For example, methods employing an endogenous protease produce low toxin yields because native Clostridial strains usually produce little toxin. In addition these strains are poorly suited for research, thus hindering the efforts to genetic manipulation Clostridial toxins to improve their therapeutic and cosmetic attributes. Lastly, several Clostridial strains do not produce the endogenous protease necessary to convert the single-chain form of the toxin to the di-chain form. A drawback to the use of exogenous proteases is a lack of protease specificity that results in inactive toxin because of proteolytic cleavage in inappropriate locations. In addition, many of the currently available proteases are from animal sources that lack Good Manufacture Standard (GMS) approval, requiring additional purification steps during the manufacturing process. Thus, methods currently used to convert the single-chain form of the toxin into the di-chain form are inefficient, cumbersome and lead to higher overall production costs. These drawbacks represent a significant obstacle to the overall commercial production of Clostridial toxins and are thus a major problem since di-chain forms of these toxins are needed for scientific, therapeutic and cosmetic applications. In addition, both the amount of Clostridial toxins anticipated for future therapies and the demand for toxins with enhanced therapeutic properties are increasing. Therefore, there is a need to develop better methods for producing Clostridial toxin di-chain molecules in order to meet this need.
[0004] The present invention provides modified Clostridial toxins that rely on a novel method of converting the single-chain form of the toxin into the di-chain form. These and related advantages are useful for various clinical, therapeutic and cosmetic applications, such as, e.g., the treatment of neuromuscular disorders, neuropathic disorders, eye disorders, pain, muscle injuries, headache, cardiovascular diseases, neuropsychiatric disorders, endocrine disorders, cancers, otic disorders and hyperkinetic facial lines, as well as, other disorders where a Clostridial toxin administration to a mammal can produce a beneficial effect.
BRIEF DESCRIPTION OF THE DRAWINGS
[0005] FIG. 1 shows a schematic of the current paradigm of Clostridial toxin posttranslational processing. Clostridial toxins are translated as a single-chain polypeptide of approximately 150 kDa comprising an enzymatic domain, a translocation domain and a binding domain. A disulfide bridge formed from a cysteine residue in the enzymatic domain and a cysteine residue from the translocation domain form a di-chain loop. Within this di-chain loop is a protease cleavage site for a naturally-occurring protease that can be produced endogenously from the Clostridial strain synthesizing the toxin, or exogenously from a source found in the environment. Cleavage of the protease cleavage site by the naturally-occurring protease converts the single-chain form of the toxin into the di-chain form. The di-chain form of the toxin is held together by the disulfide bond and non-covalent interactions between the two chains.
[0006] FIG. 2 shows a schematic of the current paradigm of neurotransmitter release and Clostridial toxin intoxication in a central and peripheral neuron. FIG. 2a shows a schematic for the neurotransmitter release mechanism of a central and peripheral neuron. The release process can be described as comprising two steps: 1) vesicle docking, where the vesicle-bound SNARE protein of a vesicle containing neurotransmitter molecules associates with the membrane-bound SNARE proteins located at the plasma membrane; and 2) neurotransmitter release, where the vesicle fuses with the plasma membrane and the neurotransmitter molecules are exocytosed. FIG. 2b shows a schematic of the intoxication mechanism for tetanus and botulinum toxin activity in a central and peripheral neuron. This intoxication process can be described as comprising four steps: 1) receptor binding, where a Clostridial toxin binds to a Clostridial receptor system and initiates the intoxication process; 2) complex internalization, where after toxin binding, a vesicle containing the toxin/receptor system complex is endocytosed into the cell; 3) light chain translocation, where multiple events result in the release of the active light chain into the cytoplasm; and 4) enzymatic target modification, where the active light chain of Clostridial toxin proteolytically cleaves its target SNARE substrate, such as, e.g., SNAP-25, VAMP or Syntaxin, thereby preventing vesicle docking and neurotransmitter release.
[0007] FIG. 3 shows a schematic of the subcellular localization and cleavage sites of SNAP-25, VAMP and Syntaxin. VAMP is localized to synaptic vesicle membrane, whereas SNAP-25 and Syntaxin are localized to the plasma membrane. BoNT/A and BoNT/E cleave SNAP-25 close to the carboxyl-terminus, releasing nine or 26 residues, respectively. BoNT/B, BoNT/D, BoNT/F, BoNT/G and TeNT act on the conserved central portion of VAMP (white box) and release the amino-terminal cytosolic half of VAMP into the cytosol. BoNT/C1 cleaves SNAP-25 close to the carboxyl-terminus as well as cleaving Syntaxin at a single site near the cytosolic membrane surface. The action of BoNT/C1 results in release of a large portion of the cytosolic domain of Syntaxin, while only a small portion of SNAP-25 is released by selective proteolysis of BoNT/C1.
[0008] FIG. 4 shows a schematic of modified Clostridial toxins. FIG. 4a shows a modified Clostridial toxin comprising an enzymatic domain, a translocation domain and a binding domain and a di-chain loop including a Clostridial toxin substrate cleavage site comprising a BoNT/A cleavage site, derived, e.g., from a member of the SNAP-25 family susceptible to BoNT/A cleavage. Cleavage of the BoNT/A cleavage site by BoNT/A converts the single-chain form of the modified toxin into the di-chain form. FIG. 4b shows a modified Clostridial toxin comprising an enzymatic domain, a translocation domain and a binding domain and a di-chain loop including a Clostridial toxin substrate cleavage site comprising a BoNT/E cleavage site, derived, e.g., from a member of the SNAP-25 family susceptible to BoNT/E cleavage. Cleavage of the BoNT/E cleavage site by BoNT/E converts the single-chain form of the modified toxin into the di-chain form.
[0009] FIG. 5 shows a schematic of modified Clostridial toxins. FIG. 5a shows a modified Clostridial toxin comprising an enzymatic domain, a translocation domain and a binding domain and a di-chain loop including a Clostridial toxin substrate cleavage site comprising a BoNT/B cleavage site, derived, e.g., from a member of the VAMP family susceptible to BoNT/B cleavage. Cleavage of the BoNT/B cleavage site by BoNT/B converts the single-chain form of the modified toxin into the di-chain form. FIG. 5b shows a modified Clostridial toxin comprising an enzymatic domain, a translocation domain and a binding domain and a di-chain loop including a Clostridial toxin substrate cleavage site comprising a BoNT/D cleavage site, derived, e.g., from a member of the VAMP family susceptible to BoNT/D cleavage. Cleavage of the BoNT/D cleavage site by BoNT/D converts the single-chain form of the modified toxin into the di-chain form. FIG. 5c shows a modified Clostridial toxin comprising an enzymatic domain, a translocation domain and a binding domain and a di-chain loop including a Clostridial toxin substrate cleavage site comprising a BoNT/F cleavage site, derived, e.g., from a member of the VAMP family susceptible to BoNT/F cleavage. Cleavage of the BoNT/F cleavage site by BoNT/F converts the single-chain form of the modified toxin into the di-chain form. FIG. 5d shows a modified Clostridial toxin comprising an enzymatic domain, a translocation domain and a binding domain and a di-chain loop including a Clostridial toxin substrate cleavage site comprising a BoNT/G cleavage site, derived, e.g., from a member of the VAMP family susceptible to BoNT/G cleavage. Cleavage of the BoNT/G cleavage site by BoNT/G converts the single-chain form of the modified toxin into the di-chain form. FIG. 5e shows a modified Clostridial toxin comprising an enzymatic domain, a translocation domain and a binding domain and a di-chain loop including a Clostridial toxin substrate cleavage site comprising a TeNT cleavage site, derived, e.g., from a member of the VAMP family susceptible to TeNT cleavage. Cleavage of the TeNT cleavage site by TeNT converts the single-chain form of the modified toxin into the di-chain form.
[0010] FIG. 6 shows a schematic of modified Clostridial toxins. FIG. 6a shows a modified Clostridial toxin comprising an enzymatic domain, a translocation domain and a binding domain and a di-chain loop including a Clostridial toxin substrate cleavage site comprising a BoNT/C1 cleavage site, derived, e.g., from a member of the Syntaxin family susceptible to BoNT/C1 cleavage. Cleavage of the BoNT/C1 cleavage site by BoNT/C1 converts the single-chain form of the modified toxin into the di-chain form. FIG. 6b shows a modified Clostridial toxin comprising an enzymatic domain, a translocation domain and a binding domain and a di-chain loop including a Clostridial toxin substrate cleavage site comprising a BoNT/C1 cleavage site, derived, e.g., from a member of the SNAP-25 family susceptible to BoNT/C1 cleavage. Cleavage of the BoNT/C1 cleavage site by BoNT/C1 converts the single-chain form of the modified toxin into the di-chain form.
[0011] FIG. 7 shows a plasmid map of prokaryotic expression construct pET29b/BoNT/A-A17 comprising a polynucleotide molecule of SEQ ID NO: 225 encoding a modified BoNT/A of SEQ ID NO: 203, operably-linked to a carboxyl-terminal polyhistidine binding polypeptide. A Trypsin protease cleavage site is operably-linked between the polyhistidine binding polypeptide and the modified BoNT/A. Abbreviations are as follows: PT7, a bacteriophage T7 promoter region; ED, a polynucleotide molecule encoding a BoNT/A enzymatic domain; A17, a polynucleotide molecule encoding a BoNT/A substrate cleavage site; TD, a polynucleotide molecule encoding a BoNT/A translocation domain; BD, a polynucleotide molecule encoding a BoNT/A binding domain; Trypsin, a polynucleotide molecule encoding Trypsin cleavage site; 6×His, a polynucleotide molecule encoding a polyhistidine binding polypeptide; T7 TT, a bacteriophage T7 transcription termination region; f1 origin, a bacteriophage f1 origin of replication; Kanamycin, a polynucleotide molecule encoding an aminophosphotransferase that confers Kanamycin resistance; pBR322 ori, a pBR322 origin of plasmid replication region; lacI, a polynucleotide molecule encoding a lactose I.
[0012] FIG. 8 shows a plasmid map of prokaryotic expression construct pET29b/BoNT/A-BT35 comprising a polynucleotide molecule of SEQ ID NO: 227 encoding a modified BoNT/A of SEQ ID NO: 205, operably-linked to a carboxyl-terminal polyhistidine binding polypeptide. A Trypsin protease cleavage site is operably-linked between the polyhistidine binding polypeptide and the modified BoNT/A. Abbreviations are as follows: PT7, a bacteriophage T7 promoter region; ED, a polynucleotide molecule encoding a BoNT/A enzymatic domain; BT35, a polynucleotide molecule encoding a BoNT/B substrate cleavage site and a TeNT substrate cleavage site; TD, a polynucleotide molecule encoding a BoNT/A translocation domain; BD, a polynucleotide molecule encoding a BoNT/A binding domain; Trypsin, a polynucleotide molecule encoding Trypsin cleavage site; 6×His, a polynucleotide molecule encoding a polyhistidine binding polypeptide; T7 TT, a bacteriophage T7 transcription termination region; f1 origin, a bacteriophage f1 origin of replication; Kanamycin, a polynucleotide molecule encoding an aminophosphotransferase that confers Kanamycin resistance; pBR322 ori, a pBR322 origin of plasmid replication region; lacI, a polynucleotide molecule encoding a lactose I.
[0013] FIG. 9 shows a plasmid map of prokaryotic expression construct pET29b/BoNT/A-Csyn8 comprising a polynucleotide molecule of SEQ ID NO: 229 encoding a modified BoNT/A of SEQ ID NO: 207, operably-linked to a carboxyl-terminal polyhistidine binding polypeptide. A Trypsin protease cleavage site is operably-linked between the polyhistidine binding polypeptide and the modified BoNT/A. Abbreviations are as follows: PT7, a bacteriophage T7 promoter region; ED, a polynucleotide molecule encoding a BoNT/A enzymatic domain; Csyn8, a polynucleotide molecule encoding a BoNT/C1 substrate cleavage site; TD, a polynucleotide molecule encoding a BoNT/A translocation domain; BD, a polynucleotide molecule encoding a BoNT/A binding domain; Trypsin, a polynucleotide molecule encoding Trypsin cleavage site; 6×His, a polynucleotide molecule encoding a polyhistidine binding polypeptide; T7 TT, a bacteriophage T7 transcription termination region; f1 origin, a bacteriophage f1 origin of replication; Kanamycin, a polynucleotide molecule encoding an aminophosphotransferase that confers Kanamycin resistance; pBR322 ori, a pBR322 origin of plasmid replication region; lacI, a polynucleotide molecule encoding a lactose I.
[0014] FIG. 10 shows a plasmid map of prokaryotic expression construct pET29b/BoNT/A-DF39 comprising a polynucleotide molecule of SEQ ID NO: 231 encoding a modified BoNT/A of SEQ ID NO: 209, operably-linked to a carboxyl-terminal polyhistidine binding polypeptide. A Trypsin protease cleavage site is operably-linked between the polyhistidine binding polypeptide and the modified BoNT/A. Abbreviations are as follows: PT7, a bacteriophage T7 promoter region; ED, a polynucleotide molecule encoding a BoNT/A enzymatic domain; DF39, a polynucleotide molecule encoding a BoNT/D substrate cleavage site and a BoNT/F substrate cleavage site; TD, a polynucleotide molecule encoding a BoNT/A translocation domain; BD, a polynucleotide molecule encoding a BoNT/A binding domain; Trypsin, a polynucleotide molecule encoding Trypsin cleavage site; 6×His, a polynucleotide molecule encoding a polyhistidine binding polypeptide; T7 TT, a bacteriophage T7 transcription termination region; f1 origin, a bacteriophage f1 origin of replication; Kanamycin, a polynucleotide molecule encoding an aminophosphotransferase that confers Kanamycin resistance; pBR322 ori, a pBR322 origin of plasmid replication region; lacI, a polynucleotide molecule encoding a lactose I.
[0015] FIG. 11 shows a plasmid map of prokaryotic expression construct pET29b/BoNT/A-E8 comprising a polynucleotide molecule of SEQ ID NO: 233 encoding a modified BoNT/A of SEQ ID NO: 211, operably-linked to a carboxyl-terminal polyhistidine binding polypeptide. A Trypsin protease cleavage site is operably-linked between the polyhistidine binding polypeptide and the modified BoNT/A. Abbreviations are as follows: PT7, a bacteriophage T7 promoter region; ED, a polynucleotide molecule encoding a BoNT/A enzymatic domain; E8, a polynucleotide molecule encoding a BoNT/E substrate cleavage site; TD, a polynucleotide molecule encoding a BoNT/A translocation domain; BD, a polynucleotide molecule encoding a BoNT/A binding domain; Trypsin, a polynucleotide molecule encoding Trypsin cleavage site; 6×His, a polynucleotide molecule encoding a polyhistidine binding polypeptide; T7 TT, a bacteriophage T7 transcription termination region; f1 origin, a bacteriophage f1 origin of replication; Kanamycin, a polynucleotide molecule encoding an aminophosphotransferase that confers Kanamycin resistance; pBR322 ori, a pBR322 origin of plasmid replication region; lacI, a polynucleotide molecule encoding a lactose I.
[0016] FIG. 12 shows a plasmid map of prokaryotic expression construct pET29b/BoNT/A-G8 comprising a polynucleotide molecule of SEQ ID NO: 235 encoding a modified BoNT/A of SEQ ID NO: 213, operably-linked to a carboxyl-terminal polyhistidine binding polypeptide. A Trypsin protease cleavage site is operably-linked between the polyhistidine binding polypeptide and the modified BoNT/A. Abbreviations are as follows: PT7, a bacteriophage T7 promoter region; ED, a polynucleotide molecule encoding a BoNT/A enzymatic domain; G8, a polynucleotide molecule encoding a BoNT/G substrate cleavage site; TD, a polynucleotide molecule encoding a BoNT/A translocation domain; BD, a polynucleotide molecule encoding a BoNT/A binding domain; Trypsin, a polynucleotide molecule encoding Trypsin cleavage site; 6×His, a polynucleotide molecule encoding a polyhistidine binding polypeptide; T7 TT, a bacteriophage T7 transcription termination region; f1 origin, a bacteriophage f1 origin of replication; Kanamycin, a polynucleotide molecule encoding an aminophosphotransferase that confers Kanamycin resistance; pBR322 ori, a pBR322 origin of plasmid replication region; lacI, a polynucleotide molecule encoding a lactose I.
[0017] FIG. 13 shows a plasmid map of yeast expression construct pPICZ A/BoNT/A-A17 comprising a polynucleotide molecule of SEQ ID NO: 236 encoding a modified BoNT/A of SEQ ID NO: 203, operably-linked to carboxyl-terminal c-myc and polyhistidine binding polypeptides. Abbreviations are as follows: PAOX1, an aldehyde oxidase 1 promoter region; ED, a polynucleotide molecule encoding a BoNT/A enzymatic domain; A17, a polynucleotide molecule encoding a BoNT/A substrate cleavage site; TD, a polynucleotide molecule encoding a BoNT/A translocation domain; BD, a polynucleotide molecule encoding a BoNT/A binding domain; c-myc, a polynucleotide molecule encoding a c-myc binding polypeptide; 6×His, a polynucleotide molecule encoding a polyhistidine binding polypeptide; AOX1 TT, an aldehyde oxidase 1 transcription termination region; Zeocin®, a polynucleotide molecule encoding a Zeocin® resistance polypeptide; pUC ori, a pUC origin of plasmid replication region.
[0018] FIG. 14 shows a plasmid map of baculovirus transfer construct pBACgus3/BoNT/A-A17 comprising a polynucleotide molecule of SEQ ID NO: 237 encoding a modified BoNT/A of SEQ ID NO: 203, operably-linked to carboxyl-terminal polyhistidine binding polypeptide. A Thrombin protease cleavage site is operably-linked between the modified BoNT/A and the polyhistidine binding polypeptide. Abbreviations are as follows: PPH, an polyhedrin promoter region; gp64, a polynucleotide molecule encoding a gp64 signal polypeptide; ED, a polynucleotide molecule encoding a BoNT/A enzymatic domain; A17, a polynucleotide molecule encoding a BoNT/A substrate cleavage site; TD, a polynucleotide molecule encoding a BoNT/A translocation domain; BD, a polynucleotide molecule encoding a BoNT/A binding domain; Thrombin, a polynucleotide molecule encoding a Thrombin protease cleavage site; 6×His, a polynucleotide molecule encoding a polyhistidine binding polypeptide; pUC ori, a pUC origin of plasmid replication region; Ampicillin, a polynucleotide molecule encoding a β-lactamase that confers Ampicillin resistance; f1 ori, a bacteriophage f1 origin of replication; gus, a polynucleotide molecule encoding a β-glucuronidase.
[0019] FIG. 15 shows a plasmid map of mammalian expression construct pSecTag2/BoNT/A-A17 comprising a polynucleotide molecule of SEQ ID NO: 238 encoding a modified BoNT/A of SEQ ID NO: 203, operably-linked to carboxyl-terminal c-myc and polyhistidine binding polypeptides. Abbreviations are as follows: PCMV, an cytomegalovirus promoter region; IgK, a polynucleotide molecule encoding an immunoglobulin K polypeptide; ED, a polynucleotide molecule encoding a BoNT/A enzymatic domain; A17, a polynucleotide molecule encoding a BoNT/A substrate cleavage site; TD, a polynucleotide molecule encoding a BoNT/A translocation domain; BD, a polynucleotide molecule encoding a BoNT/A binding domain; c-myc, a polynucleotide molecule encoding a c-myc binding polypeptide; 6×His, a polynucleotide molecule encoding a polyhistidine binding polypeptide; BGH pA, a bovine growth hormone polyadenylation site; f1 ori, a bacteriophage f1 origin of replication; P.sub.SV40, a simian virus 40 promoter region; Zeocin®, a region encoding an Zeocin® resistance polypeptide; pUC ori, a pUC origin of plasmid replication region; Ampicillin, a polynucleotide molecule encoding a β-lactamase that confers Ampicillin resistance.
DETAILED DESCRIPTION
[0020] Clostridia toxins produced by Clostridium botulinum, Clostridium tetani, Clostridium baratii and Clostridium butyricum are the most widely used in therapeutic and cosmetic treatments of humans and other mammals. Strains of C. botulinum produce seven antigenically-distinct types of Botulinum toxins (BoNTs), which have been identified by investigating botulism outbreaks in man (BoNT/A, /B, /E and /F), animals (BoNT/C1 and /D), or isolated from soil (BoNT/G). BoNTs possess approximately 35% amino acid identity with each other and share the same functional domain organization and overall structural architecture. It is recognized by those of skill in the art that within each type of Clostridial toxin there can be subtypes that differ somewhat in their amino acid sequence, and also in the nucleic acids encoding these proteins. For example, there are presently four BoNT/A subtypes, BoNT/A1, BoNT/A2, BoNT/A3 and BoNT/A4, with specific subtypes showing approximately 89% amino acid identity when compared to another BoNT/A subtype. While all seven BoNT serotypes have similar structure and pharmacological properties, each also displays heterogeneous bacteriological characteristics. In contrast, tetanus toxin (TeNT) is produced by a uniform group of C. tetani. Two other species of Clostridia, C. baratii and C. butyricum, also produce toxins, BaNT and BuNT respectively, which are similar to BoNT/F and BoNT/E, respectively.
[0021] Clostridial toxins are each translated as a single chain polypeptide of approximately 150 kDa that is subsequently cleaved by proteolytic scission within a disulfide loop by a naturally-occurring protease (FIG. 1). This cleavage occurs within the discrete di-chain loop region created between two cysteine residues that form a disulfide bridge. This posttranslational processing yields a di-chain molecule comprising an approximately 50 kDa light chain (LC) and an approximately 100 kDa heavy chain (HC) held together by the single disulfide bond and non-covalent interactions between the two chains. The naturally-occurring protease used to convert the single chain molecule into the di-chain is currently not known. In some serotypes, such as, e.g., BoNT/A, the naturally-occurring protease is produced endogenously by the bacteria serotype and cleavage occurs within the cell before the toxin is release into the environment. However, in other serotypes, such as, e.g., BoNT/E, the bacterial strain appears not to produce an endogenous protease capable of converting the single chain form of the toxin into the di-chain form. In these situations, the toxin is released from the cell as a single-chain toxin which is subsequently converted into the di-chain form by a naturally-occurring protease found in the environment.
TABLE-US-00001 TABLE 1 Clostridial Toxin Reference Sequences and Regions Toxin SEQ ID NO: LC HN HC BoNT/A 1 M1-K448 A449-K871 N872-L1296 BoNT/B 2 M1-K441 A442-S858 E859-E1291 BoNT/C1 3 M1-K449 T450-N866 N867-E1291 BoNT/D 4 M1-R445 D446-N862 S863-E1276 BoNT/E 5 M1-R422 K423-K845 R846-K1252 BoNT/F 6 M1-K439 A440-K864 K865-E1274 BoNT/G 7 M1-K446 S447-S863 N864-E1297 TeNT 8 M1-A457 S458-V879 I880-D1315
[0022] Each mature di-chain molecule comprises three functionally distinct domains: 1) an enzymatic domain located in the LC that includes a metalloprotease region containing a zinc-dependent endopeptidase activity which specifically targets core components of the neurotransmitter release apparatus (Table 1); 2) a translocation domain contained within the amino-terminal half of the HC(HN) that facilitates release of the LC from intracellular vesicles into the cytoplasm of the target cell (Table 1); and 3) a binding domain found within the carboxyl-terminal half of the HC(HC) that determines the binding activity and binding specificity of the toxin to the receptor complex located at the surface of the target cell (Table 1).
[0023] The binding, translocation and enzymatic activity of these three functional domains are all necessary for toxicity. While all details of this process are not yet precisely known, the overall cellular intoxication mechanism whereby Clostridial toxins enter a neuron and inhibit neurotransmitter release is similar, regardless of type. Although the applicants have no wish to be limited by the following description, the intoxication mechanism can be described as comprising at least four steps: 1) receptor binding, 2) complex internalization, 3) light chain translocation, and 4) enzymatic target modification (see FIG. 2). The process is initiated when the HC domain of a Clostridial toxin binds to a toxin-specific receptor complex located on the plasma membrane surface of a target cell. The binding specificity of a receptor complex is thought to be achieved, in part, by specific combinations of gangliosides and protein receptors that appear to distinctly comprise each Clostridial toxin receptor complex. Once bound, the toxin/receptor complexes are internalized by endocytosis and the internalized vesicles are sorted to specific intracellular routes. The translocation step appears to be triggered by the acidification of the vesicle compartment. This process seems to initiate two important pH-dependent structural rearrangements that increase hydrophobicity and promote formation di-chain form of the toxin. Once activated, light chain endopeptidase of the toxin is released from the intracellular vesicle into the cytosol where it specifically targets one of three known core components of the neurotransmitter release apparatus. These core proteins, vesicle-associated membrane protein (VAMP)/synaptobrevin, synaptosomal-associated protein of 25 kDa (SNAP-25) and Syntaxin, are necessary for synaptic vesicle docking and fusion at the nerve terminal and constitute members of the soluble N-ethylmaleimide-sensitive factor-attachment protein-receptor (SNARE) family. BoNT/A and BoNT/E cleave SNAP-25 in the carboxyl-terminal region, releasing a nine or twenty-six amino acid segment, respectively, and BoNT/C1 also cleaves SNAP-25 near the carboxyl-terminus. The botulinum serotypes BoNT/B, BoNT/D, BoNT/F and BoNT/G, and tetanus toxin, act on the conserved central portion of VAMP, and release the amino-terminal portion of VAMP into the cytosol. BoNT/C1 cleaves syntaxin at a single site near the cytosolic membrane surface. The selective proteolysis of synaptic SNAREs accounts for the block of neurotransmitter release caused by Clostridial toxins in vivo. The SNARE protein targets of Clostridial toxins are common to exocytosis in a variety of non-neuronal types; in these cells, as in neurons, light chain peptidase activity inhibits exocytosis, see, e.g., Yann Humeau et al., How Botulinum and Tetanus Neurotoxins Block Neurotransmitter Release, 82(5) Biochimie. 427-446 (2000); Kathryn Turton et al., Botulinum and Tetanus Neurotoxins: Structure, Function and Therapeutic Utility, 27(11) Trends Biochem. Sci. 552-558. (2002); Giovanna Lalli et al., The Journey of Tetanus and Botulinum Neurotoxins in Neurons, 11(9) Trends Microbiol. 431-437, (2003).
[0024] The present invention discloses modified Clostridial toxins that can be converted from the single-chain polypeptide form into the di-chain form using the enzymatic activity of a Clostridial toxin. This is accomplished by replacing the naturally-occurring protease cleavage site found within the di-chain loop region with a Clostridial toxin substrate cleavage site. In a modification where the Clostridial toxin substrate cleavage site replacement is the substrate for the Clostridial toxin, activation is accomplished using a Clostridial toxin having BoNT/A enzymatic activity. This cleavage site replacement will enable these modified toxins to activate one another, eliminating the reliance of a different protease. For example, a modified BoNT/A comprising a BoNT/A substrate cleavage site will enable a Clostridial toxin having BoNT/A enzymatic activity to cleave the BoNT/A substrate cleavage site of the modified BoNT/A, thereby producing the di-chain form of the toxin. In a modification where the Clostridial toxin substrate cleavage site replacement is the substrate for a different Clostridial toxin, activation is accomplished using a Clostridial toxin having BoNT/C1 enzymatic activity. For example, a modified BoNT/A comprising a BoNT/C1 substrate cleavage site will enable a Clostridial toxin having BoNT/C1 enzymatic activity to cleave the BoNT/C1 substrate cleavage site of the modified BoNT/A, thereby producing the di-chain form of the toxin.
[0025] Aspects of the present invention provide modified Clostridial toxins comprising a Clostridial toxin substrate cleavage site, wherein the Clostridial toxin substrate cleavage site is located within a di-chain loop region of the modified Clostridial toxin. It is envisioned that any Clostridial toxin substrate cleavage site can be used. including, without limitation, a BoNT/A substrate cleavage site, a BoNT/B substrate cleavage site, a BoNT/C1 substrate cleavage site, a BoNT/D substrate cleavage site, a BoNT/E substrate cleavage site, a BoNT/F substrate cleavage site, a BoNT/G substrate cleavage site, a TeNT substrate cleavage site, a BaNT substrate cleavage site and a BuNT substrate cleavage site.
[0026] Other aspects of the present invention provide polynucleotide molecules encoding modified Clostridial toxins comprising Clostridial toxin substrate cleavage site, wherein the Clostridial toxin substrate cleavage site is located within the di-chain loop region.
[0027] Other aspects of the present invention provide methods of producing a modified Clostridial toxin comprising Clostridial toxin substrate cleavage site, wherein the Clostridial toxin substrate cleavage site is located within the di-chain loop region. Other aspects of the present invention provide methods of producing in a cell a modified Clostridial toxin comprising Clostridial toxin substrate cleavage site, wherein the Clostridial toxin substrate cleavage site is located within the di-chain loop region and expressing the expression construct in the cell.
[0028] Aspects of the present invention provide, in part, a Clostridial toxin. As used herein, the term "Clostridial toxin" means any polypeptide that can execute the overall cellular mechanism whereby a Clostridial toxin enters a neuron and inhibits neurotransmitter release and encompasses the binding of a Clostridial toxin to a low or high affinity receptor complex, the internalization of the toxin/receptor complex, the translocation of the Clostridial toxin light chain into the cytoplasm and the enzymatic modification of a Clostridial toxin substrate.
[0029] A Clostridial toxin includes, without limitation, naturally occurring Clostridial toxin variants, such as, e.g., Clostridial toxin isoforms and Clostridial toxin subtypes; non-naturally occurring Clostridial toxin variants, such as, e.g., conservative Clostridial toxin variants, non-conservative Clostridial toxin variants, Clostridial toxin chimeric variants and active Clostridial toxin fragments thereof, or any combination thereof. As used herein, the term "Clostridial toxin variant," whether naturally-occurring or non-naturally-occurring, means a Clostridial toxin that has at least one amino acid change from the corresponding region of the disclosed reference sequences (see Table 1) and can be described in percent identity to the corresponding region of that reference sequence. As non-limiting examples, a BoNT/A variant comprising amino acids 1-1296 of SEQ ID NO: 1 will have at least one amino acid difference, such as, e.g., an amino acid substitution, deletion or addition, as compared to the amino acid region 1-1296 of SEQ ID NO: 1; a BoNT/B variant comprising amino acids 1-1291 of SEQ ID NO: 2 will have at least one amino acid difference, such as, e.g., an amino acid substitution, deletion or addition, as compared to the amino acid region 1-1291 of SEQ ID NO: 2; a BoNT/C1 variant comprising amino acids 1-1291 of SEQ ID NO: 3 will have at least one amino acid difference, such as, e.g., an amino acid substitution, deletion or addition, as compared to the amino acid region 1-1291 of SEQ ID NO: 3; a BoNT/D variant comprising amino acids 1-1276 of SEQ ID NO: 4 will have at least one amino acid difference, such as, e.g., an amino acid substitution, deletion or addition, as compared to the amino acid region 1-1276 of SEQ ID NO: 4; a BoNT/E variant comprising amino acids 1-1252 of SEQ ID NO: 5 will have at least one amino acid difference, such as, e.g., an amino acid substitution, deletion or addition, as compared to the amino acid region 1-1252 of SEQ ID NO: 5; a BoNT/F variant comprising amino acids 1-1274 of SEQ ID NO: 6 will have at least one amino acid difference, such as, e.g., an amino acid substitution, deletion or addition, as compared to the amino acid region 1-1274 of SEQ ID NO: 6; a BoNT/G variant comprising amino acids 1-1297 of SEQ ID NO: 7 will have at least one amino acid difference, such as, e.g., an amino acid substitution, deletion or addition, as compared to the amino acid region 1-1297 of SEQ ID NO: 7; and a TeNT variant comprising amino acids 1-1315 of SEQ ID NO: 8 will have at least one amino acid difference, such as, e.g., an amino acid substitution, deletion or addition, as compared to the amino acid region 1-1315 of SEQ ID NO: 8.
[0030] Any of a variety of sequence alignment methods can be used to determine percent identity, including, without limitation, global methods, local methods and hybrid methods, such as, e.g., segment approach methods. Protocols to determine percent identity are routine procedures within the scope of one skilled in the art and from the teaching herein.
[0031] Global methods align sequences from the beginning to the end of the molecule and determine the best alignment by adding up scores of individual residue pairs and by imposing gap penalties. Non-limiting methods include, e.g., CLUSTAL W, see, e.g., Julie D. Thompson et al., CLUSTAL W: Improving the Sensitivity of Progressive Multiple Sequence Alignment Through Sequence Weighting, Position-Specific Gap Penalties and Weight Matrix Choice, 22(22) Nucleic Acids Research 4673-4680 (1994); and iterative refinement, see, e.g., Osamu Gotoh, Significant Improvement in Accuracy of Multiple Protein Sequence Alignments by Iterative Refinement as Assessed by Reference to Structural Alignments, 264(4) J. Mol. Biol. 823-838 (1996).
[0032] Local methods align sequences by identifying one or more conserved motifs shared by all of the input sequences. Non-limiting methods include, e.g., Match-box, see, e.g., Eric Depiereux and Ernest Feytmans, Match-Box: A Fundamentally New Algorithm for the Simultaneous Alignment of Several Protein Sequences, 8(5) CABIOS 501-509 (1992); Gibbs sampling, see, e.g., C. E. Lawrence et al., Detecting Subtle Sequence Signals: A Gibbs Sampling Strategy for Multiple Alignment, 262(5131) Science 208-214 (1993); Align-M, see, e.g., Ivo Van Walle et al., Align-M--A New Algorithm for Multiple Alignment of Highly Divergent Sequences, 20(9) Bioinformatics, 1428-1435 (2004).
[0033] Hybrid methods combine functional aspects of both global and local alignment methods. Non-limiting methods include, e.g., segment-to-segment comparison, see, e.g., Burkhard Morgenstern et al., Multiple DNA and Protein Sequence Alignment Based On Segment-To-Segment Comparison, 93(22) Proc. Natl. Acad. Sci. U.S.A. 12098-12103 (1996); T-Coffee, see, e.g., Cedric Notredame et al., T-Coffee: A Novel Algorithm for Multiple Sequence Alignment, 302(1) J. Mol. Biol. 205-217 (2000); MUSCLE, see, e.g., Robert C. Edgar, MUSCLE: Multiple Sequence Alignment With High Score Accuracy and High Throughput, 32(5) Nucleic Acids Res. 1792-1797 (2004); and DIALIGN-T, see, e.g., Amarendran R Subramanian et al., DIALIGN-T: An Improved Algorithm for Segment-Based Multiple Sequence Alignment, 6(1) BMC Bioinformatics 66 (2005).
[0034] As used herein, the term "naturally occurring Clostridial toxin variant" means any Clostridial toxin produced without the aid of any human manipulation, including, without limitation, Clostridial toxin isoforms produced from alternatively-spliced transcripts, Clostridial toxin isoforms produced by spontaneous mutation and Clostridial toxin subtypes. Non-limiting examples of a Clostridial toxin isoform include, e.g., BoNT/A isoforms, BoNT/B isoforms, BoNT/C1 isoforms, BoNT/D isoforms, BoNT/E isoforms, BoNT/F isoforms, BoNT/G isoforms, and TeNT isoforms. Non-limiting examples of a Clostridial toxin subtype include, e.g., BoNT/A subtypes BoNT/A1, BoNT/A2, BoNT/A3 and BoNT/A4; BoNT/B subtypes BoNT/B1, BoNT/B2, BoNT/B bivalent and BoNT/B nonproteolytic; BoNT/C1 subtypes BoNT/C1-1 and BoNT/C1-2; BoNT/E subtypes BoNT/E1, BoNT/E2 and BoNT/E3; and BoNT/F subtypes BoNT/F1, BoNT/F2, BoNT/F3 and BoNT/F4.
[0035] As used herein, the term "non-naturally occurring Clostridial toxin variant" means any Clostridial toxin produced with the aid of human manipulation, including, without limitation, Clostridial toxins produced by genetic engineering using random mutagenesis or rational design and Clostridial toxins produced by chemical synthesis. Non-limiting examples of non-naturally occurring Clostridial toxin variants include, e.g., conservative Clostridial toxin variants, non-conservative Clostridial toxin variants, Clostridial toxin chimeric variants and active Clostridial toxin fragments.
[0036] As used herein, the term "conservative Clostridial toxin variant" means a Clostridial toxin that has at least one amino acid substituted by another amino acid or an amino acid analog that has at least one property similar to that of the original amino acid from the reference Clostridial toxin sequence (Table 1). Examples of properties include, without limitation, similar size, topography, charge, hydrophobicity, hydrophilicity, lipophilicity, covalent-bonding capacity, hydrogen-bonding capacity, a physicochemical property, of the like, or any combination thereof. A conservative Clostridial toxin variant can function in substantially the same manner as the reference Clostridial toxin on which the conservative Clostridial toxin variant is based, and can be substituted for the reference Clostridial toxin in any aspect of the present invention. A conservative Clostridial toxin variant may substitute one or more amino acids, two or more amino acids, three or more amino acids, four or more amino acids, five or more amino acids, ten or more amino acids, 20 or more amino acids, 30 or more amino acids, 40 or more amino acids, 50 or more amino acids, 100 or more amino acids, 200 or more amino acids, 300 or more amino acids, 400 or more amino acids, or 500 or more amino acids from the reference Clostridial toxin on which the conservative Clostridial toxin variant is based. A conservative Clostridial toxin variant can also substitute at least 10 contiguous amino acids, at least 15 contiguous amino acids, at least 20 contiguous amino acids, or at least 25 contiguous amino acids from the reference Clostridial toxin on which the conservative Clostridial toxin variant is based, that possess at least 50% amino acid identity, 65% amino acid identity, 75% amino acid identity, 85% amino acid identity or 95% amino acid identity to the reference Clostridial toxin on which the conservative Clostridial toxin variant is based. Non-limiting examples of a conservative Clostridial toxin variant include, e.g., conservative BoNT/A variants, conservative BoNT/B variants, conservative BoNT/C1 variants, conservative BoNT/D variants, conservative BoNT/E variants, conservative BoNT/F variants, conservative BoNT/G variants, and conservative TeNT variants.
[0037] As used herein, the term "non-conservative Clostridial toxin variant" means a Clostridial toxin in which 1) at least one amino acid is deleted from the reference Clostridial toxin on which the non-conservative Clostridial toxin variant is based; 2) at least one amino acid added to the reference Clostridial toxin on which the non-conservative Clostridial toxin is based; or 3) at least one amino acid is substituted by another amino acid or an amino acid analog that does not share any property similar to that of the original amino acid from the reference Clostridial toxin sequence (Table 1). A non-conservative Clostridial toxin variant can function in substantially the same manner as the reference Clostridial toxin on which the non-conservative Clostridial toxin variant is based, and can be substituted for the reference Clostridial toxin in any aspect of the present invention. A non-conservative Clostridial toxin variant can delete one or more amino acids, two or more amino acids, three or more amino acids, four or more amino acids, five or more amino acids, and ten or more amino acids from the reference Clostridial toxin on which the non-conservative Clostridial toxin variant is based. A non-conservative Clostridial toxin variant can add one or more amino acids, two or more amino acids, three or more amino acids, four or more amino acids, five or more amino acids, and ten or more amino acids to the reference Clostridial toxin on which the non-conservative Clostridial toxin variant is based. A non-conservative Clostridial toxin variant may substitute one or more amino acids, two or more amino acids, three or more amino acids, four or more amino acids, five or more amino acids, ten or more amino acids, 20 or more amino acids, 30 or more amino acids, 40 or more amino acids, 50 or more amino acids, 100 or more amino acids, 200 or more amino acids, 300 or more amino acids, 400 or more amino acids, or 500 or more amino acids from the reference Clostridial toxin on which the non-conservative Clostridial toxin variant is based. A non-conservative Clostridial toxin variant can also substitute at least 10 contiguous amino acids, at least 15 contiguous amino acids, at least 20 contiguous amino acids, or at least 25 contiguous amino acids from the reference Clostridial toxin on which the non-conservative Clostridial toxin variant is based, that possess at least 50% amino acid identity, 65% amino acid identity, 75% amino acid identity, 85% amino acid identity or 95% amino acid identity to the reference Clostridial toxin on which the non-conservative Clostridial toxin variant is based. Non-limiting examples of a non-conservative Clostridial toxin variant include, e.g., non-conservative BoNT/A variants, non-conservative BoNT/B variants, non-conservative BoNT/C1 variants, non-conservative BoNT/D variants, non-conservative BoNT/E variants, non-conservative BoNT/F variants, non-conservative BoNT/G variants, and non-conservative TeNT variants.
[0038] As used herein, the term "Clostridial toxin chimeric variant" means a molecule comprising at least a portion of a Clostridial toxin and at least a portion of at least one other protein to form a toxin with at least one property different from the reference Clostridial toxins of Table 1. One class of Clostridial toxin chimeric variant comprises a modified Clostridial toxin were the endogenous cell binding domain of a naturally-occurring Clostridial toxin is either modified or replaced with a cell binding domain of another molecule. Such modified Clostridial toxin possesses an altered cell binding activity because the modified toxin can, e.g., use the same receptor present on the surface of a naturally occurring Clostridial toxin target cell, referred to as an enhanced cell binding activity for a naturally-occurring Clostridial toxin target cell; use a different receptor present on the surface of a naturally occurring Clostridial toxin target cell, referred to as an altered cell binding activity for a naturally-occurring Clostridial toxin target cell, or use a different receptor present on the surface of the non-Clostridial toxin target cell, referred to as an altered cell binding activity for a non-naturally-occurring Clostridial toxin target cell.
[0039] A Clostridial toxin chimeric variant can be a modified Clostridial toxin with an enhanced cell binding activity capable of intoxicating a naturally occurring Clostridial toxin target cell, e.g., a motor neuron. One way this enhanced binding activity is achieved by modifying the endogenous targeting domain of a naturally-occurring Clostridial toxin in order to enhance a cell binding activity of the toxin for its naturally-occurring receptor. Such modifications to a targeting domain result in, e.g., a enhanced cell binding activity that increases binding affinity for an endogenous Clostridial toxin receptor present on a naturally-occurring Clostridial toxin target cell; an enhanced cell binding activity that increases binding specificity for a subgroup of endogenous Clostridial toxin receptors present on a naturally-occurring Clostridial toxin target cell; or an enhanced cell binding activity that increases both binding affinity and binding specificity. Non-limiting examples of modified Clostridial toxins an enhanced cell binding activity for a naturally-occurring Clostridial toxin receptor are described in, e.g., Lance E. Steward, et al., Modified Clostridial Toxins with Enhanced Targeting Capabilities For Endogenous Clostridial Toxin Receptors, International Patent Publication No. 2006/008956 (Mar. 14, 2006), Lance E. Steward, Modified Clostridial Toxins with Enhanced Translocation Capability, and Enhanced Targeting Activity, U.S. Provisional Patent Application No. 60/807,063 (Jul. 11, 2006); the content of which are all hereby incorporated by reference in their entirety.
[0040] A Clostridial toxin chimeric variant can be a modified Clostridial toxin with an altered cell binding activity capable of intoxicating a naturally occurring Clostridial toxin target cell, e.g., a motor neuron. One way this altered capability is achieved by replacing the endogenous targeting domain of a naturally-occurring Clostridial toxin with a targeting domain of another molecule that selectively binds to a different receptor present on the surface of a naturally occurring Clostridial toxin target cell. Such a modification to a targeting domain results in a modified toxin that is able to selectively bind to a non-Clostridial toxin receptor (target receptor) present on a Clostridial toxin target cell. This enhanced binding activity for a naturally occurring Clostridial toxin target cell allows for lower effective doses of a modified Clostridial toxin to be administered to an individual because more toxin will be delivered to the target cell. Thus, modified Clostridial toxins with an enhanced binding activity will reduce the undesirable dispersal of the toxin to areas not targeted for treatment, thereby reducing or preventing the undesirable side-effects associated with diffusion of a Clostridial toxin to an unwanted location. Non-limiting examples of modified Clostridial toxins with an altered cell binding capability for a Clostridial toxin target cell are described in, e.g., Lance E. Steward et al., Modified Clostridial Toxins with Altered Targeting Capabilities For Clostridial Toxin Target Cells, International Patent Publication No. 2006/009831 (Mar. 14, 2005); Lance E. Steward et al., Multivalent Clostridial Toxin Derivatives and Methods of Their Use, U.S. patent application Ser. No. 11/376,696 (Mar. 15, 2006); and Lance E. Steward, Modified Clostridial Toxins with Enhanced Translocation Capabilities and Altered Targeting Activity for Clostridial Toxin Target Cells, U.S. Provisional Patent Application No. 60/807,062, (Jul. 11, 2006); the contents of all of which are hereby incorporated by reference in their entirety.
[0041] A Clostridial toxin chimeric variant can be a modified Clostridial toxin with an altered cell binding activity capable of intoxicating a cell other than a naturally occurring Clostridial toxin target cell, e.g., a cell other than a motor neuron. These modified toxins achieve this intoxication by using a target receptor present on non-Clostridial toxin target cell. This re-targeted capability is achieved by replacing a naturally-occurring targeting domain of a Clostridial toxin with a targeting domain showing a selective binding activity for a non-Clostridial toxin receptor present in a non-Clostridial toxin target cell. Such modifications to a targeting domain result in a modified toxin that is able to selectively bind to a non-Clostridial toxin receptor (target receptor) present on a non-Clostridial toxin target cell (re-targeted). A modified Clostridial toxin with an altered targeting activity for a non-Clostridial toxin target cell can bind to a target receptor, translocate into the cytoplasm, and exert its proteolytic effect on the SNARE complex of the non-Clostridial toxin target cell. Non-limiting examples of modified Clostridial toxins with an altered targeting activity for a non-Clostridial toxin target cell are described in, e.g., Keith A. Foster et al., Clostridial Toxin Derivatives Able To Modify Peripheral Sensory Afferent Functions, U.S. Pat. No. 5,989,545 (Nov. 23, 1999); Clifford C. Shone et al., Recombinant Toxin Fragments, U.S. Pat. No. 6,461,617 (Oct. 8, 2002); Conrad P. Quinn et al., Methods and Compounds for the Treatment of Mucus Hypersecretion, U.S. Pat. No. 6,632,440 (Oct. 14, 2003); Lance E. Steward et al., Methods And Compositions For The Treatment Of Pancreatitis, U.S. Pat. No. 6,843,998 (Jan. 18, 2005); Stephan Donovan, Clostridial Toxin Derivatives and Methods For Treating Pain, U.S. Patent Publication 2002/0037833 (Mar. 28, 2002); Keith A. Foster et al., Inhibition of Secretion from Non-neural Cells, U.S. Patent Publication 2003/0180289 (Sep. 25, 2003); J. Oliver Dolly et al., Activatable Recombinant Neurotoxins, WO 2001/014570 (Mar. 1, 2001); Keith A. Foster et al., Re-targeted Toxin Conjugates, International Patent Publication WO 2005/023309 (Mar. 17, 2005); Lance E. Steward et al., Multivalent Clostridial Toxin Derivatives and Methods of Their Use, U.S. patent application Ser. No. 11/376,696 (Mar. 15, 2006); and Lance E. Steward, Modified Clostridial Toxins with Enhanced Translocation Capabilities and Altered Targeting Capabilities for Non-Clostridial Toxin Target Cells, U.S. Provisional Patent Application No. 60/807,059, (Jul. 11, 2006); the contents of all of which are hereby incorporated by reference in their entirety. The ability to re-target the therapeutic effects associated with Clostridial toxins has greatly extended the number of medicinal applications able to use a Clostridial toxin therapy. As a non-limiting example, modified Clostridial toxins retargeted to sensory neurons are useful in treating various kinds of chronic pain, such as, e.g., hyperalgesia and allodynia, neuropathic pain and inflammatory pain, see, e.g., Foster, supra, (1999); and Donovan, supra, (2002); and Stephan Donovan, Method For Treating Neurogenic Inflammation Pain with Botulinum Toxin and Substance P Components, U.S. Pat. No. 7,022,329 (Apr. 4, 2006). As another non-limiting example, modified Clostridial toxins retargeted to pancreatic cells are useful in treating pancreatitis, see, e.g., Steward, supra, (2005).
[0042] Thus, in an embodiment, a Clostridial toxin chimeric variant can comprise a modified Clostridial toxin disclosed in the present specification where the binding domain comprises an enhanced cell binding activity capable of intoxicating a naturally occurring Clostridial toxin target cell. In another embodiment, a Clostridial toxin chimeric variant can comprise a modified Clostridial toxin disclosed in the present specification where the binding domain comprises an altered cell binding activity capable of intoxicating a naturally occurring Clostridial toxin target cell. In still another embodiment, a Clostridial toxin chimeric variant can comprise a modified Clostridial toxin disclosed in the present specification where the binding domain comprises an altered cell binding activity capable of intoxicating a non-naturally occurring Clostridial toxin target cell.
[0043] It is also envisioned that any of a variety of Clostridial toxin fragments can be useful in aspects of the present invention with the proviso that these active fragments can execute the overall cellular mechanism whereby a Clostridial toxin proteolytically cleaves a substrate. Thus, aspects of this embodiment can include Clostridial toxin fragments having a length of, e.g., at least 300 amino acids, at least 400 amino acids, at least 500 amino acids, at least 600 amino acids, at least 700 amino acids, at least 800 amino acids, at least 900 amino acids, at least 1000 amino acids, at least 1100 amino acids and at least 1200 amino acids. Other aspects of this embodiment, can include Clostridial toxin fragments having a length of, e.g., at most 300 amino acids, at most 400 amino acids, at most 500 amino acids, at most 600 amino acids, at most 700 amino acids, at most 800 amino acids, at most 900 amino acids, at most 1000 amino acids, at most 1100 amino acids and at most 1200 amino acids.
[0044] It is also envisioned that any of a variety of Clostridial toxin fragments comprising the light chain can be useful in aspects of the present invention with the proviso that these light chain fragments can specifically target the core components of the neurotransmitter release apparatus and thus participate in executing the overall cellular mechanism whereby a Clostridial toxin proteolytically cleaves a substrate. The light chains of Clostridial toxins are approximately 420-460 amino acids in length and comprise an enzymatic domain (Table 1). Research has shown that the entire length of a Clostridial toxin light chain is not necessary for the enzymatic activity of the enzymatic domain. As a non-limiting example, the first eight amino acids of the BoNT/A light chain (residues 1-8 of SEQ ID NO: 1) are not required for enzymatic activity. As another non-limiting example, the first eight amino acids of the TeNT light chain (residues 1-8 of SEQ ID NO: 8) are not required for enzymatic activity. Likewise, the carboxyl-terminus of the light chain is not necessary for activity. As a non-limiting example, the last 32 amino acids of the BoNT/A light chain (residues 417-448 of SEQ ID NO: 1) are not required for enzymatic activity. As another non-limiting example, the last 31 amino acids of the TeNT light chain (residues 427-457 of SEQ ID NO: 8) are not required for enzymatic activity. Thus, aspects of this embodiment can include Clostridial toxin light chains comprising an enzymatic domain having a length of, e.g., at least 350 amino acids, at least 375 amino acids, at least 400 amino acids, at least 425 amino acids and at least 450 amino acids. Other aspects of this embodiment can include Clostridial toxin light chains comprising an enzymatic domain having a length of, e.g., at most 350 amino acids, at most 375 amino acids, at most 400 amino acids, at most 425 amino acids and at most 450 amino acids.
[0045] It is also envisioned that any of a variety of Clostridial toxin HN regions comprising a translocation domain can be useful in aspects of the present invention with the proviso that these active fragments can facilitate the release of the LC from intracellular vesicles into the cytoplasm of the target cell and thus participate in executing the overall cellular mechanism whereby a Clostridial toxin proteolytically cleaves a substrate. The HN regions from the heavy chains of Clostridial toxins are approximately 410-430 amino acids in length and comprise a translocation domain (Table 1). Research has shown that the entire length of a HN region from a Clostridial toxin heavy chain is not necessary for the translocating activity of the translocation domain. Thus, aspects of this embodiment can include Clostridial toxin HN regions comprising a translocation domain having a length of, e.g., at least 350 amino acids, at least 375 amino acids, at least 400 amino acids and at least 425 amino acids. Other aspects of this embodiment can include Clostridial toxin HN regions comprising translocation domain having a length of, e.g., at most 350 amino acids, at most 375 amino acids, at most 400 amino acids and at most 425 amino acids.
[0046] It is also envisioned that any of a variety of Clostridial toxin HC regions comprising a binding domain can be useful in aspects of the present invention with the proviso that these active fragments can determine the binding activity and binding specificity of the toxin to the receptor complex located at the surface of the target cell execute the overall cellular mechanism whereby a Clostridial toxin proteolytically cleaves a substrate. The HC regions from the heavy chains of Clostridial toxins are approximately 400-440 amino acids in length and comprise a binding domain (Table 1). Research has shown that the entire length of a HC region from a Clostridial toxin heavy chain is not necessary for the binding activity of the binding domain. Thus, aspects of this embodiment can include Clostridial toxin HC regions comprising a binding domain having a length of, e.g., at least 350 amino acids, at least 375 amino acids, at least 400 amino acids and at least 425 amino acids. Other aspects of this embodiment can include Clostridial toxin HC regions comprising a binding domain having a length of, e.g., at most 350 amino acids, at most 375 amino acids, at most 400 amino acids and at most 425 amino acids.
[0047] Thus, in an embodiment, a Clostridial toxin comprises a Clostridial toxin enzymatic domain, a Clostridial toxin translocation domain and a Clostridial toxin binding domain. In an aspect of this embodiment, a Clostridial toxin comprises a naturally occurring Clostridial toxin variant, such as, e.g., a Clostridial toxin isoform or a Clostridial toxin subtype. In another aspect of this embodiment, a Clostridial toxin comprises a non-naturally occurring Clostridial toxin variant, such as, e.g., a conservative Clostridial toxin variant, a non-conservative Clostridial toxin variant or an active Clostridial toxin fragment, or any combination thereof. In another aspect of this embodiment, a Clostridial toxin comprises a Clostridial toxin enzymatic domain or an active fragment thereof, a Clostridial toxin translocation domain or an active fragment thereof, a Clostridial toxin binding domain or an active fragment thereof, or any combination thereof. In other aspects of this embodiment, a Clostridial toxin can comprise a BoNT/A, a BoNT/B, a BoNT/C1, a BoNT/D, a BoNT/E, a BoNT/F, a BoNT/G or a TeNT.
[0048] In another embodiment, a Clostridial toxin comprises a BoNT/A. In an aspect of this embodiment, a BoNT/A comprises a BoNT/A enzymatic domain, a BoNT/A translocation domain and a BoNT/A binding domain. In another aspect of this embodiment, a BoNT/A comprises SEQ ID NO: 1. In another aspect of this embodiment, a BoNT/A comprises a naturally occurring BoNT/A variant, such as, e.g., a BoNT/A isoform or a BoNT/A subtype. In another aspect of this embodiment, a BoNT/A comprises a naturally occurring BoNT/A variant of SEQ ID NO: 1, such as, e.g., a BoNT/A isoform of SEQ ID NO: 1 or a BoNT/A subtype of SEQ ID NO: 1. In still another aspect of this embodiment, a BoNT/A comprises a non-naturally occurring BoNT/A variant, such as, e.g., a conservative BoNT/A variant, a non-conservative BoNT/A variant or an active BoNT/A fragment, or any combination thereof. In still another aspect of this embodiment, a BoNT/A comprises a non-naturally occurring BoNT/A variant of SEQ ID NO: 1, such as, e.g., a conservative BoNT/A variant of SEQ ID NO: 1, a non-conservative BoNT/A variant of SEQ ID NO: 1 or an active BoNT/A fragment of SEQ ID NO: 1, or any combination thereof. In yet another aspect of this embodiment, a BoNT/A comprises a BoNT/A enzymatic domain or an active fragment thereof, a BoNT/A translocation domain or an active fragment thereof, a BoNT/A binding domain or an active fragment thereof, or any combination thereof. In yet another aspect of this embodiment, a BoNT/A comprising a BoNT/A enzymatic domain of amino acids 1-448 from SEQ ID NO: 1 or an active fragment thereof, a BoNT/A translocation domain of amino acids 449-871 from SEQ ID NO: 1 or an active fragment thereof, a BoNT/A binding domain of amino acids 872-1296 from SEQ ID NO: 1 or an active fragment thereof, and any combination thereof.
[0049] In other aspects of this embodiment, a BoNT/A comprises a polypeptide having, e.g., at least 70% amino acid identity with SEQ ID NO: 1, at least 75% amino acid identity with the SEQ ID NO: 1, at least 80% amino acid identity with SEQ ID NO: 1, at least 85% amino acid identity with SEQ ID NO: 1, at least 90% amino acid identity with SEQ ID NO: 1 or at least 95% amino acid identity with SEQ ID NO: 1. In yet other aspects of this embodiment, a BoNT/A comprises a polypeptide having, e.g., at most 70% amino acid identity with SEQ ID NO: 1, at most 75% amino acid identity with the SEQ ID NO: 1, at most 80% amino acid identity with SEQ ID NO: 1, at most 85% amino acid identity with SEQ ID NO: 1, at most 90% amino acid identity with SEQ ID NO: 1 or at most 95% amino acid identity with SEQ ID NO: 1.
[0050] In other aspects of this embodiment, a BoNT/A comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid substitutions relative to SEQ ID NO: 1. In other aspects of this embodiment, a BoNT/A comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid substitutions relative to SEQ ID NO: 1. In yet other aspects of this embodiment, a BoNT/A comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid deletions relative to SEQ ID NO: 1. In other aspects of this embodiment, a BoNT/A comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid deletions relative to SEQ ID NO: 1. In still other aspects of this embodiment, a BoNT/A comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid additions relative to SEQ ID NO: 1. In other aspects of this embodiment, a BoNT/A comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid additions relative to SEQ ID NO: 1.
[0051] In other aspects of this embodiment, a BoNT/A comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid substitutions relative to SEQ ID NO: 1. In other aspects of this embodiment, a BoNT/A comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid substitutions relative to SEQ ID NO: 1. In yet other aspects of this embodiment, a BoNT/A comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid deletions relative to SEQ ID NO: 1. In other aspects of this embodiment, a BoNT/A comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid deletions relative to SEQ ID NO: 1. In still other aspects of this embodiment, a BoNT/A comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid additions relative to SEQ ID NO: 1. In other aspects of this embodiment, a BoNT/A comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid additions relative to SEQ ID NO: 1.
[0052] In another embodiment, a Clostridial toxin comprises a BoNT/B. In an aspect of this embodiment, a BoNT/B comprises a BoNT/B enzymatic domain, a BoNT/B translocation domain and a BoNT/B binding domain. In another aspect of this embodiment, a BoNT/B comprises SEQ ID NO: 2. In another aspect of this embodiment, a BoNT/B comprises a naturally occurring BoNT/B variant, such as, e.g., a BoNT/B isoform or a BoNT/B subtype. In another aspect of this embodiment, a BoNT/B comprises a naturally occurring BoNT/B variant of SEQ ID NO: 2, such as, e.g., a BoNT/B isoform of SEQ ID NO: 2 or a BoNT/B subtype of SEQ ID NO: 2. In still another aspect of this embodiment, a BoNT/B comprises a non-naturally occurring BoNT/B variant, such as, e.g., a conservative BoNT/B variant, a non-conservative BoNT/B variant or an active BoNT/B fragment, or any combination thereof. In still another aspect of this embodiment, a BoNT/B comprises a non-naturally occurring BoNT/B variant of SEQ ID NO: 2, such as, e.g., a conservative BoNT/B variant of SEQ ID NO: 2, a non-conservative BoNT/B variant of SEQ ID NO: 2 or an active BoNT/B fragment of SEQ ID NO: 2, or any combination thereof. In yet another aspect of this embodiment, a BoNT/B comprising a BoNT/B enzymatic domain or an active fragment thereof, a BoNT/B translocation domain or active fragment thereof, a BoNT/B binding domain or active fragment thereof, and any combination thereof. In yet another aspect of this embodiment, a BoNT/B comprising a BoNT/B enzymatic domain of amino acids 1-441 from SEQ ID NO: 2 or active fragment thereof, a BoNT/B translocation domain of amino acids 442-858 from SEQ ID NO: 2 or active fragment thereof, a BoNT/B binding domain of amino acids 859-1291 from SEQ ID NO: 2 or active fragment thereof, and any combination thereof.
[0053] In other aspects of this embodiment, a BoNT/B comprises a polypeptide having, e.g., at least 70% amino acid identity with SEQ ID NO: 2, at least 75% amino acid identity with the SEQ ID NO: 2, at least 80% amino acid identity with SEQ ID NO: 2, at least 85% amino acid identity with SEQ ID NO: 2, at least 90% amino acid identity with SEQ ID NO: 2 or at least 95% amino acid identity with SEQ ID NO: 2. In yet other aspects of this embodiment, a BoNT/B comprises a polypeptide having, e.g., at most 70% amino acid identity with SEQ ID NO: 2, at most 75% amino acid identity with the SEQ ID NO: 2, at most 80% amino acid identity with SEQ ID NO: 2, at most 85% amino acid identity with SEQ ID NO: 2, at most 90% amino acid identity with SEQ ID NO: 2 or at most 95% amino acid identity with SEQ ID NO: 2.
[0054] In other aspects of this embodiment, a BoNT/B comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid substitutions relative to SEQ ID NO: 2. In other aspects of this embodiment, a BoNT/B comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid substitutions relative to SEQ ID NO: 2. In yet other aspects of this embodiment, a BoNT/B comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid deletions relative to SEQ ID NO: 2. In other aspects of this embodiment, a BoNT/B comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid deletions relative to SEQ ID NO: 2. In still other aspects of this embodiment, a BoNT/B comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid additions relative to SEQ ID NO: 2. In other aspects of this embodiment, a BoNT/B comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid additions relative to SEQ ID NO: 2.
[0055] In other aspects of this embodiment, a BoNT/B comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid substitutions relative to SEQ ID NO: 2. In other aspects of this embodiment, a BoNT/B comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid substitutions relative to SEQ ID NO: 2. In yet other aspects of this embodiment, a BoNT/B comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid deletions relative to SEQ ID NO: 2. In other aspects of this embodiment, a BoNT/B comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid deletions relative to SEQ ID NO: 2. In still other aspects of this embodiment, a BoNT/B comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid additions relative to SEQ ID NO: 2. In other aspects of this embodiment, a BoNT/B comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid additions relative to SEQ ID NO: 2.
[0056] In another embodiment, a Clostridial toxin comprises a BoNT/C1. In an aspect of this embodiment, a BoNT/C1 comprises a BoNT/C1 enzymatic domain, a BoNT/C1 translocation domain and a BoNT/C1 binding domain. In another aspect of this embodiment, a BoNT/C1 comprises SEQ ID NO: 3. In another aspect of this embodiment, a BoNT/C1 comprises a naturally occurring BoNT/C1 variant, such as, e.g., a BoNT/C1 isoform or a BoNT/C1 subtype. In another aspect of this embodiment, a BoNT/C1 comprises a naturally occurring BoNT/C1 variant of SEQ ID NO: 3, such as, e.g., a BoNT/C1 isoform of SEQ ID NO: 3 or a BoNT/C1 subtype of SEQ ID NO: 3. In still another aspect of this embodiment, a BoNT/C1 comprises a non-naturally occurring BoNT/C1 variant, such as, e.g., a conservative BoNT/C1 variant, a non-conservative BoNT/C1 variant or an active BoNT/C1 fragment, or any combination thereof. In still another aspect of this embodiment, a BoNT/C1 comprises a non-naturally occurring BoNT/C1 variant of SEQ ID NO: 3, such as, e.g., a conservative BoNT/C1 variant of SEQ ID NO: 3, a non-conservative BoNT/C1 variant of SEQ ID NO: 3 or an active BoNT/C1 fragment of SEQ ID NO: 3, or any combination thereof. In yet another aspect of this embodiment, a BoNT/C1 comprises a BoNT/C1 enzymatic domain or active fragment thereof, a BoNT/C1 translocation domain or active fragment thereof, a BoNT/C1 binding domain or active fragment thereof, and any combination thereof. In yet another aspect of this embodiment, a BoNT/C1 comprises a BoNT/C1 enzymatic domain of amino acid 1-449 from SEQ ID NO: 3 or active fragment thereof, a BoNT/C1 translocation domain of amino acids 450-866 from SEQ ID NO: 3 or active fragment thereof, a BoNT/C1 binding domain of amino acids 867-1291 from SEQ ID NO: 3 or active fragment thereof, and any combination thereof.
[0057] In other aspects of this embodiment, a BoNT/C1 comprises a polypeptide having, e.g., at least 70% amino acid identity with SEQ ID NO: 3, at least 75% amino acid identity with the SEQ ID NO: 3, at least 80% amino acid identity with SEQ ID NO: 3, at least 85% amino acid identity with SEQ ID NO: 3, at least 90% amino acid identity with SEQ ID NO: 3 or at least 95% amino acid identity with SEQ ID NO: 3. In yet other aspects of this embodiment, a BoNT/C1 comprises a polypeptide having, e.g., at most 70% amino acid identity with SEQ ID NO: 3, at most 75% amino acid identity with the SEQ ID NO: 3, at most 80% amino acid identity with SEQ ID NO: 3, at most 85% amino acid identity with SEQ ID NO: 3, at most 90% amino acid identity with SEQ ID NO: 3 or at most 95% amino acid identity with SEQ ID NO: 3.
[0058] In other aspects of this embodiment, a BoNT/C1 comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid substitutions relative to SEQ ID NO: 3. In other aspects of this embodiment, a BoNT/C1 comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid substitutions relative to SEQ ID NO: 3. In yet other aspects of this embodiment, a BoNT/C1 comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid deletions relative to SEQ ID NO: 3. In other aspects of this embodiment, a BoNT/C1 comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid deletions relative to SEQ ID NO: 3. In still other aspects of this embodiment, a BoNT/C1 comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid additions relative to SEQ ID NO: 3.
[0059] In other aspects of this embodiment, a BoNT/C1 comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid additions relative to SEQ ID NO: 3.
[0060] In other aspects of this embodiment, a BoNT/C1 comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid substitutions relative to SEQ ID NO: 3. In other aspects of this embodiment, a BoNT/C1 comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid substitutions relative to SEQ ID NO: 3. In yet other aspects of this embodiment, a BoNT/C1 comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid deletions relative to SEQ ID NO: 3. In other aspects of this embodiment, a BoNT/C1 comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid deletions relative to SEQ ID NO: 3. In still other aspects of this embodiment, a BoNT/C1 comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid additions relative to SEQ ID NO: 3. In other aspects of this embodiment, a BoNT/C1 comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid additions relative to SEQ ID NO: 3.
[0061] In another embodiment, a Clostridial toxin comprises a BoNT/D. In an aspect of this embodiment, a BoNT/D comprises a BoNT/D enzymatic domain, a BoNT/D translocation domain and a BoNT/D binding domain. In another aspect of this embodiment, a BoNT/D comprises SEQ ID NO: 4. In another aspect of this embodiment, a BoNT/D comprises a naturally occurring BoNT/D variant, such as, e.g., a BoNT/D isoform or a BoNT/D subtype. In another aspect of this embodiment, a BoNT/D comprises a naturally occurring BoNT/D variant of SEQ ID NO: 4, such as, e.g., a BoNT/D isoform of SEQ ID NO: 4 or a BoNT/D subtype of SEQ ID NO: 4. In still another aspect of this embodiment, a BoNT/D comprises a non-naturally occurring BoNT/D variant, such as, e.g., a conservative BoNT/D variant, a non-conservative BoNT/D variant or an active BoNT/D fragment, or any combination thereof. In still another aspect of this embodiment, a BoNT/D comprises a non-naturally occurring BoNT/D variant of SEQ ID NO: 4, such as, e.g., a conservative BoNT/D variant of SEQ ID NO: 4, a non-conservative BoNT/D variant of SEQ ID NO: 4 or an active BoNT/D fragment of SEQ ID NO: 4, or any combination thereof. In yet another aspect of this embodiment, a BoNT/D comprises a BoNT/D enzymatic domain or an active fragment thereof, a BoNT/D translocation domain or an active fragment thereof, a BoNT/D binding domain or an active fragment thereof, or any combination thereof. In yet another aspect of this embodiment, a BoNT/D comprising a BoNT/D enzymatic domain of amino acids 1-445 from SEQ ID NO: 4 or an active fragment thereof, a BoNT/D translocation domain of amino acids 446-862 from SEQ ID NO: 4 or an active fragment thereof, a BoNT/D binding domain of amino acids 863-1276 from SEQ ID NO: 4 or an active fragment thereof, and any combination thereof.
[0062] In other aspects of this embodiment, a BoNT/D comprises a polypeptide having, e.g., at least 70% amino acid identity with SEQ ID NO: 4, at least 75% amino acid identity with the SEQ ID NO: 4, at least 80% amino acid identity with SEQ ID NO: 4, at least 85% amino acid identity with SEQ ID NO: 4, at least 90% amino acid identity with SEQ ID NO: 4 or at least 95% amino acid identity with SEQ ID NO: 4. In yet other aspects of this embodiment, a BoNT/D comprises a polypeptide having, e.g., at most 70% amino acid identity with SEQ ID NO: 4, at most 75% amino acid identity with the SEQ ID NO: 4, at most 80% amino acid identity with SEQ ID NO: 4, at most 85% amino acid identity with SEQ ID NO: 4, at most 90% amino acid identity with SEQ ID NO: 4 or at most 95% amino acid identity with SEQ ID NO: 4.
[0063] In other aspects of this embodiment, a BoNT/D comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid substitutions relative to SEQ ID NO: 4. In other aspects of this embodiment, a BoNT/D comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid substitutions relative to SEQ ID NO: 4. In yet other aspects of this embodiment, a BoNT/D comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid deletions relative to SEQ ID NO: 4. In other aspects of this embodiment, a BoNT/D comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid deletions relative to SEQ ID NO: 4. In still other aspects of this embodiment, a BoNT/D comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid additions relative to SEQ ID NO: 4. In other aspects of this embodiment, a BoNT/D comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid additions relative to SEQ ID NO: 4.
[0064] In other aspects of this embodiment, a BoNT/D comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid substitutions relative to SEQ ID NO: 4. In other aspects of this embodiment, a BoNT/D comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid substitutions relative to SEQ ID NO: 4. In yet other aspects of this embodiment, a BoNT/D comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid deletions relative to SEQ ID NO: 4. In other aspects of this embodiment, a BoNT/D comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid deletions relative to SEQ ID NO: 4. In still other aspects of this embodiment, a BoNT/D comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid additions relative to SEQ ID NO: 4. In other aspects of this embodiment, a BoNT/D comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid additions relative to SEQ ID NO: 4.
[0065] In another embodiment, a Clostridial toxin comprises a BoNT/E. In an aspect of this embodiment, a BoNT/E comprises a BoNT/E enzymatic domain, a BoNT/E translocation domain and a BoNT/E binding domain. In another aspect of this embodiment, a BoNT/E comprises SEQ ID NO: 5. In another aspect of this embodiment, a BoNT/E comprises a naturally occurring BoNT/E variant, such as, e.g., a BoNT/E isoform or a BoNT/E subtype. In another aspect of this embodiment, a BoNT/E comprises a naturally occurring BoNT/E variant of SEQ ID NO: 5, such as, e.g., a BoNT/E isoform of SEQ ID NO: 5 or a BoNT/E subtype of SEQ ID NO: 5. In still another aspect of this embodiment, a BoNT/E comprises a non-naturally occurring BoNT/E variant, such as, e.g., a conservative BoNT/E variant, a non-conservative BoNT/E variant or an active BoNT/E fragment, or any combination thereof. In still another aspect of this embodiment, a BoNT/E comprises a non-naturally occurring BoNT/E variant of SEQ ID NO: 5, such as, e.g., a conservative BoNT/E variant of SEQ ID NO: 5, a non-conservative BoNT/E variant of SEQ ID NO: 5 or an active BoNT/E fragment of SEQ ID NO: 5, or any combination thereof. In yet another aspect of this embodiment, a BoNT/E comprising a BoNT/E enzymatic domain or an active fragment thereof, a BoNT/E translocation domain or active fragment thereof, a BoNT/E binding domain or active fragment thereof, and any combination thereof. In yet another aspect of this embodiment, a BoNT/E comprising a BoNT/E enzymatic domain of amino acids 1-422 from SEQ ID NO: 5 or active fragment thereof, a BoNT/E translocation domain of amino acids 423-845 from SEQ ID NO: 5 or active fragment thereof, a BoNT/E binding domain of amino acids 846-1252 from SEQ ID NO: 5 or active fragment thereof, and any combination thereof.
[0066] In other aspects of this embodiment, a BoNT/E comprises a polypeptide having, e.g., at least 70% amino acid identity with SEQ ID NO: 5, at least 75% amino acid identity with the SEQ ID NO: 5, at least 80% amino acid identity with SEQ ID NO: 5, at least 85% amino acid identity with SEQ ID NO: 5, at least 90% amino acid identity with SEQ ID NO: 5 or at least 95% amino acid identity with SEQ ID NO: 5. In yet other aspects of this embodiment, a BoNT/E comprises a polypeptide having, e.g., at most 70% amino acid identity with SEQ ID NO: 5, at most 75% amino acid identity with the SEQ ID NO: 5, at most 80% amino acid identity with SEQ ID NO: 5, at most 85% amino acid identity with SEQ ID NO: 5, at most 90% amino acid identity with SEQ ID NO: 5 or at most 95% amino acid identity with SEQ ID NO: 5.
[0067] In other aspects of this embodiment, a BoNT/E comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid substitutions relative to SEQ ID NO: 5. In other aspects of this embodiment, a BoNT/E comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid substitutions relative to SEQ ID NO: 5. In yet other aspects of this embodiment, a BoNT/E comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid deletions relative to SEQ ID NO: 5. In other aspects of this embodiment, a BoNT/E comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid deletions relative to SEQ ID NO: 5. In still other aspects of this embodiment, a BoNT/E comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid additions relative to SEQ ID NO: 5. In other aspects of this embodiment, a BoNT/E comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid additions relative to SEQ ID NO: 5.
[0068] In other aspects of this embodiment, a BoNT/E comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid substitutions relative to SEQ ID NO: 5. In other aspects of this embodiment, a BoNT/E comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid substitutions relative to SEQ ID NO: 5. In yet other aspects of this embodiment, a BoNT/E comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid deletions relative to SEQ ID NO: 5. In other aspects of this embodiment, a BoNT/E comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid deletions relative to SEQ ID NO: 5. In still other aspects of this embodiment, a BoNT/E comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid additions relative to SEQ ID NO: 5. In other aspects of this embodiment, a BoNT/E comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid additions relative to SEQ ID NO: 5.
[0069] In another embodiment, a Clostridial toxin comprises a BoNT/F. In an aspect of this embodiment, a BoNT/F comprises a BoNT/F enzymatic domain, a BoNT/F translocation domain and a BoNT/F binding domain. In another aspect of this embodiment, a BoNT/F comprises SEQ ID NO: 6. In another aspect of this embodiment, a BoNT/F comprises a naturally occurring BoNT/F variant, such as, e.g., a BoNT/F isoform or a BoNT/F subtype. In another aspect of this embodiment, a BoNT/F comprises a naturally occurring BoNT/F variant of SEQ ID NO: 6, such as, e.g., a BoNT/F isoform of SEQ ID NO: 6 or a BoNT/F subtype of SEQ ID NO: 6. In still another aspect of this embodiment, a BoNT/F comprises a non-naturally occurring BoNT/F variant, such as, e.g., a conservative BoNT/F variant, a non-conservative BoNT/F variant or an active BoNT/F fragment, or any combination thereof. In still another aspect of this embodiment, a BoNT/F comprises a non-naturally occurring BoNT/F variant of SEQ ID NO: 6, such as, e.g., a conservative BoNT/F variant of SEQ ID NO: 6, a non-conservative BoNT/F variant of SEQ ID NO: 6 or an active BoNT/F fragment of SEQ ID NO: 6, or any combination thereof. In yet another aspect of this embodiment, a BoNT/F comprises a BoNT/F enzymatic domain or active fragment thereof, a BoNT/F translocation domain or active fragment thereof, a BoNT/F binding domain or active fragment thereof, and any combination thereof. In yet another aspect of this embodiment, a BoNT/F comprises a BoNT/F enzymatic domain of amino acid 1-439 from SEQ ID NO: 6 or active fragment thereof, a BoNT/F translocation domain of amino acids 440-864 from SEQ ID NO: 6 or active fragment thereof, a BoNT/F binding domain of amino acids 865-1274 from SEQ ID NO: 6 or active fragment thereof, and any combination thereof.
[0070] In other aspects of this embodiment, a BoNT/F comprises a polypeptide having, e.g., at least 70% amino acid identity with SEQ ID NO: 6, at least 75% amino acid identity with the SEQ ID NO: 6, at least 80% amino acid identity with SEQ ID NO: 6, at least 85% amino acid identity with SEQ ID NO: 6, at least 90% amino acid identity with SEQ ID NO: 6 or at least 95% amino acid identity with SEQ ID NO: 6. In yet other aspects of this embodiment, a BoNT/F comprises a polypeptide having, e.g., at most 70% amino acid identity with SEQ ID NO: 6, at most 75% amino acid identity with the SEQ ID NO: 6, at most 80% amino acid identity with SEQ ID NO: 6, at most 85% amino acid identity with SEQ ID NO: 6, at most 90% amino acid identity with SEQ ID NO: 6 or at most 95% amino acid identity with SEQ ID NO: 6.
[0071] In other aspects of this embodiment, a BoNT/F comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid substitutions relative to SEQ ID NO: 6. In other aspects of this embodiment, a BoNT/F comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid substitutions relative to SEQ ID NO: 6. In yet other aspects of this embodiment, a BoNT/F comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid deletions relative to SEQ ID NO: 6. In other aspects of this embodiment, a BoNT/F comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid deletions relative to SEQ ID NO: 6. In still other aspects of this embodiment, a BoNT/F comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid additions relative to SEQ ID NO: 6. In other aspects of this embodiment, a BoNT/F comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid additions relative to SEQ ID NO: 6.
[0072] In other aspects of this embodiment, a BoNT/F comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid substitutions relative to SEQ ID NO: 6. In other aspects of this embodiment, a BoNT/F comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid substitutions relative to SEQ ID NO: 6. In yet other aspects of this embodiment, a BoNT/F comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid deletions relative to SEQ ID NO: 6. In other aspects of this embodiment, a BoNT/F comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid deletions relative to SEQ ID NO: 6. In still other aspects of this embodiment, a BoNT/F comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid additions relative to SEQ ID NO: 6. In other aspects of this embodiment, a BoNT/F comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid additions relative to SEQ ID NO: 6.
[0073] In another embodiment, a Clostridial toxin comprises a BoNT/G. In an aspect of this embodiment, a BoNT/G comprises a BoNT/G enzymatic domain, a BoNT/G translocation domain and a BoNT/G binding domain. In another aspect of this embodiment, a BoNT/G comprises SEQ ID NO: 7. In another aspect of this embodiment, a BoNT/G comprises a naturally occurring BoNT/G variant, such as, e.g., a BoNT/G isoform or a BoNT/G subtype. In another aspect of this embodiment, a BoNT/G comprises a naturally occurring BoNT/G variant of SEQ ID NO: 7, such as, e.g., a BoNT/G isoform of SEQ ID NO: 7 or a BoNT/G subtype of SEQ ID NO: 7. In still another aspect of this embodiment, a BoNT/G comprises a non-naturally occurring BoNT/G variant, such as, e.g., a conservative BoNT/G variant, a non-conservative BoNT/G variant or an active BoNT/G fragment, or any combination thereof. In still another aspect of this embodiment, a BoNT/D comprises a non-naturally occurring BoNT/G variant of SEQ ID NO: 7, such as, e.g., a conservative BoNT/G variant of SEQ ID NO: 7, a non-conservative BoNT/G variant of SEQ ID NO: 7 or an active BoNT/G fragment of SEQ ID NO: 7, or any combination thereof. In yet another aspect of this embodiment, a BoNT/G comprises a BoNT/G enzymatic domain or an active fragment thereof, a BoNT/G translocation domain or an active fragment thereof, a BoNT/G binding domain or an active fragment thereof, or any combination thereof. In yet another aspect of this embodiment, a BoNT/G comprising a BoNT/G enzymatic domain of amino acids 1-446 from SEQ ID NO: 7 or an active fragment thereof, a BoNT/G translocation domain of amino acids 447-863 from SEQ ID NO: 7 or an active fragment thereof, a BoNT/G binding domain of amino acids 864-1297 from SEQ ID NO: 7 or an active fragment thereof, and any combination thereof.
[0074] In other aspects of this embodiment, a BoNT/G comprises a polypeptide having, e.g., at least 70% amino acid identity with SEQ ID NO: 7, at least 75% amino acid identity with the SEQ ID NO: 7, at least 80% amino acid identity with SEQ ID NO: 7, at least 85% amino acid identity with SEQ ID NO: 7, at least 90% amino acid identity with SEQ ID NO: 7 or at least 95% amino acid identity with SEQ ID NO: 7. In yet other aspects of this embodiment, a BoNT/G comprises a polypeptide having, e.g., at most 70% amino acid identity with SEQ ID NO: 7, at most 75% amino acid identity with the SEQ ID NO: 7, at most 80% amino acid identity with SEQ ID NO: 7, at most 85% amino acid identity with SEQ ID NO: 7, at most 90% amino acid identity with SEQ ID NO: 7 or at most 95% amino acid identity with SEQ ID NO: 7.
[0075] In other aspects of this embodiment, a BoNT/G comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid substitutions relative to SEQ ID NO: 7. In other aspects of this embodiment, a BoNT/G comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid substitutions relative to SEQ ID NO: 7. In yet other aspects of this embodiment, a BoNT/G comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid deletions relative to SEQ ID NO: 7. In other aspects of this embodiment, a BoNT/G comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid deletions relative to SEQ ID NO: 7. In still other aspects of this embodiment, a BoNT/G comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid additions relative to SEQ ID NO: 7. In other aspects of this embodiment, a BoNT/G comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid additions relative to SEQ ID NO: 7.
[0076] In other aspects of this embodiment, a BoNT/G comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid substitutions relative to SEQ ID NO: 7. In other aspects of this embodiment, a BoNT/G comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid substitutions relative to SEQ ID NO: 7. In yet other aspects of this embodiment, a BoNT/G comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid deletions relative to SEQ ID NO: 7. In other aspects of this embodiment, a BoNT/G comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid deletions relative to SEQ ID NO: 7. In still other aspects of this embodiment, a BoNT/G comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid additions relative to SEQ ID NO: 7. In other aspects of this embodiment, a BoNT/G comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid additions relative to SEQ ID NO: 7.
[0077] In another embodiment, a Clostridial toxin comprises a TeNT. In an aspect of this embodiment, a TeNT comprises a TeNT enzymatic domain, a TeNT translocation domain and a TeNT binding domain. In an aspect of this embodiment, a TeNT comprises SEQ ID NO: 8. In another aspect of this embodiment, a TeNT comprises a naturally occurring TeNT variant, such as, e.g., a TeNT isoform or a TeNT subtype. In another aspect of this embodiment, a TeNT comprises a naturally occurring TeNT variant of SEQ ID NO: 8, such as, e.g., a TeNT isoform of SEQ ID NO: 8 or a TeNT subtype of SEQ ID NO: 8. In still another aspect of this embodiment, a TeNT comprises a non-naturally occurring TeNT variant, such as, e.g., a conservative TeNT variant, a non-conservative TeNT variant or an active TeNT fragment, or any combination thereof. In still another aspect of this embodiment, a TeNT comprises a non-naturally occurring TeNT variant of SEQ ID NO: 8, such as, e.g., a conservative TeNT variant of SEQ ID NO: 8, a non-conservative TeNT variant of SEQ ID NO: 8 or an active TeNT fragment of SEQ ID NO: 8, or any combination thereof. In yet another aspect of this embodiment, a TeNT comprising a TeNT enzymatic domain or an active fragment thereof, a TeNT translocation domain or active fragment thereof, a TeNT binding domain or active fragment thereof, and any combination thereof. In yet another aspect of this embodiment, a TeNT comprising a TeNT enzymatic domain of amino acids 1-457 from SEQ ID NO: 8 or active fragment thereof, a TeNT translocation domain of amino acids 458-879 from SEQ ID NO: 8 or active fragment thereof, a TeNT binding domain of amino acids 880-1315 from SEQ ID NO: 8 or active fragment thereof, and any combination thereof.
[0078] In other aspects of this embodiment, a TeNT comprises a polypeptide having, e.g., at least 70% amino acid identity with SEQ ID NO: 8, at least 75% amino acid identity with the SEQ ID NO: 8, at least 80% amino acid identity with SEQ ID NO: 8, at least 85% amino acid identity with SEQ ID NO: 8, at least 90% amino acid identity with SEQ ID NO: 8 or at least 95% amino acid identity with SEQ ID NO: 8. In yet other aspects of this embodiment, a TeNT comprises a polypeptide having, e.g., at most 70% amino acid identity with SEQ ID NO: 8, at most 75% amino acid identity with the SEQ ID NO: 8, at most 80% amino acid identity with SEQ ID NO: 8, at most 85% amino acid identity with SEQ ID NO: 8, at most 90% amino acid identity with SEQ ID NO: 8 or at most 95% amino acid identity with SEQ ID NO: 8.
[0079] In other aspects of this embodiment, a TeNT comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid substitutions relative to SEQ ID NO: 8. In other aspects of this embodiment, a TeNT comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid substitutions relative to SEQ ID NO: 8. In yet other aspects of this embodiment, a TeNT comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid deletions relative to SEQ ID NO: 8. In other aspects of this embodiment, a TeNT comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid deletions relative to SEQ ID NO: 8. In still other aspects of this embodiment, a TeNT comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid additions relative to SEQ ID NO: 8. In other aspects of this embodiment, a TeNT comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid additions relative to SEQ ID NO: 8.
[0080] In other aspects of this embodiment, a TeNT comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid substitutions relative to SEQ ID NO: 8. In other aspects of this embodiment, a TeNT comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid substitutions relative to SEQ ID NO: 8. In yet other aspects of this embodiment, a TeNT comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid deletions relative to SEQ ID NO: 8. In other aspects of this embodiment, a TeNT comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid deletions relative to SEQ ID NO: 8. In still other aspects of this embodiment, a TeNT comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid additions relative to SEQ ID NO: 8. In other aspects of this embodiment, a TeNT comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid additions relative to SEQ ID NO: 8.
[0081] Aspects of the present invention provide, in part, a Clostridial toxin substrate cleavage site. As used herein, the term "Clostridial toxin substrate cleavage site" means a scissile bond together with adjacent or non-adjacent recognition elements, or both, sufficient for detectable proteolysis at the scissile bond by a Clostridial toxin under conditions suitable for Clostridial toxin protease activity. By definition, a Clostridial toxin substrate cleavage site is susceptible to cleavage by at least one Clostridial toxin under conditions suitable for Clostridial toxin protease activity. It is envisioned that a Clostridial toxin substrate cleavage site of any and all lengths can be useful in aspects of the present invention with the proviso that the Clostridial toxin substrate cleavage site is capable of being cleaved by a Clostridial toxin. Thus, in aspects of this embodiment, a Clostridial toxin substrate cleavage site can be, e.g., at least 6 amino acids in length, at least 7 amino acids in length, at least 8 amino acids in length, at least 9 amino acids in length, at least 10 amino acids in length, at least 15 amino acids in length, at least 20 amino acids in length, at least 25 amino acids in length, at least 30 amino acids in length, at least 40 amino acids in length, at least 50 amino acids in length or at least 60 amino acids in length. In other aspects of this embodiment, a Clostridial toxin substrate cleavage site can be, e.g., at most 6 amino acids in length, at most 7 amino acids in length, at most 8 amino acids in length, at most 9 amino acids in length, at most 10 amino acids in length, at most 15 amino acids in length, at most 20 amino acids in length, at most 25 amino acids in length, at most 30 amino acids in length, at most 40 amino acids in length, at most 50 amino acids in length or at most 60 amino acids in length.
[0082] A Clostridial toxin substrate cleavage site useful in aspects of the invention includes, without limitation, naturally occurring Clostridial toxin substrate cleavage site; naturally occurring Clostridial toxin substrate cleavage site variants; and non-naturally-occurring Clostridial toxin substrate cleavage site variants, such as, e.g., conservative Clostridial toxin substrate cleavage site variants, non-conservative Clostridial toxin substrate cleavage site variants and Clostridial toxin substrate cleavage site peptidomimetics. As used herein, the term "Clostridial toxin substrate cleavage site variant," whether naturally-occurring or non-naturally-occurring, means a Clostridial toxin substrate cleavage site that has at least one amino acid change from the corresponding region of the disclosed reference sequences and can be described in percent identity to the corresponding region of that reference sequence. Any of a variety of sequence alignment methods can be used to determine percent identity, including, without limitation, global methods, local methods and hybrid methods, such as, e.g., segment approach methods. Protocols to determine percent identity are routine procedures within the scope of one skilled in the art and from the teaching herein.
[0083] As used herein, the term "naturally occurring Clostridial toxin substrate cleavage site variant" means any Clostridial toxin substrate cleavage site produced without the aid of any human manipulation, including, without limitation, Clostridial toxin substrate cleavage site isoforms produced from alternatively-spliced transcripts, Clostridial toxin substrate cleavage site isoforms produced by spontaneous mutation and Clostridial toxin substrate cleavage site subtypes.
[0084] As used herein, the term "non-naturally occurring Clostridial toxin substrate cleavage site variant" means any Clostridial toxin substrate cleavage site produced with the aid of human manipulation, including, without limitation, Clostridial toxin substrate cleavage site variants produced by genetic engineering using random mutagenesis or rational design and Clostridial toxin substrate cleavage site variants produced by chemical synthesis. Non-limiting examples of non-naturally occurring Clostridial toxin substrate cleavage site variants include, e.g., conservative Clostridial toxin substrate cleavage site variants, non-conservative Clostridial toxin substrate cleavage site variants and Clostridial toxin substrate cleavage site peptidomimetics.
[0085] As used herein, the term "conservative Clostridial toxin substrate cleavage site variant" means a Clostridial toxin substrate cleavage site that has at least one amino acid substituted by another amino acid or an amino acid analog that has at least one property similar to that of the original amino acid from the reference Clostridial toxin substrate cleavage site sequence. Examples of properties include, without limitation, similar size, topography, charge, hydrophobicity, hydrophilicity, lipophilicity, covalent-bonding capacity, hydrogen-bonding capacity, a physicochemical property, of the like, or any combination thereof. A conservative Clostridial toxin substrate cleavage site variant can function in substantially the same manner as the reference Clostridial toxin substrate cleavage site on which the conservative Clostridial toxin substrate cleavage site variant is based, and can be substituted for the reference Clostridial toxin substrate cleavage site in any aspect of the present invention. A conservative Clostridial toxin substrate cleavage site variant may substitute one or more amino acids, two or more amino acids, three or more amino acids, four or more amino acids or five or more amino acids from the reference Clostridial toxin substrate cleavage site on which the conservative Clostridial toxin substrate cleavage site variant is based. A conservative Clostridial toxin substrate cleavage site variant can also possess at least 50% amino acid identity, 65% amino acid identity, 75% amino acid identity, 85% amino acid identity or 95% amino acid identity to the reference Clostridial toxin substrate cleavage site on which the conservative Clostridial toxin substrate cleavage site variant is based. Non-limiting examples of a conservative Clostridial toxin substrate cleavage site variant include, e.g., conservative BoNT/A substrate cleavage site variants, conservative BoNT/B substrate cleavage site variants, conservative BoNT/C1 substrate cleavage site variants, conservative BoNT/D substrate cleavage site variants, conservative BoNT/E substrate cleavage site variants, conservative BoNT/F substrate cleavage site variants, conservative BoNT/G substrate cleavage site variants, conservative TeNT substrate cleavage site variants, conservative BaNT substrate cleavage site variants and conservative BuNT substrate cleavage site variants.
[0086] As used herein, the term "non-conservative Clostridial toxin substrate cleavage site variant" means a Clostridial toxin substrate cleavage site in which 1) at least one amino acid is deleted from the reference Clostridial toxin substrate cleavage site on which the non-conservative Clostridial toxin substrate cleavage site variant is based; 2) at least one amino acid added to the reference Clostridial toxin substrate cleavage site on which the non-conservative Clostridial toxin substrate cleavage site is based; or 3) at least one amino acid is substituted by another amino acid or an amino acid analog that does not share any property similar to that of the original amino acid from the reference Clostridial toxin substrate cleavage site sequence (Table 3). A non-conservative Clostridial toxin substrate cleavage site variant can function in substantially the same manner as the reference Clostridial toxin substrate cleavage site on which the non-conservative Clostridial toxin substrate cleavage site is based, and can be substituted for the reference Clostridial toxin substrate cleavage site in any aspect of the present invention. A non-conservative Clostridial toxin substrate cleavage site variant can add one or more amino acids, two or more amino acids, three or more amino acids, four or more amino acids, five or more amino acids, and ten or more amino acids to the reference Clostridial toxin substrate cleavage site on which the non-conservative Clostridial toxin substrate cleavage site variant is based. A non-conservative Clostridial toxin substrate cleavage site may substitute one or more amino acids, two or more amino acids, three or more amino acids, four or more amino acids or five or more amino acids from the reference Clostridial toxin substrate cleavage site on which the non-conservative Clostridial toxin substrate cleavage site variant is based. A non-conservative Clostridial toxin substrate cleavage site variant can also possess at least 50% amino acid identity, 65% amino acid identity, 75% amino acid identity, 85% amino acid identity or 95% amino acid identity to the reference Clostridial toxin substrate cleavage site on which the non-conservative Clostridial toxin substrate cleavage site variant is based. Non-limiting examples of a non-conservative Clostridial toxin substrate cleavage site variant include, e.g., non-conservative BoNT/A substrate cleavage site variants, non-conservative BoNT/B substrate cleavage site variants, non-conservative BoNT/C1 substrate cleavage site variants, non-conservative BoNT/D substrate cleavage site variants, non-conservative BoNT/E substrate cleavage site variants, non-conservative BoNT/F substrate cleavage site variants, non-conservative BoNT/G substrate cleavage site variants, non-conservative TeNT substrate cleavage site variants, non-conservative BaNT substrate cleavage site variants and non-conservative BuNT substrate cleavage site variants.
[0087] As used herein, the term "Clostridial toxin substrate cleavage site peptidomimetic" means a Clostridial toxin substrate cleavage site that has at least one amino acid substituted by a non-natural oligomer that has at least one property similar to that of the first amino acid. Examples of properties include, without limitation, topography of a peptide primary structural element, functionality of a peptide primary structural element, topology of a peptide secondary structural element, functionality of a peptide secondary structural element, of the like, or any combination thereof. A Clostridial toxin substrate cleavage site peptidomimetic can function in substantially the same manner as the reference Clostridial toxin substrate cleavage site on which the Clostridial toxin substrate cleavage site peptidomimetic is based, and can be substituted for the reference Clostridial toxin substrate cleavage site in any aspect of the present invention. A Clostridial toxin substrate cleavage site peptidomimetic may substitute one or more amino acids, two or more amino acids, three or more amino acids, four or more amino acids or five or more amino acids from the reference Clostridial toxin substrate cleavage site on which the Clostridial toxin substrate cleavage site peptidomimetic is based. A Clostridial toxin substrate cleavage site peptidomimetic can also possess at least 50% amino acid identity, at least 65% amino acid identity, at least 75% amino acid identity, at least 85% amino acid identity or at least 95% amino acid identity to the reference Clostridial toxin substrate cleavage site on which the Clostridial toxin substrate cleavage site peptidomimetic is based. For examples of peptidomimetic methods see, e.g., Amy S. Ripka & Daniel H. Rich, Peptidomimetic design, 2(4) CURR. OPIN. CHEM. BIOL. 441-452 (1998); and M. Angels Estiarte & Daniel H. Rich, Peptidomimetics for Drug Design, 803-861 (BURGER'S MEDICINAL CHEMISTRY AND DRUG DISCOVERY Vol. 1 PRINCIPLE AND PRACTICE, Donald J. Abraham ed., Wiley-Interscience, 6th ed 2003). Non-limiting examples of a conservative Clostridial toxin substrate cleavage site variant include, e.g., BoNT/A substrate cleavage site peptidomimetics, BoNT/B substrate cleavage site peptidomimetics, BoNT/C1 substrate cleavage site peptidomimetics, BoNT/D substrate cleavage site peptidomimetics, BoNT/E substrate cleavage site peptidomimetics, BoNT/F substrate cleavage site peptidomimetics, BoNT/G substrate cleavage site peptidomimetics, TeNT substrate cleavage site peptidomimetics, BaNT substrate cleavage site peptidomimetics and BuNT substrate cleavage site peptidomimetics.
[0088] One type of Clostridial toxin substrate cleavage site is derived from in vivo substrate targets of Clostridial toxins, such as, e.g., the SNARE proteins. The natural SNARE targets of the Clostridial toxins include, without limitation, the SNAP-25 family, the VAMP family and the Syntaxin family. SNAP-25 and Syntaxin are associated with the plasma membrane, whereas VAMP is associated with the synaptic vesicle membrane (see FIG. 3). BoNT/A and BoNT/E recognize and specifically cleave SNAP-25 at two different sites in the carboxyl-terminal portion of the protein (Table 2). TeNT and BoNT/B, BoNT/D, BoNT/F, and BoNT/G specifically target the conserved central portion of VAMPs (also known as synaptobrevin) at distinct bonds, depending on the toxin (Table 3). BoNT/C1 cleaves Syntaxin at a single site near the cytosolic membrane surface in addition to SNAP-25 near the carboxyl-terminus (Tables 2 & 4). The three protein targets of these Clostridial toxins are conserved from yeast to humans although cleavage sites and toxin susceptibility are not necessarily conserved, see below; see, also, e.g., Humeau, supra, (2000); Heiner Niemann et al., Clostridial Neurotoxins: New Tools for Dissecting Exocytosis, 4(5) Trends Cell Biol. 179-185 (1994); and Rossella Pellizzari et al., Tetanus and Botulinum Neurotoxins: Mechanism of Action and Therapeutic Uses, 354(1381) Philos. Trans. R. Soc. Lond. B Biol. Sci. 259-268 (1999).
[0089] Naturally occurring SNAP-25, a protein of about 206 residues lacking a transmembrane segment, is associated with the cytosolic surface of the nerve plasmalemma (see FIG. 3). SNAP-25 is required for axonal growth during development and may be required for nerve terminal plasticity in the mature nervous system. SNAP-25 has been isolated from a variety of vertebrate and invertebrate species including, e.g., species belonging to the genera Homo, Macaca, Bos, Rattus, Mus, Gallus, Carassius, Danio, Torpedo, Xenopus, Strongylocentrotus, Drosophila, Hirudo, Loligo, Lymnaea and Caenorhabditis (Table 2). In humans, at least two isoforms are differentially expressed during development; isoform a is constitutively expressed during fetal development, while isoform b appears at birth and predominates in adult life. SNAP-25 analogues such as SNAP-23 also are expressed outside the nervous system, for example, in pancreatic cells.
TABLE-US-00002 TABLE 2 Cleavage of SNAP25 and Related Proteinsa,b,c Cleavage Sites BoNT/ BoNT/ BoNT/ Cleaved E A C1 Suscepti- Organism Isoform bility Primate SNAP-25A MALDMGNEIDTQNRQIDR * IMEKADSNKTRIDEANQ * R * ATKMLGSG BoNT/A; SNAP-25B BoNT/C1; BoNT/E Primate SNAP-23A MALNIGNEIDAQN QI R -- ITDKADTNRDRIDIAN -- R -- AKKLIDS Noneb SNAP-23B Rodent SNAP-25A MALDMGNEIDTQNRQIDR * IMEKADSNKTRIDEANQ * R * ATKMLGSG BoNT/A; SNAP-25B BoNT/C1; BoNT/E Rodent SNAP-23 MALDMGNEIDAQNQQIQ * ITEKADTNKNRIDIAN -- R -- AKKLIDS BoNT/E Bird SNAP-25B MALDMGNEIDTQNRQIDR * IMEKADSNKTRIDEANQ -- R -- ATKMLGSG BoNT/E Amphibian SNAP-25A MALDMGNEIDTQNRQIDR ND IMEKADSNKARIDEAN ND ND ATKMLGSG ND SNAP-25B Amphibian SNAP-23 MAIDMGNELESHNQQIGR ND INEKAETNKTRIDEAN ND K ND AKKLIE ND Fish SNAP-25A MALDMGNEIDTQNRQIDR * IMEKADSNKTRIDEANQ * R * ATKMLGSG SNAP-25B MALDMGNEIDTQNRQIDR * IMDMADSNKTRIDEANQ * R * ATKMLGSG BoNT/A; BoNT/C1; BoNT/E Fish SNAP-23 LALDMGNEIDKQNKTIDR ND ITDKADMNKARIDEANQ ND R ND ANKLL ND Ray SNAP-25 MALDMSNEIGSQNAQIDR --c IV KGDMNKARIDEAN * ND ATKML BoNT/A Sea urchin SNAP-25 MAIDMQSEIGAQNSQVGR ND ITSKAESNEGRINSAD ND R ND AKNILRNK ND Insect SNAP-25 MALDMGSELENQNRQIDR -- INRKGESNEARIAVANQ -- R * AHQLLK BoNT/C1 Insect SNAP-24 MALDMGSELENQNKQVDR ND INAKGDANNIRMDGVN ND R ND ANNLLKS ND Segmented SNAP-25 MAVDMGSEIDSQNRQVDR ND INNKMTSNQLRISDAN -- R ND ASKLLKE ND worm Cephalopod SNAP-25 MAIDMGNEIGSQNRQVDR ND IQQKAESNESRIDEAN ND ND ATKLLKN ND Gastropod SNAP-25 MAVDMGNEIESQNKQLDR ND INQKGGSLNVRVDEAN ND R ND ANRILRKQ ND Round worm SNAP-25 MAIDMSTEVSNQNRQLDR * IHDKAQSNEVRVESAN -- R -- AKNLITK BoNT/E Proteolytic cleavage occurs at this site (*); Proteolytic cleavage not detected at this site (--); Proteolytic cleavage not determined at this site (ND) a= In vitro cleavage of SNAP-25 requires 1000-fold higher BoNT/C concentration than BoNT/A or /E. b= Substitution of P182R, or K185DD (boxes) induces susceptibility toward BoNT/E. c= Resistance to BoNT/E possibly due to D189 or E189 substitution by V189, see box.
[0090] Table 2--Cleavage of SNAP-25 and related proteins. Primate: Human SNAP-25A residues 163-206 of SEQ ID NO: 9; Human SNAP-25B residues 163-206 of SEQ ID NO: 10; Human SNAP-23A residues 169-211 of SEQ ID NO: 11; Human SNAP-23B residues 116-158 of SEQ ID NO: 12; Monkey SNAP-25B residues 163-206 of SEQ ID NO: 13; Rodent: Rat SNAP-25A residues 163-206 of SEQ ID NO: 14; Rat SNAP-25B residues 163-206 of SEQ ID NO: 15; Mouse SNAP-25B residues 163-206 of SEQ ID NO: 16; Rat SNAP-23 residues 168-210 of SEQ ID NO: 17; Mouse SNAP-23 residues 168-210 of SEQ ID NO: 18; Bird: Chicken SNAP-25B residues 163-206 of SEQ ID NO: 19; Fish: Goldfish SNAP-25A residues 161-204 of SEQ ID NO: 20; Goldfish SNAP-25B residues 160-203 of SEQ ID NO: 21; Zebrafish SNAP-25A residues 161-204 of SEQ ID NO: 22; Zebrafish SNAP-25B residues 160-203 of SEQ ID NO: 23; Zebrafish SNAP-23 residues 174-214 of SEQ ID NO: 24; Ray: marbled electric ray SNAP-25 residues 170-210 of SEQ ID NO: 25; Amphibian: Frog SNAP-25A residues 163-206 of SEQ ID NO: 26; Frog SNAP-25B residues 163-206 of SEQ ID NO: 27; Frog SNAP-23 residues 163-204 of SEQ ID NO: 28; Sea urchin SNAP-25 residues 169-212 of SEQ ID NO: 29; Insect: Fruit fly SNAP-25 residues 171-212 of SEQ ID NO: 30; Fruit fly SNAP-24 residues 170-212 of SEQ ID NO: 31; Segmented worm: Leech SNAP-25 residues 170-212 of SEQ ID NO: 32; Cephalopod: squid SNAP-25 residues 245-267 of SEQ ID NO: 33; Gastropod: Pond snail SNAP-25 residues 244-266 of SEQ ID NO: 34; Round worm: Nematode worm SNAP-25 residues 165-207 of SEQ ID NO: 35.
[0091] Naturally occurring VAMP is a protein of about 120 residues, with the exact length depending on the species and isoform. As shown in FIG. 3, VAMP contains a short carboxyl-terminal segment inside the vesicle lumen while most of the molecule is exposed to the cytosol. The proline-rich amino-terminal thirty residues are divergent among species and isoforms while the central portion of VAMP, which is rich in charged and hydrophilic residues and includes known cleavage sites, is highly conserved (Table 3). VAMP colocalizes with synaptophysin on synaptic vesicle membranes. VAMP has been isolated from a variety of vertebrate and invertebrate species including, e.g., species belonging to the genera Homo, Macaca, Bos, Rattus, Mus, Gallus, Danio, Torpedo, Xenopus, Strongylocentrotus, Drosophila, Hirudo, Loligo, Lymnaea, Aplysia and Caenorhabditis. In addition, multiple isoforms of VAMP have been identified including VAMP-1, VAMP-2 and VAMP-3/cellubrevin, and forms insensitive to toxin cleavage have been identified in non-neuronal cells. VAMP appears to be present in all vertebrate tissues although the distribution of VAMP-1 and VAMP-2 varies in different cell types. Chicken and rat VAMP-1 are not cleaved by TeNT or BoNT/B. These VAMP-1 orthologs have a valine in place of the glutamine present in human and mouse VAMP-1 at the TeNT or BoNT/B cleavage site. The substitution does not affect BoNT/D, /F or /G, which cleave both VAMP-1 and VAMP-2 with similar rates.
TABLE-US-00003 TABLE 3 Cleavage of VAMP and Related Proteins Cleavage Sites BoNT/ BoNT/ TeNT BoNT/ Cleaved F D BoNT/B G Suscepti- Organism Isoform bility Primate VAMP1-1 RVNVDKVLERDQ * K * LSELDDRADALQAGASQ * FESSA * AKLKRKYWW BoNT/B; VAMP1-2 BoNT/D; VAMP1-3 BoNT/F; BoNT/G; TeNT Primate VAMP2 RVNVDKVLERDQ * K * LSELDDRADALQAGASQ * FETSA * AKLKRKYWW BoNT/B; BoNT/D; BoNT/F; BoNT/G; TeNT Primate VAMP3 RVNVDKVLERDQ * K * LSELDDRADALQAGASQ * FETSA * AKLKRKYWW BoNT/B; BoNT/D; BoNT/F; BoNT/G; TeNT Bovine VAMP2 RVNVDKVLERDQ * K * LSELDDRADALQAGASQ * FETSA * AKLKRKYWW BoNT/B; BoNT/D; BoNT/F; BoNT/G; TeNT Rodent VAMP1/1b RVNVDKVLERDQ * K * LSELDDRADALQAGAS --a FESSA * AKLKRKYWW BONT/B; BoNT/D; BoNT/F; VAMP1 RVNVDKVLERDQ * K * LSELDDRADALQAGASQ * FESSA * AKLKRKYWW BoNT/G; TeNT Rodent VAMP2 RVNVDKVLERDQ * K * LSELDDRADALQAGASQ * FETSA * AKLKRKYWW BoNT/B; VAMP2-b BoNT/D; BoNT/F; BoNT/G; TeNT Rodent VAMP3 RVNVDKVLERDQ * K * LSELDDRADALQAGASQ * FETSA * AKLKRKYWW BoNT/B; BoNT/D; BoNT/F; BoNT/G; TeNT Bird VAMP1 RVNVDKVLERDQ * K * LSELDDRADALQAGAS -- FESSA * AKLKRKYWW BoNT/D; BoNT/F; BoNT/G Bird VAMP2 RMNVDKVLERDQ * K * LSELDNRADALQAGASQ * FETSA * AKLKRKYWW BoNT/B; BoNT/D; BoNT/F; BoNT/G; TeNT Bird VAMP3 RVNVDKVLERDQ ND K ND LSELDDRADALQAGASQ ND FETSA ND AKLKRKYWW ND Amphibian VAMP2 RVNVDKVLERD ND K ND LSELDDRADALQAGASQ ND FETSA ND AKLKRKYWW ND Amphibian VAMP3 RVNVDKVLERDQ ND K ND LSELDDRADALQAGASQ ND FETSA ND AKLKRKYWW ND Fish VAMP1 RVNVDKVLERDQ ND K ND LSELDDRADALQAGASQ ND FESSA ND AKLKNKYWW ND Fish VAMP2 RVNVDKVLERDQ ND K ND LSELDDRADALQAGASQ ND FETSA ND AKLKNKYWW ND Fish VAMP-3 RVNVDKVLERDQ ND K ND LSELDDRADALQAGASQ ND FETSA ND AKLKRKYWW ND Ray VAMP1 RVNVDKVLERDQ * K * LSELDDRADALQAGASQ * FESSA * AKLKRKYWW BoNT/B; BoNT/D; BoNT/F; BoNT/G; TeNT Sea VAMP RVNVDKVLERDQ -- -- LSVLDDRADALQQGASQ * FETNA -- KLKRKYWW BoNT/B; urchin TeNT Insect Syn-A1 RVNVEKVLERDQ * K * LSELGERADQLEQGASQ * FEQQA -- KLKRKQWW BoNT/B; Syn-B1 BoNT/D; BoNT/F; TeNT Insect Syn-A2 RVNVEKVLERDQ * K * LSELGERADQLEQGASQ -- EQQA -- KLKRKQWW BoNT/D; Syn-B2 BoNT/F Insect Syn-C RTNVEKVLERD -- K * LSELDDRADALQQGASQ * FEQQA -- KLKRKFWL BoNT/B; Syn-D BoNT/D; Syn-E TeNT Segmented VAMP RVNVDKVLEKDQ * K * LAELDGRADALQAGASQ * FEASA -- KLKRKFWW BoNT/B; worm BoNT/D; BoNT/F; TeNT Cephalopod VAMP RVNVDKVLERD ND K ND SELDDRADALQAGASQ ND FEASA ND KLKRKFWW ND Gastropod VAMP RVNVEKVLDRDQ ND K ND SQLDDRAEALQAGASQ ND FEASA ND KLKRKYWW ND Round SNB1 KVNVEKVLERDQ ND K ND LSQLDDRADALQEGASQ ND FEKSA ND ATLKRKYWW BoNT/B; worm SNB-like RNNVNKVMERD -- -- LNSLDHRAEVLQNGASQ * FQQS -- TLRQKYWW TeNT Proteolytic cleavage occurs at this site (*); Proeolytic cleavage not detected at this site (--); Proteolytic cleavage not determined at this site (ND) a= Rat VAMP1 resistance to BoNT/B and TeNT possibly due to Q189V substitution, see box.
[0092] Table 3--Cleavage of VAMP and related proteins. Primate: Human VAMP-1-1 residues 49-92 of SEQ ID NO: 36; Human VAMP-1-2 residues 49-92 of SEQ ID NO: 37; Human VAMP-1-3 residues 49-92 of SEQ ID NO: 38; Human VAMP-2 residues 47-90 of SEQ ID NO: 39; Monkey VAMP-2 residues 47-90 of SEQ ID NO: 40; Human VAMP-3/cellubrevin residues 30-73 of SEQ ID NO: 41; Bovine: Cow VAMP-2 residues 47-90 of SEQ ID NO: 42; Rodent: Rat VAMP-1 residues 49-92 of SEQ ID NO: 43; Rat VAMP-1-b residues 49-92 of SEQ ID NO: 44; Mouse VAMP-1 residues 49-92 of SEQ ID NO: 45; Rat VAMP-2 residues 47-90 of SEQ ID NO: 46; Rat VAMP-2-b residues 47-90 of SEQ ID NO: 47; Mouse VAMP-2 residues 47-90 of SEQ ID NO: 48; Rat VAMP-3/cellubrevin residues 34-77 of SEQ ID NO: 49; Mouse VAMP-3/cellubrevin residues 34-77 of SEQ ID NO: 50; Bird: Chicken VAMP-1 residues 190-233 of SEQ ID NO: 51; Chicken VAMP-2 residues 47-88 of SEQ ID NO: 52; Chicken VAMP-3/cellubrevin residues 34-77 of SEQ ID NO: 53; Fish: Zebrafish VAMP-1 residues 50-93 of SEQ ID NO: 54; Zebrafish VAMP-2 residues 41-84 of SEQ ID NO: 55; Zebrafish VAMP-3 residues 33-60 of SEQ ID NO: 56; Ray: marbled electric ray VAMP-1 residues 51-94 of SEQ ID NO: 57; Amphibian: Frog VAMP-2 residues 45-88 of SEQ ID NO: 58; Frog VAMP-3 residues 32-75 of SEQ ID NO: 59; Sea urchin VAMP residues 31-74 of SEQ ID NO: 60; Insect: Fruit fly SynA1 residues 40-83 of SEQ ID NO: 61; Fruit fly SynA2 residues 63-106 of SEQ ID NO: 62; Fruit fly SynB1 residues 63-106 of SEQ ID NO: 63; Fruit fly SynB2 residues 63-106 of SEQ ID NO: 64; Fruit fly SynC residues 57-100 of SEQ ID NO: 65; Fruit fly SynD residues 66-109 of SEQ ID NO: 66; Fruit fly SynE residues 57-100 of SEQ ID NO: 67; Segmented worm: Leech VAMP residues 45-88 of SEQ ID NO: 68; Cephalopod: squid VAMP residues 56-99 of SEQ ID NO: 69; Gastropod: Pond snail VAMP residues 49-92 of SEQ ID NO: 70; sea hare VAMP residues 37-80 of SEQ ID NO: 71; Round worm: Nematode worm SNB1 residues 72-115 of SEQ ID NO: 72; Nematode worm SNB-like residues 82-115 of SEQ ID NO: 73.
[0093] Naturally occurring Syntaxin is located on the cytosolic surface of the nerve plasmalemma and is membrane-anchored via a carboxyl-terminal segment, with most of the protein exposed to the cytosol (see FIG. 3). Syntaxin colocalizes with calcium channels at the active zones of the presynaptic membrane, where neurotransmitter release takes place. In addition, syntaxin interacts with synaptotagmin, a protein of the SSV membrane that forms a functional bridge between the plasmalemma and the vesicles. Syntaxin has been isolated from a variety of vertebrate and invertebrate species including, e.g., species belonging to the genera Homo, Bos, Rattus, Mus, Gallus, Danio, Strongylocentrotus, Drosophila, Hirudo, Loligo, Lymnaea and Aplysia (Table 4). Three isoforms of slightly different length (285 and 288 residues) have been identified in nerve cells (isoforms 1A, 1B1 and 1B2), with isoforms 2, 3, 4 and 5 expressed in other tissues. The different isoforms have varying sensitivities to BoNT/C1, with the 1A, 1B1, 1B2, 2 and 3 syntaxin isoforms cleaved by this toxin.
TABLE-US-00004 TABLE 4 Cleavage of Syntaxin and Related Proteins Cleavage Site BoNT/C1 Cleaved Organism Isoform Susceptibility Primate Syntaxin1A DYVERAVSDTKK * AVKYQSKARRK BoNT/C1 Syntaxin1B1 Syntaxin1B2 Primate Syntaxin2-1 DYVEHAKEETKK ND AIKYQSKARRK ND Syntaxin2-2 Syntaxin2-3 Primate Syntaxin3A DHVEKARDESKK ND AVKYQSQARKK ND Bovine Syntaxin1A DYVERAVSDTKK * AVKYQSKARRK BoNT/C1 Syntaxin1B2 Rodent Syntaxin1A DYVERAVSDTKK * AVKYQSKARRK BoNT/C1 Syntaxin1B1 Syntaxin1B2 Rodent Syntaxin2 DYVEHAKEETKK * AIKYQSKARRK BoNT/C1 Rodent Syntaxin3A DHVEKARDETK * AMKYQGQARKK BoNT/C1 Rodent Syntaxin3B GFVERAVADTKK ND AVKYQSEARRK ND Syntaxin3C Bird Syntaxin1B DYVEPVVFVTK ND AVMYQCKSRRK ND Bird Syntaxin2 DYVEHAKEETKK ND AVKYQSKARRK ND Fish Syntaxin1B DYVERAVSDTKK * AVKYQSQARKK BoNT/C1 Fish Syntaxin3 DHVEAARDETKK ND AVRYQSKARKK ND Sea urchin Syntaxin1B DYVRRQNDTKK * AVKYQSKARRK BoNT/C1 Insect Syntaxin1A DYVQTATQDTKK * AVKYQSKARRK BoNT/C1 Segmented worm Syntaxin1A DYVETAAADTKK * AMKYQSAARKK BoNT/C1 Cephalopod Syntaxin1A DYIETAKVDTKK * AVKYQSKARQK BoNT/C1 Gastropod Syntaxin1A DYIETAKMDTKK * AVKYQSKARRK BoNT/C1 Proteolytic cleavage occurs at this site (*); Proteolytic cleavage not detected at this site (--); Proteolytic cleavage not determined at this site (ND)
[0094] Table 4--Cleavage of Syntaxin and related proteins. Primate: Human Syntaxin1A residues 242-264 of SEQ ID NO: 74; Human Syntaxin1B1 residues 241-263 of SEQ ID NO: 75; Human Syntaxin1B2 residues 241-263 of SEQ ID NO: 76; Human Syntaxin2-1 residues 241-263 of SEQ ID NO: 77; Human Syntaxin2-2 residues 241-263 of SEQ ID NO: 78; Human Syntaxin2-3 residues 241-263 of SEQ ID NO: 79; Human Syntaxin3 residues 241-263 of SEQ ID NO: 80; Bovine: Cow Syntaxin1A residues 242-264 of SEQ ID NO: 81; Cow Syntaxin1B2 residues 241-263 of SEQ ID NO: 82; Rodent: Rat Syntaxin1A residues 242-264 of SEQ ID NO: 83; Rat Syntaxin1B2 residues 241-263 of SEQ ID NO: 84; Mouse Syntaxin1A residues 242-264 of SEQ ID NO: 85; Mouse Syntaxin1B1 residues 241-263 of SEQ ID NO: 86; Mouse Syntaxin1B2 residues 241-263 of SEQ ID NO: 87; Rat Syntaxin2 residues 243-265 of SEQ ID NO: 88; Mouse Syntaxin2 residues 242-264 of SEQ ID NO: 89; Rat Syntaxin3A residues 241-263 of SEQ ID NO: 90; Mouse Syntaxin3A residues 241-263 of SEQ ID NO: 91; Mouse Syntaxin3B residues 241-263 of SEQ ID NO: 92; Mouse Syntaxin3C residues 223-245 of SEQ ID NO: 93; Bird: Chicken Syntaxin1B residues 235-257 of SEQ ID NO: 94; Chicken Syntaxin2 residues 240-262 of SEQ ID NO: 95; Fish: Zebrafish Syntaxin1B residues 241-263 of SEQ ID NO: 96; Zebrafish Syntaxin3 residues 239-261 of SEQ ID NO: 97; sea urchin Syntaxin1B residues 241-263 of SEQ ID NO: 98; Insect: Fruit fly Syntaxin1A residues 245-267 of SEQ ID NO: 99; Segmented worm: leech Syntaxin1A residues 248-270 of SEQ ID NO: 100; Cephalopod: squid Syntaxin1A residues 245-267 of SEQ ID NO: 101; Gastropod: Pond snail Syntaxin1A residues 244-266 of SEQ ID NO: 102; sea hare Syntaxin1A residues 244-266 of SEQ ID NO: 103.
TABLE-US-00005 TABLE 5 Bonds Cleaved in SNAP-25, VAMP, or Syntaxin Toxin Target P4-P3-P2-P1 -- P1'-P2'-P3'-P4' SEQ ID NO: BoNT/A SNAP-25 Glu-Ala-Asn-Gln-Arg*-Ala-Thr-Lys 104 BoNT/A SNAP-25 Glu-Ala-Asn-Lys-His*-Ala-Thr-Lys 105 BoNT/A SNAP-25 Glu-Ala-Asn-Lys-His*-Ala-Asn-Lys 106 BoNT/B & TeNT VAMP Gly-Ala-Ser-Gln-Phe*-Glu-Thr-Ser 107 BoNT/B & TeNT VAMP Gly-Ala-Ser-Gln-Phe*-Glu-Ser-Ser 108 BoNT/B & TeNT VAMP Gly-Ala-Ser-Gln-Phe*-Glu-Thr-Asn 109 BoNT/B & TeNT VAMP Gly-Ala-Ser-Gln-Phe*-Glu-Gln-Gln 110 BoNT/B & TeNT VAMP Gly-Ala-Ser-Gln-Phe*-Glu-Ala-Ser 111 BoNT/B & TeNT VAMP Gly-Ala-Ser-Gln-Phe*-Gln-Gln-Ser 112 BoNT/C1 Syntaxin Asp-Thr-Lys-Lys-Ala*-Val-Lys-Tyr 113 BoNT/C1 Syntaxin Glu-Thr-Lys-Lys-Ala*-Ile-Lys-Tyr 114 BoNT/C1 Syntaxin Glu-Ser-Lys-Lys-Ala*-Val-Lys-Tyr 115 BoNT/C1 Syntaxin Glu-Thr-Lys-Arg-Ala*-Met-Lys-Tyr 116 BoNT/C1 Syntaxin Glu-Thr-Lys-Lys-Ala*-Val-Lys-Tyr 117 BoNT/C1 Syntaxin Asp-Thr-Lys-Lys-Ala*-Leu-Lys-Tyr 118 BoNT/C1 Syntaxin Asp-Thr-Lys-Lys-Ala*-Met-Lys-Tyr 119 BoNT/C1 SNAP-25 Ala-Asn-Gln-Arg-Ala*-Thr-Lys-Met 120 BoNT/C1 SNAP-25 Ala-Asn-Gln-Arg-Ala*-His-Gln-Leu 121 BoNT/D VAMP Arg-Asp-Gln-Lys-Leu*-Ser-Glu-Leu 122 BoNT/D VAMP Lys-Asp-Gln-Lys-Leu*-Ala-Glu-Leu 123 BoNT/E SNAP-25 Gln-Ile-Asp-Arg-Ile*-Met-Glu-Lys 124 BoNT/E SNAP-25 Gln-Ile-Gln-Lys-Ile*-Thr-Glu-Lys 125 BoNT/E SNAP-25 Gln-Ile-Asp-Arg-Ile*-Met-Asp-Met 126 BoNT/E SNAP-25 Gln-Val-Asp-Arg-Ile*-Gln-Gln-Lys 127 BoNT/E SNAP-25 Gln-Leu-Asp-Arg-Ile*-His-Asp-Lys 128 BoNT/F VAMP Glu-Arg-Asp-Gln-Lys*-Leu-Ser-Glu 129 BoNT/F VAMP Glu-Lys-Asp-Gln-Lys*-Leu-Ala-Glu 130 BoNT/G VAMP Glu-Thr-Ser-Ala-Ala*-Lys-Leu-Lys 131 BoNT/G VAMP Glu-Ser-Ser-Ala-Ala*-Lys-Leu-Lys 132 *Scissile bond shown in bold
[0095] A wide variety of Clostridial toxin substrate cleavage sites are useful in aspects of the invention and specific and distinct cleavage sites for different Clostridial toxins are well known in the art. As non-limiting examples, BoNT/A cleaves a Gln-Arg bond and a Lys-His bond; BoNT/B and TeNT cleave a Gln-Phe bond; BoNT/C1 cleaves a Lys-Ala or Arg-Ala bond; BoNT/D cleaves a Lys-Leu bond; BoNT/E cleaves an Arg-Ile bond and a Lys-Ile bond; BoNT/F cleaves a Gln-Lys bond; and BoNT/G cleaves an Ala-Ala bond (see Table 5). In standard nomenclature, the sequence surrounding a Clostridial toxin cleavage site is denoted P5-P4-P3-P2-P1-P1'-P2'-P3'-P4'-P5', with P1-P1' representing the scissile bond. It is understood that a P1 or P1' site, or both, can be substituted with another amino acid or amino acid mimetic in place of the naturally occurring residue. As an example, BoNT/A substrates have been prepared in which the P1 position (Gln) is modified to be an alanine, 2-aminobutyric acid or asparagine residue; these substrates were hydrolyzed by BoNT/A at the P1-Arg bond, see, e.g., James J. Schmidt & Karen A Bostian, Endoproteinase Activity of Type A Botulinum Neurotoxin: Substrate Requirements and Activation by Serum Albumin, 16(1) J. Protein Chem. 19-26 (1997). While it is recognized that substitutions can be introduced at the P1 position of the scissile bond, for example, a BoNT/A scissile bond, it is further recognized that conservation of the P1' residue can be advantageous, see, e.g., Vadakkanchery V. Vaidyanathan et al., Proteolysis of SNAP-25 Isoforms by Botulinum Neurotoxin Types A, C, and E: Domains and Amino Acid Residues Controlling the Formation of Enzyme-Substrate Complexes and Cleavage, 72(1) J. Neurochem. 327-337 (1999).
[0096] Thus, in an embodiment, a modified Clostridial toxin substrate comprises a Clostridial toxin substrate cleavage site in which the P1' residue is not modified or substituted relative to the naturally occurring residue in a target protein cleaved by the Clostridial toxin. In aspects of this embodiment, a Clostridial toxin substrate cleavage site in which the P1' residue is not modified or substituted relative to the naturally occurring residue in a target protein cleaved by the Clostridial toxin can be, e.g., a BoNT/A substrate cleavage site, a BoNT/B substrate cleavage site, a BoNT/C1 substrate cleavage site, a BoNT/D substrate cleavage site, a BoNT/E substrate cleavage site, a BoNT/F substrate cleavage site, a BoNT/G substrate cleavage site, a TeNT substrate cleavage site, a BaNT substrate cleavage site or a BuNT substrate cleavage site.
[0097] In another embodiment, a modified Clostridial toxin substrate comprises a Clostridial toxin substrate cleavage site in which the P1 residue is modified or substituted relative to the naturally occurring residue in a target protein cleaved by the Clostridial toxin; such a Clostridial toxin substrate retains susceptibility to peptide bond cleavage between the P1 and P1' residues. In aspects of this embodiment, a Clostridial toxin substrate cleavage site in which the P1' residue is modified or substituted relative to the naturally occurring residue in a target protein cleaved by the Clostridial toxin can be, e.g., a BoNT/A substrate cleavage site, a BoNT/B substrate cleavage site, a BoNT/C1 substrate cleavage site, a BoNT/D substrate cleavage site, a BoNT/E substrate cleavage site, a BoNT/F substrate cleavage site, a BoNT/G substrate cleavage site, a TeNT substrate cleavage site, a BaNT substrate cleavage site or a BuNT substrate cleavage site.
[0098] In an aspect of the invention, a modified Clostridial toxin comprises a BoNT/A substrate cleavage site. As used herein, the term "botulinum toxin serotype A substrate cleavage site" is synonymous with "BoNT/A substrate cleavage site" and means a scissile bond together with adjacent or non-adjacent recognition elements, or both, sufficient for detectable proteolysis at the scissile bond by a BoNT/A under conditions suitable for Clostridial toxin protease activity. A scissile bond cleaved by BoNT/A can be, for example, Gln-Arg or Lys-His. It is envisioned that a BoNT/A substrate cleavage site of any and all lengths can be useful in aspects of the present invention with the proviso that the BoNT/A substrate cleavage site is capable of being cleaved by BoNT/A. Thus, in aspects of this embodiment, a BoNT/A substrate cleavage site can be, e.g., at least 6 amino acids in length, at least 7 amino acids in length, at least 8 amino acids in length, at least 9 amino acids in length, at least 10 amino acids in length, at least amino acids in length, at least 20 amino acids in length, at least 25 amino acids in length, at least 30 amino acids in length, at least 40 amino acids in length, at least 50 amino acids in length or at least 60 amino acids in length. In other aspects of this embodiment, a BoNT/A substrate cleavage site can be, e.g., at most 6 amino acids in length, at most 7 amino acids in length, at most 8 amino acids in length, at most 9 amino acids in length, at most 10 amino acids in length, at most 15 amino acids in length, at most amino acids in length, at most 25 amino acids in length, at most 30 amino acids in length, at most 40 amino acids in length, at most 50 amino acids in length or at most 60 amino acids in length.
[0099] A BoNT/A substrate cleavage sites useful in aspects of the invention can correspond to a segment of a protein that is sensitive to cleavage by BoNT/A, or can be substantially similar to a segment of a BoNT/A-sensitive protein. As shown in Table 2, a variety of naturally occurring proteins sensitive to cleavage by BoNT/A are known in the art and include, for example, human, rat, mouse, Danio, Carassius, SNAP-25A and SNAP-25B; and Torpedo SNAP-25. Thus, a BoNT/A substrate cleavage site can correspond, for example, to a segment of human SNAP-25A or SNAP-25B; bovine SNAP-25A or SNAP-25B; rat SNAP-25A or SNAP-25B; mouse SNAP-25A or SNAP-25B; Xenopus SNAP-25A or SNAP-25B; Danio SNAP-25A or SNAP-25B; Carassius SNAP-25A or SNAP-25B; Torpedo SNAP-25; Strongylocentrotus SNAP-25; Loligo SNAP-25; Lymnaea SNAP-25; Aplysia SNAP-25, isoforms thereof, or another naturally occurring protein sensitive to cleavage by BoNT/A. Furthermore, comparison of native SNAP-25 amino acid sequences cleaved by BoNT/A reveals that such sequences are not absolutely conserved (Table 2). This finding indicates that a variety of amino acid substitutions and modifications relative to a naturally occurring BoNT/A-sensitive SNAP-25 sequence can be tolerated in a BoNT/A substrate cleavage site useful in aspects of the present invention. It is understood that a similar BoNT/A recognition sequence can be prepared, if desired, from a corresponding (homologous) segment of another BoNT/A-sensitive SNAP-25 isoform, paralog or ortholog, such as, the BoNT/A substrate cleavage site contain in the SNAP-25 proteins identified in the organisms listed above and in Table 2.
TABLE-US-00006 TABLE 6 Kinetic Parameters of BoNT/A Synthetic Peptide Substrates Relative Peptide Sequencea SEQ ID NO: Rateb [1-15] SNKTRIDEANQRATK 134 0.03 [1-16] SNKTRIDEANQRATKM 135 1.17 [1-17] SNKTRIDEANQRATKML 136 1.00 M16A SNKTRIDEANQRATKAL 137 0.38 M16X SNKTRIDEANQRATKXL 138 1.20 K15A SNKTRIDEANQRATAML 139 0.12 T14S SNKTRIDEANQRASKML 140 0.26 T14B SNKTRIDEANQRABKML 141 1.20 A13B SNKTRIDEANQRBTKML 142 0.79 Q11A SNKTRIDEANARATKML 143 0.19 Q11B SNKTRIDEANBRATKML 144 0.25 Q11N SNKTRIDEANNRATKML 145 0.66 N10A SNKTRIDEAAQRATKML 146 0.06 A9B SNKTRIDEBNQRATKML 147 0.38 E8Q SNKTRIDQANQRATKML 148 2.08 D7N SNKTRINEANQRATKML 149 0.23 aNonstandard abbreviations: B, 2-aminobutyric acid; X, 2-aminohexanoic acid (norleucine) bInitial hydrolysis rates relative to peptide [1-17]. Peptide concentrations were 1.0 mM.
[0100] Furthermore, experimental manipulation of the amino acid sequence comprising a native BoNT/A substrate cleavage site cleaved by BoNT/A reveals that such sequences are not absolutely conserved. These results indicate that a variety of residues can be substituted in a BoNT/A toxin substrate cleavage site as compared to a naturally occurring toxin-sensitive sequence. As a non-limiting example, as compared to a 17-mer corresponding to residues 187 to 203 of human SNAP-25, substitution of Asp193 with Asparagine in the BoNT/A substrate resulted in a relative rate of proteolysis of 0.23; substitution of Glu194 with Glutamine resulted in a relative rate of 2.08; substitution of Ala195 with 2-aminobutyric acid resulted in a relative rate of 0.38; and substitution of Gln197 with Asparagine, 2-aminobutyric acid or Alanine resulted in a relative rate of 0.66, 0.25, or 0.19, respectively (see Table 6). Furthermore, substitution of Ala199 with 2-aminobutyric acid resulted in a relative rate of 0.79; substitution of Thr200 with Serine or 2-aminobutyric acid resulted in a relative rate of 0.26 or 1.20, respectively; substitution of Lys201 with Alanine resulted in a relative rate of 0.12; and substitution of Met202 with Alanine or norleucine resulted in a relative rate of 0.38 or 1.20, respectively, see, e.g., Schmidt & Bostian, supra, (1997). In a separate study, Gln197 of SNAP-25 could be substituted with Methionine, Serine, Threonine, Glutamine or Lysine and still be cleaved efficiently by BoNT/A, see, e.g., Vadakkanchery V. Vaidyanathan et al., Proteolysis of SNAP-25 Isoforms by Botulinum Neurotoxin Types A, C, and E: Domains and Amino Acid Residues Controlling the Formation of Enzyme-Substrate Complexes and Cleavage, 72 J. Neurochem. 327-337 (1999). These results indicate that residues including but not limited to Glu194, Ala195, Gln197, Ala199, Thr200 and Met202, Leu203, Gly204, Ser205, and Gly206, as well as residues more distal from the Gln-Arg scissile bond, can be substituted or conjugated.
[0101] A variety of BoNT/A substrate cleavage sites are well known in the art or can be defined by routine methods. A BoNT/A substrate cleavage site can have, for example, residues 46-206, residues 134 to 206, residues 137 to 206 or 146-206 of human SNAP-25, see, e.g., Teresa A. Ekong et al., Recombinant SNAP-25 is an Effective Substrate for Clostridium botulinum Type A Toxin Endopeptidase Activity in vitro, 143 (Pt 10) Microbiology 3337-3347 (1997); Clifford C. Shone et al., Toxin Assays, U.S. Pat. No. 5,962,637 (Oct. 5, 1999); and Vaidyanathan et al., supra, (1999). A BoNT/A substrate cleavage site also can comprise, without limitation, the sequence Thr-Arg-Ile-Asp-Glu-Ala-Asn-Gln-Arg-Ala-Thr-Lys-Met (SEQ ID NO: 133) or a peptidomimetic thereof, which corresponds to residues 190 to 202 of human SNAP-25; Ser-Asn-Lys-Thr-Arg-Ile-Asp-Glu-Ala-Asn-Gln-Arg-Ala-Thr-Lys (SEQ ID NO: 134) or a peptidomimetic thereof, which corresponds to residues 187 to 201 of human SNAP-25; Ser-Asn-Lys-Thr-Arg-Ile-Asp-Glu-Ala-Asn-Gln-Arg-Ala-Thr-Lys-Met (SEQ ID NO: 135) or a peptidomimetic thereof, which corresponds to residues 187 to 202 of human SNAP-25; Ser-Asn-Lys-Thr-Arg-Ile-Asp-Glu-Ala-Asn-Gln-Arg-Ala-Thr-Lys-Met-Leu (SEQ ID NO: 136) or a peptidomimetic thereof, which corresponds to residues 187 to 203 of human SNAP-25; Asp-Ser-Asn-Lys-Thr-Arg-Ile-Asp-Glu-Ala-Asn-Gln-Arg-Ala-Thr-Lys-Met (SEQ ID NO: 150) or a peptidomimetic thereof, which corresponds to residues 186 to 202 of human SNAP-25; or Asp-Ser-Asn-Lys-Thr-Arg-Ile-Asp-Glu-Ala-Asn-Gln-Arg-Ala-Thr-Lys-Met-Leu (SEQ ID NO: 151) or a peptidomimetic thereof, which corresponds to residues 186 to 203 of human SNAP-25. See, for example, James J. Schmidt & Karen A Bostian, Proteolysis of Synthetic Peptides by Type A Botulinum Neurotoxin, 14(8) J. Protein Chem. 703-708 (1995); Schmidt & Bostian, supra, (1997); James J. Schmidt et al., Type A Botulinum Neurotoxin Proteolytic Activity: Development of Competitive Inhibitors and Implications For Substrate Specificity at the S1' Binding Subsite, 435(1) FEBS Lett. 61-64 (1998); and James J. Schmidt & Karen A Bostian, Assay for the Proteolytic Activity of Serotype a From Clostridium botulinum, U.S. Pat. No. 5,965,699 (Oct. 12, 1999).
[0102] Thus, in an embodiment, a modified Clostridial toxin comprises a BoNT/A substrate cleavage site. In an aspect of this embodiment, a BoNT/A substrate cleavage site comprises at least six consecutive residues of SNAP-25 including Gln-Arg. In another aspect of this embodiment, a BoNT/A substrate cleavage site comprises at least six consecutive residues of SNAP-25 including Lys-His. In other aspects of this embodiment, a BoNT/A substrate cleavage site comprises, e.g., the amino acid sequence Glu-Ala-Asn-Gln-Arg-Ala-Thr-Lys (SEQ ID NO: 104); the amino acid sequence Glu-Ala-Asn-Lys-His-Ala-Thr-Lys (SEQ ID NO: 105); the amino acid sequence Glu-Ala-Asn-Lys-His-Ala-Asn-Lys (SEQ ID NO: 106). In another aspect of this embodiment, a BoNT/A substrate cleavage site comprises a naturally occurring BoNT/A substrate cleavage site variant. In another aspect of this embodiment, a BoNT/A substrate cleavage site comprises a naturally occurring BoNT/A substrate cleavage site variant of SEQ ID NO: 104, SEQ ID NO: 105 or SEQ ID NO: 106, such as, e.g., a BoNT/A substrate cleavage site isoform of SEQ ID NO: 104, SEQ ID NO: 105 or SEQ ID NO: 106; or a BoNT/A substrate cleavage site subtype of SEQ ID NO: 104, SEQ ID NO: 105 or SEQ ID NO: 106. In still another aspect of this embodiment, a BoNT/A substrate cleavage site comprises a non-naturally occurring BoNT/A substrate cleavage site variant, such as, e.g., a conservative BoNT/A substrate cleavage site variant, a non-conservative BoNT/A substrate cleavage site variant or a BoNT/A substrate cleavage site peptidomimetic, or any combination thereof. In still another aspect of this embodiment, a BoNT/A substrate cleavage site comprises a non-naturally occurring BoNT/A substrate cleavage site variant of SEQ ID NO: 104, SEQ ID NO: 105 or SEQ ID NO: 106; such as, e.g., a conservative BoNT/A substrate cleavage site variant of SEQ ID NO: 104, SEQ ID NO: 105 or SEQ ID NO: 106; a non-conservative BoNT/A substrate cleavage site variant of SEQ ID NO: 104, SEQ ID NO: 105 or SEQ ID NO: 106; a BoNT/A substrate cleavage site peptidomimetic of SEQ ID NO: 104, SEQ ID NO: 105 or SEQ ID NO: 106; or any combination thereof. In still other aspects of this embodiment, a BoNT/A substrate cleavage site comprises, e.g., SEQ ID NO: 133, SEQ ID NO: 134, SEQ ID NO: 135, SEQ ID NO: 136, SEQ ID NO: 138, SEQ ID NO: 141, SEQ ID NO: 148, SEQ ID NO: 150 or SEQ ID NO: 151.
[0103] In other aspects of this embodiment, a BoNT/A substrate cleavage site comprises a polypeptide having, e.g., at least 50% amino acid identity with SEQ ID NO: 104, at least 62.5% amino acid identity with the SEQ ID NO: 104, at least 75% amino acid identity with SEQ ID NO: 104 or at least 87.5% amino acid identity with SEQ ID NO: 104. In still other aspects of this embodiment, a BoNT/A substrate cleavage site comprises a polypeptide having, e.g., at most 50% amino acid identity with SEQ ID NO: 104, at most 62.5% amino acid identity with the SEQ ID NO: 104, at most 75% amino acid identity with SEQ ID NO: 104 or at most 87.5% amino acid identity with SEQ ID NO: 104.
[0104] In other aspects of this embodiment, a BoNT/A substrate cleavage site comprises a polypeptide having, e.g., at most one, two, three or four non-contiguous amino acid substitutions relative to SEQ ID NO: 104. In still other aspects of this embodiment, a BoNT/A substrate cleavage site comprises a polypeptide having, e.g., at least one, two, three or four non-contiguous amino acid substitutions relative to SEQ ID NO: 104. In yet other aspects of this embodiment, a BoNT/A substrate cleavage site comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine or ten non-contiguous amino acid additions relative to SEQ ID NO: 104. In yet other aspects of this embodiment, a BoNT/A substrate cleavage site comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine or ten non-contiguous amino acid additions relative to SEQ ID NO: 104. In still other aspects of this embodiment, a BoNT/A substrate cleavage site comprises a polypeptide having, e.g., at most one, two or three non-contiguous amino acid deletions relative to SEQ ID NO: 104. In still other aspects of this embodiment, a BoNT/A substrate cleavage site comprises a polypeptide having, e.g., at least one, two or three non-contiguous amino acid deletions relative to SEQ ID NO: 104.
[0105] In other aspects of this embodiment, a BoNT/A substrate cleavage site comprises a polypeptide having, e.g., at most two, three or four contiguous amino acid substitutions relative to SEQ ID NO: 104. In still other aspects of this embodiment, a BoNT/A substrate cleavage site comprises a polypeptide having, e.g., at least two, three or four contiguous amino acid substitutions relative to SEQ ID NO: 104. In yet other aspects of this embodiment, a BoNT/A substrate cleavage site comprises a polypeptide having, e.g., at most two, three, four, five, six, seven, eight, nine or ten contiguous amino acid additions relative to SEQ ID NO: 104. In yet other aspects of this embodiment, a BoNT/A substrate cleavage site comprises a polypeptide having, e.g., at least two, three, four, five, six, seven, eight, nine or ten contiguous amino acid additions relative to SEQ ID NO: 104. In still other aspects of this embodiment, a BoNT/A substrate cleavage site comprises a polypeptide having, e.g., at most two or three contiguous amino acid deletions relative to SEQ ID NO: 104. In still other aspects of this embodiment, a BoNT/A substrate cleavage site comprises a polypeptide having, e.g., at least two or three contiguous amino acid deletions relative to SEQ ID NO: 104.
[0106] In an aspect of the invention, a modified Clostridial toxin comprises a BoNT/B substrate cleavage site. As used herein, the term "botulinum toxin serotype B substrate cleavage site" is synonymous with "BoNT/B substrate cleavage site" and means a scissile bond together with adjacent or non-adjacent recognition elements, or both, sufficient for detectable proteolysis at the scissile bond by a BoNT/B under conditions suitable for Clostridial toxin protease activity. A scissile bond cleaved by BoNT/B can be, for example, Gln-Phe. It is envisioned that a BoNT/B substrate cleavage site of any and all lengths can be useful in aspects of the present invention with the proviso that the BoNT/B substrate cleavage site is capable of being cleaved by BoNT/B. Thus, in aspects of this embodiment, a BoNT/B substrate cleavage site can be, e.g., at least 6 amino acids in length, at least 7 amino acids in length, at least 8 amino acids in length, at least 9 amino acids in length, at least 10 amino acids in length, at least 15 amino acids in length, at least 20 amino acids in length, at least 25 amino acids in length, at least 30 amino acids in length, at least 40 amino acids in length, at least 50 amino acids in length or at least 60 amino acids in length. In other aspects of this embodiment, a BoNT/B substrate cleavage site can be, e.g., at most 6 amino acids in length, at most 7 amino acids in length, at most 8 amino acids in length, at most 9 amino acids in length, at most 10 amino acids in length, at most 15 amino acids in length, at most 20 amino acids in length, at most 25 amino acids in length, at most 30 amino acids in length, at most 40 amino acids in length, at most 50 amino acids in length or at most 60 amino acids in length.
[0107] A BoNT/B substrate cleavage sites useful in aspects of the invention can correspond to a segment of a protein that is sensitive to cleavage by BoNT/B, or can be substantially similar to a segment of a BoNT/B-sensitive protein. As shown in Table 3, a variety of naturally occurring proteins sensitive to cleavage by BoNT/B are known in the art and include, for example, human and mouse VAMP-1, VAMP-2 and VAMP-3/cellubrevin; bovine VAMP-2; rat VAMP-2 and VAMP-3; chicken VAMP-2; Torpedo VAMP-1; Strongylocentrotus VAMP; Drosophila sybA, synB, synC, synD and synE; Hirudo VAMP; and Caenorhabditis SNB1-like. Thus, a BoNT/B substrate cleavage site can correspond, for example, to a segment of human VAMP-1, VAMP-2 or VAMP-3; bovine VAMP-2; rat VAMP-2 or VAMP-3; mouse VAMP-1, VAMP-2 or VAMP-3; chicken VAMP-1, VAMP-2 or VAMP-3; Xenopus VAMP-2 or VAMP-3; Danio VAMP-1 or VAMP-2; Torpedo VAMP-1; Strongylocentrotus VAMP; Drosophila sybA, synB, synC, synD or synE; Hirudo VAMP; Loligo VAMP; Lymnaea VAMP; Aplysia VAMP; Caenorhabditis SNB1, isoforms thereof, or another naturally occurring protein sensitive to cleavage by BoNT/B. Furthermore, comparison of native VAMP amino acid sequences cleaved by BoNT/B reveals that such sequences are not absolutely conserved (Table 3). This finding indicates that a variety of amino acid substitutions and modifications relative to a naturally occurring BoNT/B-sensitive VAMP sequence can be tolerated in a BoNT/B substrate cleavage site useful in aspects of the present invention. It is understood that a similar BoNT/B substrate cleavage site can be prepared, if desired, from a corresponding (homologous) segment of another BoNT/B-sensitive VAMP-1 or VAMP-2 isoform, paralog or ortholog, such as, the BoNT/B substrate cleavage site contain in the VAMP-1 and VAMP-2 proteins identified in the organisms listed above and in Table 3.
[0108] A variety of BoNT/B substrate cleavage sites are well known in the art or can be defined by routine methods. Such BoNT/B substrate cleavage sites can include, for example, a sequence corresponding to some or all of the hydrophilic core of a VAMP protein such as human VAMP-1 or human VAMP-2. A BoNT/B substrate cleavage sites can include, without limitation, residues 33 to 94, residues 45 to 94, residues 55 to 94, residues 60 to 94, residues 65 to 94, residues 60 to 88 or residues 65 to 88 of human VAMP-2 (SEQ ID NO: 39), or residues 60 to 94 of human VAMP-1-1 (SEQ ID NO: 36), VAMP-1-2 (SEQ ID NO: 37) and VAMP-1-3 (SEQ ID NO: 38), see, e.g., Shone et al., Eur. J. Biochem. 217: 965-971 (1993); and Shone et al., supra, (Oct. 5, 1999). A BoNT/B substrate cleavage sites also can include, without limitation, the sequence Leu-Ser-Glu-Leu-Asp-Asp-Arg-Ala-Asp-Ala-Leu-Gln-Ala-Gly-Ala-Ser-Gln-Phe-G- lu-Thr-Ser-Ala-Ala-Lys-Leu-Lys-Arg-Lys-Tyr-Trp-Trp-Lys-Asn-Leu-Lys (SEQ ID NO: 152) or a peptidomimetic thereof, which corresponds to residues 60 to 94 of human VAMP-2, see, e.g., James J. Schmidt & Robert G. Stafford, High Throughput Assays for the Proteolytic Activities of Clostridial Neurotoxins, U.S. Pat. No. 6,762,280 (Jul. 13, 2004) and the BoNT/B recognition sequence Leu-Ser-Glu-Leu-Asp-Asp-Arg-Ala-Asp-Ala-Leu-Gln-Ala-Gly-Ala-Ser-Gln-Phe-G- lu-Ser-Ser-Ala-Ala-Lys-Leu-Lys-Arg-Lys-Tyr-Trp-Trp-Lys-Asn-Cys-Lys (SEQ ID NO: 153) or a peptidomimetic thereof, which corresponds to residues 62 to 96 of human VAMP-1.
[0109] Thus, in an embodiment, a modified Clostridial toxin comprises a BoNT/B substrate cleavage site. In an aspect of this embodiment, a BoNT/B substrate cleavage site comprises at least six consecutive residues of VAMP including Gln-Phe. In other aspects of this embodiment, a BoNT/B substrate cleavage site comprises, e.g., the amino acid sequence Gly-Ala-Ser-Gln-Phe-Glu-Thr-Ser (SEQ ID NO: 107); the amino acid sequence Gly-Ala-Ser-Gln-Phe-Glu-Ser-Ser (SEQ ID NO: 108); the amino acid sequence Gly-Ala-Ser-Gln-Phe-Glu-Thr-Asn (SEQ ID NO: 109); the amino acid sequence Gly-Ala-Ser-Gln-Phe-Glu-Gln-Gln (SEQ ID NO: 110); the amino acid sequence Gly-Ala-Ser-Gln-Phe-Glu-Ala-Ser (SEQ ID NO: 111); or the amino acid sequence Gly-Ala-Ser-Gln-Phe-Gln-Gln-Ser (SEQ ID NO: 112). In another aspect of this embodiment, a BoNT/B substrate cleavage site comprises a naturally occurring BoNT/B substrate cleavage site variant. In another aspect of this embodiment, a BoNT/B substrate cleavage site comprises a naturally occurring BoNT/B substrate cleavage site variant of SEQ ID NO: 107, SEQ ID NO: 108, SEQ ID NO: 109, SEQ ID NO: 110, SEQ ID NO: 111 or SEQ ID NO: 112, such as, e.g., a BoNT/B substrate cleavage site isoform of SEQ ID NO: 107, SEQ ID NO: 108, SEQ ID NO: 109, SEQ ID NO: 110, SEQ ID NO: 111 or SEQ ID NO: 112; or a BoNT/B substrate cleavage site subtype of SEQ ID NO: 107, SEQ ID NO: 108, SEQ ID NO: 109, SEQ ID NO: 110, SEQ ID NO: 111 or SEQ ID NO: 112. In still another aspect of this embodiment, a BoNT/B substrate cleavage site comprises a non-naturally occurring BoNT/B substrate cleavage site variant, such as, e.g., a conservative BoNT/B substrate cleavage site variant, a non-conservative BoNT/B substrate cleavage site variant or a BoNT/B substrate cleavage site peptidomimetic, or any combination thereof. In still another aspect of this embodiment, a BoNT/B substrate cleavage site comprises a non-naturally occurring BoNT/B substrate cleavage site variant of SEQ ID NO: 107, SEQ ID NO: 108, SEQ ID NO: 109, SEQ ID NO: 110, SEQ ID NO: 111 or SEQ ID NO: 112; such as, e.g., a conservative BoNT/B substrate cleavage site variant of SEQ ID NO: 107, SEQ ID NO: 108, SEQ ID NO: 109, SEQ ID NO: 110, SEQ ID NO: 111 or SEQ ID NO: 112; a non-conservative BoNT/B substrate cleavage site variant of SEQ ID NO: 107, SEQ ID NO: 108, SEQ ID NO: 109, SEQ ID NO: 110, SEQ ID NO: 111 or SEQ ID NO: 112; a BoNT/B substrate cleavage site peptidomimetic of SEQ ID NO: 107, SEQ ID NO: 108, SEQ ID NO: 109, SEQ ID NO: 110, SEQ ID NO: 111 or SEQ ID NO: 112; or any combination thereof.
[0110] In other aspects of this embodiment, a BoNT/B substrate cleavage site comprises a polypeptide having, e.g., at least 50% amino acid identity with SEQ ID NO: 107, at least 62.5% amino acid identity with the SEQ ID NO: 107, at least 75% amino acid identity with SEQ ID NO: 107 or at least 87.5% amino acid identity with SEQ ID NO: 107. In still other aspects of this embodiment, a BoNT/B substrate cleavage site comprises a polypeptide having, e.g., at most 50% amino acid identity with SEQ ID NO: 107, at most 62.5% amino acid identity with the SEQ ID NO: 107, at most 75% amino acid identity with SEQ ID NO: 107 or at most 87.5% amino acid identity with SEQ ID NO: 107.
[0111] In other aspects of this embodiment, a BoNT/B substrate cleavage site comprises a polypeptide having, e.g., at most one, two, three or four non-contiguous amino acid substitutions relative to SEQ ID NO: 107. In still other aspects of this embodiment, a BoNT/B substrate cleavage site comprises a polypeptide having, e.g., at least one, two, three or four non-contiguous amino acid substitutions relative to SEQ ID NO: 107. In yet other aspects of this embodiment, a BoNT/B substrate cleavage site comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine or ten non-contiguous amino acid additions relative to SEQ ID NO: 107. In yet other aspects of this embodiment, a BoNT/B substrate cleavage site comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine or ten non-contiguous amino acid additions relative to SEQ ID NO: 107. In still other aspects of this embodiment, a BoNT/B substrate cleavage site comprises a polypeptide having, e.g., at most one, two or three non-contiguous amino acid deletions relative to SEQ ID NO: 107. In still other aspects of this embodiment, a BoNT/B substrate cleavage site comprises a polypeptide having, e.g., at least one, two or three non-contiguous amino acid deletions relative to SEQ ID NO: 107.
[0112] In other aspects of this embodiment, a BoNT/B substrate cleavage site comprises a polypeptide having, e.g., at most two, three or four contiguous amino acid substitutions relative to SEQ ID NO: 107. In still other aspects of this embodiment, a BoNT/B substrate cleavage site comprises a polypeptide having, e.g., at least two, three or four contiguous amino acid substitutions relative to SEQ ID NO: 107. In yet other aspects of this embodiment, a BoNT/B substrate cleavage site comprises a polypeptide having, e.g., at most two, three, four, five, six, seven, eight, nine or ten contiguous amino acid additions relative to SEQ ID NO: 107. In yet other aspects of this embodiment, a BoNT/B substrate cleavage site comprises a polypeptide having, e.g., at least two, three, four, five, six, seven, eight, nine or ten contiguous amino acid additions relative to SEQ ID NO: 107. In still other aspects of this embodiment, a BoNT/B substrate cleavage site comprises a polypeptide having, e.g., at most two or three contiguous amino acid deletions relative to SEQ ID NO: 107. In still other aspects of this embodiment, a BoNT/B substrate cleavage site comprises a polypeptide having, e.g., at least two or three contiguous amino acid deletions relative to SEQ ID NO: 107.
[0113] In an aspect of the invention, a modified Clostridial toxin comprises a BoNT/C1 substrate cleavage site. As used herein, the term "botulinum toxin serotype C1 substrate cleavage site" is synonymous with "BoNT/C1 substrate cleavage site" and means a scissile bond together with adjacent or non-adjacent recognition elements, or both, sufficient for detectable proteolysis at the scissile bond by a BoNT/C1 under appropriate conditions. A scissile bond cleaved by BoNT/C1 can be, for example, Lys-Ala or Arg-Ala. It is envisioned that a BoNT/C1 substrate cleavage site of any and all lengths can be useful in aspects of the present invention with the proviso that the BoNT/C1 substrate cleavage site is capable of being cleaved by BoNT/C1. Thus, in aspects of this embodiment, a BoNT/C1 substrate cleavage site can be, e.g., at least 6 amino acids in length, at least 7 amino acids in length, at least 8 amino acids in length, at least 9 amino acids in length, at least 10 amino acids in length, at least 15 amino acids in length, at least 20 amino acids in length, at least 25 amino acids in length, at least 30 amino acids in length, at least 40 amino acids in length, at least 50 amino acids in length or at least 60 amino acids in length. In other aspects of this embodiment, a BoNT/C1 substrate cleavage site can be, e.g., at most 6 amino acids in length, at most 7 amino acids in length, at most 8 amino acids in length, at most 9 amino acids in length, at most 10 amino acids in length, at most 15 amino acids in length, at most 20 amino acids in length, at most 25 amino acids in length, at most 30 amino acids in length, at most 40 amino acids in length, at most 50 amino acids in length or at most 60 amino acids in length.
[0114] A BoNT/C1 substrate cleavage sites useful in aspects of the invention can correspond to a segment of a protein that is sensitive to cleavage by BoNT/C1, or can be substantially similar to a segment of a BoNT/C1-sensitive protein. As further shown in Table 4, a variety of naturally occurring proteins sensitive to cleavage by BoNT/C1 are known in the art and include, for example, human and mouse Syntaxin 1A, Syntaxin 1B1 and Syntaxin 1B2; bovine and rat Syntaxin 1A and Syntaxin 1B2; rat Syntaxin 2 and Rat syntaxin 3; Strongylocentrotus Syntaxin; Drosophila Syntaxin 1A; Hirudo Syntaxin1A; Loligo Syntaxin 1A; Aplysia Syntaxin 1A. Thus, a BoNT/C1 substrate cleavage site can correspond, for example, to a segment of human Syntaxin 1A, Syntaxin 1B1, Syntaxin 1B2, Syntaxin 2-1, Syntaxin 2-2, Syntaxin 2-3 or Syntaxin 3A; bovine Syntaxin 1A, Syntaxin 1B1 or Syntaxin 1B2; rat Syntaxin 1A, Syntaxin 1B1, Syntaxin 1B2, Syntaxin 2 or Syntaxin 3A; mouse Syntaxin 1A, Syntaxin 1B1, Syntaxin 1B2, Syntaxin 2, Syntaxin 3A, Syntaxin 3B or Syntaxin 3C; chicken Syntaxin 1A or Syntaxin 2; Xenopus Syntaxin 1A or Syntaxin 1B; Danio Syntaxin 1A, Syntaxin 1B or Syntaxin 3; Torpedo Syntaxin 1A or Syntaxin 1B; Strongylocentrotus Syntaxin 1A or Syntaxin 1B; Drosophila Syntaxin 1A or Syntaxin 1B; Hirudo Syntaxin 1A or Syntaxin 1B; Loligo Syntaxin 1A or Syntaxin 1B; Lymnaea Syntaxin 1A or Syntaxin 1B, isoforms thereof, or another naturally occurring protein sensitive to cleavage by BoNT/C1. Furthermore, comparison of native syntaxin amino acid sequences cleaved by BoNT/C1 reveals that such sequences are not absolutely conserved (see Table 4), indicating that a variety of amino acid substitutions and modifications relative to a naturally occurring BoNT/C1-sensitive syntaxin sequence can be tolerated in a BoNT/C1 substrate cleavage site useful in aspects of the present invention. It is understood that a similar BoNT/C1 substrate cleavage site can be prepared, if desired, from a corresponding (homologous) segment of another BoNT/C1-sensitive syntaxin isoform, paralog or ortholog, such as, the BoNT/C1 substrate cleavage site contain in the syntaxin proteins identified in the organisms listed above and in Table 4.
[0115] Although not extensively studied, a variety of BoNT/C1 substrate cleavage sites can be defined by routine methods. The minimum optimal fragment for BoNT/C1 substrate cleavage sites can include, without limitation, residues 93 to 202 of human SNAP-25A (SEQ ID NO: 9), or residues 93 to 202 of human SNAP-25B (SEQ ID NO: 10), see, e.g., Vaidyanathan et al., supra, (1999). However, as with substrates for other BoNTs, it is suspected that a much smaller substrate fragment can be effectively cleaved by BoNT/C1.
[0116] As further shown in Table 2, a variety of naturally occurring proteins sensitive to cleavage by BoNT/C1 are known in the art and include, for example, human, rat, mouse, Danio, Carassius SNAP-25A and SNAP-25B; and Drosophila SNAP-25. Thus, a BoNT/C1 substrate cleavage site can correspond, for example, to a segment of human SNAP-25A or SNAP-25B; bovine SNAP-25A or SNAP-25B; rat SNAP-25A or SNAP-25B; mouse SNAP-25A or SNAP-25B; Xenopus SNAP-25A or SNAP-25B; Danio SNAP-25A or SNAP-25B; Carassius SNAP-25A or SNAP-25B; Torpedo SNAP-25; Strongylocentrotus SNAP-25; Drosophila SNAP-25 or SNAP-24; Hirudo SNAP-25; Loligo SNAP-25; Lymnaea SNAP-25, isoforms thereof, or another naturally occurring protein sensitive to cleavage by BoNT/C1. As discussed above in regard to variants of naturally occurring syntaxin sequences, comparison of native SNAP-25 amino acid sequences cleaved by BoNT/C1 reveals significant sequence variability (Table 2), indicating that a variety of amino acid substitutions and modifications relative to a naturally occurring BoNT/C1-sensitive SNAP-25 sequence can be tolerated in a BoNT/C1 substrate cleavage site disclosed in the present specification. It is understood that a similar BoNT/C1 substrate cleavage site can be prepared, if desired, from a corresponding (homologous) segment of another BoNT/C1-sensitive SNAP-25 isoform, paralog or ortholog, such as, the BoNT/A substrate cleavage site contain in the SNAP-25 proteins identified in the organisms listed above and in Table 2.
[0117] Thus, in an embodiment, a modified Clostridial toxin comprises a BoNT/C1 substrate cleavage site. In an aspect of this embodiment, a BoNT/C1 substrate cleavage site comprises at least six consecutive residues of Syntaxin including Lys-Ala. In another aspect of this embodiment, a BoNT/C1 substrate cleavage site comprises at least six consecutive residues of Syntaxin including Arg-Ala. In other aspects of this embodiment, a BoNT/C1 substrate cleavage site comprises, e.g., the amino acid sequence Asp-Thr-Lys-Lys-Ala-Val-Lys-Tyr (SEQ ID NO: 113); the amino acid sequence Glu-Thr-Lys-Lys-Ala-Ile-Lys-Tyr (SEQ ID NO: 114); the amino acid sequence Glu-Ser-Lys-Lys-Ala-Val-Lys-Tyr (SEQ ID NO: 115); the amino acid sequence Glu-Thr-Lys-Arg-Ala-Met-Lys-Tyr (SEQ ID NO: 116); the amino acid sequence Glu-Thr-Lys-Lys-Ala-Val-Lys-Tyr (SEQ ID NO: 117); the amino acid sequence Asp-Thr-Lys-Lys-Ala-Leu-Lys-Tyr (SEQ ID NO: 118); or the amino acid sequence Asp-Thr-Lys-Lys-Ala-Met-Lys-Tyr (SEQ ID NO: 119). In another aspect of this embodiment, a BoNT/C1 substrate cleavage site comprises a naturally occurring BoNT/C1 substrate cleavage site variant. In another aspect of this embodiment, a BoNT/C1 substrate cleavage site comprises a naturally occurring BoNT/C1 substrate cleavage site variant of SEQ ID NO: 113, SEQ ID NO: 114, SEQ ID NO: 115, SEQ ID NO: 116, SEQ ID NO: 117, SEQ ID NO: 118 or SEQ ID NO: 119, such as, e.g., a BoNT/C1 substrate cleavage site isoform of SEQ ID NO: 113, SEQ ID NO: 114, SEQ ID NO: 115, SEQ ID NO: 116, SEQ ID NO: 117, SEQ ID NO: 118 or SEQ ID NO: 119; or a BoNT/C1 substrate cleavage site subtype of SEQ ID NO: 113, SEQ ID NO: 114, SEQ ID NO: 115, SEQ ID NO: 116, SEQ ID NO: 117, SEQ ID NO: 118 or SEQ ID NO: 119. In still another aspect of this embodiment, a BoNT/C1 substrate cleavage site comprises a non-naturally occurring BoNT/C1 substrate cleavage site variant, such as, e.g., a conservative BoNT/C1 substrate cleavage site variant, a non-conservative BoNT/C1 substrate cleavage site variant or a BoNT/C1 substrate cleavage site peptidomimetic, or any combination thereof. In still another aspect of this embodiment, a BoNT/C1 substrate cleavage site comprises a non-naturally occurring BoNT/C1 substrate cleavage site variant of SEQ ID NO: 113, SEQ ID NO: 114, SEQ ID NO: 115, SEQ ID NO: 116, SEQ ID NO: 117, SEQ ID NO: 118 or SEQ ID NO: 119; such as, e.g., a conservative BoNT/C1 substrate cleavage site variant of SEQ ID NO: 113, SEQ ID NO: 114, SEQ ID NO: 115, SEQ ID NO: 116, SEQ ID NO: 117, SEQ ID NO: 118 or SEQ ID NO: 119; a non-conservative BoNT/C1 substrate cleavage site variant of SEQ ID NO: 113, SEQ ID NO: 114, SEQ ID NO: 115, SEQ ID NO: 116, SEQ ID NO: 117, SEQ ID NO: 118 or SEQ ID NO: 119; a BoNT/C1 substrate cleavage site peptidomimetic of SEQ ID NO: 113, SEQ ID NO: 114, SEQ ID NO: 115, SEQ ID NO: 116, SEQ ID NO: 117, SEQ ID NO: 118 or SEQ ID NO: 119; or any combination thereof.
[0118] In other aspects of this embodiment, a BoNT/C1 substrate cleavage site comprises a polypeptide having, e.g., at least 50% amino acid identity with SEQ ID NO: 113, at least 62.5% amino acid identity with the SEQ ID NO: 113, at least 75% amino acid identity with SEQ ID NO: 113 or at least 87.5% amino acid identity with SEQ ID NO: 113. In still other aspects of this embodiment, a BoNT/C1 substrate cleavage site comprises a polypeptide having, e.g., at most 50% amino acid identity with SEQ ID NO: 113, at most 62.5% amino acid identity with the SEQ ID NO: 113, at most 75% amino acid identity with SEQ ID NO: 113 or at most 87.5% amino acid identity with SEQ ID NO: 113.
[0119] In other aspects of this embodiment, a BoNT/C1 substrate cleavage site comprises a polypeptide having, e.g., at most one, two, three or four non-contiguous amino acid substitutions relative to SEQ ID NO: 113. In still other aspects of this embodiment, a BoNT/C1 substrate cleavage site comprises a polypeptide having, e.g., at least one, two, three or four non-contiguous amino acid substitutions relative to SEQ ID NO: 113. In yet other aspects of this embodiment, a BoNT/C1 substrate cleavage site comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine or ten non-contiguous amino acid additions relative to SEQ ID NO: 113. In yet other aspects of this embodiment, a BoNT/C1 substrate cleavage site comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine or ten non-contiguous amino acid additions relative to SEQ ID NO: 113. In still other aspects of this embodiment, a BoNT/C1 substrate cleavage site comprises a polypeptide having, e.g., at most one, two or three non-contiguous amino acid deletions relative to SEQ ID NO: 113. In still other aspects of this embodiment, a BoNT/C1 substrate cleavage site comprises a polypeptide having, e.g., at least one, two or three non-contiguous amino acid deletions relative to SEQ ID NO: 113.
[0120] In other aspects of this embodiment, a BoNT/C1 substrate cleavage site comprises a polypeptide having, e.g., at most two, three or four contiguous amino acid substitutions relative to SEQ ID NO: 113. In still other aspects of this embodiment, a BoNT/C1 substrate cleavage site comprises a polypeptide having, e.g., at least two, three or four contiguous amino acid substitutions relative to SEQ ID NO: 113. In yet other aspects of this embodiment, a BoNT/C1 substrate cleavage site comprises a polypeptide having, e.g., at most two, three, four, five, six, seven, eight, nine or ten contiguous amino acid additions relative to SEQ ID NO: 113. In yet other aspects of this embodiment, a BoNT/C1 substrate cleavage site comprises a polypeptide having, e.g., at least two, three, four, five, six, seven, eight, nine or ten contiguous amino acid additions relative to SEQ ID NO: 113. In still other aspects of this embodiment, a BoNT/C1 substrate cleavage site comprises a polypeptide having, e.g., at most two or three contiguous amino acid deletions relative to SEQ ID NO: 113. In still other aspects of this embodiment, a BoNT/C1 substrate cleavage site comprises a polypeptide having, e.g., at least two or three contiguous amino acid deletions relative to SEQ ID NO: 113.
[0121] In another aspect of this embodiment, a BoNT/C1 substrate cleavage site comprises at least six consecutive residues of SNAP-25 including Arg-Ala. In other aspects of this embodiment, a BoNT/C1 toxin substrate cleavage site comprises, e.g., the amino acid sequence Ala-Asn-Gln-Arg-Ala-Thr-Lys-Met (SEQ ID NO: 120); or the amino acid sequence Ala-Asn-Gln-Arg-Ala-His-Gln-Leu (SEQ ID NO: 121). In another aspect of this embodiment, a BoNT/C1 substrate cleavage site comprises a naturally occurring BoNT/C1 substrate cleavage site variant. In another aspect of this embodiment, a BoNT/C1 substrate cleavage site comprises a naturally occurring BoNT/C1 substrate cleavage site variant of SEQ ID NO: 120 or SEQ ID NO: 121, such as, e.g., a BoNT/C1 substrate cleavage site isoform of SEQ ID NO: 120 or SEQ ID NO: 121; or a BoNT/C1 substrate cleavage site subtype of SEQ ID NO: 120 or SEQ ID NO: 121. In still another aspect of this embodiment, a BoNT/C1 substrate cleavage site comprises a non-naturally occurring BoNT/C1 substrate cleavage site variant, such as, e.g., a conservative BoNT/C1 substrate cleavage site variant, a non-conservative BoNT/C1 substrate cleavage site variant or a BoNT/C1 substrate cleavage site peptidomimetic, or any combination thereof. In still another aspect of this embodiment, a BoNT/C1 substrate cleavage site comprises a non-naturally occurring BoNT/C1 substrate cleavage site variant of SEQ ID NO: 120 or SEQ ID NO: 121; such as, e.g., a conservative BoNT/C1 substrate cleavage site variant of SEQ ID NO: 120 or SEQ ID NO: 121; a non-conservative BoNT/C1 substrate cleavage site variant of SEQ ID NO: 120 or SEQ ID NO: 121; a BoNT/C1 substrate cleavage site peptidomimetic of SEQ ID NO: 120 or SEQ ID NO: 121; or any combination thereof.
[0122] In other aspects of this embodiment, a BoNT/C1 substrate cleavage site comprises a polypeptide having, e.g., at least 50% amino acid identity with SEQ ID NO: 120, at least 62.5% amino acid identity with the SEQ ID NO: 120, at least 75% amino acid identity with SEQ ID NO: 120 or at least 87.5% amino acid identity with SEQ ID NO: 120. In still other aspects of this embodiment, a BoNT/C1 substrate cleavage site comprises a polypeptide having, e.g., at most 50% amino acid identity with SEQ ID NO: 120, at most 62.5% amino acid identity with the SEQ ID NO: 120, at most 75% amino acid identity with SEQ ID NO: 120 or at most 87.5% amino acid identity with SEQ ID NO: 120.
[0123] In other aspects of this embodiment, a BoNT/C1 substrate cleavage site comprises a polypeptide having, e.g., at most one, two, three or four non-contiguous amino acid substitutions relative to SEQ ID NO: 120. In still other aspects of this embodiment, a BoNT/C1 substrate cleavage site comprises a polypeptide having, e.g., at least one, two, three or four non-contiguous amino acid substitutions relative to SEQ ID NO: 120. In yet other aspects of this embodiment, a BoNT/C1 substrate cleavage site comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine or ten non-contiguous amino acid additions relative to SEQ ID NO: 120. In yet other aspects of this embodiment, a BoNT/C1 substrate cleavage site comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine or ten non-contiguous amino acid additions relative to SEQ ID NO: 120. In still other aspects of this embodiment, a BoNT/C1 substrate cleavage site comprises a polypeptide having, e.g., at most one, two or three non-contiguous amino acid deletions relative to SEQ ID NO: 120. In still other aspects of this embodiment, a BoNT/C1 substrate cleavage site comprises a polypeptide having, e.g., at least one, two or three non-contiguous amino acid deletions relative to SEQ ID NO: 120.
[0124] In other aspects of this embodiment, a BoNT/C1 substrate cleavage site comprises a polypeptide having, e.g., at most two, three or four contiguous amino acid substitutions relative to SEQ ID NO: 120. In still other aspects of this embodiment, a BoNT/C1 substrate cleavage site comprises a polypeptide having, e.g., at least two, three or four contiguous amino acid substitutions relative to SEQ ID NO: 120. In yet other aspects of this embodiment, a BoNT/C1 substrate cleavage site comprises a polypeptide having, e.g., at most two, three, four, five, six, seven, eight, nine or ten contiguous amino acid additions relative to SEQ ID NO: 120. In yet other aspects of this embodiment, a BoNT/C1 substrate cleavage site comprises a polypeptide having, e.g., at least two, three, four, five, six, seven, eight, nine or ten contiguous amino acid additions relative to SEQ ID NO: 120. In still other aspects of this embodiment, a BoNT/C1 substrate cleavage site comprises a polypeptide having, e.g., at most two or three contiguous amino acid deletions relative to SEQ ID NO: 120. In still other aspects of this embodiment, a BoNT/C1 substrate cleavage site comprises a polypeptide having, e.g., at least two or three contiguous amino acid deletions relative to SEQ ID NO: 120.
[0125] In an aspect of the invention, a modified Clostridial toxin comprises a BoNT/D substrate cleavage site. As used herein, the term "botulinum toxin serotype D substrate cleavage site" is synonymous with "BoNT/D substrate cleavage site" and means a scissile bond together with adjacent or non-adjacent recognition elements, or both, sufficient for detectable proteolysis at the scissile bond by a BoNT/D under appropriate conditions. A scissile bond cleaved by BoNT/D can be, for example, Lys-Leu. It is envisioned that a BoNT/D substrate cleavage site of any and all lengths can be useful in aspects of the present invention with the proviso that the BoNT/D substrate cleavage site is capable of being cleaved by BoNT/D. Thus, in aspects of this embodiment, a BoNT/D substrate cleavage site can be, e.g., at least 6 amino acids in length, at least 7 amino acids in length, at least 8 amino acids in length, at least 9 amino acids in length, at least 10 amino acids in length, at least 15 amino acids in length, at least 20 amino acids in length, at least 25 amino acids in length, at least 30 amino acids in length, at least 40 amino acids in length, at least 50 amino acids in length or at least 60 amino acids in length. In other aspects of this embodiment, a BoNT/D substrate cleavage site can be, e.g., at most 6 amino acids in length, at most 7 amino acids in length, at most 8 amino acids in length, at most 9 amino acids in length, at most 10 amino acids in length, at most 15 amino acids in length, at most 20 amino acids in length, at most 25 amino acids in length, at most 30 amino acids in length, at most 40 amino acids in length, at most 50 amino acids in length or at most 60 amino acids in length.
[0126] A BoNT/D substrate cleavage sites useful in aspects of the invention can correspond to a segment of a protein that is sensitive to cleavage by BoNT/D, or can be substantially similar to a segment of a BoNT/D-sensitive protein. As shown in Table 3, a variety of naturally occurring proteins sensitive to cleavage by BoNT/D are known in the art and include, for example, human, rat and mouse VAMP-1, VAMP-2 and VAMP-3/cellubrevin; bovine VAMP-2; chicken VAMP-1, VAMP-2 and VAMP-3; Xenopus VAMP-2 or VAMP-3; Danio VAMP-1 or VAMP-2; Torpedo VAMP-1; Strongylocentrotus VAMP; Drosophila sybA, synB, synC, synD, synE; Hirudo VAMP; Loligo VAMP; Lymnaea VAMP; Aplysia VAMP; and Caenorhabditis SNB1. Thus, a BoNT/D substrate cleavage site can correspond, for example, to a segment of human VAMP-1, VAMP-2 or VAMP-3; bovine VAMP-2; rat VAMP-1, VAMP-2 or VAMP-3; mouse VAMP-1, VAMP-2 or VAMP-3; chicken VAMP-1, VAMP-2 or VAMP-3; Xenopus VAMP-2 or VAMP-3; Danio VAMP-1 or VAMP-2; Torpedo VAMP-1; Strongylocentrotus VAMP; Drosophila sybA, synB, synC, synD, synE; Hirudo VAMP; Loligo VAMP; Lymnaea VAMP; Aplysia VAMP; Caenorhabditis SNB1, isoforms thereof, or another naturally occurring protein sensitive to cleavage by BoNT/D. Furthermore, comparison of native VAMP amino acid sequences cleaved by BoNT/D reveals that such sequences are not absolutely conserved (Table 3). This finding indicates that a variety of amino acid substitutions and modifications relative to a naturally occurring BoNT/D-sensitive VAMP sequence can be tolerated in a BoNT/D substrate cleavage site useful in aspects of the present invention. It is understood that a similar BoNT/D substrate cleavage site can be prepared, if desired, from a corresponding (homologous) segment of another BoNT/D-sensitive VAMP-1 or VAMP-2 isoform, paralog or ortholog, such as, the BoNT/D substrate cleavage site contain in the VAMP-1 and VAMP-2 proteins identified in the organisms listed above and in Table 3.
[0127] A variety of BoNT/D substrate cleavage sites are well known in the art or can be defined by routine methods. A BoNT/D substrate cleavage site can include, for example, residues 27 to 116; residues 37 to 116; residues 1 to 86; residues 1 to 76; or residues 1 to 69 of rat VAMP-2 (SEQ ID NO: 46), see, e.g., Shinji Yamasaki et al., Cleavage of members of the synaptobrevinNAMP family by types D and F botulinum neurotoxins and tetanus toxin, 269(17) J. Biol. Chem. 12764-12772 (1994). Thus, a BoNT/D substrate cleavage site can include, for example, residues 27 to 69 or residues 37 to 69 of rat VAMP-2. A BoNT/D substrate cleavage site also can include, without limitation, the sequence Ala-Gln-Val-Asp-Glu-Val-Val-Asp-Ile-Met-Arg-Val-Asn-Val-Asp-Lys-Val-Leu-G- lu-Arg-Asp-Gln-Lys-Leu-Ser-Glu-Leu-Asp-Asp-Arg-Ala-Asp-Ala-Leu-Gln-Ala-Gly- -Ala-Ser (SEQ ID NO: 154) or a peptidomimetic thereof, which corresponds to residues 37 to 75 of human VAMP-2, see, e.g., Schmidt & Stafford, supra, (Jul. 13, 2004) and the BoNT/D recognition sequence Ala-Gln-Val-Glu-Glu-Val-Val-Asp-Ile-Ile-Arg-Val-Asn-Val-Asp-Lys-Val-Leu-G- lu-Arg-Asp-Gln-Lys-Leu-Ser-Glu-Leu-Asp-Asp-Arg-Ala-Asp-Ala-Leu-Gln-Ala-Gly- -Ala-Ser (SEQ ID NO: 155) or a peptidomimetic thereof, which corresponds to residues 39 to 77 of the human VAMP-1 isoforms, VAMP-1-1, VAMP-1-2 and VAMP-1-3.
[0128] Thus, in an embodiment, a modified Clostridial toxin comprises a BoNT/D substrate cleavage site. In an aspect of this embodiment, a BoNT/D substrate cleavage site comprises at least six consecutive residues of VAMP including Lys-Leu. In other aspects of this embodiment, a BoNT/D substrate cleavage site comprises, e.g., the amino acid sequence Arg-Asp-Gln-Lys-Leu-Ser-Glu-Leu (SEQ ID NO: 122); or the amino acid sequence Lys-Asp-Gln-Lys-Leu-Ala-Glu-Leu (SEQ ID NO: 123). In another aspect of this embodiment, a BoNT/D substrate cleavage site comprises a naturally occurring BoNT/D substrate cleavage site variant. In another aspect of this embodiment, a BoNT/D substrate cleavage site comprises a naturally occurring BoNT/D substrate cleavage site variant of SEQ ID NO: 122 or SEQ ID NO: 123, such as, e.g., a BoNT/D substrate cleavage site isoform of SEQ ID NO: 122 or SEQ ID NO: 123; or a BoNT/D substrate cleavage site subtype of SEQ ID NO: 122 or SEQ ID NO: 123. In still another aspect of this embodiment, a BoNT/D substrate cleavage site comprises a non-naturally occurring BoNT/D substrate cleavage site variant, such as, e.g., a conservative BoNT/D substrate cleavage site variant, a non-conservative BoNT/D substrate cleavage site variant or a BoNT/D substrate cleavage site peptidomimetic, or any combination thereof. In still another aspect of this embodiment, a BoNT/D substrate cleavage site comprises a non-naturally occurring BoNT/D substrate cleavage site variant of SEQ ID NO: 122 or SEQ ID NO: 123; such as, e.g., a conservative BoNT/D substrate cleavage site variant of SEQ ID NO: 122 or SEQ ID NO: 123; a non-conservative BoNT/C1 substrate cleavage site variant of SEQ ID NO: 122 or SEQ ID NO: 123; a BoNT/D substrate cleavage site peptidomimetic of SEQ ID NO: 122 or SEQ ID NO: 123; or any combination thereof.
[0129] In other aspects of this embodiment, a BoNT/D substrate cleavage site comprises a polypeptide having, e.g., at least 50% amino acid identity with SEQ ID NO: 122, at least 62.5% amino acid identity with the SEQ ID NO: 122, at least 75% amino acid identity with SEQ ID NO: 122 or at least 87.5% amino acid identity with SEQ ID NO: 122. In still other aspects of this embodiment, a BoNT/D substrate cleavage site comprises a polypeptide having, e.g., at most 50% amino acid identity with SEQ ID NO: 122, at most 62.5% amino acid identity with the SEQ ID NO: 122, at most 75% amino acid identity with SEQ ID NO: 122 or at most 87.5% amino acid identity with SEQ ID NO: 122.
[0130] In other aspects of this embodiment, a BoNT/D substrate cleavage site comprises a polypeptide having, e.g., at most one, two, three or four non-contiguous amino acid substitutions relative to SEQ ID NO: 122. In still other aspects of this embodiment, a BoNT/D substrate cleavage site comprises a polypeptide having, e.g., at least one, two, three or four non-contiguous amino acid substitutions relative to SEQ ID NO: 122. In yet other aspects of this embodiment, a BoNT/D substrate cleavage site comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine or ten non-contiguous amino acid additions relative to SEQ ID NO: 122. In yet other aspects of this embodiment, a BoNT/D substrate cleavage site comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine or ten non-contiguous amino acid additions relative to SEQ ID NO: 122. In still other aspects of this embodiment, a BoNT/D substrate cleavage site comprises a polypeptide having, e.g., at most one, two or three non-contiguous amino acid deletions relative to SEQ ID NO: 122. In still other aspects of this embodiment, a BoNT/D substrate cleavage site comprises a polypeptide having, e.g., at least one, two or three non-contiguous amino acid deletions relative to SEQ ID NO: 122.
[0131] In other aspects of this embodiment, a BoNT/D substrate cleavage site comprises a polypeptide having, e.g., at most two, three or four contiguous amino acid substitutions relative to SEQ ID NO: 122. In still other aspects of this embodiment, a BoNT/D substrate cleavage site comprises a polypeptide having, e.g., at least two, three or four contiguous amino acid substitutions relative to SEQ ID NO: 122. In yet other aspects of this embodiment, a BoNT/D substrate cleavage site comprises a polypeptide having, e.g., at most two, three, four, five, six, seven, eight, nine or ten contiguous amino acid additions relative to SEQ ID NO: 122. In yet other aspects of this embodiment, a BoNT/D substrate cleavage site comprises a polypeptide having, e.g., at least two, three, four, five, six, seven, eight, nine or ten contiguous amino acid additions relative to SEQ ID NO: 122. In still other aspects of this embodiment, a BoNT/D substrate cleavage site comprises a polypeptide having, e.g., at most two or three contiguous amino acid deletions relative to SEQ ID NO: 122. In still other aspects of this embodiment, a BoNT/D substrate cleavage site comprises a polypeptide having, e.g., at least two or three contiguous amino acid deletions relative to SEQ ID NO: 122.
[0132] In an aspect of the invention, a modified Clostridial toxin comprises a BoNT/E substrate cleavage site. As used herein, the term "botulinum toxin serotype E substrate cleavage site" is synonymous with "BoNT/E substrate cleavage site" and means a scissile bond together with adjacent or non-adjacent recognition elements, or both, sufficient for detectable proteolysis at the scissile bond by a BoNT/E under appropriate conditions. A scissile bond cleaved by BoNT/E can be, for example, Arg-Ile or Lys-Ile. It is envisioned that a BoNT/E substrate cleavage site of any and all lengths can be useful in aspects of the present invention with the proviso that the BoNT/E substrate cleavage site is capable of being cleaved by BoNT/E. Thus, in aspects of this embodiment, a BoNT/E substrate cleavage site can be, e.g., at least 6 amino acids in length, at least 7 amino acids in length, at least 8 amino acids in length, at least 9 amino acids in length, at least 10 amino acids in length, at least 15 amino acids in length, at least 20 amino acids in length, at least 25 amino acids in length, at least 30 amino acids in length, at least 40 amino acids in length, at least 50 amino acids in length or at least 60 amino acids in length. In other aspects of this embodiment, a BoNT/E substrate cleavage site can be, e.g., at most 6 amino acids in length, at most 7 amino acids in length, at most 8 amino acids in length, at most 9 amino acids in length, at most 10 amino acids in length, at most 15 amino acids in length, at most 20 amino acids in length, at most 25 amino acids in length, at most 30 amino acids in length, at most 40 amino acids in length, at most 50 amino acids in length or at most 60 amino acids in length.
[0133] A BoNT/E substrate cleavage sites useful in aspects of the invention can correspond to a segment of a protein that is sensitive to cleavage by BoNT/E, or can be substantially similar to a segment of a BoNT/E-sensitive protein. As shown in Table 2, a variety of naturally occurring proteins sensitive to cleavage by BoNT/E are known in the art and include, for example, human, chicken, Danio, Carassius SNAP-25A and SNAP-25B; rat and mouse SNAP-25A, SNAP-25B and SNAP-23; and Caenorhabditis SNAP-25. Thus, a BoNT/E substrate cleavage site can correspond, for example, to a segment of human SNAP-25A or SNAP-25B; bovine SNAP-25A or SNAP-25B; rat SNAP-25A, SNAP-25B or SNAP-23; mouse SNAP-25A, SNAP-25B or SNAP-23; Xenopus SNAP-25A or SNAP-25B; Danio SNAP-25A or SNAP-25B; Carassius SNAP-25A or SNAP-25B; Strongylocentrotus SNAP-25; Drosophila SNAP-24; Hirudo SNAP-25; Loligo SNAP-25; Lymnaea SNAP-25; Caenorhabditis SNAP-25, isoforms thereof, or another naturally occurring protein sensitive to cleavage by BoNT/C1. Furthermore, comparison of native SNAP-23 and SNAP-25 amino acid sequences cleaved by BoNT/E reveals that such sequences are not absolutely conserved (Table 2). This finding indicates that a variety of amino acid substitutions and modifications relative to a naturally occurring BoNT/E-sensitive SNAP-23 or SNAP-25 sequence can be tolerated in a BoNT/E substrate cleavage site useful in aspects of the present invention. It is understood that a similar BoNT/E substrate cleavage site can be prepared, if desired, from a corresponding (homologous) segment of another BoNT/E-sensitive SNAP-25 isoform, paralog or ortholog, such as, the BoNT/E recognition sequence contain in the SNAP-25 proteins identified in the organisms listed above and in Table 2.
[0134] A variety of BoNT/E substrate cleavage sites are well known in the art or can be defined by routine methods. A BoNT/E substrate cleavage site can have, for example, residues 46-206, residues 92 to 206, residues, residues 134 to 206, residues, 137 to 206; 146-206, 156-206 or 146-186 of human SNAP-25A (SEQ ID NO: 9) and human SNAP-25B (SEQ ID NO: 10), see, e.g., Vaidyanathan et al., supra, (1999); and Schmidt & Stafford, supra, (Jul. 13, 2004).
[0135] Thus, in an embodiment, a modified Clostridial toxin comprises a BoNT/E substrate cleavage site. In an aspect of this embodiment, a BoNT/E substrate cleavage site comprises at least six consecutive residues of SNAP-25 including Arg-Ile. In another aspect of this embodiment, a BoNT/E substrate cleavage site comprises at least six consecutive residues of SNAP-25 including Lys-Ile. In other aspects of this embodiment, a BoNT/E substrate cleavage site comprises, e.g., the amino acid sequence Gln-Ile-Asp-Arg-Ile-Met-Glu-Lys (SEQ ID NO: 124); the amino acid sequence Gln-Ile-Gln-Lys-Ile-Thr-Glu-Lys (SEQ ID NO: 125); the amino acid sequence Gln-Ile-Asp-Arg-Ile-Met-Asp-Met (SEQ ID NO: 126); the amino acid sequence Gln-Val-Asp-Arg-Ile-Gln-Gln-Lys (SEQ ID NO: 127); or the amino acid sequence Gln-Leu-Asp-Arg-Ile-His-Asp-Lys (SEQ ID NO: 128). In another aspect of this embodiment, a BoNT/E substrate cleavage site comprises a naturally occurring BoNT/E substrate cleavage site variant. In another aspect of this embodiment, a BoNT/E substrate cleavage site comprises a naturally occurring BoNT/E substrate cleavage site variant of SEQ ID NO: 124, SEQ ID NO: 125, SEQ ID NO: 126, SEQ ID NO: 127 or SEQ ID NO: 128, such as, e.g., a BoNT/E substrate cleavage site isoform of SEQ ID NO: 124, SEQ ID NO: 125, SEQ ID NO: 126, SEQ ID NO: 127 or SEQ ID NO: 128; or a BoNT/E substrate cleavage site subtype of SEQ ID NO: 124, SEQ ID NO: 125, SEQ ID NO: 126, SEQ ID NO: 127 or SEQ ID NO: 128. In still another aspect of this embodiment, a BoNT/E substrate cleavage site comprises a non-naturally occurring BoNT/E substrate cleavage site variant, such as, e.g., a conservative BoNT/E substrate cleavage site variant, a non-conservative BoNT/E substrate cleavage site variant or a BoNT/E substrate cleavage site peptidomimetic, or any combination thereof. In still another aspect of this embodiment, a BoNT/E substrate cleavage site comprises a non-naturally occurring BoNT/E substrate cleavage site variant of SEQ ID NO: 124, SEQ ID NO: 125, SEQ ID NO: 126, SEQ ID NO: 127 or SEQ ID NO: 128; such as, e.g., a conservative BoNT/E substrate cleavage site variant of SEQ ID NO: 124, SEQ ID NO: 125, SEQ ID NO: 126, SEQ ID NO: 127 or SEQ ID NO: 128; a non-conservative BoNT/E substrate cleavage site variant of SEQ ID NO: 124, SEQ ID NO: 125, SEQ ID NO: 126, SEQ ID NO: 127 or SEQ ID NO: 128; a BoNT/E substrate cleavage site peptidomimetic of SEQ ID NO: 124, SEQ ID NO: 125, SEQ ID NO: 126, SEQ ID NO: 127 or SEQ ID NO: 128 or SEQ ID NO: XX; or any combination thereof.
[0136] In other aspects of this embodiment, a BoNT/E substrate cleavage site comprises a polypeptide having, e.g., at least 50% amino acid identity with SEQ ID NO: 124, at least 62.5% amino acid identity with the SEQ ID NO: 124, at least 75% amino acid identity with SEQ ID NO: 124 or at least 87.5% amino acid identity with SEQ ID NO: 124. In still other aspects of this embodiment, a BoNT/E substrate cleavage site comprises a polypeptide having, e.g., at most 50% amino acid identity with SEQ ID NO: 124, at most 62.5% amino acid identity with the SEQ ID NO: 124, at most 75% amino acid identity with SEQ ID NO: 124 or at most 87.5% amino acid identity with SEQ ID NO: 124.
[0137] In other aspects of this embodiment, a BoNT/E substrate cleavage site comprises a polypeptide having, e.g., at most one, two, three or four non-contiguous amino acid substitutions relative to SEQ ID NO: 124. In still other aspects of this embodiment, a BoNT/E substrate cleavage site comprises a polypeptide having, e.g., at least one, two, three or four non-contiguous amino acid substitutions relative to SEQ ID NO: 124. In yet other aspects of this embodiment, a BoNT/E substrate cleavage site comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine or ten non-contiguous amino acid additions relative to SEQ ID NO: 124. In yet other aspects of this embodiment, a BoNT/E substrate cleavage site comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine or ten non-contiguous amino acid additions relative to SEQ ID NO: 124. In still other aspects of this embodiment, a BoNT/E substrate cleavage site comprises a polypeptide having, e.g., at most one, two or three non-contiguous amino acid deletions relative to SEQ ID NO: 124. In still other aspects of this embodiment, a BoNT/E substrate cleavage site comprises a polypeptide having, e.g., at least one, two or three non-contiguous amino acid deletions relative to SEQ ID NO: 124.
[0138] In other aspects of this embodiment, a BoNT/E substrate cleavage site comprises a polypeptide having, e.g., at most two, three or four contiguous amino acid substitutions relative to SEQ ID NO: 124. In still other aspects of this embodiment, a BoNT/E substrate cleavage site comprises a polypeptide having, e.g., at least two, three or four contiguous amino acid substitutions relative to SEQ ID NO: 124. In yet other aspects of this embodiment, a BoNT/E substrate cleavage site comprises a polypeptide having, e.g., at most two, three, four, five, six, seven, eight, nine or ten contiguous amino acid additions relative to SEQ ID NO: 124. In yet other aspects of this embodiment, a BoNT/E substrate cleavage site comprises a polypeptide having, e.g., at least two, three, four, five, six, seven, eight, nine or ten contiguous amino acid additions relative to SEQ ID NO: 124. In still other aspects of this embodiment, a BoNT/E substrate cleavage site comprises a polypeptide having, e.g., at most two or three contiguous amino acid deletions relative to SEQ ID NO: 124. In still other aspects of this embodiment, a BoNT/E substrate cleavage site comprises a polypeptide having, e.g., at least two or three contiguous amino acid deletions relative to SEQ ID NO: 124.
[0139] In an aspect of the invention, a modified Clostridial toxin comprises a BoNT/F substrate cleavage site. As used herein, the term "botulinum toxin serotype F substrate cleavage site" is synonymous with "BoNT/F substrate cleavage site" and means a scissile bond together with adjacent or non-adjacent recognition elements, or both, sufficient for detectable proteolysis at the scissile bond by a BoNT/F under appropriate conditions. A scissile bond cleaved by BoNT/F can be, for example, Gln-Lys. It is envisioned that a BoNT/F substrate cleavage site of any and all lengths can be useful in aspects of the present invention with the proviso that the BoNT/F substrate cleavage site is capable of being cleaved by BoNT/F. Thus, in aspects of this embodiment, a BoNT/F substrate cleavage site can be, e.g., at least 6 amino acids in length, at least 7 amino acids in length, at least 8 amino acids in length, at least 9 amino acids in length, at least 10 amino acids in length, at least 15 amino acids in length, at least 20 amino acids in length, at least 25 amino acids in length, at least 30 amino acids in length, at least 40 amino acids in length, at least 50 amino acids in length or at least 60 amino acids in length. In other aspects of this embodiment, a BoNT/F substrate cleavage site can be, e.g., at most 6 amino acids in length, at most 7 amino acids in length, at most 8 amino acids in length, at most 9 amino acids in length, at most 10 amino acids in length, at most 15 amino acids in length, at most 20 amino acids in length, at most 25 amino acids in length, at most 30 amino acids in length, at most 40 amino acids in length, at most 50 amino acids in length or at most 60 amino acids in length.
[0140] A BoNT/F substrate cleavage sites useful in aspects of the invention can correspond to a segment of a protein that is sensitive to cleavage by BoNT/F, or can be substantially similar to a segment of a BoNT/F-sensitive protein. As shown in Table 3, a variety of naturally occurring proteins sensitive to cleavage by BoNT/F are known in the art and include, for example, human, rat and mouse VAMP-1, VAMP-2 and VAMP-3/cellubrevin; bovine VAMP-2; chicken VAMP-1 and VAMP-2; Torpedo VAMP-1; and Drosophila sybA and synB. Thus, a BoNT/F substrate cleavage site can correspond, for example, to a segment of human VAMP-1, VAMP-2 or VAMP-3; bovine VAMP-2; rat VAMP-1, VAMP-2 or VAMP-3; mouse VAMP-1, VAMP-2 or VAMP-3; chicken VAMP-1, VAMP-2 or VAMP-3; Xenopus VAMP-2 or VAMP-3; Danio VAMP-1 or VAMP-2; Torpedo VAMP-1; Drosophila sybA and synB; Hirudo VAMP; Loligo VAMP; Lymnaea VAMP; Aplysia VAMP; Caenorhabditis SNB1, isoforms thereof, or another naturally occurring protein sensitive to cleavage by BoNT/F. Thus, a BoNT/F substrate cleavage site can correspond, for example, to a segment of human VAMP-1 or VAMP-2, mouse VAMP-1 or VAMP-2, bovine VAMP-1 or VAMP-2, rat VAMP-1 or VAMP-2, rat cellubrevin, chicken VAMP-1 or VAMP-2, Torpedo VAMP-1, Aplysia VAMP, Drosophila syb, leech VAMP, or another naturally occurring protein sensitive to cleavage by BoNT/F. Furthermore, comparison of native VAMP amino acid sequences cleaved by BoNT/F reveals that such sequences are not absolutely conserved (Table 3). This finding indicates that a variety of amino acid substitutions and modifications relative to a naturally occurring BoNT/F-sensitive VAMP sequence can be tolerated in a BoNT/F substrate cleavage site useful in aspects of the present invention. It is understood that a similar BoNT/F substrate cleavage site can be prepared, if desired, from a corresponding (homologous) segment of another BoNT/F-sensitive VAMP-1 or VAMP-2 isoform, paralog or ortholog, such as, the BoNT/F substrate cleavage site contain in the VAMP-1 and VAMP-2 identified in the organisms listed above and in Table 3.
[0141] A variety of BoNT/F recognition sequences are well known in the art or can be defined by routine methods. A BoNT/F recognition sequence can include, for example, residues 27 to 116; residues 37 to 116; residues 1 to 86; residues 1 to 76; or residues 1 to 69 of rat VAMP-2 (SEQ ID NO: 46), see, e.g., Yamasaki et al., supra, (1994). These a BoNT/F recognition sequence also can comprise, for example, residues 27 to 69 or residues 37 to 69 of rat VAMP-2. It is understood that a similar BoNT/F recognition sequence can be prepared, if desired, from a corresponding (homologous) segment of another BoNT/F-sensitive VAMP isoform, paralog or ortholog, such as, e.g., human VAMP-1 or human VAMP-2. A BoNT/F recognition sequence also can include, without limitation, the sequence Ala-Gln-Val-Asp-Glu-Val-Val-Asp-Ile-Met-Arg-Val-Asn-Val-Asp-Lys-Val-Leu-G- lu-Arg-Asp-Gln-Lys-Leu-Ser-Glu-Leu-Asp-Asp-Arg-Ala-Asp-Ala-Leu-Gln-Ala-Gly- -Ala-Ser (SEQ ID NO: 154) or a peptidomimetic thereof, which corresponds to residues 37 to 75 of human VAMP-2, see, e.g., Schmidt & Stafford, supra, (Jul. 13, 2004) and the BoNT/F recognition sequence Ala-Gln-Val-Glu-Glu-Val-Val-Asp-Ile-Ile-Arg-Val-Asn-Val-Asp-Lys-Val-Leu-G- lu-Arg-Asp-Gln-Lys-Leu-Ser-Glu-Leu-Asp-Asp-Arg-Ala-Asp-Ala-Leu-Gln-Ala-Gly- -Ala-Ser (SEQ ID NO: 155) or a peptidomimetic thereof, which corresponds to residues 39 to 77 of human VAMP-1.
[0142] Thus, in an embodiment, a modified Clostridial toxin comprises a BoNT/F substrate cleavage site. In an aspect of this embodiment, a BoNT/F substrate cleavage site comprises at least six consecutive residues of VAMP including Gln-Lys. In other aspects of this embodiment, a BoNT/F substrate cleavage site comprises, e.g., the amino acid sequence Glu-Arg-Asp-Gln-Lys-Leu-Ser-Glu (SEQ ID NO: 129); or the amino acid sequence Glu-Lys-Asp-Gln-Lys-Leu-Ala-Glu (SEQ ID NO: 130). In another aspect of this embodiment, a BoNT/F substrate cleavage site comprises a naturally occurring BoNT/F substrate cleavage site variant. In another aspect of this embodiment, a BoNT/F substrate cleavage site comprises a naturally occurring BoNT/F substrate cleavage site variant of SEQ ID NO: 129 or SEQ ID NO: 130, such as, e.g., a BoNT/F substrate cleavage site isoform of SEQ ID NO: 129 or SEQ ID NO: 130; or a BoNT/F substrate cleavage site subtype of SEQ ID NO: 129 or SEQ ID NO: 130. In still another aspect of this embodiment, a BoNT/F substrate cleavage site comprises a non-naturally occurring BoNT/F substrate cleavage site variant, such as, e.g., a conservative BoNT/F substrate cleavage site variant, a non-conservative BoNT/F substrate cleavage site variant or a BoNT/F substrate cleavage site peptidomimetic, or any combination thereof. In still another aspect of this embodiment, a BoNT/F substrate cleavage site comprises a non-naturally occurring BoNT/F substrate cleavage site variant of SEQ ID NO: 129 or SEQ ID NO: 130; such as, e.g., a conservative BoNT/F substrate cleavage site variant of SEQ ID NO: 129 or SEQ ID NO: 130; a non-conservative BoNT/F substrate cleavage site variant of SEQ ID NO: 129 or SEQ ID NO: 130; a BoNT/F substrate cleavage site peptidomimetic of SEQ ID NO: 129 or SEQ ID NO: 130; or any combination thereof.
[0143] In other aspects of this embodiment, a BoNT/F substrate cleavage site comprises a polypeptide having, e.g., at least 50% amino acid identity with SEQ ID NO: 129, at least 62.5% amino acid identity with the SEQ ID NO: 129, at least 75% amino acid identity with SEQ ID NO: 129 or at least 87.5% amino acid identity with SEQ ID NO: 129. In still other aspects of this embodiment, a BoNT/F substrate cleavage site comprises a polypeptide having, e.g., at most 50% amino acid identity with SEQ ID NO: 129, at most 62.5% amino acid identity with the SEQ ID NO: 129, at most 75% amino acid identity with SEQ ID NO: 129 or at most 87.5% amino acid identity with SEQ ID NO: 129.
[0144] In other aspects of this embodiment, a BoNT/F substrate cleavage site comprises a polypeptide having, e.g., at most one, two, three or four non-contiguous amino acid substitutions relative to SEQ ID NO: 129. In still other aspects of this embodiment, a BoNT/F substrate cleavage site comprises a polypeptide having, e.g., at least one, two, three or four non-contiguous amino acid substitutions relative to SEQ ID NO: 129. In yet other aspects of this embodiment, a BoNT/F substrate cleavage site comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine or ten non-contiguous amino acid additions relative to SEQ ID NO: 129. In yet other aspects of this embodiment, a BoNT/F substrate cleavage site comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine or ten non-contiguous amino acid additions relative to SEQ ID NO: 129. In still other aspects of this embodiment, a BoNT/F substrate cleavage site comprises a polypeptide having, e.g., at most one, two or three non-contiguous amino acid deletions relative to SEQ ID NO: 129. In still other aspects of this embodiment, a BoNT/F substrate cleavage site comprises a polypeptide having, e.g., at least one, two or three non-contiguous amino acid deletions relative to SEQ ID NO: 129.
[0145] In other aspects of this embodiment, a BoNT/F substrate cleavage site comprises a polypeptide having, e.g., at most two, three or four contiguous amino acid substitutions relative to SEQ ID NO: 129. In still other aspects of this embodiment, a BoNT/F substrate cleavage site comprises a polypeptide having, e.g., at least two, three or four contiguous amino acid substitutions relative to SEQ ID NO: 129. In yet other aspects of this embodiment, a BoNT/F substrate cleavage site comprises a polypeptide having, e.g., at most two, three, four, five, six, seven, eight, nine or ten contiguous amino acid additions relative to SEQ ID NO: 129. In yet other aspects of this embodiment, a BoNT/F substrate cleavage site comprises a polypeptide having, e.g., at least two, three, four, five, six, seven, eight, nine or ten contiguous amino acid additions relative to SEQ ID NO: 129. In still other aspects of this embodiment, a BoNT/F substrate cleavage site comprises a polypeptide having, e.g., at most two or three contiguous amino acid deletions relative to SEQ ID NO: 129. In still other aspects of this embodiment, a BoNT/F substrate cleavage site comprises a polypeptide having, e.g., at least two or three contiguous amino acid deletions relative to SEQ ID NO: 129.
[0146] In an aspect of the invention, a modified Clostridial toxin comprises a BoNT/G substrate cleavage site. As used herein, the term "botulinum toxin serotype G substrate cleavage site" is synonymous with "BoNT/G substrate cleavage site" and means a scissile bond together with adjacent or non-adjacent recognition elements, or both, sufficient for detectable proteolysis at the scissile bond by a BoNT/G under appropriate conditions. A scissile bond cleaved by BoNT/G can be, for example, Ala-Ala. It is envisioned that a BoNT/G substrate cleavage site of any and all lengths can be useful in aspects of the present invention with the proviso that the BoNT/G substrate cleavage site is capable of being cleaved by BoNT/G. Thus, in aspects of this embodiment, a BoNT/G substrate cleavage site can be, e.g., at least 6 amino acids in length, at least 7 amino acids in length, at least 8 amino acids in length, at least 9 amino acids in length, at least 10 amino acids in length, at least 15 amino acids in length, at least 20 amino acids in length, at least 25 amino acids in length, at least 30 amino acids in length, at least 40 amino acids in length, at least 50 amino acids in length or at least 60 amino acids in length. In other aspects of this embodiment, a BoNT/G substrate cleavage site can be, e.g., at most 6 amino acids in length, at most 7 amino acids in length, at most 8 amino acids in length, at most 9 amino acids in length, at most 10 amino acids in length, at most 15 amino acids in length, at most 20 amino acids in length, at most 25 amino acids in length, at most 30 amino acids in length, at most 40 amino acids in length, at most 50 amino acids in length or at most 60 amino acids in length.
[0147] A BoNT/G substrate cleavage sites useful in aspects of the invention can correspond to a segment of a protein that is sensitive to cleavage by BoNT/G, or can be substantially similar to a segment of a BoNT/G-sensitive protein. As shown in Table 3, a variety of naturally occurring proteins sensitive to cleavage by BoNT/G are known in the art and include, for example, human, rat and mouse VAMP-1, VAMP-2 and VAMP-3/cellubrevin; bovine VAMP-2; chicken VAMP-1, and VAMP-2; and Torpedo VAMP-1. Thus, a BoNT/G recognition sequence can correspond, for example, to a segment of human VAMP-1, VAMP-2 or VAMP-3; bovine VAMP-2; rat VAMP-1, VAMP-2 or VAMP-3; mouse VAMP-1, VAMP-2 or VAMP-3; chicken VAMP-1, VAMP-2 or VAMP-3; Xenopus VAMP-2 or VAMP-3; Danio VAMP-1 or VAMP-2; Torpedo VAMP-1; Caenorhabditis SNB1, isoforms thereof, or another naturally occurring protein sensitive to cleavage by BoNT/G. Furthermore, comparison of native VAMP amino acid sequences cleaved by BoNT/G reveals that such sequences are not absolutely conserved (Table 3). This finding indicates that a variety of amino acid substitutions and modifications relative to a naturally occurring BoNT/G-sensitive VAMP sequence can be tolerated in a BoNT/G substrate cleavage site useful in aspects of the present invention. It is understood that a similar BoNT/G recognition sequence can be prepared, if desired, from a corresponding (homologous) segment of another BoNT/G-sensitive VAMP-1 or VAMP-2 isoform, paralog or ortholog, such as, the BoNT/G recognition sequence contain in the VAMP-1 and VAMP-2 identified in the organisms listed above and in Table 3.
[0148] Thus, in an embodiment, a modified Clostridial toxin comprises a BoNT/G substrate cleavage site. In an aspect of this embodiment, a BoNT/G substrate cleavage site comprises at least six consecutive residues of VAMP including Ala-Ala. In other aspects of this embodiment, a BoNT/G substrate cleavage site comprises, e.g., the amino acid sequence Glu-Thr-Ser-Ala-Ala-Lys-Leu-Lys (SEQ ID NO: 131); or the amino acid sequence Glu-Ser-Ser-Ala-Ala-Lys-Leu-Lys (SEQ ID NO: 132). In another aspect of this embodiment, a BoNT/G substrate cleavage site comprises a naturally occurring BoNT/G substrate cleavage site variant. In another aspect of this embodiment, a BoNT/G substrate cleavage site comprises a naturally occurring BoNT/G substrate cleavage site variant of SEQ ID NO: 131 or SEQ ID NO: 132, such as, e.g., a BoNT/G substrate cleavage site isoform of SEQ ID NO: 131 or SEQ ID NO: 132; or a BoNT/G substrate cleavage site subtype of SEQ ID NO: 131 or SEQ ID NO: 132. In still another aspect of this embodiment, a BoNT/G substrate cleavage site comprises a non-naturally occurring BoNT/F substrate cleavage site variant, such as, e.g., a conservative BoNT/G substrate cleavage site variant, a non-conservative BoNT/G substrate cleavage site variant or a BoNT/G substrate cleavage site peptidomimetic, or any combination thereof. In still another aspect of this embodiment, a BoNT/G substrate cleavage site comprises a non-naturally occurring BoNT/G substrate cleavage site variant of SEQ ID NO: 131 or SEQ ID NO: 132; such as, e.g., a conservative BoNT/G substrate cleavage site variant of SEQ ID NO: 131 or SEQ ID NO: 132; a non-conservative BoNT/G substrate cleavage site variant of SEQ ID NO: 131 or SEQ ID NO: 132; a BoNT/G substrate cleavage site peptidomimetic of SEQ ID NO: 131 or SEQ ID NO: 132; or any combination thereof.
[0149] In other aspects of this embodiment, a BoNT/G substrate cleavage site comprises a polypeptide having, e.g., at least 50% amino acid identity with SEQ ID NO: 131, at least 62.5% amino acid identity with the SEQ ID NO: 131, at least 75% amino acid identity with SEQ ID NO: 131 or at least 87.5% amino acid identity with SEQ ID NO: 131. In still other aspects of this embodiment, a BoNT/G substrate cleavage site comprises a polypeptide having, e.g., at most 50% amino acid identity with SEQ ID NO: 131, at most 62.5% amino acid identity with the SEQ ID NO: 131, at most 75% amino acid identity with SEQ ID NO: 131 or at most 87.5% amino acid identity with SEQ ID NO: 131.
[0150] In other aspects of this embodiment, a BoNT/G substrate cleavage site comprises a polypeptide having, e.g., at most one, two, three or four non-contiguous amino acid substitutions relative to SEQ ID NO: 131. In still other aspects of this embodiment, a BoNT/G substrate cleavage site comprises a polypeptide having, e.g., at least one, two, three or four non-contiguous amino acid substitutions relative to SEQ ID NO: 131. In yet other aspects of this embodiment, a BoNT/G substrate cleavage site comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine or ten non-contiguous amino acid additions relative to SEQ ID NO: 131. In yet other aspects of this embodiment, a BoNT/G substrate cleavage site comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine or ten non-contiguous amino acid additions relative to SEQ ID NO: 131. In still other aspects of this embodiment, a BoNT/G substrate cleavage site comprises a polypeptide having, e.g., at most one, two or three non-contiguous amino acid deletions relative to SEQ ID NO: 131. In still other aspects of this embodiment, a BoNT/G substrate cleavage site comprises a polypeptide having, e.g., at least one, two or three non-contiguous amino acid deletions relative to SEQ ID NO: 131.
[0151] In other aspects of this embodiment, a BoNT/G substrate cleavage site comprises a polypeptide having, e.g., at most two, three or four contiguous amino acid substitutions relative to SEQ ID NO: 131. In still other aspects of this embodiment, a BoNT/G substrate cleavage site comprises a polypeptide having, e.g., at least two, three or four contiguous amino acid substitutions relative to SEQ ID NO: 131. In yet other aspects of this embodiment, a BoNT/G substrate cleavage site comprises a polypeptide having, e.g., at most two, three, four, five, six, seven, eight, nine or ten contiguous amino acid additions relative to SEQ ID NO: 131. In yet other aspects of this embodiment, a BoNT/G substrate cleavage site comprises a polypeptide having, e.g., at least two, three, four, five, six, seven, eight, nine or ten contiguous amino acid additions relative to SEQ ID NO: 131. In still other aspects of this embodiment, a BoNT/G substrate cleavage site comprises a polypeptide having, e.g., at most two or three contiguous amino acid deletions relative to SEQ ID NO: 131. In still other aspects of this embodiment, a BoNT/G substrate cleavage site comprises a polypeptide having, e.g., at least two or three contiguous amino acid deletions relative to SEQ ID NO: 131.
[0152] In an aspect of the invention, a modified Clostridial toxin comprises a TeNT substrate cleavage site. As used herein, the term "tetanus toxin substrate cleavage site" is synonymous with "TeNT substrate cleavage site" and means a scissile bond together with adjacent or non-adjacent recognition elements, or both, sufficient for detectable proteolysis at the scissile bond by a TeNT under appropriate conditions. A scissile bond cleaved by TeNT can be, for example, Gln-Phe. It is envisioned that a TeNT substrate cleavage site of any and all lengths can be useful in aspects of the present invention with the proviso that the TeNT substrate cleavage site is capable of being cleaved by TeNT. Thus, in aspects of this embodiment, a TeNT substrate cleavage site can be, e.g., at least 6 amino acids in length, at least 7 amino acids in length, at least 8 amino acids in length, at least 9 amino acids in length, at least 10 amino acids in length, at least 15 amino acids in length, at least 20 amino acids in length, at least 25 amino acids in length, at least 30 amino acids in length, at least 40 amino acids in length, at least 50 amino acids in length or at least 60 amino acids in length. In other aspects of this embodiment, a TeNT substrate cleavage site can be, e.g., at most 6 amino acids in length, at most 7 amino acids in length, at most 8 amino acids in length, at most 9 amino acids in length, at most 10 amino acids in length, at most 15 amino acids in length, at most 20 amino acids in length, at most 25 amino acids in length, at most 30 amino acids in length, at most 40 amino acids in length, at most 50 amino acids in length or at most 60 amino acids in length.
[0153] A TeNT substrate cleavage sites useful in aspects of the invention can correspond to a segment of a protein that is sensitive to cleavage by TeNT, or can be substantially similar to a segment of a TeNT-sensitive protein. As shown in Table 3, a variety of naturally occurring proteins sensitive to cleavage by TeNT are known in the art and include, for example, human and mouse VAMP-1, VAMP-2 and VAMP-3/cellubrevin; bovine VAMP-2; rat VAMP-2 and VAMP-3; chicken VAMP-2; Torpedo VAMP-1; Strongylocentrotus VAMP; Drosophila sybA, synB, synC, synD and synE; Hirudo VAMP; and Caenorhabditis SNB1-like. Thus, a TeNT substrate cleavage site can correspond, for example, to a segment of human VAMP-1, VAMP-2 or VAMP-3; bovine VAMP-2; rat VAMP-2 or VAMP-3; mouse VAMP-1, VAMP-2 or VAMP-3; chicken VAMP-1, VAMP-2 or VAMP-3; Xenopus VAMP-2 or VAMP-3; Danio VAMP-1 or VAMP-2; Torpedo VAMP-1; Strongylocentrotus VAMP; Drosophila sybA, synB, synC, synD or synE; Hirudo VAMP; Loligo VAMP; Lymnaea VAMP; Aplysia VAMP; Caenorhabditis SNB1 and SNB-like, isoforms thereof, or another naturally occurring protein sensitive to cleavage by TeNT. Furthermore, comparison of native VAMP amino acid sequences cleaved by TeNT reveals that such sequences are not absolutely conserved (Table 3). This finding indicates that a variety of amino acid substitutions and modifications relative to a naturally occurring TeNT-sensitive VAMP sequence can be tolerated in a TeNT substrate cleavage site useful in aspects of the present invention. It is understood that a similar TeNT substrate cleavage site can be prepared, if desired, from a corresponding (homologous) segment of another TeNT-sensitive VAMP-1 or VAMP-2 isoform, paralog or ortholog, such as, the TeNT substrate cleavage site contain in the VAMP-1 and VAMP-2 identified in the organisms listed above and in Table 3.
[0154] A variety of TeNT recognition sequences are well known in the art or can be defined by routine methods and include sequences corresponding to some or all of the hydrophilic core of a VAMP protein such as human VAMP-1 or human VAMP-2. A TeNT recognition sequence can include, for example, residues 25 to 93 or residues 33 to 94 of human VAMP-2 (SEQ ID NO: 39); F. Cornille et al., Solid-Phase Synthesis, Conformational Analysis and In Vitro Cleavage Of Synthetic Human Synaptobrevin II 1-93 by Tetanus Toxin L chain, 222(1) Eur. J. Biochem. 173-181 (1994); Patrick Foran et al., Differences in the Protease Activities of Tetanus and Botulinum B Toxins Revealed By the Cleavage of Vesicle-Associated Membrane Protein and Various Sized Fragments, 33(51) Biochemistry 15365-15374 (1994); residues 51 to 93 or residues 1 to 86 of rat VAMP-2, see, e.g., Yamasaki et al., supra, (1994); or residues 33 to 94 of human VAMP-1-1 (SEQ ID NO: 36), residues 33 to 94 of human VAMP-1-2 (SEQ ID NO: 37) and residues 33 to 94 of human VAMP-1-3 (SEQ ID NO: 38). A TeNT recognition sequence also can include, for example, residues 25 to 86, residues 33 to 86 or residues 51 to 86 of human VAMP-2 (SEQ ID NO: 39) or rat VAMP-2 (SEQ ID NO: 46). It is understood that a similar TeNT recognition sequence can be prepared, if desired, from a corresponding (homologous) segment of another TeNT-sensitive VAMP isoform or species homolog such as human VAMP-1 or sea urchin or Aplysia VAMP.
[0155] Thus, in an embodiment, a modified Clostridial toxin comprises a TeNT substrate cleavage site. In an aspect of this embodiment, a TeNT substrate cleavage site comprises at least six consecutive residues of VAMP including Gln-Phe. In other aspects of this embodiment, a TeNT substrate cleavage site comprises, e.g., the amino acid sequence Gly-Ala-Ser-Gln-Phe-Glu-Thr-Ser (SEQ ID NO: 107); the amino acid sequence Gly-Ala-Ser-Gln-Phe-Glu-Ser-Ser (SEQ ID NO: 108); the amino acid sequence Gly-Ala-Ser-Gln-Phe-Glu-Thr-Asn (SEQ ID NO: 109); the amino acid sequence Gly-Ala-Ser-Gln-Phe-Glu-Gln-Gln (SEQ ID NO: 110); the amino acid sequence Gly-Ala-Ser-Gln-Phe-Glu-Ala-Ser (SEQ ID NO: 111); or the amino acid sequence Gly-Ala-Ser-Gln-Phe-Gln-Gln-Ser (SEQ ID NO: 112). In another aspect of this embodiment, a TeNT substrate cleavage site comprises a naturally occurring TeNT substrate cleavage site variant. In another aspect of this embodiment, a TeNT substrate cleavage site comprises a naturally occurring TeNT substrate cleavage site variant of SEQ ID NO: 107, SEQ ID NO: 108, SEQ ID NO: 109, SEQ ID NO: 110, SEQ ID NO: 111 or SEQ ID NO: 112, such as, e.g., a TeNT substrate cleavage site isoform of SEQ ID NO: 107, SEQ ID NO: 108, SEQ ID NO: 109, SEQ ID NO: 110, SEQ ID NO: 111 or SEQ ID NO: 112; or a TeNT substrate cleavage site subtype of SEQ ID NO: 107, SEQ ID NO: 108, SEQ ID NO: 109, SEQ ID NO: 110, SEQ ID NO: 111 or SEQ ID NO: 112. In still another aspect of this embodiment, a TeNT substrate cleavage site comprises a non-naturally occurring TeNT substrate cleavage site variant, such as, e.g., a conservative TeNT substrate cleavage site variant, a non-conservative TeNT substrate cleavage site variant or a TeNT substrate cleavage site peptidomimetic, or any combination thereof. In still another aspect of this embodiment, a TeNT substrate cleavage site comprises a non-naturally occurring TeNT substrate cleavage site variant of SEQ ID NO: 107, SEQ ID NO: 108, SEQ ID NO: 109, SEQ ID NO: 110, SEQ ID NO: 111 or SEQ ID NO: 112; such as, e.g., a conservative TeNT substrate cleavage site variant of SEQ ID NO: 107, SEQ ID NO: 108, SEQ ID NO: 109, SEQ ID NO: 110, SEQ ID NO: 111 or SEQ ID NO: 112; a non-conservative TeNT substrate cleavage site variant of SEQ ID NO: 107, SEQ ID NO: 108, SEQ ID NO: 109, SEQ ID NO: 110, SEQ ID NO: 111 or SEQ ID NO: 112; a TeNT substrate cleavage site peptidomimetic of SEQ ID NO: 107, SEQ ID NO: 108, SEQ ID NO: 109, SEQ ID NO: 110, SEQ ID NO: 111 or SEQ ID NO: 112; or any combination thereof.
[0156] In other aspects of this embodiment, a TeNT substrate cleavage site comprises a polypeptide having, e.g., at least 50% amino acid identity with SEQ ID NO: 107, at least 62.5% amino acid identity with the SEQ ID NO: 107, at least 75% amino acid identity with SEQ ID NO: 107 or at least 87.5% amino acid identity with SEQ ID NO: 107. In still other aspects of this embodiment, a TeNT substrate cleavage site comprises a polypeptide having, e.g., at most 50% amino acid identity with SEQ ID NO: 107, at most 62.5% amino acid identity with the SEQ ID NO: 107, at most 75% amino acid identity with SEQ ID NO: 107 or at most 87.5% amino acid identity with SEQ ID NO: 107.
[0157] In other aspects of this embodiment, a TeNT substrate cleavage site comprises a polypeptide having, e.g., at most one, two, three or four non-contiguous amino acid substitutions relative to SEQ ID NO: 107. In still other aspects of this embodiment, a TeNT substrate cleavage site comprises a polypeptide having, e.g., at least one, two, three or four non-contiguous amino acid substitutions relative to SEQ ID NO: 107. In yet other aspects of this embodiment, a TeNT substrate cleavage site comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine or ten non-contiguous amino acid additions relative to SEQ ID NO: 107. In yet other aspects of this embodiment, a TeNT substrate cleavage site comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine or ten non-contiguous amino acid additions relative to SEQ ID NO: 107. In still other aspects of this embodiment, a TeNT substrate cleavage site comprises a polypeptide having, e.g., at most one, two or three non-contiguous amino acid deletions relative to SEQ ID NO: 107. In still other aspects of this embodiment, a TeNT substrate cleavage site comprises a polypeptide having, e.g., at least one, two or three non-contiguous amino acid deletions relative to SEQ ID NO: 107.
[0158] In other aspects of this embodiment, a TeNT substrate cleavage site comprises a polypeptide having, e.g., at most two, three or four contiguous amino acid substitutions relative to SEQ ID NO: 107. In still other aspects of this embodiment, a TeNT substrate cleavage site comprises a polypeptide having, e.g., at least two, three or four contiguous amino acid substitutions relative to SEQ ID NO: 107. In yet other aspects of this embodiment, a TeNT substrate cleavage site comprises a polypeptide having, e.g., at most two, three, four, five, six, seven, eight, nine or ten contiguous amino acid additions relative to SEQ ID NO: 107. In yet other aspects of this embodiment, a TeNT substrate cleavage site comprises a polypeptide having, e.g., at least two, three, four, five, six, seven, eight, nine or ten contiguous amino acid additions relative to SEQ ID NO: 107. In still other aspects of this embodiment, a TeNT substrate cleavage site comprises a polypeptide having, e.g., at most two or three contiguous amino acid deletions relative to SEQ ID NO: 107. In still other aspects of this embodiment, a TeNT substrate cleavage site comprises a polypeptide having, e.g., at least two or three contiguous amino acid deletions relative to SEQ ID NO: 107.
[0159] Another type of Clostridial toxin substrate cleavage site is derived from autocatalytic fragments of the Clostridial toxins themselves. It has been noted that a Clostridial toxin can undergo autocatalytic fragmentation resulting in the formation of two major polypeptide fragments. For example, peptide bonds susceptible to autocatalytic cleavage have been located in two regions of BoNT/A. The first region comprises amino acids 250-267 of SEQ ID NO: 1, where bonds Tyr250-Tyr251 and Phe266-Gly267 are susceptible to cleaved. The second region comprises residues 419-439 of SEQ ID NO: 1, where bonds Phe419-Thr420, Phe423-Glu424, Leu429-Cys430, Cys 430-Val431, Arg432-Gly433 and Lys438-Thr439 are susceptible to autocatalytic cleavage. The BoNT/A region corresponding to amino acids 250-267 of SEQ ID NO: 1 is highly conserved among Clostridial toxins (Table 7).
TABLE-US-00007 TABLE 7 Autocatalytic Region of Clostridial Toxins Toxin SEQ ID NO: Autocatalytic Region BoNT/A 1 NTNAY*YEMSGLEVSFEELRTF*GGHDA BoNT/B 2 NEKKF*FMQSTDAIQAEELYTF*GGQDP BoNT/C1 3 TSNIF*YSQYNVKLEYAEIYAF*GGPTI BoNT/D 4 VSEGF*FSQDGPNVQFEELYTF*GGLDV BoNT/E 5 QKQNP*LITNIRGTNIEEFLTF*GGTDL BoNT/F 6 VKQAP*LMIAEKPIRLEEFLTF*GGQDL BoNT/G 7 NTKEF*FMQHSDPVQAEELYTF*GGHDP TeNT 8 SKQEI*YMQHTYPISAEELFTF*GGQDA The amino acid sequence displayed are as follows: BoNT/A, residues 246-271 of SEQ ID NO: 1; BoNT/B, residues 252-277 of SEQ ID NO: 2; BoNT/C1, residues 253-278 of SEQ ID NO: 3; BoNT/D, residues 253-278 of SEQ ID NO: 4; BoNT/E, residues 235-260 of SEQ ID NO: 5; BoNT/F, residues 250-275 of SEQ ID NO: 6; BoNT/G, residues 252-277 of SEQ ID NO: 7; and TeNT, residues 255-280 of SEQ ID NO: 8. An asterisks (*) indicates the peptide bond of the P1-P1' cleavage site that is cleaved by a Clostridial toxin protease.
[0160] Thus, in an embodiment, a modified Clostridial toxin comprises a Clostridial toxin autocatalytic substrate cleavage site. In aspects of this embodiment, a Clostridial toxin autocatalytic substrate cleavage site comprises at least six consecutive residues of a Clostridial toxin including the BoNT/A residues 250Tyr-251Tyr, the BoNT/B residues 256Phe-257Phe, the BoNT/C1 residues 257Phe-258Tyr, the BoNT/D residues 257Phe-258Phe, the BoNT/E residues 239Pro-240Leu, the BoNT/F residues 254Pro-255Leu, the BoNT/G residues 256Phe-257Phe or the TeNT residues 25911e-260Tyr. In another aspect of this embodiment, a Clostridial toxin autocatalytic substrate cleavage site comprises at least six consecutive residues of a Clostridial toxin including Phe-Gly. In other aspects of this embodiment, a Clostridial toxin autocatalytic substrate cleavage site comprises at least six consecutive residues of a Clostridial toxin including the BoNT/A residues Phe266-Gly267, the BoNT/B residues Phe272-Gly273, the BoNT/C1 residues Phe273-Gly274, the BoNT/D residues Phe273-Gly274, the BoNT/E residues Phe255-Gly256, the BoNT/F residues Phe270-Gly271, the BoNT/G residues Phe272-Gly273 or the TeNT residues Phe275-Gly276.
[0161] In other aspects of this embodiment, a Clostridial toxin autocatalytic substrate cleavage site comprises, e.g., the BoNT/A residues 246-271 of SEQ ID NO: 1; the BoNT/B residues 252-277 of SEQ ID NO: 2; the BoNT/C1 residues 253-278 of SEQ ID NO: 3; the BoNT/D residues 253-278 of SEQ ID NO: 4; the BoNT/E residues 235-260 of SEQ ID NO: 5; the BoNT/F residues 250-275 of SEQ ID NO: 6; the BoNT/G residues 252-277 of SEQ ID NO: 7; or the TeNT residues 255-280 of SEQ ID NO: 8. In still other aspects of this embodiment, a Clostridial toxin autocatalytic substrate cleavage site comprises, e.g., the BoNT/A residues 247-254 of SEQ ID NO: 1; the BoNT/B residues 253-260 of SEQ ID NO: 2; the BoNT/C1 residues 254-261 of SEQ ID NO: 3; the BoNT/D residues 254-261 of SEQ ID NO: 4; the BoNT/E residues 236-243 of SEQ ID NO: 5; the BoNT/F residues 251-258 of SEQ ID NO: 6; the BoNT/G residues 253-260 of SEQ ID NO: 7; or the TeNT residues 256-263 of SEQ ID NO: 8. In yet other aspects of this embodiment, a Clostridial toxin autocatalytic substrate cleavage site comprises, e.g., the BoNT/A residues 263-270 of SEQ ID NO: 1; the BoNT/B residues 269-276 of SEQ ID NO: 2; the BoNT/C1 residues 270-277 of SEQ ID NO: 3; the BoNT/D residues 270-277 of SEQ ID NO: 4; the BoNT/E residues 252-259 of SEQ ID NO: 5; the BoNT/F residues 267-274 of SEQ ID NO: 6; the BoNT/G residues 269-276 of SEQ ID NO: 7; or the TeNT residues 272-279 of SEQ ID NO: 8.
[0162] In other aspects of this embodiment, a Clostridial toxin autocatalytic substrate cleavage site comprises a polypeptide having, e.g., at least 50% amino acid identity with the BoNT/A residues 246-271 of SEQ ID NO: 1, the BoNT/B residues 252-277 of SEQ ID NO: 2, the BoNT/C1 residues 253-278 of SEQ ID NO: 3, the BoNT/D residues 253-278 of SEQ ID NO: 4, the BoNT/E residues 235-260 of SEQ ID NO: 5, the BoNT/F residues 250-275 of SEQ ID NO: 6, the BoNT/G residues 252-277 of SEQ ID NO: 7 or the TeNT residues 255-280 of SEQ ID NO: 8; at least 60% amino acid identity with the BoNT/A residues 246-271 of SEQ ID NO: 1, the BoNT/B residues 252-277 of SEQ ID NO: 2, the BoNT/C1 residues 253-278 of SEQ ID NO: 3, the BoNT/D residues 253-278 of SEQ ID NO: 4, the BoNT/E residues 235-260 of SEQ ID NO: 5, the BoNT/F residues 250-275 of SEQ ID NO: 6, the BoNT/G residues 252-277 of SEQ ID NO: 7 or the TeNT residues 255-280 of SEQ ID NO: 8; at least 70% amino acid identity with the BoNT/A residues 246-271 of SEQ ID NO: 1, the BoNT/B residues 252-277 of SEQ ID NO: 2, the BoNT/C1 residues 253-278 of SEQ ID NO: 3, the BoNT/D residues 253-278 of SEQ ID NO: 4, the BoNT/E residues 235-260 of SEQ ID NO: 5, the BoNT/F residues 250-275 of SEQ ID NO: 6, the BoNT/G residues 252-277 of SEQ ID NO: 7 or the TeNT residues 255-280 of SEQ ID NO: 8; at least 80% amino acid identity with the BoNT/A residues 246-271 of SEQ ID NO: 1, the BoNT/B residues 252-277 of SEQ ID NO: 2, the BoNT/C1 residues 253-278 of SEQ ID NO: 3, the BoNT/D residues 253-278 of SEQ ID NO: 4, the BoNT/E residues 235-260 of SEQ ID NO: 5, the BoNT/F residues 250-275 of SEQ ID NO: 6, the BoNT/G residues 252-277 of SEQ ID NO: 7 or the TeNT residues 255-280 of SEQ ID NO: 8; at least 90% amino acid identity with the BoNT/A residues 246-271 of SEQ ID NO: 1, the BoNT/B residues 252-277 of SEQ ID NO: 2, the BoNT/C1 residues 253-278 of SEQ ID NO: 3, the BoNT/D residues 253-278 of SEQ ID NO: 4, the BoNT/E residues 235-260 of SEQ ID NO: 5, the BoNT/F residues 250-275 of SEQ ID NO: 6, the BoNT/G residues 252-277 of SEQ ID NO: 7 or the TeNT residues 255-280 of SEQ ID NO: 8; or at least 95% amino acid identity with the BoNT/A residues 246-271 of SEQ ID NO: 1, the BoNT/B residues 252-277 of SEQ ID NO: 2, the BoNT/C1 residues 253-278 of SEQ ID NO: 3, the BoNT/D residues 253-278 of SEQ ID NO: 4, the BoNT/E residues 235-260 of SEQ ID NO: 5, the BoNT/F residues 250-275 of SEQ ID NO: 6, the BoNT/G residues 252-277 of SEQ ID NO: 7 or the TeNT residues 255-280 of SEQ ID NO: 8.
[0163] In still other aspects of this embodiment, a Clostridial toxin autocatalytic substrate cleavage site comprises a polypeptide having, e.g., at most 50% amino acid identity with the BoNT/A residues 246-271 of SEQ ID NO: 1, the BoNT/B residues 252-277 of SEQ ID NO: 2, the BoNT/C1 residues 253-278 of SEQ ID NO: 3, the BoNT/D residues 253-278 of SEQ ID NO: 4, the BoNT/E residues 235-260 of SEQ ID NO: 5, the BoNT/F residues 250-275 of SEQ ID NO: 6, the BoNT/G residues 252-277 of SEQ ID NO: 7 or the TeNT residues 255-280 of SEQ ID NO: 8; at most 60% amino acid identity with the BoNT/A residues 246-271 of SEQ ID NO: 1, the BoNT/B residues 252-277 of SEQ ID NO: 2, the BoNT/C1 residues 253-278 of SEQ ID NO: 3, the BoNT/D residues 253-278 of SEQ ID NO: 4, the BoNT/E residues 235-260 of SEQ ID NO: 5, the BoNT/F residues 250-275 of SEQ ID NO: 6, the BoNT/G residues 252-277 of SEQ ID NO: 7 or the TeNT residues 255-280 of SEQ ID NO: 8; at most 70% amino acid identity with the BoNT/A residues 246-271 of SEQ ID NO: 1, the BoNT/B residues 252-277 of SEQ ID NO: 2, the BoNT/C1 residues 253-278 of SEQ ID NO: 3, the BoNT/D residues 253-278 of SEQ ID NO: 4, the BoNT/E residues 235-260 of SEQ ID NO: 5, the BoNT/F residues 250-275 of SEQ ID NO: 6, the BoNT/G residues 252-277 of SEQ ID NO: 7 or the TeNT residues 255-280 of SEQ ID NO: 8; at most 80% amino acid identity with the BoNT/A residues 246-271 of SEQ ID NO: 1, the BoNT/B residues 252-277 of SEQ ID NO: 2, the BoNT/C1 residues 253-278 of SEQ ID NO: 3, the BoNT/D residues 253-278 of SEQ ID NO: 4, the BoNT/E residues 235-260 of SEQ ID NO: 5, the BoNT/F residues 250-275 of SEQ ID NO: 6, the BoNT/G residues 252-277 of SEQ ID NO: 7 or the TeNT residues 255-280 of SEQ ID NO: 8; at most 90% amino acid identity with the BoNT/A residues 246-271 of SEQ ID NO: 1, the BoNT/B residues 252-277 of SEQ ID NO: 2, the BoNT/C1 residues 253-278 of SEQ ID NO: 3, the BoNT/D residues 253-278 of SEQ ID NO: 4, the BoNT/E residues 235-260 of SEQ ID NO: 5, the BoNT/F residues 250-275 of SEQ ID NO: 6, the BoNT/G residues 252-277 of SEQ ID NO: 7 or the TeNT residues 255-280 of SEQ ID NO: 8; or at most 95% amino acid identity with the BoNT/A residues 246-271 of SEQ ID NO: 1, the BoNT/B residues 252-277 of SEQ ID NO: 2, the BoNT/C1 residues 253-278 of SEQ ID NO: 3, the BoNT/D residues 253-278 of SEQ ID NO: 4, the BoNT/E residues 235-260 of SEQ ID NO: 5, the BoNT/F residues 250-275 of SEQ ID NO: 6, the BoNT/G residues 252-277 of SEQ ID NO: 7 or the TeNT residues 255-280 of SEQ ID NO: 8.
[0164] In other aspects of this embodiment, a Clostridial toxin autocatalytic substrate cleavage site comprises a polypeptide having, e.g., at most one, two, three or four non-contiguous amino acid substitutions relative to the BoNT/A residues 246-271 of SEQ ID NO: 1, the BoNT/B residues 252-277 of SEQ ID NO: 2, the BoNT/C1 residues 253-278 of SEQ ID NO: 3, the BoNT/D residues 253-278 of SEQ ID NO: 4, the BoNT/E residues 235-260 of SEQ ID NO: 5, the BoNT/F residues 250-275 of SEQ ID NO: 6, the BoNT/G residues 252-277 of SEQ ID NO: 7 or the TeNT residues 255-280 of SEQ ID NO: 8. In still other aspects of this embodiment, a Clostridial toxin autocatalytic substrate cleavage site comprises a polypeptide having, e.g., at least one, two, three or four non-contiguous amino acid substitutions relative to the BoNT/A residues 246-271 of SEQ ID NO: 1, the BoNT/B residues 252-277 of SEQ ID NO: 2, the BoNT/C1 residues 253-278 of SEQ ID NO: 3, the BoNT/D residues 253-278 of SEQ ID NO: 4, the BoNT/E residues 235-260 of SEQ ID NO: 5, the BoNT/F residues 250-275 of SEQ ID NO: 6, the BoNT/G residues 252-277 of SEQ ID NO: 7 or the TeNT residues 255-280 of SEQ ID NO: 8.
[0165] In yet other aspects of this embodiment, a Clostridial toxin autocatalytic substrate cleavage site comprises a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine or ten non-contiguous amino acid additions relative to the BoNT/A residues 246-271 of SEQ ID NO: 1, the BoNT/B residues 252-277 of SEQ ID NO: 2, the BoNT/C1 residues 253-278 of SEQ ID NO: 3, the BoNT/D residues 253-278 of SEQ ID NO: 4, the BoNT/E residues 235-260 of SEQ ID NO: 5, the BoNT/F residues 250-275 of SEQ ID NO: 6, the BoNT/G residues 252-277 of SEQ ID NO: 7 or the TeNT residues 255-280 of SEQ ID NO: 8. In yet other aspects of this embodiment, a Clostridial toxin autocatalytic substrate cleavage site comprises a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine or ten non-contiguous amino acid additions relative to the BoNT/A residues 246-271 of SEQ ID NO: 1, the BoNT/B residues 252-277 of SEQ ID NO: 2, the BoNT/C1 residues 253-278 of SEQ ID NO: 3, the BoNT/D residues 253-278 of SEQ ID NO: 4, the BoNT/E residues 235-260 of SEQ ID NO: 5, the BoNT/F residues 250-275 of SEQ ID NO: 6, the BoNT/G residues 252-277 of SEQ ID NO: 7 or the TeNT residues 255-280 of SEQ ID NO: 8.
[0166] In still other aspects of this embodiment, a Clostridial toxin autocatalytic substrate cleavage site comprises a polypeptide having, e.g., at most one, two or three non-contiguous amino acid deletions relative to the BoNT/A residues 246-271 of SEQ ID NO: 1, the BoNT/B residues 252-277 of SEQ ID NO: 2, the BoNT/C1 residues 253-278 of SEQ ID NO: 3, the BoNT/D residues 253-278 of SEQ ID NO: 4, the BoNT/E residues 235-260 of SEQ ID NO: 5, the BoNT/F residues 250-275 of SEQ ID NO: 6, the BoNT/G residues 252-277 of SEQ ID NO: 7 or the TeNT residues 255-280 of SEQ ID NO: 8. In still other aspects of this embodiment, a Clostridial toxin autocatalytic substrate cleavage site comprises a polypeptide having, e.g., at least one, two or three non-contiguous amino acid deletions relative to the BoNT/A residues 246-271 of SEQ ID NO: 1, the BoNT/B residues 252-277 of SEQ ID NO: 2, the BoNT/C1 residues 253-278 of SEQ ID NO: 3, the BoNT/D residues 253-278 of SEQ ID NO: 4, the BoNT/E residues 235-260 of SEQ ID NO: 5, the BoNT/F residues 250-275 of SEQ ID NO: 6, the BoNT/G residues 252-277 of SEQ ID NO: 7 or the TeNT residues 255-280 of SEQ ID NO: 8.
[0167] In other aspects of this embodiment, a Clostridial toxin autocatalytic substrate cleavage site comprises a polypeptide having, e.g., at most two, three or four contiguous amino acid substitutions relative to the BoNT/A residues 246-271 of SEQ ID NO: 1, the BoNT/B residues 252-277 of SEQ ID NO: 2, the BoNT/C1 residues 253-278 of SEQ ID NO: 3, the BoNT/D residues 253-278 of SEQ ID NO: 4, the BoNT/E residues 235-260 of SEQ ID NO: 5, the BoNT/F residues 250-275 of SEQ ID NO: 6, the BoNT/G residues 252-277 of SEQ ID NO: 7 or the TeNT residues 255-280 of SEQ ID NO: 8. In still other aspects of this embodiment, a Clostridial toxin autocatalytic substrate cleavage site comprises a polypeptide having, e.g., at least two, three or four contiguous amino acid substitutions relative to the BoNT/A residues 246-271 of SEQ ID NO: 1, the BoNT/B residues 252-277 of SEQ ID NO: 2, the BoNT/C1 residues 253-278 of SEQ ID NO: 3, the BoNT/D residues 253-278 of SEQ ID NO: 4, the BoNT/E residues 235-260 of SEQ ID NO: 5, the BoNT/F residues 250-275 of SEQ ID NO: 6, the BoNT/G residues 252-277 of SEQ ID NO: 7 or the TeNT residues 255-280 of SEQ ID NO: 8.
[0168] In yet other aspects of this embodiment, a Clostridial toxin autocatalytic substrate cleavage site comprises a polypeptide having, e.g., at most two, three, four, five, six, seven, eight, nine or ten contiguous amino acid additions relative to the BoNT/A residues 246-271 of SEQ ID NO: 1, the BoNT/B residues 252-277 of SEQ ID NO: 2, the BoNT/C1 residues 253-278 of SEQ ID NO: 3, the BoNT/D residues 253-278 of SEQ ID NO: 4, the BoNT/E residues 235-260 of SEQ ID NO: 5, the BoNT/F residues 250-275 of SEQ ID NO: 6, the BoNT/G residues 252-277 of SEQ ID NO: 7 or the TeNT residues 255-280 of SEQ ID NO: 8. In yet other aspects of this embodiment, a Clostridial toxin autocatalytic substrate cleavage site comprises a polypeptide having, e.g., at least two, three, four, five, six, seven, eight, nine or ten contiguous amino acid additions relative to the BoNT/A residues 246-271 of SEQ ID NO: 1, the BoNT/B residues 252-277 of SEQ ID NO: 2, the BoNT/C1 residues 253-278 of SEQ ID NO: 3, the BoNT/D residues 253-278 of SEQ ID NO: 4, the BoNT/E residues 235-260 of SEQ ID NO: 5, the BoNT/F residues 250-275 of SEQ ID NO: 6, the BoNT/G residues 252-277 of SEQ ID NO: 7 or the TeNT residues 255-280 of SEQ ID NO: 8.
[0169] In still other aspects of this embodiment, a Clostridial toxin autocatalytic substrate cleavage site comprises a polypeptide having, e.g., at most two or three contiguous amino acid deletions relative to the BoNT/A residues 246-271 of SEQ ID NO: 1, the BoNT/B residues 252-277 of SEQ ID NO: 2, the BoNT/C1 residues 253-278 of SEQ ID NO: 3, the BoNT/D residues 253-278 of SEQ ID NO: 4, the BoNT/E residues 235-260 of SEQ ID NO: 5, the BoNT/F residues 250-275 of SEQ ID NO: 6, the BoNT/G residues 252-277 of SEQ ID NO: 7 or the TeNT residues 255-280 of SEQ ID NO: 8. In still other aspects of this embodiment, a Clostridial toxin autocatalytic substrate cleavage site comprises a polypeptide having, e.g., at least two or three contiguous amino acid deletions relative to the BoNT/A residues 246-271 of SEQ ID NO: 1, the BoNT/B residues 252-277 of SEQ ID NO: 2, the BoNT/C1 residues 253-278 of SEQ ID NO: 3, the BoNT/D residues 253-278 of SEQ ID NO: 4, the BoNT/E residues 235-260 of SEQ ID NO: 5, the BoNT/F residues 250-275 of SEQ ID NO: 6, the BoNT/G residues 252-277 of SEQ ID NO: 7 or the TeNT residues 255-280 of SEQ ID NO: 8.
[0170] In an aspect of the invention, a Clostridial toxin substrate cleavage site is located within the di-chain loop region. As used herein, the term "di-chain loop region" means the amino acid sequence of a Clostridial toxin containing a protease cleavage site used to convert the single-chain form of a Clostridial toxin into the di-chain form. As non-limiting examples, the di-chain loop region of BoNT/A comprises amino acids 430-454 of SEQ ID NO: 1; the di-chain loop region of BoNT/B comprises amino acids 437-446 of SEQ ID NO: 2; the di-chain loop region of BoNT/C1 comprises amino acids 437-453 of SEQ ID NO: 3; the di-chain loop region of BoNT/D comprises amino acids 437-450 of SEQ ID NO: 4; the di-chain loop region of BoNT/E comprises amino acids 412-426 of SEQ ID NO: 5; the di-chain loop region of BoNT/F comprises amino acids 429-445 of SEQ ID NO: 6; the di-chain loop region of BoNT/G comprises amino acids 436-450 of SEQ ID NO: 7; and the di-chain loop region of TeNT comprises amino acids 439-467 of SEQ ID NO: 8.
TABLE-US-00008 TABLE 8 Di-chain Loop Region of Clostridial Toxins Di-chain Loop Region Containing the SEQ ID Light Chain Naturally-occurring Di-Chain Heavy Chain Toxin NO: Region Protease Cleavage Site Region BoNT/A 1 NMNFTKLKNFTGLFEFYKLL CVRGIITSKTKSLDKGYNK*----ALNDLC IKVNNWDL BoNT/B 2 KQAYEEISKEHLAVYKIQM CKSVK*-------------------APGIC IDVDNEDL BoNT/C1 3 PALRKVNPENMLYLFTKF CHKAIDGRSLYNK*------------TLDC RELLVKNTDL BoNT/D 4 PALQKLSSESVVDLFTKV CLRLTKNSR*---------------DDSTC IKVKNNRL BoNT/E 5 IITPITGRGLVKKIIRF CKNIVSVKGIR*--------------KSIC IEINNGEL BoNT/F 6 IIDSIPDKGLVEKIVKF CKSVIPRKGTK*------------APPRLC IRVNNSEL BoNT/G 7 KEAYEEISLEHLVIYRIAM CKPVMYKNTGK*--------------SEQC IIVNNEDL TeNT 8 TNAFRNVDGSGLVSKLIGL CKKIIPPTNIRENLYNRTA*SLTDLGGELC IKIKNEDL The amino acid sequence displayed are as follows: BoNT/A, residues 325-462 of SEQ ID NO: 1; BoNT/B, residues 332-454 of SEQ ID NO: 2; BoNT/C1, residues 334-463 of SEQ ID NO: 3; BoNT/D, residues 334-458 of SEQ ID NO: 4; BoNT/E, residues 311-434 of SEQ ID NO: 5; BoNT/F, residues 328-453 of SEQ ID NO: 6; BoNT/G, residues 331-458 of SEQ ID NO: 7; and TeNT, residues 334-474 of SEQ ID NO: 8. An asterisks (*) indicates the peptide bond of the P1-P1' cleavage site that is believed to be cleaved by a Clostridial toxin protease.
[0171] As mentioned above, a Clostridial toxin is converted from a single polypeptide form into a di-chain molecule by proteolytic cleavage. While the identity of the naturally-occurring protease is currently unknown, the location of the di-chain loop protease cleavage site for many Clostridial toxins has been determined (Table 8). Cleavage within the di-chain loop does not appear to be confined to a single peptide bond. Thus, cleavage of a Clostridial toxin with a naturally-occurring di-chain loop protease results in the lost of several residues centered around the original cleavage site. This loss is limited to a few amino acids located between the two cysteine residues that form the disulfide bridge. As a non-limiting example, BoNT/A single-chain polypeptide cleavage ultimately results in the loss of a ten amino acids within the di-chain loop. For BoNTs, cleavage at K448-A449 converts the single-chain form of BoNT/A into the di-chain form; cleavage at K441-A442 converts the single-chain form of BoNT/B into the di-chain form; cleavage at K449-T450 converts the single-chain form of BoNT/C1 into the di-chain form; cleavage at R445-D446 converts the single-chain form of BoNT/D into the di-chain form; cleavage at R422-K423 converts the single-chain form of BoNT/E into the di-chain form; cleavage at K439-A440 converts the single-chain form of BoNT/F into the di-chain form; and cleavage at K446-5447 converts the single-chain form of BoNT/G into the di-chain form. Proteolytic cleavage of the single-chain form of TeNT at of A457-5458 results in the di-chain form.
[0172] However, it should also be noted that additional cleavage sites within the di-chain loop also appear to be cleaved resulting in the generation of a small peptide fragment being lost. As a non-limiting example, BoNT/A single-chain polypeptide cleavage ultimately results in the loss of a ten amino acid fragment within the di-chain loop. Thus, cleavage at 5441-L442 converts the single polypeptide form of BoNT/A into the di-chain form; cleavage at G444-1445 converts the single polypeptide form of BoNT/B into the di-chain form; cleavage at 5445-L446 converts the single polypeptide form of BoNT/C1 into the di-chain form; cleavage at K442-N443 converts the single polypeptide form of BoNT/D into the di-chain form; cleavage at K419-G420 converts the single polypeptide form of BoNT/E into the di-chain form; cleavage at K423-5424 converts the single polypeptide form of BoNT/E into the di-chain form; cleavage at K436-G437 converts the single polypeptide form of BoNT/F into the di-chain form; cleavage at T444-G445 converts the single polypeptide form of BoNT/G into the di-chain form; and cleavage at E448-Q449 converts the single polypeptide form of BoNT/G into the di-chain form.
[0173] The di-chain loop region can be modified to include a Clostridial toxin substrate cleavage site in addition to the naturally-occurring di-chain loop protease cleavage site. In this type of modification, both cleavage site are operably-linked in-frame to a modified Clostridial toxin as a fusion protein and both sites can be cleaved by their respective proteases. As a non-limiting example, a modified BoNT/A that comprises a di-chain loop containing both the naturally-occurring di-chain loop protease cleavage site and a BoNT/A substrate cleavage site can be cleaved by either the endogenous di-chain loop protease found in C. botulinum serotype A or by BoNT/A. As another non-limiting example, a modified BoNT/A that comprises a di-chain loop containing both the naturally-occurring di-chain loop protease cleavage site and a BoNT/E substrate cleavage site can be cleaved by either the endogenous di-chain loop protease found in C. botulinum serotype A or by BoNT/E.
[0174] The di-chain loop region can also be modified to replace the naturally-occurring di-chain loop protease cleavage site with a Clostridial toxin substrate cleavage site. In this type of modification, the naturally-occurring protease cleavage site is made inoperable and thus can not be cleaved by its protease. Only the Clostridial toxin substrate cleavage site can be cleaved by its corresponding toxin. Such a Clostridial toxin substrate cleavage site is operably-linked in-frame to a modified Clostridial toxin as a fusion protein. As a non-limiting example, a single-chain modified BoNT/A that comprises a di-chain loop containing only a BoNT/A substrate cleavage site can be cleaved BoNT/A, but not the endogenous di-chain loop protease found in C. botulinum serotype A. As another non-limiting example, a single-chain modified BoNT/A that comprises a di-chain loop containing only a BoNT/E substrate cleavage site can be cleaved BoNT/E, but not the endogenous di-chain loop protease found in C. botulinum serotype A.
[0175] The naturally-occurring di-chain loop protease cleavage site can be made inoperable by altering at least the one of the amino acids flanking the peptide bond cleaved by the naturally-occurring protease. More extensive alterations can be made, with the proviso that the two cysteine residues of the di-chain loop region remain intact and formation of the disulfide bridge can still be achieved. Non-limiting examples of an amino acid alteration include deletion of an amino acid or replacement of the original amino acid with a different amino acid. These alterations can be made using standard mutagenesis procedures known to a person skilled in the art. In addition, non-limiting examples of mutagensis procedures, as well as well-characterized reagents, conditions and protocols are readily available from commercial vendors that include, without limitation, BD Biosciences-Clontech, Palo Alto, Calif.; BD Biosciences Pharmingen, San Diego, Calif.; Invitrogen, Inc, Carlsbad, Calif.; QIAGEN, Inc., Valencia, Calif.; and Stratagene, La Jolla, Calif. These protocols are routine procedures within the scope of one skilled in the art and from the teaching herein.
[0176] Thus, in one embodiment, a naturally-occurring di-chain loop protease cleavage site is made inoperable by altering at least one of the amino acids flanking the peptide bond cleaved by a naturally-occurring protease. In aspects of this embodiment, the P1 amino acid of the di-chain loop protease cleavage site is altered or the P1', amino acid of the di-chain loop protease cleavage site is altered. In other aspects of this embodiment, either K448 or A449 of BoNT/A is altered; either S441 or L442 of BoNT/A is altered; either K441 or A442 of BoNT/B is altered; either G444 or 1445 of BoNT/B is altered; either K449 or T450 of BoNT/C1 is altered; either S445 or L446 of BoNT/C1 is altered; either R445 or D446 of BoNT/D is altered; either K442 or N443 of BoNT/D is altered; either R422 or K423 of BoNT/E is altered; either K419 or G420 of BoNT/E is altered; either K423 or S424 of BoNT/E is altered; either K439 or A440 of BoNT/F is altered; either K436 or G437 of BoNT/F is altered; either K446 or S447 of BoNT/G is altered; either T444 or G445 of BoNT/G is altered; either E448 or Q449 of BoNT/G is altered; or either A457 or S458 of TeNT is altered.
[0177] In another embodiment, a naturally-occurring di-chain loop protease cleavage site is made inoperable by altering the two amino acids flanking the peptide bond cleaved by a naturally-occurring protease, i.e., P1 and P1'. In other aspects of this embodiment, both K448 and A449 of BoNT/A are altered; both S441 and L442 of BoNT/A are altered; both K441 and A442 of BoNT/B are altered; both G444 and I445 of BoNT/B are altered; both K449 and T450 of BoNT/C1 are altered; both S445 and L446 of BoNT/C1 are altered; both R445 and D446 of BoNT/D are altered; both K442 and N443 of BoNT/D are altered; both R422 and K423 of BoNT/E are altered; both K419 and G420 of BoNT/E are altered; both K423 and S424 of BoNT/E are altered; both K439 and A440 of BoNT/F are altered; both K436 and G437 of BoNT/F are altered; both K446 and S447 of BoNT/G are altered; both T444 and G445 of BoNT/G are altered; both E448 and Q449 of BoNT/G are altered; or both A457 and S458 of TeNT are altered.
[0178] In other aspects of this embodiment, a naturally-occurring di-chain loop protease cleavage site is made inoperable by altering, e.g., at least two amino acids within the dischain loop region; at least three amino acids within the dischain loop region; at least four amino acids within the dischain loop region; at least five amino acids within the dischain loop region; at least six amino acids within the dischain loop region; at least seven amino acids within the dischain loop region; at least eight amino acids within the dischain loop region; at least nine amino acids within the dischain loop region; at least ten amino acids within the dischain loop region; or at least 15 amino acids within the dischain loop region. In still other aspects of this embodiment, a naturally-occurring di-chain loop protease cleavage site is made inoperable by altering one of the amino acids flanking the peptide bond cleaved by a naturally-occurring protease and, e.g., at least one more amino acid within the dischain loop region; at least two more amino acids within the dischain loop region; at least three more amino acids within the dischain loop region; at least four more amino acids within the dischain loop region; at least five more amino acids within the dischain loop region; at least six more amino acids within the dischain loop region; at least seven more amino acids within the dischain loop region; at least eight more amino acids within the dischain loop region; at least nine more amino acids within the dischain loop region; at least ten more amino acids within the dischain loop region; at least 15 more amino acids within the dischain loop region. In yet other aspects of this embodiment, a naturally-occurring di-chain loop protease cleavage site is made inoperable by altering the two amino acids flanking the peptide bond cleaved by a naturally-occurring protease and, e.g., at least one more amino acid within the dischain loop region; at least two more amino acids within the dischain loop region; at least three more amino acids within the dischain loop region; at least four more amino acids within the dischain loop region; at least five more amino acids within the dischain loop region; at least six more amino acids within the dischain loop region; at least seven more amino acids within the dischain loop region; at least eight more amino acids within the dischain loop region; at least nine more amino acids within the dischain loop region; at least ten more amino acids within the dischain loop region; at least 15 more amino acids within the dischain loop region.
[0179] In other aspects of this embodiment, a naturally-occurring di-chain loop protease cleavage site is made inoperable by altering, e.g., at most two amino acids within the dischain loop region; at most three amino acids within the dischain loop region; at most four amino acids within the dischain loop region; at most five amino acids within the dischain loop region; at most six amino acids within the dischain loop region; at most seven amino acids within the dischain loop region; at most eight amino acids within the dischain loop region; at most nine amino acids within the dischain loop region; at most ten amino acids within the dischain loop region; or at most 15 amino acids within the dischain loop region. In still other aspects of this embodiment, a naturally-occurring di-chain loop protease cleavage site is made inoperable by altering one of the amino acids flanking the peptide bond cleaved by a naturally-occurring protease and, e.g., at most one more amino acid within the dischain loop region; at most two more amino acids within the dischain loop region; at most three more amino acids within the dischain loop region; at most four more amino acids within the dischain loop region; at most five more amino acids within the dischain loop region; at most six more amino acids within the dischain loop region; at most seven more amino acids within the dischain loop region; at most eight more amino acids within the dischain loop region; at most nine more amino acids within the dischain loop region; at most ten more amino acids within the dischain loop region; at most 15 more amino acids within the dischain loop region. In yet other aspects of this embodiment, a naturally-occurring di-chain loop protease cleavage site is made inoperable by altering the two amino acids flanking the peptide bond cleaved by a naturally-occurring protease and, e.g., at most one more amino acid within the dischain loop region; at most two more amino acids within the dischain loop region; at most three more amino acids within the dischain loop region; at most four more amino acids within the dischain loop region; at most five more amino acids within the dischain loop region; at most six more amino acids within the dischain loop region; at most seven more amino acids within the dischain loop region; at most eight more amino acids within the dischain loop region; at most nine more amino acids within the dischain loop region; at most ten more amino acids within the dischain loop region; at most 15 more amino acids within the dischain loop region.
[0180] It is envisioned that the di-chain loop region of a Clostridial toxin can be modified to include any and all Clostridial toxin substrate cleavage sites. In aspects of this embodiment, a di-chain loop of a Clostridial toxin disclosed in the present specification can be modified to comprise, e.g., a BoNT/A substrate cleavage site, a BoNT/B substrate cleavage site, a BoNT/C1 substrate cleavage site, a BoNT/D substrate cleavage site, a BoNT/E substrate cleavage site, a BoNT/F substrate cleavage site, a BoNT/G substrate cleavage site, a TeNT substrate cleavage site, a BaNT substrate cleavage site or a BuNT substrate cleavage site. In other aspects of this embodiment, a di-chain loop of a Clostridial toxin, in addition to the naturally-occurring protease cleavage site, can be modified to comprise, e.g., a BoNT/A substrate cleavage site, a BoNT/B substrate cleavage site, a BoNT/C1 substrate cleavage site, a BoNT/D substrate cleavage site, a BoNT/E substrate cleavage site, a BoNT/F substrate cleavage site, a BoNT/G substrate cleavage site, or a TeNT substrate cleavage site. In still other aspects of this embodiment, a di-chain loop of a Clostridial toxin can be modified to replace a naturally-occurring protease cleavage site with, e.g., a BoNT/A substrate cleavage site, a BoNT/B substrate cleavage site, a BoNT/C1 substrate cleavage site, a BoNT/D substrate cleavage site, a BoNT/E substrate cleavage site, a BoNT/F substrate cleavage site, a BoNT/G substrate cleavage site, a TeNT substrate cleavage site, a BaNT substrate cleavage site or a BuNT substrate cleavage site.
[0181] The location of the Clostridial toxin substrate cleavage site can be anywhere in the Clostridial toxin, with the proviso that cleavage of the site must occur between the two cysteine residues that form the single disulfide bridge of toxin. Thus, in aspects of this embodiment, location of a Clostridial toxin substrate cleavage site can be, e.g., anywhere in the BoNT/A of SEQ ID NO: 1, with the proviso that cleavage occurs between cysteine 430 and cysteine 454; anywhere in the BoNT/B of SEQ ID NO: 2, with the proviso that cleavage occurs between cysteine 437 and cysteine 446; anywhere in the BoNT/C1 of SEQ ID NO: 2, with the proviso that cleavage occurs between cysteine 437 and cysteine 453; anywhere in the BoNT/D of SEQ ID NO: 4, with the proviso that cleavage occurs between cysteine 437 and cysteine 450; anywhere in the BoNT/E of SEQ ID NO: 5, with the proviso that cleavage occurs between cysteine 412 and cysteine 426; anywhere in the BoNT/F of SEQ ID NO: 6, with the proviso that cleavage occurs between cysteine 429 and cysteine 445; anywhere in the BoNT/G of SEQ ID NO: 7, with the proviso that cleavage occurs between cysteine 436 and cysteine 450; or anywhere in the TeNT of SEQ ID NO: 8, with the proviso that cleavage occurs between cysteine 439 and cysteine 467.
[0182] It is understood that a modified Clostridial toxin disclosed in the present specification can optionally include one or more additional components. As a non-limiting example of an optional component, a modified Clostridial toxin can further comprise a flexible region comprising a flexible spacer. Non-limiting examples of a flexible spacer include, e.g., a G-spacer GGGGS (SEQ ID NO: 156) or an A-spacer EAAAK (SEQ ID NO: 157). A flexible region comprising flexible spacers can be used to adjust the length of a polypeptide region in order to optimize a characteristic, attribute or property of a polypeptide. Such a flexible region is operably-linked in-frame to the modified Clostridial toxin as a fusion protein. As a non-limiting example, a polypeptide region comprising one or more flexible spacers in tandem can be use to better expose a protease cleavage site thereby facilitating cleavage of that site by a protease. As another non-limiting example, a polypeptide region comprising one or more flexible spacers in tandem can be use to better present a ligand domain, thereby facilitating the binding of that ligand domain to its binding domain on a receptor.
[0183] Thus, in an embodiment, a modified Clostridial toxin disclosed in the present specification can further comprise a flexible region comprising a flexible spacer. In another embodiment, a modified Clostridial toxin disclosed in the present specification can further comprise flexible region comprising a plurality of flexible spacers in tandem. In aspects of this embodiment, a flexible region can comprise in tandem, e.g., at least 1 G-spacer, at least 2 G-spacers, at least 3 G-spacers, at least 4 G-spacers or at least 5 G-spacers. In other aspects of this embodiment, a flexible region can comprise in tandem, e.g., at most 1 G-spacer, at most 2 G-spacers, at most 3 G-spacers, at most 4 G-spacers or at most 5 G-spacers. In still other aspects of this embodiment, a flexible region can comprise in tandem, e.g., at least 1 A-spacer, at least 2 A-spacers, at least 3 A-spacers, at least 4 A-spacers or at least 5 A-spacers. In still other aspects of this embodiment, a flexible region can comprise in tandem, e.g., at most 1 A-spacer, at most 2 A-spacers, at most 3 A-spacers, at most 4 A-spacers or at most 5 A-spacers. In another aspect of this embodiment, a modified Clostridial toxin can comprise a flexible region comprising one or more copies of the same flexible spacers, one or more copies of different flexible-spacer regions, or any combination thereof.
[0184] As another non-limiting example of an optional component, a modified Clostridial toxin can further comprise an epitope-binding region. An epitope-binding region can be used in a wide variety of procedures involving, e.g., protein purification and protein visualization. Such an epitope-binding region is operably-linked in-frame to a modified Clostridial toxin as a fusion protein. Non-limiting examples of an epitope-binding region include, e.g., FLAG, Express® (SEQ ID NO: 158), human Influenza virus hemagluttinin (HA) (SEQ ID NO: 159), human p62c-Myc protein (c-MYC) (SEQ ID NO: 160), Vesicular Stomatitis Virus Glycoprotein (VSV-G) (SEQ ID NO: 161), Substance P (SEQ ID NO: 162), glycoprotein-D precursor of Herpes simplex virus (HSV) (SEQ ID NO: 163), V5 (SEQ ID NO: 164), AU1 (SEQ ID NO: 165) and AU5 (SEQ ID NO: 166); affinity-binding, such as. e.g., polyhistidine (HIS) (SEQ ID NO: 167), streptavidin binding peptide (strep), and biotin or a biotinylation sequence; peptide-binding regions, such as. e.g., the glutathione binding domain of glutathione-S-transferase, the calmodulin binding domain of the calmodulin binding protein, and the maltose binding domain of the maltose binding protein. Non-limiting examples of specific protocols for selecting, making and using an appropriate binding peptide are described in, e.g., Epitope Tagging, pp. 17.90-17.93 (Sambrook and Russell, eds., MOLECULAR CLONING A LABORATORY MANUAL, Vol. 3, 3rd ed. 2001); ANTIBODIES: A LABORATORY MANUAL (Edward Harlow & David Lane, eds., Cold Spring Harbor Laboratory Press, 2nd ed. 1998); and USING ANTIBODIES: A LABORATORY MANUAL: PORTABLE PROTOCOL No. I (Edward Harlow & David Lane, Cold Spring Harbor Laboratory Press, 1998). In addition, non-limiting examples of binding peptides as well as well-characterized reagents, conditions and protocols are readily available from commercial vendors that include, without limitation, BD Biosciences-Clontech, Palo Alto, Calif.; BD Biosciences Pharmingen, San Diego, Calif.; Invitrogen, Inc, Carlsbad, Calif.; QIAGEN, Inc., Valencia, Calif.; and Stratagene, La Jolla, Calif. These protocols are routine procedures well within the scope of one skilled in the art and from the teaching herein.
[0185] Thus, in an embodiment, a modified Clostridial toxin disclosed in the present specification can further comprise an epitope-binding region. In another embodiment, a modified Clostridial toxin disclosed in the present specification can further comprises a plurality of epitope-binding regions. In aspects of this embodiment, a modified Clostridial toxin can comprise, e.g., at least 1 epitope-binding region, at least 2 epitope-binding regions, at least 3 epitope-binding regions, at least 4 epitope-binding regions or at least 5 epitope-binding regions. In other aspects of this embodiment, a modified Clostridial toxin can comprise, e.g., at most 1 epitope-binding region, at most 2 epitope-binding regions, at most 3 epitope-binding regions, at most 4 epitope-binding regions or at most 5 epitope-binding regions. In another aspect of this embodiment, a modified Clostridial toxin can comprise one or more copies of the same epitope-binding region, one or more copies of different epitope-binding regions, or any combination thereof.
[0186] The location of an epitope-binding region can be in various positions, including, without limitation, at the amino terminus of a modified Clostridial toxin, within a modified Clostridial toxin, or at the carboxyl terminus of a modified Clostridial toxin. Thus, in an embodiment, an epitope-binding region is located at the amino-terminus of a modified Clostridial toxin. In such a location, a start methionine should be placed in front of the epitope-binding region. In addition, it is known in the art that when adding a polypeptide that is operationally-linked to the amino terminus of another polypeptide comprising the start methionine that the original methionine residue can be deleted. This is due to the fact that the added polypeptide will contain a new start methionine and that the original start methionine may reduce optimal expression of the fusion protein. In aspects of this embodiment, an epitope-binding region located at the amino-terminus of a modified Clostridial toxin disclosed in the present specification can be, e.g., a FLAG, Express® epitope-binding region, a human Influenza virus hemagluttinin (HA) epitope-binding region, a human p62c-Myc protein (c-MYC) epitope-binding region, a Vesicular Stomatitis Virus Glycoprotein (VSV-G) epitope-binding region, a Substance P epitope-binding region, a glycoprotein-D precursor of Herpes simplex virus (HSV) epitope-binding region, a V5 epitope-binding region, a AU1 epitope-binding region, a AU5 epitope-binding region, a polyhistidine epitope-binding region, a streptavidin binding peptide epitope-binding region, a biotin epitope-binding region, a biotinylation epitope-binding region, a glutathione binding domain of glutathione-S-transferase, a calmodulin binding domain of the calmodulin binding protein or a maltose binding domain of the maltose binding protein.
[0187] In another embodiment, an epitope-binding region is located at the carboxyl-terminus of a modified Clostridial toxin. In aspects of this embodiment, an epitope-binding region located at the carboxyl-terminus of a modified Clostridial toxin disclosed in the present specification can be, e.g., a FLAG, Express® epitope-binding region, a human Influenza virus hemagluttinin (HA) epitope-binding region, a human p62c-Myc protein (c-MYC) epitope-binding region, a Vesicular Stomatitis Virus Glycoprotein (VSV-G) epitope-binding region, a Substance P epitope-binding region, a glycoprotein-D precursor of Herpes simplex virus (HSV) epitope-binding region, a V5 epitope-binding region, a AU1 epitope-binding region, a AU5 epitope-binding region, a polyhistidine epitope-binding region, a streptavidin binding peptide epitope-binding region, a biotin epitope-binding region, a biotinylation epitope-binding region, a glutathione binding domain of glutathione-S-transferase, a calmodulin binding domain of the calmodulin binding protein or a maltose binding domain of the maltose binding protein.
[0188] As still another non-limiting example of an optional component, a modified Clostridial toxin can further comprise an exogenous protease cleavage site. An exogenous protease cleavage site can be used in a wide variety of procedures involving, e.g., removal of an epitope-binding region by proteolytic cleavage. Such an exogenous protease cleavage site is operably-linked in-frame to a modified Clostridial toxin as a fusion protein. Non-limiting examples of protease cleavage sites include, e.g., an enterokinase cleavage site (Table 9); a Thrombin cleavage site (Table 9); a Factor Xa cleavage site (Table 9); a human rhinovirus 3C protease cleavage site (Table 9); a tobacco etch virus (TEV) protease cleavage site (Table 9); a dipeptidyl aminopeptidase cleavage site and a small ubiquitin-like modifier (SUMO)/ubiquitin-like protein-1(ULP-1) protease cleavage site, such as, e.g., MADSEVNQEAKPEVKPEVKPETHINLKVSDGSS EIFFKIKKTTPLRRLMEAFAKRQGKEMDSLRFLYDGIRIQADQTPEDLDMEDNDIIEAHREQIGG (SEQ ID. NO: 185).
TABLE-US-00009 TABLE 9 Exogenous Protease Cleavage Sites Protease Cleavage Non-limiting SEQ ID Site Consensus Sequence Examples NO: Bovine enterokinase DDDDK* DDDDK* 168 Tobacco Etch Virus E P5 P4YP2Q*(G/S), ENLYFQ*G 169 (TEV) where P2, P4 and P5 can be any amino acid ENLYFQ*S 170 ENIYTQ*G 171 ENIYTQ*S 172 ENIYLQ*G 173 ENIYLQ*S 174 ENVYFQ*G 175 ENVYSQ*S 176 ENVYSQ*G 177 ENVYSQ*S 178 Human Rhinovirus 3C P5P4LFQ*GP where P4 is G, A, V, L, I, M, S or T and P5 EALFQ*GP 179 can any amino acid, with D or E preferred. EVLFQ*GP 180 ELLFQ*GP 181 DALFQ*GP 182 DVLFQ*GP 183 DLLFQ*GP 184 SUMO/ULP-1 Tertiary structure polypeptide-G* 185 Thrombin P3P2(R/K)*P1', GVR*G 186 where P3 is any amino acid and P2 or P1' is G with SAR*G 187 the other position being any amino acid SLR*G 188 DGR*I 189 QGK*I 190 Thrombin P4P3P(R/K)*P1'P2' LVPR*GS 191 where P1' and P2' can be any amino acid except LVPK*GS 192 for acidic amino acids like D or E; and P3 and P4 FIPR*TF 193 are hydrophobic amino acids like F, L, I, Y, W, V, VLPR*SF 194 M, P, C or A IVPR*SF 195 IVPR*GY 196 VVPR*GV 197 VLPR*LI 198 VMPR*SL 199 MFPR*SL 200 Coagulation Factor Xa I(E/D)GR* IDGR* 201 IEGR* 202 An asterisks (*) indicates the peptide bond of the P1-P1' cleavage site that is cleaved by the indicated protease.
[0189] Thus, in an embodiment, a modified Clostridial toxin disclosed in the present specification can further comprise an exogenous protease cleavage site. In another embodiment, a modified Clostridial toxin disclosed in the present specification can further comprises a plurality of exogenous protease cleavage sites. In aspects of this embodiment, a modified Clostridial toxin can comprise, e.g., at least 1 exogenous protease cleavage site, at least 2 exogenous protease cleavage sites, at least 3 exogenous protease cleavage sites, at least 4 exogenous protease cleavage sites or at least 5 exogenous protease cleavage sites. In other aspects of this embodiment, a modified Clostridial toxin can comprise, e.g., at most 1 exogenous protease cleavage site, at most 2 exogenous protease cleavage sites, at most 3 exogenous protease cleavage sites, at most 4 exogenous protease cleavage sites or at most 5 exogenous protease cleavage sites. In another aspect of this embodiment, a modified Clostridial toxin can comprise one or more copies of the same exogenous protease cleavage site, one or more copies of different exogenous protease cleavage sites, or any combination thereof.
[0190] The location of an exogenous protease cleavage site may be in a variety of positions, including, without limitation, between an epitope-binding region and a modified Clostridial toxin in order to facilitate removal of the epitope-binding region by proteolytic cleavage. It is envisioned that an exogenous protease cleavage site can be used to remove an epitope-binding region. As mentioned above, epitope binding regions can be used in protein purification procedures and it is often desirable to remove such epitope binding regions after the protein is purified. A common way of doing so is to have a protease cleavage site in between the protein of interest and the epitope binding region, whereby proteolytic cleavage of the protease cleavage site separates the protein of interest from the epitope binding region. Non-limiting examples of protease cleavage sites used for the removal of epitope-binding regions as well as well-characterized proteases, reagents, conditions and protocols are readily available from commercial vendors that include, without limitation, BD Biosciences-Clontech, Palo Alto, Calif.; BD Biosciences Pharmingen, San Diego, Calif.; Invitrogen, Inc, Carlsbad, Calif.; QIAGEN, Inc., Valencia, Calif.; and Stratagene, La Jolla, Calif. The selection, making and use of an appropriate protease cleavage site are routine procedures within the scope of one skilled in the art and from the teaching herein.
[0191] Thus, in an embodiment, an exogenous protease cleavage site is located between an epitope-binding peptide and a modified Clostridial toxin. In other aspects of this embodiment, a bovine enterokinase cleavage site is located between an epitope-binding region and a modified Clostridial toxin, a Tobacco Etch Virus protease cleavage site is located between an epitope-binding region and a modified Clostridial toxin, a Human Rhinovirus 3C protease cleavage site is located between an epitope-binding region and a modified Clostridial toxin, a SUMO/ULP-1 protease cleavage site is located between an epitope-binding region and a modified Clostridial toxin, a Thrombin protease cleavage site is located between an epitope-binding region and a modified Clostridial toxin, or a Coagulation Factor Xa protease cleavage site is located between an epitope-binding region and a modified Clostridial toxin. In other aspects of the embodiment, the bovine enterokinase protease cleavage site located between an epitope-binding region and a modified Clostridial toxin comprises SEQ ID NO: 168. In other aspects of the embodiment, the Tobacco Etch Virus protease cleavage site located between an epitope-binding region and a modified Clostridial toxin comprises SEQ ID NO: 169, SEQ ID NO: 170, SEQ ID NO: 171, SEQ ID NO: 172, SEQ ID NO: 173, SEQ ID NO: 174, SEQ ID NO: 175, SEQ ID NO: 176, SEQ ID NO: 177 or SEQ ID NO: 178. In still other aspects of the embodiment, the Human Rhinovirus 3C protease cleavage site located between an epitope-binding region and a modified Clostridial toxin comprises SEQ ID NO: 179, SEQ ID NO: 180, SEQ ID NO: 181, SEQ ID NO: 182, SEQ ID NO: 183 or SEQ ID NO: 184. In yet other aspects of the embodiment, the SUMO/ULP-1 protease cleavage site located between an epitope-binding region and a modified Clostridial toxin comprises SEQ ID NO: 185. In further other aspects of the embodiment, the Thrombin protease cleavage site located between an epitope-binding region and a modified Clostridial toxin comprises SEQ ID NO: 186, SEQ ID NO: 187, SEQ ID NO: 188, SEQ ID NO: 189, SEQ ID NO: 190, SEQ ID NO: 191, SEQ ID NO: 192, SEQ ID NO: 193, SEQ ID NO: 194, SEQ ID NO: 195, SEQ ID NO: 196, SEQ ID NO: 197, SEQ ID NO: 198, SEQ ID NO: 199 or SEQ ID NO: 200. In other aspects of the embodiment, the Coagulation Factor Xa protease cleavage site located between an epitope-binding region and a modified Clostridial toxin comprises SEQ ID NO: 201 or SEQ ID NO: 202.
[0192] Aspects of the present invention provide, in part modified Clostridial toxins. As used herein, the term "modified Clostridial toxin" means any naturally-occurring Clostridial toxin or non-naturally-occurring Clostridial toxin comprising at least the replacement of a naturally-occurring di-chain protease cleavage site with a Clostridial toxin substrate cleavage site as disclosed in the present specification, or the addition of a Clostridial toxin substrate cleavage site as disclosed in the present specification into the di-chain loop region. Non-limiting examples of modified Clostridial toxins disclosed in the present specification include, e.g., a modified Clostridial toxin comprising a Clostridial toxin substrate cleavage site, where the substrate cleavage site replaced the naturally-occurring di-chain loop protease cleavage site; a modified Clostridial toxin comprising a Clostridial toxin substrate cleavage site, where the substrate cleavage site is added into the di-chain loop region; a modified Clostridial toxin comprising a Clostridial toxin substrate cleavage site and a cell binding domain having an enhanced cell binding activity capable of intoxicating a naturally occurring Clostridial toxin target cell, where the substrate cleavage site replaced the naturally-occurring di-chain loop protease cleavage site; a modified Clostridial toxin comprising a Clostridial toxin substrate cleavage site and a cell binding domain having an enhanced cell binding activity capable of intoxicating a naturally occurring Clostridial toxin target cell, where the substrate cleavage site is added into the di-chain loop region; a modified Clostridial toxin comprising a Clostridial toxin substrate cleavage site and a cell binding domain having an altered cell binding activity capable of intoxicating a naturally occurring Clostridial toxin target cell, where the substrate cleavage site replaced the naturally-occurring di-chain loop protease cleavage site; a modified Clostridial toxin comprising a Clostridial toxin substrate cleavage site and a cell binding domain having an altered cell binding activity capable of intoxicating a naturally occurring Clostridial toxin target cell, where the substrate cleavage site is added into the di-chain loop region; a modified Clostridial toxin comprising a Clostridial toxin substrate cleavage site and a cell binding domain having an altered cell binding activity capable of intoxicating a non-naturally occurring Clostridial toxin target cell, where the substrate cleavage site replaced the naturally-occurring di-chain loop protease cleavage site; and a modified Clostridial toxin comprising a Clostridial toxin substrate cleavage site and a cell binding domain having an altered cell binding activity capable of intoxicating a non-naturally occurring Clostridial toxin target cell, where the substrate cleavage site is added into the di-chain loop region.
[0193] Non-limiting examples of Clostridial toxin modifications disclosed in the present specification include, e.g., replacement of a naturally-occurring di-chain protease cleavage site with a Clostridial toxin substrate cleavage site, addition of a Clostridial toxin substrate cleavage site, addition of an exogenous protease cleavage site, replacement of an endogenous cell binding domain with a cell binding domain having an enhanced cell binding activity capable of intoxicating a naturally occurring Clostridial toxin target cell, addition of a cell binding domain having an enhanced cell binding activity capable of intoxicating a naturally occurring Clostridial toxin target cell, replacement of an endogenous cell binding domain with a cell binding domain having an altered cell binding activity capable of intoxicating a naturally occurring Clostridial toxin target cell, addition of a cell binding domain having an altered cell binding activity capable of intoxicating a naturally occurring Clostridial toxin target cell, replacement of an endogenous cell binding domain with a cell binding domain having an altered cell binding activity capable of intoxicating a non-naturally occurring Clostridial toxin target cell, addition of a cell binding domain having an altered cell binding activity capable of intoxicating a non-naturally occurring Clostridial toxin target cell, addition of an exogenous protease cleavage site, rearrangement of the enzymatic, translocation and binding domains, addition of a spacer region and addition of an epitope-binding region.
[0194] It is understood that all such modifications do not substantially affect the ability of a Clostridial toxin to intoxicate a cell. As used herein, the term "do not substantially affect" means a Clostridial toxin can still execute the overall cellular mechanism whereby a Clostridial toxin enters a neuron and inhibits neurotransmitter release and encompasses the binding of a Clostridial toxin to a low or high affinity receptor complex, the internalization of the toxin/receptor complex, the translocation of the Clostridial toxin light chain into the cytoplasm and the enzymatic modification of a Clostridial toxin substrate. In aspects of this embodiment, the modified Clostridial toxin is, e.g., at least 10% as toxic as a naturally-occurring Clostridial toxin, at least 20% as toxic as a naturally-occurring Clostridial toxin, at least 30% as toxic as a naturally-occurring Clostridial toxin, at least 40% as toxic as a naturally-occurring Clostridial toxin, at least 50% as toxic as a naturally-occurring Clostridial toxin, at least 60% as toxic as a naturally-occurring Clostridial toxin, at least 70% as toxic as a naturally-occurring Clostridial toxin, at least 80% as toxic as a naturally-occurring Clostridial toxin, at least 90% as toxic as a naturally-occurring Clostridial toxin or at least 95% as toxic as a naturally-occurring Clostridial toxin. In aspects of this embodiment, the modified Clostridial toxin is, e.g., at most 10% as toxic as a naturally-occurring Clostridial toxin, at most 20% as toxic as a naturally-occurring Clostridial toxin, at most 30% as toxic as a naturally-occurring Clostridial toxin, at most 40% as toxic as a naturally-occurring Clostridial toxin, at most 50% as toxic as a naturally-occurring Clostridial toxin, at most 60% as toxic as a naturally-occurring Clostridial toxin, at most 70% as toxic as a naturally-occurring Clostridial toxin, at most 80% as toxic as a naturally-occurring Clostridial toxin, at most 90% as toxic as a naturally-occurring Clostridial toxin or at most 95% as toxic as a naturally-occurring Clostridial toxin.
[0195] Aspects of the present invention provide, in part, polynucleotide molecules. As used herein, the term "polynucleotide molecule" is synonymous with "nucleic acid molecule" and means a polymeric form of nucleotides, such as, e.g., ribonucleotides and deoxyribonucleotides, of any length. It is envisioned that any and all polynucleotide molecules that can encode a modified Clostridial toxin disclosed in the present specification can be useful, including, without limitation naturally-occurring and non-naturally-occurring DNA molecules and naturally-occurring and non-naturally-occurring RNA molecules. Non-limiting examples of naturally-occurring and non-naturally-occurring DNA molecules include single-stranded DNA molecules, double-stranded DNA molecules, genomic DNA molecules, cDNA molecules, vector constructs, such as, e.g., plasmid constructs, phagmid constructs, bacteriophage constructs, retroviral constructs and artificial chromosome constructs. Non-limiting examples of naturally-occurring and non-naturally-occurring RNA molecules include single-stranded RNA, double stranded RNA and mRNA.
[0196] Thus, in an embodiment, a polynucleotide molecule encodes a modified Clostridial toxin comprising a Clostridial toxin enzymatic domain, a Clostridial toxin translocation domain and a Clostridial toxin binding domain. In an aspect of this embodiment, a polynucleotide molecule encodes a Clostridial toxin comprises a naturally occurring Clostridial toxin variant, such as, e.g., a Clostridial toxin isoform or a Clostridial toxin subtype. In another aspect of this embodiment, a polynucleotide molecule encodes a Clostridial toxin comprises a non-naturally occurring Clostridial toxin variant, such as, e.g., a conservative Clostridial toxin variant, a non-conservative Clostridial toxin variant or an active Clostridial toxin fragment, or any combination thereof. In another aspect of this embodiment, a polynucleotide molecule encodes a Clostridial toxin comprises a Clostridial toxin enzymatic domain or an active fragment thereof, a Clostridial toxin translocation domain or an active fragment thereof, a Clostridial toxin binding domain or an active fragment thereof, or any combination thereof. In other aspects of this embodiment, a Clostridial toxins comprises a BoNT/A, a BoNT/B, a BoNT/C1, a BoNT/D, a BoNT/E, a BoNT/F, a BoNT/G or a TeNT.
[0197] In another embodiment, a polynucleotide molecule encodes a modified Clostridial toxin comprising a BoNT/A. In an aspect of this embodiment, a polynucleotide molecule encodes a BoNT/A comprising a BoNT/A enzymatic domain, a BoNT/A translocation domain and a BoNT/A binding domain. In another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/A comprising SEQ ID NO: 1. In another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/A comprising a naturally occurring BoNT/A variant, such as, e.g., a BoNT/A isoform or a BoNT/A subtype. In another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/A comprising a naturally occurring BoNT/A variant of SEQ ID NO: 1, such as, e.g., a BoNT/A isoform of SEQ ID NO: 1 or a BoNT/A subtype of SEQ ID NO: 1. In still another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/A comprising a non-naturally occurring BoNT/A variant, such as, e.g., a conservative BoNT/A variant, a non-conservative BoNT/A variant or an active BoNT/A fragment, or any combination thereof. In still another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/A comprising a non-naturally occurring BoNT/A variant of SEQ ID NO: 1, such as, e.g., a conservative BoNT/A variant of SEQ ID NO: 1, a non-conservative BoNT/A variant of SEQ ID NO: 1 or an active BoNT/A fragment of SEQ ID NO: 1, or any combination thereof. In yet another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/A comprising a BoNT/A enzymatic domain or an active fragment thereof, a BoNT/A translocation domain or an active fragment thereof, a BoNT/A binding domain or an active fragment thereof, or any combination thereof. In yet another aspect of this embodiment, a BoNT/A comprising a BoNT/A enzymatic domain of amino acids 1-448 from SEQ ID NO: 1 or an active fragment thereof, a BoNT/A translocation domain of amino acids 449-860 from SEQ ID NO: 1 or an active fragment thereof, a BoNT/A binding domain of amino acids 861-1296 from SEQ ID NO: 1 or an active fragment thereof, and any combination thereof.
[0198] In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/A comprising a polypeptide having, e.g., at least 70% amino acid identity with SEQ ID NO: 1, at least 75% amino acid identity with the SEQ ID NO: 1, at least 80% amino acid identity with SEQ ID NO: 1, at least 85% amino acid identity with SEQ ID NO: 1, at least 90% amino acid identity with SEQ ID NO: 1 or at least 95% amino acid identity with SEQ ID NO: 1. In yet other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/A comprising a polypeptide having, e.g., at most 70% amino acid identity with SEQ ID NO: 1, at most 75% amino acid identity with the SEQ ID NO: 1, at most 80% amino acid identity with SEQ ID NO: 1, at most 85% amino acid identity with SEQ ID NO: 1, at most 90% amino acid identity with SEQ ID NO: 1 or at most 95% amino acid identity with SEQ ID NO: 1.
[0199] In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/A comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid substitutions relative to SEQ ID NO: 1. In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/A comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid substitutions relative to SEQ ID NO: 1. In yet other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/A comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid deletions relative to SEQ ID NO: 1. In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/A comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid deletions relative to SEQ ID NO: 1. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/A comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid additions relative to SEQ ID NO: 1. In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/A comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid additions relative to SEQ ID NO: 1.
[0200] In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/A comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid substitutions relative to SEQ ID NO: 1. In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/A comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid substitutions relative to SEQ ID NO: 1. In yet other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/A comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid deletions relative to SEQ ID NO: 1. In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/A comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid deletions relative to SEQ ID NO: 1. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/A comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid additions relative to SEQ ID NO: 1. In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/A comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid additions relative to SEQ ID NO: 1.
[0201] In another embodiment, a polynucleotide molecule encodes a modified Clostridial toxin comprising a BoNT/B. In an aspect of this embodiment, a polynucleotide molecule encodes a BoNT/B comprising a BoNT/B enzymatic domain, a BoNT/B translocation domain and a BoNT/B binding domain. In another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/B comprising SEQ ID NO: 2. In another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/B comprising a naturally occurring BoNT/B variant, such as, e.g., a BoNT/B isoform or a BoNT/B subtype. In another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/B comprising a naturally occurring BoNT/B variant of SEQ ID NO: 2, such as, e.g., a BoNT/B isoform of SEQ ID NO: 2 or a BoNT/B subtype of SEQ ID NO: 2. In still another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/B comprising a non-naturally occurring BoNT/B variant, such as, e.g., a conservative BoNT/B variant, a non-conservative BoNT/B variant or an active BoNT/B fragment, or any combination thereof. In still another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/B comprising a non-naturally occurring BoNT/B variant of SEQ ID NO: 2, such as, e.g., a conservative BoNT/B variant of SEQ ID NO: 2, a non-conservative BoNT/B variant of SEQ ID NO: 2 or an active BoNT/B fragment of SEQ ID NO: 2, or any combination thereof. In yet another aspect of this embodiment, a BoNT/B comprising a BoNT/B enzymatic domain or an active fragment thereof, a BoNT/B translocation domain or active fragment thereof, a BoNT/B binding domain or active fragment thereof, and any combination thereof. In yet another aspect of this embodiment, a BoNT/B comprising a BoNT/B enzymatic domain of amino acids 1-441 from SEQ ID NO: 2 or active fragment thereof, a BoNT/B translocation domain of amino acids 442-847 from SEQ ID NO: 2 or active fragment thereof, a BoNT/B binding domain of amino acids 848-1291 from SEQ ID NO: 2 or active fragment thereof, and any combination thereof.
[0202] In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/B comprising a polypeptide having, e.g., at least 70% amino acid identity with SEQ ID NO: 2, at least 75% amino acid identity with the SEQ ID NO: 2, at least 80% amino acid identity with SEQ ID NO: 2, at least 85% amino acid identity with SEQ ID NO: 2, at least 90% amino acid identity with SEQ ID NO: 2 or at least 95% amino acid identity with SEQ ID NO: 2. In yet other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/B comprising a polypeptide having, e.g., at most 70% amino acid identity with SEQ ID NO: 2, at most 75% amino acid identity with the SEQ ID NO: 2, at most 80% amino acid identity with SEQ ID NO: 2, at most 85% amino acid identity with SEQ ID NO: 2, at most 90% amino acid identity with SEQ ID NO: 2 or at most 95% amino acid identity with SEQ ID NO: 2.
[0203] In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/B comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid substitutions relative to SEQ ID NO: 2. In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/B comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid substitutions relative to SEQ ID NO: 2. In yet other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/B comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid deletions relative to SEQ ID NO: 2. In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/B comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid deletions relative to SEQ ID NO: 2. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/B comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid additions relative to SEQ ID NO: 2. In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/B comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid additions relative to SEQ ID NO: 2.
[0204] In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/B comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid substitutions relative to SEQ ID NO: 2. In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/B comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid substitutions relative to SEQ ID NO: 2. In yet other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/B comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid deletions relative to SEQ ID NO: 2. In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/B comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid deletions relative to SEQ ID NO: 2. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/B comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid additions relative to SEQ ID NO: 2. In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/B comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid additions relative to SEQ ID NO: 2.
[0205] In another embodiment, a polynucleotide molecule encodes a modified Clostridial toxin comprising a BoNT/C1. In an aspect of this embodiment, a polynucleotide molecule encodes a BoNT/C1 comprising a BoNT/C1 enzymatic domain, a BoNT/C1 translocation domain and a BoNT/C1 binding domain. In another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/C1 comprising SEQ ID NO: 3. In another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/C1 comprising a naturally occurring BoNT/C1 variant, such as, e.g., a BoNT/C1 isoform or a BoNT/C1 subtype. In another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/C1 comprising a naturally occurring BoNT/C1 variant of SEQ ID NO: 3, such as, e.g., a BoNT/C1 isoform of SEQ ID NO: 3 or a BoNT/C1 subtype of SEQ ID NO: 3. In still another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/C1 comprising a non-naturally occurring BoNT/C1 variant, such as, e.g., a conservative BoNT/C1 variant, a non-conservative BoNT/C1 variant or an active BoNT/C1 fragment, or any combination thereof. In still another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/C1 comprising a non-naturally occurring BoNT/C1 variant of SEQ ID NO: 3, such as, e.g., a conservative BoNT/C1 variant of SEQ ID NO: 3, a non-conservative BoNT/C1 variant of SEQ ID NO: 3 or an active BoNT/C1 fragment of SEQ ID NO: 3, or any combination thereof. In yet another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/C1 comprising a BoNT/C1 enzymatic domain or active fragment thereof, a BoNT/C1 translocation domain or active fragment thereof, a BoNT/C1 binding domain or active fragment thereof, and any combination thereof. In yet another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/C1 comprising a BoNT/C1 enzymatic domain of amino acid 1-449 from SEQ ID NO: 3 or active fragment thereof, a BoNT/C1 translocation domain of amino acids 450-855 from SEQ ID NO: 3 or active fragment thereof, a BoNT/C1 binding domain of amino acids 856-1291 from SEQ ID NO: 3 or active fragment thereof, and any combination thereof.
[0206] In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/C1 comprising a polypeptide having, e.g., at least 70% amino acid identity with SEQ ID NO: 3, at least 75% amino acid identity with the SEQ ID NO: 3, at least 80% amino acid identity with SEQ ID NO: 3, at least 85% amino acid identity with SEQ ID NO: 3, at least 90% amino acid identity with SEQ ID NO: 3 or at least 95% amino acid identity with SEQ ID NO: 3. In yet other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/C1 comprising a polypeptide having, e.g., at most 70% amino acid identity with SEQ ID NO: 3, at most 75% amino acid identity with the SEQ ID NO: 3, at most 80% amino acid identity with SEQ ID NO: 3, at most 85% amino acid identity with SEQ ID NO: 3, at most 90% amino acid identity with SEQ ID NO: 3 or at most 95% amino acid identity with SEQ ID NO: 3.
[0207] In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/C1 comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid substitutions relative to SEQ ID NO: 3. In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/C1 comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid substitutions relative to SEQ ID NO: 3. In yet other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/C1 comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid deletions relative to SEQ ID NO: 3. In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/C1 comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid deletions relative to SEQ ID NO: 3. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/C1 comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid additions relative to SEQ ID NO: 3. In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/C1 comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid additions relative to SEQ ID NO: 3.
[0208] In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/C1 comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid substitutions relative to SEQ ID NO: 3. In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/C1 comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid substitutions relative to SEQ ID NO: 3. In yet other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/C1 comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid deletions relative to SEQ ID NO: 3. In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/C1 comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid deletions relative to SEQ ID NO: 3. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/C1 comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid additions relative to SEQ ID NO: 3. In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/C1 comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid additions relative to SEQ ID NO: 3.
[0209] In another embodiment, a polynucleotide molecule encodes a modified Clostridial toxin comprising a BoNT/D. In an aspect of this embodiment, a polynucleotide molecule encodes a BoNT/D comprising a BoNT/D enzymatic domain, a BoNT/D translocation domain and a BoNT/D binding domain. In another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/D comprising SEQ ID NO: 4. In another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/D comprising a naturally occurring BoNT/D variant, such as, e.g., a BoNT/D isoform or a BoNT/D subtype. In another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/D comprising a naturally occurring BoNT/D variant of SEQ ID NO: 4, such as, e.g., a BoNT/D isoform of SEQ ID NO: 4 or a BoNT/D subtype of SEQ ID NO: 4. In still another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/D comprising a non-naturally occurring BoNT/D variant, such as, e.g., a conservative BoNT/D variant, a non-conservative BoNT/D variant or an active BoNT/D fragment, or any combination thereof. In still another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/D comprising a non-naturally occurring BoNT/D variant of SEQ ID NO: 4, such as, e.g., a conservative BoNT/D variant of SEQ ID NO: 4, a non-conservative BoNT/D variant of SEQ ID NO: 4 or an active BoNT/D fragment of SEQ ID NO: 4, or any combination thereof. In yet another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/D comprising a BoNT/D enzymatic domain or an active fragment thereof, a BoNT/D translocation domain or an active fragment thereof, a BoNT/D binding domain or an active fragment thereof, or any combination thereof. In yet another aspect of this embodiment, a BoNT/D comprising a BoNT/D enzymatic domain of amino acids 1-442 from SEQ ID NO: 4 or an active fragment thereof, a BoNT/D translocation domain of amino acids 443-851 from SEQ ID NO: 4 or an active fragment thereof, a BoNT/D binding domain of amino acids 852-1276 from SEQ ID NO: 4 or an active fragment thereof, and any combination thereof.
[0210] In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/D comprising a polypeptide having, e.g., at least 70% amino acid identity with SEQ ID NO: 4, at least 75% amino acid identity with the SEQ ID NO: 4, at least 80% amino acid identity with SEQ ID NO: 4, at least 85% amino acid identity with SEQ ID NO: 4, at least 90% amino acid identity with SEQ ID NO: 4 or at least 95% amino acid identity with SEQ ID NO: 4. In yet other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/D comprising a polypeptide having, e.g., at most 70% amino acid identity with SEQ ID NO: 4, at most 75% amino acid identity with the SEQ ID NO: 4, at most 80% amino acid identity with SEQ ID NO: 4, at most 85% amino acid identity with SEQ ID NO: 4, at most 90% amino acid identity with SEQ ID NO: 4 or at most 95% amino acid identity with SEQ ID NO: 4.
[0211] In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/D comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid substitutions relative to SEQ ID NO: 4. In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/D comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid substitutions relative to SEQ ID NO: 4. In yet other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/D comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid deletions relative to SEQ ID NO: 4. In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/D comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid deletions relative to SEQ ID NO: 4. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/D comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid additions relative to SEQ ID NO: 4. In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/D comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid additions relative to SEQ ID NO: 4.
[0212] In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/D comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid substitutions relative to SEQ ID NO: 4. In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/D comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid substitutions relative to SEQ ID NO: 4. In yet other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/D comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid deletions relative to SEQ ID NO: 4. In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/D comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid deletions relative to SEQ ID NO: 4. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/D comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid additions relative to SEQ ID NO: 4. In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/D comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid additions relative to SEQ ID NO: 4.
[0213] In another embodiment, a polynucleotide molecule encodes a modified Clostridial toxin comprising a BoNT/E. In an aspect of this embodiment, a polynucleotide molecule encodes a BoNT/E comprising a BoNT/E enzymatic domain, a BoNT/E translocation domain and a BoNT/E binding domain. In another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/E comprising SEQ ID NO: 5. In another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/E comprising a naturally occurring BoNT/E variant, such as, e.g., a BoNT/E isoform or a BoNT/E subtype. In another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/E comprising a naturally occurring BoNT/E variant of SEQ ID NO: 5, such as, e.g., a BoNT/E isoform of SEQ ID NO: 5 or a BoNT/E subtype of SEQ ID NO: 5. In still another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/E comprising a non-naturally occurring BoNT/E variant, such as, e.g., a conservative BoNT/E variant, a non-conservative BoNT/E variant or an active BoNT/E fragment, or any combination thereof. In still another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/E comprising a non-naturally occurring BoNT/E variant of SEQ ID NO: 5, such as, e.g., a conservative BoNT/E variant of SEQ ID NO: 5, a non-conservative BoNT/E variant of SEQ ID NO: 5 or an active BoNT/E fragment of SEQ ID NO: 5, or any combination thereof. In yet another aspect of this embodiment, a BoNT/E comprising a BoNT/E enzymatic domain or an active fragment thereof, a BoNT/E translocation domain or active fragment thereof, a BoNT/E binding domain or active fragment thereof, and any combination thereof. In yet another aspect of this embodiment, a BoNT/E comprising a BoNT/E enzymatic domain of amino acids 1-422 from SEQ ID NO: 5 or active fragment thereof, a BoNT/E translocation domain of amino acids 423-834 from SEQ ID NO: 5 or active fragment thereof, a BoNT/E binding domain of amino acids 835-1252 from SEQ ID NO: 5 or active fragment thereof, and any combination thereof.
[0214] In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/E comprising a polypeptide having, e.g., at least 70% amino acid identity with SEQ ID NO: 5, at least 75% amino acid identity with the SEQ ID NO: 5, at least 80% amino acid identity with SEQ ID NO: 5, at least 85% amino acid identity with SEQ ID NO: 5, at least 90% amino acid identity with SEQ ID NO: 5 or at least 95% amino acid identity with SEQ ID NO: 5. In yet other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/E comprising a polypeptide having, e.g., at most 70% amino acid identity with SEQ ID NO: 5, at most 75% amino acid identity with the SEQ ID NO: 5, at most 80% amino acid identity with SEQ ID NO: 5, at most 85% amino acid identity with SEQ ID NO: 5, at most 90% amino acid identity with SEQ ID NO: 5 or at most 95% amino acid identity with SEQ ID NO: 5.
[0215] In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/E comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid substitutions relative to SEQ ID NO: 5. In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/E comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid substitutions relative to SEQ ID NO: 5. In yet other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/E comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid deletions relative to SEQ ID NO: 5. In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/E comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid deletions relative to SEQ ID NO: 5. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/E comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid additions relative to SEQ ID NO: 5. In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/E comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid additions relative to SEQ ID NO: 5.
[0216] In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/E comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid substitutions relative to SEQ ID NO: 5. In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/E comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid substitutions relative to SEQ ID NO: 5. In yet other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/E comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid deletions relative to SEQ ID NO: 5. In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/E comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid deletions relative to SEQ ID NO: 5. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/E comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid additions relative to SEQ ID NO: 5. In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/E comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid additions relative to SEQ ID NO: 5.
[0217] In another embodiment, a polynucleotide molecule encodes a modified Clostridial toxin comprising a BoNT/F. In an aspect of this embodiment, a polynucleotide molecule encodes a BoNT/F comprising a BoNT/F enzymatic domain, a BoNT/F translocation domain and a BoNT/F binding domain. In another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/F comprising SEQ ID NO: 6. In another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/F comprising a naturally occurring BoNT/F variant, such as, e.g., a BoNT/F isoform or a BoNT/F subtype. In another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/F comprising a naturally occurring BoNT/F variant of SEQ ID NO: 6, such as, e.g., a BoNT/F isoform of SEQ ID NO: 6 or a BoNT/F subtype of SEQ ID NO: 6. In still another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/F comprising a non-naturally occurring BoNT/F variant, such as, e.g., a conservative BoNT/F variant, a non-conservative BoNT/F variant or an active BoNT/F fragment, or any combination thereof. In still another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/F comprising a non-naturally occurring BoNT/F variant of SEQ ID NO: 6, such as, e.g., a conservative BoNT/F variant of SEQ ID NO: 6, a non-conservative BoNT/F variant of SEQ ID NO: 6 or an active BoNT/F fragment of SEQ ID NO: 6, or any combination thereof. In yet another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/F comprising a BoNT/F enzymatic domain or active fragment thereof, a BoNT/F translocation domain or active fragment thereof, a BoNT/F binding domain or active fragment thereof, and any combination thereof. In yet another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/F comprising a BoNT/F enzymatic domain of amino acid 1-436 from SEQ ID NO: 6 or active fragment thereof, a BoNT/F translocation domain of amino acids 437-852 from SEQ ID NO: 6 or active fragment thereof, a BoNT/F binding domain of amino acids 853-1274 from SEQ ID NO: 6 or active fragment thereof, and any combination thereof.
[0218] In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/F comprising a polypeptide having, e.g., at least 70% amino acid identity with SEQ ID NO: 6, at least 75% amino acid identity with the SEQ ID NO: 6, at least 80% amino acid identity with SEQ ID NO: 6, at least 85% amino acid identity with SEQ ID NO: 6, at least 90% amino acid identity with SEQ ID NO: 6 or at least 95% amino acid identity with SEQ ID NO: 6. In yet other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/F comprising a polypeptide having, e.g., at most 70% amino acid identity with SEQ ID NO: 6, at most 75% amino acid identity with the SEQ ID NO: 6, at most 80% amino acid identity with SEQ ID NO: 6, at most 85% amino acid identity with SEQ ID NO: 6, at most 90% amino acid identity with SEQ ID NO: 6 or at most 95% amino acid identity with SEQ ID NO: 6.
[0219] In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/F comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid substitutions relative to SEQ ID NO: 6. In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/F comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid substitutions relative to SEQ ID NO: 6. In yet other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/F comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid deletions relative to SEQ ID NO: 6. In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/F comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid deletions relative to SEQ ID NO: 6. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/F comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid additions relative to SEQ ID NO: 6. In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/F comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid additions relative to SEQ ID NO: 6.
[0220] In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/F comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid substitutions relative to SEQ ID NO: 6. In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/F comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid substitutions relative to SEQ ID NO: 6. In yet other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/F comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid deletions relative to SEQ ID NO: 6. In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/F comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid deletions relative to SEQ ID NO: 6. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/F comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid additions relative to SEQ ID NO: 6. In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/F comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid additions relative to SEQ ID NO: 6.
[0221] In another embodiment, a polynucleotide molecule encodes a modified Clostridial toxin comprising a BoNT/G. In an aspect of this embodiment, a polynucleotide molecule encodes a BoNT/G comprising a BoNT/G enzymatic domain, a BoNT/G translocation domain and a BoNT/G binding domain. In another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/G comprising SEQ ID NO: 7. In another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/G comprising a naturally occurring BoNT/G variant, such as, e.g., a BoNT/G isoform or a BoNT/G subtype. In another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/G comprising a naturally occurring BoNT/G variant of SEQ ID NO: 7, such as, e.g., a BoNT/G isoform of SEQ ID NO: 7 or a BoNT/G subtype of SEQ ID NO: 7. In still another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/G comprising a non-naturally occurring BoNT/G variant, such as, e.g., a conservative BoNT/G variant, a non-conservative BoNT/G variant or an active BoNT/G fragment, or any combination thereof. In still another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/D comprising a non-naturally occurring BoNT/G variant of SEQ ID NO: 7, such as, e.g., a conservative BoNT/G variant of SEQ ID NO: 7, a non-conservative BoNT/G variant of SEQ ID NO: 7 or an active BoNT/G fragment of SEQ ID NO: 7, or any combination thereof. In yet another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/G comprising a BoNT/G enzymatic domain or an active fragment thereof, a BoNT/G translocation domain or an active fragment thereof, a BoNT/G binding domain or an active fragment thereof, or any combination thereof. In yet another aspect of this embodiment, a BoNT/G comprising a BoNT/G enzymatic domain of amino acids 1-442 from SEQ ID NO: 7 or an active fragment thereof, a BoNT/G translocation domain of amino acids 443-852 from SEQ ID NO: 7 or an active fragment thereof, a BoNT/G binding domain of amino acids 853-1297 from SEQ ID NO: 7 or an active fragment thereof, and any combination thereof.
[0222] In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/G comprising a polypeptide having, e.g., at least 70% amino acid identity with SEQ ID NO: 7, at least 75% amino acid identity with the SEQ ID NO: 7, at least 80% amino acid identity with SEQ ID NO: 7, at least 85% amino acid identity with SEQ ID NO: 7, at least 90% amino acid identity with SEQ ID NO: 7 or at least 95% amino acid identity with SEQ ID NO: 7. In yet other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/G comprising a polypeptide having, e.g., at most 70% amino acid identity with SEQ ID NO: 7, at most 75% amino acid identity with the SEQ ID NO: 7, at most 80% amino acid identity with SEQ ID NO: 7, at most 85% amino acid identity with SEQ ID NO: 7, at most 90% amino acid identity with SEQ ID NO: 7 or at most 95% amino acid identity with SEQ ID NO: 7.
[0223] In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/G comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid substitutions relative to SEQ ID NO: 7. In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/G comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid substitutions relative to SEQ ID NO: 7. In yet other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/G comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid deletions relative to SEQ ID NO: 7. In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/G comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid deletions relative to SEQ ID NO: 7. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/G comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid additions relative to SEQ ID NO: 7. In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/G comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid additions relative to SEQ ID NO: 7.
[0224] In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/G comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid substitutions relative to SEQ ID NO: 7. In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/G comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid substitutions relative to SEQ ID NO: 7. In yet other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/G comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid deletions relative to SEQ ID NO: 7. In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/G comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid deletions relative to SEQ ID NO: 7. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/G comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid additions relative to SEQ ID NO: 7. In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/G comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid additions relative to SEQ ID NO: 7.
[0225] In another embodiment, a polynucleotide molecule encodes a modified Clostridial toxin comprising a TeNT. In an aspect of this embodiment, a polynucleotide molecule encodes a TeNT comprising a TeNT enzymatic domain, a TeNT translocation domain and a TeNT binding domain. In an aspect of this embodiment, a polynucleotide molecule encodes a TeNT comprising SEQ ID NO: 8. In another aspect of this embodiment, a polynucleotide molecule encodes a TeNT comprising a naturally occurring TeNT variant, such as, e.g., a TeNT isoform or a TeNT subtype. In another aspect of this embodiment, a polynucleotide molecule encodes a TeNT comprising a naturally occurring TeNT variant of SEQ ID NO: 8, such as, e.g., a TeNT isoform of SEQ ID NO: 8 or a TeNT subtype of SEQ ID NO: 8. In still another aspect of this embodiment, a polynucleotide molecule encodes a TeNT comprising a non-naturally occurring TeNT variant, such as, e.g., a conservative TeNT variant, a non-conservative TeNT variant or an active TeNT fragment, or any combination thereof. In still another aspect of this embodiment, a polynucleotide molecule encodes a TeNT comprising a non-naturally occurring TeNT variant of SEQ ID NO: 8, such as, e.g., a conservative TeNT variant of SEQ ID NO: 8, a non-conservative TeNT variant of SEQ ID NO: 8 or an active TeNT fragment of SEQ ID NO: 8, or any combination thereof. In yet another aspect of this embodiment, a TeNT comprising a TeNT enzymatic domain or an active fragment thereof, a TeNT translocation domain or active fragment thereof, a TeNT binding domain or active fragment thereof, and any combination thereof. In yet another aspect of this embodiment, a TeNT comprising a TeNT enzymatic domain of amino acids 1-441 from SEQ ID NO: 8 or active fragment thereof, a TeNT translocation domain of amino acids 442-870 from SEQ ID NO: 8 or active fragment thereof, a TeNT binding domain of amino acids 871-1315 from SEQ ID NO: 8 or active fragment thereof, and any combination thereof.
[0226] In other aspects of this embodiment, a polynucleotide molecule encodes a TeNT comprising a polypeptide having, e.g., at least 70% amino acid identity with SEQ ID NO: 8, at least 75% amino acid identity with the SEQ ID NO: 8, at least 80% amino acid identity with SEQ ID NO: 8, at least 85% amino acid identity with SEQ ID NO: 8, at least 90% amino acid identity with SEQ ID NO: 8 or at least 95% amino acid identity with SEQ ID NO: 8. In yet other aspects of this embodiment, a polynucleotide molecule encodes a TeNT comprising a polypeptide having, e.g., at most 70% amino acid identity with SEQ ID NO: 8, at most 75% amino acid identity with the SEQ ID NO: 8, at most 80% amino acid identity with SEQ ID NO: 8, at most 85% amino acid identity with SEQ ID NO: 8, at most 90% amino acid identity with SEQ ID NO: 8 or at most 95% amino acid identity with SEQ ID NO: 8.
[0227] In other aspects of this embodiment, a polynucleotide molecule encodes a TeNT comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid substitutions relative to SEQ ID NO: 8. In other aspects of this embodiment, a polynucleotide molecule encodes a TeNT comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid substitutions relative to SEQ ID NO: 8. In yet other aspects of this embodiment, a polynucleotide molecule encodes a TeNT comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid deletions relative to SEQ ID NO: 8. In other aspects of this embodiment, a polynucleotide molecule encodes a TeNT comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid deletions relative to SEQ ID NO: 8. In still other aspects of this embodiment, a polynucleotide molecule encodes a TeNT comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid additions relative to SEQ ID NO: 8. In other aspects of this embodiment, a polynucleotide molecule encodes a TeNT comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 non-contiguous amino acid additions relative to SEQ ID NO: 8.
[0228] In other aspects of this embodiment, a polynucleotide molecule encodes a TeNT comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid substitutions relative to SEQ ID NO: 8. In other aspects of this embodiment, a polynucleotide molecule encodes a TeNT comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid substitutions relative to SEQ ID NO: 8. In yet other aspects of this embodiment, a polynucleotide molecule encodes a TeNT comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid deletions relative to SEQ ID NO: 8. In other aspects of this embodiment, a polynucleotide molecule encodes a TeNT comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid deletions relative to SEQ ID NO: 8. In still other aspects of this embodiment, a polynucleotide molecule encodes a TeNT comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid additions relative to SEQ ID NO: 8. In other aspects of this embodiment, a polynucleotide molecule encodes a TeNT comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine, 10, 20, 30, 40, 50, 100, 200 or 500 contiguous amino acid additions relative to SEQ ID NO: 8.
[0229] In still another embodiment, a polynucleotide molecule encodes a modified Clostridial toxin comprising a Clostridial toxin substrate cleavage site. In aspects of this embodiment, a polynucleotide molecule encodes a Clostridial toxin substrate cleavage site comprising a naturally occurring Clostridial toxin substrate cleavage site variant, such as, e.g., a Clostridial toxin substrate cleavage site isoform or a Clostridial toxin substrate cleavage site subtype. In other aspects of this embodiment, a polynucleotide molecule encodes a Clostridial toxin substrate cleavage site comprising a non-naturally occurring Clostridial toxin substrate cleavage site variant, such as, e.g., a conservative Clostridial toxin substrate cleavage site variant, a non-conservative Clostridial toxin substrate cleavage site variant or a Clostridial toxin substrate cleavage site peptidomimetic, or any combination thereof.
[0230] In still other aspects of this embodiment, a polynucleotide molecule encodes a modified Clostridial toxin substrate comprising a Clostridial toxin substrate cleavage site in which the P1' residue is not modified or substituted relative to the naturally occurring residue in a target protein cleaved by the Clostridial toxin. In still other aspects of this embodiment, a polynucleotide molecule encodes a Clostridial toxin substrate cleavage site in which the P1' residue is not modified or substituted relative to the naturally occurring residue in a target protein cleaved by the Clostridial toxin can be, e.g., a BoNT/A substrate cleavage site, a BoNT/B substrate cleavage site, a BoNT/C1 substrate cleavage site, a BoNT/D substrate cleavage site, a BoNT/E substrate cleavage site, a BoNT/F substrate cleavage site, a BoNT/G substrate cleavage site, a TeNT substrate cleavage site, a BaNT substrate cleavage site or a BuNT substrate cleavage site.
[0231] In still other aspects of this embodiment, a polynucleotide molecule encodes a modified Clostridial toxin substrate comprises a Clostridial toxin substrate cleavage site in which the P1 residue is modified or substituted relative to the naturally occurring residue in a target protein cleaved by the Clostridial toxin; such a Clostridial toxin substrate retains susceptibility to peptide bond cleavage between the P1 and P1' residues. In still other aspects of this embodiment, a polynucleotide molecule encodes a Clostridial toxin substrate cleavage site in which the P1' residue is modified or substituted relative to the naturally occurring residue in a target protein cleaved by the Clostridial toxin can be, e.g., a BoNT/A substrate cleavage site, a BoNT/B substrate cleavage site, a BoNT/C1 substrate cleavage site, a BoNT/D substrate cleavage site, a BoNT/E substrate cleavage site, a BoNT/F substrate cleavage site, a BoNT/G substrate cleavage site, a TeNT substrate cleavage site, a BaNT substrate cleavage site or a BuNT substrate cleavage site.
[0232] In still another embodiment, a polynucleotide molecule encodes a modified Clostridial toxin comprising a BoNT/A substrate cleavage site. In an aspect of this embodiment, a polynucleotide molecule encodes a BoNT/A substrate cleavage site comprising at least six consecutive residues of SNAP-25 including Gln-Arg. In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/A substrate cleavage site comprises, e.g., the amino acid sequence Glu-Ala-Asn-Gln-Arg-Ala-Thr-Lys (SEQ ID NO: 104); the amino acid sequence Glu-Ala-Asn-Lys-His-Ala-Thr-Lys (SEQ ID NO: 105); the amino acid sequence Glu-Ala-Asn-Lys-His-Ala-Asn-Lys (SEQ ID NO: 106). In another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/A substrate cleavage site comprising a naturally occurring BoNT/A substrate cleavage site variant. In another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/A substrate cleavage site comprises a naturally occurring BoNT/A substrate cleavage site variant of SEQ ID NO: 104, SEQ ID NO: 105 or SEQ ID NO: 106, such as, e.g., a BoNT/A substrate cleavage site isoform of SEQ ID NO: 104, SEQ ID NO: 105 or SEQ ID NO: 106; or a BoNT/A substrate cleavage site subtype of SEQ ID NO: 104, SEQ ID NO: 105 or SEQ ID NO: 106. In still another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/A substrate cleavage site comprising a non-naturally occurring BoNT/A substrate cleavage site variant, such as, e.g., a conservative BoNT/A substrate cleavage site variant, a non-conservative BoNT/A substrate cleavage site variant or a BoNT/A substrate cleavage site peptidomimetic, or any combination thereof. In still another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/A substrate cleavage site comprising a non-naturally occurring BoNT/A substrate cleavage site variant of SEQ ID NO: 104, SEQ ID NO: 105 or SEQ ID NO: 106; such as, e.g., a conservative BoNT/A substrate cleavage site variant of SEQ ID NO: 104, SEQ ID NO: 105 or SEQ ID NO: 106; a non-conservative BoNT/A substrate cleavage site variant of SEQ ID NO: 104, SEQ ID NO: 105 or SEQ ID NO: 106; a BoNT/A substrate cleavage site peptidomimetic of SEQ ID NO: 104, SEQ ID NO: 105 or SEQ ID NO: 106; or any combination thereof. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/A substrate cleavage site comprising, e.g., SEQ ID NO: 133, SEQ ID NO: 134, SEQ ID NO: 135, SEQ ID NO: 136, SEQ ID NO: 138, SEQ ID NO: 141, SEQ ID NO: 148, SEQ ID NO: 150 or SEQ ID NO: 151.
[0233] In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/A substrate cleavage site comprising a polypeptide having, e.g., at least 50% amino acid identity with SEQ ID NO: 104, at least 62.5% amino acid identity with the SEQ ID NO: 104, at least 75% amino acid identity with SEQ ID NO: 104 or at least 87.5% amino acid identity with SEQ ID NO: 104. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/A substrate cleavage site comprising a polypeptide having, e.g., at most 50% amino acid identity with SEQ ID NO: 104, at most 62.5% amino acid identity with the SEQ ID NO: 104, at most 75% amino acid identity with SEQ ID NO: 104 or at most 87.5% amino acid identity with SEQ ID NO: 104.
[0234] In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/A substrate cleavage site comprising a polypeptide having, e.g., at most one, two, three or four non-contiguous amino acid substitutions relative to SEQ ID NO: 104. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/A substrate cleavage site comprising a polypeptide having, e.g., at least one, two, three or four non-contiguous amino acid substitutions relative to SEQ ID NO: 104. In yet other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/A substrate cleavage site comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine or ten non-contiguous amino acid additions relative to SEQ ID NO: 104. In yet other aspects of this embodiment, a polynucleotide molecule encodes BoNT/A substrate cleavage site comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine or ten non-contiguous amino acid additions relative to SEQ ID NO: 104. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/A substrate cleavage site comprising a polypeptide having, e.g., at most one, two or three non-contiguous amino acid deletions relative to SEQ ID NO: 104. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/A substrate cleavage site comprising a polypeptide having, e.g., at least one, two or three non-contiguous amino acid deletions relative to SEQ ID NO: 104.
[0235] In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/A substrate cleavage site comprising a polypeptide having, e.g., at most two, three or four contiguous amino acid substitutions relative to SEQ ID NO: 104. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/A substrate cleavage site comprising a polypeptide having, e.g., at least two, three or four contiguous amino acid substitutions relative to SEQ ID NO: 104. In yet other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/A substrate cleavage site comprising a polypeptide having, e.g., at most two, three, four, five, six, seven, eight, nine or ten contiguous amino acid additions relative to SEQ ID NO: 104. In yet other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/A substrate cleavage site comprising a polypeptide having, e.g., at least two, three, four, five, six, seven, eight, nine or ten contiguous amino acid additions relative to SEQ ID NO: 104. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/A substrate cleavage site comprising a polypeptide having, e.g., at most two or three contiguous amino acid deletions relative to SEQ ID NO: 104. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/A substrate cleavage site comprising a polypeptide having, e.g., at least two or three contiguous amino acid deletions relative to SEQ ID NO: 104.
[0236] In still another embodiment, a polynucleotide molecule encodes a modified Clostridial toxin comprising a BoNT/B substrate cleavage site. In an aspect of this embodiment, a polynucleotide molecule encodes a BoNT/B substrate cleavage site comprising at least six consecutive residues of VAMP including Gln-Phe. In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/B substrate cleavage site comprising, e.g., the amino acid sequence Gly-Ala-Ser-Gln-Phe-Glu-Thr-Ser (SEQ ID NO: 107); the amino acid sequence Gly-Ala-Ser-Gln-Phe-Glu-Ser-Ser (SEQ ID NO: 108); the amino acid sequence Gly-Ala-Ser-Gln-Phe-Glu-Thr-Asn (SEQ ID NO: 109); the amino acid sequence Gly-Ala-Ser-Gln-Phe-Glu-Gln-Gln (SEQ ID NO: 110); the amino acid sequence Gly-Ala-Ser-Gln-Phe-Glu-Ala-Ser (SEQ ID NO: 111); or the amino acid sequence Gly-Ala-Ser-Gln-Phe-Gln-Gln-Ser (SEQ ID NO: 112). In another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/B substrate cleavage site comprising a naturally occurring BoNT/B substrate cleavage site variant. In another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/B substrate cleavage site comprising a naturally occurring BoNT/B substrate cleavage site variant of SEQ ID NO: 107, SEQ ID NO: 108, SEQ ID NO: 109, SEQ ID NO: 110, SEQ ID NO: 111 or SEQ ID NO: 112, such as, e.g., a BoNT/B substrate cleavage site isoform of SEQ ID NO: 107, SEQ ID NO: 108, SEQ ID NO: 109, SEQ ID NO: 110, SEQ ID NO: 111 or SEQ ID NO: 112; or a BoNT/B substrate cleavage site subtype of SEQ ID NO: 107, SEQ ID NO: 108, SEQ ID NO: 109, SEQ ID NO: 110, SEQ ID NO: 111 or SEQ ID NO: 112. In still another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/B substrate cleavage site comprising a non-naturally occurring BoNT/B substrate cleavage site variant, such as, e.g., a conservative BoNT/B substrate cleavage site variant, a non-conservative BoNT/B substrate cleavage site variant or a BoNT/B substrate cleavage site peptidomimetic, or any combination thereof. In still another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/B substrate cleavage site comprising a non-naturally occurring BoNT/B substrate cleavage site variant of SEQ ID NO: 107, SEQ ID NO: 108, SEQ ID NO: 109, SEQ ID NO: 110, SEQ ID NO: 111 or SEQ ID NO: 112; such as, e.g., a conservative BoNT/B substrate cleavage site variant of SEQ ID NO: 107, SEQ ID NO: 108, SEQ ID NO: 109, SEQ ID NO: 110, SEQ ID NO: 111 or SEQ ID NO: 112; a non-conservative BoNT/B substrate cleavage site variant of SEQ ID NO: 107, SEQ ID NO: 108, SEQ ID NO: 109, SEQ ID NO: 110, SEQ ID NO: 111 or SEQ ID NO: 112; a BoNT/B substrate cleavage site peptidomimetic of SEQ ID NO: 107, SEQ ID NO: 108, SEQ ID NO: 109, SEQ ID NO: 110, SEQ ID NO: 111 or SEQ ID NO: 112; or any combination thereof.
[0237] In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/B substrate cleavage site comprising a polypeptide having, e.g., at least 50% amino acid identity with SEQ ID NO: 107, at least 62.5% amino acid identity with the SEQ ID NO: 107, at least 75% amino acid identity with SEQ ID NO: 107 or at least 87.5% amino acid identity with SEQ ID NO: 107. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/B substrate cleavage site comprising a polypeptide having, e.g., at most 50% amino acid identity with SEQ ID NO: 107, at most 62.5% amino acid identity with the SEQ ID NO: 107, at most 75% amino acid identity with SEQ ID NO: 107 or at most 87.5% amino acid identity with SEQ ID NO: 107.
[0238] In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/B substrate cleavage site comprising a polypeptide having, e.g., at most one, two, three or four non-contiguous amino acid substitutions relative to SEQ ID NO: 107. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/B substrate cleavage site comprising a polypeptide having, e.g., at least one, two, three or four non-contiguous amino acid substitutions relative to SEQ ID NO: 107. In yet other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/B substrate cleavage site comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine or ten non-contiguous amino acid additions relative to SEQ ID NO: 107. In yet other aspects of this embodiment, a polynucleotide molecule encodes BoNT/B substrate cleavage site comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine or ten non-contiguous amino acid additions relative to SEQ ID NO: 107. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/B substrate cleavage site comprising a polypeptide having, e.g., at most one, two or three non-contiguous amino acid deletions relative to SEQ ID NO: 107. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/B substrate cleavage site comprising a polypeptide having, e.g., at least one, two or three non-contiguous amino acid deletions relative to SEQ ID NO: 107.
[0239] In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/B substrate cleavage site comprising a polypeptide having, e.g., at most two, three or four contiguous amino acid substitutions relative to SEQ ID NO: 107. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/B substrate cleavage site comprising a polypeptide having, e.g., at least two, three or four contiguous amino acid substitutions relative to SEQ ID NO: 107. In yet other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/B substrate cleavage site comprising a polypeptide having, e.g., at most two, three, four, five, six, seven, eight, nine or ten contiguous amino acid additions relative to SEQ ID NO: 107. In yet other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/B substrate cleavage site comprising a polypeptide having, e.g., at least two, three, four, five, six, seven, eight, nine or ten contiguous amino acid additions relative to SEQ ID NO: 107. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/B substrate cleavage site comprising a polypeptide having, e.g., at most two or three contiguous amino acid deletions relative to SEQ ID NO: 107. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/B substrate cleavage site comprising a polypeptide having, e.g., at least two or three contiguous amino acid deletions relative to SEQ ID NO: 107.
[0240] In still another embodiment, a polynucleotide molecule encodes a modified Clostridial toxin comprising a BoNT/C1 substrate cleavage site. In an aspect of this embodiment, a polynucleotide molecule encodes a BoNT/C1 substrate cleavage site comprising at least six consecutive residues of Syntaxin including Lys-Ala. In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/C1 substrate cleavage site comprising, e.g., the amino acid sequence Asp-Thr-Lys-Lys-Ala-Val-Lys-Tyr (SEQ ID NO: 113); the amino acid sequence Glu-Thr-Lys-Lys-Ala-Ile-Lys-Tyr (SEQ ID NO: 114); the amino acid sequence Glu-Ser-Lys-Lys-Ala-Val-Lys-Tyr (SEQ ID NO: 115); the amino acid sequence Glu-Thr-Lys-Arg-Ala-Met-Lys-Tyr (SEQ ID NO: 116); the amino acid sequence Glu-Thr-Lys-Lys-Ala-Val-Lys-Tyr (SEQ ID NO: 117); the amino acid sequence Asp-Thr-Lys-Lys-Ala-Leu-Lys-Tyr (SEQ ID NO: 118); or the amino acid sequence Asp-Thr-Lys-Lys-Ala-Met-Lys-Tyr (SEQ ID NO: 119). In another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/C1 substrate cleavage site comprising a naturally occurring BoNT/C1 substrate cleavage site variant. In another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/C1 substrate cleavage site comprising a naturally occurring BoNT/C1 substrate cleavage site variant of SEQ ID NO: 113, SEQ ID NO: 114, SEQ ID NO: 115, SEQ ID NO: 116, SEQ ID NO: 117, SEQ ID NO: 118 or SEQ ID NO: 119, such as, e.g., a BoNT/C1 substrate cleavage site isoform of SEQ ID NO: 113, SEQ ID NO: 114, SEQ ID NO: 115, SEQ ID NO: 116, SEQ ID NO: 117, SEQ ID NO: 118 or SEQ ID NO: 119; or a BoNT/C1 substrate cleavage site subtype of SEQ ID NO: 113, SEQ ID NO: 114, SEQ ID NO: 115, SEQ ID NO: 116, SEQ ID NO: 117, SEQ ID NO: 118 or SEQ ID NO: 119. In still another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/C1 substrate cleavage site comprising a non-naturally occurring BoNT/C1 substrate cleavage site variant, such as, e.g., a conservative BoNT/C1 substrate cleavage site variant, a non-conservative BoNT/C1 substrate cleavage site variant or a BoNT/C1 substrate cleavage site peptidomimetic, or any combination thereof. In still another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/C1 substrate cleavage site comprising a non-naturally occurring BoNT/C1 substrate cleavage site variant of SEQ ID NO: 113, SEQ ID NO: 114, SEQ ID NO: 115, SEQ ID NO: 116, SEQ ID NO: 117, SEQ ID NO: 118 or SEQ ID NO: 119; such as, e.g., a conservative BoNT/C1 substrate cleavage site variant of SEQ ID NO: 113, SEQ ID NO: 114, SEQ ID NO: 115, SEQ ID NO: 116, SEQ ID NO: 117, SEQ ID NO: 118 or SEQ ID NO: 119; a non-conservative BoNT/C1 substrate cleavage site variant of SEQ ID NO: 113, SEQ ID NO: 114, SEQ ID NO: 115, SEQ ID NO: 116, SEQ ID NO: 117, SEQ ID NO: 118 or SEQ ID NO: 119; a BoNT/C1 substrate cleavage site peptidomimetic of SEQ ID NO: 113, SEQ ID NO: 114, SEQ ID NO: 115, SEQ ID NO: 116, SEQ ID NO: 117, SEQ ID NO: 118 or SEQ ID NO: 119; or any combination thereof.
[0241] In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/C1 substrate cleavage site comprising a polypeptide having, e.g., at least 50% amino acid identity with SEQ ID NO: 113, at least 62.5% amino acid identity with the SEQ ID NO: 113, at least 75% amino acid identity with SEQ ID NO: 113 or at least 87.5% amino acid identity with SEQ ID NO: 113. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/C1 substrate cleavage site comprising a polypeptide having, e.g., at most 50% amino acid identity with SEQ ID NO: 113, at most 62.5% amino acid identity with the SEQ ID NO: 113, at most 75% amino acid identity with SEQ ID NO: 113 or at most 87.5% amino acid identity with SEQ ID NO: 113.
[0242] In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/CA substrate cleavage site comprising a polypeptide having, e.g., at most one, two, three or four non-contiguous amino acid substitutions relative to SEQ ID NO: 113. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/C1 substrate cleavage site comprising a polypeptide having, e.g., at least one, two, three or four non-contiguous amino acid substitutions relative to SEQ ID NO: 113. In yet other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/C1 substrate cleavage site comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine or ten non-contiguous amino acid additions relative to SEQ ID NO: 113. In yet other aspects of this embodiment, a polynucleotide molecule encodes BoNT/C1 substrate cleavage site comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine or ten non-contiguous amino acid additions relative to SEQ ID NO: 113. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/C1 substrate cleavage site comprising a polypeptide having, e.g., at most one, two or three non-contiguous amino acid deletions relative to SEQ ID NO: 113. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/C1 substrate cleavage site comprising a polypeptide having, e.g., at least one, two or three non-contiguous amino acid deletions relative to SEQ ID NO: 113.
[0243] In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/C1 substrate cleavage site comprising a polypeptide having, e.g., at most two, three or four contiguous amino acid substitutions relative to SEQ ID NO: 113. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/C1 substrate cleavage site comprising a polypeptide having, e.g., at least two, three or four contiguous amino acid substitutions relative to SEQ ID NO: 113. In yet other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/C1 substrate cleavage site comprising a polypeptide having, e.g., at most two, three, four, five, six, seven, eight, nine or ten contiguous amino acid additions relative to SEQ ID NO: 113. In yet other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/C1 substrate cleavage site comprising a polypeptide having, e.g., at least two, three, four, five, six, seven, eight, nine or ten contiguous amino acid additions relative to SEQ ID NO: 113. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/C1 substrate cleavage site comprising a polypeptide having, e.g., at most two or three contiguous amino acid deletions relative to SEQ ID NO: 113. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/C1 substrate cleavage site comprising a polypeptide having, e.g., at least two or three contiguous amino acid deletions relative to SEQ ID NO: 113.
[0244] In another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/C1 substrate cleavage site comprising at least six consecutive residues of SNAP-25 including Arg-Ala. In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/C1 toxin substrate cleavage site comprising, e.g., the amino acid sequence Ala-Asn-Gln-Arg-Ala-Thr-Lys-Met (SEQ ID NO: 120); or the amino acid sequence Ala-Asn-Gln-Arg-Ala-His-Gln-Leu (SEQ ID NO: 121). In another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/C1 substrate cleavage site comprising a naturally occurring BoNT/C1 substrate cleavage site variant. In another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/C1 substrate cleavage site comprising a naturally occurring BoNT/C1 substrate cleavage site variant of SEQ ID NO: 120 or SEQ ID NO: 121, such as, e.g., a BoNT/C1 substrate cleavage site isoform of SEQ ID NO: 120 or SEQ ID NO: 121; or a BoNT/C1 substrate cleavage site subtype of SEQ ID NO: 120 or SEQ ID NO: 121. In still another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/C1 substrate cleavage site comprising a non-naturally occurring BoNT/C1 substrate cleavage site variant, such as, e.g., a conservative BoNT/C1 substrate cleavage site variant, a non-conservative BoNT/C1 substrate cleavage site variant or a BoNT/C1 substrate cleavage site peptidomimetic, or any combination thereof. In still another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/C1 substrate cleavage site comprising a non-naturally occurring BoNT/C1 substrate cleavage site variant of SEQ ID NO: 120 or SEQ ID NO: 121; such as, e.g., a conservative BoNT/C1 substrate cleavage site variant of SEQ ID NO: 99 or SEQ ID NO: XX; a non-conservative BoNT/C1 substrate cleavage site variant of SEQ ID NO: 120 or SEQ ID NO: 121; a BoNT/C1 substrate cleavage site peptidomimetic of SEQ ID NO: 120 or SEQ ID NO: 121; or any combination thereof.
[0245] In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/C1 substrate cleavage site comprising a polypeptide having, e.g., at least 50% amino acid identity with SEQ ID NO: 120, at least 62.5% amino acid identity with the SEQ ID NO: 120, at least 75% amino acid identity with SEQ ID NO: 120 or at least 87.5% amino acid identity with SEQ ID NO: 120. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/C1 substrate cleavage site comprising a polypeptide having, e.g., at most 50% amino acid identity with SEQ ID NO: 120, at most 62.5% amino acid identity with the SEQ ID NO: 120, at most 75% amino acid identity with SEQ ID NO: 120 or at most 87.5% amino acid identity with SEQ ID NO: 120.
[0246] In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/C1 substrate cleavage site comprising a polypeptide having, e.g., at most one, two, three or four non-contiguous amino acid substitutions relative to SEQ ID NO: 120. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/C1 substrate cleavage site comprising a polypeptide having, e.g., at least one, two, three or four non-contiguous amino acid substitutions relative to SEQ ID NO: 120. In yet other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/C1 substrate cleavage site comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine or ten non-contiguous amino acid additions relative to SEQ ID NO: 120. In yet other aspects of this embodiment, a polynucleotide molecule encodes BoNT/C1 substrate cleavage site comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine or ten non-contiguous amino acid additions relative to SEQ ID NO: 120. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/C1 substrate cleavage site comprising a polypeptide having, e.g., at most one, two or three non-contiguous amino acid deletions relative to SEQ ID NO: 120. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/C1 substrate cleavage site comprising a polypeptide having, e.g., at least one, two or three non-contiguous amino acid deletions relative to SEQ ID NO: 120.
[0247] In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/C1 substrate cleavage site comprising a polypeptide having, e.g., at most two, three or four contiguous amino acid substitutions relative to SEQ ID NO: 120. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/C1 substrate cleavage site comprising a polypeptide having, e.g., at least two, three or four contiguous amino acid substitutions relative to SEQ ID NO: 120. In yet other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/C1 substrate cleavage site comprising a polypeptide having, e.g., at most two, three, four, five, six, seven, eight, nine or ten contiguous amino acid additions relative to SEQ ID NO: 120. In yet other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/C1 substrate cleavage site comprising a polypeptide having, e.g., at least two, three, four, five, six, seven, eight, nine or ten contiguous amino acid additions relative to SEQ ID NO: 120. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/C1 substrate cleavage site comprising a polypeptide having, e.g., at most two or three contiguous amino acid deletions relative to SEQ ID NO: 120. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/C1 substrate cleavage site comprising a polypeptide having, e.g., at least two or three contiguous amino acid deletions relative to SEQ ID NO: 120.
[0248] In still another embodiment, a polynucleotide molecule encodes a modified Clostridial toxin comprising a BoNT/D substrate cleavage site. In an aspect of this embodiment, a polynucleotide molecule encodes a BoNT/D substrate cleavage site comprising at least six consecutive residues of VAMP including Lys-Leu. In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/D substrate cleavage site comprising, e.g., the amino acid sequence Arg-Asp-Gln-Lys-Leu-Ser-Glu-Leu (SEQ ID NO: 122); or the amino acid sequence Lys-Asp-Gln-Lys-Leu-Ala-Glu-Leu (SEQ ID NO: 123). In another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/D substrate cleavage site comprising a naturally occurring BoNT/D substrate cleavage site variant. In another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/D substrate cleavage site comprising a naturally occurring BoNT/D substrate cleavage site variant of SEQ ID NO: 122 or SEQ ID NO: 123, such as, e.g., a BoNT/D substrate cleavage site isoform of SEQ ID NO: 122 or SEQ ID NO: 123; or a BoNT/D substrate cleavage site subtype of SEQ ID NO: 122 or SEQ ID NO: 123. In still another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/D substrate cleavage site comprising a non-naturally occurring BoNT/D substrate cleavage site variant, such as, e.g., a conservative BoNT/D substrate cleavage site variant, a non-conservative BoNT/D substrate cleavage site variant or a BoNT/D substrate cleavage site peptidomimetic, or any combination thereof. In still another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/D substrate cleavage site comprising a non-naturally occurring BoNT/D substrate cleavage site variant of SEQ ID NO: 122 or SEQ ID NO: 123; such as, e.g., a conservative BoNT/D substrate cleavage site variant of SEQ ID NO: 122 or SEQ ID NO: 123; a non-conservative BoNT/C1 substrate cleavage site variant of SEQ ID NO: 122 or SEQ ID NO: 123; a BoNT/D substrate cleavage site peptidomimetic of SEQ ID NO: 122 or SEQ ID NO: 123; or any combination thereof.
[0249] In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/D substrate cleavage site comprising a polypeptide having, e.g., at least 50% amino acid identity with SEQ ID NO: 122, at least 62.5% amino acid identity with the SEQ ID NO: 122, at least 75% amino acid identity with SEQ ID NO: 122 or at least 87.5% amino acid identity with SEQ ID NO: 122. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/D substrate cleavage site comprising a polypeptide having, e.g., at most 50% amino acid identity with SEQ ID NO: 122, at most 62.5% amino acid identity with the SEQ ID NO: 122, at most 75% amino acid identity with SEQ ID NO: 122 or at most 87.5% amino acid identity with SEQ ID NO: 122.
[0250] In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/D substrate cleavage site comprising a polypeptide having, e.g., at most one, two, three or four non-contiguous amino acid substitutions relative to SEQ ID NO: 122. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/D substrate cleavage site comprising a polypeptide having, e.g., at least one, two, three or four non-contiguous amino acid substitutions relative to SEQ ID NO: 122. In yet other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/D substrate cleavage site comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine or ten non-contiguous amino acid additions relative to SEQ ID NO: 122. In yet other aspects of this embodiment, a polynucleotide molecule encodes BoNT/D substrate cleavage site comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine or ten non-contiguous amino acid additions relative to SEQ ID NO: 122. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/D substrate cleavage site comprising a polypeptide having, e.g., at most one, two or three non-contiguous amino acid deletions relative to SEQ ID NO: 122. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/D substrate cleavage site comprising a polypeptide having, e.g., at least one, two or three non-contiguous amino acid deletions relative to SEQ ID NO: 122.
[0251] In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/D substrate cleavage site comprising a polypeptide having, e.g., at most two, three or four contiguous amino acid substitutions relative to SEQ ID NO: 122. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/D substrate cleavage site comprising a polypeptide having, e.g., at least two, three or four contiguous amino acid substitutions relative to SEQ ID NO: 122. In yet other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/D substrate cleavage site comprising a polypeptide having, e.g., at most two, three, four, five, six, seven, eight, nine or ten contiguous amino acid additions relative to SEQ ID NO: 122. In yet other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/D substrate cleavage site comprising a polypeptide having, e.g., at least two, three, four, five, six, seven, eight, nine or ten contiguous amino acid additions relative to SEQ ID NO: 122. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/D substrate cleavage site comprising a polypeptide having, e.g., at most two or three contiguous amino acid deletions relative to SEQ ID NO: 122. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/D substrate cleavage site comprising a polypeptide having, e.g., at least two or three contiguous amino acid deletions relative to SEQ ID NO: 122.
[0252] In still another embodiment, a polynucleotide molecule encodes a modified Clostridial toxin comprising a BoNT/E substrate cleavage site. In an aspect of this embodiment, a polynucleotide molecule encodes a BoNT/E substrate cleavage site comprising at least six consecutive residues of VAMP including Arg-Ile. In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/E substrate cleavage site comprising, e.g., the amino acid sequence Gln-Ile-Asp-Arg-Ile-Met-Glu-Lys (SEQ ID NO: 124); the amino acid sequence Gln-Ile-Gln-Lys-Ile-Thr-Glu-Lys (SEQ ID NO: 125); the amino acid sequence Gln-Ile-Asp-Arg-Ile-Met-Asp-Met (SEQ ID NO: 126); the amino acid sequence Gln-Val-Asp-Arg-Ile-Gln-Gln-Lys (SEQ ID NO: 127); or the amino acid sequence Gln-Leu-Asp-Arg-Ile-His-Asp-Lys (SEQ ID NO: 128). In another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/E substrate cleavage site comprising a naturally occurring BoNT/E substrate cleavage site variant.
[0253] In another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/E substrate cleavage site comprising a naturally occurring BoNT/E substrate cleavage site variant of SEQ ID NO: 124, SEQ ID NO: 125, SEQ ID NO: 126, SEQ ID NO: 127 or SEQ ID NO: 128, such as, e.g., a BoNT/E substrate cleavage site isoform of SEQ ID NO: 124, SEQ ID NO: 125, SEQ ID NO: 126, SEQ ID NO: 127 or SEQ ID NO: 128; or a BoNT/E substrate cleavage site subtype of SEQ ID NO: 124, SEQ ID NO: 125, SEQ ID NO: 126, SEQ ID NO: 127 or SEQ ID NO: 128. In still another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/E substrate cleavage site comprising a non-naturally occurring BoNT/E substrate cleavage site variant, such as, e.g., a conservative BoNT/E substrate cleavage site variant, a non-conservative BoNT/E substrate cleavage site variant or a BoNT/E substrate cleavage site peptidomimetic, or any combination thereof. In still another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/E substrate cleavage site comprising a non-naturally occurring BoNT/E substrate cleavage site variant of SEQ ID NO: 124, SEQ ID NO: 125, SEQ ID NO: 126, SEQ ID NO: 127 or SEQ ID NO: 128; such as, e.g., a conservative BoNT/E substrate cleavage site variant of SEQ ID NO: 124, SEQ ID NO: 125, SEQ ID NO: 126, SEQ ID NO: 127 or SEQ ID NO: 128; a non-conservative BoNT/E substrate cleavage site variant of SEQ ID NO: 124, SEQ ID NO: 125, SEQ ID NO: 126, SEQ ID NO: 127 or SEQ ID NO: 128; a BoNT/E substrate cleavage site peptidomimetic of SEQ ID NO: 124, SEQ ID NO: 125, SEQ ID NO: 126, SEQ ID NO: 127 or SEQ ID NO: 128; or any combination thereof.
[0254] In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/E substrate cleavage site comprising a polypeptide having, e.g., at least 50% amino acid identity with SEQ ID NO: 124, at least 62.5% amino acid identity with the SEQ ID NO: 124, at least 75% amino acid identity with SEQ ID NO: 124 or at least 87.5% amino acid identity with SEQ ID NO: 124. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/E substrate cleavage site comprising a polypeptide having, e.g., at most 50% amino acid identity with SEQ ID NO: 124, at most 62.5% amino acid identity with the SEQ ID NO: 124, at most 75% amino acid identity with SEQ ID NO: 124 or at most 87.5% amino acid identity with SEQ ID NO: 124.
[0255] In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/E substrate cleavage site comprising a polypeptide having, e.g., at most one, two, three or four non-contiguous amino acid substitutions relative to SEQ ID NO: 124. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/E substrate cleavage site comprising a polypeptide having, e.g., at least one, two, three or four non-contiguous amino acid substitutions relative to SEQ ID NO: 124. In yet other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/E substrate cleavage site comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine or ten non-contiguous amino acid additions relative to SEQ ID NO: 124. In yet other aspects of this embodiment, a polynucleotide molecule encodes BoNT/E substrate cleavage site comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine or ten non-contiguous amino acid additions relative to SEQ ID NO: 124. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/E substrate cleavage site comprising a polypeptide having, e.g., at most one, two or three non-contiguous amino acid deletions relative to SEQ ID NO: 124. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/E substrate cleavage site comprising a polypeptide having, e.g., at least one, two or three non-contiguous amino acid deletions relative to SEQ ID NO: 124.
[0256] In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/E substrate cleavage site comprising a polypeptide having, e.g., at most two, three or four contiguous amino acid substitutions relative to SEQ ID NO: 124. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/E substrate cleavage site comprising a polypeptide having, e.g., at least two, three or four contiguous amino acid substitutions relative to SEQ ID NO: 124. In yet other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/E substrate cleavage site comprising a polypeptide having, e.g., at most two, three, four, five, six, seven, eight, nine or ten contiguous amino acid additions relative to SEQ ID NO: 124. In yet other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/E substrate cleavage site comprising a polypeptide having, e.g., at least two, three, four, five, six, seven, eight, nine or ten contiguous amino acid additions relative to SEQ ID NO: 124. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/E substrate cleavage site comprising a polypeptide having, e.g., at most two or three contiguous amino acid deletions relative to SEQ ID NO: 124. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/E substrate cleavage site comprising a polypeptide having, e.g., at least two or three contiguous amino acid deletions relative to SEQ ID NO: 124.
[0257] In still another embodiment, a polynucleotide molecule encodes a modified Clostridial toxin comprising a BoNT/F substrate cleavage site. In an aspect of this embodiment, a polynucleotide molecule encodes a BoNT/F substrate cleavage site comprising at least six consecutive residues of VAMP including Gln-Lys. In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/F substrate cleavage site comprising, e.g., the amino acid sequence Glu-Arg-Asp-Gln-Lys-Leu-Ser-Glu (SEQ ID NO: 129); or the amino acid sequence Glu-Lys-Asp-Gln-Lys-Leu-Ala-Glu (SEQ ID NO: 130). In another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/F substrate cleavage site comprising a naturally occurring BoNT/F substrate cleavage site variant. In another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/F substrate cleavage site comprising a naturally occurring BoNT/F substrate cleavage site variant of SEQ ID NO: 129 or SEQ ID NO: 130, such as, e.g., a BoNT/F substrate cleavage site isoform of SEQ ID NO: 129 or SEQ ID NO: 130; or a BoNT/F substrate cleavage site subtype of SEQ ID NO: 129 or SEQ ID NO: 130. In still another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/F substrate cleavage site comprising a non-naturally occurring BoNT/F substrate cleavage site variant, such as, e.g., a conservative BoNT/F substrate cleavage site variant, a non-conservative BoNT/F substrate cleavage site variant or a BoNT/F substrate cleavage site peptidomimetic, or any combination thereof. In still another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/F substrate cleavage site comprising a non-naturally occurring BoNT/F substrate cleavage site variant of SEQ ID NO: 129 or SEQ ID NO: 130; such as, e.g., a conservative BoNT/F substrate cleavage site variant of SEQ ID NO: 129 or SEQ ID NO: 130; a non-conservative BoNT/F substrate cleavage site variant of SEQ ID NO: 129 or SEQ ID NO: 130; a BoNT/F substrate cleavage site peptidomimetic of SEQ ID NO: 129 or SEQ ID NO: 130; or any combination thereof.
[0258] In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/F substrate cleavage site comprising a polypeptide having, e.g., at least 50% amino acid identity with SEQ ID NO: 129, at least 62.5% amino acid identity with the SEQ ID NO: 129, at least 75% amino acid identity with SEQ ID NO: 129 or at least 87.5% amino acid identity with SEQ ID NO: 129. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/F substrate cleavage site comprising a polypeptide having, e.g., at most 50% amino acid identity with SEQ ID NO: 129, at most 62.5% amino acid identity with the SEQ ID NO: 129, at most 75% amino acid identity with SEQ ID NO: 129 or at most 87.5% amino acid identity with SEQ ID NO: 129.
[0259] In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/F substrate cleavage site comprising a polypeptide having, e.g., at most one, two, three or four non-contiguous amino acid substitutions relative to SEQ ID NO: 129. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/F substrate cleavage site comprising a polypeptide having, e.g., at least one, two, three or four non-contiguous amino acid substitutions relative to SEQ ID NO: 129. In yet other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/F substrate cleavage site comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine or ten non-contiguous amino acid additions relative to SEQ ID NO: 129. In yet other aspects of this embodiment, a polynucleotide molecule encodes BoNT/F substrate cleavage site comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine or ten non-contiguous amino acid additions relative to SEQ ID NO: 129. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/F substrate cleavage site comprising a polypeptide having, e.g., at most one, two or three non-contiguous amino acid deletions relative to SEQ ID NO: 129. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/F substrate cleavage site comprising a polypeptide having, e.g., at least one, two or three non-contiguous amino acid deletions relative to SEQ ID NO: 129.
[0260] In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/F substrate cleavage site comprising a polypeptide having, e.g., at most two, three or four contiguous amino acid substitutions relative to SEQ ID NO: 129. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/F substrate cleavage site comprising a polypeptide having, e.g., at least two, three or four contiguous amino acid substitutions relative to SEQ ID NO: 129. In yet other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/F substrate cleavage site comprising a polypeptide having, e.g., at most two, three, four, five, six, seven, eight, nine or ten contiguous amino acid additions relative to SEQ ID NO: 129. In yet other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/F substrate cleavage site comprising a polypeptide having, e.g., at least two, three, four, five, six, seven, eight, nine or ten contiguous amino acid additions relative to SEQ ID NO: 129. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/F substrate cleavage site comprising a polypeptide having, e.g., at most two or three contiguous amino acid deletions relative to SEQ ID NO: 129. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/F substrate cleavage site comprising a polypeptide having, e.g., at least two or three contiguous amino acid deletions relative to SEQ ID NO: 129.
[0261] In still another embodiment, a polynucleotide molecule encodes a modified Clostridial toxin comprising a BoNT/G substrate cleavage site. In an aspect of this embodiment, a polynucleotide molecule encodes a BoNT/G substrate cleavage site comprising at least six consecutive residues of VAMP including Ala-Ala. In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/G substrate cleavage site comprising, e.g., the amino acid sequence Glu-Thr-Ser-Ala-Ala-Lys-Leu-Lys (SEQ ID NO: 131); or the amino acid sequence Glu-Ser-Ser-Ala-Ala-Lys-Leu-Lys (SEQ ID NO: 132).
[0262] In another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/G substrate cleavage site comprising a naturally occurring BoNT/G substrate cleavage site variant. In another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/G substrate cleavage site comprising a naturally occurring BoNT/G substrate cleavage site variant of SEQ ID NO: 131 or SEQ ID NO: 132, such as, e.g., a BoNT/G substrate cleavage site isoform of SEQ ID NO: 131 or SEQ ID NO: 132; or a BoNT/G substrate cleavage site subtype of SEQ ID NO: 131 or SEQ ID NO: 132. In still another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/G substrate cleavage site comprising a non-naturally occurring BoNT/F substrate cleavage site variant, such as, e.g., a conservative BoNT/G substrate cleavage site variant, a non-conservative BoNT/G substrate cleavage site variant or a BoNT/G substrate cleavage site peptidomimetic, or any combination thereof. In still another aspect of this embodiment, a polynucleotide molecule encodes a BoNT/G substrate cleavage site comprising a non-naturally occurring BoNT/G substrate cleavage site variant of SEQ ID NO: 131 or SEQ ID NO: 132; such as, e.g., a conservative BoNT/G substrate cleavage site variant of SEQ ID NO: 131 or SEQ ID NO: 132; a non-conservative BoNT/G substrate cleavage site variant of SEQ ID NO: 131 or SEQ ID NO: 132; a BoNT/G substrate cleavage site peptidomimetic of SEQ ID NO: 131 or SEQ ID NO: 132; or any combination thereof.
[0263] In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/G substrate cleavage site comprising a polypeptide having, e.g., at least 50% amino acid identity with SEQ ID NO: 131, at least 62.5% amino acid identity with the SEQ ID NO: 131, at least 75% amino acid identity with SEQ ID NO: 131 or at least 87.5% amino acid identity with SEQ ID NO: 131. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/G substrate cleavage site comprising a polypeptide having, e.g., at most 50% amino acid identity with SEQ ID NO: 131, at most 62.5% amino acid identity with the SEQ ID NO: 131, at most 75% amino acid identity with SEQ ID NO: 131 or at most 87.5% amino acid identity with SEQ ID NO: 131.
[0264] In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/G substrate cleavage site comprising a polypeptide having, e.g., at most one, two, three or four non-contiguous amino acid substitutions relative to SEQ ID NO: 131. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/G substrate cleavage site comprising a polypeptide having, e.g., at least one, two, three or four non-contiguous amino acid substitutions relative to SEQ ID NO: 131. In yet other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/G substrate cleavage site comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine or ten non-contiguous amino acid additions relative to SEQ ID NO: 131. In yet other aspects of this embodiment, a polynucleotide molecule encodes BoNT/G substrate cleavage site comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine or ten non-contiguous amino acid additions relative to SEQ ID NO: 131. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/G substrate cleavage site comprising a polypeptide having, e.g., at most one, two or three non-contiguous amino acid deletions relative to SEQ ID NO: 131. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/G substrate cleavage site comprising a polypeptide having, e.g., at least one, two or three non-contiguous amino acid deletions relative to SEQ ID NO: 131.
[0265] In other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/G substrate cleavage site comprising a polypeptide having, e.g., at most two, three or four contiguous amino acid substitutions relative to SEQ ID NO: 131. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/G substrate cleavage site comprising a polypeptide having, e.g., at least two, three or four contiguous amino acid substitutions relative to SEQ ID NO: 131. In yet other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/G substrate cleavage site comprising a polypeptide having, e.g., at most two, three, four, five, six, seven, eight, nine or ten contiguous amino acid additions relative to SEQ ID NO: 131. In yet other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/G substrate cleavage site comprising a polypeptide having, e.g., at least two, three, four, five, six, seven, eight, nine or ten contiguous amino acid additions relative to SEQ ID NO: 131. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/G substrate cleavage site comprising a polypeptide having, e.g., at most two or three contiguous amino acid deletions relative to SEQ ID NO: 131. In still other aspects of this embodiment, a polynucleotide molecule encodes a BoNT/G substrate cleavage site comprising a polypeptide having, e.g., at least two or three contiguous amino acid deletions relative to SEQ ID NO: 131.
[0266] In still another embodiment, a polynucleotide molecule encodes a modified Clostridial toxin comprising a TeNT substrate cleavage site. In an aspect of this embodiment, a polynucleotide molecule encodes a TeNT substrate cleavage site comprising at least six consecutive residues of VAMP including Gln-Phe. In other aspects of this embodiment, a polynucleotide molecule encodes a TeNT substrate cleavage site comprising, e.g., the amino acid sequence Gly-Ala-Ser-Gln-Phe-Glu-Thr-Ser (SEQ ID NO: 107); the amino acid sequence Gly-Ala-Ser-Gln-Phe-Glu-Ser-Ser (SEQ ID NO: 108); the amino acid sequence Gly-Ala-Ser-Gln-Phe-Glu-Thr-Asn (SEQ ID NO: 109); the amino acid sequence Gly-Ala-Ser-Gln-Phe-Glu-Gln-Gln (SEQ ID NO: 110); the amino acid sequence Gly-Ala-Ser-Gln-Phe-Glu-Ala-Ser (SEQ ID NO: 111); or the amino acid sequence Gly-Ala-Ser-Gln-Phe-Gln-Gln-Ser (SEQ ID NO: 112). In another aspect of this embodiment, a polynucleotide molecule encodes a TeNT substrate cleavage site comprising a naturally occurring TeNT substrate cleavage site variant. In another aspect of this embodiment, a polynucleotide molecule encodes a TeNT substrate cleavage site comprising a naturally occurring TeNT substrate cleavage site variant of SEQ ID NO: 107, SEQ ID NO: 108, SEQ ID NO: 109, SEQ ID NO: 110, SEQ ID NO: 111 or SEQ ID NO: 112, such as, e.g., a BoNT/B substrate cleavage site isoform of SEQ ID NO: 107, SEQ ID NO: 108, SEQ ID NO: 109, SEQ ID NO: 110, SEQ ID NO: 111 or SEQ ID NO: 112, such as, e.g., a TeNT substrate cleavage site isoform of SEQ ID NO: 107, SEQ ID NO: 108, SEQ ID NO: 109, SEQ ID NO: 110, SEQ ID NO: 111 or SEQ ID NO: 112, such as, e.g., a BoNT/B substrate cleavage site isoform of SEQ ID NO: 107, SEQ ID NO: 108, SEQ ID NO: 109, SEQ ID NO: 110, SEQ ID NO: 111 or SEQ ID NO: 112; or a TeNT substrate cleavage site subtype of SEQ ID NO: 107, SEQ ID NO: 108, SEQ ID NO: 109, SEQ ID NO: 110, SEQ ID NO: 111 or SEQ ID NO: 112, such as, e.g., a BoNT/B substrate cleavage site isoform of SEQ ID NO: 107, SEQ ID NO: 108, SEQ ID NO: 109, SEQ ID NO: 110, SEQ ID NO: 111 or SEQ ID NO: 112. In still another aspect of this embodiment, a polynucleotide molecule encodes a TeNT substrate cleavage site comprising a non-naturally occurring TeNT substrate cleavage site variant, such as, e.g., a conservative TeNT substrate cleavage site variant, a non-conservative TeNT substrate cleavage site variant or a TeNT substrate cleavage site peptidomimetic, or any combination thereof. In still another aspect of this embodiment, a polynucleotide molecule encodes a TeNT substrate cleavage site comprising a non-naturally occurring TeNT substrate cleavage site variant of SEQ ID NO: 107, SEQ ID NO: 108, SEQ ID NO: 109, SEQ ID NO: 110, SEQ ID NO: 111 or SEQ ID NO: 112, such as, e.g., a BoNT/B substrate cleavage site isoform of SEQ ID NO: 107, SEQ ID NO: 108, SEQ ID NO: 109, SEQ ID NO: 110, SEQ ID NO: 111 or SEQ ID NO: 112; such as, e.g., a conservative TeNT substrate cleavage site variant of SEQ ID NO: 107, SEQ ID NO: 108, SEQ ID NO: 109, SEQ ID NO: 110, SEQ ID NO: 111 or SEQ ID NO: 112, such as, e.g., a BoNT/B substrate cleavage site isoform of SEQ ID NO: 107, SEQ ID NO: 108, SEQ ID NO: 109, SEQ ID NO: 110, SEQ ID NO: 111 or SEQ ID NO: 112; a non-conservative TeNT substrate cleavage site variant of SEQ ID NO: 107, SEQ ID NO: 108, SEQ ID NO: 109, SEQ ID NO: 110, SEQ ID NO: 111 or SEQ ID NO: 112, such as, e.g., a BoNT/B substrate cleavage site isoform of SEQ ID NO: 107, SEQ ID NO: 108, SEQ ID NO: 109, SEQ ID NO: 110, SEQ ID NO: 111 or SEQ ID NO: 112; a TeNT substrate cleavage site peptidomimetic of SEQ ID NO: 107, SEQ ID NO: 108, SEQ ID NO: 109, SEQ ID NO: 110, SEQ ID NO: 111 or SEQ ID NO: 112, such as, e.g., a BoNT/B substrate cleavage site isoform of SEQ ID NO: 107, SEQ ID NO: 108, SEQ ID NO: 109, SEQ ID NO: 110, SEQ ID NO: 111 or SEQ ID NO: 112; or any combination thereof.
[0267] In other aspects of this embodiment, a polynucleotide molecule encodes a TeNT substrate cleavage site comprising a polypeptide having, e.g., at least 50% amino acid identity with SEQ ID NO: 107, at least 62.5% amino acid identity with the SEQ ID NO: 107, at least 75% amino acid identity with SEQ ID NO: 107 or at least 87.5% amino acid identity with SEQ ID NO: 107. In still other aspects of this embodiment, a polynucleotide molecule encodes a TeNT substrate cleavage site comprising a polypeptide having, e.g., at most 50% amino acid identity with SEQ ID NO: 107, at most 62.5% amino acid identity with the SEQ ID NO: 107, at most 75% amino acid identity with SEQ ID NO: 107 or at most 87.5% amino acid identity with SEQ ID NO: 107.
[0268] In other aspects of this embodiment, a polynucleotide molecule encodes a TeNT substrate cleavage site comprising a polypeptide having, e.g., at most one, two, three or four non-contiguous amino acid substitutions relative to SEQ ID NO: 107. In still other aspects of this embodiment, a polynucleotide molecule encodes a TeNT substrate cleavage site comprising a polypeptide having, e.g., at least one, two, three or four non-contiguous amino acid substitutions relative to SEQ ID NO: 107. In yet other aspects of this embodiment, a polynucleotide molecule encodes a TeNT substrate cleavage site comprising a polypeptide having, e.g., at most one, two, three, four, five, six, seven, eight, nine or ten non-contiguous amino acid additions relative to SEQ ID NO: 107. In yet other aspects of this embodiment, a polynucleotide molecule encodes TeNT substrate cleavage site comprising a polypeptide having, e.g., at least one, two, three, four, five, six, seven, eight, nine or ten non-contiguous amino acid additions relative to SEQ ID NO: 107. In still other aspects of this embodiment, a polynucleotide molecule encodes a TeNT substrate cleavage site comprising a polypeptide having, e.g., at most one, two or three non-contiguous amino acid deletions relative to SEQ ID NO: 107. In still other aspects of this embodiment, a polynucleotide molecule encodes a TeNT substrate cleavage site comprising a polypeptide having, e.g., at least one, two or three non-contiguous amino acid deletions relative to SEQ ID NO: 107.
[0269] In other aspects of this embodiment, a polynucleotide molecule encodes a TeNT substrate cleavage site comprising a polypeptide having, e.g., at most two, three or four contiguous amino acid substitutions relative to SEQ ID NO: 107. In still other aspects of this embodiment, a polynucleotide molecule encodes a TeNT substrate cleavage site comprising a polypeptide having, e.g., at least two, three or four contiguous amino acid substitutions relative to SEQ ID NO: 107. In yet other aspects of this embodiment, a polynucleotide molecule encodes a TeNT substrate cleavage site comprising a polypeptide having, e.g., at most two, three, four, five, six, seven, eight, nine or ten contiguous amino acid additions relative to SEQ ID NO: 107. In yet other aspects of this embodiment, a polynucleotide molecule encodes a TeNT substrate cleavage site comprising a polypeptide having, e.g., at least two, three, four, five, six, seven, eight, nine or ten contiguous amino acid additions relative to SEQ ID NO: 107. In still other aspects of this embodiment, a polynucleotide molecule encodes a TeNT substrate cleavage site comprising a polypeptide having, e.g., at most two or three contiguous amino acid deletions relative to SEQ ID NO: 107. In still other aspects of this embodiment, a polynucleotide molecule encodes a TeNT substrate cleavage site comprising a polypeptide having, e.g., at least two or three contiguous amino acid deletions relative to SEQ ID NO: 107.
[0270] In yet another embodiment, a polynucleotide molecule encoding a modified Clostridial toxin disclosed in the present specification can further comprise a polynucleotide molecule encoding a flexible region comprising a flexible spacer. In another embodiment, a polynucleotide molecule encoding a modified Clostridial toxin disclosed in the present specification can further comprise a polynucleotide molecule encoding a flexible region comprising a plurality of flexible spacers in tandem. In aspects of this embodiment, a polynucleotide molecule encoding a flexible region can comprise in tandem, e.g., at least 1 G-spacer, at least 2 G-spacers, at least 3 G-spacers, at least 4 G-spacers or at least 5 G-spacers. In other aspects of this embodiment, a polynucleotide molecule encoding a flexible region can comprise in tandem, e.g., at most 1 G-spacer, at most 2 G-spacers, at most 3 G-spacers, at most 4 G-spacers or at most 5 G-spacers. In still other aspects of this embodiment, a polynucleotide molecule encoding a flexible region can comprise in tandem, e.g., at least 1 A-spacer, at least 2 A-spacers, at least 3 A-spacers, at least 4 A-spacers or at least 5 A-spacers. In still other aspects of this embodiment, a polynucleotide molecule encoding a flexible region can comprise in tandem, e.g., at most 1 A-spacer, at most 2 A-spacers, at most 3 A-spacers, at most 4 A-spacers or at most 5 A-spacers. In another aspect of this embodiment, a polynucleotide molecule encoding a modified Clostridial toxin can comprise a polynucleotide molecule encoding a flexible region comprising one or more copies of the same flexible spacers, one or more copies of different flexible-spacers region, or any combination thereof.
[0271] In yet another embodiment, a polynucleotide molecule encoding a modified Clostridial toxin disclosed in the present specification can further comprises a polynucleotide molecule encoding an epitope-binding region. In another embodiment, a polynucleotide molecule encoding a modified Clostridial toxin disclosed in the present specification can further comprises a polynucleotide molecule encoding a plurality of epitope-binding regions. In aspects of this embodiment, a polynucleotide molecule encoding a modified Clostridial toxin can comprise, e.g., at least 1 polynucleotide molecule encoding an epitope-binding region, at least 2 polynucleotide molecules encoding epitope-binding regions, at least 3 polynucleotide molecules encoding epitope-binding regions, at least 4 polynucleotide molecules encoding epitope-binding regions or at least 5 polynucleotide molecules encoding epitope-binding regions. In other aspects of this embodiment, a polynucleotide molecule encoding a modified Clostridial toxin can comprise, e.g., at most 1 polynucleotide molecule encoding an epitope-binding region, at most 2 polynucleotide molecules encoding epitope-binding regions, at most 3 polynucleotide molecules encoding epitope-binding regions, at most 4 polynucleotide molecules encoding epitope-binding regions or at most 5 polynucleotide molecules encoding epitope-binding regions. In another aspect of this embodiment, a polynucleotide molecule encoding a modified Clostridial toxin can comprise one or more copies of the same polynucleotide molecules encoding epitope-binding region, one or more copies of different polynucleotide molecules encoding epitope-binding region, or any combination thereof. The location of a polynucleotide molecule encoding an epitope-binding region can be in various positions, including, without limitation, at the amino terminus of a modified Clostridial toxin, within a modified Clostridial toxin, or at the carboxyl terminus of a modified Clostridial toxin.
[0272] In an aspect of this embodiment, a polynucleotide molecule encoding an epitope-binding region is located at the amino-terminus of a modified Clostridial toxin. In aspects of this embodiment, a polynucleotide molecule encoding an epitope-binding region located at the amino-terminus of a modified Clostridial toxin disclosed in the present specification can be, e.g., a FLAG, Express® epitope-binding region, a human Influenza virus hemagluttinin (HA) epitope-binding region, a human p62c-Myc protein (c-MYC) epitope-binding region, a Vesicular Stomatitis Virus Glycoprotein (VSV-G) epitope-binding region, a Substance P epitope-binding region, a glycoprotein-D precursor of Herpes simplex virus (HSV) epitope-binding region, a V5 epitope-binding region, a AU1 epitope-binding region, a AU5 epitope-binding region, a polyhistidine epitope-binding region, a streptavidin binding peptide epitope-binding region, a biotin epitope-binding region, a biotinylation epitope-binding region, a glutathione binding domain of glutathione-S-transferase, a calmodulin binding domain of the calmodulin binding protein or a maltose binding domain of the maltose binding protein.
[0273] In another aspect of this embodiment, a polynucleotide molecule encoding an epitope-binding region is located at the carboxyl-terminus of a modified Clostridial toxin. In aspects of this embodiment, a polynucleotide molecule encoding an epitope-binding region located at the carboxyl-terminus of a modified Clostridial toxin disclosed in the present specification can be, e.g., a FLAG, Express® epitope-binding region, a human Influenza virus hemagluttinin (HA) epitope-binding region, a human p62c-Myc protein (c-MYC) epitope-binding region, a Vesicular Stomatitis Virus Glycoprotein (VSV-G) epitope-binding region, a Substance P epitope-binding region, a glycoprotein-D precursor of Herpes simplex virus (HSV) epitope-binding region, a V5 epitope-binding region, a AU1 epitope-binding region, a AU5 epitope-binding region, a polyhistidine epitope-binding region, a streptavidin binding peptide epitope-binding region, a biotin epitope-binding region, a biotinylation epitope-binding region, a glutathione binding domain of glutathione-S-transferase, a calmodulin binding domain of the calmodulin binding protein or a maltose binding domain of the maltose binding protein.
[0274] In yet another embodiment, polynucleotide molecules encoding a modified Clostridial toxin disclosed in the present specification can further comprise a polynucleotide molecule encoding an exogenous protease cleavage site. In another embodiment, a polynucleotide molecule encoding a modified Clostridial toxin disclosed in the present specification can further comprises a plurality of polynucleotide molecules encoding exogenous protease cleavage sites. In aspects of this embodiment, a polynucleotide molecule encoding a modified Clostridial toxin can comprise, e.g., at least 1 polynucleotide molecule encoding an exogenous protease cleavage site, at least 2 polynucleotide molecules encoding exogenous protease cleavage sites, at least 3 polynucleotide molecules encoding exogenous protease cleavage sites, at least 4 polynucleotide molecules encoding exogenous protease cleavage sites or at least 5 polynucleotide molecules encoding exogenous protease cleavage sites. In other aspects of this embodiment, polynucleotide molecules encoding a modified Clostridial toxin can comprise, e.g., at most 1 polynucleotide molecule encoding an exogenous protease cleavage site, at most 2 polynucleotide molecules encoding exogenous protease cleavage sites, at most 3 polynucleotide molecules encoding exogenous protease cleavage sites, at most 4 polynucleotide molecules encoding exogenous protease cleavage sites or at most 5 polynucleotide molecules encoding exogenous protease cleavage sites. In another aspect of this embodiment, a polynucleotide molecule encoding a modified Clostridial toxin can comprise one or more copies of the same exogenous protease cleavage site, one or more copies of different exogenous protease cleavage site, or any combination thereof.
[0275] In yet another embodiment, a polynucleotide molecule encoding an exogenous protease cleavage site is located between a polynucleotide molecule encoding an epitope-binding peptide and a polynucleotide molecule encoding a modified Clostridial toxin. In other aspects of this embodiment, a polynucleotide molecule encoding a bovine enterokinase cleavage site is located between a polynucleotide molecule encoding an epitope-binding region and a polynucleotide molecule encoding a modified Clostridial toxin, a polynucleotide molecule encoding a Tobacco Etch Virus protease cleavage site is located between a polynucleotide molecule encoding an epitope-binding region and a polynucleotide molecule encoding a modified Clostridial toxin, a polynucleotide molecule encoding a Human Rhinovirus 3C protease cleavage site is located between a polynucleotide molecule encoding an epitope-binding region and a polynucleotide molecule encoding a modified Clostridial toxin, a polynucleotide molecule encoding a SUMO/ULP-1 protease cleavage site is located between a polynucleotide molecule encoding an epitope-binding region and a polynucleotide molecule encoding a modified Clostridial toxin, a polynucleotide molecule encoding a Thrombin protease cleavage site is located between a polynucleotide molecule encoding an epitope-binding region and a polynucleotide molecule encoding a modified Clostridial toxin, or a polynucleotide molecule encoding a Coagulation Factor Xa protease cleavage site is located between a polynucleotide molecule encoding an epitope-binding region and a polynucleotide molecule encoding a modified Clostridial toxin. In other aspects of the embodiment, a polynucleotide molecule encoding the bovine enterokinase protease cleavage site of SEQ ID NO: 168 is located between a polynucleotide molecule encoding an epitope-binding region and a polynucleotide molecule encoding a modified Clostridial toxin. In other aspects of the embodiment, a polynucleotide molecule encoding the Tobacco Etch Virus protease cleavage site of SEQ ID NO: 169, SEQ ID NO: 170, SEQ ID NO: 171, SEQ ID NO: 172, SEQ ID NO: 173, SEQ ID NO: 174, SEQ ID NO: 175, SEQ ID NO: 176, SEQ ID NO: 177 or SEQ ID NO: 178 is located between a polynucleotide molecule encoding an epitope-binding region and a polynucleotide molecule encoding a modified Clostridial toxin. In still other aspects of the embodiment, a polynucleotide molecule encoding the Human Rhinovirus 3C protease cleavage site of SEQ ID NO: 179, SEQ ID NO: 180, SEQ ID NO: 181, SEQ ID NO: 182, SEQ ID NO: 183 or SEQ ID NO: 184 is located between a polynucleotide molecule encoding an epitope-binding region and a polynucleotide molecule encoding a modified Clostridial toxin. In yet other aspects of the embodiment, a polynucleotide molecule encoding the SUMO/ULP-1 protease cleavage site of SEQ ID NO: 185 is located between a polynucleotide molecule encoding an epitope-binding region and a polynucleotide molecule encoding a modified Clostridial toxin. In further other aspects of the embodiment, a polynucleotide molecule encoding the Thrombin protease cleavage site of SEQ ID NO: 186, SEQ ID NO: 187, SEQ ID NO: 188, SEQ ID NO: 189, SEQ ID NO: 190, SEQ ID NO: 191, SEQ ID NO: 192, SEQ ID NO: 193, SEQ ID NO: 194, SEQ ID NO: 195, SEQ ID NO: 196, SEQ ID NO: 197, SEQ ID NO: 198, SEQ ID NO: 199 or SEQ ID NO: 200 is located between a polynucleotide molecule encoding an epitope-binding region and a polynucleotide molecule encoding a modified Clostridial toxin. In other aspects of the embodiment, a polynucleotide molecule encoding the Coagulation Factor Xa protease cleavage site of SEQ ID NO: 201 or SEQ ID NO: 202 is located between a polynucleotide molecule encoding an epitope-binding region and a polynucleotide molecule encoding a modified Clostridial toxin.
[0276] Another aspect of the present invention provides a method of producing a modified Clostridial toxin comprising Clostridial toxin substrate cleavage site, wherein the Clostridial toxin substrate cleavage site is located within the di-chain loop region, such method comprising the step of expressing a polynucleotide molecule encoding a modified Clostridial toxin in a cell. Another aspect of the present invention provides a method of producing a modified Clostridial toxin comprising Clostridial toxin substrate cleavage site, wherein the Clostridial toxin substrate cleavage site is located within the di-chain loop region, such method comprising the steps of introducing an expression construct comprising a polynucleotide molecule encoding a modified Clostridial toxin into a cell and expressing the expression construct in the cell.
[0277] The methods disclosed in the present specification include, in part, a Clostridial toxin. It is envisioned that any and all Clostridial toxins disclosed in the present specification can be produced using the methods disclosed in the present specification. Thus, aspects of this embodiment include producing, without limitation, naturally occurring Clostridial toxins, naturally occurring Clostridial toxins variants, such as, e.g., Clostridial toxins isoforms and Clostridial toxins subtypes, non-naturally occurring Clostridial toxins variants, such as, e.g., conservative Clostridial toxins variants, non-conservative Clostridial toxins variants and Clostridial toxins fragments thereof, or any combination thereof.
[0278] The methods disclosed in the present specification include, in part, Clostridial toxin substrate cleavage site. It is envisioned that any and all Clostridial toxin substrate cleavage site disclosed in the present specification can be produced using the methods disclosed in the present specification. Thus, aspects of this embodiment include producing, without limitation, naturally occurring Clostridial toxin substrate cleavage sites, naturally occurring Clostridial toxin substrate cleavage site variants, such as, e.g., Clostridial toxin substrate cleavage site isoforms and Clostridial toxin substrate cleavage site subtypes, non-naturally occurring Clostridial toxin substrate cleavage site variants, such as, e.g., conservative Clostridial toxin substrate cleavage site variants, non-conservative Clostridial toxin substrate cleavage site variants and Clostridial toxin substrate cleavage site peptidomimetics thereof, or any combination thereof.
[0279] The methods disclosed in the present specification include, in part, a polynucleotide molecule. It is envisioned that any and all polynucleotide molecules disclosed in the present specification can be used. Thus, aspects of this embodiment include, without limitation, polynucleotide molecules encoding naturally occurring Clostridial toxins; polynucleotide molecules encoding naturally occurring Clostridial toxins variants, such as, e.g., Clostridial toxins isoforms and Clostridial toxins subtypes; polynucleotide molecules encoding non-naturally occurring Clostridial toxins variants, such as, e.g., conservative Clostridial toxins variants, non-conservative Clostridial toxins variants and Clostridial toxins fragments thereof, or any combination thereof.
[0280] The methods disclosed in the present specification include, in part, an expression construct. An expression construct comprises a polynucleotide molecule disclosed in the present specification operably-linked to an expression vector useful for expressing the polynucleotide molecule in a cell or cell-free extract. A wide variety of expression vectors can be employed for expressing a polynucleotide molecule encoding a modified Clostridial toxin, including, without limitation, a viral expression vector; a prokaryotic expression vector; eukaryotic expression vectors, such as, e.g., a yeast expression vector, an insect expression vector and a mammalian expression vector; and a cell-free extract expression vector. It is further understood that expression vectors useful to practice aspects of these methods may include those which express a modified Clostridial toxin under control of a constitutive, tissue-specific, cell-specific or inducible promoter element, enhancer element or both. Non-limiting examples of expression vectors, along with well-established reagents and conditions for making and using an expression construct from such expression vectors are readily available from commercial vendors that include, without limitation, BD Biosciences-Clontech, Palo Alto, Calif.; BD Biosciences Pharmingen, San Diego, Calif.; Invitrogen, Inc, Carlsbad, Calif.; EMD Biosciences-Novagen, Madison, Wis.; QIAGEN, Inc., Valencia, Calif.; and Stratagene, La Jolla, Calif. The selection, making and use of an appropriate expression vector are routine procedures well within the scope of one skilled in the art and from the teachings herein.
[0281] Thus, aspects of this embodiment include, without limitation, a viral expression vector operably-linked to a polynucleotide molecule encoding a modified Clostridial toxin; a prokaryotic expression vector operably-linked to a polynucleotide molecule encoding a modified Clostridial toxin; a yeast expression vector operably-linked to a polynucleotide molecule encoding a modified Clostridial toxin; an insect expression vector operably-linked to a polynucleotide molecule encoding a modified Clostridial toxin; and a mammalian expression vector operably-linked to a polynucleotide molecule encoding a modified Clostridial toxin. Other aspects of this embodiment include, without limitation, expression constructs suitable for expressing a modified Clostridial toxin disclosed in the present specification using a cell-free extract comprising a cell-free extract expression vector operably linked to a polynucleotide molecule encoding a modified Clostridial toxin. Other aspects of this embodiment include, without limitation, expression constructs comprising polynucleotide molecules comprising any one of SEQ ID NO: 109 through SEQ ID NO: 132 and SEQ ID NO: 136 through SEQ ID NO: 159. Other aspects of this embodiment include, without limitation, expression constructs comprising polynucleotide molecules encoding a modified Clostridial toxin comprising any one of SEQ ID NO: 85 through SEQ ID NO: 108.
[0282] The methods disclosed in the present specification include, in part, a cell. It is envisioned that any and all cells can be used. Thus, aspects of this embodiment include, without limitation, prokaryotic cells including, without limitation, strains of aerobic, microaerophilic, capnophilic, facultative, anaerobic, gram-negative and gram-positive bacterial cells such as those derived from, e.g., Escherichia coli, Bacillus subtilis, Bacillus licheniformis, Bacteroides fragilis, Clostridia perfringens, Clostridia difficile, Caulobacter crescentus, Lactococcus lactis, Methylobacterium extorquens, Neisseria meningirulls, Neisseria meningitidis, Pseudomonas fluorescens and Salmonella typhimurium; and eukaryotic cells including, without limitation, yeast strains, such as, e.g., those derived from Pichia pastoris, Pichia methanolica, Pichia angusta, Schizosaccharomyces pombe, Saccharomyces cerevisiae and Yarrowia lipolytica; insect cells and cell lines derived from insects, such as, e.g., those derived from Spodoptera frugiperda, Trichoplusia ni, Drosophila melanogaster and Manduca sexta; and mammalian cells and cell lines derived from mammalian cells, such as, e.g., those derived from mouse, rat, hamster, porcine, bovine, equine, primate and human. Cell lines may be obtained from the American Type Culture Collection (2004); European Collection of Cell Cultures (2204); and the German Collection of Microorganisms and Cell Cultures (2004). Non-limiting examples of specific protocols for selecting, making and using an appropriate cell line are described in e.g., INSECT CELL CULTURE ENGINEERING (Mattheus F. A. Goosen et al. eds., Marcel Dekker, 1993); INSECT CELL CULTURES: FUNDAMENTAL AND APPLIED ASPECTS (J. M. Vlak et al. eds., Kluwer Academic Publishers, 1996); Maureen A. Harrison & Ian F. Rae, GENERAL TECHNIQUES OF CELL CULTURE (Cambridge University Press, 1997); CELL AND TISSUE CULTURE: LABORATORY PROCEDURES (Alan Doyle et al eds., John Wiley and Sons, 1998); R. Ian Freshney, CULTURE OF ANIMAL CELLS: A MANUAL OF BASIC TECHNIQUE (Wiley-Liss, 4th ed. 2000); ANIMAL CELL CULTURE: A PRACTICAL APPROACH (John R. W. Masters ed., Oxford University Press, 3rd ed. 2000); MOLECULAR CLONING A LABORATORY MANUAL, supra, (2001); BASIC CELL CULTURE: A PRACTICAL APPROACH (John M. Davis, Oxford Press, 2nd ed. 2002); and CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, supra, (2004). These protocols are routine procedures within the scope of one skilled in the art and from the teaching herein.
[0283] The methods disclosed in the present specification include, in part, introducing into a cell a polynucleotide molecule. A polynucleotide molecule introduced into a cell can be transiently or stably maintained by that cell. Stably-maintained polynucleotide molecules may be extra-chromosomal and replicate autonomously, or they may be integrated into the chromosomal material of the cell and replicate non-autonomously. It is envisioned that any and all methods for introducing a polynucleotide molecule disclosed in the present specification into a cell can be used. Methods useful for introducing a nucleic acid molecule into a cell include, without limitation, chemical-mediated transfection such as, e.g., calcium phosphate-mediated, diethyl-aminoethyl (DEAE) dextran-mediated, lipid-mediated, polyethyleneimine (PEI)-mediated, polylysine-mediated and polybrene-mediated; physical-mediated tranfection, such as, e.g., biolistic particle delivery, microinjection, protoplast fusion and electroporation; and viral-mediated transfection, such as, e.g., retroviral-mediated transfection, see, e.g., Introducing Cloned Genes into Cultured Mammalian Cells, pp. 16.1-16.62 (Sambrook & Russell, eds., Molecular Cloning A Laboratory Manual, Vol. 3, 3rd ed. 2001). One skilled in the art understands that selection of a specific method to introduce an expression construct into a cell will depend, in part, on whether the cell will transiently contain an expression construct or whether the cell will stably contain an expression construct. These protocols are routine procedures within the scope of one skilled in the art and from the teaching herein.
[0284] In an aspect of this embodiment, a chemical-mediated method, termed transfection, is used to introduce a polynucleotide molecule encoding a modified Clostridial toxin into a cell. In chemical-mediated methods of transfection the chemical reagent forms a complex with the nucleic acid that facilitates its uptake into the cells. Such chemical reagents include, without limitation, calcium phosphate-mediated, see, e.g., Martin Jordan & Florian Worm, Transfection of Adherent and Suspended Cells by Calcium Phosphate, 33(2) Methods 136-143 (2004); diethyl-aminoethyl (DEAE) dextran-mediated, lipid-mediated, cationic polymer-mediated like polyethyleneimine (PEI)-mediated and polylysine-mediated and polybrene-mediated, see, e.g., Chun Zhang et al., Polyethylenimine Strategies for Plasmid Delivery to Brain-Derived Cells, 33(2) Methods 144-150 (2004). Such chemical-mediated delivery systems can be prepared by standard methods and are commercially available, see, e.g., CellPhect Transfection Kit (Amersham Biosciences, Piscataway, N.J.); Mammalian Transfection Kit, Calcium phosphate and DEAE Dextran, (Stratagene, Inc., La Jolla, Calif.); Lipofectamine® Transfection Reagent (Invitrogen, Inc., Carlsbad, Calif.); ExGen 500 Transfection kit (Fermentas, Inc., Hanover, Md.), and SuperFect and Effectene Transfection Kits (Qiagen, Inc., Valencia, Calif.).
[0285] In another aspect of this embodiment, a physical-mediated method is used to introduce a polynucleotide molecule encoding a modified Clostridial toxin into a cell. Physical techniques include, without limitation, electroporation, biolistic and microinjection. Biolistics and microinjection techniques perforate the cell wall in order to introduce the nucleic acid molecule into the cell, see, e.g., Jeike E. Biewenga et al., Plasmid-Mediated Gene Transfer in Neurons Using the Biolistics Technique, 71(1) J. Neurosci. Methods. 67-75 (1997); and John O'Brien & Sarah C. R. Lummis, Biolistic and Diolistic Transfection: Using the Gene Gun to Deliver DNA and Lipophilic Dyes into Mammalian Cells, 33(2) Methods 121-125 (2004). Electroporation, also termed electropermeabilization, uses brief, high-voltage, electrical pulses to create transient pores in the membrane through which the nucleic acid molecules enter and can be used effectively for stable and transient transfections of all cell types, see, e.g., M. Golzio et al., In vitro and in vivo Electric Field-Mediated Permeabilization, Gene Transfer, and Expression, 33(2) Methods 126-135 (2004); and Oliver Gresch et al., New Non-Viral Method for Gene Transfer into Primary Cells, 33(2) Methods 151-163 (2004).
[0286] In another aspect of this embodiment, a viral-mediated method, termed transduction, is used to introduce a polynucleotide molecule encoding a modified Clostridial toxin into a cell. In viral-mediated methods of transient transduction, the process by which viral particles infect and replicate in a host cell has been manipulated in order to use this mechanism to introduce a nucleic acid molecule into the cell. Viral-mediated methods have been developed from a wide variety of viruses including, without limitation, retroviruses, adenoviruses, adeno-associated viruses, herpes simplex viruses, picornaviruses, alphaviruses and baculoviruses, see, e.g., Armin Blesch, Lentiviral and MLV based Retroviral Vectors for ex vivo and in vivo Gene Transfer, 33(2) Methods 164-172 (2004); and Maurizio Federico, From Lentiviruses to Lentivirus Vectors, 229 Methods Mol. Biol. 3-15 (2003); E. M. Poeschla, Non-Primate Lentiviral Vectors, 5(5) Curr. Opin. Mol. Ther. 529-540 (2003); Karim Benihoud et al, Adenovirus Vectors for Gene Delivery, 10(5) Curr. Opin. Biotechnol. 440-447 (1999); H. Bueler, Adeno-Associated Viral Vectors for Gene Transfer and Gene Therapy, 380(6) Biol. Chem. 613-622 (1999); Chooi M. Lai et al., Adenovirus and Adeno-Associated Virus Vectors, 21(12) DNA Cell Biol. 895-913 (2002); Edward A. Burton et al., Gene Delivery Using Herpes Simplex Virus Vectors, 21(12) DNA Cell Biol. 915-936 (2002); Paola Grandi et al., Targeting HSV Amplicon Vectors, 33(2) Methods 179-186 (2004); Ilya Frolov et al., Alphavirus-Based Expression Vectors: Strategies and Applications, 93(21) Proc. Natl. Acad. Sci. U.S.A. 11371-11377 (1996); Markus U. Ehrengruber, Alphaviral Gene Transfer in Neurobiology, 59(1) Brain Res. Bull. 13-22 (2002); Thomas A. Kost & J. Patrick Condreay, Recombinant Baculoviruses as Mammalian Cell Gene-Delivery Vectors, 20(4) Trends Biotechnol. 173-180 (2002); and A. Huser & C. Hofmann, Baculovirus Vectors: Novel Mammalian Cell Gene-Delivery Vehicles and Their Applications, 3(1) Am. J. Pharmacogenomics 53-63 (2003).
[0287] Adenoviruses, which are non-enveloped, double-stranded DNA viruses, are often selected for mammalian cell transduction because adenoviruses handle relatively large polynucleotide molecules of about 36 kb, are produced at high titer, and can efficiently infect a wide variety of both dividing and non-dividing cells, see, e.g., Wim T. J. M. C. Hermens et al., Transient Gene Transfer to Neurons and Glia: Analysis of Adenoviral Vector Performance in the CNS and PNS, 71(1) J. Neurosci. Methods 85-98 (1997); and Hiroyuki Mizuguchi et al., Approaches for Generating Recombinant Adenovirus Vectors, 52(3) Adv. Drug Deliv. Rev. 165-176 (2001). Transduction using adenoviral-based system do not support prolonged protein expression because the nucleic acid molecule is carried from an episome in the cell nucleus, rather than being integrated into the host cell chromosome. Adenoviral vector systems and specific protocols for how to use such vectors are disclosed in, e.g., ViraPower® Adenoviral Expression System (Invitrogen, Inc., Carlsbad, Calif.) and ViraPower® Adenoviral Expression System Instruction Manual 25-0543 version A, Invitrogen, Inc., (Jul. 15, 2002); and AdEasy® Adenoviral Vector System (Stratagene, Inc., La Jolla, Calif.) and AdEasy® Adenoviral Vector System Instruction Manual 064004f, Stratagene, Inc.
[0288] Nucleic acid molecule delivery can also use single-stranded RNA retroviruses, such as, e.g., oncoretroviruses and lentiviruses. Retroviral-mediated transduction often produce transduction efficiencies close to 100%, can easily control the proviral copy number by varying the multiplicity of infection (MOI), and can be used to either transiently or stably transduce cells, see, e.g., Tiziana Tonini et al., Transient Production Of Retroviral-and Lentiviral-Based Vectors For the Transduction of Mammalian Cells, 285 Methods Mol. Biol. 141-148 (2004); Armin Blesch, Lentiviral and MLV Based Retroviral Vectors for ex vivo and in vivo Gene Transfer, 33(2) Methods 164-172 (2004); Felix Recillas-Targa, Gene Transfer and Expression in Mammalian Cell Lines and Transgenic Animals, 267 Methods Mol. Biol. 417-433 (2004); and Roland Wolkowicz et al., Lentiviral Vectors for the Delivery of DNA into Mammalian Cells, 246 Methods Mol. Biol. 391-411 (2004). Retroviral particles consist of an RNA genome packaged in a protein capsid, surrounded by a lipid envelope. The retrovirus infects a host cell by injecting its RNA into the cytoplasm along with the reverse transcriptase enzyme. The RNA template is then reverse transcribed into a linear, double stranded cDNA that replicates itself by integrating into the host cell genome. Viral particles are spread both vertically (from parent cell to daughter cells via the provirus) as well as horizontally (from cell to cell via virions). This replication strategy enables long-term persistent expression since the nucleic acid molecules of interest are stably integrated into a chromosome of the host cell, thereby enabling long-term expression of the protein. For instance, animal studies have shown that lentiviral vectors injected into a variety of tissues produced sustained protein expression for more than 1 year, see, e.g., Luigi Naldini et al., In vivo Gene Delivery and Stable Transduction of Non-Dividing Cells By a Lentiviral Vector, 272(5259) Science 263-267 (1996). The Oncoretroviruses-derived vector systems, such as, e.g., Moloney murine leukemia virus (MoMLV), are widely used and infect many different non-dividing cells. Lentiviruses can also infect many different cell types, including dividing and non-dividing cells and possess complex envelope proteins, which allows for highly specific cellular targeting.
[0289] Retroviral vectors and specific protocols for how to use such vectors are disclosed in, e.g., U.S. Patent Nos. Manfred Gossen & Hermann Bujard, Tight Control of Gene Expression in Eukaryotic Cells By Tetracycline-Responsive Promoters, U.S. Pat. No. 5,464,758 (Nov. 7, 1995) and Hermann Bujard & Manfred Gossen, Methods for Regulating Gene Expression, U.S. Pat. No. 5,814,618 (Sep. 29, 1998) David S. Hogness, Polynucleotides Encoding Insect Steroid Hormone Receptor Polypeptides and Cells Transformed With Same, U.S. Pat. No. 5,514,578 (May 7, 1996) and David S. Hogness, Polynucleotide Encoding Insect Ecdysone Receptor, U.S. Pat. No. 6,245,531 (Jun. 12, 2001); Elisabetta Vegeto et al., Progesterone Receptor Having C. Terminal Hormone Binding Domain Truncations, U.S. Pat. No. 5,364,791 (Nov. 15, 1994), Elisabetta Vegeto et al., Mutated Steroid Hormone Receptors, Methods For Their Use and Molecular Switch For Gene Therapy, U.S. Pat. No. 5,874,534 (Feb. 23, 1999) and Elisabetta Vegeto et al., Mutated Steroid Hormone Receptors, Methods For Their Use and Molecular Switch For Gene Therapy, U.S. Pat. No. 5,935,934 (Aug. 10, 1999). Furthermore, such viral delivery systems can be prepared by standard methods and are commercially available, see, e.g., BD® Tet-Off and Tet-On Gene Expression Systems (BD Biosciences-Clonetech, Palo Alto, Calif.) and BD® Tet-Off and Tet-On Gene Expression Systems User Manual, PT3001-1, BD Biosciences Clonetech, (Mar. 14, 2003), GeneSwitch® System (Invitrogen, Inc., Carlsbad, Calif.) and GeneSwitch® System A Mifepristone-Regulated Expression System for Mammalian Cells version D, 25-0313, Invitrogen, Inc., (Nov. 4, 2002); ViraPower® Lentiviral Expression System (Invitrogen, Inc., Carlsbad, Calif.) and ViraPower® Lentiviral Expression System Instruction Manual 25-0501 version E, Invitrogen, Inc., (Dec. 8, 2003); and Complete Control® Retroviral Inducible Mammalian Expression System (Stratagene, La Jolla, Calif.) and Complete Control® Retroviral Inducible Mammalian Expression System Instruction Manual, 064005e.
[0290] The methods disclosed in the present specification include, in part, expressing a modified Clostridial toxin from a polynucleotide molecule. It is envisioned that any of a variety of expression systems may be useful for expressing a modified Clostridial toxin from a polynucleotide molecule disclosed in the present specification, including, without limitation, cell-based systems and cell-free expression systems. Cell-based systems include, without limitation, viral expression systems, prokaryotic expression systems, yeast expression systems, baculoviral expression systems, insect expression systems and mammalian expression systems. Cell-free systems include, without limitation, wheat germ extracts, rabbit reticulocyte extracts and E. coli extracts and generally are equivalent to the method disclosed herein. Expression of a polynucleotide molecule using an expression system can include any of a variety of characteristics including, without limitation, inducible expression, non-inducible expression, constitutive expression, viral-mediated expression, stably-integrated expression, and transient expression. Expression systems that include well-characterized vectors, reagents, conditions and cells are well-established and are readily available from commercial vendors that include, without limitation, Ambion, Inc. Austin, Tex.; BD Biosciences-Clontech, Palo Alto, Calif.; BD Biosciences Pharmingen, San Diego, Calif.; Invitrogen, Inc, Carlsbad, Calif.; QIAGEN, Inc., Valencia, Calif.; Roche Applied Science, Indianapolis, Ind.; and Stratagene, La Jolla, Calif. Non-limiting examples on the selection and use of appropriate heterologous expression systems are described in e.g., PROTEIN EXPRESSION. A PRACTICAL APPROACH (S. J. Higgins and B. David Hames eds., Oxford University Press, 1999); Joseph M. Fernandez & James P. Hoeffler, GENE EXPRESSION SYSTEMS. USING NATURE FOR THE ART OF EXPRESSION (Academic Press, 1999); and Meena Rai & Harish Padh, Expression Systems for Production of Heterologous Proteins, 80(9) Curr. Sci. 1121-1128, (2001). These protocols are routine procedures well within the scope of one skilled in the art and from the teaching herein.
[0291] A variety of cell-based expression procedures are useful for expressing a modified Clostridial toxin encoded by polynucleotide molecule disclosed in the present specification. Examples included, without limitation, viral expression systems, prokaryotic expression systems, yeast expression systems, baculoviral expression systems, insect expression systems and mammalian expression systems. Viral expression systems include, without limitation, the ViraPower® Lentiviral (Invitrogen, Inc., Carlsbad, Calif.), the Adenoviral Expression Systems (Invitrogen, Inc., Carlsbad, Calif.), the AdEasy® XL Adenoviral Vector System (Stratagene, La Jolla, Calif.) and the ViraPort® Retroviral Gene Expression System (Stratagene, La Jolla, Calif.). Non-limiting examples of prokaryotic expression systems include the Champion® pET Expression System (EMD Biosciences-Novagen, Madison, Wis.), the TriEx® Bacterial Expression Systems (EMD Biosciences-Novagen, Madison, Wis.), the QIAexpress® Expression System (QIAGEN, Inc.), and the Affinity® Protein Expression and Purification System (Stratagene, La Jolla, Calif.). Yeast expression systems include, without limitation, the EasySelect® Pichia Expression Kit (Invitrogen, Inc., Carlsbad, Calif.), the YES-Echo® Expression Vector Kits (Invitrogen, Inc., Carlsbad, Calif.) and the SpECTRA® S. pombe Expression System (Invitrogen, Inc., Carlsbad, Calif.). Non-limiting examples of baculoviral expression systems include the BaculoDirect® (Invitrogen, Inc., Carlsbad, Calif.), the Bac-to-Bac® (Invitrogen, Inc., Carlsbad, Calif.), and the BD BaculoGold® (BD Biosciences-Pharmigen, San Diego, Calif.). Insect expression systems include, without limitation, the Drosophila Expression System (DES®) (Invitrogen, Inc., Carlsbad, Calif.), InsectSelect® System (Invitrogen, Inc., Carlsbad, Calif.) and InsectDirect® System (EMD Biosciences-Novagen, Madison, Wis.). Non-limiting examples of mammalian expression systems include the T-REx® (Tetracycline-Regulated Expression) System (Invitrogen, Inc., Carlsbad, Calif.), the Flp-In® T-REx® System (Invitrogen, Inc., Carlsbad, Calif.), the pcDNA® system (Invitrogen, Inc., Carlsbad, Calif.), the pSecTag2 system (Invitrogen, Inc., Carlsbad, Calif.), the Exchanger® System, InterPlay® Mammalian TAP System (Stratagene, La Jolla, Calif.), Complete Control® Inducible Mammalian Expression System (Stratagene, La Jolla, Calif.) and LacSwitch®.sup. II Inducible Mammalian Expression System (Stratagene, La Jolla, Calif.).
[0292] Another procedure of expressing a modified Clostridial toxin encoded by polynucleotide molecule disclosed in the present specification employs a cell-free expression system such as, without limitation, prokaryotic extracts and eukaryotic extracts. Non-limiting examples of prokaryotic cell extracts include the RTS 100 E. coli HY Kit (Roche Applied Science, Indianapolis, Ind.), the ActivePro In Vitro Translation Kit (Ambion, Inc., Austin, Tex.), the EcoPro® System (EMD Biosciences-Novagen, Madison, Wis.) and the Expressway® Plus Expression System (Invitrogen, Inc., Carlsbad, Calif.). Eukaryotic cell extract include, without limitation, the RTS 100 Wheat Germ CECF Kit (Roche Applied Science, Indianapolis, Ind.), the TnT® Coupled Wheat Germ Extract Systems (Promega Corp., Madison, Wis.), the Wheat Germ IVT® Kit (Ambion, Inc., Austin, Tex.), the Retic Lysate IVT® Kit (Ambion, Inc., Austin, Tex.), the PROTEINscript® II System (Ambion, Inc., Austin, Tex.) and the TnT® Coupled Reticulocyte Lysate Systems (Promega Corp., Madison, Wis.).
[0293] Aspects of the present invention can also be described as follows: [0294] 1. A modified Clostridial toxin comprising a Clostridial toxin substrate cleavage site, wherein the Clostridial toxin substrate cleavage site is located within a di-chain loop region. [0295] 2. The modified Clostridial toxin according to 1, wherein the Clostridial toxin substrate cleavage site is a Botulinum toxin substrate cleavage site. [0296] 3. The modified Clostridial toxin according to 2, wherein the Botulinum toxin substrate cleavage site is selected from the group consisting of a BoNT/A substrate cleavage site, a BoNT/B substrate cleavage site, a BoNT/C1 substrate cleavage site, a BoNT/D substrate cleavage site, a BoNT/E substrate cleavage site, a BoNT/F substrate cleavage site and a BoNT/G substrate cleavage site [0297] 4. The modified Clostridial toxin according to 2, wherein the Botulinum toxin substrate cleavage site comprises a BoNT/A cleavage site. [0298] 5. The modified Clostridial toxin according to 2, wherein the Botulinum toxin substrate cleavage site comprises at least six consecutive residues of a SNAP-25, said six consecutive residues comprising Gln-Arg. [0299] 6. The modified Clostridial toxin according to 2, wherein the Botulinum toxin substrate cleavage site comprises at least six consecutive residues of a SNAP-25, said six consecutive residues comprising Lys-His. [0300] 7. The modified Clostridial toxin according to 2, wherein the Botulinum toxin substrate cleavage site comprises SEQ ID NO: 104, SEQ ID NO: 105 or SEQ ID NO: 106. [0301] 8. The modified Clostridial toxin according to 2, wherein the Botulinum toxin substrate cleavage site comprises a BoNT/B cleavage site. [0302] 9. The modified Clostridial toxin according to 2, wherein the Botulinum toxin substrate cleavage site comprises at least six consecutive residues of a VAMP, said six consecutive residues comprising Gln-Phe. [0303] 10. The modified Clostridial toxin according to 2, wherein the Botulinum toxin substrate cleavage site comprises SEQ ID NO: 107, SEQ ID NO: 108, SEQ ID NO: 109, SEQ ID NO: 110, SEQ ID NO: 111 or SEQ ID NO: 112. [0304] 11. The modified Clostridial toxin according to 2, wherein the Botulinum toxin substrate cleavage site comprises a BoNT/C1 cleavage site. [0305] 12. The modified Clostridial toxin according to 2, wherein the Botulinum toxin substrate cleavage site comprises at least six consecutive residues of a SNAP-25, said six consecutive residues comprising Arg-Ala. [0306] 13. The modified Clostridial toxin according to 2, wherein the Botulinum toxin substrate cleavage site comprises at least six consecutive residues of a Syntaxin, said six consecutive residues comprising Lys-Ala. [0307] 14. The modified Clostridial toxin according to 2, wherein the Botulinum toxin substrate cleavage site comprises at least six consecutive residues of a Syntaxin, said six consecutive residues comprising Arg-Ala. [0308] 15. The modified Clostridial toxin according to 2, wherein the Botulinum toxin substrate cleavage site comprises SEQ ID NO: 113, SEQ ID NO: 114, SEQ ID NO: 115, SEQ ID NO: 116, SEQ ID NO: 117, SEQ ID NO: 118, SEQ ID NO: 119, SEQ ID NO: 120 or SEQ ID NO: 121. [0309] 16. The modified Clostridial toxin according to 2, wherein the Botulinum toxin substrate cleavage site comprises a BoNT/D cleavage site. [0310] 17. The modified Clostridial toxin according to 2, wherein the Botulinum toxin substrate cleavage site comprises at least six consecutive residues of a VAMP, said six consecutive residues comprising Lys-Leu. [0311] 18. The modified Clostridial toxin according to 2, wherein the Botulinum toxin substrate cleavage site comprises SEQ ID NO: 122 or SEQ ID NO: 123. [0312] 19. The modified Clostridial toxin according to 2, wherein the Botulinum toxin substrate cleavage site comprises a BoNT/E cleavage site. [0313] 20. The modified Clostridial toxin according to 2, wherein the Botulinum toxin substrate cleavage site comprises at least six consecutive residues of a SNAP-25, said six consecutive residues comprising Arg-Ile. [0314] 21. The modified Clostridial toxin according to 2, wherein the Botulinum toxin substrate cleavage site comprises at least six consecutive residues of a SNAP-25, said six consecutive residues comprising Lys-Ile. [0315] 22. The modified Clostridial toxin according to 2, wherein the Botulinum toxin substrate cleavage site comprises SEQ ID NO: 124, SEQ ID NO: 125, SEQ ID NO: 126, SEQ ID NO: 127 or SEQ ID NO: 128. [0316] 23. The modified Clostridial toxin according to 2, wherein the Botulinum toxin substrate cleavage site comprises a BoNT/F cleavage site. [0317] 24. The modified Clostridial toxin according to 2, wherein the Botulinum toxin substrate cleavage site comprises at least six consecutive residues of a VAMP, said six consecutive residues comprising Gln-Lys. [0318] 25. The modified Clostridial toxin according to 2, wherein the Botulinum toxin substrate cleavage site comprises SEQ ID NO: 129 or SEQ ID NO: 130. [0319] 26. The modified Clostridial toxin according to 2, wherein the Botulinum toxin substrate cleavage site comprises a BoNT/G cleavage site. [0320] 27. The modified Clostridial toxin according to 2, wherein the Botulinum toxin substrate cleavage site comprises at least six consecutive residues of a VAMP, said six consecutive residues comprising Ala-Ala. [0321] 28. The modified Clostridial toxin according to 2, wherein the Botulinum toxin substrate cleavage site comprises SEQ ID NO: 131 or SEQ ID NO: 132. [0322] 29. The modified Clostridial toxin according to 1, wherein the Clostridial toxin substrate cleavage site is a Tetanus toxin substrate cleavage site. [0323] 30. The modified Clostridial toxin according to 29, wherein the Tetanus toxin substrate cleavage site comprises at least six consecutive residues of a VAMP, said six consecutive residues comprising Gln-Phe. [0324] 31. The modified Clostridial toxin according to 1, wherein the modified Clostridial toxin comprises a Botulinum toxin enzymatic domain, a Botulinum toxin translocation domain and a Botulinum toxin binding domain. [0325] 32. The modified Clostridial toxin according to 1, wherein the modified Botulinum toxin comprises a BoNT/A enzymatic domain, a BoNT/A translocation domain and a BoNT/A binding domain. [0326] 33. The modified Clostridial toxin according to 1, wherein the modified Botulinum toxin comprises a BoNT/B enzymatic domain, a BoNT/B translocation domain and a BoNT/B binding domain. [0327] 34. The modified Clostridial toxin according to 1, wherein the modified Botulinum toxin comprises a BoNT/C1 enzymatic domain, a BoNT/C1 translocation domain and a BoNT/C1 binding domain. [0328] 35. The modified Clostridial toxin according to 1, wherein the modified Botulinum toxin comprises a BoNT/D enzymatic domain, a BoNT/D translocation domain and a BoNT/D binding domain. [0329] 36. The modified Clostridial toxin according to 1, wherein the modified Botulinum toxin comprises a BoNT/E enzymatic domain, a BoNT/E translocation domain and a BoNT/E binding domain. [0330] 37. The modified Clostridial toxin according to 1, wherein the modified Botulinum toxin comprises a BoNT/F enzymatic domain, a BoNT/F translocation domain and a BoNT/F binding domain. [0331] 38. The modified Clostridial toxin according to 1, wherein the modified Botulinum toxin comprises a BoNT/G enzymatic domain, a BoNT/G translocation domain and a BoNT/G binding domain. [0332] 39. The modified Clostridial toxin according to 1, wherein the modified Clostridial toxin comprises a Tetanus toxin enzymatic domain, a Tetanus toxin translocation domain and a Tetanus toxin binding domain. [0333] 40. A modified Clostridial toxin comprising: [0334] a) a Clostridial toxin substrate cleavage site; [0335] b) a di-chain loop region [0336] c) a Clostridial toxin enzymatic domain; [0337] d) a Clostridial toxin translocation domain; and [0338] e) an enhanced cell binding activity capable of intoxicating a naturally occurring Clostridial toxin target cell; [0339] wherein the Clostridial toxin substrate cleavage site is located within the di-chain loop region. [0340] 41. A modified Clostridial toxin comprising: [0341] a) a Clostridial toxin substrate cleavage site; [0342] b) a di-chain loop region [0343] c) a Clostridial toxin enzymatic domain; [0344] d) a Clostridial toxin translocation domain; and [0345] e) an altered cell binding activity capable of intoxicating a naturally occurring Clostridial toxin target cell; [0346] wherein the Clostridial toxin substrate cleavage site is located within the di-chain loop region. [0347] 42. A modified Clostridial toxin comprising: [0348] a) a Clostridial toxin substrate cleavage site; [0349] b) a di-chain loop region [0350] c) a Clostridial toxin enzymatic domain; [0351] d) a Clostridial toxin translocation domain; and [0352] e) an altered cell binding activity capable of intoxicating a non-naturally occurring Clostridial toxin target cell; [0353] wherein the Clostridial toxin substrate cleavage site is located within the di-chain loop region. [0354] 43. The modified Clostridial toxin according to any one of 40-42, wherein the Clostridial toxin substrate cleavage site is selected from the group consisting of a BoNT/A substrate cleavage site, a BoNT/B substrate cleavage site, a BoNT/C1 substrate cleavage site, a BoNT/D substrate cleavage site, a BoNT/E substrate cleavage site, a BoNT/F substrate cleavage site, a BoNT/G substrate cleavage site, a TeNT substrate cleavage site, a BaNT substrate cleavage site and a BuNT substrate cleavage site. [0355] 44. The modified Clostridial toxin according to any one of 40-42, wherein the Clostridial toxin enzymatic domain is selected from the group consisting of a BoNT/A enzymatic domain, a BoNT/B enzymatic domain, a BoNT/C1 enzymatic domain, a BoNT/D enzymatic domain, a BoNT/E enzymatic domain, a BoNT/F enzymatic domain, a BoNT/G enzymatic domain and a TeNT enzymatic domain, a BaNT enzymatic domain and a BuNT enzymatic domain. [0356] 45. The modified Clostridial toxin according to any one of 40-42, wherein the Clostridial toxin translocation domain is selected from the group consisting of a BoNT/A translocation domain, a BoNT/B translocation domain, a BoNT/C1 translocation domain, a BoNT/D translocation domain, a BoNT/E translocation domain, a BoNT/F translocation domain, a BoNT/G translocation domain and a TeNT translocation domain, a BaNT translocation domain and a BuNT translocation domain. [0357] 46. A polynucleotide molecule encoding a modified Clostridial toxin comprising: [0358] a) a Clostridial toxin substrate cleavage site; [0359] b) a di-chain loop region [0360] c) a Clostridial toxin enzymatic domain; [0361] d) a Clostridial toxin translocation domain; and [0362] e) an enhanced cell binding activity capable of intoxicating a naturally occurring Clostridial toxin target cell; [0363] wherein the Clostridial toxin substrate cleavage site is located within the di-chain loop region. [0364] 47. A polynucleotide molecule encoding a modified Clostridial toxin comprising: [0365] a) a Clostridial toxin substrate cleavage site; [0366] b) a di-chain loop region [0367] c) a Clostridial toxin enzymatic domain; [0368] d) a Clostridial toxin translocation domain; and [0369] e) an altered cell binding activity capable of intoxicating a naturally occurring Clostridial toxin target cell; [0370] wherein the Clostridial toxin substrate cleavage site is located within the di-chain loop region. [0371] 48. A polynucleotide molecule encoding a modified Clostridial toxin comprising: [0372] a) a Clostridial toxin substrate cleavage site; [0373] b) a di-chain loop region [0374] c) a Clostridial toxin enzymatic domain; [0375] d) a Clostridial toxin translocation domain; and [0376] e) an altered cell binding activity capable of intoxicating a non-naturally occurring Clostridial toxin target cell; [0377] wherein the Clostridial toxin substrate cleavage site is located within the di-chain loop region. [0378] 49. The polynucleotide molecule according to any one of 46-48, wherein the polynucleotide molecule encoding the Clostridial toxin substrate cleavage site encodes a BoNT/A substrate cleavage site, a BoNT/B substrate cleavage site, a BoNT/C1 substrate cleavage site, a BoNT/D substrate cleavage site, a BoNT/E substrate cleavage site, a BoNT/F substrate cleavage site, a BoNT/G substrate cleavage site, a TeNT substrate cleavage site, a BaNT substrate cleavage site and a BuNT substrate cleavage site. [0379] 50. The polynucleotide molecule according to any one of 46-48, wherein the polynucleotide molecule encoding the Clostridial toxin enzymatic domain encodes a BoNT/A enzymatic domain, a BoNT/B enzymatic domain, a BoNT/C1 enzymatic domain, a BoNT/D enzymatic domain, a BoNT/E enzymatic domain, a BoNT/F enzymatic domain, a BoNT/G enzymatic domain, a TeNT enzymatic domain, a BaNT enzymatic domain or a BuNT enzymatic domain. [0380] 51. The polynucleotide molecule according to any one of 46-48, wherein the polynucleotide molecule encoding the Clostridial toxin translocation domain encodes a BoNT/A translocation domain, a BoNT/B translocation domain, a BoNT/C1 translocation domain, a BoNT/D translocation domain, a BoNT/E translocation domain, a BoNT/F translocation domain, a BoNT/G translocation domain, a TeNT translocation domain, a BaNT translocation domain or a BuNT translocation domain. [0381] 52. A polynucleotide molecule encoding a modified Clostridial toxin comprising a Clostridial toxin substrate cleavage site, wherein the Clostridial toxin substrate cleavage site is located within the di-chain loop region. [0382] 53. The polynucleotide molecule according to 52, wherein the polynucleotide molecule encoding the Clostridial toxin substrate cleavage site is a Botulinum toxin substrate cleavage site. [0383] 54. The polynucleotide molecule according to 53, wherein the polynucleotide molecule encoding the Botulinum toxin substrate cleavage site is selected from the group consisting of a BoNT/A substrate cleavage site, a BoNT/B substrate cleavage site, a BoNT/C1 substrate cleavage site, a BoNT/D substrate cleavage site, a BoNT/E substrate cleavage site, a BoNT/F substrate cleavage site and a BoNT/G substrate cleavage site. [0384] 55. The polynucleotide molecule according to 53, wherein the polynucleotide molecule encoding the Botulinum toxin substrate cleavage site comprises a BoNT/A cleavage site. [0385] 56. The polynucleotide molecule according to 53, wherein the polynucleotide molecule encoding the Botulinum toxin substrate cleavage site comprises at least six consecutive residues of a SNAP-25, said six consecutive residues comprising Gln-Arg. [0386] 57. The polynucleotide molecule according to 53, wherein the polynucleotide molecule encoding the Botulinum toxin substrate cleavage site comprises at least six consecutive residues of a SNAP-25, said six consecutive residues comprising Lys-His. [0387] 58. The polynucleotide molecule according to 53, wherein the polynucleotide molecule comprising the Botulinum toxin substrate cleavage site encodes SEQ ID NO: 104, SEQ ID NO: 105 or SEQ ID NO: 106.
[0388] 59. The polynucleotide molecule according to 53, wherein the polynucleotide molecule encoding the Botulinum toxin substrate cleavage site comprises a BoNT/B cleavage site. [0389] 60. The polynucleotide molecule according to 53, wherein the polynucleotide molecule encoding the Botulinum toxin substrate cleavage site comprises at least six consecutive residues of a VAMP, said six consecutive residues comprising Gln-Phe. [0390] 61. The polynucleotide molecule according to 53, wherein the polynucleotide molecule comprising the Botulinum toxin substrate cleavage site encodes SEQ ID NO: 107, SEQ ID NO: 108, SEQ ID NO: 109, SEQ ID NO: 110, SEQ ID NO: 111 or SEQ ID NO: 112. [0391] 62. The polynucleotide molecule according to 53, wherein the polynucleotide molecule encoding the Botulinum toxin substrate cleavage site comprises a BoNT/C1 cleavage site. [0392] 63. The polynucleotide molecule according to 53, wherein the polynucleotide molecule encoding the Botulinum toxin substrate cleavage site comprises at least six consecutive residues of a SNAP-25, said six consecutive residues comprising Arg-Ala. [0393] 64. The polynucleotide molecule according to 53, wherein the polynucleotide molecule encoding the Botulinum toxin substrate cleavage site comprises at least six consecutive residues of a Syntaxin, said six consecutive residues comprising Lys-Ala. [0394] 65. The polynucleotide molecule according to 53, wherein the polynucleotide molecule encoding the Botulinum toxin substrate cleavage site comprises at least six consecutive residues of a Syntaxin, said six consecutive residues comprising Arg-Ala. [0395] 66. The polynucleotide molecule according to 53, wherein the polynucleotide molecule comprising the Botulinum toxin substrate cleavage site encodes SEQ ID NO: 113, SEQ ID NO: 114, SEQ ID NO: 115, SEQ ID NO: 116, SEQ ID NO: 117, SEQ ID NO: 118, SEQ ID NO: 119, SEQ ID NO: 120 or SEQ ID NO: 121. [0396] 67. The polynucleotide molecule according to 53, wherein the polynucleotide molecule encoding the Botulinum toxin substrate cleavage site comprises a BoNT/D cleavage site. [0397] 68. The polynucleotide molecule according to 53, wherein the polynucleotide molecule encoding the Botulinum toxin substrate cleavage site comprises at least six consecutive residues of a VAMP, said six consecutive residues comprising Lys-Leu. [0398] 69. The polynucleotide molecule according to 53, wherein the polynucleotide molecule comprising the Botulinum toxin substrate cleavage site encodes SEQ ID NO: 122 or SEQ ID NO: 123. [0399] 70. The polynucleotide molecule according to 53, wherein the Botulinum toxin substrate cleavage site comprises a BoNT/E cleavage site. [0400] 71. The polynucleotide molecule according to 53, wherein the polynucleotide molecule encoding the Botulinum toxin substrate cleavage site comprises at least six consecutive residues of a SNAP-25, said six consecutive residues comprising Arg-Ile. [0401] 72. The polynucleotide molecule according to 53, wherein the polynucleotide molecule encoding the Botulinum toxin substrate cleavage site comprises at least six consecutive residues of a SNAP-25, said six consecutive residues comprising Lys-Ile. [0402] 73. The polynucleotide molecule according to 53, wherein the polynucleotide molecule comprising the Botulinum toxin substrate cleavage site encodes SEQ ID NO: 124, SEQ ID NO: 125, SEQ ID NO: 126, SEQ ID NO: 127 or SEQ ID NO: 128. [0403] 74. The polynucleotide molecule according to 53, wherein the polynucleotide molecule encoding the Botulinum toxin substrate cleavage site comprises a BoNT/F cleavage site. [0404] 75. The polynucleotide molecule according to 53, wherein the polynucleotide molecule encoding the Botulinum toxin substrate cleavage site comprises at least six consecutive residues of a VAMP, said six consecutive residues comprising Gln-Lys. [0405] 76. The polynucleotide molecule according to 53, wherein the polynucleotide molecule comprising the Botulinum toxin substrate cleavage site encodes SEQ ID NO: 129 or SEQ ID NO: 130. [0406] 77. The polynucleotide molecule according to 53, wherein the polynucleotide molecule encoding the Botulinum toxin substrate cleavage site comprises a BoNT/G cleavage site. [0407] 78. The polynucleotide molecule according to 53, wherein the polynucleotide molecule encoding the Botulinum toxin substrate cleavage site comprises at least six consecutive residues of a VAMP, said six consecutive residues comprising Ala-Ala. [0408] 79. The polynucleotide molecule according to 53, wherein the polynucleotide molecule comprising the Botulinum toxin substrate cleavage site encodes SEQ ID NO: 131 or SEQ ID NO: 132. [0409] 80. The polynucleotide molecule according to 52, wherein the polynucleotide molecule encoding the Clostridial toxin substrate cleavage site is a Tetanus toxin substrate cleavage site. [0410] 81. The polynucleotide molecule according to 80, wherein the polynucleotide molecule encoding the Tetanus toxin substrate cleavage site comprises at least six consecutive residues of a VAMP, said six consecutive residues comprising Gln-Phe. [0411] 82. The polynucleotide molecule according to 80, wherein the polynucleotide molecule encoding the modified Clostridial toxin comprises a polynucleotide molecule encoding a Botulinum toxin enzymatic domain, a polynucleotide molecule encoding a Botulinum toxin translocation domain and a polynucleotide molecule encoding a Botulinum toxin binding domain. [0412] 83. The polynucleotide molecule according to 53, wherein the polynucleotide molecule encoding a modified Botulinum toxin comprises a polynucleotide molecule encoding a BoNT/A enzymatic domain, a polynucleotide molecule encoding a BoNT/A translocation domain and a polynucleotide molecule encoding a BoNT/A binding domain. [0413] 86. The polynucleotide molecule according to 53, wherein the polynucleotide molecule encoding a modified Botulinum toxin comprises a polynucleotide molecule encoding a BoNT/B enzymatic domain, a polynucleotide molecule encoding a BoNT/B translocation domain and a polynucleotide molecule encoding a BoNT/B binding domain. [0414] 87. The polynucleotide molecule according to 53, wherein the polynucleotide molecule encoding a modified Botulinum toxin comprises a polynucleotide molecule encoding a BoNT/C1 enzymatic domain, a polynucleotide molecule encoding a BoNT/C1 translocation domain and a polynucleotide molecule encoding a BoNT/C1 binding domain. [0415] 88. The polynucleotide molecule according to 53, wherein the polynucleotide molecule encoding a modified Botulinum toxin comprises a polynucleotide molecule encoding a BoNT/D enzymatic domain, a polynucleotide molecule encoding a BoNT/D translocation domain and a polynucleotide molecule encoding a BoNT/D binding domain. [0416] 89. The polynucleotide molecule according to 53, wherein the polynucleotide molecule encoding a modified Botulinum toxin comprises a polynucleotide molecule encoding a BoNT/E enzymatic domain, a polynucleotide molecule encoding a BoNT/E translocation domain and a polynucleotide molecule encoding a BoNT/E binding domain. [0417] 90. The polynucleotide molecule according to 53, wherein the polynucleotide molecule encoding a modified Botulinum toxin comprises a polynucleotide molecule encoding a BoNT/F enzymatic domain, a polynucleotide molecule encoding a BoNT/F translocation domain and a polynucleotide molecule encoding a BoNT/F binding domain. [0418] 91. The polynucleotide molecule according to 53, wherein the polynucleotide molecule encoding a modified Botulinum toxin comprises a polynucleotide molecule encoding a BoNT/G enzymatic domain, a polynucleotide molecule encoding a BoNT/G translocation domain and a polynucleotide molecule encoding a BoNT/G binding domain. [0419] 92. The polynucleotide molecule according to 53, wherein the polynucleotide molecule encoding a modified Clostridial toxin comprises a polynucleotide molecule encoding a Tetanus toxin enzymatic domain, a polynucleotide molecule encoding a Tetanus toxin translocation domain and a polynucleotide molecule encoding a Tetanus toxin binding domain. [0420] 93. A method of producing a modified Clostridial toxin comprising the step of expressing a modified Clostridial toxin encoded by a polynucleotide molecule in a cell, wherein the modified Clostridial toxin is defined by any one of 46-92. [0421] 94. A methods of producing a modified Clostridial toxin comprising the steps of a) introducing into a cell a polynucleotide molecule encoding a modified Clostridial toxin as defined in any one of 46-92; and b) expressing the modified Clostridial toxin encoded by the polynucleotide molecule. [0422] 95. A modified Clostridial toxin comprising: [0423] a) a Clostridial toxin substrate cleavage site; [0424] b) a di-chain loop region c) a Clostridial toxin enzymatic domain; [0425] d) a Clostridial toxin translocation domain; and [0426] e) a Clostridial toxin cell binding domain; [0427] wherein the Clostridial toxin substrate cleavage site is located within the di-chain loop region.
EXAMPLES
[0428] The following non-limiting examples are provided for illustrative purposes only in order to facilitate a more complete understanding of disclosed embodiments and are in no way intended to limit any of the embodiments disclosed in the present specification.
Example 1
Construction of Modified Clostridial Toxins Comprising a BoNT/A Substrate Cleavage Site
[0429] This example illustrates how to make a modified Clostridial toxin comprising a BoNT/A substrate cleavage site located in the di-chain loop region of the toxin.
[0430] A polynucleotide molecule (SEQ ID NO: 214) based on BoNT/A-A17 (SEQ ID NO: 203) is synthesized using standard procedures (BlueHeron® Biotechnology, Bothell, Wash.). BoNT/A-A17 is a BoNT/A modified to comprise a 17 amino acid Clostridial toxin substrate cleavage site that can be cleaved by BoNT/A. Oligonucleotides of 20 to 50 bases in length are synthesized using standard phosphoramidite synthesis. These oligonucleotides are hybridized into double stranded duplexes that are ligated together to assemble the full-length polynucleotide molecule. This polynucleotide molecule is cloned using standard molecular biology methods into a pUCBHB1 vector at the SmaI site to generate pUCBHB1/BoNT/A-A17. The synthesized polynucleotide molecule is verified by sequencing using Big Dye Terminator® Chemistry 3.1 (Applied Biosystems, Foster City, Calif.) and an ABI 3100 sequencer (Applied Biosystems, Foster City, Calif.).
[0431] If desired, an expression optimized polynucleotide molecule (SEQ ID NO: 225) based on BoNT/A-A17 (SEQ ID NO: 203) can be synthesized in order to improve expression in an Escherichia coli strain. The polynucleotide molecule encoding the BoNT/A-A17 can be modified to 1) contain synonymous codons typically present in native polynucleotide molecules of an Escherichia coli strain; 2) contain a G+C content that more closely matches the average G+C content of native polynucleotide molecules found in an Escherichia coli strain; 3) reduce polymononucleotide regions found within the polynucleotide molecule; and/or 4) eliminate internal regulatory or structural sites found within the polynucleotide molecule, see, e.g., Lance E. Steward et al. Optimizing Expression of Active Botulinum Toxin Type E, International Patent Publication No. WO 2006/011966 (Feb. 2, 2006); Lance E. Steward et al. Optimizing Expression of Active Botulinum Toxin Type A, International Patent Publication No. WO 2006/017749 (Feb. 16, 2006), the contents of all of which are hereby incorporated by reference in their entirety. Once sequence optimization is complete, oligonucleotides of 20 to 50 bases in length are synthesized using standard phosphoramidite synthesis. These oligonucleotides are hybridized into double stranded duplexes that are ligated together to assemble the full-length polynucleotide molecule. This polynucleotide molecule is cloned using standard molecular biology methods into a pUCBHB1 vector at the SmaI site to generate pUCBHB1/BoNT/A-A17. The synthesized polynucleotide molecule is verified by sequencing using Big Dye Terminator® Chemistry 3.1 (Applied Biosystems, Foster City, Calif.) and an ABI 3100 sequencer (Applied Biosystems, Foster City, Calif.). If so desired, optimization to a different organism, such as, e.g., a yeast strain, an insect cell-line or a mammalian cell line, can be done, see, e.g., Steward, supra, International Patent Publication No. WO 2006/011966 (Feb. 2, 2006); and Steward, supra, International Patent Publication No. WO 2006/017749 (Feb. 16, 2006).
[0432] A similar cloning strategy is used to make pUCBHB1 cloning constructs comprising the polynucleotide molecule of SEQ ID NO: 215 or SEQ ID NO: 226 encoding BoNT/A-A8 of SEQ ID NO: 204. BoNT/A-A8 is a BoNT/A modified to comprise an eight amino acid Clostridial toxin substrate cleavage site that can be cleaved by BoNT/A. In addition, one skilled in the art can modify Clostridial toxins, such as, e.g., BoNT/B, BoNT/C1, BoNT/D. BoNT/E, BoNT/F, BoNT/G and TeNT, using similar cloning strategy described above so that these toxins possess a BoNT/A substrate cleavage site in the di-chain loop region of the toxin.
[0433] To construct pET29/BoNT/A-A17, a pUCBHB1/BoNT/A-A17 construct is digested with restriction endonucleases that 1) excise the insert comprising the open reading frame encoding BoNT/A-A17, such as, e.g., the polynucleotide molecule of SEQ ID NO: 225; and 2) enable this insert to be operably-linked to a pET29 vector (EMD Biosciences-Novagen, Madison, Wis.). This insert is subcloned using a T4 DNA ligase procedure into a pET29 vector that is digested with appropriate restriction endonucleases to yield pET29/BoNT/A-A17. The ligation mixture is transformed into chemically competent E. coli DH5α cells (Invitrogen, Inc, Carlsbad, Calif.) using a heat shock method, plated on 1.5% Luria-Bertani agar plates (pH 7.0) containing 50 μg/mL of Kanamycin, and placed in a 37° C. incubator for overnight growth. Bacteria containing expression constructs are identified as Kanamycin resistant colonies. Candidate constructs are isolated using an alkaline lysis plasmid mini-preparation procedure and analyzed by restriction endonuclease digest mapping to determine the presence and orientation of the insert. This cloning strategy yielded a pET29 expression construct comprising the polynucleotide molecule of SEQ ID NO: 225 encoding the BoNT/A-A17 of SEQ ID NO: 203 operably-linked to a carboxyl terminal polyhistidine affinity binding peptide (FIG. 7).
[0434] A similar cloning strategy can be used to make pET29 expression constructs comprising the polynucleotide molecule of SEQ ID NO: 214 encoding BoNT/A-A17 of SEQ ID NO: 203; or the polynucleotide molecules of SEQ ID NO: 215 or SEQ ID NO: 226 encoding BoNT/A-A8 of SEQ ID NO: 204.
Example 2
Construction of Modified Clostridial Toxins Comprising Both a BoNT/B and a Tent Substrate Cleavage Site
[0435] This example illustrates how to make a modified Clostridial toxin comprising both a BoNT/B substrate cleavage site and a TeNT substrate cleavage site located in the di-chain loop region of the toxin.
[0436] A polynucleotide molecule (SEQ ID NO: 216) based on BoNT/A-BT35 (SEQ ID NO: 205) is synthesized using standard procedures (BlueHeron® Biotechnology, Bothell, Wash.). BoNT/A-BT35 is a BoNT/A modified to comprise a 35 amino acid Clostridial toxin substrate cleavage site that can be cleaved by either BoNT/B or TeNT. Oligonucleotides of 20 to 50 bases in length are synthesized using standard phosphoramidite synthesis. These oligonucleotides are hybridized into double stranded duplexes that are ligated together to assemble the full-length polynucleotide molecule. This polynucleotide molecule is cloned using standard molecular biology methods into a pUCBHB1 vector at the SmaI site to generate pUCBHB1/BoNT/A-BT35. The synthesized polynucleotide molecule is verified by sequencing using Big Dye Terminator® Chemistry 3.1 (Applied Biosystems, Foster City, Calif.) and an ABI 3100 sequencer (Applied Biosystems, Foster City, Calif.).
[0437] If desired, an expression optimized polynucleotide molecule (SEQ ID NO: 227) based on BoNT/A-BT35 (SEQ ID NO: 205) can be synthesized in order to improve expression in an Escherichia coli strain. The polynucleotide molecule encoding the BoNT/A-BT35 can be modified to 1) contain synonymous codons typically present in native polynucleotide molecules of an Escherichia coli strain; 2) contain a G+C content that more closely matches the average G+C content of native polynucleotide molecules found in an Escherichia coli strain; 3) reduce polymononucleotide regions found within the polynucleotide molecule; and/or 4) eliminate internal regulatory or structural sites found within the polynucleotide molecule, see, e.g., Lance E. Steward et al. Optimizing Expression of Active Botulinum Toxin Type E, International Patent Publication No. WO 2006/011966 (Feb. 2, 2006); Lance E. Steward et al. Optimizing Expression of Active Botulinum Toxin Type A, International Patent Publication No. WO 2006/017749 (Feb. 16, 2006). Once sequence optimization is complete, oligonucleotides of 20 to 50 bases in length are synthesized using standard phosphoramidite synthesis. These oligonucleotides are hybridized into double stranded duplexes that are ligated together to assemble the full-length polynucleotide molecule. This polynucleotide molecule is cloned using standard molecular biology methods into a pUCBHB1 vector at the SmaI site to generate pUCBHB1/BoNT/A-BT35. The synthesized polynucleotide molecule is verified by sequencing using Big Dye Terminator® Chemistry 3.1 (Applied Biosystems, Foster City, Calif.) and an ABI 3100 sequencer (Applied Biosystems, Foster City, Calif.). If so desired, optimization to a different organism, such as, e.g., a yeast strain, an insect cell-line or a mammalian cell line, can be done, see, e.g., Steward, supra, International Patent Patent Publication No. WO 2006/011966 (Feb. 2, 2006); and Steward, supra, International Patent Publication No. WO 2006/017749 (Feb. 16, 2006).
[0438] A similar cloning strategy is used to make pUCBHB1 cloning constructs comprising the polynucleotide molecule of SEQ ID NO: 217 or SEQ ID NO: 228 encoding BoNT/A-BT8 of SEQ ID NO: 206. BoNT/A-B8 is a BoNT/A modified to comprise an eight amino acid Clostridial toxin substrate cleavage site that can be cleaved by either BoNT/B or TeNT. In addition, one skilled in the art can modify Clostridial toxins, such as, e.g., BoNT/B, BoNT/C1, BoNT/D. BoNT/E, BoNT/F, BoNT/G and TeNT, using similar cloning strategy described above so that these toxins possess both a BoNT/B substrate cleavage site and a TeNT substrate cleavage site in the di-chain loop region of the toxin.
[0439] To construct pET29/BoNT/A-BT35, a pUCBHB1/BoNT/A-BT35 construct is digested with restriction endonucleases that 1) excise the insert comprising the open reading frame encoding BoNT/A-BT35, such as, e.g., the polynucleotide molecule of SEQ ID NO: 227; and 2) enable this insert to be operably-linked to a pET29 vector (EMD Biosciences-Novagen, Madison, Wis.). This insert is subcloned using a T4 DNA ligase procedure into a pET29 vector that is digested with appropriate restriction endonucleases to yield pET29/BoNT/A-BT35. The ligation mixture is transformed into chemically competent E. coli DH5α cells (Invitrogen, Inc, Carlsbad, Calif.) using a heat shock method, plated on 1.5% Luria-Bertani agar plates (pH 7.0) containing 50 μg/mL of Kanamycin, and placed in a 37° C. incubator for overnight growth. Bacteria containing expression constructs are identified as Kanamycin resistant colonies. Candidate constructs are isolated using an alkaline lysis plasmid mini-preparation procedure and analyzed by restriction endonuclease digest mapping to determine the presence and orientation of the insert. This cloning strategy yielded a pET29 expression construct comprising the polynucleotide molecule of SEQ ID NO: 227 encoding the BoNT/A-BT35 of SEQ ID NO: 205 operably-linked to a carboxyl terminal polyhistidine affinity binding peptide (FIG. 8).
[0440] A similar cloning strategy can be used to make pET29 expression constructs comprising the polynucleotide molecule of SEQ ID NO: 216 encoding BoNT/A-BT35 of SEQ ID NO: 205; or the polynucleotide molecules of SEQ ID NO: 217 or SEQ ID NO: 228 encoding BoNT/A-BT8 of SEQ ID NO: 206.
Example 3
Construction of Modified Clostridial Toxins Comprising a BoNT/C1 Substrate Cleavage Site
[0441] This example illustrates how to make a modified Clostridial toxin comprising a BoNT/C1 substrate cleavage site located in the di-chain loop region of the toxin.
[0442] A polynucleotide molecule (SEQ ID NO: 218) based on BoNT/A-Csyn8 (SEQ ID NO: 207) is synthesized using standard procedures (BlueHeron® Biotechnology, Bothell, Wash.). BoNT/A-Csyn8 is a BoNT/A modified to comprise an eight amino acid Clostridial toxin substrate cleavage site that can be cleaved by BoNT/C1. Oligonucleotides of 20 to 50 bases in length are synthesized using standard phosphoramidite synthesis. These oligonucleotides are hybridized into double stranded duplexes that are ligated together to assemble the full-length polynucleotide molecule. This polynucleotide molecule is cloned using standard molecular biology methods into a pUCBHB1 vector at the SmaI site to generate pUCBHB1/BoNT/A-Csyn8. The synthesized polynucleotide molecule is verified by sequencing using Big Dye Terminator® Chemistry 3.1 (Applied Biosystems, Foster City, Calif.) and an ABI 3100 sequencer (Applied Biosystems, Foster City, Calif.).
[0443] If desired, an expression optimized polynucleotide molecule (SEQ ID NO: 229) based on BoNT/A-Csyn8 (SEQ ID NO: 207) can be synthesized in order to improve expression in an Escherichia coli strain. The polynucleotide molecule encoding the BoNT/A-Csyn8 can be modified to 1) contain synonymous codons typically present in native polynucleotide molecules of an Escherichia coli strain; 2) contain a G+C content that more closely matches the average G+C content of native polynucleotide molecules found in an Escherichia coli strain; 3) reduce polymononucleotide regions found within the polynucleotide molecule; and/or 4) eliminate internal regulatory or structural sites found within the polynucleotide molecule, see, e.g., Lance E. Steward et al. Optimizing Expression of Active Botulinum Toxin Type E, International Patent Publication No. WO 2006/011966 (Feb. 2, 2006); Lance E. Steward et al. Optimizing Expression of Active Botulinum Toxin Type A, International Patent Publication No. WO 2006/017749 (Feb. 16, 2006). Once sequence optimization is complete, oligonucleotides of 20 to 50 bases in length are synthesized using standard phosphoramidite synthesis. These oligonucleotides are hybridized into double stranded duplexes that are ligated together to assemble the full-length polynucleotide molecule. This polynucleotide molecule is cloned using standard molecular biology methods into a pUCBHB1 vector at the SmaI site to generate pUCBHB1/BoNT/A-Csyn8. The synthesized polynucleotide molecule is verified by sequencing using Big Dye Terminator® Chemistry 3.1 (Applied Biosystems, Foster City, Calif.) and an ABI 3100 sequencer (Applied Biosystems, Foster City, Calif.). If so desired, optimization to a different organism, such as, e.g., a yeast strain, an insect cell-line or a mammalian cell line, can be done, see, e.g., Steward, supra, International Patent Publication No. WO 2006/011966 (Feb. 2, 2006); and Steward, supra, International Patent Publication No. WO 2006/017749 (Feb. 16, 2006).
[0444] A similar cloning strategy is used to make pUCBHB1 cloning constructs comprising the polynucleotide molecule of SEQ ID NO: 219 or SEQ ID NO: 230 encoding BoNT/A-Csnp8 of SEQ ID NO: 208. BoNT/A-Csnp8 is a BoNT/A modified to comprise an eight amino acid Clostridial toxin substrate cleavage site that can be cleaved by BoNT/C1. In addition, one skilled in the art can modify Clostridial toxins, such as, e.g., BoNT/B, BoNT/C1, BoNT/D. BoNT/E, BoNT/F, BoNT/G and TeNT, using similar cloning strategy described above so that these toxins possess a BoNT/C1 substrate cleavage site in the di-chain loop region of the toxin.
[0445] To construct pET29/BoNT/A-Csyn8, a pUCBHB1/BoNT/A-Csyn8 construct is digested with restriction endonucleases that 1) excise the insert comprising the open reading frame encoding BoNT/A-Csyn8, such as, e.g., the polynucleotide molecule of SEQ ID NO: 229; and 2) enable this insert to be operably-linked to a pET29 vector (EMD Biosciences-Novagen, Madison, Wis.). This insert is subcloned using a T4 DNA ligase procedure into a pET29 vector that is digested with appropriate restriction endonucleases to yield pET29/BoNT/A-Csyn8. The ligation mixture is transformed into chemically competent E. coli DH5α cells (Invitrogen, Inc, Carlsbad, Calif.) using a heat shock method, plated on 1.5% Luria-Bertani agar plates (pH 7.0) containing 50 μg/mL of Kanamycin, and placed in a 37° C. incubator for overnight growth. Bacteria containing expression constructs are identified as Kanamycin resistant colonies. Candidate constructs are isolated using an alkaline lysis plasmid mini-preparation procedure and analyzed by restriction endonuclease digest mapping to determine the presence and orientation of the insert. This cloning strategy yielded a pET29 expression construct comprising the polynucleotide molecule of SEQ ID NO: 229 encoding the BoNT/A-Csyn8 of SEQ ID NO: 207 operably-linked to a carboxyl terminal polyhistidine affinity binding peptide (FIG. 9).
[0446] A similar cloning strategy can be used to make pET29 expression constructs comprising the polynucleotide molecule of SEQ ID NO: 218 encoding BoNT/A-A17 of SEQ ID NO: 207; or the polynucleotide molecules of SEQ ID NO: 219 or SEQ ID NO: 230 encoding BoNT/A-Csyn8 of SEQ ID NO: 208.
Example 4
Construction of Modified Clostridial Toxins Comprising a BoNT/D Substrate Cleavage Site, a BoNT/F Substrate Cleavage Site or Both a BoNT/D and a BoNT/F Substrate Cleavage Site
[0447] This example illustrates how to make a modified Clostridial toxin comprising a BoNT/D substrate cleavage site located in the di-chain loop region of the toxin, a BoNT/F substrate cleavage site located in the di-chain loop region of the toxin or both a BoNT/D substrate cleavage site and a BoNT/F substrate cleavage site located in the di-chain loop region of the toxin.
[0448] A polynucleotide molecule (SEQ ID NO: 220) based on BoNT/A-DF39 (SEQ ID NO: 209) is synthesized using standard procedures (BlueHeron® Biotechnology, Bothell, Wash.). BoNT/A-DF39 is a BoNT/A modified to comprise a 39 amino acid Clostridial toxin substrate cleavage site that can be cleaved by either BoNT/D or BoNT/F. Oligonucleotides of 20 to 50 bases in length are synthesized using standard phosphoramidite synthesis. These oligonucleotides are hybridized into double stranded duplexes that are ligated together to assemble the full-length polynucleotide molecule. This polynucleotide molecule is cloned using standard molecular biology methods into a pUCBHB1 vector at the SmaI site to generate pUCBHB1/BoNT/A-DF39. The synthesized polynucleotide molecule is verified by sequencing using Big Dye Terminator® Chemistry 3.1 (Applied Biosystems, Foster City, Calif.) and an ABI 3100 sequencer (Applied Biosystems, Foster City, Calif.).
[0449] If desired, an expression optimized polynucleotide molecule (SEQ ID NO: 231) based on BoNT/A-DF39 (SEQ ID NO: 209) can be synthesized in order to improve expression in an Escherichia coli strain. The polynucleotide molecule encoding the BoNT/A-DF39 can be modified to 1) contain synonymous codons typically present in native polynucleotide molecules of an Escherichia coli strain; 2) contain a G+C content that more closely matches the average G+C content of native polynucleotide molecules found in an Escherichia coli strain; 3) reduce polymononucleotide regions found within the polynucleotide molecule; and/or 4) eliminate internal regulatory or structural sites found within the polynucleotide molecule, see, e.g., Lance E. Steward et al. Optimizing Expression of Active Botulinum Toxin Type E, International Patent Publication No. WO 2006/011966 (Feb. 2, 2006); Lance E. Steward et al. Optimizing Expression of Active Botulinum Toxin Type A, International Patent Publication No. WO 2006/017749 (Feb. 16, 2006). Once sequence optimization is complete, oligonucleotides of 20 to 50 bases in length are synthesized using standard phosphoramidite synthesis. These oligonucleotides are hybridized into double stranded duplexes that are ligated together to assemble the full-length polynucleotide molecule. This polynucleotide molecule is cloned using standard molecular biology methods into a pUCBHB1 vector at the SmaI site to generate pUCBHB1/BoNT/A-DF39. The synthesized polynucleotide molecule is verified by sequencing using Big Dye Terminator® Chemistry 3.1 (Applied Biosystems, Foster City, Calif.) and an ABI 3100 sequencer (Applied Biosystems, Foster City, Calif.). If so desired, optimization to a different organism, such as, e.g., a yeast strain, an insect cell-line or a mammalian cell line, can be done, see, e.g., Steward, supra, International Patent Publication No. WO 2006/011966 (Feb. 2, 2006); and Steward, supra, International Patent Publication No. WO 2006/017749 (Feb. 16, 2006).
[0450] A similar cloning strategy is used to make pUCBHB1 cloning constructs comprising the polynucleotide molecule of SEQ ID NO: 221 or SEQ ID NO: 232 encoding BoNT/A-D8 of SEQ ID NO: 210; or constructs comprising the polynucleotide molecule of SEQ ID NO: 223 or SEQ ID NO: 234 encoding BoNT/A-F8 of SEQ ID NO: 212. BoNT/A-D8 is a BoNT/A modified to comprise an eight amino acid Clostridial toxin substrate cleavage site that can be cleaved by BoNT/D. BoNT/A-F8 is a BoNT/A modified to comprise an eight amino acid Clostridial toxin substrate cleavage site that can be cleaved by BoNT/F. In addition, one skilled in the art can modify Clostridial toxins, such as, e.g., BoNT/B, BoNT/C1, BoNT/D. BoNT/E, BoNT/F, BoNT/G and TeNT, using similar cloning strategy described above so that these toxins comprise a BoNT/D substrate cleavage site in the di-chain loop region of the toxin, comprise a BoNT/B substrate cleavage site in the di-chain loop region of the toxin or comprise both a BoNT/D substrate cleavage site and a BoNT/F substrate cleavage site in the di-chain loop region of the toxin.
[0451] To construct pET29/BoNT/A-DF39, a pUCBHB1/BoNT/A-DF39 construct is digested with restriction endonucleases that 1) excise the insert comprising the open reading frame encoding BoNT/A-DF39, such as, e.g., the polynucleotide molecule of SEQ ID NO: 231; and 2) enable this insert to be operably-linked to a pET29 vector (EMD Biosciences-Novagen, Madison, Wis.). This insert is subcloned using a T4 DNA ligase procedure into a pET29 vector that is digested with appropriate restriction endonucleases to yield pET29/BoNT/A-DF39. The ligation mixture is transformed into chemically competent E. coli DH5α cells (Invitrogen, Inc, Carlsbad, Calif.) using a heat shock method, plated on 1.5% Luria-Bertani agar plates (pH 7.0) containing 50 μg/mL of Kanamycin, and placed in a 37° C. incubator for overnight growth. Bacteria containing expression constructs are identified as Kanamycin resistant colonies. Candidate constructs are isolated using an alkaline lysis plasmid mini-preparation procedure and analyzed by restriction endonuclease digest mapping to determine the presence and orientation of the insert. This cloning strategy yielded a pET29 expression construct comprising the polynucleotide molecule of SEQ ID NO: 231 encoding the BoNT/A-DF39 of SEQ ID NO: 209 operably-linked to a carboxyl terminal polyhistidine affinity binding peptide (FIG. 10).
[0452] A similar cloning strategy can be used to make pET29 expression constructs comprising the polynucleotide molecule of SEQ ID NO: 220 encoding BoNT/A-DF39 of SEQ ID NO: 209; the polynucleotide molecules of SEQ ID NO: 221 or SEQ ID NO: 232 encoding BoNT/A-D8 of SEQ ID NO: 210; or the polynucleotide molecules of SEQ ID NO: 223 or SEQ ID NO: 234 encoding BoNT/A-F8 of SEQ ID NO: 212.
Example 5
Construction of Modified Clostridial Toxins Comprising a BoNT/E Substrate Cleavage Site
[0453] This example illustrates how to make a modified Clostridial toxin comprising a BoNT/E substrate cleavage site located in the di-chain loop region of the toxin.
[0454] A polynucleotide molecule (SEQ ID NO: 222) based on BoNT/A-E8 (SEQ ID NO: 211) is synthesized using standard procedures (BlueHeron® Biotechnology, Bothell, Wash.). BoNT/A-E8 is a BoNT/A modified to comprise an eight amino acid Clostridial toxin substrate cleavage site that can be cleaved by BoNT/E. Oligonucleotides of 20 to 50 bases in length are synthesized using standard phosphoramidite synthesis. These oligonucleotides are hybridized into double stranded duplexes that are ligated together to assemble the full-length polynucleotide molecule. This polynucleotide molecule is cloned using standard molecular biology methods into a pUCBHB1 vector at the SmaI site to generate pUCBHB1/BoNT/A-E8. The synthesized polynucleotide molecule is verified by sequencing using Big Dye Terminator® Chemistry 3.1 (Applied Biosystems, Foster City, Calif.) and an ABI 3100 sequencer (Applied Biosystems, Foster City, Calif.).
[0455] If desired, an expression optimized polynucleotide molecule (SEQ ID NO: 233) based on BoNT/A-E8 (SEQ ID NO: 211) can be synthesized in order to improve expression in an Escherichia coli strain. The polynucleotide molecule encoding the BoNT/A-E8 can be modified to 1) contain synonymous codons typically present in native polynucleotide molecules of an Escherichia coli strain; 2) contain a G+C content that more closely matches the average G+C content of native polynucleotide molecules found in an Escherichia coli strain; 3) reduce polymononucleotide regions found within the polynucleotide molecule; and/or 4) eliminate internal regulatory or structural sites found within the polynucleotide molecule, see, e.g., Lance E. Steward et al. Optimizing Expression of Active Botulinum Toxin Type E, International Patent Publication No. WO 2006/011966 (Feb. 2, 2006); Lance E. Steward et al. Optimizing Expression of Active Botulinum Toxin Type A, International Patent Publication No. WO 2006/017749 (Feb. 16, 2006). Once sequence optimization is complete, oligonucleotides of 20 to 50 bases in length are synthesized using standard phosphoramidite synthesis. These oligonucleotides are hybridized into double stranded duplexes that are ligated together to assemble the full-length polynucleotide molecule. This polynucleotide molecule is cloned using standard molecular biology methods into a pUCBHB1 vector at the SmaI site to generate pUCBHB1/BoNT/A-E8. The synthesized polynucleotide molecule is verified by sequencing using Big Dye Terminator® Chemistry 3.1 (Applied Biosystems, Foster City, Calif.) and an ABI 3100 sequencer (Applied Biosystems, Foster City, Calif.). If so desired, optimization to a different organism, such as, e.g., a yeast strain, an insect cell-line or a mammalian cell line, can be done, see, e.g., Steward, supra, International Patent Publication No. WO 2006/011966 (Feb. 2, 2006); and Steward, supra, International Patent Publication No. WO 2006/017749 (Feb. 16, 2006).
[0456] One skilled in the art can modify Clostridial toxins, such as, e.g., BoNT/B, BoNT/C1, BoNT/D. BoNT/E, BoNT/F, BoNT/G and TeNT, using similar cloning strategy described above so that these toxins possess a BoNT/E substrate cleavage site in the di-chain loop region of the toxin.
[0457] To construct pET29/BoNT/A-E8, a pUCBHB1/BoNT/A-E8 construct is digested with restriction endonucleases that 1) excise the insert comprising the open reading frame encoding BoNT/A-E8, such as, e.g., the polynucleotide molecule of SEQ ID NO: 233; and 2) enable this insert to be operably-linked to a pET29 vector (EMD Biosciences-Novagen, Madison, Wis.). This insert is subcloned using a T4 DNA ligase procedure into a pET29 vector that is digested with appropriate restriction endonucleases to yield pET29/BoNT/A-E8. The ligation mixture is transformed into chemically competent E. coli DH5α cells (Invitrogen, Inc, Carlsbad, Calif.) using a heat shock method, plated on 1.5% Luria-Bertani agar plates (pH 7.0) containing 50 μg/mL of Kanamycin, and placed in a 37° C. incubator for overnight growth. Bacteria containing expression constructs are identified as Kanamycin resistant colonies. Candidate constructs are isolated using an alkaline lysis plasmid mini-preparation procedure and analyzed by restriction endonuclease digest mapping to determine the presence and orientation of the insert. This cloning strategy yielded a pET29 expression construct comprising the polynucleotide molecule of SEQ ID NO: 233 encoding the BoNT/A-E8 of SEQ ID NO: 211 operably-linked to a carboxyl terminal polyhistidine affinity binding peptide (FIG. 11).
Example 6
Construction of Modified Clostridial Toxins Comprising a BoNT/G Substrate Cleavage Site
[0458] This example illustrates how to make a modified Clostridial toxin comprising a BoNT/G substrate cleavage site located in the di-chain loop region of the toxin.
[0459] A polynucleotide molecule (SEQ ID NO: 224) based on BoNT/A-G8 (SEQ ID NO: 213) is synthesized using standard procedures (BlueHeron® Biotechnology, Bothell, Wash.). BoNT/A-G8 is a BoNT/A modified to comprise an eight amino acid Clostridial toxin substrate cleavage site that can be cleaved by BoNT/G. Oligonucleotides of 20 to 50 bases in length are synthesized using standard phosphoramidite synthesis. These oligonucleotides are hybridized into double stranded duplexes that are ligated together to assemble the full-length polynucleotide molecule. This polynucleotide molecule is cloned using standard molecular biology methods into a pUCBHB1 vector at the SmaI site to generate pUCBHB1/BoNT/A-G8. The synthesized polynucleotide molecule is verified by sequencing using Big Dye Terminator® Chemistry 3.1 (Applied Biosystems, Foster City, Calif.) and an ABI 3100 sequencer (Applied Biosystems, Foster City, Calif.).
[0460] If desired, an expression optimized polynucleotide molecule (SEQ ID NO: 235) based on BoNT/A-E8 (SEQ ID NO: 213) can be synthesized in order to improve expression in an Escherichia coli strain. The polynucleotide molecule encoding the BoNT/A-D8 can be modified to 1) contain synonymous codons typically present in native polynucleotide molecules of an Escherichia coli strain; 2) contain a G+C content that more closely matches the average G+C content of native polynucleotide molecules found in an Escherichia coli strain; 3) reduce polymononucleotide regions found within the polynucleotide molecule; and/or 4) eliminate internal regulatory or structural sites found within the polynucleotide molecule, see, e.g., Lance E. Steward et al. Optimizing Expression of Active Botulinum Toxin Type E, International Patent Publication No. WO 2006/011966 (Feb. 2, 2006); Lance E. Steward et al. Optimizing Expression of Active Botulinum Toxin Type A, International Patent Publication No. WO 2006/017749 (Feb. 16, 2006). Once sequence optimization is complete, oligonucleotides of 20 to 50 bases in length are synthesized using standard phosphoramidite synthesis. These oligonucleotides are hybridized into double stranded duplexes that are ligated together to assemble the full-length polynucleotide molecule. This polynucleotide molecule is cloned using standard molecular biology methods into a pUCBHB1 vector at the SmaI site to generate pUCBHB1/BoNT/A-G8. The synthesized polynucleotide molecule is verified by sequencing using Big Dye Terminator® Chemistry 3.1 (Applied Biosystems, Foster City, Calif.) and an ABI 3100 sequencer (Applied Biosystems, Foster City, Calif.). If so desired, optimization to a different organism, such as, e.g., a yeast strain, an insect cell-line or a mammalian cell line, can be done, see, e.g., Steward, supra, International Patent Publication No. WO 2006/011966 (Feb. 2, 2006); and Steward, supra, International Patent Publication No. WO 2006/017749 (Feb. 16, 2006).
[0461] One skilled in the art can modify Clostridial toxins, such as, e.g., BoNT/B, BoNT/C1, BoNT/D. BoNT/E, BoNT/F, BoNT/G and TeNT, using similar cloning strategy described above so that these toxins possess a BoNT/G substrate cleavage site in the di-chain loop region of the toxin.
[0462] To construct pET29/BoNT/A-G8, a pUCBHB1/BoNT/A-G8 construct is digested with restriction endonucleases that 1) excise the insert comprising the open reading frame encoding BoNT/A-E8, such as, e.g., the polynucleotide molecule of SEQ ID NO: 235; and 2) enable this insert to be operably-linked to a pET29 vector (EMD Biosciences-Novagen, Madison, Wis.). This insert is subcloned using a T4 DNA ligase procedure into a pET29 vector that is digested with appropriate restriction endonucleases to yield pET29/BoNT/A-G8. The ligation mixture is transformed into chemically competent E. coli DH5α cells (Invitrogen, Inc, Carlsbad, Calif.) using a heat shock method, plated on 1.5% Luria-Bertani agar plates (pH 7.0) containing 50 μg/mL of Kanamycin, and placed in a 37° C. incubator for overnight growth. Bacteria containing expression constructs are identified as Kanamycin resistant colonies. Candidate constructs are isolated using an alkaline lysis plasmid mini-preparation procedure and analyzed by restriction endonuclease digest mapping to determine the presence and orientation of the insert. This cloning strategy yielded a pET29 expression construct comprising the polynucleotide molecule of SEQ ID NO: 235 encoding the BoNT/A-G8 of SEQ ID NO: 213 operably-linked to a carboxyl terminal polyhistidine affinity binding peptide (FIG. 12).
Example 7
Expression of Modified Clostridial Toxins in a Bacterial Cell
[0463] The following example illustrates a procedure useful for expressing any of the modified Clostridial toxins disclosed in the present specification in a bacterial cell.
[0464] An expression construct, such as, e.g., pET29/BoNT/A-ED-PAR1Tb, pET29/BoNT/A-TD-PAR1Tb or pET29/BoNT/A-BD-PAR1Tb, see, e.g., Examples 1, 2 and 3, is introduced into chemically competent E. coli BL21 (DE3) cells (Invitrogen, Inc, Carlsbad, Calif.) using a heat-shock transformation protocol. The heat-shock reaction is plated onto 1.5% Luria-Bertani agar plates (pH 7.0) containing 50 μg/mL of Kanamycin and is placed in a 37° C. incubator for overnight growth. Kanamycin-resistant colonies of transformed E. coli containing the expression construct, such as, e.g., pET29/BoNT/A-A17, pET29/BoNT/A-BT35, pET29/BoNT/A-Csyn8, pET29/BoNT/A-DF39, pET29/BoNT/A-E8 or pET29/BoNT/A-G8, are used to inoculate a baffled flask containing 3.0 mL of PA-0.5G media containing 50 μg/mL of Kanamycin which is then placed in a 37° C. incubator, shaking at 250 rpm, for overnight growth. The resulting overnight starter culture is in turn used to inoculate a 3 L baffled flask containing ZYP-5052 autoinducing media containing 50 μg/mL of Kanamycin at a dilution of 1:1000. Culture volumes ranged from about 600 mL (20% flask volume) to about 750 mL (25% flask volume). These cultures are grown in a 37° C. incubator shaking at 250 rpm for approximately 5.5 hours and are then transferred to a 16° C. incubator shaking at 250 rpm for overnight expression. Cells are harvested by centrifugation (4,000 rpm at 4° C. for 20-30 minutes) and are used immediately, or stored dry at -80° C. until needed.
Example 8
Purification and Quantification of Modified Clostridial Toxins
[0465] The following example illustrates methods useful for purification and quantification of any modified Clostridial toxins disclosed in the present specification.
[0466] For immobilized metal affinity chromatography (IMAC) protein purification, E. coli BL21 (DE3) cell pellets used to express a modified Clostridial toxin, as described in Example 4, are resuspended in Column Binding Buffer (25 mM N-(2-hydroxyethyl)piperazine-N'-(2-ethanesulfonic acid) (HEPES), pH 7.8; 500 mM sodium chloride; 10 mM imidazole; 2× Protease Inhibitor Cocktail Set III (EMD Biosciences-Calbiochem, San Diego Calif.); 5 units/mL of Benzonase (EMD Biosciences-Novagen, Madison, Wis.); 0.1% (v/v) Triton-X® 100, 4-octylphenol polyethoxylate; 10% (v/v) glycerol), and then are transferred to a cold Oakridge centrifuge tube. The cell suspension is sonicated on ice (10-12 pulses of 10 seconds at 40% amplitude with 60 seconds cooling intervals on a Branson Digital Sonifier) in order to lyse the cells and then is centrifuged (16,000 rpm at 4° C. for 20 minutes) to clarify the lysate. An immobilized metal affinity chromatography column is prepared using a 20 mL Econo-Pac column support (Bio-Rad Laboratories, Hercules, Calif.) packed with 2.5-5.0 mL of TALON® SuperFlow Co2+ affinity resin (BD Biosciences-Clontech, Palo Alto, Calif.), which is then equilibrated by rinsing with 5 column volumes of deionized, distilled water, followed by 5 column volumes of Column Binding Buffer. The clarified lysate is applied slowly to the equilibrated column by gravity flow (approximately 0.25-0.3 mL/minute). The column is then washed with 5 column volumes of Column Wash Buffer (N-(2-hydroxyethyl) piperazine-N'-(2-ethanesulfonic acid) (HEPES), pH 7.8; 500 mM sodium chloride; 10 mM imidazole; 0.1% (v/v) Triton-X® 100, 4-octylphenol polyethoxylate; 10% (v/v) glycerol). The Clostridial toxin is eluted with 20-30 mL of Column Elution Buffer (25 mM N-(2-hydroxyethyl)piperazine-N'-(2-ethanesulfonic acid) (HEPES), pH 7.8; 500 mM sodium chloride; 500 mM imidazole; 0.1% (v/v) Triton-X® 100, 4-octylphenol polyethoxylate; 10% (v/v) glycerol) and is collected in approximately twelve 1 mL fractions. The amount of Clostridial toxin contained in each elution fraction is determined by a Bradford dye assay. In this procedure, 20 μL aliquots of each 1.0 mL fraction is combined with 200 μL of Bio-Rad Protein Reagent (Bio-Rad Laboratories, Hercules, Calif.), diluted 1 to 4 with deionized, distilled water, and then the intensity of the colorimetric signal is measured using a spectrophotometer. The five fractions with the strongest signal are considered the elution peak and are combined together. Total protein yield is determined by estimating the total protein concentration of the pooled peak elution fractions using bovine gamma globulin as a standard (Bio-Rad Laboratories, Hercules, Calif.).
[0467] For purification of a modified Clostridial toxin using a FPLC desalting column, a HiPrep® 26/10 size exclusion column (Amersham Biosciences, Piscataway, N.J.) is pre-equilibrated with 80 mL of 4° C. Column Buffer (50 mM sodium phosphate, pH 6.5). After the column is equilibrated, a Clostridial toxin sample is applied to the size exclusion column with an isocratic mobile phase of 4° C. Column Buffer and at a flow rate of 10 mL/minute using a BioLogic DuoFlow chromatography system (Bio-Rad Laboratories, Hercules, Calif.). The desalted modified Clostridial toxin sample is collected as a single fraction of approximately 7-12 mL.
[0468] For purification of a modified Clostridial toxin using a FPLC ion exchange column, a Clostridial toxin sample that has been desalted following elution from an IMAC column is applied to a 1 mL Q1® anion exchange column (Bio-Rad Laboratories, Hercules, Calif.) using a BioLogic DuoFlow chromatography system (Bio-Rad Laboratories, Hercules, Calif.). The sample is applied to the column in 4° C. Column Buffer (50 mM sodium phosphate, pH 6.5) and is eluted by linear gradient with 4° C. Elution Buffer (50 mM sodium phosphate, 1 M sodium chloride, pH 6.5) as follows: step 1, 5.0 mL of 5% Elution Buffer at a flow rate of 1 mL/minute; step 2, 20.0 mL of 5-30% Elution Buffer at a flow rate of 1 mL/minute; step 3, 2.0 mL of 50% Elution Buffer at a flow rate of 1.0 mL/minute; step 4, 4.0 mL of 100% Elution Buffer at a flow rate of 1.0 mL/minute; and step 5, 5.0 mL of 0% Elution Buffer at a flow rate of 1.0 mL/minute. Elution of Clostridial toxin from the column is monitored at 280, 260, and 214 nm, and peaks absorbing above a minimum threshold (0.01 au) at 280 nm are collected. Most of the Clostridial toxin will elute at a sodium chloride concentration of approximately 100 to 200 mM. Average total yields of Clostridial toxin will be determined by a Bradford assay.
[0469] Expression of a modified Clostridial toxin is analyzed by polyacrylamide gel electrophoresis. Samples purified using the procedure described above are added to 2×LDS Sample Buffer (Invitrogen, Inc, Carlsbad, Calif.) and are separated by MOPS polyacrylamide gel electrophoresis using NuPAGE® Novex 4-12% Bis-Tris precast polyacrylamide gels (Invitrogen, Inc, Carlsbad, Calif.) under denaturing, reducing conditions. Gels are stained with SYPRO® Ruby (Bio-Rad Laboratories, Hercules, Calif.) and the separated polypeptides are imaged using a Fluor-S MAX Multilmager (Bio-Rad Laboratories, Hercules, Calif.) for quantification of Clostridial toxin expression levels. The size and amount of the Clostridial toxin is determined by comparison to MagicMark® protein molecular weight standards (Invitrogen, Inc, Carlsbad, Calif.).
[0470] Expression of modified Clostridial toxin is also analyzed by Western blot analysis. Protein samples purified using the procedure described above are added to 2×LDS Sample Buffer (Invitrogen, Inc, Carlsbad, Calif.) and are separated by MOPS polyacrylamide gel electrophoresis using NuPAGE® Novex 4-12% Bis-Tris precast polyacrylamide gels (Invitrogen, Inc, Carlsbad, Calif.) under denaturing, reducing conditions. Separated polypeptides are transferred from the gel onto polyvinylidene fluoride (PVDF) membranes (Invitrogen, Inc, Carlsbad, Calif.) by Western blotting using a Trans-Blot® SD semi-dry electrophoretic transfer cell apparatus (Bio-Rad Laboratories, Hercules, Calif.). PVDF membranes are blocked by incubating at room temperature for 2 hours in a solution containing 25 mM Tris-Buffered Saline (25 mM 2-amino-2-hydroxymethyl-1,3-propanediol hydrochloric acid (Tris-HCl)(pH 7.4), 137 mM sodium chloride, 2.7 mM potassium chloride), 0.1% TWEEN-20®, polyoxyethylene (20) sorbitan monolaureate, 2% bovine serum albumin, 5% nonfat dry milk. Blocked membranes are incubated at 4° C. for overnight in Tris-Buffered Saline TWEEN-20® (25 mM Tris-Buffered Saline, 0.1% TWEEN-20®, polyoxyethylene (20) sorbitan monolaureate) containing appropriate primary antibodies as a probe. Primary antibody probed blots are washed three times for 15 minutes each time in Tris-Buffered Saline TWEEN-20®. Washed membranes are incubated at room temperature for 2 hours in Tris-Buffered Saline TWEEN-20® containing an appropriate immunoglobulin G antibody conjugated to horseradish peroxidase as a secondary antibody. Secondary antibody-probed blots are washed three times for 15 minutes each time in Tris-Buffered Saline TWEEN-20®. Signal detection of the labeled Clostridial toxin are visualized using the ECL Plus® Western Blot Detection System (Amersham Biosciences, Piscataway, N.J.) and are imaged with a Typhoon 9410 Variable Mode Imager (Amersham Biosciences, Piscataway, N.J.) for quantification of modified Clostridial toxin expression levels.
Example 9
Expression of Modified Clostridial Toxins in a Yeast Cell
[0471] The following example illustrates a procedure useful for expressing any of the modified Clostridial toxins disclosed in the present specification in a yeast cell.
[0472] To construct a suitable yeast expression construct encoding a modified Clostridial toxin, restriction endonuclease sites suitable for cloning an operably linked polynucleotide molecule into a pPIC A vector (Invitrogen, Inc, Carlsbad, Calif.) are incorporated into the 5'- and 3' ends of the polynucleotide molecule SEQ ID NO: 236 encoding BoNT/A-A17 of SEQ ID NO: 203. This polynucleotide molecule is synthesized and a pUCBHB1/BoNT/A-A17 construct is obtained as described in Example 1. This construct is digested with restriction enzymes that 1) excise the insert containing the open reading frame of SEQ ID NO: 236 encoding BoNT/A-A17; and 2) enable this insert to be operably-linked to a pPIC A vector. This insert is subcloned using a T4 DNA ligase procedure into a pPIC A vector that is digested with appropriate restriction endonucleases to yield pPIC A/BoNT/A-A17. The ligation mixture is transformed into chemically competent E. coli DH5α cells (Invitrogen, Inc, Carlsbad, Calif.) using a heat shock method, plated on 1.5% low salt Luria-Bertani agar plates (pH 7.5) containing 25 μg/mL of Zeocin®, and placed in a 37° C. incubator for overnight growth. Bacteria containing expression constructs are identified as Zeocin® resistant colonies. Candidate constructs are isolated using an alkaline lysis plasmid mini-preparation procedure and analyzed by restriction endonuclease digest mapping to determine the presence and orientation of the insert. This cloning strategy yielded a pPIC A expression construct comprising the polynucleotide molecule of SEQ ID NO: 236 encoding the BoNT/A-A17 of SEQ ID NO: 203 operably-linked to a carboxyl-terminal c-myc and polyhistidine binding peptides (FIG. 13).
[0473] A similar cloning strategy is used to make pPIC A expression constructs encoding BoNT/A-A8 of SEQ ID NO: 204; BoNT/A-BT35 of SEQ ID NO: 205; BoNT/A-BT8 of SEQ ID NO: 206; BoNT/A-Csyn8 of SEQ ID NO: 207; BoNT/A-Csnp8 of SEQ ID NO: 208; BoNT/A-DF39 of SEQ ID NO: 209; BoNT/A-D8 of SEQ ID NO: 210; BoNT/A-E8 of SEQ ID NO: 211; BoNT/A-F8 of SEQ ID NO: 212; or BoNT/A-D8 of SEQ ID NO: 213.
[0474] To construct a yeast cell line expressing a modified Clostridial toxin, pPICZ A/BoNT/A-A17 is digested with a suitable restriction endonuclease (i.e., SacI, PmeI or BstXI) and the resulting linearized expression construct is transformed into an appropriate P. pastoris MutS strain KM71H using an electroporation method. The transformation mixture is plated on 1.5% YPDS agar plates (pH 7.5) containing 100 μg/mL of Zeocin® and placed in a 28-30° C. incubator for 1-3 days of growth. Selection of transformants integrating the pPICZ A/BoNT/A-A17 at the 5' AOX1 locus is determined by colony resistance to Zeocin®. Cell lines integrating a pPICZ A/BoNT/A-A17 construct is tested for BoNT/A-A17 expression using a small-scale expression test. Isolated colonies from test cell lines that have integrated pPICZ A/BoNT/A-A17 are used to inoculate 1.0 L baffled flasks containing 100 mL of MGYH media and grown at about 28-30° C. in a shaker incubator (250 rpm) until the culture reaches an OD600=2-6 (approximately 16-18 hours). Cells are harvested by centrifugation (3,000×g at 22° C. for 5 minutes). To induce expression, the cell pellet is resuspended in 15 mL of MMH media and 100% methanol is added to a final concentration of 0.5%. Cultures are grown at about 28-30° C. in a shaker incubator (250 rpm) for six days. Additional 100% methanol is added to the culture every 24 hours to a final concentration of 0.5%. A 1.0 mL test aliquot is taken from the culture every 24 hours starting at time zero and ending at time 144 hours. Cells are harvested from the aliquots by microcentrifugation to pellet the cells and lysed using three freeze-thaw rounds consisting of -80° C. for 5 minutes, then 37° C. for 5 minutes. Lysis samples are added to 2×LDS Sample Buffer (Invitrogen, Inc, Carlsbad, Calif.) and expression from established cell lines is measured by Western blot analysis (as described in Example 8) using either anti-BoNT/A, anti-myc or anti-His antibodies in order to identify lines expressing BoNT/A-A17. The P. pastoris MutS KM71H cell line showing the highest expression level of BoNT/A-A17 is selected for large-scale expression using commercial fermentation procedures. Procedures for large-scale expression are as outlined above except the culture volume is approximately 2.5 L MGYH media grown in a 5 L BioFlo 3000 fermentor and concentrations of all reagents will be proportionally increased for this volume. A similar procedure can be used to express a pPICZ A construct encoding any of the modified Clostridial toxins of SEQ ID NO: 204 to SEQ ID NO: 213.
[0475] BoNT/A-A17 is purified using the IMAC procedure, as described in Example 8. Expression from each culture is evaluated by a Bradford dye assay, polyacrylamide gel electrophoresis and Western blot analysis (as described in Example 8) in order to determine the amounts of BoNT/A-A17 produced.
Example 10
Expression of Modified Clostridial Toxins in an Insect Cell
[0476] The following example illustrates a procedure useful for expressing any of the modified Clostridial toxins disclosed in the present specification in an insect cell.
[0477] To construct suitable an insect expression construct encoding a modified Clostridial toxin, restriction endonuclease sites suitable for cloning an operably linked polynucleotide molecule into a pBACgus3 vector (EMD Biosciences-Novagen, Madison, Wis.) are incorporated into the 5'- and 3' ends of the polynucleotide molecule SEQ ID NO: 237 encoding BoNT/A-A17 of SEQ ID NO: 203. This polynucleotide molecule is synthesized and a pUCBHB1/BoNT/A-A17 construct is obtained as described in Example 1. This construct is digested with restriction enzymes that 1) excise the insert containing the open reading frame of SEQ ID NO: 237 encoding BoNT/A-A17; and 2) enable this insert to be operably-linked to a pBACgus3 vector. This insert is subcloned using a T4 DNA ligase procedure into a pBACgus3 vector that is digested with appropriate restriction endonucleases to yield pBACgus3/BoNT/A-A17. The ligation mixture is transformed into chemically competent E. coli DH5α cells (Invitrogen, Inc, Carlsbad, Calif.) using a heat shock method, plated on 1.5% Luria-Bertani agar plates (pH 7.0) containing 100 μg/mL of Ampicillin, and placed in a 37° C. incubator for overnight growth. Bacteria containing expression constructs are identified as Ampicillin resistant colonies. Candidate constructs are isolated using an alkaline lysis plasmid mini-preparation procedure and analyzed by restriction endonuclease digest mapping to determine the presence and orientation of the insert. This cloning strategy yielded a pBACgus3 expression construct comprising the polynucleotide molecule of SEQ ID NO: 237 encoding the BoNT/A-A17 of SEQ ID NO: 203 operably linked to an amino-terminal gp64 signal peptide and a carboxyl-terminal, Thrombin cleavable, polyhistidine affinity binding peptide (FIG. 14).
[0478] A similar cloning strategy is used to make pBACgus3 expression constructs encoding BoNT/A-A8 of SEQ ID NO: 204; BoNT/A-BT35 of SEQ ID NO: 205; BoNT/A-BT8 of SEQ ID NO: 206; BoNT/A-Csyn8 of SEQ ID NO: 207; BoNT/A-Csnp8 of SEQ ID NO: 208; BoNT/A-DF39 of SEQ ID NO: 209; BoNT/A-D8 of SEQ ID NO: 210; BoNT/A-E8 of SEQ ID NO: 211; BoNT/A-F8 of SEQ ID NO: 212; or BoNT/A-D8 of SEQ ID NO: 213.
[0479] To express a modified Clostridial toxin using a baculoviral expression system, about 2.5×106 Sf9 cells are plated in four 60 mm culture dishes containing 2 mL of BacVector® Insect media (EMD Biosciences-Novagen, Madison, Wis.) and incubated for approximately 20 minutes in a 28° C. incubator. For each transfection, a 50 μL transfection solution is prepared in a 6 mL polystyrene tube by adding 25 μL of BacVector® Insect media containing 100 ng of a pBACgus3 construct encoding a modified Clostridial toxin, such as, e.g., pBACgus3/BoNT/A-A17, and 500 ng TlowE transfer plasmid to 25 μL of diluted Insect GeneJuice® containing 5 μL Insect GeneJuice® (EMD Biosciences-Novagen, Madison, Wis.) and 20 μL nuclease-free water and this solution is incubated for approximately 15 minutes. After the 15 minute incubation, add 450 μL BacVector® media to the transfection solution and mix gently. Using this stock transfection solution as the 1/10 dilution make additional transfection solutions of 1/50, 1/250 and 1/1250 dilutions. Add 100 μL of a transfection solution to the Sf9 cells from one of the four 60 mm culture dishes, twice washed with antibiotic-free, serum-free BacVector® Insect media and incubate at 22° C. After one hour, add 6 mL of 1% BacPlaque agarose-BacVector® Insect media containing 5% bovine serum albumin. After the agarose is solidified, add 2 mL BacVector® Insect media containing 5% bovine serum albumin to the transfected cells and transfer the cells to a 28° C. incubator for 3-5 days until plaques are visible. After 3-5 days post-transfection, plaques in the monolayer will be stained for 11-glucuronidase reporter gene activity to test for the presence of recombinant virus plaques containing pBACgus3/BoNT/A-A17 by incubating the washed monolayer with 2 mL of BacVector® Insect media containing 30 μL of 20 mg/mL X-Gluc Solution (EMD Biosciences-Novagen, Madison, Wis.) for approximately 2 hours in a 28° C. incubator.
[0480] After identifying candidate recombinant virus plaques, several candidate virus plaques are eluted and plaque purified. To elute a recombinant virus, transfer a plug containing a recombinant virus plaque with a sterile Pasteur pipet to 1 mL BacVector® Insect media (EMD Biosciences-Novagen, Madison, Wis.) in a sterile screw-cap vial. Incubate the vial for approximately 2 hours at 22° C. or for approximately 16 hours at 4° C. For each recombinant virus plaque, 2.5×105 Sf9 cells are plated in 35 mm culture dishes containing 2 mL of BacVector® Insect media (EMD Biosciences-Novagen, Madison, Wis.) and incubated for approximately 20 minutes in a 28° C. incubator. Remove the media and add 200 μL of eluted recombinant virus. After one hour, add 2 mL of 1% BacPlaque agarose-BacVector® Insect media containing 5% bovine serum albumin. After the agarose is solidified, add 1 mL BacVector® Insect media containing 5% bovine serum albumin to the transfected cells and transfer the cells to a 28° C. incubator for 3-5 days until plaques are visible. After 3-5 days post-transfection, plaques in the monolayer will be stained for R-glucuronidase reporter gene activity to test for the presence of recombinant virus plaques containing pBACgus3/BoNT/A-A17 by incubating the washed monolayer with 2 mL of BacVector® Insect media containing 30 μL of 20 mg/mL X-Gluc Solution (EMD Biosciences-Novagen, Madison, Wis.) for approximately 2 hours in a 28° C. incubator.
[0481] To prepare a seed stock of virus, elute a recombinant virus by transferring a plug containing a recombinant virus plaque with a sterile Pasteur pipet to 1 mL BacVector® Insect media (EMD Biosciences-Novagen, Madison, Wis.) in a sterile screw-cap vial. Incubate the vial for approximately 16 hours at 4° C. Approximately 5×105 Sf9 cells are plated in T-25 flask containing 5 mL of BacVector® Insect media (EMD Biosciences-Novagen, Madison, Wis.) and are incubated for approximately 20 minutes in a 28° C. incubator. Remove the media and add 300 μL of eluted recombinant virus. After one hour, add 5 mL BacVector® Insect media containing 5% bovine serum albumin to the transfected cells and transfer the cells to a 28° C. incubator for 3-5 days until the majority of cells become unattached and unhealthy. The virus is harvested by transferring the media to 15 mL snap-cap tubes and centrifuging tubes at 1000×g for 5 minutes to remove debris. The clarified supernatant is transferred to fresh 15 mL snap-cap tubes and are stored at 4° C.
[0482] To prepare a high titer stock of virus, approximately 2×107 Sf9 cells are plated in T-75 flask containing 10 mL of BacVector® Insect media (EMD Biosciences-Novagen, Madison, Wis.) and are incubated for approximately 20 minutes in a 28° C. incubator. Remove the media and add 500 μL of virus seed stock. After one hour, add 10 mL BacVector® Insect media containing 5% bovine serum albumin to the transfected cells and transfer the cells to a 28° C. incubator for 3-5 days until the majority of cells become unattached and unhealthy. The virus is harvested by transferring the media to 15 mL snap-cap tubes and centrifuging tubes at 1000×g for 5 minutes to remove debris. The clarified supernatant is transferred to fresh 15 mL snap-cap tubes and are stored at 4° C. High titer virus stocks should contain approximately 2×108 to 3×109 pfu of baculovirus.
[0483] To express gp64-BoNT/A-A17 using a baculoviral expression system, about 1.25×108 Sf9 cells are seeded in a 1 L flask containing 250 mL of BacVector® Insect media and are grown in an orbital shaker (150 rpm) to a cell density of approximately 5×108. The culture is inoculated with approximately 2.5×109 of high titer stock recombinant baculovirus and incubated for approximately 48 hours in a 28° C. orbital shaker (150 rpm). Media is harvested by transferring the media to tubes and centrifuging tubes at 500×g for 5 minutes to remove debris. Media samples are added to 2×LDS Sample Buffer (Invitrogen, Inc, Carlsbad, Calif.) and expression is measured by Western blot analysis (as described in Example 8) using either anti-BoNT/A or anti-His antibodies in order to identify baculoviral stocks expressing BoNT/A-A17. A similar procedure can be used to express a pBACgus3 construct encoding any of the modified Clostridial toxins of SEQ ID NO: 204 to SEQ ID NO: 213.
[0484] BoNT/A-A17 is purified using the IMAC procedure, as described in Example 8. Expression from each culture is evaluated by a Bradford dye assay, polyacrylamide gel electrophoresis and Western blot analysis (as described in Example 8) in order to determine the amounts of BoNT/A-A17 produced.
Example 11
Expression of Modified Clostridial Toxins in a Mammalian Cell
[0485] The following example illustrates a procedure useful for expressing any of the modified Clostridial toxins disclosed in the present specification in a mammalian cell.
[0486] To construct a suitable mammalian expression construct encoding a modified Clostridial toxin, restriction endonuclease sites suitable for cloning an operably linked polynucleotide molecule into a pSecTag2 vector (Invitrogen, Inc, Carlsbad, Calif.) are incorporated into the 5'- and 3' ends of the polynucleotide molecule SEQ ID NO: 238 encoding BoNT/A-A17 of SEQ ID NO: 203. This polynucleotide molecule is synthesized and a pUCBHB1/BoNT/A-A17 construct is obtained as described in Example 1. This construct is digested with restriction enzymes that 1) excise the insert containing the open reading frame of SEQ ID NO: 238 encoding BoNT/A-A17; and 2) enable this insert to be operably-linked to a pSecTag2 vector. This insert is subcloned using a T4 DNA ligase procedure into a pSecTag2 vector that is digested with appropriate restriction endonucleases to yield pSecTag2/BoNT/A-A17. The ligation mixture is transformed into chemically competent E. coli DH5α cells (Invitrogen, Inc, Carlsbad, Calif.) using a heat shock method, plated on 1.5% Luria-Bertani agar plates (pH 7.0) containing 100 μg/mL of Ampicillin, and placed in a 37° C. incubator for overnight growth. Bacteria containing expression constructs are identified as Ampicillin resistant colonies. Candidate constructs are isolated using an alkaline lysis plasmid mini-preparation procedure and analyzed by restriction endonuclease digest mapping to determine the presence and orientation of the insert. This cloning strategy yielded a pSecTag2 expression construct comprising the polynucleotide molecule of SEQ ID NO: 238 encoding the BoNT/A-A17 of SEQ ID NO: 203 operably-linked to a carboxyl-terminal c-myc and polyhistidine binding peptides (FIG. 15).
[0487] A similar cloning strategy is used to make pSecTag2 expression constructs encoding BoNT/A-A8 of SEQ ID NO: 204; BoNT/A-BT35 of SEQ ID NO: 205; BoNT/A-BT8 of SEQ ID NO: 206; BoNT/A-Csyn8 of SEQ ID NO: 207; BoNT/A-Csnp8 of SEQ ID NO: 208; BoNT/A-DF39 of SEQ ID NO: 209; BoNT/A-D8 of SEQ ID NO: 210; BoNT/A-E8 of SEQ ID NO: 211; BoNT/A-F8 of SEQ ID NO: 212; or BoNT/A-D8 of SEQ ID NO: 213.
[0488] To transiently express modified Clostridial toxin in a cell line, about 1.5×105 SH-SY5Y cells are plated in a 35 mm tissue culture dish containing 3 mL of complete Dulbecco's Modified Eagle Media (DMEM), supplemented with 10% fetal bovine serum (FBS), 1× penicillin/streptomycin solution (Invitrogen, Inc, Carlsbad, Calif.) and 1×MEM non-essential amino acids solution (Invitrogen, Inc, Carlsbad, Calif.), and grown in a 37° C. incubator under 5% carbon dioxide until cells reach a density of about 5×105 cells/ml (6-16 hours). A 500 μL transfection solution is prepared by adding 250 μL of OPTI-MEM Reduced Serum Medium containing 15 μL of LipofectAmine 2000 (Invitrogen, Carlsbad, Calif.) incubated at room temperature for 5 minutes to 250 μL of OPTI-MEM Reduced Serum Medium containing 5 μg of a pSecTag2 expression construct encoding a modified Clostridial toxin, such as, e.g., pSecTag2/BoNT/A-A17. This transfection is incubated at room temperature for approximately 20 minutes. The complete, supplemented DMEM media is replaced with 2 mL of OPTI-MEM Reduced Serum Medium and the 500 μL transfection solution is added to the SH-SY5Y cells and the cells are incubated in a 37° C. incubator under 5% carbon dioxide for approximately 6 to 18 hours. Transfection media is replaced with 3 mL of fresh complete, supplemented DMEM and the cells are incubated in a 37° C. incubator under 5% carbon dioxide for 48 hours. Both media and cells are collected for expression analysis of BoNT/A-A17. Media is harvested by transferring the media to 15 mL snap-cap tubes and centrifuging tubes at 500×g for 5 minutes to remove debris. Cells are harvested by rinsing cells once with 3.0 mL of 100 mM phosphate-buffered saline, pH 7.4 and lysing cells with a buffer containing 62.6 mM 2-amino-2-hydroxymethyl-1,3-propanediol hydrochloric acid (Tris-HCl), pH 6.8 and 2% sodium lauryl sulfate (SDS). Both media and cell samples are added to 2×LDS Sample Buffer (Invitrogen, Inc, Carlsbad, Calif.) and expression is measured by Western blot analysis (as described in Example 5) using either anti-BoNT/A, anti-c-myc or anti-His antibodies in order to identify pSecTag2 constructs expressing BoNT/A-A17. A similar procedure can be used to transiently express a pSecTag2 construct encoding any of the modified Clostridial toxins of SEQ ID NO: 204 to SEQ ID NO: 213.
[0489] To generate a stably-integrated cell line expressing a modified Clostridial toxin, approximately 1.5×105 SH-SY5Y cells are plated in a 35 mm tissue culture dish containing 3 mL of complete DMEM, supplemented with 10% FBS, 1× penicillin/streptomycin solution (Invitrogen, Inc, Carlsbad, Calif.) and 1×MEM non-essential amino acids solution (Invitrogen, Inc, Carlsbad, Calif.), and grown in a 37° C. incubator under 5% carbon dioxide until cells reach a density of about 5×105 cells/ml (6-16 hours). A 500 μL transfection solution is prepared by adding 250 μL of OPTI-MEM Reduced Serum Medium containing 15 μL of LipofectAmine 2000 (Invitrogen, Carlsbad, Calif.) incubated at room temperature for 5 minutes to 250 μL of OPTI-MEM Reduced Serum Medium containing 5 μg of a pSecTag2 expression construct encoding a modified Clostridial toxin, such as, e.g., pSecTag2/BoNT/A-A17. This transfection solution is incubated at room temperature for approximately 20 minutes. The complete, supplemented DMEM media is replaced with 2 mL of OPTI-MEM Reduced Serum Medium and the 500 μL transfection solution is added to the SH-SY5Y cells and the cells are incubated in a 37° C. incubator under 5% carbon dioxide for approximately 6 to 18 hours. Transfection media is replaced with 3 mL of fresh complete, supplemented DMEM and cells are incubated in a 37° C. incubator under 5% carbon dioxide for approximately 48 hours. Media is replaced with 3 mL of fresh complete DMEM, containing approximately 5 μg/mL of Zeocin® 10% FBS, 1× penicillin/streptomycin solution (Invitrogen, Inc, Carlsbad, Calif.) and 1×MEM non-essential amino acids solution (Invitrogen, Inc, Carlsbad, Calif.). Cells are incubated in a 37° C. incubator under 5% carbon dioxide for approximately 3-4 weeks, with old media being replaced with fresh Zeocin®-selective, complete, supplemented DMEM every 4 to 5 days. Once Zeocin®-resistant colonies are established, resistant clones are replated to new 35 mm culture plates containing fresh complete DMEM, supplemented with approximately 5 μg/mL of Zeocin®, 10% FBS, 1× penicillin/streptomycin solution (Invitrogen, Inc, Carlsbad, Calif.) and 1×MEM non-essential amino acids solution (Invitrogen, Inc, Carlsbad, Calif.), until these cells reach a density of 6 to 20×105 cells/mL. To test for expression of BoNT/A-A17 from SH-SY5Y cell lines that have stably-integrated a pSecTag2/BoNT/A-A17, approximately 1.5×105 SH-SY5Y cells from each cell line are plated in a 35 mm tissue culture dish containing 3 mL of Zeocin®-selective, complete, supplemented DMEM and grown in a 37° C. incubator under 5% carbon dioxide until cells reach a density of about 5×105 cells/ml (6-16 hours). Media is replaced with 3 mL of fresh Zeocin®-selective, complete, supplemented DMEM and cells are incubated in a 37° C. incubator under 5% carbon dioxide for 48 hours. Both media and cells are collected for expression analysis of BoNT/A-A17-c-myc-His. Media is harvested by transferring the media to 15 mL snap-cap tubes and centrifuging tubes at 500×g for 5 minutes to remove debris. Cells are harvest by rinsing cells once with 3.0 mL of 100 mM phosphate-buffered saline, pH 7.4 and lysing cells with a buffer containing 62.6 mM 2-amino-2-hydroxymethyl-1,3-propanediol hydrochloric acid (Tris-HCl), pH 6.8 and 2% sodium lauryl sulfate (SDS). Both media and cell samples are added to 2×LDS Sample Buffer (Invitrogen, Inc, Carlsbad, Calif.) and expression is measured by Western blot analysis (as described in Example 5) using either anti-BoNT/A, anti-c-myc or anti-His antibodies in order to identify SH-SY5Y cell lines expressing BoNT/A-A17. The established SH-SY5Y cell line showing the highest expression level of BoNT/A-A17 is selected for large-scale expression using 3 L flasks. Procedures for large-scale expression are as outlined above except the starting volume is approximately 800-1000 mL of complete DMEM and concentrations of all reagents are proportionally increased for this volume. A similar procedure can be used to stably express a pSecTag2 construct encoding any of the modified Clostridial toxin of SEQ ID NO: 204 to SEQ ID NO: 213.
[0490] BoNT/A-A17 is purified using the IMAC procedure, as described in Example 8. Expression from each culture is evaluated by a Bradford dye assay, polyacrylamide gel electrophoresis and Western blot analysis (as described in Example 8) in order to determine whether the amounts of BoNT/A-A17 produced.
[0491] Although aspects of the present invention have been described with reference to the disclosed embodiments, one skilled in the art will readily appreciate that the specific examples disclosed are only illustrative of these aspects and in no way limit the present invention. Various modifications can be made without departing from the spirit of the present invention.
Sequence CWU
1
23811296PRTClostridium botulinum Serotype ADOMAIN(1)...(448)Light chain
comprising the enzymatic domain 1Met Pro Phe Val Asn Lys Gln Phe Asn Tyr
Lys Asp Pro Val Asn Gly1 5 10
15Val Asp Ile Ala Tyr Ile Lys Ile Pro Asn Ala Gly Gln Met Gln Pro
20 25 30Val Lys Ala Phe Lys Ile
His Asn Lys Ile Trp Val Ile Pro Glu Arg 35 40
45Asp Thr Phe Thr Asn Pro Glu Glu Gly Asp Leu Asn Pro Pro
Pro Glu 50 55 60Ala Lys Gln Val Pro
Val Ser Tyr Tyr Asp Ser Thr Tyr Leu Ser Thr65 70
75 80Asp Asn Glu Lys Asp Asn Tyr Leu Lys Gly
Val Thr Lys Leu Phe Glu 85 90
95Arg Ile Tyr Ser Thr Asp Leu Gly Arg Met Leu Leu Thr Ser Ile Val
100 105 110Arg Gly Ile Pro Phe
Trp Gly Gly Ser Thr Ile Asp Thr Glu Leu Lys 115
120 125Val Ile Asp Thr Asn Cys Ile Asn Val Ile Gln Pro
Asp Gly Ser Tyr 130 135 140Arg Ser Glu
Glu Leu Asn Leu Val Ile Ile Gly Pro Ser Ala Asp Ile145
150 155 160Ile Gln Phe Glu Cys Lys Ser
Phe Gly His Glu Val Leu Asn Leu Thr 165
170 175Arg Asn Gly Tyr Gly Ser Thr Gln Tyr Ile Arg Phe
Ser Pro Asp Phe 180 185 190Thr
Phe Gly Phe Glu Glu Ser Leu Glu Val Asp Thr Asn Pro Leu Leu 195
200 205Gly Ala Gly Lys Phe Ala Thr Asp Pro
Ala Val Thr Leu Ala His Glu 210 215
220Leu Ile His Ala Gly His Arg Leu Tyr Gly Ile Ala Ile Asn Pro Asn225
230 235 240Arg Val Phe Lys
Val Asn Thr Asn Ala Tyr Tyr Glu Met Ser Gly Leu 245
250 255Glu Val Ser Phe Glu Glu Leu Arg Thr Phe
Gly Gly His Asp Ala Lys 260 265
270Phe Ile Asp Ser Leu Gln Glu Asn Glu Phe Arg Leu Tyr Tyr Tyr Asn
275 280 285Lys Phe Lys Asp Ile Ala Ser
Thr Leu Asn Lys Ala Lys Ser Ile Val 290 295
300Gly Thr Thr Ala Ser Leu Gln Tyr Met Lys Asn Val Phe Lys Glu
Lys305 310 315 320Tyr Leu
Leu Ser Glu Asp Thr Ser Gly Lys Phe Ser Val Asp Lys Leu
325 330 335Lys Phe Asp Lys Leu Tyr Lys
Met Leu Thr Glu Ile Tyr Thr Glu Asp 340 345
350Asn Phe Val Lys Phe Phe Lys Val Leu Asn Arg Lys Thr Tyr
Leu Asn 355 360 365Phe Asp Lys Ala
Val Phe Lys Ile Asn Ile Val Pro Lys Val Asn Tyr 370
375 380Thr Ile Tyr Asp Gly Phe Asn Leu Arg Asn Thr Asn
Leu Ala Ala Asn385 390 395
400Phe Asn Gly Gln Asn Thr Glu Ile Asn Asn Met Asn Phe Thr Lys Leu
405 410 415Lys Asn Phe Thr Gly
Leu Phe Glu Phe Tyr Lys Leu Leu Cys Val Arg 420
425 430Gly Ile Ile Thr Ser Lys Thr Lys Ser Leu Asp Lys
Gly Tyr Asn Lys 435 440 445Ala Leu
Asn Asp Leu Cys Ile Lys Val Asn Asn Trp Asp Leu Phe Phe 450
455 460Ser Pro Ser Glu Asp Asn Phe Thr Asn Asp Leu
Asn Lys Gly Glu Glu465 470 475
480Ile Thr Ser Asp Thr Asn Ile Glu Ala Ala Glu Glu Asn Ile Ser Leu
485 490 495Asp Leu Ile Gln
Gln Tyr Tyr Leu Thr Phe Asn Phe Asp Asn Glu Pro 500
505 510Glu Asn Ile Ser Ile Glu Asn Leu Ser Ser Asp
Ile Ile Gly Gln Leu 515 520 525Glu
Leu Met Pro Asn Ile Glu Arg Phe Pro Asn Gly Lys Lys Tyr Glu 530
535 540Leu Asp Lys Tyr Thr Met Phe His Tyr Leu
Arg Ala Gln Glu Phe Glu545 550 555
560His Gly Lys Ser Arg Ile Ala Leu Thr Asn Ser Val Asn Glu Ala
Leu 565 570 575Leu Asn Pro
Ser Arg Val Tyr Thr Phe Phe Ser Ser Asp Tyr Val Lys 580
585 590Lys Val Asn Lys Ala Thr Glu Ala Ala Met
Phe Leu Gly Trp Val Glu 595 600
605Gln Leu Val Tyr Asp Phe Thr Asp Glu Thr Ser Glu Val Ser Thr Thr 610
615 620Asp Lys Ile Ala Asp Ile Thr Ile
Ile Ile Pro Tyr Ile Gly Pro Ala625 630
635 640Leu Asn Ile Gly Asn Met Leu Tyr Lys Asp Asp Phe
Val Gly Ala Leu 645 650
655Ile Phe Ser Gly Ala Val Ile Leu Leu Glu Phe Ile Pro Glu Ile Ala
660 665 670Ile Pro Val Leu Gly Thr
Phe Ala Leu Val Ser Tyr Ile Ala Asn Lys 675 680
685Val Leu Thr Val Gln Thr Ile Asp Asn Ala Leu Ser Lys Arg
Asn Glu 690 695 700Lys Trp Asp Glu Val
Tyr Lys Tyr Ile Val Thr Asn Trp Leu Ala Lys705 710
715 720Val Asn Thr Gln Ile Asp Leu Ile Arg Lys
Lys Met Lys Glu Ala Leu 725 730
735Glu Asn Gln Ala Glu Ala Thr Lys Ala Ile Ile Asn Tyr Gln Tyr Asn
740 745 750Gln Tyr Thr Glu Glu
Glu Lys Asn Asn Ile Asn Phe Asn Ile Asp Asp 755
760 765Leu Ser Ser Lys Leu Asn Glu Ser Ile Asn Lys Ala
Met Ile Asn Ile 770 775 780Asn Lys Phe
Leu Asn Gln Cys Ser Val Ser Tyr Leu Met Asn Ser Met785
790 795 800Ile Pro Tyr Gly Val Lys Arg
Leu Glu Asp Phe Asp Ala Ser Leu Lys 805
810 815Asp Ala Leu Leu Lys Tyr Ile Tyr Asp Asn Arg Gly
Thr Leu Ile Gly 820 825 830Gln
Val Asp Arg Leu Lys Asp Lys Val Asn Asn Thr Leu Ser Thr Asp 835
840 845Ile Pro Phe Gln Leu Ser Lys Tyr Val
Asp Asn Gln Arg Leu Leu Ser 850 855
860Thr Phe Thr Glu Tyr Ile Lys Asn Ile Ile Asn Thr Ser Ile Leu Asn865
870 875 880Leu Arg Tyr Glu
Ser Asn His Leu Ile Asp Leu Ser Arg Tyr Ala Ser 885
890 895Lys Ile Asn Ile Gly Ser Lys Val Asn Phe
Asp Pro Ile Asp Lys Asn 900 905
910Gln Ile Gln Leu Phe Asn Leu Glu Ser Ser Lys Ile Glu Val Ile Leu
915 920 925Lys Asn Ala Ile Val Tyr Asn
Ser Met Tyr Glu Asn Phe Ser Thr Ser 930 935
940Phe Trp Ile Arg Ile Pro Lys Tyr Phe Asn Ser Ile Ser Leu Asn
Asn945 950 955 960Glu Tyr
Thr Ile Ile Asn Cys Met Glu Asn Asn Ser Gly Trp Lys Val
965 970 975Ser Leu Asn Tyr Gly Glu Ile
Ile Trp Thr Leu Gln Asp Thr Gln Glu 980 985
990Ile Lys Gln Arg Val Val Phe Lys Tyr Ser Gln Met Ile Asn
Ile Ser 995 1000 1005Asp Tyr Ile
Asn Arg Trp Ile Phe Val Thr Ile Thr Asn Asn Arg Leu 1010
1015 1020Asn Asn Ser Lys Ile Tyr Ile Asn Gly Arg Leu Ile
Asp Gln Lys Pro1025 1030 1035
1040Ile Ser Asn Leu Gly Asn Ile His Ala Ser Asn Asn Ile Met Phe Lys
1045 1050 1055Leu Asp Gly Cys Arg
Asp Thr His Arg Tyr Ile Trp Ile Lys Tyr Phe 1060
1065 1070Asn Leu Phe Asp Lys Glu Leu Asn Glu Lys Glu Ile
Lys Asp Leu Tyr 1075 1080 1085Asp
Asn Gln Ser Asn Ser Gly Ile Leu Lys Asp Phe Trp Gly Asp Tyr 1090
1095 1100Leu Gln Tyr Asp Lys Pro Tyr Tyr Met Leu
Asn Leu Tyr Asp Pro Asn1105 1110 1115
1120Lys Tyr Val Asp Val Asn Asn Val Gly Ile Arg Gly Tyr Met Tyr
Leu 1125 1130 1135Lys Gly
Pro Arg Gly Ser Val Met Thr Thr Asn Ile Tyr Leu Asn Ser 1140
1145 1150Ser Leu Tyr Arg Gly Thr Lys Phe Ile
Ile Lys Lys Tyr Ala Ser Gly 1155 1160
1165Asn Lys Asp Asn Ile Val Arg Asn Asn Asp Arg Val Tyr Ile Asn Val
1170 1175 1180Val Val Lys Asn Lys Glu Tyr
Arg Leu Ala Thr Asn Ala Ser Gln Ala1185 1190
1195 1200Gly Val Glu Lys Ile Leu Ser Ala Leu Glu Ile Pro
Asp Val Gly Asn 1205 1210
1215Leu Ser Gln Val Val Val Met Lys Ser Lys Asn Asp Gln Gly Ile Thr
1220 1225 1230Asn Lys Cys Lys Met Asn
Leu Gln Asp Asn Asn Gly Asn Asp Ile Gly 1235 1240
1245Phe Ile Gly Phe His Gln Phe Asn Asn Ile Ala Lys Leu Val
Ala Ser 1250 1255 1260Asn Trp Tyr Asn
Arg Gln Ile Glu Arg Ser Ser Arg Thr Leu Gly Cys1265 1270
1275 1280Ser Trp Glu Phe Ile Pro Val Asp Asp
Gly Trp Gly Glu Arg Pro Leu 1285 1290
129521291PRTClostridium botulinum Serotype
BDOMAIN(1)...(441)Light chain comprising the enzymatic domain. 2Met Pro
Val Thr Ile Asn Asn Phe Asn Tyr Asn Asp Pro Ile Asp Asn1 5
10 15Asn Asn Ile Ile Met Met Glu Pro
Pro Phe Ala Arg Gly Thr Gly Arg 20 25
30Tyr Tyr Lys Ala Phe Lys Ile Thr Asp Arg Ile Trp Ile Ile Pro
Glu 35 40 45Arg Tyr Thr Phe Gly
Tyr Lys Pro Glu Asp Phe Asn Lys Ser Ser Gly 50 55
60Ile Phe Asn Arg Asp Val Cys Glu Tyr Tyr Asp Pro Asp Tyr
Leu Asn65 70 75 80Thr
Asn Asp Lys Lys Asn Ile Phe Leu Gln Thr Met Ile Lys Leu Phe
85 90 95Asn Arg Ile Lys Ser Lys Pro
Leu Gly Glu Lys Leu Leu Glu Met Ile 100 105
110Ile Asn Gly Ile Pro Tyr Leu Gly Asp Arg Arg Val Pro Leu
Glu Glu 115 120 125Phe Asn Thr Asn
Ile Ala Ser Val Thr Val Asn Lys Leu Ile Ser Asn 130
135 140Pro Gly Glu Val Glu Arg Lys Lys Gly Ile Phe Ala
Asn Leu Ile Ile145 150 155
160Phe Gly Pro Gly Pro Val Leu Asn Glu Asn Glu Thr Ile Asp Ile Gly
165 170 175Ile Gln Asn His Phe
Ala Ser Arg Glu Gly Phe Gly Gly Ile Met Gln 180
185 190Met Lys Phe Cys Pro Glu Tyr Val Ser Val Phe Asn
Asn Val Gln Glu 195 200 205Asn Lys
Gly Ala Ser Ile Phe Asn Arg Arg Gly Tyr Phe Ser Asp Pro 210
215 220Ala Leu Ile Leu Met His Glu Leu Ile His Val
Leu His Gly Leu Tyr225 230 235
240Gly Ile Lys Val Asp Asp Leu Pro Ile Val Pro Asn Glu Lys Lys Phe
245 250 255Phe Met Gln Ser
Thr Asp Ala Ile Gln Ala Glu Glu Leu Tyr Thr Phe 260
265 270Gly Gly Gln Asp Pro Ser Ile Ile Thr Pro Ser
Thr Asp Lys Ser Ile 275 280 285Tyr
Asp Lys Val Leu Gln Asn Phe Arg Gly Ile Val Asp Arg Leu Asn 290
295 300Lys Val Leu Val Cys Ile Ser Asp Pro Asn
Ile Asn Ile Asn Ile Tyr305 310 315
320Lys Asn Lys Phe Lys Asp Lys Tyr Lys Phe Val Glu Asp Ser Glu
Gly 325 330 335Lys Tyr Ser
Ile Asp Val Glu Ser Phe Asp Lys Leu Tyr Lys Ser Leu 340
345 350Met Phe Gly Phe Thr Glu Thr Asn Ile Ala
Glu Asn Tyr Lys Ile Lys 355 360
365Thr Arg Ala Ser Tyr Phe Ser Asp Ser Leu Pro Pro Val Lys Ile Lys 370
375 380Asn Leu Leu Asp Asn Glu Ile Tyr
Thr Ile Glu Glu Gly Phe Asn Ile385 390
395 400Ser Asp Lys Asp Met Glu Lys Glu Tyr Arg Gly Gln
Asn Lys Ala Ile 405 410
415Asn Lys Gln Ala Tyr Glu Glu Ile Ser Lys Glu His Leu Ala Val Tyr
420 425 430Lys Ile Gln Met Cys Lys
Ser Val Lys Ala Pro Gly Ile Cys Ile Asp 435 440
445Val Asp Asn Glu Asp Leu Phe Phe Ile Ala Asp Lys Asn Ser
Phe Ser 450 455 460Asp Asp Leu Ser Lys
Asn Glu Arg Ile Glu Tyr Asn Thr Gln Ser Asn465 470
475 480Tyr Ile Glu Asn Asp Phe Pro Ile Asn Glu
Leu Ile Leu Asp Thr Asp 485 490
495Leu Ile Ser Lys Ile Glu Leu Pro Ser Glu Asn Thr Glu Ser Leu Thr
500 505 510Asp Phe Asn Val Asp
Val Pro Val Tyr Glu Lys Gln Pro Ala Ile Lys 515
520 525Lys Ile Phe Thr Asp Glu Asn Thr Ile Phe Gln Tyr
Leu Tyr Ser Gln 530 535 540Thr Phe Pro
Leu Asp Ile Arg Asp Ile Ser Leu Thr Ser Ser Phe Asp545
550 555 560Asp Ala Leu Leu Phe Ser Asn
Lys Val Tyr Ser Phe Phe Ser Met Asp 565
570 575Tyr Ile Lys Thr Ala Asn Lys Val Val Glu Ala Gly
Leu Phe Ala Gly 580 585 590Trp
Val Lys Gln Ile Val Asn Asp Phe Val Ile Glu Ala Asn Lys Ser 595
600 605Asn Thr Met Asp Lys Ile Ala Asp Ile
Ser Leu Ile Val Pro Tyr Ile 610 615
620Gly Leu Ala Leu Asn Val Gly Asn Glu Thr Ala Lys Gly Asn Phe Glu625
630 635 640Asn Ala Phe Glu
Ile Ala Gly Ala Ser Ile Leu Leu Glu Phe Ile Pro 645
650 655Glu Leu Leu Ile Pro Val Val Gly Ala Phe
Leu Leu Glu Ser Tyr Ile 660 665
670Asp Asn Lys Asn Lys Ile Ile Lys Thr Ile Asp Asn Ala Leu Thr Lys
675 680 685Arg Asn Glu Lys Trp Ser Asp
Met Tyr Gly Leu Ile Val Ala Gln Trp 690 695
700Leu Ser Thr Val Asn Thr Gln Phe Tyr Thr Ile Lys Glu Gly Met
Tyr705 710 715 720Lys Ala
Leu Asn Tyr Gln Ala Gln Ala Leu Glu Glu Ile Ile Lys Tyr
725 730 735Arg Tyr Asn Ile Tyr Ser Glu
Lys Glu Lys Ser Asn Ile Asn Ile Asp 740 745
750Phe Asn Asp Ile Asn Ser Lys Leu Asn Glu Gly Ile Asn Gln
Ala Ile 755 760 765Asp Asn Ile Asn
Asn Phe Ile Asn Gly Cys Ser Val Ser Tyr Leu Met 770
775 780Lys Lys Met Ile Pro Leu Ala Val Glu Lys Leu Leu
Asp Phe Asp Asn785 790 795
800Thr Leu Lys Lys Asn Leu Leu Asn Tyr Ile Asp Glu Asn Lys Leu Tyr
805 810 815Leu Ile Gly Ser Ala
Glu Tyr Glu Lys Ser Lys Val Asn Lys Tyr Leu 820
825 830Lys Thr Ile Met Pro Phe Asp Leu Ser Ile Tyr Thr
Asn Asp Thr Ile 835 840 845Leu Ile
Glu Met Phe Asn Lys Tyr Asn Ser Glu Ile Leu Asn Asn Ile 850
855 860Ile Leu Asn Leu Arg Tyr Lys Asp Asn Asn Leu
Ile Asp Leu Ser Gly865 870 875
880Tyr Gly Ala Lys Val Glu Val Tyr Asp Gly Val Glu Leu Asn Asp Lys
885 890 895Asn Gln Phe Lys
Leu Thr Ser Ser Ala Asn Ser Lys Ile Arg Val Thr 900
905 910Gln Asn Gln Asn Ile Ile Phe Asn Ser Val Phe
Leu Asp Phe Ser Val 915 920 925Ser
Phe Trp Ile Arg Ile Pro Lys Tyr Lys Asn Asp Gly Ile Gln Asn 930
935 940Tyr Ile His Asn Glu Tyr Thr Ile Ile Asn
Cys Met Lys Asn Asn Ser945 950 955
960Gly Trp Lys Ile Ser Ile Arg Gly Asn Arg Ile Ile Trp Thr Leu
Ile 965 970 975Asp Ile Asn
Gly Lys Thr Lys Ser Val Phe Phe Glu Tyr Asn Ile Arg 980
985 990Glu Asp Ile Ser Glu Tyr Ile Asn Arg Trp
Phe Phe Val Thr Ile Thr 995 1000
1005Asn Asn Leu Asn Asn Ala Lys Ile Tyr Ile Asn Gly Lys Leu Glu Ser
1010 1015 1020Asn Thr Asp Ile Lys Asp Ile
Arg Glu Val Ile Ala Asn Gly Glu Ile1025 1030
1035 1040Ile Phe Lys Leu Asp Gly Asp Ile Asp Arg Thr Gln
Phe Ile Trp Met 1045 1050
1055Lys Tyr Phe Ser Ile Phe Asn Thr Glu Leu Ser Gln Ser Asn Ile Glu
1060 1065 1070Glu Arg Tyr Lys Ile Gln
Ser Tyr Ser Glu Tyr Leu Lys Asp Phe Trp 1075 1080
1085Gly Asn Pro Leu Met Tyr Asn Lys Glu Tyr Tyr Met Phe Asn
Ala Gly 1090 1095 1100Asn Lys Asn Ser
Tyr Ile Lys Leu Lys Lys Asp Ser Pro Val Gly Glu1105 1110
1115 1120Ile Leu Thr Arg Ser Lys Tyr Asn Gln
Asn Ser Lys Tyr Ile Asn Tyr 1125 1130
1135Arg Asp Leu Tyr Ile Gly Glu Lys Phe Ile Ile Arg Arg Lys Ser
Asn 1140 1145 1150Ser Gln Ser
Ile Asn Asp Asp Ile Val Arg Lys Glu Asp Tyr Ile Tyr 1155
1160 1165Leu Asp Phe Phe Asn Leu Asn Gln Glu Trp Arg
Val Tyr Thr Tyr Lys 1170 1175 1180Tyr
Phe Lys Lys Glu Glu Glu Lys Leu Phe Leu Ala Pro Ile Ser Asp1185
1190 1195 1200Ser Asp Glu Phe Tyr Asn
Thr Ile Gln Ile Lys Glu Tyr Asp Glu Gln 1205
1210 1215Pro Thr Tyr Ser Cys Gln Leu Leu Phe Lys Lys Asp
Glu Glu Ser Thr 1220 1225
1230Asp Glu Ile Gly Leu Ile Gly Ile His Arg Phe Tyr Glu Ser Gly Ile
1235 1240 1245Val Phe Glu Glu Tyr Lys Asp
Tyr Phe Cys Ile Ser Lys Trp Tyr Leu 1250 1255
1260Lys Glu Val Lys Arg Lys Pro Tyr Asn Leu Lys Leu Gly Cys Asn
Trp1265 1270 1275 1280Gln
Phe Ile Pro Lys Asp Glu Gly Trp Thr Glu 1285
129031291PRTClostridium botulinum Serotype C1DOMAIN(1)...(449)Light
chain comprising the enzymatic domain. 3Met Pro Ile Thr Ile Asn Asn Phe
Asn Tyr Ser Asp Pro Val Asp Asn1 5 10
15Lys Asn Ile Leu Tyr Leu Asp Thr His Leu Asn Thr Leu Ala
Asn Glu 20 25 30Pro Glu Lys
Ala Phe Arg Ile Thr Gly Asn Ile Trp Val Ile Pro Asp 35
40 45Arg Phe Ser Arg Asn Ser Asn Pro Asn Leu Asn
Lys Pro Pro Arg Val 50 55 60Thr Ser
Pro Lys Ser Gly Tyr Tyr Asp Pro Asn Tyr Leu Ser Thr Asp65
70 75 80Ser Asp Lys Asp Pro Phe Leu
Lys Glu Ile Ile Lys Leu Phe Lys Arg 85 90
95Ile Asn Ser Arg Glu Ile Gly Glu Glu Leu Ile Tyr Arg
Leu Ser Thr 100 105 110Asp Ile
Pro Phe Pro Gly Asn Asn Asn Thr Pro Ile Asn Thr Phe Asp 115
120 125Phe Asp Val Asp Phe Asn Ser Val Asp Val
Lys Thr Arg Gln Gly Asn 130 135 140Asn
Trp Val Lys Thr Gly Ser Ile Asn Pro Ser Val Ile Ile Thr Gly145
150 155 160Pro Arg Glu Asn Ile Ile
Asp Pro Glu Thr Ser Thr Phe Lys Leu Thr 165
170 175Asn Asn Thr Phe Ala Ala Gln Glu Gly Phe Gly Ala
Leu Ser Ile Ile 180 185 190Ser
Ile Ser Pro Arg Phe Met Leu Thr Tyr Ser Asn Ala Thr Asn Asp 195
200 205Val Gly Glu Gly Arg Phe Ser Lys Ser
Glu Phe Cys Met Asp Pro Ile 210 215
220Leu Ile Leu Met His Glu Leu Asn His Ala Met His Asn Leu Tyr Gly225
230 235 240Ile Ala Ile Pro
Asn Asp Gln Thr Ile Ser Ser Val Thr Ser Asn Ile 245
250 255Phe Tyr Ser Gln Tyr Asn Val Lys Leu Glu
Tyr Ala Glu Ile Tyr Ala 260 265
270Phe Gly Gly Pro Thr Ile Asp Leu Ile Pro Lys Ser Ala Arg Lys Tyr
275 280 285Phe Glu Glu Lys Ala Leu Asp
Tyr Tyr Arg Ser Ile Ala Lys Arg Leu 290 295
300Asn Ser Ile Thr Thr Ala Asn Pro Ser Ser Phe Asn Lys Tyr Ile
Gly305 310 315 320Glu Tyr
Lys Gln Lys Leu Ile Arg Lys Tyr Arg Phe Val Val Glu Ser
325 330 335Ser Gly Glu Val Thr Val Asn
Arg Asn Lys Phe Val Glu Leu Tyr Asn 340 345
350Glu Leu Thr Gln Ile Phe Thr Glu Phe Asn Tyr Ala Lys Ile
Tyr Asn 355 360 365Val Gln Asn Arg
Lys Ile Tyr Leu Ser Asn Val Tyr Thr Pro Val Thr 370
375 380Ala Asn Ile Leu Asp Asp Asn Val Tyr Asp Ile Gln
Asn Gly Phe Asn385 390 395
400Ile Pro Lys Ser Asn Leu Asn Val Leu Phe Met Gly Gln Asn Leu Ser
405 410 415Arg Asn Pro Ala Leu
Arg Lys Val Asn Pro Glu Asn Met Leu Tyr Leu 420
425 430Phe Thr Lys Phe Cys His Lys Ala Ile Asp Gly Arg
Ser Leu Tyr Asn 435 440 445Lys Thr
Leu Asp Cys Arg Glu Leu Leu Val Lys Asn Thr Asp Leu Pro 450
455 460Phe Ile Gly Asp Ile Ser Asp Val Lys Thr Asp
Ile Phe Leu Arg Lys465 470 475
480Asp Ile Asn Glu Glu Thr Glu Val Ile Tyr Tyr Pro Asp Asn Val Ser
485 490 495Val Asp Gln Val
Ile Leu Ser Lys Asn Thr Ser Glu His Gly Gln Leu 500
505 510Asp Leu Leu Tyr Pro Ser Ile Asp Ser Glu Ser
Glu Ile Leu Pro Gly 515 520 525Glu
Asn Gln Val Phe Tyr Asp Asn Arg Thr Gln Asn Val Asp Tyr Leu 530
535 540Asn Ser Tyr Tyr Tyr Leu Glu Ser Gln Lys
Leu Ser Asp Asn Val Glu545 550 555
560Asp Phe Thr Phe Thr Arg Ser Ile Glu Glu Ala Leu Asp Asn Ser
Ala 565 570 575Lys Val Tyr
Thr Tyr Phe Pro Thr Leu Ala Asn Lys Val Asn Ala Gly 580
585 590Val Gln Gly Gly Leu Phe Leu Met Trp Ala
Asn Asp Val Val Glu Asp 595 600
605Phe Thr Thr Asn Ile Leu Arg Lys Asp Thr Leu Asp Lys Ile Ser Asp 610
615 620Val Ser Ala Ile Ile Pro Tyr Ile
Gly Pro Ala Leu Asn Ile Ser Asn625 630
635 640Ser Val Arg Arg Gly Asn Phe Thr Glu Ala Phe Ala
Val Thr Gly Val 645 650
655Thr Ile Leu Leu Glu Ala Phe Pro Glu Phe Thr Ile Pro Ala Leu Gly
660 665 670Ala Phe Val Ile Tyr Ser
Lys Val Gln Glu Arg Asn Glu Ile Ile Lys 675 680
685Thr Ile Asp Asn Cys Leu Glu Gln Arg Ile Lys Arg Trp Lys
Asp Ser 690 695 700Tyr Glu Trp Met Met
Gly Thr Trp Leu Ser Arg Ile Ile Thr Gln Phe705 710
715 720Asn Asn Ile Ser Tyr Gln Met Tyr Asp Ser
Leu Asn Tyr Gln Ala Gly 725 730
735Ala Ile Lys Ala Lys Ile Asp Leu Glu Tyr Lys Lys Tyr Ser Gly Ser
740 745 750Asp Lys Glu Asn Ile
Lys Ser Gln Val Glu Asn Leu Lys Asn Ser Leu 755
760 765Asp Val Lys Ile Ser Glu Ala Met Asn Asn Ile Asn
Lys Phe Ile Arg 770 775 780Glu Cys Ser
Val Thr Tyr Leu Phe Lys Asn Met Leu Pro Lys Val Ile785
790 795 800Asp Glu Leu Asn Glu Phe Asp
Arg Asn Thr Lys Ala Lys Leu Ile Asn 805
810 815Leu Ile Asp Ser His Asn Ile Ile Leu Val Gly Glu
Val Asp Lys Leu 820 825 830Lys
Ala Lys Val Asn Asn Ser Phe Gln Asn Thr Ile Pro Phe Asn Ile 835
840 845Phe Ser Tyr Thr Asn Asn Ser Leu Leu
Lys Asp Ile Ile Asn Glu Tyr 850 855
860Phe Asn Asn Ile Asn Asp Ser Lys Ile Leu Ser Leu Gln Asn Arg Lys865
870 875 880Asn Thr Leu Val
Asp Thr Ser Gly Tyr Asn Ala Glu Val Ser Glu Glu 885
890 895Gly Asp Val Gln Leu Asn Pro Ile Phe Pro
Phe Asp Phe Lys Leu Gly 900 905
910Ser Ser Gly Glu Asp Arg Gly Lys Val Ile Val Thr Gln Asn Glu Asn
915 920 925Ile Val Tyr Asn Ser Met Tyr
Glu Ser Phe Ser Ile Ser Phe Trp Ile 930 935
940Arg Ile Asn Lys Trp Val Ser Asn Leu Pro Gly Tyr Thr Ile Ile
Asp945 950 955 960Ser Val
Lys Asn Asn Ser Gly Trp Ser Ile Gly Ile Ile Ser Asn Phe
965 970 975Leu Val Phe Thr Leu Lys Gln
Asn Glu Asp Ser Glu Gln Ser Ile Asn 980 985
990Phe Ser Tyr Asp Ile Ser Asn Asn Ala Pro Gly Tyr Asn Lys
Trp Phe 995 1000 1005Phe Val Thr
Val Thr Asn Asn Met Met Gly Asn Met Lys Ile Tyr Ile 1010
1015 1020Asn Gly Lys Leu Ile Asp Thr Ile Lys Val Lys Glu
Leu Thr Gly Ile1025 1030 1035
1040Asn Phe Ser Lys Thr Ile Thr Phe Glu Ile Asn Lys Ile Pro Asp Thr
1045 1050 1055Gly Leu Ile Thr Ser
Asp Ser Asp Asn Ile Asn Met Trp Ile Arg Asp 1060
1065 1070Phe Tyr Ile Phe Ala Lys Glu Leu Asp Gly Lys Asp
Ile Asn Ile Leu 1075 1080 1085Phe
Asn Ser Leu Gln Tyr Thr Asn Val Val Lys Asp Tyr Trp Gly Asn 1090
1095 1100Asp Leu Arg Tyr Asn Lys Glu Tyr Tyr Met
Val Asn Ile Asp Tyr Leu1105 1110 1115
1120Asn Arg Tyr Met Tyr Ala Asn Ser Arg Gln Ile Val Phe Asn Thr
Arg 1125 1130 1135Arg Asn
Asn Asn Asp Phe Asn Glu Gly Tyr Lys Ile Ile Ile Lys Arg 1140
1145 1150Ile Arg Gly Asn Thr Asn Asp Thr Arg
Val Arg Gly Gly Asp Ile Leu 1155 1160
1165Tyr Phe Asp Met Thr Ile Asn Asn Lys Ala Tyr Asn Leu Phe Met Lys
1170 1175 1180Asn Glu Thr Met Tyr Ala Asp
Asn His Ser Thr Glu Asp Ile Tyr Ala1185 1190
1195 1200Ile Gly Leu Arg Glu Gln Thr Lys Asp Ile Asn Asp
Asn Ile Ile Phe 1205 1210
1215Gln Ile Gln Pro Met Asn Asn Thr Tyr Tyr Tyr Ala Ser Gln Ile Phe
1220 1225 1230Lys Ser Asn Phe Asn Gly
Glu Asn Ile Ser Gly Ile Cys Ser Ile Gly 1235 1240
1245Thr Tyr Arg Phe Arg Leu Gly Gly Asp Trp Tyr Arg His Asn
Tyr Leu 1250 1255 1260Val Pro Thr Val
Lys Gln Gly Asn Tyr Ala Ser Leu Leu Glu Ser Thr1265 1270
1275 1280Ser Thr His Trp Gly Phe Val Pro Val
Ser Glu 1285 129041276PRTClostridium
botulinum Serotype DDOMAIN(1)...(445)Light chain comprising the enzymatic
domain. 4Met Thr Trp Pro Val Lys Asp Phe Asn Tyr Ser Asp Pro Val Asn Asp1
5 10 15Asn Asp Ile Leu
Tyr Leu Arg Ile Pro Gln Asn Lys Leu Ile Thr Thr 20
25 30Pro Val Lys Ala Phe Met Ile Thr Gln Asn Ile
Trp Val Ile Pro Glu 35 40 45Arg
Phe Ser Ser Asp Thr Asn Pro Ser Leu Ser Lys Pro Pro Arg Pro 50
55 60Thr Ser Lys Tyr Gln Ser Tyr Tyr Asp Pro
Ser Tyr Leu Ser Thr Asp65 70 75
80Glu Gln Lys Asp Thr Phe Leu Lys Gly Ile Ile Lys Leu Phe Lys
Arg 85 90 95Ile Asn Glu
Arg Asp Ile Gly Lys Lys Leu Ile Asn Tyr Leu Val Val 100
105 110Gly Ser Pro Phe Met Gly Asp Ser Ser Thr
Pro Glu Asp Thr Phe Asp 115 120
125Phe Thr Arg His Thr Thr Asn Ile Ala Val Glu Lys Phe Glu Asn Gly 130
135 140Ser Trp Lys Val Thr Asn Ile Ile
Thr Pro Ser Val Leu Ile Phe Gly145 150
155 160Pro Leu Pro Asn Ile Leu Asp Tyr Thr Ala Ser Leu
Thr Leu Gln Gly 165 170
175Gln Gln Ser Asn Pro Ser Phe Glu Gly Phe Gly Thr Leu Ser Ile Leu
180 185 190Lys Val Ala Pro Glu Phe
Leu Leu Thr Phe Ser Asp Val Thr Ser Asn 195 200
205Gln Ser Ser Ala Val Leu Gly Lys Ser Ile Phe Cys Met Asp
Pro Val 210 215 220Ile Ala Leu Met His
Glu Leu Thr His Ser Leu His Gln Leu Tyr Gly225 230
235 240Ile Asn Ile Pro Ser Asp Lys Arg Ile Arg
Pro Gln Val Ser Glu Gly 245 250
255Phe Phe Ser Gln Asp Gly Pro Asn Val Gln Phe Glu Glu Leu Tyr Thr
260 265 270Phe Gly Gly Leu Asp
Val Glu Ile Ile Pro Gln Ile Glu Arg Ser Gln 275
280 285Leu Arg Glu Lys Ala Leu Gly His Tyr Lys Asp Ile
Ala Lys Arg Leu 290 295 300Asn Asn Ile
Asn Lys Thr Ile Pro Ser Ser Trp Ile Ser Asn Ile Asp305
310 315 320Lys Tyr Lys Lys Ile Phe Ser
Glu Lys Tyr Asn Phe Asp Lys Asp Asn 325
330 335Thr Gly Asn Phe Val Val Asn Ile Asp Lys Phe Asn
Ser Leu Tyr Ser 340 345 350Asp
Leu Thr Asn Val Met Ser Glu Val Val Tyr Ser Ser Gln Tyr Asn 355
360 365Val Lys Asn Arg Thr His Tyr Phe Ser
Arg His Tyr Leu Pro Val Phe 370 375
380Ala Asn Ile Leu Asp Asp Asn Ile Tyr Thr Ile Arg Asp Gly Phe Asn385
390 395 400Leu Thr Asn Lys
Gly Phe Asn Ile Glu Asn Ser Gly Gln Asn Ile Glu 405
410 415Arg Asn Pro Ala Leu Gln Lys Leu Ser Ser
Glu Ser Val Val Asp Leu 420 425
430Phe Thr Lys Val Cys Leu Arg Leu Thr Lys Asn Ser Arg Asp Asp Ser
435 440 445Thr Cys Ile Lys Val Lys Asn
Asn Arg Leu Pro Tyr Val Ala Asp Lys 450 455
460Asp Ser Ile Ser Gln Glu Ile Phe Glu Asn Lys Ile Ile Thr Asp
Glu465 470 475 480Thr Asn
Val Gln Asn Tyr Ser Asp Lys Phe Ser Leu Asp Glu Ser Ile
485 490 495Leu Asp Gly Gln Val Pro Ile
Asn Pro Glu Ile Val Asp Pro Leu Leu 500 505
510Pro Asn Val Asn Met Glu Pro Leu Asn Leu Pro Gly Glu Glu
Ile Val 515 520 525Phe Tyr Asp Asp
Ile Thr Lys Tyr Val Asp Tyr Leu Asn Ser Tyr Tyr 530
535 540Tyr Leu Glu Ser Gln Lys Leu Ser Asn Asn Val Glu
Asn Ile Thr Leu545 550 555
560Thr Thr Ser Val Glu Glu Ala Leu Gly Tyr Ser Asn Lys Ile Tyr Thr
565 570 575Phe Leu Pro Ser Leu
Ala Glu Lys Val Asn Lys Gly Val Gln Ala Gly 580
585 590Leu Phe Leu Asn Trp Ala Asn Glu Val Val Glu Asp
Phe Thr Thr Asn 595 600 605Ile Met
Lys Lys Asp Thr Leu Asp Lys Ile Ser Asp Val Ser Val Ile 610
615 620Ile Pro Tyr Ile Gly Pro Ala Leu Asn Ile Gly
Asn Ser Ala Leu Arg625 630 635
640Gly Asn Phe Asn Gln Ala Phe Ala Thr Ala Gly Val Ala Phe Leu Leu
645 650 655Glu Gly Phe Pro
Glu Phe Thr Ile Pro Ala Leu Gly Val Phe Thr Phe 660
665 670Tyr Ser Ser Ile Gln Glu Arg Glu Lys Ile Ile
Lys Thr Ile Glu Asn 675 680 685Cys
Leu Glu Gln Arg Val Lys Arg Trp Lys Asp Ser Tyr Gln Trp Met 690
695 700Val Ser Asn Trp Leu Ser Arg Ile Thr Thr
Gln Phe Asn His Ile Asn705 710 715
720Tyr Gln Met Tyr Asp Ser Leu Ser Tyr Gln Ala Asp Ala Ile Lys
Ala 725 730 735Lys Ile Asp
Leu Glu Tyr Lys Lys Tyr Ser Gly Ser Asp Lys Glu Asn 740
745 750Ile Lys Ser Gln Val Glu Asn Leu Lys Asn
Ser Leu Asp Val Lys Ile 755 760
765Ser Glu Ala Met Asn Asn Ile Asn Lys Phe Ile Arg Glu Cys Ser Val 770
775 780Thr Tyr Leu Phe Lys Asn Met Leu
Pro Lys Val Ile Asp Glu Leu Asn785 790
795 800Lys Phe Asp Leu Arg Thr Lys Thr Glu Leu Ile Asn
Leu Ile Asp Ser 805 810
815His Asn Ile Ile Leu Val Gly Glu Val Asp Arg Leu Lys Ala Lys Val
820 825 830Asn Glu Ser Phe Glu Asn
Thr Met Pro Phe Asn Ile Phe Ser Tyr Thr 835 840
845Asn Asn Ser Leu Leu Lys Asp Ile Ile Asn Glu Tyr Phe Asn
Ser Ile 850 855 860Asn Asp Ser Lys Ile
Leu Ser Leu Gln Asn Lys Lys Asn Ala Leu Val865 870
875 880Asp Thr Ser Gly Tyr Asn Ala Glu Val Arg
Val Gly Asp Asn Val Gln 885 890
895Leu Asn Thr Ile Tyr Thr Asn Asp Phe Lys Leu Ser Ser Ser Gly Asp
900 905 910Lys Ile Ile Val Asn
Leu Asn Asn Asn Ile Leu Tyr Ser Ala Ile Tyr 915
920 925Glu Asn Ser Ser Val Ser Phe Trp Ile Lys Ile Ser
Lys Asp Leu Thr 930 935 940Asn Ser His
Asn Glu Tyr Thr Ile Ile Asn Ser Ile Glu Gln Asn Ser945
950 955 960Gly Trp Lys Leu Cys Ile Arg
Asn Gly Asn Ile Glu Trp Ile Leu Gln 965
970 975Asp Val Asn Arg Lys Tyr Lys Ser Leu Ile Phe Asp
Tyr Ser Glu Ser 980 985 990Leu
Ser His Thr Gly Tyr Thr Asn Lys Trp Phe Phe Val Thr Ile Thr 995
1000 1005Asn Asn Ile Met Gly Tyr Met Lys Leu
Tyr Ile Asn Gly Glu Leu Lys 1010 1015
1020Gln Ser Gln Lys Ile Glu Asp Leu Asp Glu Val Lys Leu Asp Lys Thr1025
1030 1035 1040Ile Val Phe Gly
Ile Asp Glu Asn Ile Asp Glu Asn Gln Met Leu Trp 1045
1050 1055Ile Arg Asp Phe Asn Ile Phe Ser Lys Glu
Leu Ser Asn Glu Asp Ile 1060 1065
1070Asn Ile Val Tyr Glu Gly Gln Ile Leu Arg Asn Val Ile Lys Asp Tyr
1075 1080 1085Trp Gly Asn Pro Leu Lys Phe
Asp Thr Glu Tyr Tyr Ile Ile Asn Asp 1090 1095
1100Asn Tyr Ile Asp Arg Tyr Ile Ala Pro Glu Ser Asn Val Leu Val
Leu1105 1110 1115 1120Val
Gln Tyr Pro Asp Arg Ser Lys Leu Tyr Thr Gly Asn Pro Ile Thr
1125 1130 1135Ile Lys Ser Val Ser Asp Lys
Asn Pro Tyr Ser Arg Ile Leu Asn Gly 1140 1145
1150Asp Asn Ile Ile Leu His Met Leu Tyr Asn Ser Arg Lys Tyr
Met Ile 1155 1160 1165Ile Arg Asp
Thr Asp Thr Ile Tyr Ala Thr Gln Gly Gly Glu Cys Ser 1170
1175 1180Gln Asn Cys Val Tyr Ala Leu Lys Leu Gln Ser Asn
Leu Gly Asn Tyr1185 1190 1195
1200Gly Ile Gly Ile Phe Ser Ile Lys Asn Ile Val Ser Lys Asn Lys Tyr
1205 1210 1215Cys Ser Gln Ile Phe
Ser Ser Phe Arg Glu Asn Thr Met Leu Leu Ala 1220
1225 1230Asp Ile Tyr Lys Pro Trp Arg Phe Ser Phe Lys Asn
Ala Tyr Thr Pro 1235 1240 1245Val
Ala Val Thr Asn Tyr Glu Thr Lys Leu Leu Ser Thr Ser Ser Phe 1250
1255 1260Trp Lys Phe Ile Ser Arg Asp Pro Gly Trp
Val Glu1265 1270 127551252PRTClostridium
botulinum Serotype EDOMAIN(1)...(422)Light chain comprising the enzymatic
domain. 5Met Pro Lys Ile Asn Ser Phe Asn Tyr Asn Asp Pro Val Asn Asp Arg1
5 10 15Thr Ile Leu Tyr
Ile Lys Pro Gly Gly Cys Gln Glu Phe Tyr Lys Ser 20
25 30Phe Asn Ile Met Lys Asn Ile Trp Ile Ile Pro
Glu Arg Asn Val Ile 35 40 45Gly
Thr Thr Pro Gln Asp Phe His Pro Pro Thr Ser Leu Lys Asn Gly 50
55 60Asp Ser Ser Tyr Tyr Asp Pro Asn Tyr Leu
Gln Ser Asp Glu Glu Lys65 70 75
80Asp Arg Phe Leu Lys Ile Val Thr Lys Ile Phe Asn Arg Ile Asn
Asn 85 90 95Asn Leu Ser
Gly Gly Ile Leu Leu Glu Glu Leu Ser Lys Ala Asn Pro 100
105 110Tyr Leu Gly Asn Asp Asn Thr Pro Asp Asn
Gln Phe His Ile Gly Asp 115 120
125Ala Ser Ala Val Glu Ile Lys Phe Ser Asn Gly Ser Gln Asp Ile Leu 130
135 140Leu Pro Asn Val Ile Ile Met Gly
Ala Glu Pro Asp Leu Phe Glu Thr145 150
155 160Asn Ser Ser Asn Ile Ser Leu Arg Asn Asn Tyr Met
Pro Ser Asn His 165 170
175Gly Phe Gly Ser Ile Ala Ile Val Thr Phe Ser Pro Glu Tyr Ser Phe
180 185 190Arg Phe Asn Asp Asn Ser
Met Asn Glu Phe Ile Gln Asp Pro Ala Leu 195 200
205Thr Leu Met His Glu Leu Ile His Ser Leu His Gly Leu Tyr
Gly Ala 210 215 220Lys Gly Ile Thr Thr
Lys Tyr Thr Ile Thr Gln Lys Gln Asn Pro Leu225 230
235 240Ile Thr Asn Ile Arg Gly Thr Asn Ile Glu
Glu Phe Leu Thr Phe Gly 245 250
255Gly Thr Asp Leu Asn Ile Ile Thr Ser Ala Gln Ser Asn Asp Ile Tyr
260 265 270Thr Asn Leu Leu Ala
Asp Tyr Lys Lys Ile Ala Ser Lys Leu Ser Lys 275
280 285Val Gln Val Ser Asn Pro Leu Leu Asn Pro Tyr Lys
Asp Val Phe Glu 290 295 300Ala Lys Tyr
Gly Leu Asp Lys Asp Ala Ser Gly Ile Tyr Ser Val Asn305
310 315 320Ile Asn Lys Phe Asn Asp Ile
Phe Lys Lys Leu Tyr Ser Phe Thr Glu 325
330 335Phe Asp Leu Ala Thr Lys Phe Gln Val Lys Cys Arg
Gln Thr Tyr Ile 340 345 350Gly
Gln Tyr Lys Tyr Phe Lys Leu Ser Asn Leu Leu Asn Asp Ser Ile 355
360 365Tyr Asn Ile Ser Glu Gly Tyr Asn Ile
Asn Asn Leu Lys Val Asn Phe 370 375
380Arg Gly Gln Asn Ala Asn Leu Asn Pro Arg Ile Ile Thr Pro Ile Thr385
390 395 400Gly Arg Gly Leu
Val Lys Lys Ile Ile Arg Phe Cys Lys Asn Ile Val 405
410 415Ser Val Lys Gly Ile Arg Lys Ser Ile Cys
Ile Glu Ile Asn Asn Gly 420 425
430Glu Leu Phe Phe Val Ala Ser Glu Asn Ser Tyr Asn Asp Asp Asn Ile
435 440 445Asn Thr Pro Lys Glu Ile Asp
Asp Thr Val Thr Ser Asn Asn Asn Tyr 450 455
460Glu Asn Asp Leu Asp Gln Val Ile Leu Asn Phe Asn Ser Glu Ser
Ala465 470 475 480Pro Gly
Leu Ser Asp Glu Lys Leu Asn Leu Thr Ile Gln Asn Asp Ala
485 490 495Tyr Ile Pro Lys Tyr Asp Ser
Asn Gly Thr Ser Asp Ile Glu Gln His 500 505
510Asp Val Asn Glu Leu Asn Val Phe Phe Tyr Leu Asp Ala Gln
Lys Val 515 520 525Pro Glu Gly Glu
Asn Asn Val Asn Leu Thr Ser Ser Ile Asp Thr Ala 530
535 540Leu Leu Glu Gln Pro Lys Ile Tyr Thr Phe Phe Ser
Ser Glu Phe Ile545 550 555
560Asn Asn Val Asn Lys Pro Val Gln Ala Ala Leu Phe Val Ser Trp Ile
565 570 575Gln Gln Val Leu Val
Asp Phe Thr Thr Glu Ala Asn Gln Lys Ser Thr 580
585 590Val Asp Lys Ile Ala Asp Ile Ser Ile Val Val Pro
Tyr Ile Gly Leu 595 600 605Ala Leu
Asn Ile Gly Asn Glu Ala Gln Lys Gly Asn Phe Lys Asp Ala 610
615 620Leu Glu Leu Leu Gly Ala Gly Ile Leu Leu Glu
Phe Glu Pro Glu Leu625 630 635
640Leu Ile Pro Thr Ile Leu Val Phe Thr Ile Lys Ser Phe Leu Gly Ser
645 650 655Ser Asp Asn Lys
Asn Lys Val Ile Lys Ala Ile Asn Asn Ala Leu Lys 660
665 670Glu Arg Asp Glu Lys Trp Lys Glu Val Tyr Ser
Phe Ile Val Ser Asn 675 680 685Trp
Met Thr Lys Ile Asn Thr Gln Phe Asn Lys Arg Lys Glu Gln Met 690
695 700Tyr Gln Ala Leu Gln Asn Gln Val Asn Ala
Ile Lys Thr Ile Ile Glu705 710 715
720Ser Lys Tyr Asn Ser Tyr Thr Leu Glu Glu Lys Asn Glu Leu Thr
Asn 725 730 735Lys Tyr Asp
Ile Lys Gln Ile Glu Asn Glu Leu Asn Gln Lys Val Ser 740
745 750Ile Ala Met Asn Asn Ile Asp Arg Phe Leu
Thr Glu Ser Ser Ile Ser 755 760
765Tyr Leu Met Lys Leu Ile Asn Glu Val Lys Ile Asn Lys Leu Arg Glu 770
775 780Tyr Asp Glu Asn Val Lys Thr Tyr
Leu Leu Asn Tyr Ile Ile Gln His785 790
795 800Gly Ser Ile Leu Gly Glu Ser Gln Gln Glu Leu Asn
Ser Met Val Thr 805 810
815Asp Thr Leu Asn Asn Ser Ile Pro Phe Lys Leu Ser Ser Tyr Thr Asp
820 825 830Asp Lys Ile Leu Ile Ser
Tyr Phe Asn Lys Phe Phe Lys Arg Ile Lys 835 840
845Ser Ser Ser Val Leu Asn Met Arg Tyr Lys Asn Asp Lys Tyr
Val Asp 850 855 860Thr Ser Gly Tyr Asp
Ser Asn Ile Asn Ile Asn Gly Asp Val Tyr Lys865 870
875 880Tyr Pro Thr Asn Lys Asn Gln Phe Gly Ile
Tyr Asn Asp Lys Leu Ser 885 890
895Glu Val Asn Ile Ser Gln Asn Asp Tyr Ile Ile Tyr Asp Asn Lys Tyr
900 905 910Lys Asn Phe Ser Ile
Ser Phe Trp Val Arg Ile Pro Asn Tyr Asp Asn 915
920 925Lys Ile Val Asn Val Asn Asn Glu Tyr Thr Ile Ile
Asn Cys Met Arg 930 935 940Asp Asn Asn
Ser Gly Trp Lys Val Ser Leu Asn His Asn Glu Ile Ile945
950 955 960Trp Thr Leu Gln Asp Asn Ala
Gly Ile Asn Gln Lys Leu Ala Phe Asn 965
970 975Tyr Gly Asn Ala Asn Gly Ile Ser Asp Tyr Ile Asn
Lys Trp Ile Phe 980 985 990Val
Thr Ile Thr Asn Asp Arg Leu Gly Asp Ser Lys Leu Tyr Ile Asn 995
1000 1005Gly Asn Leu Ile Asp Gln Lys Ser Ile
Leu Asn Leu Gly Asn Ile His 1010 1015
1020Val Ser Asp Asn Ile Leu Phe Lys Ile Val Asn Cys Ser Tyr Thr Arg1025
1030 1035 1040Tyr Ile Gly Ile
Arg Tyr Phe Asn Ile Phe Asp Lys Glu Leu Asp Glu 1045
1050 1055Thr Glu Ile Gln Thr Leu Tyr Ser Asn Glu
Pro Asn Thr Asn Ile Leu 1060 1065
1070Lys Asp Phe Trp Gly Asn Tyr Leu Leu Tyr Asp Lys Glu Tyr Tyr Leu
1075 1080 1085Leu Asn Val Leu Lys Pro Asn
Asn Phe Ile Asp Arg Arg Lys Asp Ser 1090 1095
1100Thr Leu Ser Ile Asn Asn Ile Arg Ser Thr Ile Leu Leu Ala Asn
Arg1105 1110 1115 1120Leu
Tyr Ser Gly Ile Lys Val Lys Ile Gln Arg Val Asn Asn Ser Ser
1125 1130 1135Thr Asn Asp Asn Leu Val Arg
Lys Asn Asp Gln Val Tyr Ile Asn Phe 1140 1145
1150Val Ala Ser Lys Thr His Leu Phe Pro Leu Tyr Ala Asp Thr
Ala Thr 1155 1160 1165Thr Asn Lys
Glu Lys Thr Ile Lys Ile Ser Ser Ser Gly Asn Arg Phe 1170
1175 1180Asn Gln Val Val Val Met Asn Ser Val Gly Asn Asn
Cys Thr Met Asn1185 1190 1195
1200Phe Lys Asn Asn Asn Gly Asn Asn Ile Gly Leu Leu Gly Phe Lys Ala
1205 1210 1215Asp Thr Val Val Ala
Ser Thr Trp Tyr Tyr Thr His Met Arg Asp His 1220
1225 1230Thr Asn Ser Asn Gly Cys Phe Trp Asn Phe Ile Ser
Glu Glu His Gly 1235 1240 1245Trp
Gln Glu Lys 125061274PRTClostridium botulinum Serotype
FDOMAIN(1)...(439)Light chain comprising the enzymatic domain. 6Met Pro
Val Ala Ile Asn Ser Phe Asn Tyr Asn Asp Pro Val Asn Asp1 5
10 15Asp Thr Ile Leu Tyr Met Gln Ile
Pro Tyr Glu Glu Lys Ser Lys Lys 20 25
30Tyr Tyr Lys Ala Phe Glu Ile Met Arg Asn Val Trp Ile Ile Pro
Glu 35 40 45Arg Asn Thr Ile Gly
Thr Asn Pro Ser Asp Phe Asp Pro Pro Ala Ser 50 55
60Leu Lys Asn Gly Ser Ser Ala Tyr Tyr Asp Pro Asn Tyr Leu
Thr Thr65 70 75 80Asp
Ala Glu Lys Asp Arg Tyr Leu Lys Thr Thr Ile Lys Leu Phe Lys
85 90 95Arg Ile Asn Ser Asn Pro Ala
Gly Lys Val Leu Leu Gln Glu Ile Ser 100 105
110Tyr Ala Lys Pro Tyr Leu Gly Asn Asp His Thr Pro Ile Asp
Glu Phe 115 120 125Ser Pro Val Thr
Arg Thr Thr Ser Val Asn Ile Lys Leu Ser Thr Asn 130
135 140Val Glu Ser Ser Met Leu Leu Asn Leu Leu Val Leu
Gly Ala Gly Pro145 150 155
160Asp Ile Phe Glu Ser Cys Cys Tyr Pro Val Arg Lys Leu Ile Asp Pro
165 170 175Asp Val Val Tyr Asp
Pro Ser Asn Tyr Gly Phe Gly Ser Ile Asn Ile 180
185 190Val Thr Phe Ser Pro Glu Tyr Glu Tyr Thr Phe Asn
Asp Ile Ser Gly 195 200 205Gly His
Asn Ser Ser Thr Glu Ser Phe Ile Ala Asp Pro Ala Ile Ser 210
215 220Leu Ala His Glu Leu Ile His Ala Leu His Gly
Leu Tyr Gly Ala Arg225 230 235
240Gly Val Thr Tyr Glu Glu Thr Ile Glu Val Lys Gln Ala Pro Leu Met
245 250 255Ile Ala Glu Lys
Pro Ile Arg Leu Glu Glu Phe Leu Thr Phe Gly Gly 260
265 270Gln Asp Leu Asn Ile Ile Thr Ser Ala Met Lys
Glu Lys Ile Tyr Asn 275 280 285Asn
Leu Leu Ala Asn Tyr Glu Lys Ile Ala Thr Arg Leu Ser Glu Val 290
295 300Asn Ser Ala Pro Pro Glu Tyr Asp Ile Asn
Glu Tyr Lys Asp Tyr Phe305 310 315
320Gln Trp Lys Tyr Gly Leu Asp Lys Asn Ala Asp Gly Ser Tyr Thr
Val 325 330 335Asn Glu Asn
Lys Phe Asn Glu Ile Tyr Lys Lys Leu Tyr Ser Phe Thr 340
345 350Glu Ser Asp Leu Ala Asn Lys Phe Lys Val
Lys Cys Arg Asn Thr Tyr 355 360
365Phe Ile Lys Tyr Glu Phe Leu Lys Val Pro Asn Leu Leu Asp Asp Asp 370
375 380Ile Tyr Thr Val Ser Glu Gly Phe
Asn Ile Gly Asn Leu Ala Val Asn385 390
395 400Asn Arg Gly Gln Ser Ile Lys Leu Asn Pro Lys Ile
Ile Asp Ser Ile 405 410
415Pro Asp Lys Gly Leu Val Glu Lys Ile Val Lys Phe Cys Lys Ser Val
420 425 430Ile Pro Arg Lys Gly Thr
Lys Ala Pro Pro Arg Leu Cys Ile Arg Val 435 440
445Asn Asn Ser Glu Leu Phe Phe Val Ala Ser Glu Ser Ser Tyr
Asn Glu 450 455 460Asn Asp Ile Asn Thr
Pro Lys Glu Ile Asp Asp Thr Thr Asn Leu Asn465 470
475 480Asn Asn Tyr Arg Asn Asn Leu Asp Glu Val
Ile Leu Asp Tyr Asn Ser 485 490
495Gln Thr Ile Pro Gln Ile Ser Asn Arg Thr Leu Asn Thr Leu Val Gln
500 505 510Asp Asn Ser Tyr Val
Pro Arg Tyr Asp Ser Asn Gly Thr Ser Glu Ile 515
520 525Glu Glu Tyr Asp Val Val Asp Phe Asn Val Phe Phe
Tyr Leu His Ala 530 535 540Gln Lys Val
Pro Glu Gly Glu Thr Asn Ile Ser Leu Thr Ser Ser Ile545
550 555 560Asp Thr Ala Leu Leu Glu Glu
Ser Lys Asp Ile Phe Phe Ser Ser Glu 565
570 575Phe Ile Asp Thr Ile Asn Lys Pro Val Asn Ala Ala
Leu Phe Ile Asp 580 585 590Trp
Ile Ser Lys Val Ile Arg Asp Phe Thr Thr Glu Ala Thr Gln Lys 595
600 605Ser Thr Val Asp Lys Ile Ala Asp Ile
Ser Leu Ile Val Pro Tyr Val 610 615
620Gly Leu Ala Leu Asn Ile Ile Ile Glu Ala Glu Lys Gly Asn Phe Glu625
630 635 640Glu Ala Phe Glu
Leu Leu Gly Val Gly Ile Leu Leu Glu Phe Val Pro 645
650 655Glu Leu Thr Ile Pro Val Ile Leu Val Phe
Thr Ile Lys Ser Tyr Ile 660 665
670Asp Ser Tyr Glu Asn Lys Asn Lys Ala Ile Lys Ala Ile Asn Asn Ser
675 680 685Leu Ile Glu Arg Glu Ala Lys
Trp Lys Glu Ile Tyr Ser Trp Ile Val 690 695
700Ser Asn Trp Leu Thr Arg Ile Asn Thr Gln Phe Asn Lys Arg Lys
Glu705 710 715 720Gln Met
Tyr Gln Ala Leu Gln Asn Gln Val Asp Ala Ile Lys Thr Ala
725 730 735Ile Glu Tyr Lys Tyr Asn Asn
Tyr Thr Ser Asp Glu Lys Asn Arg Leu 740 745
750Glu Ser Glu Tyr Asn Ile Asn Asn Ile Glu Glu Glu Leu Asn
Lys Lys 755 760 765Val Ser Leu Ala
Met Lys Asn Ile Glu Arg Phe Met Thr Glu Ser Ser 770
775 780Ile Ser Tyr Leu Met Lys Leu Ile Asn Glu Ala Lys
Val Gly Lys Leu785 790 795
800Lys Lys Tyr Asp Asn His Val Lys Ser Asp Leu Leu Asn Tyr Ile Leu
805 810 815Asp His Arg Ser Ile
Leu Gly Glu Gln Thr Asn Glu Leu Ser Asp Leu 820
825 830Val Thr Ser Thr Leu Asn Ser Ser Ile Pro Phe Glu
Leu Ser Ser Tyr 835 840 845Thr Asn
Asp Lys Ile Leu Ile Ile Tyr Phe Asn Arg Leu Tyr Lys Lys 850
855 860Ile Lys Asp Ser Ser Ile Leu Asp Met Arg Tyr
Glu Asn Asn Lys Phe865 870 875
880Ile Asp Ile Ser Gly Tyr Gly Ser Asn Ile Ser Ile Asn Gly Asn Val
885 890 895Tyr Ile Tyr Ser
Thr Asn Arg Asn Gln Phe Gly Ile Tyr Asn Ser Arg 900
905 910Leu Ser Glu Val Asn Ile Ala Gln Asn Asn Asp
Ile Ile Tyr Asn Ser 915 920 925Arg
Tyr Gln Asn Phe Ser Ile Ser Phe Trp Val Arg Ile Pro Lys His 930
935 940Tyr Lys Pro Met Asn His Asn Arg Glu Tyr
Thr Ile Ile Asn Cys Met945 950 955
960Gly Asn Asn Asn Ser Gly Trp Lys Ile Ser Leu Arg Thr Val Arg
Asp 965 970 975Cys Glu Ile
Ile Trp Thr Leu Gln Asp Thr Ser Gly Asn Lys Glu Asn 980
985 990Leu Ile Phe Arg Tyr Glu Glu Leu Asn Arg
Ile Ser Asn Tyr Ile Asn 995 1000
1005Lys Trp Ile Phe Val Thr Ile Thr Asn Asn Arg Leu Gly Asn Ser Arg
1010 1015 1020Ile Tyr Ile Asn Gly Asn Leu
Ile Val Glu Lys Ser Ile Ser Asn Leu1025 1030
1035 1040Gly Asp Ile His Val Ser Asp Asn Ile Leu Phe Lys
Ile Val Gly Cys 1045 1050
1055Asp Asp Glu Thr Tyr Val Gly Ile Arg Tyr Phe Lys Val Phe Asn Thr
1060 1065 1070Glu Leu Asp Lys Thr Glu
Ile Glu Thr Leu Tyr Ser Asn Glu Pro Asp 1075 1080
1085Pro Ser Ile Leu Lys Asn Tyr Trp Gly Asn Tyr Leu Leu Tyr
Asn Lys 1090 1095 1100Lys Tyr Tyr Leu
Phe Asn Leu Leu Arg Lys Asp Lys Tyr Ile Thr Leu1105 1110
1115 1120Asn Ser Gly Ile Leu Asn Ile Asn Gln
Gln Arg Gly Val Thr Glu Gly 1125 1130
1135Ser Val Phe Leu Asn Tyr Lys Leu Tyr Glu Gly Val Glu Val Ile
Ile 1140 1145 1150Arg Lys Asn
Gly Pro Ile Asp Ile Ser Asn Thr Asp Asn Phe Val Arg 1155
1160 1165Lys Asn Asp Leu Ala Tyr Ile Asn Val Val Asp
Arg Gly Val Glu Tyr 1170 1175 1180Arg
Leu Tyr Ala Asp Thr Lys Ser Glu Lys Glu Lys Ile Ile Arg Thr1185
1190 1195 1200Ser Asn Leu Asn Asp Ser
Leu Gly Gln Ile Ile Val Met Asp Ser Ile 1205
1210 1215Gly Asn Asn Cys Thr Met Asn Phe Gln Asn Asn Asn
Gly Ser Asn Ile 1220 1225
1230Gly Leu Leu Gly Phe His Ser Asn Asn Leu Val Ala Ser Ser Trp Tyr
1235 1240 1245Tyr Asn Asn Ile Arg Arg Asn
Thr Ser Ser Asn Gly Cys Phe Trp Ser 1250 1255
1260Ser Ile Ser Lys Glu Asn Gly Trp Lys Glu1265
127071297PRTClostridium botulinum Serotype GDOMAIN(1)...(446)Light chain
comprising the enzymatic domain. 7Met Pro Val Asn Ile Lys Asn Phe Asn Tyr
Asn Asp Pro Ile Asn Asn1 5 10
15Asp Asp Ile Ile Met Met Glu Pro Phe Asn Asp Pro Gly Pro Gly Thr
20 25 30Tyr Tyr Lys Ala Phe Arg
Ile Ile Asp Arg Ile Trp Ile Val Pro Glu 35 40
45Arg Phe Thr Tyr Gly Phe Gln Pro Asp Gln Phe Asn Ala Ser
Thr Gly 50 55 60Val Phe Ser Lys Asp
Val Tyr Glu Tyr Tyr Asp Pro Thr Tyr Leu Lys65 70
75 80Thr Asp Ala Glu Lys Asp Lys Phe Leu Lys
Thr Met Ile Lys Leu Phe 85 90
95Asn Arg Ile Asn Ser Lys Pro Ser Gly Gln Arg Leu Leu Asp Met Ile
100 105 110Val Asp Ala Ile Pro
Tyr Leu Gly Asn Ala Ser Thr Pro Pro Asp Lys 115
120 125Phe Ala Ala Asn Val Ala Asn Val Ser Ile Asn Lys
Lys Ile Ile Gln 130 135 140Pro Gly Ala
Glu Asp Gln Ile Lys Gly Leu Met Thr Asn Leu Ile Ile145
150 155 160Phe Gly Pro Gly Pro Val Leu
Ser Asp Asn Phe Thr Asp Ser Met Ile 165
170 175Met Asn Gly His Ser Pro Ile Ser Glu Gly Phe Gly
Ala Arg Met Met 180 185 190Ile
Arg Phe Cys Pro Ser Cys Leu Asn Val Phe Asn Asn Val Gln Glu 195
200 205Asn Lys Asp Thr Ser Ile Phe Ser Arg
Arg Ala Tyr Phe Ala Asp Pro 210 215
220Ala Leu Thr Leu Met His Glu Leu Ile His Val Leu His Gly Leu Tyr225
230 235 240Gly Ile Lys Ile
Ser Asn Leu Pro Ile Thr Pro Asn Thr Lys Glu Phe 245
250 255Phe Met Gln His Ser Asp Pro Val Gln Ala
Glu Glu Leu Tyr Thr Phe 260 265
270Gly Gly His Asp Pro Ser Val Ile Ser Pro Ser Thr Asp Met Asn Ile
275 280 285Tyr Asn Lys Ala Leu Gln Asn
Phe Gln Asp Ile Ala Asn Arg Leu Asn 290 295
300Ile Val Ser Ser Ala Gln Gly Ser Gly Ile Asp Ile Ser Leu Tyr
Lys305 310 315 320Gln Ile
Tyr Lys Asn Lys Tyr Asp Phe Val Glu Asp Pro Asn Gly Lys
325 330 335Tyr Ser Val Asp Lys Asp Lys
Phe Asp Lys Leu Tyr Lys Ala Leu Met 340 345
350Phe Gly Phe Thr Glu Thr Asn Leu Ala Gly Glu Tyr Gly Ile
Lys Thr 355 360 365Arg Tyr Ser Tyr
Phe Ser Glu Tyr Leu Pro Pro Ile Lys Thr Glu Lys 370
375 380Leu Leu Asp Asn Thr Ile Tyr Thr Gln Asn Glu Gly
Phe Asn Ile Ala385 390 395
400Ser Lys Asn Leu Lys Thr Glu Phe Asn Gly Gln Asn Lys Ala Val Asn
405 410 415Lys Glu Ala Tyr Glu
Glu Ile Ser Leu Glu His Leu Val Ile Tyr Arg 420
425 430Ile Ala Met Cys Lys Pro Val Met Tyr Lys Asn Thr
Gly Lys Ser Glu 435 440 445Gln Cys
Ile Ile Val Asn Asn Glu Asp Leu Phe Phe Ile Ala Asn Lys 450
455 460Asp Ser Phe Ser Lys Asp Leu Ala Lys Ala Glu
Thr Ile Ala Tyr Asn465 470 475
480Thr Gln Asn Asn Thr Ile Glu Asn Asn Phe Ser Ile Asp Gln Leu Ile
485 490 495Leu Asp Asn Asp
Leu Ser Ser Gly Ile Asp Leu Pro Asn Glu Asn Thr 500
505 510Glu Pro Phe Thr Asn Phe Asp Asp Ile Asp Ile
Pro Val Tyr Ile Lys 515 520 525Gln
Ser Ala Leu Lys Lys Ile Phe Val Asp Gly Asp Ser Leu Phe Glu 530
535 540Tyr Leu His Ala Gln Thr Phe Pro Ser Asn
Ile Glu Asn Leu Gln Leu545 550 555
560Thr Asn Ser Leu Asn Asp Ala Leu Arg Asn Asn Asn Lys Val Tyr
Thr 565 570 575Phe Phe Ser
Thr Asn Leu Val Glu Lys Ala Asn Thr Val Val Gly Ala 580
585 590Ser Leu Phe Val Asn Trp Val Lys Gly Val
Ile Asp Asp Phe Thr Ser 595 600
605Glu Ser Thr Gln Lys Ser Thr Ile Asp Lys Val Ser Asp Val Ser Ile 610
615 620Ile Ile Pro Tyr Ile Gly Pro Ala
Leu Asn Val Gly Asn Glu Thr Ala625 630
635 640Lys Glu Asn Phe Lys Asn Ala Phe Glu Ile Gly Gly
Ala Ala Ile Leu 645 650
655Met Glu Phe Ile Pro Glu Leu Ile Val Pro Ile Val Gly Phe Phe Thr
660 665 670Leu Glu Ser Tyr Val Gly
Asn Lys Gly His Ile Ile Met Thr Ile Ser 675 680
685Asn Ala Leu Lys Lys Arg Asp Gln Lys Trp Thr Asp Met Tyr
Gly Leu 690 695 700Ile Val Ser Gln Trp
Leu Ser Thr Val Asn Thr Gln Phe Tyr Thr Ile705 710
715 720Lys Glu Arg Met Tyr Asn Ala Leu Asn Asn
Gln Ser Gln Ala Ile Glu 725 730
735Lys Ile Ile Glu Asp Gln Tyr Asn Arg Tyr Ser Glu Glu Asp Lys Met
740 745 750Asn Ile Asn Ile Asp
Phe Asn Asp Ile Asp Phe Lys Leu Asn Gln Ser 755
760 765Ile Asn Leu Ala Ile Asn Asn Ile Asp Asp Phe Ile
Asn Gln Cys Ser 770 775 780Ile Ser Tyr
Leu Met Asn Arg Met Ile Pro Leu Ala Val Lys Lys Leu785
790 795 800Lys Asp Phe Asp Asp Asn Leu
Lys Arg Asp Leu Leu Glu Tyr Ile Asp 805
810 815Thr Asn Glu Leu Tyr Leu Leu Asp Glu Val Asn Ile
Leu Lys Ser Lys 820 825 830Val
Asn Arg His Leu Lys Asp Ser Ile Pro Phe Asp Leu Ser Leu Tyr 835
840 845Thr Lys Asp Thr Ile Leu Ile Gln Val
Phe Asn Asn Tyr Ile Ser Asn 850 855
860Ile Ser Ser Asn Ala Ile Leu Ser Leu Ser Tyr Arg Gly Gly Arg Leu865
870 875 880Ile Asp Ser Ser
Gly Tyr Gly Ala Thr Met Asn Val Gly Ser Asp Val 885
890 895Ile Phe Asn Asp Ile Gly Asn Gly Gln Phe
Lys Leu Asn Asn Ser Glu 900 905
910Asn Ser Asn Ile Thr Ala His Gln Ser Lys Phe Val Val Tyr Asp Ser
915 920 925Met Phe Asp Asn Phe Ser Ile
Asn Phe Trp Val Arg Thr Pro Lys Tyr 930 935
940Asn Asn Asn Asp Ile Gln Thr Tyr Leu Gln Asn Glu Tyr Thr Ile
Ile945 950 955 960Ser Cys
Ile Lys Asn Asp Ser Gly Trp Lys Val Ser Ile Lys Gly Asn
965 970 975Arg Ile Ile Trp Thr Leu Ile
Asp Val Asn Ala Lys Ser Lys Ser Ile 980 985
990Phe Phe Glu Tyr Ser Ile Lys Asp Asn Ile Ser Asp Tyr Ile
Asn Lys 995 1000 1005Trp Phe Ser
Ile Thr Ile Thr Asn Asp Arg Leu Gly Asn Ala Asn Ile 1010
1015 1020Tyr Ile Asn Gly Ser Leu Lys Lys Ser Glu Lys Ile
Leu Asn Leu Asp1025 1030 1035
1040Arg Ile Asn Ser Ser Asn Asp Ile Asp Phe Lys Leu Ile Asn Cys Thr
1045 1050 1055Asp Thr Thr Lys Phe
Val Trp Ile Lys Asp Phe Asn Ile Phe Gly Arg 1060
1065 1070Glu Leu Asn Ala Thr Glu Val Ser Ser Leu Tyr Trp
Ile Gln Ser Ser 1075 1080 1085Thr
Asn Thr Leu Lys Asp Phe Trp Gly Asn Pro Leu Arg Tyr Asp Thr 1090
1095 1100Gln Tyr Tyr Leu Phe Asn Gln Gly Met Gln
Asn Ile Tyr Ile Lys Tyr1105 1110 1115
1120Phe Ser Lys Ala Ser Met Gly Glu Thr Ala Pro Arg Thr Asn Phe
Asn 1125 1130 1135Asn Ala
Ala Ile Asn Tyr Gln Asn Leu Tyr Leu Gly Leu Arg Phe Ile 1140
1145 1150Ile Lys Lys Ala Ser Asn Ser Arg Asn
Ile Asn Asn Asp Asn Ile Val 1155 1160
1165Arg Glu Gly Asp Tyr Ile Tyr Leu Asn Ile Asp Asn Ile Ser Asp Glu
1170 1175 1180Ser Tyr Arg Val Tyr Val Leu
Val Asn Ser Lys Glu Ile Gln Thr Gln1185 1190
1195 1200Leu Phe Leu Ala Pro Ile Asn Asp Asp Pro Thr Phe
Tyr Asp Val Leu 1205 1210
1215Gln Ile Lys Lys Tyr Tyr Glu Lys Thr Thr Tyr Asn Cys Gln Ile Leu
1220 1225 1230Cys Glu Lys Asp Thr Lys
Thr Phe Gly Leu Phe Gly Ile Gly Lys Phe 1235 1240
1245Val Lys Asp Tyr Gly Tyr Val Trp Asp Thr Tyr Asp Asn Tyr
Phe Cys 1250 1255 1260Ile Ser Gln Trp
Tyr Leu Arg Arg Ile Ser Glu Asn Ile Asn Lys Leu1265 1270
1275 1280Arg Leu Gly Cys Asn Trp Gln Phe Ile
Pro Val Asp Glu Gly Trp Thr 1285 1290
1295Glu81315PRTClostridium tetaniDOMAIN(1)...(457)Light chain
comprising the enzymatic domain. 8Met Pro Ile Thr Ile Asn Asn Phe Arg Tyr
Ser Asp Pro Val Asn Asn1 5 10
15Asp Thr Ile Ile Met Met Glu Pro Pro Tyr Cys Lys Gly Leu Asp Ile
20 25 30Tyr Tyr Lys Ala Phe Lys
Ile Thr Asp Arg Ile Trp Ile Val Pro Glu 35 40
45Arg Tyr Glu Phe Gly Thr Lys Pro Glu Asp Phe Asn Pro Pro
Ser Ser 50 55 60Leu Ile Glu Gly Ala
Ser Glu Tyr Tyr Asp Pro Asn Tyr Leu Arg Thr65 70
75 80Asp Ser Asp Lys Asp Arg Phe Leu Gln Thr
Met Val Lys Leu Phe Asn 85 90
95Arg Ile Lys Asn Asn Val Ala Gly Glu Ala Leu Leu Asp Lys Ile Ile
100 105 110Asn Ala Ile Pro Tyr
Leu Gly Asn Ser Tyr Ser Leu Leu Asp Lys Phe 115
120 125Asp Thr Asn Ser Asn Ser Val Ser Phe Asn Leu Leu
Glu Gln Asp Pro 130 135 140Ser Gly Ala
Thr Thr Lys Ser Ala Met Leu Thr Asn Leu Ile Ile Phe145
150 155 160Gly Pro Gly Pro Val Leu Asn
Lys Asn Glu Val Arg Gly Ile Val Leu 165
170 175Arg Val Asp Asn Lys Asn Tyr Phe Pro Cys Arg Asp
Gly Phe Gly Ser 180 185 190Ile
Met Gln Met Ala Phe Cys Pro Glu Tyr Val Pro Thr Phe Asp Asn 195
200 205Val Ile Glu Asn Ile Thr Ser Leu Thr
Ile Gly Lys Ser Lys Tyr Phe 210 215
220Gln Asp Pro Ala Leu Leu Leu Met His Glu Leu Ile His Val Leu His225
230 235 240Gly Leu Tyr Gly
Met Gln Val Ser Ser His Glu Ile Ile Pro Ser Lys 245
250 255Gln Glu Ile Tyr Met Gln His Thr Tyr Pro
Ile Ser Ala Glu Glu Leu 260 265
270Phe Thr Phe Gly Gly Gln Asp Ala Asn Leu Ile Ser Ile Asp Ile Lys
275 280 285Asn Asp Leu Tyr Glu Lys Thr
Leu Asn Asp Tyr Lys Ala Ile Ala Asn 290 295
300Lys Leu Ser Gln Val Thr Ser Cys Asn Asp Pro Asn Ile Asp Ile
Asp305 310 315 320Ser Tyr
Lys Gln Ile Tyr Gln Gln Lys Tyr Gln Phe Asp Lys Asp Ser
325 330 335Asn Gly Gln Tyr Ile Val Asn
Glu Asp Lys Phe Gln Ile Leu Tyr Asn 340 345
350Ser Ile Met Tyr Gly Phe Thr Glu Ile Glu Leu Gly Lys Lys
Phe Asn 355 360 365Ile Lys Thr Arg
Leu Ser Tyr Phe Ser Met Asn His Asp Pro Val Lys 370
375 380Ile Pro Asn Leu Leu Asp Asp Thr Ile Tyr Asn Asp
Thr Glu Gly Phe385 390 395
400Asn Ile Glu Ser Lys Asp Leu Lys Ser Glu Tyr Lys Gly Gln Asn Met
405 410 415Arg Val Asn Thr Asn
Ala Phe Arg Asn Val Asp Gly Ser Gly Leu Val 420
425 430Ser Lys Leu Ile Gly Leu Cys Lys Lys Ile Ile Pro
Pro Thr Asn Ile 435 440 445Arg Glu
Asn Leu Tyr Asn Arg Thr Ala Ser Leu Thr Asp Leu Gly Gly 450
455 460Glu Leu Cys Ile Lys Ile Lys Asn Glu Asp Leu
Thr Phe Ile Ala Glu465 470 475
480Lys Asn Ser Phe Ser Glu Glu Pro Phe Gln Asp Glu Ile Val Ser Tyr
485 490 495Asn Thr Lys Asn
Lys Pro Leu Asn Phe Asn Tyr Ser Leu Asp Lys Ile 500
505 510Ile Val Asp Tyr Asn Leu Gln Ser Lys Ile Thr
Leu Pro Asn Asp Arg 515 520 525Thr
Thr Pro Val Thr Lys Gly Ile Pro Tyr Ala Pro Glu Tyr Lys Ser 530
535 540Asn Ala Ala Ser Thr Ile Glu Ile His Asn
Ile Asp Asp Asn Thr Ile545 550 555
560Tyr Gln Tyr Leu Tyr Ala Gln Lys Ser Pro Thr Thr Leu Gln Arg
Ile 565 570 575Thr Met Thr
Asn Ser Val Asp Asp Ala Leu Ile Asn Ser Thr Lys Ile 580
585 590Tyr Ser Tyr Phe Pro Ser Val Ile Ser Lys
Val Asn Gln Gly Ala Gln 595 600
605Gly Ile Leu Phe Leu Gln Trp Val Arg Asp Ile Ile Asp Asp Phe Thr 610
615 620Asn Glu Ser Ser Gln Lys Thr Thr
Ile Asp Lys Ile Ser Asp Val Ser625 630
635 640Thr Ile Val Pro Tyr Ile Gly Pro Ala Leu Asn Ile
Val Lys Gln Gly 645 650
655Tyr Glu Gly Asn Phe Ile Gly Ala Leu Glu Thr Thr Gly Val Val Leu
660 665 670Leu Leu Glu Tyr Ile Pro
Glu Ile Thr Leu Pro Val Ile Ala Ala Leu 675 680
685Ser Ile Ala Glu Ser Ser Thr Gln Lys Glu Lys Ile Ile Lys
Thr Ile 690 695 700Asp Asn Phe Leu Glu
Lys Arg Tyr Glu Lys Trp Ile Glu Val Tyr Lys705 710
715 720Leu Val Lys Ala Lys Trp Leu Gly Thr Val
Asn Thr Gln Phe Gln Lys 725 730
735Arg Ser Tyr Gln Met Tyr Arg Ser Leu Glu Tyr Gln Val Asp Ala Ile
740 745 750Lys Lys Ile Ile Asp
Tyr Glu Tyr Lys Ile Tyr Ser Gly Pro Asp Lys 755
760 765Glu Gln Ile Ala Asp Glu Ile Asn Asn Leu Lys Asn
Lys Leu Glu Glu 770 775 780Lys Ala Asn
Lys Ala Met Ile Asn Ile Asn Ile Phe Met Arg Glu Ser785
790 795 800Ser Arg Ser Phe Leu Val Asn
Gln Met Ile Asn Glu Ala Lys Lys Gln 805
810 815Leu Leu Glu Phe Asp Thr Gln Ser Lys Asn Ile Leu
Met Gln Tyr Ile 820 825 830Lys
Ala Asn Ser Lys Phe Ile Gly Ile Thr Glu Leu Lys Lys Leu Glu 835
840 845Ser Lys Ile Asn Lys Val Phe Ser Thr
Pro Ile Pro Phe Ser Tyr Ser 850 855
860Lys Asn Leu Asp Cys Trp Val Asp Asn Glu Glu Asp Ile Asp Val Ile865
870 875 880Leu Lys Lys Ser
Thr Ile Leu Asn Leu Asp Ile Asn Asn Asp Ile Ile 885
890 895Ser Asp Ile Ser Gly Phe Asn Ser Ser Val
Ile Thr Tyr Pro Asp Ala 900 905
910Gln Leu Val Pro Gly Ile Asn Gly Lys Ala Ile His Leu Val Asn Asn
915 920 925Glu Ser Ser Glu Val Ile Val
His Lys Ala Met Asp Ile Glu Tyr Asn 930 935
940Asp Met Phe Asn Asn Phe Thr Val Ser Phe Trp Leu Arg Val Pro
Lys945 950 955 960Val Ser
Ala Ser His Leu Glu Gln Tyr Gly Thr Asn Glu Tyr Ser Ile
965 970 975Ile Ser Ser Met Lys Lys His
Ser Leu Ser Ile Gly Ser Gly Trp Ser 980 985
990Val Ser Leu Lys Gly Asn Asn Leu Ile Trp Thr Leu Lys Asp
Ser Ala 995 1000 1005Gly Glu Val
Arg Gln Ile Thr Phe Arg Asp Leu Pro Asp Lys Phe Asn 1010
1015 1020Ala Tyr Leu Ala Asn Lys Trp Val Phe Ile Thr Ile
Thr Asn Asp Arg1025 1030 1035
1040Leu Ser Ser Ala Asn Leu Tyr Ile Asn Gly Val Leu Met Gly Ser Ala
1045 1050 1055Glu Ile Thr Gly Leu
Gly Ala Ile Arg Glu Asp Asn Asn Ile Thr Leu 1060
1065 1070Lys Leu Asp Arg Cys Asn Asn Asn Asn Gln Tyr Val
Ser Ile Asp Lys 1075 1080 1085Phe
Arg Ile Phe Cys Lys Ala Leu Asn Pro Lys Glu Ile Glu Lys Leu 1090
1095 1100Tyr Thr Ser Tyr Leu Ser Ile Thr Phe Leu
Arg Asp Phe Trp Gly Asn1105 1110 1115
1120Pro Leu Arg Tyr Asp Thr Glu Tyr Tyr Leu Ile Pro Val Ala Ser
Ser 1125 1130 1135Ser Lys
Asp Val Gln Leu Lys Asn Ile Thr Asp Tyr Met Tyr Leu Thr 1140
1145 1150Asn Ala Pro Ser Tyr Thr Asn Gly Lys
Leu Asn Ile Tyr Tyr Arg Arg 1155 1160
1165Leu Tyr Asn Gly Leu Lys Phe Ile Ile Lys Arg Tyr Thr Pro Asn Asn
1170 1175 1180Glu Ile Asp Ser Phe Val Lys
Ser Gly Asp Phe Ile Lys Leu Tyr Val1185 1190
1195 1200Ser Tyr Asn Asn Asn Glu His Ile Val Gly Tyr Pro
Lys Asp Gly Asn 1205 1210
1215Ala Phe Asn Asn Leu Asp Arg Ile Leu Arg Val Gly Tyr Asn Ala Pro
1220 1225 1230Gly Ile Pro Leu Tyr Lys
Lys Met Glu Ala Val Lys Leu Arg Asp Leu 1235 1240
1245Lys Thr Tyr Ser Val Gln Leu Lys Leu Tyr Asp Asp Lys Asn
Ala Ser 1250 1255 1260Leu Gly Leu Val
Gly Thr His Asn Gly Gln Ile Gly Asn Asp Pro Asn1265 1270
1275 1280Arg Asp Ile Leu Ile Ala Ser Asn Trp
Tyr Phe Asn His Leu Lys Asp 1285 1290
1295Lys Ile Leu Gly Cys Asp Trp Tyr Phe Val Pro Thr Asp Glu Gly
Trp 1300 1305 1310Thr Asn Asp
13159206PRTHomo sapiens SNAP-25A (Human) 9Met Ala Glu Asp Ala Asp Met
Arg Asn Glu Leu Glu Glu Met Gln Arg1 5 10
15Arg Ala Asp Gln Leu Ala Asp Glu Ser Leu Glu Ser Thr
Arg Arg Met 20 25 30Leu Gln
Leu Val Glu Glu Ser Lys Asp Ala Gly Ile Arg Thr Leu Val 35
40 45Met Leu Asp Glu Gln Gly Glu Gln Leu Asp
Arg Val Glu Glu Gly Met 50 55 60Asn
His Ile Asn Gln Asp Met Lys Glu Ala Glu Lys Asn Leu Lys Asp65
70 75 80Leu Gly Lys Cys Cys Gly
Leu Phe Ile Cys Pro Cys Asn Lys Leu Lys 85
90 95Ser Ser Asp Ala Tyr Lys Lys Ala Trp Gly Asn Asn
Gln Asp Gly Val 100 105 110Val
Ala Ser Gln Pro Ala Arg Val Val Asp Glu Arg Glu Gln Met Ala 115
120 125Ile Ser Gly Gly Phe Ile Arg Arg Val
Thr Asn Asp Ala Arg Glu Asn 130 135
140Glu Met Asp Glu Asn Leu Glu Gln Val Ser Gly Ile Ile Gly Asn Leu145
150 155 160Arg His Met Ala
Leu Asp Met Gly Asn Glu Ile Asp Thr Gln Asn Arg 165
170 175Gln Ile Asp Arg Ile Met Glu Lys Ala Asp
Ser Asn Lys Thr Arg Ile 180 185
190Asp Glu Ala Asn Gln Arg Ala Thr Lys Met Leu Gly Ser Gly 195
200 20510206PRTHomo sapiens SNAP-25B (Human)
10Met Ala Glu Asp Ala Asp Met Arg Asn Glu Leu Glu Glu Met Gln Arg1
5 10 15Arg Ala Asp Gln Leu Ala
Asp Glu Ser Leu Glu Ser Thr Arg Arg Met 20 25
30Leu Gln Leu Val Glu Glu Ser Lys Asp Ala Gly Ile Arg
Thr Leu Val 35 40 45Met Leu Asp
Glu Gln Gly Glu Gln Leu Glu Arg Ile Glu Glu Gly Met 50
55 60Asp Gln Ile Asn Lys Asp Met Lys Glu Ala Glu Lys
Asn Leu Thr Asp65 70 75
80Leu Gly Lys Phe Cys Gly Leu Cys Val Cys Pro Cys Asn Lys Leu Lys
85 90 95Ser Ser Asp Ala Tyr Lys
Lys Ala Trp Gly Asn Asn Gln Asp Gly Val 100
105 110Val Ala Ser Gln Pro Ala Arg Val Val Asp Glu Arg
Glu Gln Met Ala 115 120 125Ile Ser
Gly Gly Phe Ile Arg Arg Val Thr Asn Asp Ala Arg Glu Asn 130
135 140Glu Met Asp Glu Asn Leu Glu Gln Val Ser Gly
Ile Ile Gly Asn Leu145 150 155
160Arg His Met Ala Leu Asp Met Gly Asn Glu Ile Asp Thr Gln Asn Arg
165 170 175Gln Ile Asp Arg
Ile Met Glu Lys Ala Asp Ser Asn Lys Thr Arg Ile 180
185 190Asp Glu Ala Asn Gln Arg Ala Thr Lys Met Leu
Gly Ser Gly 195 200
20511211PRTHomo sapiens SNAP-23A (Human) 11Met Asp Asn Leu Ser Ser Glu
Glu Ile Gln Gln Arg Ala His Gln Ile1 5 10
15Thr Asp Glu Ser Leu Glu Ser Thr Arg Arg Ile Leu Gly
Leu Ala Ile 20 25 30Glu Ser
Gln Asp Ala Gly Ile Lys Thr Ile Thr Met Leu Asp Glu Gln 35
40 45Lys Glu Gln Leu Asn Arg Ile Glu Glu Gly
Leu Asp Gln Ile Asn Lys 50 55 60Asp
Met Arg Glu Thr Glu Lys Thr Leu Thr Glu Leu Asn Lys Cys Cys65
70 75 80Gly Leu Cys Val Cys Pro
Cys Asn Arg Thr Lys Asn Phe Glu Ser Gly 85
90 95Lys Ala Tyr Lys Thr Thr Trp Gly Asp Gly Gly Glu
Asn Ser Pro Cys 100 105 110Asn
Val Val Ser Lys Gln Pro Gly Pro Val Thr Asn Gly Gln Leu Gln 115
120 125Gln Pro Thr Thr Gly Ala Ala Ser Gly
Gly Tyr Ile Lys Arg Ile Thr 130 135
140Asn Asp Ala Arg Glu Asp Glu Met Glu Glu Asn Leu Thr Gln Val Gly145
150 155 160Ser Ile Leu Gly
Asn Leu Lys Asp Met Ala Leu Asn Ile Gly Asn Glu 165
170 175Ile Asp Ala Gln Asn Pro Gln Ile Lys Arg
Ile Thr Asp Lys Ala Asp 180 185
190Thr Asn Arg Asp Arg Ile Asp Ile Ala Asn Ala Arg Ala Lys Lys Leu
195 200 205Ile Asp Ser
21012158PRTHomo sapiens SNAP-23B (Human) 12Met Asp Asn Leu Ser Ser Glu
Glu Ile Gln Gln Arg Ala His Gln Ile1 5 10
15Thr Asp Glu Ser Leu Glu Ser Thr Arg Arg Ile Leu Gly
Leu Ala Ile 20 25 30Glu Ser
Gln Asp Ala Gly Ile Lys Thr Ile Thr Met Leu Asp Glu Gln 35
40 45Lys Glu Gln Leu Asn Arg Ile Glu Glu Gly
Leu Asp Gln Ile Asn Lys 50 55 60Asp
Met Arg Glu Thr Glu Lys Thr Leu Thr Glu Leu Asn Lys Cys Cys65
70 75 80Gly Leu Cys Val Cys Pro
Cys Asn Ser Ile Thr Asn Asp Ala Arg Glu 85
90 95Asp Glu Met Glu Glu Asn Leu Thr Gln Val Gly Ser
Ile Leu Gly Asn 100 105 110Leu
Lys Asp Met Ala Leu Asn Ile Gly Asn Glu Ile Asp Ala Gln Asn 115
120 125Pro Gln Ile Lys Arg Ile Thr Asp Lys
Ala Asp Thr Asn Arg Asp Arg 130 135
140Ile Asp Ile Ala Asn Ala Arg Ala Lys Lys Leu Ile Asp Ser145
150 15513206PRTMacaca mulatta SNAP-25B (Rhesus
monkey) 13Met Ala Glu Asp Ala Asp Met Arg Asn Glu Leu Glu Glu Met Gln
Arg1 5 10 15Arg Ala Asp
Gln Leu Ala Asp Glu Ser Leu Glu Ser Thr Arg Arg Met 20
25 30Leu Gln Leu Val Glu Glu Ser Lys Asp Ala
Gly Ile Arg Thr Leu Val 35 40
45Met Leu Asp Glu Gln Gly Glu Gln Leu Glu Arg Ile Glu Glu Gly Met 50
55 60Asp Gln Ile Asn Lys Asp Met Lys Glu
Ala Glu Lys Asn Leu Thr Asp65 70 75
80Leu Gly Lys Phe Cys Gly Leu Cys Val Cys Pro Cys Asn Lys
Leu Lys 85 90 95Ser Ser
Asp Ala Tyr Lys Lys Ala Trp Gly Asn Asn Gln Asp Gly Val 100
105 110Val Ala Ser Gln Pro Ala Arg Val Val
Asp Glu Arg Glu Gln Met Ala 115 120
125Ile Ser Gly Gly Phe Ile Arg Arg Val Thr Asn Asp Ala Arg Glu Asn
130 135 140Glu Met Asp Glu Asn Leu Glu
Gln Val Ser Gly Ile Ile Gly Asn Leu145 150
155 160Arg His Met Ala Leu Asp Met Gly Asn Glu Ile Asp
Thr Gln Asn Arg 165 170
175Gln Ile Asp Arg Ile Met Glu Lys Ala Asp Ser Asn Lys Thr Arg Ile
180 185 190Asp Glu Ala Asn Gln Arg
Ala Thr Lys Met Leu Gly Ser Gly 195 200
20514206PRTRattus norvegicus SNAP-25A (Rat) 14Met Ala Glu Asp Ala
Asp Met Arg Asn Glu Leu Glu Glu Met Gln Arg1 5
10 15Arg Ala Asp Gln Leu Ala Asp Glu Ser Leu Glu
Ser Thr Arg Arg Met 20 25
30Leu Gln Leu Val Glu Glu Ser Lys Asp Ala Gly Ile Arg Thr Leu Val
35 40 45Met Leu Asp Glu Gln Gly Glu Gln
Leu Asp Arg Val Glu Glu Gly Met 50 55
60Asn His Ile Asn Gln Asp Met Lys Glu Ala Glu Lys Asn Leu Lys Asp65
70 75 80Leu Gly Lys Cys Cys
Gly Leu Phe Ile Cys Pro Cys Asn Lys Leu Lys 85
90 95Ser Ser Asp Ala Tyr Lys Lys Ala Trp Gly Asn
Asn Gln Asp Gly Val 100 105
110Val Ala Ser Gln Pro Ala Arg Val Val Asp Glu Arg Glu Gln Met Ala
115 120 125Ile Ser Gly Gly Phe Ile Arg
Arg Val Thr Asn Asp Ala Arg Glu Asn 130 135
140Glu Met Asp Glu Asn Leu Glu Gln Val Ser Gly Ile Ile Gly Asn
Leu145 150 155 160Arg His
Met Ala Leu Asp Met Gly Asn Glu Ile Asp Thr Gln Asn Arg
165 170 175Gln Ile Asp Arg Ile Met Glu
Lys Ala Asp Ser Asn Lys Thr Arg Ile 180 185
190Asp Glu Ala Asn Gln Arg Ala Thr Lys Met Leu Gly Ser Gly
195 200 20515206PRTRattus norvegicus
SNAP-25B (Rat) 15Met Ala Glu Asp Ala Asp Met Arg Asn Glu Leu Glu Glu Met
Gln Arg1 5 10 15Arg Ala
Asp Gln Leu Ala Asp Glu Ser Leu Glu Ser Thr Arg Arg Met 20
25 30Leu Gln Leu Val Glu Glu Ser Lys Asp
Ala Gly Ile Arg Thr Leu Val 35 40
45Met Leu Asp Glu Gln Gly Glu Gln Leu Glu Arg Ile Glu Glu Gly Met 50
55 60Asp Gln Ile Asn Lys Asp Met Lys Glu
Ala Glu Lys Asn Leu Thr Asp65 70 75
80Leu Gly Lys Phe Cys Gly Leu Cys Val Cys Pro Cys Asn Lys
Leu Lys 85 90 95Ser Ser
Asp Ala Tyr Lys Lys Ala Trp Gly Asn Asn Gln Asp Gly Val 100
105 110Val Ala Ser Gln Pro Ala Arg Val Val
Asp Glu Arg Glu Gln Met Ala 115 120
125Ile Ser Gly Gly Phe Ile Arg Arg Val Thr Asn Asp Ala Arg Glu Asn
130 135 140Glu Met Asp Glu Asn Leu Glu
Gln Val Ser Gly Ile Ile Gly Asn Leu145 150
155 160Arg His Met Ala Leu Asp Met Gly Asn Glu Ile Asp
Thr Gln Asn Arg 165 170
175Gln Ile Asp Arg Ile Met Glu Lys Ala Asp Ser Asn Lys Thr Arg Ile
180 185 190Asp Glu Ala Asn Gln Arg
Ala Thr Lys Met Leu Gly Ser Gly 195 200
20516206PRTMus musculus SNAP-25B (Mouse) 16Met Ala Glu Asp Ala Asp
Met Arg Asn Glu Leu Glu Glu Met Gln Arg1 5
10 15Arg Ala Asp Gln Leu Ala Asp Glu Ser Leu Glu Ser
Thr Arg Arg Met 20 25 30Leu
Gln Leu Val Glu Glu Ser Lys Asp Ala Gly Ile Arg Thr Leu Val 35
40 45Met Leu Asp Glu Gln Gly Glu Gln Leu
Glu Arg Ile Glu Glu Gly Met 50 55
60Asp Gln Ile Asn Lys Asp Met Lys Glu Ala Glu Lys Asn Leu Thr Asp65
70 75 80Leu Gly Lys Phe Cys
Gly Leu Cys Val Cys Pro Cys Asn Lys Leu Lys 85
90 95Ser Ser Asp Ala Tyr Lys Lys Ala Trp Gly Asn
Asn Gln Asp Gly Val 100 105
110Val Ala Ser Gln Pro Ala Arg Val Val Asp Glu Arg Glu Gln Met Ala
115 120 125Ile Ser Gly Gly Phe Ile Arg
Arg Val Thr Asn Asp Ala Arg Glu Asn 130 135
140Glu Met Asp Glu Asn Leu Glu Gln Val Ser Gly Ile Ile Gly Asn
Leu145 150 155 160Arg His
Met Ala Leu Asp Met Gly Asn Glu Ile Asp Thr Gln Asn Arg
165 170 175Gln Ile Asp Arg Ile Met Glu
Lys Ala Asp Ser Asn Lys Thr Arg Ile 180 185
190Asp Glu Ala Asn Gln Arg Ala Thr Lys Met Leu Gly Ser Gly
195 200 20517210PRTRattus norvegicus
SNAP-23 (Rat) 17Met Asp Asp Leu Ser Pro Glu Glu Ile Gln Leu Arg Ala His
Gln Val1 5 10 15Thr Asp
Glu Ser Leu Glu Ser Thr Arg Arg Ile Leu Gly Leu Ala Ile 20
25 30Glu Ser Gln Asp Ala Gly Ile Lys Thr
Ile Thr Met Leu Asp Glu Gln 35 40
45Gly Glu Gln Leu Asn Arg Ile Glu Glu Gly Met Asp Gln Ile Asn Lys 50
55 60Asp Met Arg Glu Ala Glu Lys Thr Leu
Thr Glu Leu Asn Lys Cys Cys65 70 75
80Gly Leu Cys Val Cys Pro Cys Asn Arg Thr Lys Asn Phe Glu
Ser Gly 85 90 95Lys Asn
Tyr Lys Ala Thr Trp Gly Asp Gly Gly Asp Ser Ser Pro Ser 100
105 110Asn Val Val Ser Lys Gln Pro Ser Arg
Ile Thr Asn Gly Gln Pro Gln 115 120
125Gln Thr Thr Gly Ala Ala Ser Gly Gly Tyr Ile Lys Arg Ile Thr Asn
130 135 140Asp Ala Arg Glu Asp Glu Met
Glu Glu Asn Leu Thr Gln Val Gly Ser145 150
155 160Ile Leu Gly Asn Leu Lys Asn Met Ala Leu Asp Met
Gly Asn Glu Ile 165 170
175Asp Ala Gln Asn Gln Gln Ile Gln Lys Ile Thr Glu Lys Ala Asp Thr
180 185 190Asn Lys Asn Arg Ile Asp
Ile Ala Asn Thr Arg Ala Lys Lys Leu Ile 195 200
205Asp Ser 21018210PRTMus musculus SNAP-23 (Mouse) 18Met
Asp Asn Leu Ser Pro Glu Glu Val Gln Leu Arg Ala His Gln Val1
5 10 15Thr Asp Glu Ser Leu Glu Ser
Thr Arg Arg Ile Leu Gly Leu Ala Ile 20 25
30Glu Ser Gln Asp Ala Gly Ile Lys Thr Ile Thr Met Leu Asp
Glu Gln 35 40 45Gly Glu Gln Leu
Asn Arg Ile Glu Glu Gly Met Asp Gln Ile Asn Lys 50 55
60Asp Met Arg Glu Ala Glu Lys Thr Leu Thr Glu Leu Asn
Lys Cys Cys65 70 75
80Gly Leu Cys Ile Cys Pro Cys Asn Arg Thr Lys Asn Phe Glu Ser Gly
85 90 95Lys Asn Tyr Lys Ala Thr
Trp Gly Asp Gly Gly Asp Asn Ser Pro Ser 100
105 110Asn Val Val Ser Lys Gln Pro Ser Arg Ile Thr Asn
Gly Gln Pro Gln 115 120 125Gln Thr
Thr Gly Ala Ala Ser Gly Gly Tyr Ile Lys Arg Ile Thr Asn 130
135 140Asp Ala Arg Glu Asp Glu Met Glu Glu Asn Leu
Thr Gln Val Gly Ser145 150 155
160Ile Leu Gly Asn Leu Lys Asn Met Ala Leu Asp Met Gly Asn Glu Ile
165 170 175Asp Ala Gln Asn
Gln Gln Ile Gln Lys Ile Thr Glu Lys Ala Asp Thr 180
185 190Asn Lys Asn Arg Ile Asp Ile Ala Asn Thr Arg
Ala Lys Lys Leu Ile 195 200 205Asp
Ser 21019206PRTGallus gallus SNAP-25B (Chicken) 19Met Ala Glu Asp Ala
Asp Met Arg Asn Glu Leu Glu Glu Met Gln Arg1 5
10 15Arg Ala Asp Gln Leu Ala Asp Glu Ser Leu Glu
Ser Thr Arg Arg Met 20 25
30Leu Gln Leu Val Glu Glu Ser Lys Asp Ala Gly Ile Arg Thr Leu Val
35 40 45Met Leu Asp Glu Gln Gly Glu Gln
Leu Glu Arg Ile Glu Glu Gly Met 50 55
60Asp Gln Ile Asn Lys Asp Met Lys Glu Ala Glu Lys Asn Leu Thr Asp65
70 75 80Leu Gly Lys Phe Cys
Gly Leu Cys Val Cys Pro Cys Asn Lys Leu Lys 85
90 95Ser Ser Asp Ala Tyr Lys Lys Ala Trp Gly Asn
Asn Gln Asp Gly Val 100 105
110Val Ala Ser Gln Pro Ala Arg Val Val Asp Glu Arg Glu Gln Met Ala
115 120 125Ile Ser Gly Gly Phe Ile Arg
Arg Val Thr Asn Asp Ala Arg Glu Asn 130 135
140Glu Met Asp Glu Asn Leu Glu Gln Val Ser Gly Ile Ile Gly Asn
Leu145 150 155 160Arg His
Met Ala Leu Asp Met Gly Asn Glu Ile Asp Thr Gln Asn Arg
165 170 175Gln Ile Asp Arg Ile Met Glu
Lys Ala Asp Ser Asn Lys Thr Arg Ile 180 185
190Asp Glu Ala Asn Gln Arg Ala Thr Lys Met Leu Gly Ser Gly
195 200 20520204PRTCarassius auratus
SNAP-25A (Goldfish) 20Met Ala Glu Asp Ala Asp Met Arg Asn Glu Leu Ser Asp
Met Gln Gln1 5 10 15Arg
Ala Asp Gln Leu Ala Asp Glu Ser Leu Glu Ser Thr Arg Arg Met 20
25 30Leu Gln Leu Val Glu Glu Ser Lys
Asp Ala Gly Ile Arg Thr Leu Val 35 40
45Met Leu Asp Glu Gln Gly Glu Gln Leu Glu Arg Ile Glu Glu Gly Met
50 55 60Asp Gln Ile Asn Lys Asp Met Lys
Asp Ala Glu Lys Asn Leu Asn Asp65 70 75
80Leu Gly Lys Phe Cys Gly Leu Cys Ser Cys Pro Cys Asn
Lys Met Lys 85 90 95Ser
Gly Gly Ser Lys Ala Trp Gly Asn Asn Gln Asp Gly Val Val Ala
100 105 110Ser Gln Pro Ala Arg Val Val
Asp Glu Arg Glu Gln Met Ala Ile Ser 115 120
125Gly Gly Phe Ile Arg Arg Val Thr Asp Asp Ala Arg Glu Asn Glu
Met 130 135 140Asp Glu Asn Leu Glu Gln
Val Gly Gly Ile Ile Gly Asn Leu Arg His145 150
155 160Met Ala Leu Asp Met Gly Asn Glu Ile Asp Thr
Gln Asn Arg Gln Ile 165 170
175Asp Arg Ile Met Glu Lys Ala Asp Ser Asn Lys Thr Arg Ile Asp Glu
180 185 190Ala Asn Gln Arg Ala Thr
Lys Met Leu Gly Ser Gly 195 20021203PRTCarassius
auratus SNAP-25B (Goldfish) 21Met Ala Asp Glu Ala Asp Met Arg Asn Glu Leu
Thr Asp Met Gln Ala1 5 10
15Arg Ala Asp Gln Leu Gly Asp Glu Ser Leu Glu Ser Thr Arg Arg Met
20 25 30Leu Gln Leu Val Glu Glu Ser
Lys Asp Ala Gly Ile Arg Thr Leu Val 35 40
45Met Leu Asp Glu Gln Gly Glu Gln Leu Glu Arg Ile Glu Glu Gly
Met 50 55 60Asp Gln Ile Asn Lys Asp
Met Lys Glu Ala Glu Lys Asn Leu Thr Asp65 70
75 80Leu Gly Asn Leu Cys Gly Leu Cys Pro Cys Pro
Cys Asn Lys Leu Lys 85 90
95Gly Gly Gly Gln Ser Trp Gly Asn Asn Gln Asp Gly Val Val Ser Ser
100 105 110Gln Pro Ala Arg Val Val
Asp Glu Arg Glu Gln Met Ala Ile Ser Gly 115 120
125Gly Phe Ile Arg Arg Val Thr Asn Asp Ala Arg Glu Asn Glu
Met Asp 130 135 140Glu Asn Leu Glu Gln
Val Gly Ser Ile Ile Gly Asn Leu Arg His Met145 150
155 160Ala Leu Asp Met Gly Asn Glu Ile Asp Thr
Gln Asn Arg Gln Ile Asp 165 170
175Arg Ile Met Asp Met Ala Asp Ser Asn Lys Thr Arg Ile Asp Glu Ala
180 185 190Asn Gln Arg Ala Thr
Lys Met Leu Gly Ser Gly 195 20022204PRTDanio rerio
SNAP-25A (Zebrafish) 22Met Ala Glu Asp Ser Asp Met Arg Asn Glu Leu Ala
Asp Met Gln Gln1 5 10
15Arg Ala Asp Gln Leu Ala Asp Glu Ser Leu Glu Ser Thr Arg Arg Met
20 25 30Leu Gln Leu Val Glu Glu Ser
Lys Asp Ala Gly Ile Arg Thr Leu Val 35 40
45Met Leu Asp Glu Gln Gly Glu Gln Leu Glu Arg Ile Glu Glu Gly
Met 50 55 60Asp Gln Ile Asn Lys Asp
Met Lys Asp Ala Glu Lys Asn Leu Asn Asp65 70
75 80Leu Gly Lys Phe Cys Gly Leu Cys Ser Cys Pro
Cys Asn Lys Met Lys 85 90
95Ser Gly Ala Ser Lys Ala Trp Gly Asn Asn Gln Asp Gly Val Val Ala
100 105 110Ser Gln Pro Ala Arg Val
Val Asp Glu Arg Glu Gln Met Ala Ile Ser 115 120
125Gly Gly Phe Ile Arg Arg Val Thr Asp Asp Ala Arg Glu Asn
Glu Met 130 135 140Asp Glu Asn Leu Glu
Gln Val Gly Gly Ile Ile Gly Asn Leu Arg His145 150
155 160Met Ala Leu Asp Met Gly Asn Glu Ile Asp
Thr Gln Asn Arg Gln Ile 165 170
175Asp Arg Ile Met Glu Lys Ala Asp Ser Asn Lys Thr Arg Ile Asp Glu
180 185 190Ala Asn Gln Arg Ala
Thr Lys Met Leu Gly Ser Gly 195 20023203PRTDanio
rerio SNAP-25B (Zebrafish) 23Met Ala Asp Glu Ser Asp Met Arg Asn Glu Leu
Asn Asp Met Gln Ala1 5 10
15Arg Ala Asp Gln Leu Gly Asp Glu Ser Leu Glu Ser Thr Arg Arg Met
20 25 30Leu Gln Leu Val Glu Glu Ser
Lys Asp Ala Gly Ile Arg Thr Leu Val 35 40
45Met Leu Asp Glu Gln Gly Glu Gln Leu Glu Arg Ile Glu Glu Gly
Met 50 55 60Asp Gln Ile Asn Lys Asp
Met Lys Glu Ala Glu Lys Asn Leu Thr Asp65 70
75 80Leu Gly Asn Leu Cys Gly Leu Cys Pro Cys Pro
Cys Asn Lys Leu Lys 85 90
95Gly Gly Gly Gln Ser Trp Gly Asn Asn Gln Asp Gly Val Val Ser Ser
100 105 110Gln Pro Ala Arg Val Val
Asp Glu Arg Glu Gln Met Ala Ile Ser Gly 115 120
125Gly Phe Ile Arg Arg Val Thr Asn Asp Ala Arg Glu Asn Glu
Met Asp 130 135 140Glu Asn Leu Glu Gln
Val Gly Ser Ile Ile Gly Asn Leu Arg His Met145 150
155 160Ala Leu Asp Met Gly Asn Glu Ile Asp Thr
Gln Asn Arg Gln Ile Asp 165 170
175Arg Ile Met Asp Met Ala Asp Ser Asn Lys Thr Arg Ile Asp Glu Ala
180 185 190Asn Gln Arg Ala Thr
Lys Met Leu Gly Ser Gly 195 20024214PRTDanio rerio
SNAP-23 (Zebrafish) 24Met Ala Asp Met Thr Val Glu Asp Ile Thr Met Arg Ala
Asn Gln Val1 5 10 15Thr
Asp Glu Ser Leu Glu Ser Thr Arg Arg Met Leu Gln Met Ala Glu 20
25 30Glu Ser Arg Glu Thr Gly Val Lys
Thr Met Thr Met Leu Asp Glu Gln 35 40
45Gly Glu Gln Leu Arg Arg Val Asp Gln Gly Met Asp Gln Ile Asn Gln
50 55 60Asp Met Arg Gln Ala Glu Lys Asn
Leu Thr Asp Leu Ser Lys Cys Cys65 70 75
80Gly Leu Cys Val Cys Pro Cys Glu Arg Val Thr Ser Ile
Glu His Asp 85 90 95Gly
Arg Tyr Lys Arg Thr Trp Gly Thr Gly Ser Asp Asn Ser Ser Thr
100 105 110Glu Gly Lys Glu Gly Gly Val
Val Ser Ser Gln Pro Thr Ala Val Arg 115 120
125Asn Gly Gln Ala Val Ser Gly Gly Ser Ser Gly Ala Ser Gly Pro
Tyr 130 135 140Ile Lys Arg Ile Thr Asn
Asp Ala Arg Glu Asp Glu Met Glu Glu Asn145 150
155 160Leu Asp Gln Val Gly Ser Ile Ile Gly Asn Leu
Lys Asn Leu Ala Leu 165 170
175Asp Met Gly Asn Glu Ile Asp Lys Gln Asn Lys Thr Ile Asp Arg Ile
180 185 190Thr Asp Lys Ala Asp Met
Asn Lys Ala Arg Ile Asp Glu Ala Asn Gln 195 200
205Arg Ala Asn Lys Leu Leu 21025210PRTTorpedo marmorata
SNAP-25 (Marbled electric ray) 25Met Glu Asn Ser Val Glu Asn Ser Met Asp
Pro Arg Ser Glu Gln Glu1 5 10
15Glu Met Gln Arg Cys Ala Asp Gln Ile Thr Asp Glu Ser Leu Glu Ser
20 25 30Thr Arg Arg Met Leu Gln
Leu Val Glu Glu Ser Lys Asp Ala Gly Ile 35 40
45Arg Thr Leu Val Met Leu Asp Glu Gln Gly Glu Gln Leu Glu
Arg Ile 50 55 60Glu Glu Gly Met Asp
Gln Ile Asn Lys Asp Met Lys Glu Ala Glu Lys65 70
75 80Asn Leu Ser Asp Leu Gly Lys Cys Cys Gly
Leu Cys Ser Cys Pro Cys 85 90
95Asn Lys Leu Lys Asn Phe Glu Ala Gly Gly Ala Tyr Lys Lys Val Trp
100 105 110Gly Asn Asn Gln Asp
Gly Val Val Ala Ser Gln Pro Ala Arg Val Met 115
120 125Asp Asp Arg Glu Gln Met Ala Met Ser Gly Gly Tyr
Ile Arg Arg Ile 130 135 140Thr Asp Asp
Ala Arg Glu Asn Glu Met Glu Glu Asn Leu Asp Gln Val145
150 155 160Gly Ser Ile Ile Gly Asn Leu
Arg His Met Ala Leu Asp Met Ser Asn 165
170 175Glu Ile Gly Ser Gln Asn Ala Gln Ile Asp Arg Ile
Val Val Lys Gly 180 185 190Asp
Met Asn Lys Ala Arg Ile Asp Glu Ala Asn Lys His Ala Thr Lys 195
200 205Met Leu 21026206PRTXenopus laevis
SNAP-25A (African clawed frog) 26Met Ala Asp Asp Ala Asp Met Arg Asn Glu
Leu Glu Glu Met Gln Arg1 5 10
15Arg Ala Asp Gln Leu Ala Asp Glu Ser Leu Glu Ser Thr Arg Arg Met
20 25 30Leu Gln Tyr Val Glu Gly
Ser Lys Asp Ala Gly Ile Arg Thr Leu Val 35 40
45Met Leu Asp Glu Gln Gly Glu Gln Leu Asp Arg Val Glu Glu
Gly Met 50 55 60Asn His Ile Asn Gln
Asp Met Lys Glu Ala Glu Lys Asn Leu Lys Asp65 70
75 80Leu Gly Lys Cys Cys Gly Leu Phe Ile Cys
Pro Cys Asn Lys Leu Lys 85 90
95Ser Ser Gly Ala Tyr Asn Lys Ala Trp Gly Asn Asn Gln Asp Gly Val
100 105 110Val Ala Ser Gln Pro
Ala Arg Val Val Asp Glu Arg Glu Gln Met Ala 115
120 125Ile Ser Gly Gly Phe Val Arg Arg Val Thr Asn Asp
Ala Arg Glu Thr 130 135 140Glu Met Asp
Glu Asn Leu Glu Gln Val Gly Gly Ile Ile Gly Asn Leu145
150 155 160Arg His Met Ala Leu Asp Met
Gly Asn Glu Ile Asp Thr Gln Asn Arg 165
170 175Gln Ile Asp Arg Ile Met Glu Lys Ala Asp Ser Asn
Lys Ala Arg Ile 180 185 190Asp
Glu Ala Asn Lys His Ala Thr Lys Met Leu Gly Ser Gly 195
200 20527206PRTXenopus laevis SNAP-25B (African
clawed frog) 27Met Ala Asp Asp Ala Asp Met Arg Asn Glu Leu Glu Glu Met
Gln Arg1 5 10 15Arg Ala
Asp Gln Leu Ala Asp Glu Ser Leu Glu Ser Thr Arg Arg Met 20
25 30Leu Gln Tyr Val Glu Gly Ser Lys Asp
Ala Gly Ile Arg Thr Leu Val 35 40
45Met Leu Asp Glu Gln Gly Glu Gln Leu Glu Arg Ile Glu Glu Gly Met 50
55 60Glu Gln Ile Asn Lys Asp Met Lys Glu
Ala Glu Lys Asn Leu Thr Asp65 70 75
80Leu Gly Lys Phe Cys Gly Leu Cys Val Cys Pro Cys Asn Lys
Leu Lys 85 90 95Ser Ser
Asp Ala Tyr Lys Lys Ala Trp Gly Asn Asn Gln Asp Gly Val 100
105 110Val Ala Ser Gln Pro Ala Arg Val Val
Asp Glu Arg Glu Gln Met Ala 115 120
125Ile Ser Gly Gly Phe Val Arg Arg Val Thr Asn Asp Ala Arg Glu Thr
130 135 140Glu Met Asp Glu Asn Leu Glu
Gln Val Gly Gly Ile Ile Gly Asn Leu145 150
155 160Arg His Met Ala Leu Asp Met Gly Asn Glu Ile Asp
Thr Gln Asn Arg 165 170
175Gln Ile Asp Arg Ile Met Glu Lys Ala Asp Ser Asn Lys Ala Arg Ile
180 185 190Asp Glu Ala Asn Lys His
Ala Thr Lys Met Leu Gly Ser Gly 195 200
20528204PRTXenopus laevis SNAP-23 (African clawed frog) 28Met Asp
Asp Met Thr Ala Glu Glu Ile Gln Leu Lys Ala Asn Gln Val1 5
10 15Ala Asp Glu Ser Leu Glu Ser Thr
Arg Arg Met Leu Asn Leu Ala Leu 20 25
30Glu Ser Gln Asp Ala Gly Ile Lys Thr Ile Thr Met Leu Asp Glu
Gln 35 40 45Gly Glu Gln Leu Asp
Arg Ile Glu Glu Gly Met Asp Gln Ile Asn Lys 50 55
60Asp Met Arg Glu Ala Glu Lys Asn Leu Thr Glu Leu Asn Lys
Cys Cys65 70 75 80Gly
Leu Cys Val Cys Pro Gly Lys Arg Ser Lys Asp Phe Glu Thr Gly
85 90 95Glu Asn Tyr Lys Lys Ala Trp
Gly Ser Lys Asp Asn Asp Ser Asp Val 100 105
110Val Ser Lys Gln Pro Gly Gln Thr Asn Gly Gln Leu Ser Gly
Ala Gly 115 120 125Gln Ser Gly Pro
Tyr Ile Lys Arg Ile Thr Asn Asp Asp Arg Glu Asp 130
135 140Glu Met Asp Glu Asn Leu Val Gln Val Gly Ser Ile
Leu Gly Asn Leu145 150 155
160Lys Asn Met Ala Ile Asp Met Gly Asn Glu Leu Glu Ser His Asn Gln
165 170 175Gln Ile Gly Arg Ile
Asn Glu Lys Ala Glu Thr Asn Lys Thr Arg Ile 180
185 190Asp Glu Ala Asn Thr Lys Ala Lys Lys Leu Ile Glu
195 20029212PRTStrongylocentrotus purpuratus SNAP-25
(Sea urchin) 29Met Glu Asp Gln Asn Asp Met Asn Met Arg Ser Glu Leu Glu
Glu Ile1 5 10 15Gln Met
Gln Ser Asn Met Gln Thr Asp Glu Ser Leu Glu Ser Thr Arg 20
25 30Arg Met Leu Gln Met Ala Glu Glu Ser
Gln Asp Met Gly Ile Lys Thr 35 40
45Leu Val Met Leu Asp Glu Gln Gly Glu Gln Leu Asp Arg Ile Glu Glu 50
55 60Gly Met Asp Gln Ile Asn Thr Asp Met
Arg Glu Ala Glu Lys Asn Leu65 70 75
80Thr Gly Leu Glu Lys Cys Cys Gly Ile Cys Val Cys Pro Trp
Lys Lys 85 90 95Leu Gly
Asn Phe Glu Lys Gly Asp Asp Tyr Lys Lys Thr Trp Lys Gly 100
105 110Asn Asp Asp Gly Lys Val Asn Ser His
Gln Pro Met Arg Met Glu Asp 115 120
125Asp Arg Asp Gly Cys Gly Gly Asn Ala Ser Met Ile Thr Arg Ile Thr
130 135 140Asn Asp Ala Arg Glu Asp Glu
Met Asp Glu Asn Leu Thr Gln Val Ser145 150
155 160Ser Ile Val Gly Asn Leu Arg His Met Ala Ile Asp
Met Gln Ser Glu 165 170
175Ile Gly Ala Gln Asn Ser Gln Val Gly Arg Ile Thr Ser Lys Ala Glu
180 185 190Ser Asn Glu Gly Arg Ile
Asn Ser Ala Asp Lys Arg Ala Lys Asn Ile 195 200
205Leu Arg Asn Lys 21030212PRTDrosophila melanogaster
SNAP-25 (Fruit fly) 30Met Pro Ala Asp Pro Ser Glu Glu Val Ala Pro Gln Val
Pro Lys Thr1 5 10 15Glu
Leu Glu Glu Leu Gln Ile Asn Ala Gln Gly Val Ala Asp Glu Ser 20
25 30Leu Glu Ser Thr Arg Arg Met Leu
Ala Leu Cys Glu Glu Ser Lys Glu 35 40
45Ala Gly Ile Arg Thr Leu Val Ala Leu Asp Asp Gln Gly Glu Gln Leu
50 55 60Asp Arg Ile Glu Glu Gly Met Asp
Gln Ile Asn Ala Asp Met Arg Glu65 70 75
80Ala Glu Lys Asn Leu Ser Gly Met Glu Lys Cys Cys Gly
Ile Cys Val 85 90 95Leu
Pro Cys Asn Lys Ser Gln Ser Phe Lys Glu Asp Asp Gly Thr Trp
100 105 110Lys Gly Asn Asp Asp Gly Lys
Val Val Asn Asn Gln Pro Gln Arg Val 115 120
125Met Asp Asp Arg Asn Gly Met Met Ala Gln Ala Gly Tyr Ile Gly
Arg 130 135 140Ile Thr Asn Asp Ala Arg
Glu Asp Glu Met Glu Glu Asn Met Gly Gln145 150
155 160Val Asn Thr Met Ile Gly Asn Leu Arg Asn Met
Ala Leu Asp Met Gly 165 170
175Ser Glu Leu Glu Asn Gln Asn Arg Gln Ile Asp Arg Ile Asn Arg Lys
180 185 190Gly Glu Ser Asn Glu Ala
Arg Ile Ala Val Ala Asn Gln Arg Ala His 195 200
205Gln Leu Leu Lys 21031212PRTDrosophila melanogaster
SNAP-24 (Fruit fly) 31Met Ala Ala Val Glu Asn Ala Glu Pro Arg Thr Glu Leu
Gln Glu Leu1 5 10 15Gln
Phe Lys Ser Gly Gln Val Ala Asp Glu Ser Leu Glu Ser Thr Arg 20
25 30Arg Met Leu Ala Leu Met Asp Glu
Ser Lys Glu Ala Gly Ile Arg Thr 35 40
45Leu Val Ala Leu Asp Asp Gln Gly Glu Gln Leu Asp Arg Ile Glu Glu
50 55 60Gly Met Asp Arg Ile Asn Ala Asp
Met Arg Glu Ala Glu Lys Asn Leu65 70 75
80Ser Gly Met Glu Lys Cys Cys Gly Ile Cys Val Leu Pro
Trp Lys Lys 85 90 95Val
Asn Ile Lys Asp Asp Gly Glu Ser Ala Trp Lys Ala Asn Asp Asp
100 105 110Gly Lys Ile Val Ala Ser Gln
Pro Gln Arg Val Ile Asp Glu Arg Glu 115 120
125Arg Gly Gly Met Gly Ala Pro Pro Gln Ser Gly Tyr Val Ala Arg
Ile 130 135 140Thr Asn Asp Ala Arg Glu
Asp Glu Met Asp Glu Asn Leu Gly Gln Val145 150
155 160Asn Ser Met Leu Gly Asn Leu Arg Asn Met Ala
Leu Asp Met Gly Ser 165 170
175Glu Leu Glu Asn Gln Asn Lys Gln Val Asp Arg Ile Asn Ala Lys Gly
180 185 190Asp Ala Asn Asn Ile Arg
Met Asp Gly Val Asn Lys Arg Ala Asn Asn 195 200
205Leu Leu Lys Ser 21032212PRTHirudo medicinalis SNAP-25
(Leech) 32Met Ala Lys Asp Ile Lys Pro Lys Pro Ala Asn Gly Arg Asp Ser
Pro1 5 10 15Thr Asp Leu
Gln Glu Ile Gln Leu Gln Met Asn Ala Ile Thr Asp Asp 20
25 30Ser Leu Glu Ser Thr Arg Arg Met Leu Ala
Met Cys Glu Glu Ser Lys 35 40
45Asp Ala Gly Ile Arg Thr Leu Val Met Leu Asp Glu Gln Gly Glu Gln 50
55 60Leu Asp Arg Ile Glu Glu Gly Met Asp
Gln Ile Asn Gln Asp Met Arg65 70 75
80Asp Ala Glu Lys Asn Leu Glu Gly Met Glu Lys Cys Cys Gly
Leu Cys 85 90 95Ile Leu
Pro Trp Lys Arg Thr Lys Asn Phe Asp Lys Gly Ala Glu Trp 100
105 110Asn Lys Gly Asp Glu Gly Lys Val Asn
Thr Asp Gly Pro Arg Leu Val 115 120
125Val Gly Asp Gly Asn Met Gly Pro Ser Gly Gly Phe Ile Thr Lys Ile
130 135 140Thr Asn Asp Ala Arg Glu Glu
Glu Met Glu Gln Asn Met Gly Glu Val145 150
155 160Ser Asn Met Ile Ser Asn Leu Arg Asn Met Ala Val
Asp Met Gly Ser 165 170
175Glu Ile Asp Ser Gln Asn Arg Gln Val Asp Arg Ile Asn Asn Lys Met
180 185 190Thr Ser Asn Gln Leu Arg
Ile Ser Asp Ala Asn Lys Arg Ala Ser Lys 195 200
205Leu Leu Lys Glu 21033212PRTLoligo pealei SNAP-25
(Longfin squid) 33Met Ser Ala Asn Gly Glu Val Glu Val Pro Lys Thr Glu Leu
Glu Glu1 5 10 15Ile Gln
Gln Gln Cys Asn Gln Val Thr Asp Asp Ser Leu Glu Ser Thr 20
25 30Arg Arg Met Leu Asn Met Cys Glu Glu
Ser Lys Glu Ala Gly Ile Arg 35 40
45Thr Leu Val Met Leu Asp Glu Gln Gly Glu Gln Leu Asp Arg Ile Glu 50
55 60Glu Gly Leu Asp Gln Ile Asn Gln Asp
Met Lys Asp Ala Glu Lys Asn65 70 75
80Leu Glu Gly Met Glu Lys Cys Cys Gly Leu Cys Val Leu Pro
Trp Lys 85 90 95Arg Gly
Lys Ser Phe Glu Lys Ser Gly Asp Tyr Ala Asn Thr Trp Lys 100
105 110Lys Asp Asp Asp Gly Pro Thr Asn Thr
Asn Gly Pro Arg Val Thr Val 115 120
125Gly Asp Gln Asn Gly Met Gly Pro Ser Ser Gly Tyr Val Thr Arg Ile
130 135 140Thr Asn Asp Ala Arg Glu Asp
Asp Met Glu Asn Asn Met Lys Glu Val145 150
155 160Ser Ser Met Ile Gly Asn Leu Arg Asn Met Ala Ile
Asp Met Gly Asn 165 170
175Glu Ile Gly Ser Gln Asn Arg Gln Val Asp Arg Ile Gln Gln Lys Ala
180 185 190Glu Ser Asn Glu Ser Arg
Ile Asp Glu Ala Asn Lys Lys Ala Thr Lys 195 200
205Leu Leu Lys Asn 21034220PRTLymnaea stagnalis SNAP-25
(Great pond snail) 34Met Thr Thr Asn Gly Glu Ile Leu Pro Val Gly Glu Glu
Glu Glu Glu1 5 10 15Glu
Leu Gly Glu Asp Ala Leu Leu Arg Lys Gln Ile Asp Cys Asn Thr 20
25 30Asn Glu Ser Leu Glu Ser Thr Arg
Arg Met Leu Ser Leu Cys Glu Glu 35 40
45Ser Lys Glu Ala Gly Ile Lys Thr Leu Val Met Leu Asp Glu Gln Gly
50 55 60Glu Gln Leu Asp Arg Ile Glu Glu
Gly Met Gly Gln Ile Asn Gln Asp65 70 75
80Met Arg Asp Ala Glu Lys Asn Leu Glu Gly Leu Glu Lys
Cys Cys Gly 85 90 95Leu
Cys Val Leu Pro Trp Lys Arg Ser Lys Asn Phe Glu Lys Gly Ser
100 105 110Asp Tyr Asn Lys Thr Trp Lys
Ala Ser Glu Asp Gly Lys Ile Asn Thr 115 120
125Asn Gly Pro Arg Leu Val Val Asp Gln Gly Asn Gly Ser Gly Pro
Thr 130 135 140Gly Gly Tyr Ile Thr Arg
Ile Thr Asn Asp Ala Arg Glu Asp Glu Met145 150
155 160Glu Gln Asn Ile Gly Glu Val Ala Gly Met Val
Ser Asn Leu Arg Asn 165 170
175Met Ala Val Asp Met Gly Asn Glu Ile Glu Ser Gln Asn Lys Gln Leu
180 185 190Asp Arg Ile Asn Gln Lys
Gly Gly Ser Leu Asn Val Arg Val Asp Glu 195 200
205Ala Asn Lys Arg Ala Asn Arg Ile Leu Arg Lys Gln 210
215 22035207PRTCaenorhabditis elegans
SNAP-25 (Round worm) 35Met Ser Gly Asp Asp Asp Ile Pro Glu Gly Leu Glu
Ala Ile Asn Leu1 5 10
15Lys Met Asn Ala Thr Thr Asp Asp Ser Leu Glu Ser Thr Arg Arg Met
20 25 30Leu Ala Leu Cys Glu Glu Ser
Lys Glu Ala Gly Ile Lys Thr Leu Val 35 40
45Met Leu Asp Asp Gln Gly Glu Gln Leu Glu Arg Cys Glu Gly Ala
Leu 50 55 60Asp Thr Ile Asn Gln Asp
Met Lys Glu Ala Glu Asp His Leu Lys Gly65 70
75 80Met Glu Lys Cys Cys Gly Leu Cys Val Leu Pro
Trp Asn Lys Thr Asp 85 90
95Asp Phe Glu Lys Thr Glu Phe Ala Lys Ala Trp Lys Lys Asp Asp Asp
100 105 110Gly Gly Val Ile Ser Asp
Gln Pro Arg Ile Thr Val Gly Asp Ser Ser 115 120
125Met Gly Pro Gln Gly Gly Tyr Ile Thr Lys Ile Thr Asn Asp
Ala Arg 130 135 140Glu Asp Glu Met Asp
Glu Asn Val Gln Gln Val Ser Thr Met Val Gly145 150
155 160Asn Leu Arg Asn Met Ala Ile Asp Met Ser
Thr Glu Val Ser Asn Gln 165 170
175Asn Arg Gln Leu Asp Arg Ile His Asp Lys Ala Gln Ser Asn Glu Val
180 185 190Arg Val Glu Ser Ala
Asn Lys Arg Ala Lys Asn Leu Ile Thr Lys 195 200
20536118PRTHomo sapiens VAMP-1-1 (Human) 36Met Ser Ala Pro
Ala Gln Pro Pro Ala Glu Gly Thr Glu Gly Thr Ala1 5
10 15Pro Gly Gly Gly Pro Pro Gly Pro Pro Pro
Asn Met Thr Ser Asn Arg 20 25
30Arg Leu Gln Gln Thr Gln Ala Gln Val Glu Glu Val Val Asp Ile Ile
35 40 45Arg Val Asn Val Asp Lys Val Leu
Glu Arg Asp Gln Lys Leu Ser Glu 50 55
60Leu Asp Asp Arg Ala Asp Ala Leu Gln Ala Gly Ala Ser Gln Phe Glu65
70 75 80Ser Ser Ala Ala Lys
Leu Lys Arg Lys Tyr Trp Trp Lys Asn Cys Lys 85
90 95Met Met Ile Met Leu Gly Ala Ile Cys Ala Ile
Ile Val Val Val Ile 100 105
110Val Ile Tyr Phe Phe Thr 11537117PRTHomo sapiens VAMP-1-2
(Human) 37Met Ser Ala Pro Ala Gln Pro Pro Ala Glu Gly Thr Glu Gly Thr
Ala1 5 10 15Pro Gly Gly
Gly Pro Pro Gly Pro Pro Pro Asn Met Thr Ser Asn Arg 20
25 30Arg Leu Gln Gln Thr Gln Ala Gln Val Glu
Glu Val Val Asp Ile Ile 35 40
45Arg Val Asn Val Asp Lys Val Leu Glu Arg Asp Gln Lys Leu Ser Glu 50
55 60Leu Asp Asp Arg Ala Asp Ala Leu Gln
Ala Gly Ala Ser Gln Phe Glu65 70 75
80Ser Ser Ala Ala Lys Leu Lys Arg Lys Tyr Trp Trp Lys Asn
Cys Lys 85 90 95Met Met
Ile Met Leu Gly Ala Ile Cys Ala Ile Ile Val Val Val Ile 100
105 110Val Ser Lys Tyr Arg
11538116PRTHomo sapiens VAMP-1-3 (Human) 38Met Ser Ala Pro Ala Gln Pro
Pro Ala Glu Gly Thr Glu Gly Thr Ala1 5 10
15Pro Gly Gly Gly Pro Pro Gly Pro Pro Pro Asn Met Thr
Ser Asn Arg 20 25 30Arg Leu
Gln Gln Thr Gln Ala Gln Val Glu Glu Val Val Asp Ile Ile 35
40 45Arg Val Asn Val Asp Lys Val Leu Glu Arg
Asp Gln Lys Leu Ser Glu 50 55 60Leu
Asp Asp Arg Ala Asp Ala Leu Gln Ala Gly Ala Ser Gln Phe Glu65
70 75 80Ser Ser Ala Ala Lys Leu
Lys Arg Lys Tyr Trp Trp Lys Asn Cys Lys 85
90 95Met Met Ile Met Leu Gly Ala Ile Cys Ala Ile Ile
Val Val Val Ile 100 105 110Val
Arg Arg Asp 11539116PRTHomo sapiens VAMP-2 (Human) 39Met Ser Ala
Thr Ala Ala Thr Ala Pro Pro Ala Ala Pro Ala Gly Glu1 5
10 15Gly Gly Pro Pro Ala Pro Pro Pro Asn
Leu Thr Ser Asn Arg Arg Leu 20 25
30Gln Gln Thr Gln Ala Gln Val Asp Glu Val Val Asp Ile Met Arg Val
35 40 45Asn Val Asp Lys Val Leu Glu
Arg Asp Gln Lys Leu Ser Glu Leu Asp 50 55
60Asp Arg Ala Asp Ala Leu Gln Ala Gly Ala Ser Gln Phe Glu Thr Ser65
70 75 80Ala Ala Lys Leu
Lys Arg Lys Tyr Trp Trp Lys Asn Leu Lys Met Met 85
90 95Ile Ile Leu Gly Val Ile Cys Ala Ile Ile
Leu Ile Ile Ile Ile Val 100 105
110Tyr Phe Ser Thr 11540116PRTMacaca mulatta VAMP-2 (Rhesus
monkey) 40Met Ser Ala Thr Ala Ala Thr Ala Pro Pro Ala Ala Pro Ala Gly
Glu1 5 10 15Gly Gly Pro
Pro Ala Pro Pro Pro Asn Leu Thr Ser Asn Arg Arg Leu 20
25 30Gln Gln Thr Gln Ala Gln Val Asp Glu Val
Val Asp Ile Met Arg Val 35 40
45Asn Val Asp Lys Val Leu Glu Arg Asp Gln Lys Leu Ser Glu Leu Asp 50
55 60Asp Arg Ala Asp Ala Leu Gln Ala Gly
Ala Ser Gln Phe Glu Thr Ser65 70 75
80Ala Ala Lys Leu Lys Arg Lys Tyr Trp Trp Lys Asn Leu Lys
Met Met 85 90 95Ile Ile
Leu Gly Val Ile Cys Ala Ile Ile Leu Ile Ile Ile Ile Val 100
105 110Tyr Phe Ser Thr
11541100PRTHomo sapiens VAMP-3 (Human) 41Met Ser Thr Gly Pro Thr Ala Ala
Thr Gly Ser Asn Arg Arg Leu Gln1 5 10
15Gln Thr Gln Asn Gln Val Asp Glu Val Val Asp Ile Met Arg
Val Asn 20 25 30Val Asp Lys
Val Leu Glu Arg Asp Gln Lys Leu Ser Glu Leu Asp Asp 35
40 45Arg Ala Asp Ala Leu Gln Ala Gly Ala Ser Gln
Phe Glu Thr Ser Ala 50 55 60Ala Lys
Leu Lys Arg Lys Tyr Trp Trp Lys Asn Cys Lys Met Trp Ala65
70 75 80Ile Gly Ile Thr Val Leu Val
Ile Phe Ile Ile Ile Ile Ile Val Trp 85 90
95Val Val Ser Ser 10042116PRTBos tarsus
VAMP-2 42Met Ser Ala Thr Ala Ala Thr Ala Pro Pro Ala Ala Pro Ala Gly Glu1
5 10 15Gly Gly Pro Pro
Ala Pro Pro Pro Asn Leu Thr Ser Asn Arg Arg Leu 20
25 30Gln Gln Thr Gln Ala Gln Val Asp Glu Val Val
Asp Ile Met Arg Val 35 40 45Asn
Val Asp Lys Val Leu Glu Arg Asp Gln Lys Leu Ser Glu Leu Asp 50
55 60Asp Arg Ala Asp Ala Leu Gln Ala Gly Ala
Ser Gln Phe Glu Thr Ser65 70 75
80Ala Ala Lys Leu Lys Arg Lys Tyr Trp Trp Lys Asn Leu Lys Met
Met 85 90 95Ile Ile Leu
Gly Val Ile Cys Ala Ile Ile Leu Ile Ile Ile Ile Val 100
105 110Tyr Phe Ser Ser 11543118PRTRattus
norvegicus VAMP-1 (Rat) 43Met Ser Ala Pro Ala Gln Pro Pro Ala Glu Gly Thr
Glu Gly Ala Ala1 5 10
15Pro Gly Gly Gly Pro Pro Gly Pro Pro Pro Asn Thr Thr Ser Asn Arg
20 25 30Arg Leu Gln Gln Thr Gln Ala
Gln Val Glu Glu Val Val Asp Ile Ile 35 40
45Arg Val Asn Val Asp Lys Val Leu Glu Arg Asp Gln Lys Leu Ser
Glu 50 55 60Leu Asp Asp Arg Ala Asp
Ala Leu Gln Ala Gly Ala Ser Val Phe Glu65 70
75 80Ser Ser Ala Ala Lys Leu Lys Arg Lys Tyr Trp
Trp Lys Asn Cys Lys 85 90
95Met Met Ile Met Leu Gly Ala Ile Cys Ala Ile Ile Val Val Val Ile
100 105 110Val Ile Tyr Ile Phe Thr
11544117PRTRattus norvegicus VAMP-1b (Rat) 44Met Ser Ala Pro Ala Gln
Pro Pro Ala Glu Gly Thr Glu Gly Ala Ala1 5
10 15Pro Gly Gly Gly Pro Pro Gly Pro Pro Pro Asn Thr
Thr Ser Asn Arg 20 25 30Arg
Leu Gln Gln Thr Gln Ala Gln Val Glu Glu Val Val Asp Ile Met 35
40 45Arg Val Asn Val Asp Lys Val Leu Glu
Arg Asp Gln Lys Leu Ser Glu 50 55
60Leu Asp Asp Arg Ala Asp Ala Leu Gln Ala Gly Ala Ser Val Phe Glu65
70 75 80Ser Ser Ala Ala Lys
Leu Lys Arg Lys Tyr Trp Trp Lys Asn Cys Lys 85
90 95Met Met Ile Met Leu Gly Ala Ile Cys Ala Ile
Ile Val Val Val Ile 100 105
110Val Ser Lys Tyr Arg 11545118PRTMus musculus VAMP-1 (Mouse)
45Met Ser Ala Pro Ala Gln Pro Pro Ala Glu Gly Thr Glu Gly Ala Ala1
5 10 15Pro Gly Gly Gly Pro Pro
Gly Pro Pro Pro Asn Met Thr Ser Asn Arg 20 25
30Arg Leu Gln Gln Thr Gln Ala Gln Val Glu Glu Val Val
Asp Ile Met 35 40 45Arg Val Asn
Val Asp Lys Val Leu Glu Arg Asp Gln Lys Leu Ser Glu 50
55 60Leu Asp Asp Arg Ala Asp Ala Leu Gln Ala Gly Ala
Ser Gln Phe Glu65 70 75
80Ser Ser Ala Ala Lys Leu Lys Arg Lys Tyr Trp Trp Lys Asn Cys Lys
85 90 95Met Met Ile Met Leu Gly
Ala Ile Cys Ala Ile Ile Val Val Val Ile 100
105 110Val Ile Tyr Phe Phe Thr 11546116PRTRattus
norvegicus VAMP-2 (Rat) 46Met Ser Ala Thr Ala Ala Thr Val Pro Pro Ala Ala
Pro Ala Gly Glu1 5 10
15Gly Gly Pro Pro Ala Pro Pro Pro Asn Leu Thr Ser Asn Arg Arg Leu
20 25 30Gln Gln Thr Gln Ala Gln Val
Asp Glu Val Val Asp Ile Met Arg Val 35 40
45Asn Val Asp Lys Val Leu Glu Arg Asp Gln Lys Leu Ser Glu Leu
Asp 50 55 60Asp Arg Ala Asp Ala Leu
Gln Ala Gly Ala Ser Gln Phe Glu Thr Ser65 70
75 80Ala Ala Lys Leu Lys Arg Lys Tyr Trp Trp Lys
Asn Leu Lys Met Met 85 90
95Ile Ile Leu Gly Val Ile Cys Ala Ile Ile Leu Ile Ile Ile Ile Val
100 105 110Tyr Phe Ser Thr
11547135PRTRattus norvegicus VAMP-2b (Rat) 47Met Ser Ala Thr Ala Ala Thr
Val Pro Pro Ala Ala Pro Ala Gly Glu1 5 10
15Gly Gly Pro Pro Ala Pro Pro Pro Asn Leu Thr Ser Asn
Arg Arg Leu 20 25 30Gln Gln
Thr Gln Ala Gln Val Asp Glu Val Val Asp Ile Met Arg Val 35
40 45Asn Val Asp Lys Val Leu Glu Arg Asp Gln
Lys Leu Ser Glu Leu Asp 50 55 60Asp
Arg Ala Asp Ala Leu Gln Ala Gly Ala Ser Gln Phe Glu Thr Ser65
70 75 80Ala Ala Lys Leu Lys Arg
Lys Tyr Trp Trp Lys Asn Leu Lys Met Met 85
90 95Ile Ile Leu Gly Val Ile Cys Ala Ile Ile Leu Ile
Ile Ile Ile Gly 100 105 110Glu
Trp Ser Arg Ser Gly Gln Gly Pro Phe Pro Gly Glu Val Glu Gly 115
120 125Phe Pro Val Gly Ser Gly Leu 130
13548116PRTMus musculus VAMP-2 (Mouse) 48Met Ser Ala Thr Ala
Ala Thr Val Pro Pro Ala Ala Pro Ala Gly Glu1 5
10 15Gly Gly Pro Pro Ala Pro Pro Pro Asn Leu Thr
Ser Asn Arg Arg Leu 20 25
30Gln Gln Thr Gln Ala Gln Val Asp Glu Val Val Asp Ile Met Arg Val
35 40 45Asn Val Asp Lys Val Leu Glu Arg
Asp Gln Lys Leu Ser Glu Leu Asp 50 55
60Asp Arg Ala Asp Ala Leu Gln Ala Gly Ala Ser Gln Phe Glu Thr Ser65
70 75 80Ala Ala Lys Leu Lys
Arg Lys Tyr Trp Trp Lys Asn Leu Lys Met Met 85
90 95Ile Ile Leu Gly Val Ile Cys Ala Ile Ile Leu
Ile Ile Ile Ile Val 100 105
110Tyr Phe Ser Thr 11549103PRTRattus norvegicus VAMP-3 (Rat) 49Met
Ser Thr Gly Val Pro Ser Gly Ser Ser Ala Ala Thr Gly Ser Asn1
5 10 15Arg Arg Leu Gln Gln Thr Gln
Asn Gln Val Asp Glu Val Val Asp Ile 20 25
30Met Arg Val Asn Val Asp Lys Val Leu Glu Arg Asp Gln Lys
Leu Ser 35 40 45Glu Leu Asp Asp
Arg Ala Asp Ala Leu Gln Ala Gly Ala Ser Gln Phe 50 55
60Glu Thr Ser Ala Ala Lys Leu Lys Arg Lys Tyr Trp Trp
Lys Asn Cys65 70 75
80Lys Met Trp Ala Ile Gly Ile Ser Val Leu Val Ile Ile Val Ile Ile
85 90 95Ile Ile Val Trp Cys Val
Ser 10050103PRTMus musculus VAMP-3 (Mouse) 50Met Ser Thr Gly
Val Pro Ser Gly Ser Ser Ala Ala Thr Gly Ser Asn1 5
10 15Arg Arg Leu Gln Gln Thr Gln Asn Gln Val
Asp Glu Val Val Asp Ile 20 25
30Met Arg Val Asn Val Asp Lys Val Leu Glu Arg Asp Gln Lys Leu Ser
35 40 45Glu Leu Asp Asp Arg Ala Asp Ala
Leu Gln Ala Gly Ala Ser Gln Phe 50 55
60Glu Thr Ser Ala Ala Lys Leu Lys Arg Lys Tyr Trp Trp Lys Asn Cys65
70 75 80Lys Met Trp Ala Ile
Gly Ile Ser Val Leu Val Ile Ile Val Ile Ile 85
90 95Ile Ile Val Trp Cys Val Ser
10051259PRTGallus gallus VAMP-1 (Chicken) 51Met His Gln Glu Asn Gln Thr
Lys Gln Val Gln Gln Val Ser Pro Ser1 5 10
15Val Asn Ala Ala Trp Lys Leu Leu Val Pro Val Phe Leu
Pro Gly Gly 20 25 30Ser Thr
Pro Ala Ala Pro Tyr Pro Asp Cys Cys Ser Thr Arg Ala Gln 35
40 45Arg Thr Leu Ala Ala Leu Ser Pro Ala Leu
Ile Gly Arg Cys Gln Ala 50 55 60Gly
Thr Gly Leu Asn Pro Gly Glu Ser Gly Gly Gln Arg Glu Ala Gly65
70 75 80Leu Arg Glu Gly Ala Leu
Phe Thr Gly Ala Ser Leu Arg Pro Ser Arg 85
90 95Gly Ala Leu Ile Gly Phe Gly Glu Gly Glu Gly Gly
Ala Asp Ser Arg 100 105 110Val
Ser Ala Arg Pro Ser Cys Asp Tyr Phe Ser Leu Ala Ala Gly Pro 115
120 125Cys Gly Ala Gly Leu Phe Val Cys Ala
Gly Trp Gly Met Ser Glu Pro 130 135
140Ala Gln Gln Pro Ala Pro Gly Ala Pro Glu Gly Gly Ala Pro Ala Gly145
150 155 160Gly Pro Pro Gly
Pro Pro Pro Asn Leu Ser Ser Asn Arg Arg Leu Gln 165
170 175Gln Thr Gln Ala Gln Val Glu Glu Val Val
Asp Ile Met Arg Val Asn 180 185
190Val Asp Lys Val Leu Glu Arg Asp Gln Lys Leu Ser Glu Leu Asp Asp
195 200 205Arg Ala Asp Ala Leu Gln Ala
Gly Ala Ser Val Phe Glu Ser Ser Ala 210 215
220Ala Lys Leu Lys Arg Lys Tyr Trp Trp Lys Asn Cys Lys Met Met
Ile225 230 235 240Met Met
Gly Val Ile Cys Ala Ile Val Val Val Val Ile Val Ile Tyr
245 250 255Phe Phe Thr 52114PRTGallus
gallus VAMP-2 (Chicken) 52Met Ser Ala Pro Ala Pro Thr Gln Gly Pro Thr Ser
Thr Gly Ala Ala1 5 10
15Gly Pro Pro Pro Ala Thr Asn Val Ser Ser Asn Lys Arg Leu Gln Gln
20 25 30Thr Gln Ala Gln Val Asp Glu
Val Val Asp Ile Met Arg Met Asn Val 35 40
45Asp Lys Val Leu Glu Arg Asp Gln Lys Leu Ser Glu Leu Asp Asn
Arg 50 55 60Ala Asp Ala Leu Gln Ala
Gly Ala Ser Gln Phe Glu Thr Ser Ala Ala65 70
75 80Lys Leu Lys Arg Lys Tyr Trp Trp Lys Asn Cys
Lys Met Met Ile Ile 85 90
95Leu Gly Val Val Cys Thr Val Ile Leu Ile Ile Ile Ile Ile Tyr Phe
100 105 110Ser Thr 53118PRTGallus
gallus VAMP-3 (Chicken) 53Met Ser Ala Asn Val Pro Gly Asn Thr Asn Val Pro
Ala Gly Ser Asn1 5 10
15Arg Arg Leu Gln Gln Thr Gln His Gln Val Asp Glu Val Val Asp Ile
20 25 30Met Arg Val Asn Val Asp Lys
Val Leu Glu Arg Asp Gln Lys Leu Ser 35 40
45Glu Leu Asp Asp Arg Ala Asp Ala Leu Gln Ala Gly Ala Ser Gln
Phe 50 55 60Glu Thr Ser Ala Ala Lys
Leu Lys Arg Lys Tyr Trp Trp Lys Asn Cys65 70
75 80Lys Met Trp Ala Ile Leu Ile Ala Val Val Val
Ile Ile Ile Ile Ile 85 90
95Ile Ile Val Val Ser Val Ser Ala Ala Leu Ser Ala Arg Leu Leu Leu
100 105 110Phe Lys Ala Lys Leu Phe
11554119PRTDanio rerio VAMP-1 (Zebrafish) 54Met Ser Ala Pro Asp Ala
Ala Ala Ser Pro Gly Ala Pro Gly Ala Pro1 5
10 15Glu Gly Glu Gly Gly Ala Pro Ala Gln Pro Pro Asn
Leu Thr Ser Asn 20 25 30Arg
Arg Leu Gln Gln Thr Gln Ala Gln Val Asp Glu Val Val Asp Ile 35
40 45Met Arg Val Asn Val Asp Lys Val Leu
Glu Arg Asp Gln Lys Leu Ser 50 55
60Glu Leu Asp Asp Arg Ala Asp Ala Leu Gln Ala Gly Ala Ser Gln Phe65
70 75 80Glu Ser Ser Ala Ala
Lys Leu Lys Asn Lys Tyr Trp Trp Lys Asn Met 85
90 95Lys Met Met Ile Ile Met Gly Ile Met Gly Ile
Ile Leu Leu Gly Ile 100 105
110Ala Phe Met Tyr Phe Tyr Tyr 11555110PRTDanio rerio VAMP-2
(Zebrafish) 55Met Ser Ala Pro Ala Gly Ala Pro Ala Pro Glu Gly Gly Asn Gln
Ala1 5 10 15Pro Pro Asn
Leu Thr Ser Asn Arg Arg Leu Gln Gln Thr Gln Ala Gln 20
25 30Val Asp Glu Val Val Asp Ile Met Arg Val
Asn Val Asp Lys Val Leu 35 40
45Glu Arg Asp Gln Lys Leu Ser Glu Leu Asp Asp Arg Ala Asp Ala Leu 50
55 60Gln Ala Gly Ala Ser Gln Phe Glu Thr
Ser Ala Ala Lys Leu Lys Asn65 70 75
80Lys Tyr Trp Trp Lys Asn Ala Lys Met Met Ile Ile Leu Gly
Val Ile 85 90 95Cys Val
Ile Val Leu Ile Ile Ile Ile Val Tyr Phe Ser Thr 100
105 11056102PRTDanio rerio VAMP-3 (Zebrafish) 56Met
Ser Ala Pro Gly Ala Asp Ala Ser Gly Ser Ser Gly Ser Asn Arg1
5 10 15Arg Leu Gln Gln Thr Gln Ala
Gln Val Asp Glu Val Val Asp Ile Met 20 25
30Arg Val Asn Val Asp Lys Val Leu Glu Arg Asp Gln Lys Leu
Ser Glu 35 40 45Leu Asp Asp Arg
Ala Asp Ala Leu Gln Ala Gly Ala Ser Gln Phe Glu 50 55
60Thr Ser Ala Ala Lys Leu Lys Arg Lys Phe Trp Trp Lys
Asn Val Lys65 70 75
80Met Trp Ala Ile Leu Ile Ala Val Val Val Ile Ile Ile Ile Ile Ile
85 90 95Val Ile Trp Ser Gln Ser
10057120PRTTorpedo marmorata VAMP-1 (Marbled electric ray)
57Met Ser Ala Pro Pro Ser Gly Pro Ala Pro Asp Ala Gln Gly Gly Ala1
5 10 15Pro Gly Gln Pro Thr Gly
Pro Pro Gly Ala Pro Pro Asn Thr Thr Ser 20 25
30Asn Arg Arg Leu Gln Gln Thr Gln Ala Gln Val Glu Glu
Val Val Asp 35 40 45Ile Ile Arg
Val Asn Val Asp Lys Val Leu Glu Arg Asp Gln Lys Leu 50
55 60Ser Glu Leu Asp Asp Arg Ala Asp Ala Leu Gln Ala
Gly Ala Ser Gln65 70 75
80Phe Glu Ser Ser Ala Ala Lys Leu Lys Arg Lys Tyr Trp Trp Lys Asn
85 90 95Cys Lys Met Met Ile Met
Leu Gly Gly Ile Gly Ala Ile Ile Val Ile 100
105 110Val Ile Ile Ile Tyr Phe Phe Thr 115
12058114PRTXenopus laevis VAMP-2 (African clawed frog) 58Met Ser
Ala Pro Ala Ala Gly Pro Pro Ala Ala Ala Pro Gly Asp Gly1 5
10 15Ala Pro Gln Gly Pro Pro Asn Leu
Thr Ser Asn Arg Arg Leu Gln Gln 20 25
30Thr Gln Ala Gln Val Asp Glu Val Val Asp Ile Met Arg Val Asn
Val 35 40 45Asp Lys Val Leu Glu
Arg Asp Thr Lys Leu Ser Glu Leu Asp Asp Arg 50 55
60Ala Asp Ala Leu Gln Ala Gly Ala Ser Gln Phe Glu Thr Ser
Ala Ala65 70 75 80Lys
Leu Lys Arg Lys Tyr Trp Trp Lys Asn Met Lys Met Met Ile Ile
85 90 95Met Gly Val Ile Cys Ala Ile
Ile Leu Ile Ile Ile Ile Val Tyr Phe 100 105
110Ser Thr59101PRTXenopus laevis VAMP-3 (African clawed
frog) 59Met Ser Thr Pro Gly Thr Ser Ala Thr Gly Asp Pro Gly Asn Arg Arg1
5 10 15Leu Gln Gln Thr
Gln Ala Gln Val Asp Glu Val Val Asp Ile Met Arg 20
25 30Val Asn Val Asp Lys Val Leu Glu Arg Asp Gln
Lys Leu Ser Glu Leu 35 40 45Asp
Asp Arg Ala Asp Ala Leu Gln Ala Gly Ala Ser Gln Phe Glu Thr 50
55 60Ser Ala Ala Lys Leu Lys Arg Lys Tyr Trp
Trp Lys Asn Cys Lys Met65 70 75
80Trp Ala Ile Leu Ile Ala Val Val Leu Val Ile Ile Ile Ile Ile
Ile 85 90 95Val Trp Ser
Val Ser 10060104PRTStrongylocentrotus purpuratus VAMP (Sea
urchin) 60Met Ala Ala Pro Pro Pro Pro Gln Pro Ala Pro Ser Asn Lys Arg
Leu1 5 10 15Gln Gln Thr
Gln Ala Gln Val Asp Glu Val Val Asp Ile Met Arg Val 20
25 30Asn Val Asp Lys Val Leu Glu Arg Asp Gln
Ala Leu Ser Val Leu Asp 35 40
45Asp Arg Ala Asp Ala Leu Gln Gln Gly Ala Ser Gln Phe Glu Thr Asn 50
55 60Ala Gly Lys Leu Lys Arg Lys Tyr Trp
Trp Lys Asn Cys Lys Met Met65 70 75
80Ile Ile Leu Ala Ile Ile Ile Ile Val Ile Leu Ile Ile Ile
Ile Val 85 90 95Ala Ile
Val Gln Ser Gln Lys Lys 10061129PRTDrosophila melanogaster
SynA1 (Fruit fly) 61Met Glu Asn Asn Glu Ala Pro Ser Pro Ser Gly Ser Asn
Asn Asn Glu1 5 10 15Asn
Asn Asn Ala Ala Gln Lys Lys Leu Gln Gln Thr Gln Ala Lys Val 20
25 30Asp Glu Val Val Gly Ile Met Arg
Val Asn Val Glu Lys Val Leu Glu 35 40
45Arg Asp Gln Lys Leu Ser Glu Leu Gly Glu Arg Ala Asp Gln Leu Glu
50 55 60Gln Gly Ala Ser Gln Phe Glu Gln
Gln Ala Gly Lys Leu Lys Arg Lys65 70 75
80Gln Trp Trp Ala Asn Met Lys Met Met Ile Ile Leu Gly
Val Ile Ala 85 90 95Val
Val Leu Leu Ile Ile Val Leu Val Ser Val Trp Pro Ser Ser Ser
100 105 110Asp Ser Gly Ser Gly Gly Gly
Asn Lys Ala Ile Thr Gln Ala Pro Pro 115 120
125His62152PRTDrosophila melanogaster SynA2 (Fruit fly) 62Met
Glu Asn Asn Glu Ala Pro Ser Pro Ser Gly Ser Asn Asn Asn Asp1
5 10 15Phe Pro Ile Leu Pro Pro Pro
Pro Asn Ala Asn Asp Asn Tyr Asn Gln 20 25
30Phe Gly Asp His Gln Ile Arg Asn Asn Asn Ala Ala Gln Lys
Lys Leu 35 40 45Gln Gln Thr Gln
Ala Lys Val Asp Glu Val Val Gly Ile Met Arg Val 50 55
60Asn Val Glu Lys Val Leu Glu Arg Asp Gln Lys Leu Ser
Glu Leu Gly65 70 75
80Glu Arg Ala Asp Gln Leu Glu Gln Gly Ala Ser Gln Ser Glu Gln Gln
85 90 95Ala Gly Lys Leu Lys Arg
Lys Gln Trp Trp Ala Asn Met Lys Met Met 100
105 110Ile Ile Leu Gly Val Ile Ala Val Val Leu Leu Ile
Ile Val Leu Val 115 120 125Ser Val
Trp Pro Ser Ser Ser Asp Ser Gly Ser Gly Gly Gly Asn Lys 130
135 140Ala Ile Thr Gln Ala Pro Pro His145
15063132PRTDrosophila melanogaster SynB1 (Fruit fly) 63Met Glu Asn
Asn Glu Ala Pro Ser Pro Ser Gly Ser Asn Asn Asn Asp1 5
10 15Phe Pro Ile Leu Pro Pro Pro Pro Asn
Ala Asn Asp Asn Tyr Asn Gln 20 25
30Phe Gly Asp His Gln Ile Arg Asn Asn Asn Ala Ala Gln Lys Lys Leu
35 40 45Gln Gln Thr Gln Ala Lys Val
Asp Glu Val Val Gly Ile Met Arg Val 50 55
60Asn Val Glu Lys Val Leu Glu Arg Asp Gln Lys Leu Ser Glu Leu Gly65
70 75 80Glu Arg Ala Asp
Gln Leu Glu Gln Gly Ala Ser Gln Phe Glu Gln Gln 85
90 95Ala Gly Lys Leu Lys Arg Lys Gln Trp Trp
Ala Asn Met Lys Met Met 100 105
110Ile Ile Leu Gly Val Ile Ala Val Val Leu Leu Ile Ile Val Leu Val
115 120 125Ser Leu Phe Asn
13064132PRTDrosophila melanogaster SynB2 (Fruit fly) 64Met Glu Asn Asn
Glu Ala Pro Ser Pro Ser Gly Ser Asn Asn Asn Asp1 5
10 15Phe Pro Ile Leu Pro Pro Pro Pro Asn Ala
Asn Asp Asn Tyr Asn Gln 20 25
30Phe Gly Asp His Gln Ile Arg Asn Asn Asn Ala Ala Gln Lys Lys Leu
35 40 45Gln Gln Thr Gln Ala Lys Val Asp
Glu Val Val Gly Ile Met Arg Val 50 55
60Asn Val Glu Lys Val Leu Glu Arg Asp Gln Lys Leu Ser Glu Leu Gly65
70 75 80Glu Arg Ala Asp Gln
Leu Glu Gln Gly Ala Ser Gln Ser Glu Gln Gln 85
90 95Ala Gly Lys Leu Lys Arg Lys Gln Trp Trp Ala
Asn Met Lys Met Met 100 105
110Ile Ile Leu Gly Val Ile Ala Val Val Leu Leu Ile Ile Val Leu Val
115 120 125Ser Leu Phe Asn
13065183PRTDrosophila melanogaster SynC (Fruit fly) 65Met Ala Asp Ala Ala
Pro Ala Gly Asp Ala Pro Pro Asn Ala Gly Ala1 5
10 15Pro Ala Gly Glu Gly Gly Asp Gly Glu Ile Val
Gly Gly Pro His Asn 20 25
30Pro Gln Gln Ile Ala Ala Gln Lys Arg Leu Gln Gln Thr Gln Ala Gln
35 40 45Val Asp Glu Val Val Asp Ile Met
Arg Thr Asn Val Glu Lys Val Leu 50 55
60Glu Arg Asp Ser Lys Leu Ser Glu Leu Asp Asp Arg Ala Asp Ala Leu65
70 75 80Gln Gln Gly Ala Ser
Gln Phe Glu Gln Gln Ala Gly Lys Leu Lys Arg 85
90 95Lys Phe Trp Leu Gln Asn Leu Lys Met Met Ile
Ile Met Gly Val Ile 100 105
110Gly Leu Val Val Val Gly Ile Ile Ala Asn Lys Leu Gly Leu Ile Gly
115 120 125Gly Glu Gln Pro Pro Gln Tyr
Gln Tyr Pro Pro Gln Tyr Met Gln Pro 130 135
140Pro Pro Pro Pro Pro Gln Gln Pro Ala Gly Gly Gln Ser Ser Leu
Val145 150 155 160Asp Ala
Ala Gly Ala Gly Asp Gly Ala Gly Ala Gly Gly Ser Ala Gly
165 170 175Ala Gly Asp His Gly Gly Val
18066221PRTDrosophila melanogaster SynD (Fruit fly) 66Met Gly Lys
Lys Asp Lys Asn Lys Glu Gln Ala Asp Ala Ala Pro Ala1 5
10 15Gly Asp Ala Pro Pro Asn Ala Gly Ala
Pro Ala Gly Glu Gly Gly Asp 20 25
30Gly Glu Ile Val Gly Gly Pro His Asn Pro Gln Gln Ile Ala Ala Gln
35 40 45Lys Arg Leu Gln Gln Thr Gln
Ala Gln Val Asp Glu Val Val Asp Ile 50 55
60Met Arg Thr Asn Val Glu Lys Val Leu Glu Arg Asp Ser Lys Leu Ser65
70 75 80Glu Leu Asp Asp
Arg Ala Asp Ala Leu Gln Gln Gly Ala Ser Gln Phe 85
90 95Glu Gln Gln Ala Gly Lys Leu Lys Arg Lys
Phe Trp Leu Gln Asn Leu 100 105
110Lys Met Met Ile Ile Met Gly Val Ile Gly Leu Val Val Val Gly Ile
115 120 125Ile Ala Lys Arg Arg Arg Ile
Ile Thr Gln Lys Ala Ser Ala Leu Tyr 130 135
140Asn Phe Ile Asn His Lys Gln Ile Asn Leu Pro Asn Ile Thr Leu
Tyr145 150 155 160Lys Leu
Gly Leu Ile Gly Gly Glu Gln Pro Pro Gln Tyr Gln Tyr Pro
165 170 175Pro Gln Tyr Met Gln Pro Pro
Pro Pro Pro Pro Gln Gln Pro Ala Gly 180 185
190Gly Gln Ser Ser Leu Val Asp Ala Ala Gly Ala Gly Asp Gly
Ala Gly 195 200 205Ala Gly Gly Ser
Ala Gly Ala Gly Asp His Gly Gly Val 210 215
22067192PRTDrosophila melanogaster SynE (Fruit fly) 67Met Gly Lys
Lys Asp Lys Asn Lys Glu Gln Ala Asp Ala Ala Pro Ala1 5
10 15Gly Asp Ala Pro Pro Asn Ala Gly Ala
Pro Ala Gly Glu Gly Gly Asp 20 25
30Gly Glu Ile Val Gly Gly Pro His Asn Pro Gln Gln Ile Ala Ala Gln
35 40 45Lys Arg Leu Gln Gln Thr Gln
Ala Gln Val Asp Glu Val Val Asp Ile 50 55
60Met Arg Thr Asn Val Glu Lys Val Leu Glu Arg Asp Ser Lys Leu Ser65
70 75 80Glu Leu Asp Asp
Arg Ala Asp Ala Leu Gln Gln Gly Ala Ser Gln Phe 85
90 95Glu Gln Gln Ala Gly Lys Leu Lys Arg Lys
Phe Trp Leu Gln Asn Leu 100 105
110Lys Met Met Ile Ile Met Gly Val Ile Gly Leu Val Val Val Gly Ile
115 120 125Ile Ala Asn Lys Leu Gly Leu
Ile Gly Gly Glu Gln Pro Pro Gln Tyr 130 135
140Gln Tyr Pro Pro Gln Tyr Met Gln Pro Pro Pro Pro Pro Pro Gln
Gln145 150 155 160Pro Ala
Gly Gly Gln Ser Ser Leu Val Asp Ala Ala Gly Ala Gly Asp
165 170 175Gly Ala Gly Ala Gly Gly Ser
Ala Gly Ala Gly Asp His Gly Gly Val 180 185
19068169PRTHirudo medicinalis VAMP (Leech) 68Met Ala Gln Pro
Pro Pro Lys Pro Ser Thr Gly Pro Gly Gly Leu Pro1 5
10 15Ala Pro Gly Ala Pro Pro Gln Pro Ala Pro
Gln Ser Lys Arg Leu Gln 20 25
30Gln Ala Gln Ala Gln Val Asp Glu Val Val Asp Met Met Arg Val Asn
35 40 45Val Asp Lys Val Leu Glu Lys Asp
Gln Lys Leu Ala Glu Leu Asp Gly 50 55
60Arg Ala Asp Ala Leu Gln Ala Gly Ala Ser Gln Phe Glu Ala Ser Ala65
70 75 80Gly Lys Leu Lys Arg
Lys Phe Trp Trp Lys Asn Met Lys Met Met Leu 85
90 95Ile Met Gly Ala Val Val Ala Val Val Val Val
Ile Phe Gly Ala Trp 100 105
110Ile Tyr Asn Lys Phe Ser Gly Thr Ser Ser Val Pro Gln Glu Gly Thr
115 120 125Pro Val Leu Gln Ser Pro Met
Ala Gln Gln Pro Gln Ser Leu Pro Glu 130 135
140Asn Ile Pro Pro Ala Ser Pro Val Gly Gly Gly Gly Gly Gly Lys
Lys145 150 155 160Gly Lys
Asn Lys Gln Pro His Ser Ser 16569125PRTLoligo pealei VAMP
(Longfin squid) 69Met Ser Gly Pro Gln Asn Pro Gln Ala Gly Pro Gly Gly Pro
Pro Ser1 5 10 15Gly Pro
Pro Gln Pro Gly Gly Pro Pro Gly Pro Pro Gln Gly Pro Pro 20
25 30Gln Pro Val Gln Gln Ser Lys Arg Leu
Gln Gln Thr Gln Ala Gln Val 35 40
45Glu Glu Val Val Asp Ile Met Arg Val Asn Val Asp Lys Val Leu Glu 50
55 60Arg Asp Ser Lys Ile Ser Glu Leu Asp
Asp Arg Ala Asp Ala Leu Gln65 70 75
80Ala Gly Ala Ser Gln Phe Glu Ala Ser Ala Gly Lys Leu Lys
Arg Lys 85 90 95Phe Trp
Trp Lys Asn Cys Lys Met Met Ile Ile Leu Gly Gly Ile Val 100
105 110Ala Val Ile Val Thr Val Ile Ile Val
Trp Ala Ala Thr 115 120
12570145PRTLymnaea stagnalis VAMP (Great pond snail) 70Met Ala Ala Ser
Gln Asn Pro Gln Ala Gly Pro Gly Gly Pro Pro Ser1 5
10 15Ala Gly Pro Gly Gly Pro Gly Met Gln Pro
Pro Arg Glu Gln Ser Lys 20 25
30Arg Leu Gln Gln Thr Gln Ala Gln Val Asp Glu Val Val Asp Ile Met
35 40 45Arg Val Asn Val Glu Lys Val Leu
Asp Arg Asp Gln Lys Ile Ser Gln 50 55
60Leu Asp Asp Arg Ala Glu Ala Leu Gln Ala Gly Ala Ser Gln Phe Glu65
70 75 80Ala Ser Ala Gly Lys
Leu Lys Arg Lys Tyr Trp Trp Lys Asn Cys Lys 85
90 95Met Met Leu Ile Leu Gly Ala Ile Ile Gly Ile
Ile Cys Ile Ile Ile 100 105
110Ile Val Trp Val Val Thr Ser Thr Lys Gly Gly Asp Asp Lys Pro Thr
115 120 125Pro Gln Pro Ala Ile Ser Ser
Thr Thr Gly Thr Pro Ser Pro Lys Thr 130 135
140Thr14571180PRTAplysia californica VAMP (California sea hare)
71Met Ser Ala Gly Pro Gly Gly Pro Gln Gly Gly Met Gln Pro Pro Arg1
5 10 15Glu Gln Ser Lys Arg Leu
Gln Gln Thr Gln Ala Gln Val Asp Glu Val 20 25
30Val Asp Ile Met Arg Val Asn Val Glu Lys Val Leu Asp
Arg Asp Gln 35 40 45Lys Ile Ser
Gln Leu Asp Asp Arg Ala Glu Ala Leu Gln Ala Gly Ala 50
55 60Ser Gln Phe Glu Ala Ser Ala Gly Lys Leu Lys Arg
Lys Tyr Trp Trp65 70 75
80Lys Asn Cys Lys Met Met Leu Ile Leu Gly Ala Ile Ile Gly Val Ile
85 90 95Val Ile Ile Ile Ile Val
Trp Val Val Thr Ser Gln Asp Ser Gly Gly 100
105 110Asp Asp Ser Gly Ser Lys Thr Pro Ala Thr Ala Gly
Thr Ser Pro Lys 115 120 125Pro Val
Glu Ser Gly Val Gln Gly Gly Gly Gly Arg Gln Gln Arg Pro 130
135 140His Ser Gln Leu Val Glu Arg Arg Asn Val Leu
Arg Arg Thr Glu Asp145 150 155
160His Ile Gly Cys Arg Pro His Ile His Ser Phe Ile His Ile Phe Met
165 170 175Ile Cys Leu Val
18072109PRTCaenorhabditis elegans SNB1 (Round worm) 72Met Asp
Ala Gln Gly Asp Ala Gly Ala Gln Gly Gly Ser Gln Gly Gly1 5
10 15Pro Arg Pro Ser Asn Lys Arg Leu
Gln Gln Thr Gln Ala Gln Val Asp 20 25
30Glu Val Val Gly Ile Met Lys Val Asn Val Glu Lys Val Leu Glu
Arg 35 40 45Asp Gln Lys Leu Ser
Gln Leu Asp Asp Arg Ala Asp Ala Leu Gln Glu 50 55
60Gly Ala Ser Gln Phe Glu Lys Ser Ala Ala Thr Leu Lys Arg
Lys Tyr65 70 75 80Trp
Trp Lys Asn Ile Lys Met Met Ile Ile Met Cys Ala Ile Val Val
85 90 95Ile Leu Ile Ile Ile Ile Val
Leu Trp Ala Gly Gly Lys 100
10573118PRTCaenorhabditis elegans SNB1-like (Round worm) 73Met Phe Ser
Arg Met Ser Ala Asn Asn Glu Ala Asn Lys Asp Leu Glu1 5
10 15Ala Gly Asn Gly Glu Ala Gln Pro Pro
Thr Gly Thr Tyr Asn Thr Lys 20 25
30Arg Met Gln Met Ala Gln Ala Gln Val Asn Glu Val Ile Asp Val Met
35 40 45Arg Asn Asn Val Asn Lys Val
Met Glu Arg Asp Val Gln Leu Asn Ser 50 55
60Leu Asp His Arg Ala Glu Val Leu Gln Asn Gly Ala Ser Gln Phe Gln65
70 75 80Gln Ser Ser Arg
Thr Leu Arg Gln Lys Tyr Trp Trp Gln Asn Ile Arg 85
90 95Met Met Ile Ile Ile Gly Leu Ile Ala Phe
Leu Val Ile Gly Ile Phe 100 105
110Leu Ile Trp Ile Phe Asn 11574288PRTHomo sapiens Syntaxin-1A
(Human) 74Met Lys Asp Arg Thr Gln Glu Leu Arg Thr Ala Lys Asp Ser Asp
Asp1 5 10 15Asp Asp Asp
Val Ala Val Thr Val Asp Arg Asp Arg Phe Met Asp Glu 20
25 30Phe Phe Glu Gln Val Glu Glu Ile Arg Gly
Phe Ile Asp Lys Ile Ala 35 40
45Glu Asn Val Glu Glu Val Lys Arg Lys His Ser Ala Ile Leu Ala Ser 50
55 60Pro Asn Pro Asp Glu Lys Thr Lys Glu
Glu Leu Glu Glu Leu Met Ser65 70 75
80Asp Ile Lys Lys Thr Ala Asn Lys Val Arg Ser Lys Leu Lys
Ser Ile 85 90 95Glu Gln
Ser Ile Glu Gln Glu Glu Gly Leu Asn Arg Ser Ser Ala Asp 100
105 110Leu Arg Ile Arg Lys Thr Gln His Ser
Thr Leu Ser Arg Lys Phe Val 115 120
125Glu Val Met Ser Glu Tyr Asn Ala Thr Gln Ser Asp Tyr Arg Glu Arg
130 135 140Cys Lys Gly Arg Ile Gln Arg
Gln Leu Glu Ile Thr Gly Arg Thr Thr145 150
155 160Thr Ser Glu Glu Leu Glu Asp Met Leu Glu Ser Gly
Asn Pro Ala Ile 165 170
175Phe Ala Ser Gly Ile Ile Met Asp Ser Ser Ile Ser Lys Gln Ala Leu
180 185 190Ser Glu Ile Glu Thr Arg
His Ser Glu Ile Ile Lys Leu Glu Asn Ser 195 200
205Ile Arg Glu Leu His Asp Met Phe Met Asp Met Ala Met Leu
Val Glu 210 215 220Ser Gln Gly Glu Met
Ile Asp Arg Ile Glu Tyr Asn Val Glu His Ala225 230
235 240Val Asp Tyr Val Glu Arg Ala Val Ser Asp
Thr Lys Lys Ala Val Lys 245 250
255Tyr Gln Ser Lys Ala Arg Arg Lys Lys Ile Met Ile Ile Ile Cys Cys
260 265 270Val Ile Leu Gly Ile
Val Ile Ala Ser Thr Val Gly Gly Ile Phe Ala 275
280 28575288PRTHomo sapiens Syntaxin-1B1 (Human) 75Met
Lys Asp Arg Thr Gln Val Leu Arg Thr Arg Arg Asn Ser Asp Asp1
5 10 15Lys Glu Glu Val Val His Val
Asp Arg Asp His Phe Met Asp Glu Phe 20 25
30Phe Glu Gln Glu Glu Glu Ile Arg Gly Cys Ile Glu Lys Leu
Ser Glu 35 40 45Asp Val Glu Gln
Val Lys Lys Gln His Ser Ala Ile Leu Ala Ala Pro 50 55
60Asn Pro Asp Glu Arg Thr Lys Gln Glu Leu Glu Asp Leu
Thr Ala Asp65 70 75
80Ile Lys Lys Thr Ala Asn Lys Val Arg Ser Lys Leu Lys Ala Ile Glu
85 90 95Gln Ser Ile Glu Gln Glu
Glu Gly Ser Thr Ala Pro Arg Pro Ile Leu 100
105 110Arg Ile Arg Lys Thr Gln His Ser Thr Leu Ser Arg
Lys Phe Val Glu 115 120 125Val Met
Thr Glu Tyr Asn Ala Thr Gln Ser Lys Tyr Arg Asp Arg Cys 130
135 140Lys Asp Arg Ile Gln Arg Gln Leu Glu Ile Thr
Gly Arg Thr Thr Thr145 150 155
160Asn Glu Glu Leu Glu Asp Met Leu Glu Ser Gly Lys Leu Pro Ile Phe
165 170 175Thr Asp Asp Ile
Lys Met Asp Ser Gln Met Thr Lys Gln Ala Leu Asn 180
185 190Glu Ile Glu Thr Arg His Asn Glu Ile Ile Lys
Leu Glu Thr Ser Ile 195 200 205Arg
Glu Leu His Asp Met Phe Val Asp Met Ala Met Leu Val Glu Ser 210
215 220Gln Gly Glu Met Ile Asp Arg Ile Glu Tyr
Asn Val Glu His Ser Val225 230 235
240Asp Tyr Val Glu Arg Ala Val Ser Asp Thr Lys Lys Ala Val Lys
Tyr 245 250 255Gln Ser Lys
Ala Arg Arg Lys Lys Ile Ile Ile Ile Ile Cys Cys Val 260
265 270Val Leu Gly Val Val Leu Ala Ser Ser Ile
Gly Cys Thr Leu Gly Leu 275 280
28576288PRTHomo sapiens Syntaxin-1B2 (Human) 76Met Lys Asp Arg Thr Gln
Glu Leu Arg Ser Ala Lys Asp Ser Asp Asp1 5
10 15Glu Glu Glu Val Val His Val Asp Arg Asp His Phe
Met Asp Glu Phe 20 25 30Phe
Glu Gln Val Glu Glu Ile Arg Gly Cys Ile Glu Lys Leu Ser Glu 35
40 45Asp Val Glu Gln Val Lys Lys Gln His
Ser Ala Ile Leu Ala Ala Pro 50 55
60Asn Pro Asp Glu Lys Thr Lys Gln Glu Leu Glu Asp Leu Thr Ala Asp65
70 75 80Ile Lys Lys Thr Ala
Asn Lys Val Arg Ser Lys Leu Lys Ala Ile Glu 85
90 95Gln Ser Ile Glu Gln Glu Glu Gly Leu Asn Arg
Ser Ser Ala Asp Leu 100 105
110Arg Ile Arg Lys Thr Gln His Ser Thr Leu Ser Arg Lys Phe Val Glu
115 120 125Val Met Thr Glu Tyr Asn Ala
Thr Gln Ser Lys Tyr Arg Asp Arg Cys 130 135
140Lys Asp Arg Ile Gln Arg Gln Leu Glu Ile Thr Gly Arg Thr Thr
Thr145 150 155 160Asn Glu
Glu Leu Glu Asp Met Leu Glu Ser Gly Lys Leu Ala Ile Phe
165 170 175Thr Asp Asp Ile Lys Met Asp
Ser Gln Met Thr Lys Gln Ala Leu Asn 180 185
190Glu Ile Glu Thr Arg His Asn Glu Ile Ile Lys Leu Glu Thr
Ser Ile 195 200 205Arg Glu Leu His
Asp Met Phe Val Asp Met Ala Met Leu Val Glu Ser 210
215 220Gln Gly Glu Met Ile Asp Arg Ile Glu Tyr Asn Val
Glu His Ser Val225 230 235
240Asp Tyr Val Glu Arg Ala Val Ser Asp Thr Lys Lys Ala Val Lys Tyr
245 250 255Gln Ser Lys Ala Arg
Arg Lys Lys Ile Met Ile Ile Ile Cys Cys Val 260
265 270Val Leu Gly Val Val Leu Ala Ser Ser Ile Gly Gly
Thr Leu Gly Leu 275 280
28577287PRTHomo sapiens Syntaxin-2-1 (Human) 77Met Arg Asp Arg Leu Pro
Asp Leu Thr Ala Cys Arg Lys Asn Asp Asp1 5
10 15Gly Asp Thr Val Val Val Val Glu Lys Asp His Phe
Met Asp Asp Phe 20 25 30Phe
His Gln Val Glu Glu Ile Arg Asn Ser Ile Asp Lys Ile Thr Gln 35
40 45Tyr Val Glu Glu Val Lys Lys Asn His
Ser Ile Ile Leu Ser Ala Pro 50 55
60Asn Pro Glu Gly Lys Ile Lys Glu Glu Leu Glu Asp Leu Asn Lys Glu65
70 75 80Ile Lys Lys Thr Ala
Asn Lys Ile Arg Ala Lys Leu Lys Ala Ile Glu 85
90 95Gln Ser Phe Asp Gln Asp Glu Ser Gly Asn Arg
Thr Ser Val Asp Leu 100 105
110Arg Ile Arg Arg Thr Gln His Ser Val Leu Ser Arg Lys Phe Val Glu
115 120 125Ala Met Ala Glu Tyr Asn Glu
Ala Gln Thr Leu Phe Arg Glu Arg Ser 130 135
140Lys Gly Arg Ile Gln Arg Gln Leu Glu Ile Thr Gly Arg Thr Thr
Thr145 150 155 160Asp Asp
Glu Leu Glu Glu Met Leu Glu Ser Gly Lys Pro Ser Ile Phe
165 170 175Thr Ser Asp Ile Ile Ser Asp
Ser Gln Ile Thr Arg Gln Ala Leu Asn 180 185
190Glu Ile Glu Ser Arg His Lys Asp Ile Met Lys Leu Glu Thr
Ser Ile 195 200 205Arg Glu Leu His
Glu Met Phe Met Asp Met Ala Met Phe Val Glu Thr 210
215 220Gln Gly Glu Met Ile Asn Asn Ile Glu Arg Asn Val
Met Asn Ala Thr225 230 235
240Asp Tyr Val Glu His Ala Lys Glu Glu Thr Lys Lys Ala Ile Lys Tyr
245 250 255Gln Ser Lys Ala Arg
Arg Lys Leu Met Phe Ile Ile Ile Cys Val Ile 260
265 270Val Leu Leu Val Ile Leu Gly Ile Ile Leu Ala Thr
Thr Leu Ser 275 280
28578288PRTHomo sapiens Syntaxin-2-2 (Human) 78Met Arg Asp Arg Leu Pro
Asp Leu Thr Ala Cys Arg Lys Asn Asp Asp1 5
10 15Gly Asp Thr Val Val Val Val Glu Lys Asp His Phe
Met Asp Asp Phe 20 25 30Phe
His Gln Val Glu Glu Ile Arg Asn Ser Ile Asp Lys Ile Thr Gln 35
40 45Tyr Val Glu Glu Val Lys Lys Asn His
Ser Ile Ile Leu Ser Ala Pro 50 55
60Asn Pro Glu Gly Lys Ile Lys Glu Glu Leu Glu Asp Leu Asn Lys Glu65
70 75 80Ile Lys Lys Thr Ala
Asn Lys Ile Arg Ala Lys Leu Lys Ala Ile Glu 85
90 95Gln Ser Phe Asp Gln Asp Glu Ser Gly Asn Arg
Thr Ser Val Asp Leu 100 105
110Arg Ile Arg Arg Thr Gln His Ser Val Leu Ser Arg Lys Phe Val Glu
115 120 125Ala Met Ala Glu Tyr Asn Glu
Ala Gln Thr Leu Phe Arg Glu Arg Ser 130 135
140Lys Gly Arg Ile Gln Arg Gln Leu Glu Ile Thr Gly Arg Thr Thr
Thr145 150 155 160Asp Asp
Glu Leu Glu Glu Met Leu Glu Ser Gly Lys Pro Ser Ile Phe
165 170 175Thr Ser Asp Ile Ile Ser Asp
Ser Gln Ile Thr Arg Gln Ala Leu Asn 180 185
190Glu Ile Glu Ser Arg His Lys Asp Ile Met Lys Leu Glu Thr
Ser Ile 195 200 205Arg Glu Leu His
Glu Met Phe Met Asp Met Ala Met Phe Val Glu Thr 210
215 220Gln Gly Glu Met Ile Asn Asn Ile Glu Arg Asn Val
Met Asn Ala Thr225 230 235
240Asp Tyr Val Glu His Ala Lys Glu Glu Thr Lys Lys Ala Ile Lys Tyr
245 250 255Gln Ser Lys Ala Arg
Arg Lys Lys Trp Ile Ile Ile Ala Val Ser Val 260
265 270Val Leu Val Ala Ile Ile Ala Leu Ile Ile Gly Leu
Ser Val Gly Lys 275 280
28579299PRTHomo sapiens Syntaxin-2-3 (Human) 79Met Arg Asp Arg Leu Pro
Asp Leu Thr Ala Cys Arg Lys Asn Asp Asp1 5
10 15Gly Asp Thr Val Val Val Val Glu Lys Asp His Phe
Met Asp Asp Phe 20 25 30Phe
His Gln Val Glu Glu Ile Arg Asn Ser Ile Asp Lys Ile Thr Gln 35
40 45Tyr Val Glu Glu Val Lys Lys Asn His
Ser Ile Ile Leu Ser Ala Pro 50 55
60Asn Pro Glu Gly Lys Ile Lys Glu Glu Leu Glu Asp Leu Asn Lys Glu65
70 75 80Ile Lys Lys Thr Ala
Asn Lys Ile Ala Ala Lys Leu Lys Ala Ile Glu 85
90 95Gln Ser Phe Asp Gln Asp Glu Ser Gly Asn Arg
Thr Ser Val Asp Leu 100 105
110Arg Ile Arg Arg Thr Gln His Ser Val Leu Ser Arg Lys Phe Val Glu
115 120 125Ala Met Ala Glu Tyr Asn Glu
Ala Gln Thr Leu Phe Arg Glu Arg Ser 130 135
140Lys Gly Arg Ile Gln Arg Gln Leu Glu Ile Thr Gly Arg Thr Thr
Thr145 150 155 160Asp Asp
Glu Leu Glu Glu Met Leu Glu Ser Gly Lys Pro Ser Ile Phe
165 170 175Thr Ser Asp Ile Ile Ser Asp
Ser Gln Ile Thr Arg Gln Ala Leu Asn 180 185
190Glu Ile Glu Ser Arg His Lys Asp Ile Met Lys Leu Glu Thr
Ser Ile 195 200 205Arg Glu Leu His
Glu Met Phe Met Asp Met Ala Met Phe Val Glu Thr 210
215 220Gln Gly Glu Met Ile Asn Asn Ile Glu Arg Asn Val
Met Asn Ala Thr225 230 235
240Asp Tyr Val Glu His Ala Lys Glu Glu Thr Lys Lys Ala Ile Lys Tyr
245 250 255Gln Ser Lys Ala Arg
Arg Lys Lys Trp Ile Ile Ile Ala Val Ser Val 260
265 270Val Leu Val Val Tyr Arg Leu Phe Gly Leu Ser Leu
Glu Tyr Val Val 275 280 285Arg Ser
Ala Ala Ser Leu Pro Gly Trp Gly Asn 290
29580289PRTHomo sapiens Syntaxin-3 (Human) 80Met Lys Asp Arg Leu Glu Gln
Leu Lys Ala Lys Gln Leu Thr Gln Asp1 5 10
15Asp Asp Thr Asp Ala Val Glu Ile Ala Ile Asp Asn Thr
Ala Phe Met 20 25 30Asp Glu
Phe Phe Ser Glu Ile Glu Glu Thr Arg Leu Asn Ile Asp Lys 35
40 45Ile Ser Glu His Val Glu Glu Ala Lys Lys
Leu Tyr Ser Ile Ile Leu 50 55 60Ser
Ala Pro Ile Pro Glu Pro Lys Thr Lys Asp Asp Leu Glu Gln Leu65
70 75 80Thr Thr Glu Ile Lys Lys
Arg Ala Asn Asn Val Arg Asn Lys Leu Lys 85
90 95Ser Met Glu Lys His Ile Glu Glu Asp Glu Val Arg
Ser Ser Ala Asp 100 105 110Leu
Arg Ile Arg Lys Ser Gln His Ser Val Leu Ser Arg Lys Phe Val 115
120 125Glu Val Met Thr Lys Tyr Asn Glu Ala
Gln Val Asp Phe Arg Glu Arg 130 135
140Ser Lys Gly Arg Ile Gln Arg Gln Leu Glu Ile Thr Gly Lys Lys Thr145
150 155 160Thr Asp Glu Glu
Leu Glu Glu Met Leu Glu Ser Gly Asn Pro Ala Ile 165
170 175Phe Thr Ser Gly Ile Ile Asp Ser Gln Ile
Ser Lys Gln Ala Leu Ser 180 185
190Glu Ile Glu Gly Arg His Lys Asp Ile Val Arg Leu Glu Ser Ser Ile
195 200 205Lys Glu Leu His Asp Met Phe
Met Asp Ile Ala Met Leu Val Glu Asn 210 215
220Gln Gly Glu Met Leu Asp Asn Ile Glu Leu Asn Val Met His Thr
Val225 230 235 240Asp His
Val Glu Lys Ala Arg Asp Glu Ser Lys Lys Ala Val Lys Tyr
245 250 255Gln Ser Gln Ala Arg Lys Lys
Leu Ile Ile Ile Ile Val Leu Val Val 260 265
270Val Leu Leu Gly Ile Leu Ala Leu Ile Ile Gly Leu Ser Val
Gly Leu 275 280 285Asn 81288PRTBos
taurus Syntaxin-1A (Cow) 81Met Lys Asp Arg Thr Gln Glu Leu Arg Thr Ala
Lys Asp Ser Asp Asp1 5 10
15Asp Asp Asp Val Thr Val Thr Val Asp Arg Asp Arg Phe Met Asp Glu
20 25 30Phe Phe Glu Gln Val Glu Glu
Ile Arg Gly Phe Ile Asp Lys Ile Ser 35 40
45Glu Asn Val Glu Glu Val Lys Arg Lys His Ser Ala Ile Leu Ala
Ser 50 55 60Pro Asn Pro Asp Glu Lys
Thr Lys Glu Glu Leu Glu Glu Leu Met Ser65 70
75 80Asp Ile Lys Lys Thr Ala Asn Lys Val Arg Ser
Lys Leu Lys Ser Ile 85 90
95Glu Gln Ser Ile Glu Gln Glu Glu Gly Leu Asn Arg Ser Ser Ala Asp
100 105 110Leu Arg Ile Arg Lys Thr
Gln His Ser Thr Leu Ser Arg Lys Phe Val 115 120
125Glu Val Met Ser Glu Tyr Asn Ala Thr Gln Ser Asp Tyr Arg
Glu Arg 130 135 140Cys Lys Gly Arg Ile
Gln Arg Gln Leu Glu Ile Thr Gly Arg Thr Thr145 150
155 160Thr Ser Glu Glu Leu Glu Asp Met Leu Glu
Ser Gly Asn Pro Ala Ile 165 170
175Phe Ala Ser Gly Ile Ile Met Asp Ser Ser Ile Ser Lys Gln Ala Leu
180 185 190Ser Glu Ile Glu Thr
Arg His Ser Glu Ile Ile Lys Leu Glu Asn Ser 195
200 205Ile Arg Glu Leu His Asp Met Phe Met Asp Met Ala
Met Leu Val Glu 210 215 220Ser Gln Gly
Glu Met Ile Asp Arg Ile Glu Tyr Asn Val Glu His Ser225
230 235 240Val Asp Tyr Val Glu Arg Ala
Val Ser Asp Thr Lys Lys Ala Val Lys 245
250 255Tyr Gln Ser Lys Ala Arg Arg Lys Lys Ile Met Ile
Val Ile Cys Cys 260 265 270Val
Val Leu Gly Ile Val Ile Ala Ser Thr Phe Gly Gly Ile Phe Gly 275
280 28582288PRTBos taurus Syntaxin-1B2 (Cow)
82Met Lys Asp Arg Thr Gln Glu Leu Arg Ser Ala Lys Asp Ser Asp Asp1
5 10 15Glu Glu Glu Val Val His
Val Asp Arg Asp His Phe Met Asp Glu Phe 20 25
30Phe Glu Gln Val Glu Glu Ile Arg Gly Cys Ile Glu Lys
Leu Ser Glu 35 40 45Asp Val Glu
Gln Val Lys Lys Gln His Ser Ala Ile Leu Ala Ala Pro 50
55 60Asn Pro Asp Glu Lys Thr Lys Gln Glu Leu Glu Asp
Leu Thr Thr Asp65 70 75
80Ile Lys Lys Thr Ala Asn Lys Val Arg Ser Lys Leu Lys Ala Ile Glu
85 90 95Gln Ser Ile Glu Gln Glu
Glu Gly Leu Asn Arg Ser Ser Ala Asp Leu 100
105 110Arg Ile Arg Lys Thr Gln His Ser Thr Leu Ser Arg
Lys Phe Val Glu 115 120 125Val Met
Thr Glu Tyr Asn Ala Thr Gln Ser Lys Tyr Arg Asp Arg Cys 130
135 140Lys Asp Arg Ile Gln Arg Gln Leu Glu Ile Thr
Gly Arg Thr Thr Thr145 150 155
160Asn Glu Glu Leu Glu Asp Met Leu Glu Ser Gly Lys Leu Ala Ile Phe
165 170 175Thr Asp Asp Ile
Lys Met Asp Ser Gln Met Thr Lys Gln Ala Leu Asn 180
185 190Glu Ile Glu Thr Arg His Asn Glu Ile Ile Lys
Leu Glu Thr Ser Ile 195 200 205Arg
Glu Leu His Asp Met Phe Val Asp Met Ala Met Leu Val Glu Ser 210
215 220Gln Gly Glu Met Ile Asp Arg Ile Glu Tyr
Asn Val Glu His Ser Val225 230 235
240Asp Tyr Val Glu Arg Ala Val Ser Asp Thr Lys Lys Ala Val Lys
Tyr 245 250 255Gln Ser Lys
Ala Arg Arg Lys Lys Ile Met Ile Ile Ile Cys Cys Val 260
265 270Val Leu Gly Val Val Leu Ala Ser Ser Ile
Gly Gly Thr Leu Gly Leu 275 280
28583288PRTRattus norvegicus Syntaxin-1A (Rat) 83Met Lys Asp Arg Thr Gln
Glu Leu Arg Thr Ala Lys Asp Ser Asp Asp1 5
10 15Asp Asp Asp Val Thr Val Thr Val Asp Arg Asp Arg
Phe Met Asp Glu 20 25 30Phe
Phe Glu Gln Val Glu Glu Ile Arg Gly Phe Ile Asp Lys Ile Ala 35
40 45Glu Asn Val Glu Glu Val Lys Arg Lys
His Ser Ala Ile Leu Ala Ser 50 55
60Pro Asn Pro Asp Glu Lys Thr Lys Glu Glu Leu Glu Glu Leu Met Ser65
70 75 80Asp Ile Lys Lys Thr
Ala Asn Lys Val Arg Ser Lys Leu Lys Ser Ile 85
90 95Glu Gln Ser Ile Glu Gln Glu Glu Gly Leu Asn
Arg Ser Ser Ala Asp 100 105
110Leu Arg Ile Arg Lys Thr Gln His Ser Thr Leu Ser Arg Lys Phe Val
115 120 125Glu Val Met Ser Glu Tyr Asn
Ala Thr Gln Ser Asp Tyr Arg Glu Arg 130 135
140Cys Lys Gly Arg Ile Gln Arg Gln Leu Glu Ile Thr Gly Arg Thr
Thr145 150 155 160Thr Ser
Glu Glu Leu Glu Asp Met Leu Glu Ser Gly Asn Pro Ala Ile
165 170 175Phe Ala Ser Gly Ile Ile Met
Asp Ser Ser Ile Ser Lys Gln Ala Leu 180 185
190Ser Glu Ile Glu Thr Arg His Ser Glu Ile Ile Lys Leu Glu
Asn Ser 195 200 205Ile Arg Glu Leu
His Asp Met Phe Met Asp Met Ala Met Leu Val Glu 210
215 220Ser Gln Gly Glu Met Ile Asp Arg Ile Glu Tyr Asn
Val Glu His Ala225 230 235
240Val Asp Tyr Val Glu Arg Ala Val Ser Asp Thr Lys Lys Ala Val Lys
245 250 255Tyr Gln Ser Lys Ala
Arg Arg Lys Lys Ile Met Ile Ile Ile Cys Cys 260
265 270Val Ile Leu Gly Ile Ile Ile Ala Ser Thr Ile Gly
Gly Ile Phe Gly 275 280
28584288PRTRattus norvegicus Syntaxin-1B2 (Rat) 84Met Lys Asp Arg Thr Gln
Glu Leu Arg Ser Ala Lys Asp Ser Asp Asp1 5
10 15Glu Glu Glu Val Val His Val Asp Arg Asp His Phe
Met Asp Glu Phe 20 25 30Phe
Glu Gln Val Glu Glu Ile Arg Gly Cys Ile Glu Lys Leu Ser Glu 35
40 45Asp Val Glu Gln Val Lys Lys Gln His
Ser Ala Ile Leu Ala Ala Pro 50 55
60Asn Pro Asp Glu Lys Thr Lys Gln Glu Leu Glu Asp Leu Thr Ala Asp65
70 75 80Ile Lys Lys Thr Ala
Asn Lys Val Arg Ser Lys Leu Lys Ala Ile Glu 85
90 95Gln Ser Ile Glu Gln Glu Glu Gly Leu Asn Arg
Ser Ser Ala Asp Leu 100 105
110Arg Ile Arg Lys Thr Gln His Ser Thr Leu Ser Arg Lys Phe Val Glu
115 120 125Val Met Thr Glu Tyr Asn Ala
Thr Gln Ser Lys Tyr Arg Asp Arg Cys 130 135
140Lys Asp Arg Ile Gln Arg Gln Leu Glu Ile Thr Gly Arg Thr Thr
Thr145 150 155 160Asn Glu
Glu Leu Glu Asp Met Leu Glu Ser Gly Lys Leu Ala Ile Phe
165 170 175Thr Asp Asp Ile Lys Met Asp
Ser Gln Met Thr Lys Gln Ala Leu Asn 180 185
190Glu Ile Glu Thr Arg His Asn Glu Ile Ile Lys Leu Glu Thr
Ser Ile 195 200 205Arg Glu Leu His
Asp Met Phe Val Asp Met Ala Met Leu Val Glu Ser 210
215 220Gln Gly Glu Met Ile Asp Arg Ile Glu Tyr Asn Val
Glu His Ser Val225 230 235
240Asp Tyr Val Glu Arg Ala Val Ser Asp Thr Lys Lys Ala Val Lys Tyr
245 250 255Gln Ser Lys Ala Arg
Arg Lys Lys Ile Met Ile Ile Ile Cys Cys Val 260
265 270Val Leu Gly Val Val Leu Ala Ser Ser Ile Gly Gly
Thr Leu Gly Leu 275 280
28585288PRTMus musculus Syntaxin-1A (Mouse) 85Met Lys Asp Arg Thr Gln Glu
Leu Arg Thr Ala Lys Asp Ser Asp Asp1 5 10
15Asp Asp Asp Val Thr Val Thr Val Asp Arg Asp Arg Phe
Met Asp Glu 20 25 30Phe Phe
Glu Gln Val Glu Glu Ile Arg Gly Phe Ile Asp Lys Ile Ala 35
40 45Glu Asn Val Glu Glu Val Lys Arg Lys His
Ser Ala Ile Leu Ala Ser 50 55 60Pro
Asn Pro Asp Glu Lys Thr Lys Glu Glu Leu Glu Glu Leu Met Ser65
70 75 80Asp Ile Lys Lys Thr Ala
Asn Lys Val Arg Ser Lys Leu Lys Ser Ile 85
90 95Glu Gln Ser Ile Glu Gln Glu Glu Gly Leu Asn Arg
Ser Ser Ala Asp 100 105 110Leu
Arg Ile Arg Lys Thr Gln His Ser Thr Leu Ser Arg Lys Phe Val 115
120 125Glu Val Met Ser Glu Tyr Asn Ala Thr
Gln Ser Asp Tyr Arg Glu Arg 130 135
140Cys Lys Gly Arg Ile Gln Arg Gln Leu Glu Ile Thr Gly Arg Thr Thr145
150 155 160Thr Ser Glu Glu
Leu Glu Asp Met Leu Glu Ser Gly Asn Pro Ala Ile 165
170 175Phe Ala Ser Gly Ile Ile Met Asp Ser Ser
Ile Ser Lys Gln Ala Leu 180 185
190Ser Glu Ile Glu Thr Arg His Ser Glu Ile Ile Lys Leu Glu Thr Ser
195 200 205Ile Arg Glu Leu His Asp Met
Phe Met Asp Met Ala Met Leu Val Glu 210 215
220Ser Gln Gly Glu Met Ile Asp Arg Ile Glu Tyr Asn Val Glu His
Ala225 230 235 240Val Asp
Tyr Val Glu Arg Ala Val Ser Asp Thr Lys Lys Ala Val Lys
245 250 255Tyr Gln Ser Lys Ala Arg Arg
Lys Lys Ile Met Ile Ile Ile Cys Cys 260 265
270Val Ile Leu Gly Ile Ile Ile Ala Ser Thr Ile Gly Gly Ile
Phe Gly 275 280 28586288PRTMus
musculus Syntaxin-1B1 (Mouse) 86Met Lys Glu Trp Thr Gln Glu Arg Arg Ser
Ala Lys Asp Ser Asp Asp1 5 10
15Glu Glu Glu Val Val His Val Asp Arg Ala His Phe Met Ala Glu Phe
20 25 30Phe Glu Gln Val Glu Glu
Ile Arg Gly Cys Ile Glu Lys Leu Ser Glu 35 40
45Asp Val Gly Arg Val Gly Gly Gln His Ser Ala Ile Leu Ala
Ala Pro 50 55 60Lys Pro Asp Glu Lys
Thr Lys Gln Glu Leu Glu Asp Leu Thr Ala Asp65 70
75 80Ile Lys Lys Thr Ala Asn Lys Val Arg Ser
Lys Leu Lys Ala Ile Glu 85 90
95Gln Gly Ile Glu Gln Glu Glu Gly Leu Asn Arg Ser Ser Ala Asp Leu
100 105 110Arg Tyr Arg Thr Thr
Gln His Ser Thr Val Ser Arg Asn Phe Val Glu 115
120 125Val Met Thr Glu Tyr Asn Ala Thr Lys Ser Lys Tyr
Arg Asp Arg Cys 130 135 140Lys Asp Arg
Leu Gln Arg Gln Leu Glu Ile Thr Gly Arg Thr Thr Thr145
150 155 160Asn Glu Glu Leu Glu Asp Met
Leu Glu Ser Gly Lys Leu Ala Ile Phe 165
170 175Thr Asp Asp Ile Lys Met Asp Ser Gln Met Thr Lys
Gln Ala Arg Asn 180 185 190Glu
Ile Glu Thr Arg His Asn Glu Ile Ile Lys Leu Glu Thr Ser Ile 195
200 205Arg Glu Leu His Asp Met Phe Val Asp
Met Ala Met Leu Val Glu Ser 210 215
220Gln Gly Glu Met Ile Asp Arg Ile Glu Tyr Asn Val Glu His Ser Val225
230 235 240Asp Tyr Val Glu
Arg Ala Val Ser Asp Thr Lys Lys Ala Val Lys Tyr 245
250 255Gln Ser Lys Ala Arg Arg Lys Lys Ile Met
Ile Ile Ile Cys Cys Val 260 265
270Val Leu Gly Val Val Leu Ala Ser Ser Ile Gly Gly Thr Leu Gly Leu
275 280 28587288PRTMus musculus
Syntaxin-1B2 (Mouse) 87Met Lys Asp Arg Thr Gln Glu Leu Arg Ser Ala Lys
Asp Ser Asp Asp1 5 10
15Glu Glu Glu Val Val His Val Asp Arg Asp His Phe Met Asp Glu Phe
20 25 30Phe Glu Gln Val Glu Glu Ile
Arg Gly Cys Ile Glu Lys Leu Ser Glu 35 40
45Asp Val Glu Gln Val Lys Lys Gln His Ser Ala Ile Leu Ala Ala
Pro 50 55 60Asn Pro Asp Glu Lys Thr
Lys Gln Glu Leu Glu Asp Leu Thr Ala Asp65 70
75 80Ile Lys Lys Thr Ala Asn Lys Val Arg Ser Lys
Leu Lys Ala Ile Glu 85 90
95Gln Ser Ile Glu Gln Glu Glu Gly Leu Asn Arg Ser Ser Ala Asp Leu
100 105 110Arg Ile Arg Lys Thr Gln
His Ser Thr Leu Ser Arg Lys Phe Val Glu 115 120
125Val Met Thr Glu Tyr Asn Ala Thr Gln Ser Lys Tyr Arg Asp
Arg Cys 130 135 140Lys Asp Arg Ile Gln
Arg Gln Leu Glu Ile Thr Gly Arg Thr Thr Thr145 150
155 160Asn Glu Glu Leu Glu Asp Met Leu Glu Ser
Gly Lys Leu Ala Ile Phe 165 170
175Thr Asp Asp Ile Lys Met Asp Ser Gln Met Thr Lys Gln Ala Leu Asn
180 185 190Glu Ile Glu Thr Arg
His Asn Glu Ile Ile Lys Leu Glu Thr Ser Ile 195
200 205Arg Glu Leu His Asp Met Phe Val Asp Met Ala Met
Leu Val Glu Ser 210 215 220Gln Gly Glu
Met Ile Asp Arg Ile Glu Tyr Asn Val Glu His Ser Val225
230 235 240Asp Tyr Val Glu Arg Ala Val
Ser Asp Thr Lys Lys Ala Val Lys Tyr 245
250 255Gln Ser Lys Ala Arg Arg Lys Lys Ile Met Ile Ile
Ile Cys Cys Val 260 265 270Val
Leu Gly Val Val Leu Ala Ser Ser Ile Gly Gly Thr Leu Gly Leu 275
280 28588290PRTRattus norvegicus Syntaxin-2
(Rat) 88Met Arg Asp Arg Leu Pro Asp Leu Thr Ala Cys Arg Lys Ser Asp Asp1
5 10 15Gly Asp Asn Ala
Val Ile Ile Thr Val Glu Lys Asp His Phe Met Asp 20
25 30Ala Phe Phe His Gln Val Glu Glu Ile Arg Ser
Ser Ile Ala Arg Ile 35 40 45Ala
Gln His Val Glu Asp Val Lys Lys Asn His Ser Ile Ile Leu Ser 50
55 60Ala Pro Asn Pro Glu Gly Lys Ile Lys Glu
Glu Leu Glu Asp Leu Asn65 70 75
80Lys Glu Ile Lys Lys Thr Ala Asn Arg Ile Arg Gly Lys Leu Lys
Ala 85 90 95Ile Glu Gln
Ser Cys Asp Gln Asp Glu Asn Gly Asn Arg Thr Ser Val 100
105 110Asp Leu Arg Ile Arg Arg Thr Gln His Ser
Val Leu Ser Arg Lys Phe 115 120
125Val Asp Val Met Thr Glu Tyr Asn Glu Ala Gln Ile Leu Phe Arg Glu 130
135 140Arg Ser Lys Gly Arg Ile Gln Arg
Gln Leu Glu Ile Thr Gly Arg Thr145 150
155 160Thr Thr Asp Glu Glu Leu Glu Glu Met Leu Glu Ser
Gly Lys Pro Ser 165 170
175Ile Phe Ile Ser Asp Ile Ile Ser Asp Ser Gln Ile Thr Arg Gln Ala
180 185 190Leu Asn Glu Ile Glu Ser
Arg His Lys Asp Ile Met Lys Leu Glu Thr 195 200
205Ser Ile Arg Glu Leu His Glu Met Phe Met Asp Met Ala Met
Phe Val 210 215 220Glu Thr Gln Gly Glu
Met Val Asn Asn Ile Glu Arg Asn Val Val Asn225 230
235 240Ser Val Asp Tyr Val Glu His Ala Lys Glu
Glu Thr Lys Lys Ala Ile 245 250
255Lys Tyr Gln Ser Lys Ala Arg Arg Lys Lys Trp Ile Ile Ala Ala Val
260 265 270Val Val Ala Val Ile
Ala Val Leu Ala Leu Ile Ile Gly Leu Ser Val 275
280 285Gly Lys 29089289PRTMus musculus Syntaxin-2
(Mouse) 89Met Arg Asp Arg Leu Pro Asp Leu Thr Ala Cys Arg Thr Asn Asp
Asp1 5 10 15Gly Asp Thr
Ala Val Val Ile Val Glu Lys Asp His Phe Met Asp Gly 20
25 30Phe Phe His Gln Val Glu Glu Ile Arg Ser
Ser Ile Ala Arg Ile Ala 35 40
45Gln His Val Glu Asp Val Lys Lys Asn His Ser Ile Ile Leu Ser Ala 50
55 60Pro Asn Pro Glu Gly Lys Ile Lys Glu
Glu Leu Glu Asp Leu Asn Lys65 70 75
80Glu Ile Lys Lys Thr Ala Asn Arg Ile Arg Gly Lys Leu Lys
Ser Ile 85 90 95Glu Gln
Ser Cys Asp Gln Asp Glu Asn Gly Asn Arg Thr Ser Val Asp 100
105 110Leu Arg Ile Arg Arg Thr Gln His Ser
Val Leu Ser Arg Lys Phe Val 115 120
125Asp Val Met Thr Glu Tyr Asn Glu Ala Gln Ile Leu Phe Arg Glu Arg
130 135 140Ser Lys Gly Arg Ile Gln Arg
Gln Leu Glu Ile Thr Gly Arg Thr Thr145 150
155 160Thr Asp Asp Glu Leu Glu Glu Met Leu Glu Ser Gly
Lys Pro Ser Ile 165 170
175Phe Ile Ser Asp Ile Ile Ser Asp Ser Gln Ile Thr Arg Gln Ala Leu
180 185 190Asn Glu Ile Glu Ser Arg
His Lys Asp Ile Met Lys Leu Glu Thr Ser 195 200
205Ile Arg Glu Leu His Glu Met Phe Met Asp Met Ala Met Phe
Val Glu 210 215 220Thr Gln Gly Glu Met
Val Asn Asn Ile Glu Arg Asn Val Val Asn Ser225 230
235 240Val Asp Tyr Val Glu His Ala Lys Glu Glu
Thr Lys Lys Ala Ile Lys 245 250
255Tyr Gln Ser Lys Ala Arg Arg Lys Lys Trp Ile Ile Ala Ala Val Ala
260 265 270Val Ala Val Ile Ala
Val Leu Ala Leu Ile Ile Gly Leu Ser Val Gly 275
280 285Lys 90289PRTRattus norvegicus Syntaxin-3A (Rat)
90Met Lys Asp Arg Leu Glu Gln Leu Lys Ala Lys Gln Leu Thr Gln Asp1
5 10 15Asp Asp Thr Asp Glu Val
Glu Ile Ala Ile Asp Asn Thr Ala Phe Met 20 25
30Asp Glu Phe Phe Ser Glu Ile Glu Glu Thr Arg Leu Asn
Ile Asp Lys 35 40 45Ile Ser Glu
His Val Glu Glu Ala Lys Lys Leu Tyr Ser Ile Ile Leu 50
55 60Ser Ala Pro Ile Pro Glu Pro Lys Thr Lys Asp Asp
Leu Glu Gln Leu65 70 75
80Thr Thr Glu Ile Lys Lys Arg Ala Asn Asn Val Arg Asn Lys Leu Lys
85 90 95Ser Met Glu Lys His Ile
Glu Glu Asp Glu Val Arg Ser Ser Ala Asp 100
105 110Leu Arg Ile Arg Lys Ser Gln His Ser Val Leu Ser
Arg Lys Phe Val 115 120 125Glu Val
Met Thr Lys Tyr Asn Glu Ala Gln Val Asp Phe Arg Glu Arg 130
135 140Ser Lys Gly Arg Ile Gln Arg Gln Leu Glu Ile
Thr Gly Lys Lys Thr145 150 155
160Thr Asp Glu Glu Leu Glu Glu Met Leu Glu Ser Gly Asn Pro Ala Ile
165 170 175Phe Thr Ser Gly
Ile Ile Asp Ser Gln Ile Ser Lys Gln Ala Leu Ser 180
185 190Glu Ile Glu Gly Arg His Lys Asp Ile Val Arg
Leu Glu Ser Ser Ile 195 200 205Lys
Glu Leu His Asp Met Phe Met Asp Ile Ala Met Leu Val Glu Asn 210
215 220Gln Gly Glu Met Leu Asp Asn Ile Glu Leu
Asn Val Met His Thr Val225 230 235
240Asp His Val Glu Lys Ala Arg Asp Glu Thr Lys Arg Ala Met Lys
Tyr 245 250 255Gln Gly Gln
Ala Arg Lys Lys Leu Ile Ile Ile Ile Val Ile Val Val 260
265 270Val Leu Leu Gly Ile Leu Ala Leu Ile Ile
Gly Leu Ser Val Gly Leu 275 280
285Lys 91289PRTMus musculus Syntaxin-3A (Mouse) 91Met Lys Asp Arg Leu Glu
Gln Leu Lys Ala Lys Gln Leu Thr Gln Asp1 5
10 15Asp Asp Thr Asp Glu Val Glu Ile Ala Ile Asp Asn
Thr Ala Phe Met 20 25 30Asp
Glu Phe Phe Ser Glu Ile Glu Glu Thr Arg Leu Asn Ile Asp Lys 35
40 45Ile Ser Glu His Val Glu Glu Ala Lys
Lys Leu Tyr Ser Ile Ile Leu 50 55
60Ser Ala Pro Ile Pro Glu Pro Lys Thr Lys Asp Asp Leu Glu Gln Leu65
70 75 80Thr Thr Glu Ile Lys
Lys Arg Ala Asn Asn Val Arg Asn Lys Leu Lys 85
90 95Ser Met Glu Lys His Ile Glu Glu Asp Glu Val
Arg Ser Ser Ala Asp 100 105
110Leu Arg Ile Arg Lys Ser Gln His Ser Val Leu Ser Arg Lys Phe Val
115 120 125Glu Val Met Thr Lys Tyr Asn
Glu Ala Gln Val Asp Phe Arg Glu Arg 130 135
140Ser Lys Gly Arg Ile Gln Arg Gln Leu Glu Ile Thr Gly Lys Lys
Thr145 150 155 160Thr Asp
Glu Glu Leu Glu Glu Met Leu Glu Ser Gly Asn Pro Ala Ile
165 170 175Phe Thr Ser Gly Ile Ile Asp
Ser Gln Ile Ser Lys Gln Ala Leu Ser 180 185
190Glu Ile Glu Gly Arg His Lys Asp Ile Val Arg Leu Glu Ser
Ser Ile 195 200 205Lys Glu Leu His
Asp Met Phe Met Asp Ile Ala Met Leu Val Glu Asn 210
215 220Gln Gly Glu Met Leu Asp Asn Ile Glu Leu Asn Val
Met His Thr Val225 230 235
240Asp His Val Glu Lys Ala Arg Asp Glu Thr Lys Arg Ala Met Lys Tyr
245 250 255Gln Gly Gln Ala Arg
Lys Lys Leu Ile Ile Ile Ile Val Val Val Val 260
265 270Val Leu Leu Gly Ile Leu Ala Leu Ile Ile Gly Leu
Ser Val Gly Leu 275 280 285Lys
92283PRTMus musculus Syntaxin-3B (Mouse) 92Met Lys Asp Arg Leu Glu Gln
Leu Lys Ala Lys Gln Leu Thr Gln Asp1 5 10
15Asp Asp Thr Asp Glu Val Glu Ile Ala Ile Asp Asn Thr
Ala Phe Met 20 25 30Asp Glu
Phe Phe Ser Glu Ile Glu Glu Thr Arg Leu Asn Ile Asp Lys 35
40 45Ile Ser Glu His Val Glu Glu Ala Lys Lys
Leu Tyr Ser Ile Ile Leu 50 55 60Ser
Ala Pro Ile Pro Glu Pro Lys Thr Lys Asp Asp Leu Glu Gln Leu65
70 75 80Thr Thr Glu Ile Lys Lys
Arg Ala Asn Asn Val Arg Asn Lys Leu Lys 85
90 95Ser Met Glu Lys His Ile Glu Glu Asp Glu Val Arg
Ser Ser Ala Asp 100 105 110Leu
Arg Ile Arg Lys Ser Gln His Ser Val Leu Ser Arg Lys Phe Val 115
120 125Glu Val Met Thr Lys Tyr Asn Glu Ala
Gln Val Asp Phe Arg Glu Arg 130 135
140Ser Lys Gly Arg Ile Gln Arg Gln Leu Glu Ile Thr Gly Lys Lys Thr145
150 155 160Thr Asp Glu Glu
Leu Glu Glu Met Leu Glu Ser Gly Asn Pro Ala Ile 165
170 175Phe Thr Ser Gly Ile Ile Asp Ser Gln Ile
Ser Lys Gln Ala Leu Ser 180 185
190Glu Ile Glu Gly Arg His Lys Asp Ile Val Arg Leu Glu Ser Ser Ile
195 200 205Lys Glu Leu His Asp Met Phe
Met Asp Ile Ala Met Leu Val Glu Asn 210 215
220Gln Gly Ala Met Ile Asp Arg Ile Glu Asn Asn Met Asp Gln Ser
Val225 230 235 240Gly Phe
Val Glu Arg Ala Val Ala Asp Thr Lys Lys Ala Val Lys Tyr
245 250 255Gln Ser Glu Ala Arg Arg Lys
Lys Ile Met Ile Met Ile Cys Cys Ile 260 265
270Ile Leu Ala Ile Ile Leu Ala Ser Thr Ile Gly 275
28093269PRTMus musculus Syntaxin-3C (Mouse) 93Met Lys Asp
Arg Leu Glu Gln Leu Lys Ala Lys Gln Leu Thr Gln Asp1 5
10 15Asp Asp Thr Asp Glu Val Glu Ile Ala
Ile Asp Asn Thr Ala Phe Met 20 25
30Asp Glu Phe Phe Ser Glu Asn Phe His Gly Ile Leu Ser Tyr Leu Leu
35 40 45Arg Leu Ser Ser His Glu Thr
Lys Asp Asp Leu Glu Gln Leu Thr Thr 50 55
60Glu Ile Lys Lys Arg Ala Asn Asn Val Arg Asn Lys Leu Lys Ser Met65
70 75 80Glu Lys His Ile
Glu Glu Asp Glu Val Arg Ser Ser Ala Asp Leu Arg 85
90 95Ile Arg Lys Ser Gln His Ser Val Leu Ser
Arg Lys Phe Val Glu Val 100 105
110Met Thr Lys Tyr Asn Glu Ala Gln Val Asp Phe Arg Glu Arg Ser Lys
115 120 125Gly Arg Ile Gln Arg Gln Leu
Glu Ile Thr Gly Lys Lys Thr Thr Asp 130 135
140Glu Glu Leu Glu Glu Met Leu Glu Ser Gly Asn Pro Ala Ile Phe
Thr145 150 155 160Ser Gly
Ile Ile Asp Ser Gln Ile Ser Lys Gln Ala Leu Ser Glu Ile
165 170 175Glu Gly Arg His Lys Asp Ile
Val Arg Leu Glu Ser Ser Ile Lys Glu 180 185
190Leu His Asp Met Phe Met Asp Ile Ala Met Leu Val Glu Asn
Gln Gly 195 200 205Ala Met Ile Asp
Arg Ile Glu Asn Asn Met Asp Gln Ser Val Gly Phe 210
215 220Val Glu Arg Ala Val Ala Asp Thr Lys Lys Ala Val
Lys Tyr Gln Ser225 230 235
240Glu Ala Arg Arg Lys Lys Ile Met Ile Met Ile Cys Cys Ile Ile Leu
245 250 255Ala Ile Ile Leu Ala
Ser Thr Ile Gly Gly Ile Phe Ala 260
26594282PRTGallus gallus Syntaxin-1B (Chicken) 94Met Lys Asp Arg Thr Gln
Glu Leu Arg His Ala Lys Asp Ser Asp Asp1 5
10 15Glu Glu Glu Val Val His Val Asp Arg Asn His Phe
Met Asp Glu Phe 20 25 30Phe
Glu Gln Val Glu Glu Ile Arg Gly Cys Ile Glu Lys Leu Phe Glu 35
40 45Asp Val Glu Gln Val Lys Lys Gln His
Ser Ala Ile Leu Ala Ala Pro 50 55
60Asn Pro Asp Glu Arg Thr Lys Gln Glu Leu Glu Asp Leu Thr Ala Asp65
70 75 80Ile Lys Lys Thr Ala
Asn Lys Val Arg Ser Lys Leu Lys Ala Ile Glu 85
90 95Gln Ser Ile Ala Asp Glu Glu Gly Leu Asn Arg
Ser Ser Ala Asp Leu 100 105
110Arg Ile Arg Lys Thr His Val Arg Glu Val Met Thr Glu Tyr Asn Ala
115 120 125Thr Gln Ser Lys Tyr Arg Asp
Arg Cys Lys Asp Arg Ile Gln Arg Leu 130 135
140Leu Glu Ile Thr Gly Arg Thr Thr Thr Asn Glu Glu Leu Glu Asp
Met145 150 155 160Leu Glu
Ser Gly Lys Leu Ala Val Phe Asn Asp Asp Ile Lys Ile Asp
165 170 175Ser Gln Met Thr Lys Gln Ala
Leu Asn Glu Ile Glu Thr Arg His Asn 180 185
190Glu Ile Ile Tyr Leu Glu Thr Ser Ile Arg Glu Leu His Asp
Met Phe 195 200 205Val Asp Met Ala
Met Leu Val Glu Ser His Gly Glu Ser Ile Arg Pro 210
215 220Ala Ser Ser Thr Thr Cys Val His Thr Val Asp Tyr
Val Glu Pro Val225 230 235
240Val Phe Val Thr Lys Ser Ala Val Met Tyr Gln Cys Lys Ser Arg Arg
245 250 255Lys Lys Ile Met Ile
Ile Ile Phe Val Val Val Leu Gly Val Val Leu 260
265 270Ser Pro Val Ile Cys Gly Thr Leu Gly Leu
275 28095288PRTGallus gallus Syntaxin-2 (Chicken) 95Met
Lys Asp Arg Leu Ala Asp Leu Ala Glu Cys Lys Gly Asn Glu Asp1
5 10 15Gly Glu Thr Val Ile Val Glu
Lys Asp His Phe Met Asp Asp Phe Phe 20 25
30Gln Gln Val Glu Glu Ile Arg Asn Asn Ile Thr Lys Ile Ala
Gln Asn 35 40 45Val Glu Glu Val
Lys Lys Gln His Ser Ile Ile Leu Ser Ala Pro Asn 50 55
60Pro Glu Gly Arg Thr Lys Glu Glu Leu Glu Glu Leu Asn
Glu Glu Ile65 70 75
80Lys Lys Thr Ala Asn Lys Ile Arg Ala Arg Leu Lys Ala Ile Glu Gln
85 90 95Ser Val Asp Gln Ser Glu
Asn Ala Asn Arg Thr Ser Val Asn Val Arg 100
105 110Ile Arg Lys Thr Gln His Ser Val Leu Ala His Lys
Phe Val Glu Val 115 120 125Met Thr
Glu Tyr Asn Glu Thr Gln Thr Leu Phe Arg Glu Arg Ser Lys 130
135 140Gly Arg Ile Gln Arg Gln Leu Glu Ile Thr Gly
Lys Thr Thr Thr Asp145 150 155
160Glu Glu Leu Glu Glu Met Leu Glu Ser Gly Asn Pro Ser Ile Phe Thr
165 170 175Ser Asp Ile Ile
Ser Asp Ser Gln Ile Thr Arg Gln Ala Leu Asn Glu 180
185 190Ile Glu Ser Arg His Lys Asp Ile Met Lys Leu
Glu Ser Ser Ile Arg 195 200 205Glu
Leu His Glu Met Phe Met Asp Met Ala Met Phe Val Glu Thr Gln 210
215 220Gly Glu Met Ile Asn Asn Ile Glu Lys Asn
Val Met Asn Ala Thr Asp225 230 235
240Tyr Val Glu His Ala Lys Glu Glu Thr Lys Lys Ala Val Lys Tyr
Gln 245 250 255Ser Lys Ala
Arg Arg Lys Met Trp Ile Ile Ile Ile Val Ser Leu Val 260
265 270Leu Ile Ala Val Ile Gly Ile Ile Ile Gly
Leu Ser Val Gly Ile Arg 275 280
28596288PRTDanio rerio Syntaxin-1B (Zebrafish) 96Met Lys Asp Arg Thr Gln
Glu Leu Arg Ser Ala Lys Asp Ser Asp Asp1 5
10 15Asp Glu Glu Val Val His Val Asp Arg Asp His Phe
Met Asp Glu Phe 20 25 30Phe
Glu Gln Val Glu Glu Ile Arg Gly Cys Ile Glu Lys Leu Ser Glu 35
40 45Asp Val Glu Gln Val Lys Lys Gln His
Ser Ala Ile Leu Ala Ala Pro 50 55
60Asn Pro Asp Glu Lys Thr Lys Gln Glu Leu Glu Asp Leu Thr Ala Asp65
70 75 80Ile Lys Lys Thr Ala
Asn Lys Val Arg Ser Lys Leu Lys Ala Ile Glu 85
90 95Gln Ser Ile Glu Gln Glu Glu Gly Leu Asn Arg
Ser Ser Ala Asp Leu 100 105
110Arg Ile Arg Lys Thr Gln His Ser Thr Leu Ser Arg Lys Phe Val Glu
115 120 125Val Met Thr Glu Tyr Asn Thr
Thr Gln Ser Lys Tyr Arg Asp Arg Cys 130 135
140Lys Asp Arg Ile Gln Arg Gln Leu Glu Ile Thr Gly Arg Thr Thr
Thr145 150 155 160Asn Glu
Glu Leu Glu Asp Met Leu Glu Ser Gly Lys Leu Ala Ile Phe
165 170 175Thr Asp Asp Ile Lys Met Asp
Ser Gln Met Thr Lys Gln Ala Leu Asn 180 185
190Glu Ile Glu Thr Arg His Thr Glu Ile Ile Lys Leu Glu Asn
Ser Ile 195 200 205Arg Glu Leu His
Asp Met Phe Val Asp Met Ala Met Leu Val Glu Ser 210
215 220Gln Gly Glu Met Ile Asp Arg Ile Glu Tyr Asn Val
Glu His Ser Val225 230 235
240Asp Tyr Val Glu Arg Ala Val Ser Asp Thr Lys Lys Ala Val Lys Tyr
245 250 255Gln Ser Gln Ala Arg
Lys Lys Lys Ile Met Ile Ile Ile Cys Cys Val 260
265 270Ile Leu Gly Val Val Leu Arg Ser Ser Ile Gly Gly
Thr Leu Gly Phe 275 280
28597288PRTDanio rerio Syntaxin-3 (Zebrafish) 97Met Lys Asp Arg Leu Glu
Gln Leu Lys Ala Thr Cys Asp His Asp Asp1 5
10 15Glu Asp Val Glu Ile Ala Val Asp Asn Ala Ala Phe
Met Asp Glu Phe 20 25 30Phe
Ser Gln Ile Glu Asp Ile Arg Asn Ser Ile Asp Lys Ile Asp Glu 35
40 45Asn Val Ala Glu Val Lys Lys Leu Tyr
Ser Val Ile Leu Ser Ala Pro 50 55
60Thr Ser Asp Gln Lys Thr Gln Asp Asp Leu Glu Ala Leu Thr Asn Asp65
70 75 80Ile Lys Lys Met Ala
Asn Asn Ala Arg Asn Lys Leu Lys Thr Ile Glu 85
90 95Arg Asn Leu Glu Thr Glu Glu Val Glu Arg Val
Ser Ala Asp Met Arg 100 105
110Ile Arg Lys Ser Gln His Ala Val Leu Ser Arg Lys Phe Val Asp Val
115 120 125Met Thr Lys Tyr Asn Glu Ala
Gln Val Asp Phe Arg Glu Lys Ser Lys 130 135
140Gly Arg Ile Gln Arg Gln Leu Glu Ile Thr Gly Lys Ala Thr Thr
Asp145 150 155 160Glu Glu
Leu Glu Glu Met Leu Glu Gly Gly Asn Ala Ala Val Phe Thr
165 170 175Ala Gly Ile Val Asp Ser Gly
Ile Ser Lys Gln Ala Leu Ser Glu Ile 180 185
190Glu Ala Arg His Lys Asp Ile Val Arg Leu Glu Ser Ser Ile
Lys Glu 195 200 205Leu His Asp Met
Phe Val Asp Ile Ala Met Leu Val Glu Ser Gln Gly 210
215 220Asn Met Val Asp Asn Ile Glu Val Asn Val Gly Lys
Ala Val Asp His225 230 235
240Val Glu Ala Ala Arg Asp Glu Thr Lys Lys Ala Val Arg Tyr Gln Ser
245 250 255Lys Ala Arg Lys Lys
Ile Ile Ile Ile Val Ser Val Val Leu Val Ile 260
265 270Leu Ala Ile Ile Ala Leu Ile Val Gly Leu Ser Val
Gly Leu Lys Arg 275 280
28598286PRTStrongylocentrotus purpuratus Syntaxin-1B (urchin) 98Met Arg
Asp Arg Leu Gly Ser Leu Lys Arg Asn Glu Glu Asp Asp Val1 5
10 15Gly Gln Ser Arg Gly His Val Glu
Ser Glu Lys Phe Met Glu Glu Phe 20 25
30Phe Glu Gln Val Glu Glu Val Arg Asn Asn Ile Asp Lys Ile Ser
Lys 35 40 45Asn Val Asp Glu Val
Lys Lys Lys His Ser Asp Ile Leu Ser Ala Pro 50 55
60Gln Ala Asp Glu Lys Val Lys Asp Glu Leu Glu Glu Leu Met
Ser Asp65 70 75 80Ile
Lys Lys Thr Ala Asn Lys Val Arg Val Lys Leu Lys Met Met Tyr
85 90 95Glu Ser Ile Glu Arg Arg Arg
Val Leu Arg Arg Thr Gln Thr Asp Val 100 105
110Arg Ile Arg Lys Thr Gln His Ser Thr Leu Ser Arg Lys Phe
Val Glu 115 120 125Val Met Thr Asp
Tyr Asn Ser Thr Gln Thr Asp Tyr Arg Glu Arg Cys 130
135 140Lys Gly Arg Ile Gln Arg Gln Leu Glu Ile Thr Gly
Lys Ser Thr Thr145 150 155
160Asp Ala Glu Leu Glu Asp Met Leu Glu Ser Gly Asn Pro Ala Ile Phe
165 170 175Thr Ser Gly Ile Ile
Met Asp Thr Gln Gln Ala Lys Gln Thr Leu Arg 180
185 190Asp Ile Glu Ala Arg His Asn Asp Ile Ile Lys Leu
Glu Ser Ser Ile 195 200 205Arg Glu
Leu His Asp Met Phe Met Asp Met Ala Met Leu Val Glu Ser 210
215 220Gln Gly Glu Met Ile Asp Arg Ile Glu Tyr Asn
Val Glu Gln Ser Val225 230 235
240Asp Tyr Val Arg Arg Gln Asn Asp Thr Lys Lys Ala Val Lys Tyr Gln
245 250 255Ser Lys Ala Arg
Arg Lys Lys Phe Tyr Ile Ala Ile Cys Cys Gly Val 260
265 270Ala Leu Gly Ile Leu Ile Leu Val Leu Ile Ile
Val Leu Ala 275 280
28599291PRTDrosophila melanogaster Syntaxin-1A (Fruit fly) 99Met Thr Lys
Asp Arg Leu Ala Ala Leu His Ala Ala Gln Ser Asp Asp1 5
10 15Glu Glu Glu Thr Glu Val Ala Val Asn
Val Asp Gly His Asp Ser Tyr 20 25
30Met Asp Asp Phe Phe Ala Gln Val Glu Glu Ile Arg Gly Met Ile Asp
35 40 45Lys Val Gln Asp Asn Val Glu
Glu Val Lys Lys Lys His Ser Ala Ile 50 55
60Leu Ser Ala Pro Gln Thr Asp Glu Lys Thr Lys Gln Glu Leu Glu Asp65
70 75 80Leu Met Ala Asp
Ile Lys Lys Asn Ala Asn Arg Val Arg Gly Lys Leu 85
90 95Lys Gly Ile Glu Gln Asn Ile Glu Gln Glu
Glu Gln Gln Asn Lys Ser 100 105
110Ser Ala Asp Leu Arg Ile Arg Lys Thr Gln His Ser Thr Leu Ser Arg
115 120 125Lys Phe Val Glu Val Met Thr
Glu Tyr Asn Arg Thr Gln Thr Asp Tyr 130 135
140Arg Glu Arg Cys Lys Gly Arg Ile Gln Arg Gln Leu Glu Ile Thr
Gly145 150 155 160Arg Pro
Thr Asn Asp Asp Glu Leu Glu Lys Met Leu Glu Glu Gly Asn
165 170 175Ser Ser Val Phe Thr Gln Gly
Ile Ile Met Glu Thr Gln Gln Ala Lys 180 185
190Gln Thr Leu Ala Asp Ile Glu Ala Arg His Gln Asp Ile Met
Lys Leu 195 200 205Glu Thr Ser Ile
Lys Glu Leu His Asp Met Phe Met Asp Met Ala Met 210
215 220Leu Val Glu Ser Gln Gly Glu Met Ile Asp Arg Ile
Glu Tyr His Val225 230 235
240Glu His Ala Met Asp Tyr Val Gln Thr Ala Thr Gln Asp Thr Lys Lys
245 250 255Ala Leu Lys Tyr Gln
Ser Lys Ala Arg Arg Lys Lys Ile Met Ile Leu 260
265 270Ile Cys Leu Thr Val Leu Gly Ile Leu Ala Ala Ser
Tyr Val Ser Ser 275 280 285Tyr Phe
Met 290100295PRTHirudo medicinalis Syntaxin-1A (Leech) 100Met Thr Lys
Asp Arg Leu Ala Ala Leu Lys Ala Ala Gln Ser Asp Asp1 5
10 15Asp Asp Glu Pro Gly Glu His Met Pro
Met Thr Met Asn Val Asp Gly 20 25
30Gly Lys Phe Met Glu Glu Phe Phe Glu Gln Val Asn Glu Ile Arg Glu
35 40 45Met Ile Asp Lys Ile Ala Val
Asp Val Asp Glu Val Lys Lys Lys His 50 55
60Ser Ala Ile Leu Ser Ala Pro Gln Thr Asp Asp Lys Thr Lys Glu Glu65
70 75 80Leu Glu Asp Leu
Met Ala Glu Ile Lys Lys Thr Ala Asn Lys Val Arg 85
90 95Gly Lys Leu Lys Val Leu Glu Gln Lys Ile
Glu Gln Glu Glu Glu Thr 100 105
110Asn Lys Ser Ser Ala Asp Leu Arg Ile Arg Lys Thr Gln His Ser Thr
115 120 125Ile Leu Arg Lys Phe Ile Glu
Val Met Asn Gln Tyr Asn Ala Ala Gln 130 135
140Val Asp Tyr Arg Asp Gly Cys Lys Lys Arg Leu Gln Arg Gln Met
Glu145 150 155 160Ile Thr
Gly Arg Ala Thr Thr Asn Glu Glu Leu Glu Asp Met Leu Glu
165 170 175Ser Gly Asn Pro Ala Ile Phe
Thr Gln Gly Ile Ile Thr Asp Thr Gln 180 185
190Gln Ala Lys Gln Ser Leu Met Asp Ile Glu Ala Arg His Asn
Asp Ile 195 200 205Met Lys Leu Glu
Gln Ser Ile Lys Glu Leu His Asp Met Phe Met Asp 210
215 220Met Ala Met Leu Val Glu Ser Gln Gly Glu Met Ile
Asp Arg Ile Glu225 230 235
240His Asn Val Glu Lys Ala Val Asp Tyr Val Glu Thr Ala Ala Ala Asp
245 250 255Thr Lys Lys Ala Met
Lys Tyr Gln Ser Ala Ala Arg Lys Lys Lys Ile 260
265 270Ile Ile Leu Ile Cys Val Ser Val Leu Ile Leu Ile
Val Gly Gly Ser 275 280 285Leu Leu
Gly Ile Phe Ile Pro 290 295101292PRTLoligo pealei
Syntaxin-1A (Longfin squid) 101Met Thr Lys Asp Arg Leu Ala Ala Leu Lys
Ala Ala Val Ser Asp Glu1 5 10
15Glu Asp Val Glu Glu Val Ala Val Gln Val Asp Ser Gly Gly Gly Phe
20 25 30Met Glu Glu Phe Phe Glu
Gln Val Glu Glu Ile Arg Ala Met Ile Asp 35 40
45Lys Ile Ser Asp Asn Val Asp Ala Val Lys Lys Lys His Ser
Asp Ile 50 55 60Leu Ser Ala Pro Gln
Thr Asp Asp Gln Met Lys Glu Glu Leu Glu Glu65 70
75 80Leu Met Thr Asp Ile Lys Arg Thr Ala Asn
Lys Val Arg Gly Lys Leu 85 90
95Lys Thr Ile Glu Leu Asn Ile Glu Gln Glu Glu His Ser Asn Lys Ser
100 105 110Ser Ala Asp Leu Arg
Ile Arg Lys Thr Gln Tyr Ser Thr Ile Ser Arg 115
120 125Lys Phe Val Glu Val Met Ser Asp Tyr Asn Thr Thr
Gln Ile Asp Tyr 130 135 140Arg Asp Arg
Cys Lys Ala Arg Ile Lys Arg Gln Met Glu Ile Thr Gly145
150 155 160Arg Thr Thr Thr Asn Glu Glu
Leu Glu Asp Met Leu Glu Ser Gly Asn 165
170 175Pro Ala Ile Phe Thr Gln Gly Ile Ile Met Glu Thr
Gln Gln Ala Lys 180 185 190Gln
Thr Leu Ala Asp Ile Glu Ala Arg His Ala Asp Ile Met Lys Leu 195
200 205Glu Thr Ser Ile Arg Glu Leu His Asp
Met Phe Met Asp Met Ala Met 210 215
220Leu Val Glu Ser Gln Gly Glu Met Ile Asp Arg Ile Glu Tyr Asn Val225
230 235 240Glu Ala Ala Val
Asp Tyr Ile Glu Thr Ala Lys Val Asp Thr Lys Lys 245
250 255Ala Val Lys Tyr Gln Ser Lys Ala Arg Gln
Lys Lys Ile Ala Ile Leu 260 265
270Val Cys Leu Val Ile Leu Val Leu Val Ile Val Ser Thr Val Gly Gly
275 280 285Val Phe Gly Gly
290102290PRTLymnaea stagnalis Syntaxin-1A (Great pond snail) 102Met Thr
Lys Asp Arg Leu Ala Ala Leu Lys Ala Ala Gln Ser Asp Asp1 5
10 15Asp Glu Asn Asp Asp Val Ala Val
Thr Val Asp Ser Ser Gly Phe Met 20 25
30Glu Glu Phe Phe Glu Gln Val Asp Glu Ile Arg Glu Met Ile Asp
Lys 35 40 45Ile Ala Ser Asn Val
Asp Glu Val Lys Lys Lys His Ser Ala Ile Leu 50 55
60Ser Ala Pro Gln Thr Asp Asp Lys Met Lys Glu Glu Leu Glu
Glu Leu65 70 75 80Met
Ser Glu Ile Lys Lys Asn Ala Asn Lys Val Arg Ala Lys Leu Lys
85 90 95Val Ile Glu Gln Asn Ile Glu
Gln Glu Glu His Thr Asn Lys Ser Ser 100 105
110Ala Asp Leu Arg Ile Arg Lys Thr Gln His Ala Thr Leu Ser
Arg Lys 115 120 125Phe Val Glu Val
Met Asn Asp Tyr Asn Ala Cys Gln Ile Asp Tyr Arg 130
135 140Glu Arg Cys Lys Gly Arg Ile Lys Arg Gln Leu Ala
Ile Thr Gly Lys145 150 155
160Thr Thr Thr Asn Glu Glu Leu Glu Asp Met Ile Glu Ser Gly Asn Pro
165 170 175Ala Ile Phe Thr Gln
Gly Ile Ile Met Glu Thr Gln Gln Ala Lys Gln 180
185 190Thr Leu Ala Asp Ile Glu Ala Arg His Asn Asp Ile
Met Lys Leu Glu 195 200 205Thr Ser
Ile Arg Asp Leu His Asp Met Phe Met Asp Met Ala Met Leu 210
215 220Val Glu Ser Gln Gly Glu Met Ile Asp Arg Ile
Glu Tyr Asn Val Glu225 230 235
240Gln Ala Val Asp Tyr Ile Glu Thr Ala Lys Met Asp Thr Lys Lys Ala
245 250 255Val Lys Tyr Gln
Ser Lys Ala Arg Arg Lys Lys Ile Met Ile Ile Ile 260
265 270Cys Val Cys Val Leu Ile Ile Ile Leu Val Gly
Ile Leu Gly Gly Thr 275 280 285Phe
Gly 290103290PRTAplysia californica Syntaxin-1A (sea hare) 103Met Thr
Lys Asp Arg Leu Ala Ala Leu Lys Ala Ala Gln Ser Asp Asp1 5
10 15Asp Asp Asn Asp Asp Val Ala Val
Thr Val Asp Ser Ser Gly Phe Met 20 25
30Glu Glu Phe Phe Glu Gln Val Asp Glu Ile Arg Glu Met Ile Asp
Lys 35 40 45Ile Ala Ser Asn Val
Asp Glu Val Lys Lys Lys His Ser Ala Ile Leu 50 55
60Ser Ala Pro Gln Thr Asp Asp Lys Met Lys Glu Glu Leu Glu
Glu Leu65 70 75 80Met
Ser Glu Ile Lys Lys Asn Ala Asn Lys Val Arg Ala Lys Leu Lys
85 90 95Val Ile Glu Gln Asn Ile Glu
Gln Glu Glu His Thr Asn Lys Ser Ser 100 105
110Ala Asp Leu Arg Ile Arg Lys Thr Gln His Ala Thr Leu Ser
Arg Lys 115 120 125Phe Val Glu Val
Met Asn Asp Tyr Asn Ala Cys Gln Ile Asp Tyr Arg 130
135 140Glu Arg Cys Lys Gly Arg Ile Lys Arg Gln Leu Ala
Ile Thr Gly Lys145 150 155
160Thr Thr Thr Asn Glu Glu Leu Glu Asp Met Ile Glu Ser Gly Asn Pro
165 170 175Ala Ile Phe Thr Gln
Gly Ile Ile Met Glu Thr Gln Gln Ala Asn Glu 180
185 190Thr Leu Ala Asp Ile Glu Ala Arg His Asn Asp Ile
Met Lys Leu Glu 195 200 205Thr Ser
Ile Arg Asp Leu His Asp Met Phe Met Asp Met Ala Met Leu 210
215 220Val Glu Ser Gln Gly Glu Met Ile Asp Arg Ile
Glu Tyr Asn Val Glu225 230 235
240Gln Ala Val Asp Tyr Ile Glu Thr Ala Lys Met Asp Thr Lys Lys Ala
245 250 255Val Lys Tyr Gln
Ser Lys Ala Arg Arg Lys Lys Ile Met Ile Leu Val 260
265 270Cys Leu Ala Ile Leu Ile Ile Ile Leu Val Gly
Val Ile Gly Gly Thr 275 280 285Leu
Gly 2901048PRTArtificial SequencePEPTIDE(1)...(8)Peptide comprising a
BoNT/A subtrate cleavage site. 104Glu Ala Asn Gln Arg Ala Thr Lys1
51058PRTArtificial SequencePEPTIDE(1)...(8)Peptide comprising
a BoNT/A substrate cleavage site. 105Glu Ala Asn Lys His Ala Thr
Lys1 51068PRTArtificial SequencePEPTIDE(1)...(8)Peptide
comprising a BoNT/A substrate cleavage site. 106Glu Ala Asn Lys His
Ala Asn Lys1 51078PRTArtificial
SequencePEPTIDE(1)...(8)Peptide comprising a BoNT/B substrate cleavage
site and a TeNT substrate cleavage site. 107Gly Ala Ser Gln Phe Glu Thr
Ser1 51088PRTArtificial SequencePEPTIDE(1)...(8)Peptide
comprising a BoNT/B substrate cleavage site and a TeNT substrate
cleavage site. 108Gly Ala Ser Gln Phe Glu Ser Ser1
51098PRTArtificial SequencePEPTIDE(1)...(8)Peptide comprising a BoNT/B
substrate cleavage site and a TeNT substrate cleavage site. 109Gly
Ala Ser Gln Phe Glu Thr Asn1 51108PRTArtificial
SequencePEPTIDE(1)...(8)Peptide comprising a BoNT/B substrate cleavage
site and a TeNT substrate cleavage site. 110Gly Ala Ser Gln Phe Glu Gln
Gln1 51118PRTArtificial SequencePEPTIDE(1)...(8)Peptide
comprising a BoNT/B substrate cleavage site and a TeNT substrate
cleavage site. 111Gly Ala Ser Gln Phe Glu Ala Ser1
51128PRTArtificial SequencePEPTIDE(1)...(8)Peptide comprising a BoNT/B
substrate cleavage site and a TeNT substrate cleavage site. 112Gly
Ala Ser Gln Phe Gln Gln Ser1 51138PRTArtificial
SequencePEPTIDE(1)...(8)Peptide comprising a BoNT/C1 substrate cleavage
site. 113Asp Thr Lys Lys Ala Val Lys Tyr1
51148PRTArtificial SequencePEPTIDE(1)...(8)Peptide comprising a BoNT/C1
substrate cleavage site. 114Glu Thr Lys Lys Ala Ile Lys Tyr1
51158PRTArtificial SequencePEPTIDE(1)...(8)Peptide comprising a
BoNT/C1 substrate cleavage site. 115Glu Ser Lys Lys Ala Val Lys Tyr1
51168PRTArtificial SequencePEPTIDE(1)...(8)Peptide
comprising a BoNT/C1 substrate cleavage site. 116Glu Thr Lys Arg Ala
Met Lys Tyr1 51178PRTArtificial
SequencePEPTIDE(1)...(8)Peptide comprising a BoNT/C1 substrate cleavage
site. 117Glu Thr Lys Lys Ala Val Lys Tyr1
51188PRTArtificial SequencePEPTIDE(1)...(8)Peptide comprising a BoNT/C1
substrate cleavage site. 118Asp Thr Lys Lys Ala Leu Lys Tyr1
51198PRTArtificial SequencePEPTIDE(1)...(8)Peptide comprising a
BoNT/C1 substrate cleavage site. 119Asp Thr Lys Lys Ala Met Lys Tyr1
51208PRTArtificial SequencePEPTIDE(0)...(0)Peptide
comprising a BoNT/C1 substrate cleavage site. 120Ala Asn Gln Arg Ala
Thr Lys Met1 51218PRTArtificial
SequencePEPTIDE(1)...(8)Peptide comprising a BoNT/C1 substrate cleavage
site. 121Ala Asn Gln Arg Ala His Gln Leu1
51228PRTArtificial SequencePEPTIDE(1)...(8)Peptide comprising a BoNT/D
substrate cleavage site. 122Arg Asp Gln Lys Leu Ser Glu Leu1
51238PRTArtificial SequencePEPTIDE(1)...(8)Peptide comprising a
BoNT/D substrate cleavage site. 123Lys Asp Gln Lys Leu Ala Glu Leu1
51248PRTArtificial SequencePEPTIDE(1)...(8)Peptide
comprising a BoNT/E substrate cleavage site. 124Gln Ile Asp Arg Ile
Met Glu Lys1 51258PRTArtificial
SequencePEPTIDE(1)...(8)Peptide comprising a BoNT/E substrate cleavage
site. 125Gln Ile Gln Lys Ile Thr Glu Lys1
51268PRTArtificial SequencePEPTIDE(1)...(8)Peptide comprising a BoNT/E
substrate cleavage site. 126Gln Ile Asp Arg Ile Met Asp Met1
51278PRTArtificial SequencePEPTIDE(1)...(8)Peptide comprising a
BoNT/E substrate cleavage site. 127Gln Val Asp Arg Ile Gln Gln Lys1
51288PRTArtificial SequencePEPTIDE(1)...(8)Peptide
comprising a BoNT/E substrate cleavage site. 128Gln Leu Asp Arg Ile
His Asp Lys1 51298PRTArtificial
SequencePEPTIDE(1)...(8)Peptide comprising a BoNT/F substrate cleavage
site. 129Glu Arg Asp Gln Lys Leu Ser Glu1
51308PRTArtificial SequencePEPTIDE(1)...(8)Peptide comprising a BoNT/F
substrate cleavage site. 130Glu Lys Asp Gln Lys Leu Ala Glu1
51318PRTArtificial SequencePEPTIDE(1)...(8)Peptide comprising a
BoNT/G substrate cleavage site. 131Glu Thr Ser Ala Ala Lys Leu Lys1
51328PRTArtificial SequencePEPTIDE(1)...(8)Peptide
comprising a BoNT/G substrate cleavage site. 132Glu Ser Ser Ala Ala
Lys Leu Lys1 513313PRTArtificial
SequencePEPTIDE(1)...(13)Peptide comprising a BoNT/A substrate cleavage
site. 133Thr Arg Ile Asp Glu Ala Asn Gln Arg Ala Thr Lys Met1
5 1013415PRTArtificial
SequencePEPTIDE(1)...(15)Peptide comprising a BoNT/A substrate cleavage
site. 134Ser Asn Lys Thr Arg Ile Asp Glu Ala Asn Gln Arg Ala Thr Lys1
5 10 1513516PRTArtificial
SequencePEPTIDE(1)...(16)Peptide comprising a BoNT/A substrate cleavage
site. 135Ser Asn Lys Thr Arg Ile Asp Glu Ala Asn Gln Arg Ala Thr Lys
Met1 5 10
1513617PRTArtificial SequencePEPTIDE(1)...(17)Peptide comprising a BoNT/A
substrate cleavage site. 136Ser Asn Lys Thr Arg Ile Asp Glu Ala Asn
Gln Arg Ala Thr Lys Met1 5 10
15Leu13717PRTArtificial SequencePEPTIDE(1)...(17)Peptide comprising
a BoNT/A substrate cleavage site, M16A variant. 137Ser Asn Lys Thr
Arg Ile Asp Glu Ala Asn Gln Arg Ala Thr Lys Ala1 5
10 15Leu13817PRTArtificial
SequencePEPTIDE(1)...(17)Peptide comprising a BoNT/A substrate cleavage
site, M16X variant. 138Ser Asn Lys Thr Arg Ile Asp Glu Ala Asn Gln Arg
Ala Thr Lys Xaa1 5 10
15Leu13917PRTArtificial SequencePEPTIDE(1)...(17)Peptide comprising a
BoNT/A substrate cleavage site, K15A variant. 139Ser Asn Lys Thr Arg
Ile Asp Glu Ala Asn Gln Arg Ala Thr Ala Met1 5
10 15Leu14017PRTArtificial
SequencePEPTIDE(1)...(17)Peptide comprising a BoNT/A substrate cleavage
site, T14S variant. 140Ser Asn Lys Thr Arg Ile Asp Glu Ala Asn Gln Arg
Ala Ser Lys Met1 5 10
15Leu14117PRTArtificial SequencePEPTIDE(1)...(17)Peptide comprising a
BoNT/A substrate cleavage site, T14B variant. 141Ser Asn Lys Thr Arg
Ile Asp Glu Ala Asn Gln Arg Ala Xaa Lys Met1 5
10 15Leu14217PRTArtificial
SequencePEPTIDE(1)...(17)Peptide comprising a BoNT/A substrate cleavage
site, A13B variant. 142Ser Asn Lys Thr Arg Ile Asp Glu Ala Asn Gln Arg
Xaa Thr Lys Met1 5 10
15Leu14317PRTArtificial SequencePEPTIDE(1)...(17)Peptide comprising a
BoNT/A substrate cleavage site, Q11A variant. 143Ser Asn Lys Thr Arg
Ile Asp Glu Ala Asn Ala Arg Ala Thr Lys Met1 5
10 15Leu14417PRTArtificial
SequencePEPTIDE(1)...(17)Peptide comprising a BoNT/A substrate cleavage
site, Q11B variant. 144Ser Asn Lys Thr Arg Ile Asp Glu Ala Asn Xaa Arg
Ala Thr Lys Met1 5 10
15Leu14517PRTArtificial SequencePEPTIDE(1)...(17)Peptide comprising a
BoNT/A substrate cleavage site, Q11N variant. 145Ser Asn Lys Thr Arg
Ile Asp Glu Ala Asn Asn Arg Ala Thr Lys Met1 5
10 15Leu14617PRTArtificial
SequencePEPTIDE(1)...(17)Peptide comprising a BoNT/A substrate cleavage
site, N10A variant. 146Ser Asn Lys Thr Arg Ile Asp Glu Ala Ala Gln Arg
Ala Thr Lys Met1 5 10
15Leu14717PRTArtificial SequencePEPTIDE(1)...(17)Peptide comprising a
BoNT/A substrate cleavage site, A9B variant. 147Ser Asn Lys Thr Arg
Ile Asp Glu Xaa Asn Gln Arg Ala Thr Lys Met1 5
10 15Leu14817PRTArtificial
SequencePEPTIDE(1)...(17)Peptide comprising a BoNT/A substrate cleavage
site, E8Q variant. 148Ser Asn Lys Thr Arg Ile Asp Gln Ala Asn Gln Arg
Ala Thr Lys Met1 5 10
15Leu14917PRTArtificial SequencePEPTIDE(1)...(17)Peptide comprising a
BoNT/A substrate cleavage site, D7N variant. 149Ser Asn Lys Thr Arg
Ile Asn Glu Ala Asn Gln Arg Ala Thr Lys Met1 5
10 15Leu15017PRTArtificial
SequencePEPTIDE(1)...(17)Peptide comprising a BoNT/A substrate cleavage
site. 150Asp Ser Asn Lys Thr Arg Ile Asp Glu Ala Asn Gln Arg Ala Thr
Lys1 5 10
15Met15118PRTArtificial SequencePEPTIDE(1)...(18)Peptide comprising a
BoNT/A substrate cleavage site. 151Asp Ser Asn Lys Thr Arg Ile Asp
Glu Ala Asn Gln Arg Ala Thr Lys1 5 10
15Met Leu15235PRTArtificial SequencePEPTIDE(1)...(35)Peptide
comprising a BoNT/B substrate cleavage site. 152Leu Ser Glu Leu Asp
Asp Arg Ala Asp Ala Leu Gln Ala Gly Ala Ser1 5
10 15Gln Phe Glu Thr Ser Ala Ala Lys Leu Lys Arg
Lys Tyr Trp Trp Lys 20 25
30Asn Leu Lys 3515335PRTArtificial
SequencePEPTIDE(1)...(35)Peptide comprising a BoNT/B substrate cleavage
site. 153Leu Ser Glu Leu Asp Asp Arg Ala Asp Ala Leu Gln Ala Gly Ala
Ser1 5 10 15Gln Phe Glu
Ser Ser Ala Ala Lys Leu Lys Arg Lys Tyr Trp Trp Lys 20
25 30Asn Cys Lys 3515439PRTArtificial
SequencePEPTIDE(1)...(39)Peptide comprising a BoNT/D substrate cleavage
site and a BoNT/F substrate cleavage site. 154Ala Gln Val Asp Glu Val
Val Asp Ile Met Arg Val Asn Val Asp Lys1 5
10 15Val Leu Glu Arg Asp Gln Lys Leu Ser Glu Leu Asp
Asp Arg Ala Asp 20 25 30Ala
Leu Gln Ala Gly Ala Ser 3515539PRTArtificial
SequencePEPTIDE(1)...(39)Peptide comprising a BoNT/D substrate cleavage
site and a BoNT/F substrate cleavage site. 155Ala Gln Val Glu Glu Val
Val Asp Ile Ile Arg Val Asn Val Asp Lys1 5
10 15Val Leu Glu Arg Asp Gln Lys Leu Ser Glu Leu Asp
Asp Arg Ala Asp 20 25 30Ala
Leu Gln Ala Gly Ala Ser 351565PRTArtificial
SequencePEPTIDE(1)...(5)Flexible G-spacer 156Gly Gly Gly Gly Ser1
51575PRTArtificial SequencePEPTIDE(1)...(5)Flexible A-spacer 157Glu
Ala Ala Ala Lys1 51588PRTArtificial
SequencePEPTIDE(1)...(8)FLAG epitope-binding region 158Asp Tyr Lys Asp
Asp Asp Asp Lys1 51599PRTArtificial
SequencePEPTIDE(1)...(9)human Influenza virus hemagluttinin (HA)
epitope-binding region 159Tyr Pro Tyr Asp Val Pro Asp Tyr Ala1
516010PRTArtificial SequencePEPTIDE(1)...(10)human p62 c-Myc
epitope-binding region 160Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu1
5 1016111PRTArtificial
SequencePEPTIDE(1)...(11)Vesicular Stomatitis Virus Glycoprotein (VSV-G)
epitope-binding region 161Tyr Thr Asp Ile Glu Met Asn Arg Leu Gly
Lys1 5 101626PRTArtificial
SequencePEPTIDE(1)...(6)Substance P epitope-binding region 162Gln Phe Phe
Gly Leu Met1 516311PRTArtificial
SequencePEPTIDE(1)...(11)glycoprotein-D precursor of Herpes simplex
virus epitope-binding region 163Gln Pro Glu Leu Ala Pro Glu Asp Pro Glu
Asp1 5 1016414PRTArtificial
SequencePEPTIDE(1)...(14)V5 epitope-binding region 164Gly Lys Pro Ile Pro
Asn Pro Leu Leu Gly Leu Asp Ser Thr1 5
101656PRTArtificial SequencePEPTIDE(1)...(6)AU1 epitope-binding region
165Asp Thr Tyr Arg Tyr Ile1 51666PRTArtificial
SequencePEPTIDE(1)...(6)AU5 epitope-binding region 166Thr Asp Phe Tyr Leu
Lys1 51676PRTArtificial SequencePEPTIDE(1)...(6)HIS
epitope-binding region 167His His His His His His1
51685PRTArtificial SequencePEPTIDE(1)...(5)Bovine enterokinase protease
cleavage site. 168Asp Asp Asp Asp Lys1 51697PRTArtificial
SequencePEPTIDE(1)...(7)Tobacco Etch Virus (TEV) protease cleavage
site. 169Glu Asn Leu Tyr Phe Gln Gly1 51707PRTArtificial
SequencePEPTIDE(1)...(7)Tobacco Etch Virus (TEV) protease cleavage
site. 170Glu Asn Leu Tyr Phe Gln Ser1 51717PRTArtificial
SequencePEPTIDE(1)...(7)Tobacco Etch Virus (TEV) protease cleavage
site. 171Glu Asn Ile Tyr Thr Gln Gly1 51727PRTArtificial
SequencePEPTIDE(1)...(7)Tobacco Etch Virus (TEV) protease cleavage
site. 172Glu Asn Ile Tyr Thr Gln Ser1 51737PRTArtificial
SequencePEPTIDE(1)...(7)Tobacco Etch Virus (TEV) protease cleavage
site. 173Glu Asn Ile Tyr Leu Gln Gly1 51747PRTArtificial
SequencePEPTIDE(1)...(7)Tobacco Etch Virus (TEV) protease cleavage
site. 174Glu Asn Ile Tyr Leu Gln Ser1 51757PRTArtificial
SequencePEPTIDE(1)...(7)Tobacco Etch Virus (TEV) protease cleavage
site. 175Glu Asn Val Tyr Phe Gln Gly1 51767PRTArtificial
SequencePEPTIDE(1)...(7)Tobacco Etch Virus (TEV) protease cleavage
site. 176Glu Asn Val Tyr Ser Gln Ser1 51777PRTArtificial
SequencePEPTIDE(1)...(7)Tobacco Etch Virus (TEV) protease cleavage
site. 177Glu Asn Val Tyr Ser Gln Gly1 51787PRTArtificial
SequencePEPTIDE(1)...(7)Tobacco Etch Virus (TEV) protease cleavage
site. 178Glu Asn Val Tyr Ser Gln Ser1 51797PRTArtificial
SequencePEPTIDE(1)...(7)Human Rhinovirus 3C protease cleavage site.
179Glu Ala Leu Phe Gln Gly Pro1 51807PRTArtificial
SequencePEPTIDE(1)...(7)Human Rhinovirus 3C protease cleavage site.
180Glu Val Leu Phe Gln Gly Pro1 51817PRTArtificial
SequencePEPTIDE(1)...(7)Human Rhinovirus 3C protease cleavage site.
181Glu Leu Leu Phe Gln Gly Pro1 51827PRTArtificial
SequencePEPTIDE(1)...(7)Human Rhinovirus 3C protease cleavage site.
182Asp Ala Leu Phe Gln Gly Pro1 51837PRTArtificial
SequenceHuman Rhinovirus 3C protease cleavage site. 183Asp Val Leu Phe
Gln Gly Pro1 51847PRTArtificial
SequencePEPTIDE(1)...(7)Human Rhinovirus 3C protease cleavage site.
184Asp Leu Leu Phe Gln Gly Pro1 518598PRTArtificial
SequenceSUMO/ULP-1 protease cleavage site. 185Met Ala Asp Ser Glu Val Asn
Gln Glu Ala Lys Pro Glu Val Lys Pro1 5 10
15Glu Val Lys Pro Glu Thr His Ile Asn Leu Lys Val Ser
Asp Gly Ser 20 25 30Ser Glu
Ile Phe Phe Lys Ile Lys Lys Thr Thr Pro Leu Arg Arg Leu 35
40 45Met Glu Ala Phe Ala Lys Arg Gln Gly Lys
Glu Met Asp Ser Leu Arg 50 55 60Phe
Leu Tyr Asp Gly Ile Arg Ile Gln Ala Asp Gln Thr Pro Glu Asp65
70 75 80Leu Asp Met Glu Asp Asn
Asp Ile Ile Glu Ala His Arg Glu Gln Ile 85
90 95Gly Gly1864PRTArtificial
SequencePEPTIDE(1)...(4)Thrombin protease cleavage site. 186Gly Val Arg
Gly11874PRTArtificial SequencePEPTIDE(1)...(4)Thrombin protease cleavage
site. 187Ser Ala Arg Gly11884PRTArtificial
SequencePEPTIDE(1)...(4)Thrombin protease cleavage site. 188Ser Leu Arg
Gly11894PRTArtificial SequencePEPTIDE(1)...(4)Thrombin protease cleavage
site. 189Asp Gly Arg Ile11904PRTArtificial
SequencePEPTIDE(1)...(4)Thrombin protease cleavage site. 190Gln Gly Lys
Ile11916PRTArtificial SequencePEPTIDE(1)...(6)Thrombin protease cleavage
site. 191Leu Val Pro Arg Gly Ser1 51926PRTArtificial
SequencePEPTIDE(1)...(6)Thrombin protease cleavage site. 192Leu Val Pro
Lys Gly Ser1 51936PRTArtificial
SequencePEPTIDE(1)...(6)Thrombin protease cleavage site. 193Phe Ile Pro
Arg Thr Phe1 51946PRTArtificial
SequencePEPTIDE(1)...(6)Thrombin protease cleavage site. 194Val Leu Pro
Arg Ser Phe1 51956PRTArtificial
SequencePEPTIDE(1)...(6)Thrombin protease cleavage site. 195Ile Val Pro
Arg Ser Phe1 51966PRTArtificial
SequencePEPTIDE(1)...(6)Thrombin protease cleavage site. 196Ile Val Pro
Arg Gly Tyr1 51976PRTArtificial
SequencePEPTIDE(1)...(6)Thrombin protease cleavage site. 197Val Val Pro
Arg Gly Val1 51986PRTArtificial
SequencePEPTIDE(1)...(6)Thrombin protease cleavage site. 198Val Leu Pro
Arg Leu Ile1 51996PRTArtificial
SequencePEPTIDE(1)...(6)Thrombin protease cleavage site. 199Val Met Pro
Arg Ser Leu1 52006PRTArtificial
SequencePEPTIDE(1)...(6)Thrombin protease cleavage site. 200Met Phe Pro
Arg Ser Leu1 52014PRTArtificial
SequencePEPTIDE(1)...(4)Coagulation Factor Xa protease cleavage site.
201Ile Asp Gly Arg12024PRTArtificial SequencePEPTIDE(1)...(4)Coagulation
Factor Xa protease cleavage site. 202Ile Glu Gly Arg12031303PRTArtificial
SequencePEPTIDE(1)...(1303)BoNT/A_A17 203Met Pro Phe Val Asn Lys Gln Phe
Asn Tyr Lys Asp Pro Val Asn Gly1 5 10
15Val Asp Ile Ala Tyr Ile Lys Ile Pro Asn Ala Gly Gln Met
Gln Pro 20 25 30Val Lys Ala
Phe Lys Ile His Asn Lys Ile Trp Val Ile Pro Glu Arg 35
40 45Asp Thr Phe Thr Asn Pro Glu Glu Gly Asp Leu
Asn Pro Pro Pro Glu 50 55 60Ala Lys
Gln Val Pro Val Ser Tyr Tyr Asp Ser Thr Tyr Leu Ser Thr65
70 75 80Asp Asn Glu Lys Asp Asn Tyr
Leu Lys Gly Val Thr Lys Leu Phe Glu 85 90
95Arg Ile Tyr Ser Thr Asp Leu Gly Arg Met Leu Leu Thr
Ser Ile Val 100 105 110Arg Gly
Ile Pro Phe Trp Gly Gly Ser Thr Ile Asp Thr Glu Leu Lys 115
120 125Val Ile Asp Thr Asn Cys Ile Asn Val Ile
Gln Pro Asp Gly Ser Tyr 130 135 140Arg
Ser Glu Glu Leu Asn Leu Val Ile Ile Gly Pro Ser Ala Asp Ile145
150 155 160Ile Gln Phe Glu Cys Lys
Ser Phe Gly His Glu Val Leu Asn Leu Thr 165
170 175Arg Asn Gly Tyr Gly Ser Thr Gln Tyr Ile Arg Phe
Ser Pro Asp Phe 180 185 190Thr
Phe Gly Phe Glu Glu Ser Leu Glu Val Asp Thr Asn Pro Leu Leu 195
200 205Gly Ala Gly Lys Phe Ala Thr Asp Pro
Ala Val Thr Leu Ala His Glu 210 215
220Leu Ile His Ala Gly His Arg Leu Tyr Gly Ile Ala Ile Asn Pro Asn225
230 235 240Arg Val Phe Lys
Val Asn Thr Asn Ala Tyr Tyr Glu Met Ser Gly Leu 245
250 255Glu Val Ser Phe Glu Glu Leu Arg Thr Phe
Gly Gly His Asp Ala Lys 260 265
270Phe Ile Asp Ser Leu Gln Glu Asn Glu Phe Arg Leu Tyr Tyr Tyr Asn
275 280 285Lys Phe Lys Asp Ile Ala Ser
Thr Leu Asn Lys Ala Lys Ser Ile Val 290 295
300Gly Thr Thr Ala Ser Leu Gln Tyr Met Lys Asn Val Phe Lys Glu
Lys305 310 315 320Tyr Leu
Leu Ser Glu Asp Thr Ser Gly Lys Phe Ser Val Asp Lys Leu
325 330 335Lys Phe Asp Lys Leu Tyr Lys
Met Leu Thr Glu Ile Tyr Thr Glu Asp 340 345
350Asn Phe Val Lys Phe Phe Lys Val Leu Asn Arg Lys Thr Tyr
Leu Asn 355 360 365Phe Asp Lys Ala
Val Phe Lys Ile Asn Ile Val Pro Lys Val Asn Tyr 370
375 380Thr Ile Tyr Asp Gly Phe Asn Leu Arg Asn Thr Asn
Leu Ala Ala Asn385 390 395
400Phe Asn Gly Gln Asn Thr Glu Ile Asn Asn Met Asn Phe Thr Lys Leu
405 410 415Lys Asn Phe Thr Gly
Leu Phe Glu Phe Tyr Lys Leu Leu Cys Val Arg 420
425 430Gly Ile Ile Thr Ser Lys Ser Asn Lys Thr Arg Ile
Asp Glu Ala Asn 435 440 445Gln Arg
Ala Thr Lys Met Leu Ala Leu Asn Asp Leu Cys Ile Lys Val 450
455 460Asn Asn Trp Asp Leu Phe Phe Ser Pro Ser Glu
Asp Asn Phe Thr Asn465 470 475
480Asp Leu Asn Lys Gly Glu Glu Ile Thr Ser Asp Thr Asn Ile Glu Ala
485 490 495Ala Glu Glu Asn
Ile Ser Leu Asp Leu Ile Gln Gln Tyr Tyr Leu Thr 500
505 510Phe Asn Phe Asp Asn Glu Pro Glu Asn Ile Ser
Ile Glu Asn Leu Ser 515 520 525Ser
Asp Ile Ile Gly Gln Leu Glu Leu Met Pro Asn Ile Glu Arg Phe 530
535 540Pro Asn Gly Lys Lys Tyr Glu Leu Asp Lys
Tyr Thr Met Phe His Tyr545 550 555
560Leu Arg Ala Gln Glu Phe Glu His Gly Lys Ser Arg Ile Ala Leu
Thr 565 570 575Asn Ser Val
Asn Glu Ala Leu Leu Asn Pro Ser Arg Val Tyr Thr Phe 580
585 590Phe Ser Ser Asp Tyr Val Lys Lys Val Asn
Lys Ala Thr Glu Ala Ala 595 600
605Met Phe Leu Gly Trp Val Glu Gln Leu Val Tyr Asp Phe Thr Asp Glu 610
615 620Thr Ser Glu Val Ser Thr Thr Asp
Lys Ile Ala Asp Ile Thr Ile Ile625 630
635 640Ile Pro Tyr Ile Gly Pro Ala Leu Asn Ile Gly Asn
Met Leu Tyr Lys 645 650
655Asp Asp Phe Val Gly Ala Leu Ile Phe Ser Gly Ala Val Ile Leu Leu
660 665 670Glu Phe Ile Pro Glu Ile
Ala Ile Pro Val Leu Gly Thr Phe Ala Leu 675 680
685Val Ser Tyr Ile Ala Asn Lys Val Leu Thr Val Gln Thr Ile
Asp Asn 690 695 700Ala Leu Ser Lys Arg
Asn Glu Lys Trp Asp Glu Val Tyr Lys Tyr Ile705 710
715 720Val Thr Asn Trp Leu Ala Lys Val Asn Thr
Gln Ile Asp Leu Ile Arg 725 730
735Lys Lys Met Lys Glu Ala Leu Glu Asn Gln Ala Glu Ala Thr Lys Ala
740 745 750Ile Ile Asn Tyr Gln
Tyr Asn Gln Tyr Thr Glu Glu Glu Lys Asn Asn 755
760 765Ile Asn Phe Asn Ile Asp Asp Leu Ser Ser Lys Leu
Asn Glu Ser Ile 770 775 780Asn Lys Ala
Met Ile Asn Ile Asn Lys Phe Leu Asn Gln Cys Ser Val785
790 795 800Ser Tyr Leu Met Asn Ser Met
Ile Pro Tyr Gly Val Lys Arg Leu Glu 805
810 815Asp Phe Asp Ala Ser Leu Lys Asp Ala Leu Leu Lys
Tyr Ile Tyr Asp 820 825 830Asn
Arg Gly Thr Leu Ile Gly Gln Val Asp Arg Leu Lys Asp Lys Val 835
840 845Asn Asn Thr Leu Ser Thr Asp Ile Pro
Phe Gln Leu Ser Lys Tyr Val 850 855
860Asp Asn Gln Arg Leu Leu Ser Thr Phe Thr Glu Tyr Ile Lys Asn Ile865
870 875 880Ile Asn Thr Ser
Ile Leu Asn Leu Arg Tyr Glu Ser Asn His Leu Ile 885
890 895Asp Leu Ser Arg Tyr Ala Ser Lys Ile Asn
Ile Gly Ser Lys Val Asn 900 905
910Phe Asp Pro Ile Asp Lys Asn Gln Ile Gln Leu Phe Asn Leu Glu Ser
915 920 925Ser Lys Ile Glu Val Ile Leu
Lys Asn Ala Ile Val Tyr Asn Ser Met 930 935
940Tyr Glu Asn Phe Ser Thr Ser Phe Trp Ile Arg Ile Pro Lys Tyr
Phe945 950 955 960Asn Ser
Ile Ser Leu Asn Asn Glu Tyr Thr Ile Ile Asn Cys Met Glu
965 970 975Asn Asn Ser Gly Trp Lys Val
Ser Leu Asn Tyr Gly Glu Ile Ile Trp 980 985
990Thr Leu Gln Asp Thr Gln Glu Ile Lys Gln Arg Val Val Phe
Lys Tyr 995 1000 1005Ser Gln Met
Ile Asn Ile Ser Asp Tyr Ile Asn Arg Trp Ile Phe Val 1010
1015 1020Thr Ile Thr Asn Asn Arg Leu Asn Asn Ser Lys Ile
Tyr Ile Asn Gly1025 1030 1035
1040Arg Leu Ile Asp Gln Lys Pro Ile Ser Asn Leu Gly Asn Ile His Ala
1045 1050 1055Ser Asn Asn Ile Met
Phe Lys Leu Asp Gly Cys Arg Asp Thr His Arg 1060
1065 1070Tyr Ile Trp Ile Lys Tyr Phe Asn Leu Phe Asp Lys
Glu Leu Asn Glu 1075 1080 1085Lys
Glu Ile Lys Asp Leu Tyr Asp Asn Gln Ser Asn Ser Gly Ile Leu 1090
1095 1100Lys Asp Phe Trp Gly Asp Tyr Leu Gln Tyr
Asp Lys Pro Tyr Tyr Met1105 1110 1115
1120Leu Asn Leu Tyr Asp Pro Asn Lys Tyr Val Asp Val Asn Asn Val
Gly 1125 1130 1135Ile Arg
Gly Tyr Met Tyr Leu Lys Gly Pro Arg Gly Ser Val Met Thr 1140
1145 1150Thr Asn Ile Tyr Leu Asn Ser Ser Leu
Tyr Arg Gly Thr Lys Phe Ile 1155 1160
1165Ile Lys Lys Tyr Ala Ser Gly Asn Lys Asp Asn Ile Val Arg Asn Asn
1170 1175 1180Asp Arg Val Tyr Ile Asn Val
Val Val Lys Asn Lys Glu Tyr Arg Leu1185 1190
1195 1200Ala Thr Asn Ala Ser Gln Ala Gly Val Glu Lys Ile
Leu Ser Ala Leu 1205 1210
1215Glu Ile Pro Asp Val Gly Asn Leu Ser Gln Val Val Val Met Lys Ser
1220 1225 1230Lys Asn Asp Gln Gly Ile
Thr Asn Lys Cys Lys Met Asn Leu Gln Asp 1235 1240
1245Asn Asn Gly Asn Asp Ile Gly Phe Ile Gly Phe His Gln Phe
Asn Asn 1250 1255 1260Ile Ala Lys Leu
Val Ala Ser Asn Trp Tyr Asn Arg Gln Ile Glu Arg1265 1270
1275 1280Ser Ser Arg Thr Leu Gly Cys Ser Trp
Glu Phe Ile Pro Val Asp Asp 1285 1290
1295Gly Trp Gly Glu Arg Pro Leu
13002041294PRTArtificial SequencePEPTIDE(1)...(1294)BoNT/A_A8 204Met Pro
Phe Val Asn Lys Gln Phe Asn Tyr Lys Asp Pro Val Asn Gly1 5
10 15Val Asp Ile Ala Tyr Ile Lys Ile
Pro Asn Ala Gly Gln Met Gln Pro 20 25
30Val Lys Ala Phe Lys Ile His Asn Lys Ile Trp Val Ile Pro Glu
Arg 35 40 45Asp Thr Phe Thr Asn
Pro Glu Glu Gly Asp Leu Asn Pro Pro Pro Glu 50 55
60Ala Lys Gln Val Pro Val Ser Tyr Tyr Asp Ser Thr Tyr Leu
Ser Thr65 70 75 80Asp
Asn Glu Lys Asp Asn Tyr Leu Lys Gly Val Thr Lys Leu Phe Glu
85 90 95Arg Ile Tyr Ser Thr Asp Leu
Gly Arg Met Leu Leu Thr Ser Ile Val 100 105
110Arg Gly Ile Pro Phe Trp Gly Gly Ser Thr Ile Asp Thr Glu
Leu Lys 115 120 125Val Ile Asp Thr
Asn Cys Ile Asn Val Ile Gln Pro Asp Gly Ser Tyr 130
135 140Arg Ser Glu Glu Leu Asn Leu Val Ile Ile Gly Pro
Ser Ala Asp Ile145 150 155
160Ile Gln Phe Glu Cys Lys Ser Phe Gly His Glu Val Leu Asn Leu Thr
165 170 175Arg Asn Gly Tyr Gly
Ser Thr Gln Tyr Ile Arg Phe Ser Pro Asp Phe 180
185 190Thr Phe Gly Phe Glu Glu Ser Leu Glu Val Asp Thr
Asn Pro Leu Leu 195 200 205Gly Ala
Gly Lys Phe Ala Thr Asp Pro Ala Val Thr Leu Ala His Glu 210
215 220Leu Ile His Ala Gly His Arg Leu Tyr Gly Ile
Ala Ile Asn Pro Asn225 230 235
240Arg Val Phe Lys Val Asn Thr Asn Ala Tyr Tyr Glu Met Ser Gly Leu
245 250 255Glu Val Ser Phe
Glu Glu Leu Arg Thr Phe Gly Gly His Asp Ala Lys 260
265 270Phe Ile Asp Ser Leu Gln Glu Asn Glu Phe Arg
Leu Tyr Tyr Tyr Asn 275 280 285Lys
Phe Lys Asp Ile Ala Ser Thr Leu Asn Lys Ala Lys Ser Ile Val 290
295 300Gly Thr Thr Ala Ser Leu Gln Tyr Met Lys
Asn Val Phe Lys Glu Lys305 310 315
320Tyr Leu Leu Ser Glu Asp Thr Ser Gly Lys Phe Ser Val Asp Lys
Leu 325 330 335Lys Phe Asp
Lys Leu Tyr Lys Met Leu Thr Glu Ile Tyr Thr Glu Asp 340
345 350Asn Phe Val Lys Phe Phe Lys Val Leu Asn
Arg Lys Thr Tyr Leu Asn 355 360
365Phe Asp Lys Ala Val Phe Lys Ile Asn Ile Val Pro Lys Val Asn Tyr 370
375 380Thr Ile Tyr Asp Gly Phe Asn Leu
Arg Asn Thr Asn Leu Ala Ala Asn385 390
395 400Phe Asn Gly Gln Asn Thr Glu Ile Asn Asn Met Asn
Phe Thr Lys Leu 405 410
415Lys Asn Phe Thr Gly Leu Phe Glu Phe Tyr Lys Leu Leu Cys Val Arg
420 425 430Gly Ile Ile Thr Ser Lys
Glu Ala Asn Gln Arg Ala Thr Lys Ala Leu 435 440
445Asn Asp Leu Cys Ile Lys Val Asn Asn Trp Asp Leu Phe Phe
Ser Pro 450 455 460Ser Glu Asp Asn Phe
Thr Asn Asp Leu Asn Lys Gly Glu Glu Ile Thr465 470
475 480Ser Asp Thr Asn Ile Glu Ala Ala Glu Glu
Asn Ile Ser Leu Asp Leu 485 490
495Ile Gln Gln Tyr Tyr Leu Thr Phe Asn Phe Asp Asn Glu Pro Glu Asn
500 505 510Ile Ser Ile Glu Asn
Leu Ser Ser Asp Ile Ile Gly Gln Leu Glu Leu 515
520 525Met Pro Asn Ile Glu Arg Phe Pro Asn Gly Lys Lys
Tyr Glu Leu Asp 530 535 540Lys Tyr Thr
Met Phe His Tyr Leu Arg Ala Gln Glu Phe Glu His Gly545
550 555 560Lys Ser Arg Ile Ala Leu Thr
Asn Ser Val Asn Glu Ala Leu Leu Asn 565
570 575Pro Ser Arg Val Tyr Thr Phe Phe Ser Ser Asp Tyr
Val Lys Lys Val 580 585 590Asn
Lys Ala Thr Glu Ala Ala Met Phe Leu Gly Trp Val Glu Gln Leu 595
600 605Val Tyr Asp Phe Thr Asp Glu Thr Ser
Glu Val Ser Thr Thr Asp Lys 610 615
620Ile Ala Asp Ile Thr Ile Ile Ile Pro Tyr Ile Gly Pro Ala Leu Asn625
630 635 640Ile Gly Asn Met
Leu Tyr Lys Asp Asp Phe Val Gly Ala Leu Ile Phe 645
650 655Ser Gly Ala Val Ile Leu Leu Glu Phe Ile
Pro Glu Ile Ala Ile Pro 660 665
670Val Leu Gly Thr Phe Ala Leu Val Ser Tyr Ile Ala Asn Lys Val Leu
675 680 685Thr Val Gln Thr Ile Asp Asn
Ala Leu Ser Lys Arg Asn Glu Lys Trp 690 695
700Asp Glu Val Tyr Lys Tyr Ile Val Thr Asn Trp Leu Ala Lys Val
Asn705 710 715 720Thr Gln
Ile Asp Leu Ile Arg Lys Lys Met Lys Glu Ala Leu Glu Asn
725 730 735Gln Ala Glu Ala Thr Lys Ala
Ile Ile Asn Tyr Gln Tyr Asn Gln Tyr 740 745
750Thr Glu Glu Glu Lys Asn Asn Ile Asn Phe Asn Ile Asp Asp
Leu Ser 755 760 765Ser Lys Leu Asn
Glu Ser Ile Asn Lys Ala Met Ile Asn Ile Asn Lys 770
775 780Phe Leu Asn Gln Cys Ser Val Ser Tyr Leu Met Asn
Ser Met Ile Pro785 790 795
800Tyr Gly Val Lys Arg Leu Glu Asp Phe Asp Ala Ser Leu Lys Asp Ala
805 810 815Leu Leu Lys Tyr Ile
Tyr Asp Asn Arg Gly Thr Leu Ile Gly Gln Val 820
825 830Asp Arg Leu Lys Asp Lys Val Asn Asn Thr Leu Ser
Thr Asp Ile Pro 835 840 845Phe Gln
Leu Ser Lys Tyr Val Asp Asn Gln Arg Leu Leu Ser Thr Phe 850
855 860Thr Glu Tyr Ile Lys Asn Ile Ile Asn Thr Ser
Ile Leu Asn Leu Arg865 870 875
880Tyr Glu Ser Asn His Leu Ile Asp Leu Ser Arg Tyr Ala Ser Lys Ile
885 890 895Asn Ile Gly Ser
Lys Val Asn Phe Asp Pro Ile Asp Lys Asn Gln Ile 900
905 910Gln Leu Phe Asn Leu Glu Ser Ser Lys Ile Glu
Val Ile Leu Lys Asn 915 920 925Ala
Ile Val Tyr Asn Ser Met Tyr Glu Asn Phe Ser Thr Ser Phe Trp 930
935 940Ile Arg Ile Pro Lys Tyr Phe Asn Ser Ile
Ser Leu Asn Asn Glu Tyr945 950 955
960Thr Ile Ile Asn Cys Met Glu Asn Asn Ser Gly Trp Lys Val Ser
Leu 965 970 975Asn Tyr Gly
Glu Ile Ile Trp Thr Leu Gln Asp Thr Gln Glu Ile Lys 980
985 990Gln Arg Val Val Phe Lys Tyr Ser Gln Met
Ile Asn Ile Ser Asp Tyr 995 1000
1005Ile Asn Arg Trp Ile Phe Val Thr Ile Thr Asn Asn Arg Leu Asn Asn
1010 1015 1020Ser Lys Ile Tyr Ile Asn Gly
Arg Leu Ile Asp Gln Lys Pro Ile Ser1025 1030
1035 1040Asn Leu Gly Asn Ile His Ala Ser Asn Asn Ile Met
Phe Lys Leu Asp 1045 1050
1055Gly Cys Arg Asp Thr His Arg Tyr Ile Trp Ile Lys Tyr Phe Asn Leu
1060 1065 1070Phe Asp Lys Glu Leu Asn
Glu Lys Glu Ile Lys Asp Leu Tyr Asp Asn 1075 1080
1085Gln Ser Asn Ser Gly Ile Leu Lys Asp Phe Trp Gly Asp Tyr
Leu Gln 1090 1095 1100Tyr Asp Lys Pro
Tyr Tyr Met Leu Asn Leu Tyr Asp Pro Asn Lys Tyr1105 1110
1115 1120Val Asp Val Asn Asn Val Gly Ile Arg
Gly Tyr Met Tyr Leu Lys Gly 1125 1130
1135Pro Arg Gly Ser Val Met Thr Thr Asn Ile Tyr Leu Asn Ser Ser
Leu 1140 1145 1150Tyr Arg Gly
Thr Lys Phe Ile Ile Lys Lys Tyr Ala Ser Gly Asn Lys 1155
1160 1165Asp Asn Ile Val Arg Asn Asn Asp Arg Val Tyr
Ile Asn Val Val Val 1170 1175 1180Lys
Asn Lys Glu Tyr Arg Leu Ala Thr Asn Ala Ser Gln Ala Gly Val1185
1190 1195 1200Glu Lys Ile Leu Ser Ala
Leu Glu Ile Pro Asp Val Gly Asn Leu Ser 1205
1210 1215Gln Val Val Val Met Lys Ser Lys Asn Asp Gln Gly
Ile Thr Asn Lys 1220 1225
1230Cys Lys Met Asn Leu Gln Asp Asn Asn Gly Asn Asp Ile Gly Phe Ile
1235 1240 1245Gly Phe His Gln Phe Asn Asn
Ile Ala Lys Leu Val Ala Ser Asn Trp 1250 1255
1260Tyr Asn Arg Gln Ile Glu Arg Ser Ser Arg Thr Leu Gly Cys Ser
Trp1265 1270 1275 1280Glu
Phe Ile Pro Val Asp Asp Gly Trp Gly Glu Arg Pro Leu 1285
12902051321PRTArtificial
SequencePEPTIDE(1)...(1321)BoNT/A_BT35 205Met Pro Phe Val Asn Lys Gln Phe
Asn Tyr Lys Asp Pro Val Asn Gly1 5 10
15Val Asp Ile Ala Tyr Ile Lys Ile Pro Asn Ala Gly Gln Met
Gln Pro 20 25 30Val Lys Ala
Phe Lys Ile His Asn Lys Ile Trp Val Ile Pro Glu Arg 35
40 45Asp Thr Phe Thr Asn Pro Glu Glu Gly Asp Leu
Asn Pro Pro Pro Glu 50 55 60Ala Lys
Gln Val Pro Val Ser Tyr Tyr Asp Ser Thr Tyr Leu Ser Thr65
70 75 80Asp Asn Glu Lys Asp Asn Tyr
Leu Lys Gly Val Thr Lys Leu Phe Glu 85 90
95Arg Ile Tyr Ser Thr Asp Leu Gly Arg Met Leu Leu Thr
Ser Ile Val 100 105 110Arg Gly
Ile Pro Phe Trp Gly Gly Ser Thr Ile Asp Thr Glu Leu Lys 115
120 125Val Ile Asp Thr Asn Cys Ile Asn Val Ile
Gln Pro Asp Gly Ser Tyr 130 135 140Arg
Ser Glu Glu Leu Asn Leu Val Ile Ile Gly Pro Ser Ala Asp Ile145
150 155 160Ile Gln Phe Glu Cys Lys
Ser Phe Gly His Glu Val Leu Asn Leu Thr 165
170 175Arg Asn Gly Tyr Gly Ser Thr Gln Tyr Ile Arg Phe
Ser Pro Asp Phe 180 185 190Thr
Phe Gly Phe Glu Glu Ser Leu Glu Val Asp Thr Asn Pro Leu Leu 195
200 205Gly Ala Gly Lys Phe Ala Thr Asp Pro
Ala Val Thr Leu Ala His Glu 210 215
220Leu Ile His Ala Gly His Arg Leu Tyr Gly Ile Ala Ile Asn Pro Asn225
230 235 240Arg Val Phe Lys
Val Asn Thr Asn Ala Tyr Tyr Glu Met Ser Gly Leu 245
250 255Glu Val Ser Phe Glu Glu Leu Arg Thr Phe
Gly Gly His Asp Ala Lys 260 265
270Phe Ile Asp Ser Leu Gln Glu Asn Glu Phe Arg Leu Tyr Tyr Tyr Asn
275 280 285Lys Phe Lys Asp Ile Ala Ser
Thr Leu Asn Lys Ala Lys Ser Ile Val 290 295
300Gly Thr Thr Ala Ser Leu Gln Tyr Met Lys Asn Val Phe Lys Glu
Lys305 310 315 320Tyr Leu
Leu Ser Glu Asp Thr Ser Gly Lys Phe Ser Val Asp Lys Leu
325 330 335Lys Phe Asp Lys Leu Tyr Lys
Met Leu Thr Glu Ile Tyr Thr Glu Asp 340 345
350Asn Phe Val Lys Phe Phe Lys Val Leu Asn Arg Lys Thr Tyr
Leu Asn 355 360 365Phe Asp Lys Ala
Val Phe Lys Ile Asn Ile Val Pro Lys Val Asn Tyr 370
375 380Thr Ile Tyr Asp Gly Phe Asn Leu Arg Asn Thr Asn
Leu Ala Ala Asn385 390 395
400Phe Asn Gly Gln Asn Thr Glu Ile Asn Asn Met Asn Phe Thr Lys Leu
405 410 415Lys Asn Phe Thr Gly
Leu Phe Glu Phe Tyr Lys Leu Leu Cys Val Arg 420
425 430Gly Ile Ile Thr Ser Lys Leu Ser Glu Leu Asp Asp
Arg Ala Asp Ala 435 440 445Leu Gln
Ala Gly Ala Ser Gln Phe Glu Ser Ser Ala Ala Lys Leu Lys 450
455 460Arg Lys Tyr Trp Trp Lys Asn Cys Lys Ala Leu
Asn Asp Leu Cys Ile465 470 475
480Lys Val Asn Asn Trp Asp Leu Phe Phe Ser Pro Ser Glu Asp Asn Phe
485 490 495Thr Asn Asp Leu
Asn Lys Gly Glu Glu Ile Thr Ser Asp Thr Asn Ile 500
505 510Glu Ala Ala Glu Glu Asn Ile Ser Leu Asp Leu
Ile Gln Gln Tyr Tyr 515 520 525Leu
Thr Phe Asn Phe Asp Asn Glu Pro Glu Asn Ile Ser Ile Glu Asn 530
535 540Leu Ser Ser Asp Ile Ile Gly Gln Leu Glu
Leu Met Pro Asn Ile Glu545 550 555
560Arg Phe Pro Asn Gly Lys Lys Tyr Glu Leu Asp Lys Tyr Thr Met
Phe 565 570 575His Tyr Leu
Arg Ala Gln Glu Phe Glu His Gly Lys Ser Arg Ile Ala 580
585 590Leu Thr Asn Ser Val Asn Glu Ala Leu Leu
Asn Pro Ser Arg Val Tyr 595 600
605Thr Phe Phe Ser Ser Asp Tyr Val Lys Lys Val Asn Lys Ala Thr Glu 610
615 620Ala Ala Met Phe Leu Gly Trp Val
Glu Gln Leu Val Tyr Asp Phe Thr625 630
635 640Asp Glu Thr Ser Glu Val Ser Thr Thr Asp Lys Ile
Ala Asp Ile Thr 645 650
655Ile Ile Ile Pro Tyr Ile Gly Pro Ala Leu Asn Ile Gly Asn Met Leu
660 665 670Tyr Lys Asp Asp Phe Val
Gly Ala Leu Ile Phe Ser Gly Ala Val Ile 675 680
685Leu Leu Glu Phe Ile Pro Glu Ile Ala Ile Pro Val Leu Gly
Thr Phe 690 695 700Ala Leu Val Ser Tyr
Ile Ala Asn Lys Val Leu Thr Val Gln Thr Ile705 710
715 720Asp Asn Ala Leu Ser Lys Arg Asn Glu Lys
Trp Asp Glu Val Tyr Lys 725 730
735Tyr Ile Val Thr Asn Trp Leu Ala Lys Val Asn Thr Gln Ile Asp Leu
740 745 750Ile Arg Lys Lys Met
Lys Glu Ala Leu Glu Asn Gln Ala Glu Ala Thr 755
760 765Lys Ala Ile Ile Asn Tyr Gln Tyr Asn Gln Tyr Thr
Glu Glu Glu Lys 770 775 780Asn Asn Ile
Asn Phe Asn Ile Asp Asp Leu Ser Ser Lys Leu Asn Glu785
790 795 800Ser Ile Asn Lys Ala Met Ile
Asn Ile Asn Lys Phe Leu Asn Gln Cys 805
810 815Ser Val Ser Tyr Leu Met Asn Ser Met Ile Pro Tyr
Gly Val Lys Arg 820 825 830Leu
Glu Asp Phe Asp Ala Ser Leu Lys Asp Ala Leu Leu Lys Tyr Ile 835
840 845Tyr Asp Asn Arg Gly Thr Leu Ile Gly
Gln Val Asp Arg Leu Lys Asp 850 855
860Lys Val Asn Asn Thr Leu Ser Thr Asp Ile Pro Phe Gln Leu Ser Lys865
870 875 880Tyr Val Asp Asn
Gln Arg Leu Leu Ser Thr Phe Thr Glu Tyr Ile Lys 885
890 895Asn Ile Ile Asn Thr Ser Ile Leu Asn Leu
Arg Tyr Glu Ser Asn His 900 905
910Leu Ile Asp Leu Ser Arg Tyr Ala Ser Lys Ile Asn Ile Gly Ser Lys
915 920 925Val Asn Phe Asp Pro Ile Asp
Lys Asn Gln Ile Gln Leu Phe Asn Leu 930 935
940Glu Ser Ser Lys Ile Glu Val Ile Leu Lys Asn Ala Ile Val Tyr
Asn945 950 955 960Ser Met
Tyr Glu Asn Phe Ser Thr Ser Phe Trp Ile Arg Ile Pro Lys
965 970 975Tyr Phe Asn Ser Ile Ser Leu
Asn Asn Glu Tyr Thr Ile Ile Asn Cys 980 985
990Met Glu Asn Asn Ser Gly Trp Lys Val Ser Leu Asn Tyr Gly
Glu Ile 995 1000 1005Ile Trp Thr
Leu Gln Asp Thr Gln Glu Ile Lys Gln Arg Val Val Phe 1010
1015 1020Lys Tyr Ser Gln Met Ile Asn Ile Ser Asp Tyr Ile
Asn Arg Trp Ile1025 1030 1035
1040Phe Val Thr Ile Thr Asn Asn Arg Leu Asn Asn Ser Lys Ile Tyr Ile
1045 1050 1055Asn Gly Arg Leu Ile
Asp Gln Lys Pro Ile Ser Asn Leu Gly Asn Ile 1060
1065 1070His Ala Ser Asn Asn Ile Met Phe Lys Leu Asp Gly
Cys Arg Asp Thr 1075 1080 1085His
Arg Tyr Ile Trp Ile Lys Tyr Phe Asn Leu Phe Asp Lys Glu Leu 1090
1095 1100Asn Glu Lys Glu Ile Lys Asp Leu Tyr Asp
Asn Gln Ser Asn Ser Gly1105 1110 1115
1120Ile Leu Lys Asp Phe Trp Gly Asp Tyr Leu Gln Tyr Asp Lys Pro
Tyr 1125 1130 1135Tyr Met
Leu Asn Leu Tyr Asp Pro Asn Lys Tyr Val Asp Val Asn Asn 1140
1145 1150Val Gly Ile Arg Gly Tyr Met Tyr Leu
Lys Gly Pro Arg Gly Ser Val 1155 1160
1165Met Thr Thr Asn Ile Tyr Leu Asn Ser Ser Leu Tyr Arg Gly Thr Lys
1170 1175 1180Phe Ile Ile Lys Lys Tyr Ala
Ser Gly Asn Lys Asp Asn Ile Val Arg1185 1190
1195 1200Asn Asn Asp Arg Val Tyr Ile Asn Val Val Val Lys
Asn Lys Glu Tyr 1205 1210
1215Arg Leu Ala Thr Asn Ala Ser Gln Ala Gly Val Glu Lys Ile Leu Ser
1220 1225 1230Ala Leu Glu Ile Pro Asp
Val Gly Asn Leu Ser Gln Val Val Val Met 1235 1240
1245Lys Ser Lys Asn Asp Gln Gly Ile Thr Asn Lys Cys Lys Met
Asn Leu 1250 1255 1260Gln Asp Asn Asn
Gly Asn Asp Ile Gly Phe Ile Gly Phe His Gln Phe1265 1270
1275 1280Asn Asn Ile Ala Lys Leu Val Ala Ser
Asn Trp Tyr Asn Arg Gln Ile 1285 1290
1295Glu Arg Ser Ser Arg Thr Leu Gly Cys Ser Trp Glu Phe Ile Pro
Val 1300 1305 1310Asp Asp Gly
Trp Gly Glu Arg Pro Leu 1315
13202061294PRTArtificial SequencePEPTIDE(1)...(1294)BoNT/A_BT8 206Met Pro
Phe Val Asn Lys Gln Phe Asn Tyr Lys Asp Pro Val Asn Gly1 5
10 15Val Asp Ile Ala Tyr Ile Lys Ile
Pro Asn Ala Gly Gln Met Gln Pro 20 25
30Val Lys Ala Phe Lys Ile His Asn Lys Ile Trp Val Ile Pro Glu
Arg 35 40 45Asp Thr Phe Thr Asn
Pro Glu Glu Gly Asp Leu Asn Pro Pro Pro Glu 50 55
60Ala Lys Gln Val Pro Val Ser Tyr Tyr Asp Ser Thr Tyr Leu
Ser Thr65 70 75 80Asp
Asn Glu Lys Asp Asn Tyr Leu Lys Gly Val Thr Lys Leu Phe Glu
85 90 95Arg Ile Tyr Ser Thr Asp Leu
Gly Arg Met Leu Leu Thr Ser Ile Val 100 105
110Arg Gly Ile Pro Phe Trp Gly Gly Ser Thr Ile Asp Thr Glu
Leu Lys 115 120 125Val Ile Asp Thr
Asn Cys Ile Asn Val Ile Gln Pro Asp Gly Ser Tyr 130
135 140Arg Ser Glu Glu Leu Asn Leu Val Ile Ile Gly Pro
Ser Ala Asp Ile145 150 155
160Ile Gln Phe Glu Cys Lys Ser Phe Gly His Glu Val Leu Asn Leu Thr
165 170 175Arg Asn Gly Tyr Gly
Ser Thr Gln Tyr Ile Arg Phe Ser Pro Asp Phe 180
185 190Thr Phe Gly Phe Glu Glu Ser Leu Glu Val Asp Thr
Asn Pro Leu Leu 195 200 205Gly Ala
Gly Lys Phe Ala Thr Asp Pro Ala Val Thr Leu Ala His Glu 210
215 220Leu Ile His Ala Gly His Arg Leu Tyr Gly Ile
Ala Ile Asn Pro Asn225 230 235
240Arg Val Phe Lys Val Asn Thr Asn Ala Tyr Tyr Glu Met Ser Gly Leu
245 250 255Glu Val Ser Phe
Glu Glu Leu Arg Thr Phe Gly Gly His Asp Ala Lys 260
265 270Phe Ile Asp Ser Leu Gln Glu Asn Glu Phe Arg
Leu Tyr Tyr Tyr Asn 275 280 285Lys
Phe Lys Asp Ile Ala Ser Thr Leu Asn Lys Ala Lys Ser Ile Val 290
295 300Gly Thr Thr Ala Ser Leu Gln Tyr Met Lys
Asn Val Phe Lys Glu Lys305 310 315
320Tyr Leu Leu Ser Glu Asp Thr Ser Gly Lys Phe Ser Val Asp Lys
Leu 325 330 335Lys Phe Asp
Lys Leu Tyr Lys Met Leu Thr Glu Ile Tyr Thr Glu Asp 340
345 350Asn Phe Val Lys Phe Phe Lys Val Leu Asn
Arg Lys Thr Tyr Leu Asn 355 360
365Phe Asp Lys Ala Val Phe Lys Ile Asn Ile Val Pro Lys Val Asn Tyr 370
375 380Thr Ile Tyr Asp Gly Phe Asn Leu
Arg Asn Thr Asn Leu Ala Ala Asn385 390
395 400Phe Asn Gly Gln Asn Thr Glu Ile Asn Asn Met Asn
Phe Thr Lys Leu 405 410
415Lys Asn Phe Thr Gly Leu Phe Glu Phe Tyr Lys Leu Leu Cys Val Arg
420 425 430Gly Ile Ile Thr Ser Lys
Gly Ala Ser Gln Phe Glu Thr Ser Ala Leu 435 440
445Asn Asp Leu Cys Ile Lys Val Asn Asn Trp Asp Leu Phe Phe
Ser Pro 450 455 460Ser Glu Asp Asn Phe
Thr Asn Asp Leu Asn Lys Gly Glu Glu Ile Thr465 470
475 480Ser Asp Thr Asn Ile Glu Ala Ala Glu Glu
Asn Ile Ser Leu Asp Leu 485 490
495Ile Gln Gln Tyr Tyr Leu Thr Phe Asn Phe Asp Asn Glu Pro Glu Asn
500 505 510Ile Ser Ile Glu Asn
Leu Ser Ser Asp Ile Ile Gly Gln Leu Glu Leu 515
520 525Met Pro Asn Ile Glu Arg Phe Pro Asn Gly Lys Lys
Tyr Glu Leu Asp 530 535 540Lys Tyr Thr
Met Phe His Tyr Leu Arg Ala Gln Glu Phe Glu His Gly545
550 555 560Lys Ser Arg Ile Ala Leu Thr
Asn Ser Val Asn Glu Ala Leu Leu Asn 565
570 575Pro Ser Arg Val Tyr Thr Phe Phe Ser Ser Asp Tyr
Val Lys Lys Val 580 585 590Asn
Lys Ala Thr Glu Ala Ala Met Phe Leu Gly Trp Val Glu Gln Leu 595
600 605Val Tyr Asp Phe Thr Asp Glu Thr Ser
Glu Val Ser Thr Thr Asp Lys 610 615
620Ile Ala Asp Ile Thr Ile Ile Ile Pro Tyr Ile Gly Pro Ala Leu Asn625
630 635 640Ile Gly Asn Met
Leu Tyr Lys Asp Asp Phe Val Gly Ala Leu Ile Phe 645
650 655Ser Gly Ala Val Ile Leu Leu Glu Phe Ile
Pro Glu Ile Ala Ile Pro 660 665
670Val Leu Gly Thr Phe Ala Leu Val Ser Tyr Ile Ala Asn Lys Val Leu
675 680 685Thr Val Gln Thr Ile Asp Asn
Ala Leu Ser Lys Arg Asn Glu Lys Trp 690 695
700Asp Glu Val Tyr Lys Tyr Ile Val Thr Asn Trp Leu Ala Lys Val
Asn705 710 715 720Thr Gln
Ile Asp Leu Ile Arg Lys Lys Met Lys Glu Ala Leu Glu Asn
725 730 735Gln Ala Glu Ala Thr Lys Ala
Ile Ile Asn Tyr Gln Tyr Asn Gln Tyr 740 745
750Thr Glu Glu Glu Lys Asn Asn Ile Asn Phe Asn Ile Asp Asp
Leu Ser 755 760 765Ser Lys Leu Asn
Glu Ser Ile Asn Lys Ala Met Ile Asn Ile Asn Lys 770
775 780Phe Leu Asn Gln Cys Ser Val Ser Tyr Leu Met Asn
Ser Met Ile Pro785 790 795
800Tyr Gly Val Lys Arg Leu Glu Asp Phe Asp Ala Ser Leu Lys Asp Ala
805 810 815Leu Leu Lys Tyr Ile
Tyr Asp Asn Arg Gly Thr Leu Ile Gly Gln Val 820
825 830Asp Arg Leu Lys Asp Lys Val Asn Asn Thr Leu Ser
Thr Asp Ile Pro 835 840 845Phe Gln
Leu Ser Lys Tyr Val Asp Asn Gln Arg Leu Leu Ser Thr Phe 850
855 860Thr Glu Tyr Ile Lys Asn Ile Ile Asn Thr Ser
Ile Leu Asn Leu Arg865 870 875
880Tyr Glu Ser Asn His Leu Ile Asp Leu Ser Arg Tyr Ala Ser Lys Ile
885 890 895Asn Ile Gly Ser
Lys Val Asn Phe Asp Pro Ile Asp Lys Asn Gln Ile 900
905 910Gln Leu Phe Asn Leu Glu Ser Ser Lys Ile Glu
Val Ile Leu Lys Asn 915 920 925Ala
Ile Val Tyr Asn Ser Met Tyr Glu Asn Phe Ser Thr Ser Phe Trp 930
935 940Ile Arg Ile Pro Lys Tyr Phe Asn Ser Ile
Ser Leu Asn Asn Glu Tyr945 950 955
960Thr Ile Ile Asn Cys Met Glu Asn Asn Ser Gly Trp Lys Val Ser
Leu 965 970 975Asn Tyr Gly
Glu Ile Ile Trp Thr Leu Gln Asp Thr Gln Glu Ile Lys 980
985 990Gln Arg Val Val Phe Lys Tyr Ser Gln Met
Ile Asn Ile Ser Asp Tyr 995 1000
1005Ile Asn Arg Trp Ile Phe Val Thr Ile Thr Asn Asn Arg Leu Asn Asn
1010 1015 1020Ser Lys Ile Tyr Ile Asn Gly
Arg Leu Ile Asp Gln Lys Pro Ile Ser1025 1030
1035 1040Asn Leu Gly Asn Ile His Ala Ser Asn Asn Ile Met
Phe Lys Leu Asp 1045 1050
1055Gly Cys Arg Asp Thr His Arg Tyr Ile Trp Ile Lys Tyr Phe Asn Leu
1060 1065 1070Phe Asp Lys Glu Leu Asn
Glu Lys Glu Ile Lys Asp Leu Tyr Asp Asn 1075 1080
1085Gln Ser Asn Ser Gly Ile Leu Lys Asp Phe Trp Gly Asp Tyr
Leu Gln 1090 1095 1100Tyr Asp Lys Pro
Tyr Tyr Met Leu Asn Leu Tyr Asp Pro Asn Lys Tyr1105 1110
1115 1120Val Asp Val Asn Asn Val Gly Ile Arg
Gly Tyr Met Tyr Leu Lys Gly 1125 1130
1135Pro Arg Gly Ser Val Met Thr Thr Asn Ile Tyr Leu Asn Ser Ser
Leu 1140 1145 1150Tyr Arg Gly
Thr Lys Phe Ile Ile Lys Lys Tyr Ala Ser Gly Asn Lys 1155
1160 1165Asp Asn Ile Val Arg Asn Asn Asp Arg Val Tyr
Ile Asn Val Val Val 1170 1175 1180Lys
Asn Lys Glu Tyr Arg Leu Ala Thr Asn Ala Ser Gln Ala Gly Val1185
1190 1195 1200Glu Lys Ile Leu Ser Ala
Leu Glu Ile Pro Asp Val Gly Asn Leu Ser 1205
1210 1215Gln Val Val Val Met Lys Ser Lys Asn Asp Gln Gly
Ile Thr Asn Lys 1220 1225
1230Cys Lys Met Asn Leu Gln Asp Asn Asn Gly Asn Asp Ile Gly Phe Ile
1235 1240 1245Gly Phe His Gln Phe Asn Asn
Ile Ala Lys Leu Val Ala Ser Asn Trp 1250 1255
1260Tyr Asn Arg Gln Ile Glu Arg Ser Ser Arg Thr Leu Gly Cys Ser
Trp1265 1270 1275 1280Glu
Phe Ile Pro Val Asp Asp Gly Trp Gly Glu Arg Pro Leu 1285
12902071294PRTArtificial
SequencePEPTIDE(1)...(1294)BoNT/A_Csyn8 207Met Pro Phe Val Asn Lys Gln
Phe Asn Tyr Lys Asp Pro Val Asn Gly1 5 10
15Val Asp Ile Ala Tyr Ile Lys Ile Pro Asn Ala Gly Gln
Met Gln Pro 20 25 30Val Lys
Ala Phe Lys Ile His Asn Lys Ile Trp Val Ile Pro Glu Arg 35
40 45Asp Thr Phe Thr Asn Pro Glu Glu Gly Asp
Leu Asn Pro Pro Pro Glu 50 55 60Ala
Lys Gln Val Pro Val Ser Tyr Tyr Asp Ser Thr Tyr Leu Ser Thr65
70 75 80Asp Asn Glu Lys Asp Asn
Tyr Leu Lys Gly Val Thr Lys Leu Phe Glu 85
90 95Arg Ile Tyr Ser Thr Asp Leu Gly Arg Met Leu Leu
Thr Ser Ile Val 100 105 110Arg
Gly Ile Pro Phe Trp Gly Gly Ser Thr Ile Asp Thr Glu Leu Lys 115
120 125Val Ile Asp Thr Asn Cys Ile Asn Val
Ile Gln Pro Asp Gly Ser Tyr 130 135
140Arg Ser Glu Glu Leu Asn Leu Val Ile Ile Gly Pro Ser Ala Asp Ile145
150 155 160Ile Gln Phe Glu
Cys Lys Ser Phe Gly His Glu Val Leu Asn Leu Thr 165
170 175Arg Asn Gly Tyr Gly Ser Thr Gln Tyr Ile
Arg Phe Ser Pro Asp Phe 180 185
190Thr Phe Gly Phe Glu Glu Ser Leu Glu Val Asp Thr Asn Pro Leu Leu
195 200 205Gly Ala Gly Lys Phe Ala Thr
Asp Pro Ala Val Thr Leu Ala His Glu 210 215
220Leu Ile His Ala Gly His Arg Leu Tyr Gly Ile Ala Ile Asn Pro
Asn225 230 235 240Arg Val
Phe Lys Val Asn Thr Asn Ala Tyr Tyr Glu Met Ser Gly Leu
245 250 255Glu Val Ser Phe Glu Glu Leu
Arg Thr Phe Gly Gly His Asp Ala Lys 260 265
270Phe Ile Asp Ser Leu Gln Glu Asn Glu Phe Arg Leu Tyr Tyr
Tyr Asn 275 280 285Lys Phe Lys Asp
Ile Ala Ser Thr Leu Asn Lys Ala Lys Ser Ile Val 290
295 300Gly Thr Thr Ala Ser Leu Gln Tyr Met Lys Asn Val
Phe Lys Glu Lys305 310 315
320Tyr Leu Leu Ser Glu Asp Thr Ser Gly Lys Phe Ser Val Asp Lys Leu
325 330 335Lys Phe Asp Lys Leu
Tyr Lys Met Leu Thr Glu Ile Tyr Thr Glu Asp 340
345 350Asn Phe Val Lys Phe Phe Lys Val Leu Asn Arg Lys
Thr Tyr Leu Asn 355 360 365Phe Asp
Lys Ala Val Phe Lys Ile Asn Ile Val Pro Lys Val Asn Tyr 370
375 380Thr Ile Tyr Asp Gly Phe Asn Leu Arg Asn Thr
Asn Leu Ala Ala Asn385 390 395
400Phe Asn Gly Gln Asn Thr Glu Ile Asn Asn Met Asn Phe Thr Lys Leu
405 410 415Lys Asn Phe Thr
Gly Leu Phe Glu Phe Tyr Lys Leu Leu Cys Val Arg 420
425 430Gly Ile Ile Thr Ser Lys Asp Thr Lys Lys Ala
Val Lys Tyr Ala Leu 435 440 445Asn
Asp Leu Cys Ile Lys Val Asn Asn Trp Asp Leu Phe Phe Ser Pro 450
455 460Ser Glu Asp Asn Phe Thr Asn Asp Leu Asn
Lys Gly Glu Glu Ile Thr465 470 475
480Ser Asp Thr Asn Ile Glu Ala Ala Glu Glu Asn Ile Ser Leu Asp
Leu 485 490 495Ile Gln Gln
Tyr Tyr Leu Thr Phe Asn Phe Asp Asn Glu Pro Glu Asn 500
505 510Ile Ser Ile Glu Asn Leu Ser Ser Asp Ile
Ile Gly Gln Leu Glu Leu 515 520
525Met Pro Asn Ile Glu Arg Phe Pro Asn Gly Lys Lys Tyr Glu Leu Asp 530
535 540Lys Tyr Thr Met Phe His Tyr Leu
Arg Ala Gln Glu Phe Glu His Gly545 550
555 560Lys Ser Arg Ile Ala Leu Thr Asn Ser Val Asn Glu
Ala Leu Leu Asn 565 570
575Pro Ser Arg Val Tyr Thr Phe Phe Ser Ser Asp Tyr Val Lys Lys Val
580 585 590Asn Lys Ala Thr Glu Ala
Ala Met Phe Leu Gly Trp Val Glu Gln Leu 595 600
605Val Tyr Asp Phe Thr Asp Glu Thr Ser Glu Val Ser Thr Thr
Asp Lys 610 615 620Ile Ala Asp Ile Thr
Ile Ile Ile Pro Tyr Ile Gly Pro Ala Leu Asn625 630
635 640Ile Gly Asn Met Leu Tyr Lys Asp Asp Phe
Val Gly Ala Leu Ile Phe 645 650
655Ser Gly Ala Val Ile Leu Leu Glu Phe Ile Pro Glu Ile Ala Ile Pro
660 665 670Val Leu Gly Thr Phe
Ala Leu Val Ser Tyr Ile Ala Asn Lys Val Leu 675
680 685Thr Val Gln Thr Ile Asp Asn Ala Leu Ser Lys Arg
Asn Glu Lys Trp 690 695 700Asp Glu Val
Tyr Lys Tyr Ile Val Thr Asn Trp Leu Ala Lys Val Asn705
710 715 720Thr Gln Ile Asp Leu Ile Arg
Lys Lys Met Lys Glu Ala Leu Glu Asn 725
730 735Gln Ala Glu Ala Thr Lys Ala Ile Ile Asn Tyr Gln
Tyr Asn Gln Tyr 740 745 750Thr
Glu Glu Glu Lys Asn Asn Ile Asn Phe Asn Ile Asp Asp Leu Ser 755
760 765Ser Lys Leu Asn Glu Ser Ile Asn Lys
Ala Met Ile Asn Ile Asn Lys 770 775
780Phe Leu Asn Gln Cys Ser Val Ser Tyr Leu Met Asn Ser Met Ile Pro785
790 795 800Tyr Gly Val Lys
Arg Leu Glu Asp Phe Asp Ala Ser Leu Lys Asp Ala 805
810 815Leu Leu Lys Tyr Ile Tyr Asp Asn Arg Gly
Thr Leu Ile Gly Gln Val 820 825
830Asp Arg Leu Lys Asp Lys Val Asn Asn Thr Leu Ser Thr Asp Ile Pro
835 840 845Phe Gln Leu Ser Lys Tyr Val
Asp Asn Gln Arg Leu Leu Ser Thr Phe 850 855
860Thr Glu Tyr Ile Lys Asn Ile Ile Asn Thr Ser Ile Leu Asn Leu
Arg865 870 875 880Tyr Glu
Ser Asn His Leu Ile Asp Leu Ser Arg Tyr Ala Ser Lys Ile
885 890 895Asn Ile Gly Ser Lys Val Asn
Phe Asp Pro Ile Asp Lys Asn Gln Ile 900 905
910Gln Leu Phe Asn Leu Glu Ser Ser Lys Ile Glu Val Ile Leu
Lys Asn 915 920 925Ala Ile Val Tyr
Asn Ser Met Tyr Glu Asn Phe Ser Thr Ser Phe Trp 930
935 940Ile Arg Ile Pro Lys Tyr Phe Asn Ser Ile Ser Leu
Asn Asn Glu Tyr945 950 955
960Thr Ile Ile Asn Cys Met Glu Asn Asn Ser Gly Trp Lys Val Ser Leu
965 970 975Asn Tyr Gly Glu Ile
Ile Trp Thr Leu Gln Asp Thr Gln Glu Ile Lys 980
985 990Gln Arg Val Val Phe Lys Tyr Ser Gln Met Ile Asn
Ile Ser Asp Tyr 995 1000 1005Ile
Asn Arg Trp Ile Phe Val Thr Ile Thr Asn Asn Arg Leu Asn Asn 1010
1015 1020Ser Lys Ile Tyr Ile Asn Gly Arg Leu Ile
Asp Gln Lys Pro Ile Ser1025 1030 1035
1040Asn Leu Gly Asn Ile His Ala Ser Asn Asn Ile Met Phe Lys Leu
Asp 1045 1050 1055Gly Cys
Arg Asp Thr His Arg Tyr Ile Trp Ile Lys Tyr Phe Asn Leu 1060
1065 1070Phe Asp Lys Glu Leu Asn Glu Lys Glu
Ile Lys Asp Leu Tyr Asp Asn 1075 1080
1085Gln Ser Asn Ser Gly Ile Leu Lys Asp Phe Trp Gly Asp Tyr Leu Gln
1090 1095 1100Tyr Asp Lys Pro Tyr Tyr Met
Leu Asn Leu Tyr Asp Pro Asn Lys Tyr1105 1110
1115 1120Val Asp Val Asn Asn Val Gly Ile Arg Gly Tyr Met
Tyr Leu Lys Gly 1125 1130
1135Pro Arg Gly Ser Val Met Thr Thr Asn Ile Tyr Leu Asn Ser Ser Leu
1140 1145 1150Tyr Arg Gly Thr Lys Phe
Ile Ile Lys Lys Tyr Ala Ser Gly Asn Lys 1155 1160
1165Asp Asn Ile Val Arg Asn Asn Asp Arg Val Tyr Ile Asn Val
Val Val 1170 1175 1180Lys Asn Lys Glu
Tyr Arg Leu Ala Thr Asn Ala Ser Gln Ala Gly Val1185 1190
1195 1200Glu Lys Ile Leu Ser Ala Leu Glu Ile
Pro Asp Val Gly Asn Leu Ser 1205 1210
1215Gln Val Val Val Met Lys Ser Lys Asn Asp Gln Gly Ile Thr Asn
Lys 1220 1225 1230Cys Lys Met
Asn Leu Gln Asp Asn Asn Gly Asn Asp Ile Gly Phe Ile 1235
1240 1245Gly Phe His Gln Phe Asn Asn Ile Ala Lys Leu
Val Ala Ser Asn Trp 1250 1255 1260Tyr
Asn Arg Gln Ile Glu Arg Ser Ser Arg Thr Leu Gly Cys Ser Trp1265
1270 1275 1280Glu Phe Ile Pro Val Asp
Asp Gly Trp Gly Glu Arg Pro Leu 1285
12902081294PRTArtificial SequenceBoNT/A_Csnp8 208Met Pro Phe Val Asn Lys
Gln Phe Asn Tyr Lys Asp Pro Val Asn Gly1 5
10 15Val Asp Ile Ala Tyr Ile Lys Ile Pro Asn Ala Gly
Gln Met Gln Pro 20 25 30Val
Lys Ala Phe Lys Ile His Asn Lys Ile Trp Val Ile Pro Glu Arg 35
40 45Asp Thr Phe Thr Asn Pro Glu Glu Gly
Asp Leu Asn Pro Pro Pro Glu 50 55
60Ala Lys Gln Val Pro Val Ser Tyr Tyr Asp Ser Thr Tyr Leu Ser Thr65
70 75 80Asp Asn Glu Lys Asp
Asn Tyr Leu Lys Gly Val Thr Lys Leu Phe Glu 85
90 95Arg Ile Tyr Ser Thr Asp Leu Gly Arg Met Leu
Leu Thr Ser Ile Val 100 105
110Arg Gly Ile Pro Phe Trp Gly Gly Ser Thr Ile Asp Thr Glu Leu Lys
115 120 125Val Ile Asp Thr Asn Cys Ile
Asn Val Ile Gln Pro Asp Gly Ser Tyr 130 135
140Arg Ser Glu Glu Leu Asn Leu Val Ile Ile Gly Pro Ser Ala Asp
Ile145 150 155 160Ile Gln
Phe Glu Cys Lys Ser Phe Gly His Glu Val Leu Asn Leu Thr
165 170 175Arg Asn Gly Tyr Gly Ser Thr
Gln Tyr Ile Arg Phe Ser Pro Asp Phe 180 185
190Thr Phe Gly Phe Glu Glu Ser Leu Glu Val Asp Thr Asn Pro
Leu Leu 195 200 205Gly Ala Gly Lys
Phe Ala Thr Asp Pro Ala Val Thr Leu Ala His Glu 210
215 220Leu Ile His Ala Gly His Arg Leu Tyr Gly Ile Ala
Ile Asn Pro Asn225 230 235
240Arg Val Phe Lys Val Asn Thr Asn Ala Tyr Tyr Glu Met Ser Gly Leu
245 250 255Glu Val Ser Phe Glu
Glu Leu Arg Thr Phe Gly Gly His Asp Ala Lys 260
265 270Phe Ile Asp Ser Leu Gln Glu Asn Glu Phe Arg Leu
Tyr Tyr Tyr Asn 275 280 285Lys Phe
Lys Asp Ile Ala Ser Thr Leu Asn Lys Ala Lys Ser Ile Val 290
295 300Gly Thr Thr Ala Ser Leu Gln Tyr Met Lys Asn
Val Phe Lys Glu Lys305 310 315
320Tyr Leu Leu Ser Glu Asp Thr Ser Gly Lys Phe Ser Val Asp Lys Leu
325 330 335Lys Phe Asp Lys
Leu Tyr Lys Met Leu Thr Glu Ile Tyr Thr Glu Asp 340
345 350Asn Phe Val Lys Phe Phe Lys Val Leu Asn Arg
Lys Thr Tyr Leu Asn 355 360 365Phe
Asp Lys Ala Val Phe Lys Ile Asn Ile Val Pro Lys Val Asn Tyr 370
375 380Thr Ile Tyr Asp Gly Phe Asn Leu Arg Asn
Thr Asn Leu Ala Ala Asn385 390 395
400Phe Asn Gly Gln Asn Thr Glu Ile Asn Asn Met Asn Phe Thr Lys
Leu 405 410 415Lys Asn Phe
Thr Gly Leu Phe Glu Phe Tyr Lys Leu Leu Cys Val Arg 420
425 430Gly Ile Ile Thr Ser Lys Ala Asn Gln Arg
Ala Thr Lys Met Ala Leu 435 440
445Asn Asp Leu Cys Ile Lys Val Asn Asn Trp Asp Leu Phe Phe Ser Pro 450
455 460Ser Glu Asp Asn Phe Thr Asn Asp
Leu Asn Lys Gly Glu Glu Ile Thr465 470
475 480Ser Asp Thr Asn Ile Glu Ala Ala Glu Glu Asn Ile
Ser Leu Asp Leu 485 490
495Ile Gln Gln Tyr Tyr Leu Thr Phe Asn Phe Asp Asn Glu Pro Glu Asn
500 505 510Ile Ser Ile Glu Asn Leu
Ser Ser Asp Ile Ile Gly Gln Leu Glu Leu 515 520
525Met Pro Asn Ile Glu Arg Phe Pro Asn Gly Lys Lys Tyr Glu
Leu Asp 530 535 540Lys Tyr Thr Met Phe
His Tyr Leu Arg Ala Gln Glu Phe Glu His Gly545 550
555 560Lys Ser Arg Ile Ala Leu Thr Asn Ser Val
Asn Glu Ala Leu Leu Asn 565 570
575Pro Ser Arg Val Tyr Thr Phe Phe Ser Ser Asp Tyr Val Lys Lys Val
580 585 590Asn Lys Ala Thr Glu
Ala Ala Met Phe Leu Gly Trp Val Glu Gln Leu 595
600 605Val Tyr Asp Phe Thr Asp Glu Thr Ser Glu Val Ser
Thr Thr Asp Lys 610 615 620Ile Ala Asp
Ile Thr Ile Ile Ile Pro Tyr Ile Gly Pro Ala Leu Asn625
630 635 640Ile Gly Asn Met Leu Tyr Lys
Asp Asp Phe Val Gly Ala Leu Ile Phe 645
650 655Ser Gly Ala Val Ile Leu Leu Glu Phe Ile Pro Glu
Ile Ala Ile Pro 660 665 670Val
Leu Gly Thr Phe Ala Leu Val Ser Tyr Ile Ala Asn Lys Val Leu 675
680 685Thr Val Gln Thr Ile Asp Asn Ala Leu
Ser Lys Arg Asn Glu Lys Trp 690 695
700Asp Glu Val Tyr Lys Tyr Ile Val Thr Asn Trp Leu Ala Lys Val Asn705
710 715 720Thr Gln Ile Asp
Leu Ile Arg Lys Lys Met Lys Glu Ala Leu Glu Asn 725
730 735Gln Ala Glu Ala Thr Lys Ala Ile Ile Asn
Tyr Gln Tyr Asn Gln Tyr 740 745
750Thr Glu Glu Glu Lys Asn Asn Ile Asn Phe Asn Ile Asp Asp Leu Ser
755 760 765Ser Lys Leu Asn Glu Ser Ile
Asn Lys Ala Met Ile Asn Ile Asn Lys 770 775
780Phe Leu Asn Gln Cys Ser Val Ser Tyr Leu Met Asn Ser Met Ile
Pro785 790 795 800Tyr Gly
Val Lys Arg Leu Glu Asp Phe Asp Ala Ser Leu Lys Asp Ala
805 810 815Leu Leu Lys Tyr Ile Tyr Asp
Asn Arg Gly Thr Leu Ile Gly Gln Val 820 825
830Asp Arg Leu Lys Asp Lys Val Asn Asn Thr Leu Ser Thr Asp
Ile Pro 835 840 845Phe Gln Leu Ser
Lys Tyr Val Asp Asn Gln Arg Leu Leu Ser Thr Phe 850
855 860Thr Glu Tyr Ile Lys Asn Ile Ile Asn Thr Ser Ile
Leu Asn Leu Arg865 870 875
880Tyr Glu Ser Asn His Leu Ile Asp Leu Ser Arg Tyr Ala Ser Lys Ile
885 890 895Asn Ile Gly Ser Lys
Val Asn Phe Asp Pro Ile Asp Lys Asn Gln Ile 900
905 910Gln Leu Phe Asn Leu Glu Ser Ser Lys Ile Glu Val
Ile Leu Lys Asn 915 920 925Ala Ile
Val Tyr Asn Ser Met Tyr Glu Asn Phe Ser Thr Ser Phe Trp 930
935 940Ile Arg Ile Pro Lys Tyr Phe Asn Ser Ile Ser
Leu Asn Asn Glu Tyr945 950 955
960Thr Ile Ile Asn Cys Met Glu Asn Asn Ser Gly Trp Lys Val Ser Leu
965 970 975Asn Tyr Gly Glu
Ile Ile Trp Thr Leu Gln Asp Thr Gln Glu Ile Lys 980
985 990Gln Arg Val Val Phe Lys Tyr Ser Gln Met Ile
Asn Ile Ser Asp Tyr 995 1000
1005Ile Asn Arg Trp Ile Phe Val Thr Ile Thr Asn Asn Arg Leu Asn Asn
1010 1015 1020Ser Lys Ile Tyr Ile Asn Gly
Arg Leu Ile Asp Gln Lys Pro Ile Ser1025 1030
1035 1040Asn Leu Gly Asn Ile His Ala Ser Asn Asn Ile Met
Phe Lys Leu Asp 1045 1050
1055Gly Cys Arg Asp Thr His Arg Tyr Ile Trp Ile Lys Tyr Phe Asn Leu
1060 1065 1070Phe Asp Lys Glu Leu Asn
Glu Lys Glu Ile Lys Asp Leu Tyr Asp Asn 1075 1080
1085Gln Ser Asn Ser Gly Ile Leu Lys Asp Phe Trp Gly Asp Tyr
Leu Gln 1090 1095 1100Tyr Asp Lys Pro
Tyr Tyr Met Leu Asn Leu Tyr Asp Pro Asn Lys Tyr1105 1110
1115 1120Val Asp Val Asn Asn Val Gly Ile Arg
Gly Tyr Met Tyr Leu Lys Gly 1125 1130
1135Pro Arg Gly Ser Val Met Thr Thr Asn Ile Tyr Leu Asn Ser Ser
Leu 1140 1145 1150Tyr Arg Gly
Thr Lys Phe Ile Ile Lys Lys Tyr Ala Ser Gly Asn Lys 1155
1160 1165Asp Asn Ile Val Arg Asn Asn Asp Arg Val Tyr
Ile Asn Val Val Val 1170 1175 1180Lys
Asn Lys Glu Tyr Arg Leu Ala Thr Asn Ala Ser Gln Ala Gly Val1185
1190 1195 1200Glu Lys Ile Leu Ser Ala
Leu Glu Ile Pro Asp Val Gly Asn Leu Ser 1205
1210 1215Gln Val Val Val Met Lys Ser Lys Asn Asp Gln Gly
Ile Thr Asn Lys 1220 1225
1230Cys Lys Met Asn Leu Gln Asp Asn Asn Gly Asn Asp Ile Gly Phe Ile
1235 1240 1245Gly Phe His Gln Phe Asn Asn
Ile Ala Lys Leu Val Ala Ser Asn Trp 1250 1255
1260Tyr Asn Arg Gln Ile Glu Arg Ser Ser Arg Thr Leu Gly Cys Ser
Trp1265 1270 1275 1280Glu
Phe Ile Pro Val Asp Asp Gly Trp Gly Glu Arg Pro Leu 1285
12902091325PRTArtificial
SequencePEPTIDE(1)...(1325)BoNT/A_DF39 209Met Pro Phe Val Asn Lys Gln Phe
Asn Tyr Lys Asp Pro Val Asn Gly1 5 10
15Val Asp Ile Ala Tyr Ile Lys Ile Pro Asn Ala Gly Gln Met
Gln Pro 20 25 30Val Lys Ala
Phe Lys Ile His Asn Lys Ile Trp Val Ile Pro Glu Arg 35
40 45Asp Thr Phe Thr Asn Pro Glu Glu Gly Asp Leu
Asn Pro Pro Pro Glu 50 55 60Ala Lys
Gln Val Pro Val Ser Tyr Tyr Asp Ser Thr Tyr Leu Ser Thr65
70 75 80Asp Asn Glu Lys Asp Asn Tyr
Leu Lys Gly Val Thr Lys Leu Phe Glu 85 90
95Arg Ile Tyr Ser Thr Asp Leu Gly Arg Met Leu Leu Thr
Ser Ile Val 100 105 110Arg Gly
Ile Pro Phe Trp Gly Gly Ser Thr Ile Asp Thr Glu Leu Lys 115
120 125Val Ile Asp Thr Asn Cys Ile Asn Val Ile
Gln Pro Asp Gly Ser Tyr 130 135 140Arg
Ser Glu Glu Leu Asn Leu Val Ile Ile Gly Pro Ser Ala Asp Ile145
150 155 160Ile Gln Phe Glu Cys Lys
Ser Phe Gly His Glu Val Leu Asn Leu Thr 165
170 175Arg Asn Gly Tyr Gly Ser Thr Gln Tyr Ile Arg Phe
Ser Pro Asp Phe 180 185 190Thr
Phe Gly Phe Glu Glu Ser Leu Glu Val Asp Thr Asn Pro Leu Leu 195
200 205Gly Ala Gly Lys Phe Ala Thr Asp Pro
Ala Val Thr Leu Ala His Glu 210 215
220Leu Ile His Ala Gly His Arg Leu Tyr Gly Ile Ala Ile Asn Pro Asn225
230 235 240Arg Val Phe Lys
Val Asn Thr Asn Ala Tyr Tyr Glu Met Ser Gly Leu 245
250 255Glu Val Ser Phe Glu Glu Leu Arg Thr Phe
Gly Gly His Asp Ala Lys 260 265
270Phe Ile Asp Ser Leu Gln Glu Asn Glu Phe Arg Leu Tyr Tyr Tyr Asn
275 280 285Lys Phe Lys Asp Ile Ala Ser
Thr Leu Asn Lys Ala Lys Ser Ile Val 290 295
300Gly Thr Thr Ala Ser Leu Gln Tyr Met Lys Asn Val Phe Lys Glu
Lys305 310 315 320Tyr Leu
Leu Ser Glu Asp Thr Ser Gly Lys Phe Ser Val Asp Lys Leu
325 330 335Lys Phe Asp Lys Leu Tyr Lys
Met Leu Thr Glu Ile Tyr Thr Glu Asp 340 345
350Asn Phe Val Lys Phe Phe Lys Val Leu Asn Arg Lys Thr Tyr
Leu Asn 355 360 365Phe Asp Lys Ala
Val Phe Lys Ile Asn Ile Val Pro Lys Val Asn Tyr 370
375 380Thr Ile Tyr Asp Gly Phe Asn Leu Arg Asn Thr Asn
Leu Ala Ala Asn385 390 395
400Phe Asn Gly Gln Asn Thr Glu Ile Asn Asn Met Asn Phe Thr Lys Leu
405 410 415Lys Asn Phe Thr Gly
Leu Phe Glu Phe Tyr Lys Leu Leu Cys Val Arg 420
425 430Gly Ile Ile Thr Ser Lys Ala Gln Val Glu Glu Val
Val Asp Ile Ile 435 440 445Arg Val
Asn Val Asp Lys Val Leu Glu Arg Asp Gln Lys Leu Ser Glu 450
455 460Leu Asp Asp Arg Ala Asp Ala Leu Gln Ala Gly
Ala Ser Ala Leu Asn465 470 475
480Asp Leu Cys Ile Lys Val Asn Asn Trp Asp Leu Phe Phe Ser Pro Ser
485 490 495Glu Asp Asn Phe
Thr Asn Asp Leu Asn Lys Gly Glu Glu Ile Thr Ser 500
505 510Asp Thr Asn Ile Glu Ala Ala Glu Glu Asn Ile
Ser Leu Asp Leu Ile 515 520 525Gln
Gln Tyr Tyr Leu Thr Phe Asn Phe Asp Asn Glu Pro Glu Asn Ile 530
535 540Ser Ile Glu Asn Leu Ser Ser Asp Ile Ile
Gly Gln Leu Glu Leu Met545 550 555
560Pro Asn Ile Glu Arg Phe Pro Asn Gly Lys Lys Tyr Glu Leu Asp
Lys 565 570 575Tyr Thr Met
Phe His Tyr Leu Arg Ala Gln Glu Phe Glu His Gly Lys 580
585 590Ser Arg Ile Ala Leu Thr Asn Ser Val Asn
Glu Ala Leu Leu Asn Pro 595 600
605Ser Arg Val Tyr Thr Phe Phe Ser Ser Asp Tyr Val Lys Lys Val Asn 610
615 620Lys Ala Thr Glu Ala Ala Met Phe
Leu Gly Trp Val Glu Gln Leu Val625 630
635 640Tyr Asp Phe Thr Asp Glu Thr Ser Glu Val Ser Thr
Thr Asp Lys Ile 645 650
655Ala Asp Ile Thr Ile Ile Ile Pro Tyr Ile Gly Pro Ala Leu Asn Ile
660 665 670Gly Asn Met Leu Tyr Lys
Asp Asp Phe Val Gly Ala Leu Ile Phe Ser 675 680
685Gly Ala Val Ile Leu Leu Glu Phe Ile Pro Glu Ile Ala Ile
Pro Val 690 695 700Leu Gly Thr Phe Ala
Leu Val Ser Tyr Ile Ala Asn Lys Val Leu Thr705 710
715 720Val Gln Thr Ile Asp Asn Ala Leu Ser Lys
Arg Asn Glu Lys Trp Asp 725 730
735Glu Val Tyr Lys Tyr Ile Val Thr Asn Trp Leu Ala Lys Val Asn Thr
740 745 750Gln Ile Asp Leu Ile
Arg Lys Lys Met Lys Glu Ala Leu Glu Asn Gln 755
760 765Ala Glu Ala Thr Lys Ala Ile Ile Asn Tyr Gln Tyr
Asn Gln Tyr Thr 770 775 780Glu Glu Glu
Lys Asn Asn Ile Asn Phe Asn Ile Asp Asp Leu Ser Ser785
790 795 800Lys Leu Asn Glu Ser Ile Asn
Lys Ala Met Ile Asn Ile Asn Lys Phe 805
810 815Leu Asn Gln Cys Ser Val Ser Tyr Leu Met Asn Ser
Met Ile Pro Tyr 820 825 830Gly
Val Lys Arg Leu Glu Asp Phe Asp Ala Ser Leu Lys Asp Ala Leu 835
840 845Leu Lys Tyr Ile Tyr Asp Asn Arg Gly
Thr Leu Ile Gly Gln Val Asp 850 855
860Arg Leu Lys Asp Lys Val Asn Asn Thr Leu Ser Thr Asp Ile Pro Phe865
870 875 880Gln Leu Ser Lys
Tyr Val Asp Asn Gln Arg Leu Leu Ser Thr Phe Thr 885
890 895Glu Tyr Ile Lys Asn Ile Ile Asn Thr Ser
Ile Leu Asn Leu Arg Tyr 900 905
910Glu Ser Asn His Leu Ile Asp Leu Ser Arg Tyr Ala Ser Lys Ile Asn
915 920 925Ile Gly Ser Lys Val Asn Phe
Asp Pro Ile Asp Lys Asn Gln Ile Gln 930 935
940Leu Phe Asn Leu Glu Ser Ser Lys Ile Glu Val Ile Leu Lys Asn
Ala945 950 955 960Ile Val
Tyr Asn Ser Met Tyr Glu Asn Phe Ser Thr Ser Phe Trp Ile
965 970 975Arg Ile Pro Lys Tyr Phe Asn
Ser Ile Ser Leu Asn Asn Glu Tyr Thr 980 985
990Ile Ile Asn Cys Met Glu Asn Asn Ser Gly Trp Lys Val Ser
Leu Asn 995 1000 1005Tyr Gly Glu
Ile Ile Trp Thr Leu Gln Asp Thr Gln Glu Ile Lys Gln 1010
1015 1020Arg Val Val Phe Lys Tyr Ser Gln Met Ile Asn Ile
Ser Asp Tyr Ile1025 1030 1035
1040Asn Arg Trp Ile Phe Val Thr Ile Thr Asn Asn Arg Leu Asn Asn Ser
1045 1050 1055Lys Ile Tyr Ile Asn
Gly Arg Leu Ile Asp Gln Lys Pro Ile Ser Asn 1060
1065 1070Leu Gly Asn Ile His Ala Ser Asn Asn Ile Met Phe
Lys Leu Asp Gly 1075 1080 1085Cys
Arg Asp Thr His Arg Tyr Ile Trp Ile Lys Tyr Phe Asn Leu Phe 1090
1095 1100Asp Lys Glu Leu Asn Glu Lys Glu Ile Lys
Asp Leu Tyr Asp Asn Gln1105 1110 1115
1120Ser Asn Ser Gly Ile Leu Lys Asp Phe Trp Gly Asp Tyr Leu Gln
Tyr 1125 1130 1135Asp Lys
Pro Tyr Tyr Met Leu Asn Leu Tyr Asp Pro Asn Lys Tyr Val 1140
1145 1150Asp Val Asn Asn Val Gly Ile Arg Gly
Tyr Met Tyr Leu Lys Gly Pro 1155 1160
1165Arg Gly Ser Val Met Thr Thr Asn Ile Tyr Leu Asn Ser Ser Leu Tyr
1170 1175 1180Arg Gly Thr Lys Phe Ile Ile
Lys Lys Tyr Ala Ser Gly Asn Lys Asp1185 1190
1195 1200Asn Ile Val Arg Asn Asn Asp Arg Val Tyr Ile Asn
Val Val Val Lys 1205 1210
1215Asn Lys Glu Tyr Arg Leu Ala Thr Asn Ala Ser Gln Ala Gly Val Glu
1220 1225 1230Lys Ile Leu Ser Ala Leu
Glu Ile Pro Asp Val Gly Asn Leu Ser Gln 1235 1240
1245Val Val Val Met Lys Ser Lys Asn Asp Gln Gly Ile Thr Asn
Lys Cys 1250 1255 1260Lys Met Asn Leu
Gln Asp Asn Asn Gly Asn Asp Ile Gly Phe Ile Gly1265 1270
1275 1280Phe His Gln Phe Asn Asn Ile Ala Lys
Leu Val Ala Ser Asn Trp Tyr 1285 1290
1295Asn Arg Gln Ile Glu Arg Ser Ser Arg Thr Leu Gly Cys Ser Trp
Glu 1300 1305 1310Phe Ile Pro
Val Asp Asp Gly Trp Gly Glu Arg Pro Leu 1315 1320
13252101294PRTArtificial
SequencePEPTIDE(1)...(1294)BoNT/A_D8 210Met Pro Phe Val Asn Lys Gln Phe
Asn Tyr Lys Asp Pro Val Asn Gly1 5 10
15Val Asp Ile Ala Tyr Ile Lys Ile Pro Asn Ala Gly Gln Met
Gln Pro 20 25 30Val Lys Ala
Phe Lys Ile His Asn Lys Ile Trp Val Ile Pro Glu Arg 35
40 45Asp Thr Phe Thr Asn Pro Glu Glu Gly Asp Leu
Asn Pro Pro Pro Glu 50 55 60Ala Lys
Gln Val Pro Val Ser Tyr Tyr Asp Ser Thr Tyr Leu Ser Thr65
70 75 80Asp Asn Glu Lys Asp Asn Tyr
Leu Lys Gly Val Thr Lys Leu Phe Glu 85 90
95Arg Ile Tyr Ser Thr Asp Leu Gly Arg Met Leu Leu Thr
Ser Ile Val 100 105 110Arg Gly
Ile Pro Phe Trp Gly Gly Ser Thr Ile Asp Thr Glu Leu Lys 115
120 125Val Ile Asp Thr Asn Cys Ile Asn Val Ile
Gln Pro Asp Gly Ser Tyr 130 135 140Arg
Ser Glu Glu Leu Asn Leu Val Ile Ile Gly Pro Ser Ala Asp Ile145
150 155 160Ile Gln Phe Glu Cys Lys
Ser Phe Gly His Glu Val Leu Asn Leu Thr 165
170 175Arg Asn Gly Tyr Gly Ser Thr Gln Tyr Ile Arg Phe
Ser Pro Asp Phe 180 185 190Thr
Phe Gly Phe Glu Glu Ser Leu Glu Val Asp Thr Asn Pro Leu Leu 195
200 205Gly Ala Gly Lys Phe Ala Thr Asp Pro
Ala Val Thr Leu Ala His Glu 210 215
220Leu Ile His Ala Gly His Arg Leu Tyr Gly Ile Ala Ile Asn Pro Asn225
230 235 240Arg Val Phe Lys
Val Asn Thr Asn Ala Tyr Tyr Glu Met Ser Gly Leu 245
250 255Glu Val Ser Phe Glu Glu Leu Arg Thr Phe
Gly Gly His Asp Ala Lys 260 265
270Phe Ile Asp Ser Leu Gln Glu Asn Glu Phe Arg Leu Tyr Tyr Tyr Asn
275 280 285Lys Phe Lys Asp Ile Ala Ser
Thr Leu Asn Lys Ala Lys Ser Ile Val 290 295
300Gly Thr Thr Ala Ser Leu Gln Tyr Met Lys Asn Val Phe Lys Glu
Lys305 310 315 320Tyr Leu
Leu Ser Glu Asp Thr Ser Gly Lys Phe Ser Val Asp Lys Leu
325 330 335Lys Phe Asp Lys Leu Tyr Lys
Met Leu Thr Glu Ile Tyr Thr Glu Asp 340 345
350Asn Phe Val Lys Phe Phe Lys Val Leu Asn Arg Lys Thr Tyr
Leu Asn 355 360 365Phe Asp Lys Ala
Val Phe Lys Ile Asn Ile Val Pro Lys Val Asn Tyr 370
375 380Thr Ile Tyr Asp Gly Phe Asn Leu Arg Asn Thr Asn
Leu Ala Ala Asn385 390 395
400Phe Asn Gly Gln Asn Thr Glu Ile Asn Asn Met Asn Phe Thr Lys Leu
405 410 415Lys Asn Phe Thr Gly
Leu Phe Glu Phe Tyr Lys Leu Leu Cys Val Arg 420
425 430Gly Ile Ile Thr Ser Lys Arg Asp Gln Lys Leu Ser
Glu Leu Ala Leu 435 440 445Asn Asp
Leu Cys Ile Lys Val Asn Asn Trp Asp Leu Phe Phe Ser Pro 450
455 460Ser Glu Asp Asn Phe Thr Asn Asp Leu Asn Lys
Gly Glu Glu Ile Thr465 470 475
480Ser Asp Thr Asn Ile Glu Ala Ala Glu Glu Asn Ile Ser Leu Asp Leu
485 490 495Ile Gln Gln Tyr
Tyr Leu Thr Phe Asn Phe Asp Asn Glu Pro Glu Asn 500
505 510Ile Ser Ile Glu Asn Leu Ser Ser Asp Ile Ile
Gly Gln Leu Glu Leu 515 520 525Met
Pro Asn Ile Glu Arg Phe Pro Asn Gly Lys Lys Tyr Glu Leu Asp 530
535 540Lys Tyr Thr Met Phe His Tyr Leu Arg Ala
Gln Glu Phe Glu His Gly545 550 555
560Lys Ser Arg Ile Ala Leu Thr Asn Ser Val Asn Glu Ala Leu Leu
Asn 565 570 575Pro Ser Arg
Val Tyr Thr Phe Phe Ser Ser Asp Tyr Val Lys Lys Val 580
585 590Asn Lys Ala Thr Glu Ala Ala Met Phe Leu
Gly Trp Val Glu Gln Leu 595 600
605Val Tyr Asp Phe Thr Asp Glu Thr Ser Glu Val Ser Thr Thr Asp Lys 610
615 620Ile Ala Asp Ile Thr Ile Ile Ile
Pro Tyr Ile Gly Pro Ala Leu Asn625 630
635 640Ile Gly Asn Met Leu Tyr Lys Asp Asp Phe Val Gly
Ala Leu Ile Phe 645 650
655Ser Gly Ala Val Ile Leu Leu Glu Phe Ile Pro Glu Ile Ala Ile Pro
660 665 670Val Leu Gly Thr Phe Ala
Leu Val Ser Tyr Ile Ala Asn Lys Val Leu 675 680
685Thr Val Gln Thr Ile Asp Asn Ala Leu Ser Lys Arg Asn Glu
Lys Trp 690 695 700Asp Glu Val Tyr Lys
Tyr Ile Val Thr Asn Trp Leu Ala Lys Val Asn705 710
715 720Thr Gln Ile Asp Leu Ile Arg Lys Lys Met
Lys Glu Ala Leu Glu Asn 725 730
735Gln Ala Glu Ala Thr Lys Ala Ile Ile Asn Tyr Gln Tyr Asn Gln Tyr
740 745 750Thr Glu Glu Glu Lys
Asn Asn Ile Asn Phe Asn Ile Asp Asp Leu Ser 755
760 765Ser Lys Leu Asn Glu Ser Ile Asn Lys Ala Met Ile
Asn Ile Asn Lys 770 775 780Phe Leu Asn
Gln Cys Ser Val Ser Tyr Leu Met Asn Ser Met Ile Pro785
790 795 800Tyr Gly Val Lys Arg Leu Glu
Asp Phe Asp Ala Ser Leu Lys Asp Ala 805
810 815Leu Leu Lys Tyr Ile Tyr Asp Asn Arg Gly Thr Leu
Ile Gly Gln Val 820 825 830Asp
Arg Leu Lys Asp Lys Val Asn Asn Thr Leu Ser Thr Asp Ile Pro 835
840 845Phe Gln Leu Ser Lys Tyr Val Asp Asn
Gln Arg Leu Leu Ser Thr Phe 850 855
860Thr Glu Tyr Ile Lys Asn Ile Ile Asn Thr Ser Ile Leu Asn Leu Arg865
870 875 880Tyr Glu Ser Asn
His Leu Ile Asp Leu Ser Arg Tyr Ala Ser Lys Ile 885
890 895Asn Ile Gly Ser Lys Val Asn Phe Asp Pro
Ile Asp Lys Asn Gln Ile 900 905
910Gln Leu Phe Asn Leu Glu Ser Ser Lys Ile Glu Val Ile Leu Lys Asn
915 920 925Ala Ile Val Tyr Asn Ser Met
Tyr Glu Asn Phe Ser Thr Ser Phe Trp 930 935
940Ile Arg Ile Pro Lys Tyr Phe Asn Ser Ile Ser Leu Asn Asn Glu
Tyr945 950 955 960Thr Ile
Ile Asn Cys Met Glu Asn Asn Ser Gly Trp Lys Val Ser Leu
965 970 975Asn Tyr Gly Glu Ile Ile Trp
Thr Leu Gln Asp Thr Gln Glu Ile Lys 980 985
990Gln Arg Val Val Phe Lys Tyr Ser Gln Met Ile Asn Ile Ser
Asp Tyr 995 1000 1005Ile Asn Arg
Trp Ile Phe Val Thr Ile Thr Asn Asn Arg Leu Asn Asn 1010
1015 1020Ser Lys Ile Tyr Ile Asn Gly Arg Leu Ile Asp Gln
Lys Pro Ile Ser1025 1030 1035
1040Asn Leu Gly Asn Ile His Ala Ser Asn Asn Ile Met Phe Lys Leu Asp
1045 1050 1055Gly Cys Arg Asp Thr
His Arg Tyr Ile Trp Ile Lys Tyr Phe Asn Leu 1060
1065 1070Phe Asp Lys Glu Leu Asn Glu Lys Glu Ile Lys Asp
Leu Tyr Asp Asn 1075 1080 1085Gln
Ser Asn Ser Gly Ile Leu Lys Asp Phe Trp Gly Asp Tyr Leu Gln 1090
1095 1100Tyr Asp Lys Pro Tyr Tyr Met Leu Asn Leu
Tyr Asp Pro Asn Lys Tyr1105 1110 1115
1120Val Asp Val Asn Asn Val Gly Ile Arg Gly Tyr Met Tyr Leu Lys
Gly 1125 1130 1135Pro Arg
Gly Ser Val Met Thr Thr Asn Ile Tyr Leu Asn Ser Ser Leu 1140
1145 1150Tyr Arg Gly Thr Lys Phe Ile Ile Lys
Lys Tyr Ala Ser Gly Asn Lys 1155 1160
1165Asp Asn Ile Val Arg Asn Asn Asp Arg Val Tyr Ile Asn Val Val Val
1170 1175 1180Lys Asn Lys Glu Tyr Arg Leu
Ala Thr Asn Ala Ser Gln Ala Gly Val1185 1190
1195 1200Glu Lys Ile Leu Ser Ala Leu Glu Ile Pro Asp Val
Gly Asn Leu Ser 1205 1210
1215Gln Val Val Val Met Lys Ser Lys Asn Asp Gln Gly Ile Thr Asn Lys
1220 1225 1230Cys Lys Met Asn Leu Gln
Asp Asn Asn Gly Asn Asp Ile Gly Phe Ile 1235 1240
1245Gly Phe His Gln Phe Asn Asn Ile Ala Lys Leu Val Ala Ser
Asn Trp 1250 1255 1260Tyr Asn Arg Gln
Ile Glu Arg Ser Ser Arg Thr Leu Gly Cys Ser Trp1265 1270
1275 1280Glu Phe Ile Pro Val Asp Asp Gly Trp
Gly Glu Arg Pro Leu 1285
12902111294PRTArtificial SequencePEPTIDE(1)...(1294)BoNT/A_E8 211Met Pro
Phe Val Asn Lys Gln Phe Asn Tyr Lys Asp Pro Val Asn Gly1 5
10 15Val Asp Ile Ala Tyr Ile Lys Ile
Pro Asn Ala Gly Gln Met Gln Pro 20 25
30Val Lys Ala Phe Lys Ile His Asn Lys Ile Trp Val Ile Pro Glu
Arg 35 40 45Asp Thr Phe Thr Asn
Pro Glu Glu Gly Asp Leu Asn Pro Pro Pro Glu 50 55
60Ala Lys Gln Val Pro Val Ser Tyr Tyr Asp Ser Thr Tyr Leu
Ser Thr65 70 75 80Asp
Asn Glu Lys Asp Asn Tyr Leu Lys Gly Val Thr Lys Leu Phe Glu
85 90 95Arg Ile Tyr Ser Thr Asp Leu
Gly Arg Met Leu Leu Thr Ser Ile Val 100 105
110Arg Gly Ile Pro Phe Trp Gly Gly Ser Thr Ile Asp Thr Glu
Leu Lys 115 120 125Val Ile Asp Thr
Asn Cys Ile Asn Val Ile Gln Pro Asp Gly Ser Tyr 130
135 140Arg Ser Glu Glu Leu Asn Leu Val Ile Ile Gly Pro
Ser Ala Asp Ile145 150 155
160Ile Gln Phe Glu Cys Lys Ser Phe Gly His Glu Val Leu Asn Leu Thr
165 170 175Arg Asn Gly Tyr Gly
Ser Thr Gln Tyr Ile Arg Phe Ser Pro Asp Phe 180
185 190Thr Phe Gly Phe Glu Glu Ser Leu Glu Val Asp Thr
Asn Pro Leu Leu 195 200 205Gly Ala
Gly Lys Phe Ala Thr Asp Pro Ala Val Thr Leu Ala His Glu 210
215 220Leu Ile His Ala Gly His Arg Leu Tyr Gly Ile
Ala Ile Asn Pro Asn225 230 235
240Arg Val Phe Lys Val Asn Thr Asn Ala Tyr Tyr Glu Met Ser Gly Leu
245 250 255Glu Val Ser Phe
Glu Glu Leu Arg Thr Phe Gly Gly His Asp Ala Lys 260
265 270Phe Ile Asp Ser Leu Gln Glu Asn Glu Phe Arg
Leu Tyr Tyr Tyr Asn 275 280 285Lys
Phe Lys Asp Ile Ala Ser Thr Leu Asn Lys Ala Lys Ser Ile Val 290
295 300Gly Thr Thr Ala Ser Leu Gln Tyr Met Lys
Asn Val Phe Lys Glu Lys305 310 315
320Tyr Leu Leu Ser Glu Asp Thr Ser Gly Lys Phe Ser Val Asp Lys
Leu 325 330 335Lys Phe Asp
Lys Leu Tyr Lys Met Leu Thr Glu Ile Tyr Thr Glu Asp 340
345 350Asn Phe Val Lys Phe Phe Lys Val Leu Asn
Arg Lys Thr Tyr Leu Asn 355 360
365Phe Asp Lys Ala Val Phe Lys Ile Asn Ile Val Pro Lys Val Asn Tyr 370
375 380Thr Ile Tyr Asp Gly Phe Asn Leu
Arg Asn Thr Asn Leu Ala Ala Asn385 390
395 400Phe Asn Gly Gln Asn Thr Glu Ile Asn Asn Met Asn
Phe Thr Lys Leu 405 410
415Lys Asn Phe Thr Gly Leu Phe Glu Phe Tyr Lys Leu Leu Cys Val Arg
420 425 430Gly Ile Ile Thr Ser Lys
Gln Ile Asp Arg Ile Met Glu Lys Ala Leu 435 440
445Asn Asp Leu Cys Ile Lys Val Asn Asn Trp Asp Leu Phe Phe
Ser Pro 450 455 460Ser Glu Asp Asn Phe
Thr Asn Asp Leu Asn Lys Gly Glu Glu Ile Thr465 470
475 480Ser Asp Thr Asn Ile Glu Ala Ala Glu Glu
Asn Ile Ser Leu Asp Leu 485 490
495Ile Gln Gln Tyr Tyr Leu Thr Phe Asn Phe Asp Asn Glu Pro Glu Asn
500 505 510Ile Ser Ile Glu Asn
Leu Ser Ser Asp Ile Ile Gly Gln Leu Glu Leu 515
520 525Met Pro Asn Ile Glu Arg Phe Pro Asn Gly Lys Lys
Tyr Glu Leu Asp 530 535 540Lys Tyr Thr
Met Phe His Tyr Leu Arg Ala Gln Glu Phe Glu His Gly545
550 555 560Lys Ser Arg Ile Ala Leu Thr
Asn Ser Val Asn Glu Ala Leu Leu Asn 565
570 575Pro Ser Arg Val Tyr Thr Phe Phe Ser Ser Asp Tyr
Val Lys Lys Val 580 585 590Asn
Lys Ala Thr Glu Ala Ala Met Phe Leu Gly Trp Val Glu Gln Leu 595
600 605Val Tyr Asp Phe Thr Asp Glu Thr Ser
Glu Val Ser Thr Thr Asp Lys 610 615
620Ile Ala Asp Ile Thr Ile Ile Ile Pro Tyr Ile Gly Pro Ala Leu Asn625
630 635 640Ile Gly Asn Met
Leu Tyr Lys Asp Asp Phe Val Gly Ala Leu Ile Phe 645
650 655Ser Gly Ala Val Ile Leu Leu Glu Phe Ile
Pro Glu Ile Ala Ile Pro 660 665
670Val Leu Gly Thr Phe Ala Leu Val Ser Tyr Ile Ala Asn Lys Val Leu
675 680 685Thr Val Gln Thr Ile Asp Asn
Ala Leu Ser Lys Arg Asn Glu Lys Trp 690 695
700Asp Glu Val Tyr Lys Tyr Ile Val Thr Asn Trp Leu Ala Lys Val
Asn705 710 715 720Thr Gln
Ile Asp Leu Ile Arg Lys Lys Met Lys Glu Ala Leu Glu Asn
725 730 735Gln Ala Glu Ala Thr Lys Ala
Ile Ile Asn Tyr Gln Tyr Asn Gln Tyr 740 745
750Thr Glu Glu Glu Lys Asn Asn Ile Asn Phe Asn Ile Asp Asp
Leu Ser 755 760 765Ser Lys Leu Asn
Glu Ser Ile Asn Lys Ala Met Ile Asn Ile Asn Lys 770
775 780Phe Leu Asn Gln Cys Ser Val Ser Tyr Leu Met Asn
Ser Met Ile Pro785 790 795
800Tyr Gly Val Lys Arg Leu Glu Asp Phe Asp Ala Ser Leu Lys Asp Ala
805 810 815Leu Leu Lys Tyr Ile
Tyr Asp Asn Arg Gly Thr Leu Ile Gly Gln Val 820
825 830Asp Arg Leu Lys Asp Lys Val Asn Asn Thr Leu Ser
Thr Asp Ile Pro 835 840 845Phe Gln
Leu Ser Lys Tyr Val Asp Asn Gln Arg Leu Leu Ser Thr Phe 850
855 860Thr Glu Tyr Ile Lys Asn Ile Ile Asn Thr Ser
Ile Leu Asn Leu Arg865 870 875
880Tyr Glu Ser Asn His Leu Ile Asp Leu Ser Arg Tyr Ala Ser Lys Ile
885 890 895Asn Ile Gly Ser
Lys Val Asn Phe Asp Pro Ile Asp Lys Asn Gln Ile 900
905 910Gln Leu Phe Asn Leu Glu Ser Ser Lys Ile Glu
Val Ile Leu Lys Asn 915 920 925Ala
Ile Val Tyr Asn Ser Met Tyr Glu Asn Phe Ser Thr Ser Phe Trp 930
935 940Ile Arg Ile Pro Lys Tyr Phe Asn Ser Ile
Ser Leu Asn Asn Glu Tyr945 950 955
960Thr Ile Ile Asn Cys Met Glu Asn Asn Ser Gly Trp Lys Val Ser
Leu 965 970 975Asn Tyr Gly
Glu Ile Ile Trp Thr Leu Gln Asp Thr Gln Glu Ile Lys 980
985 990Gln Arg Val Val Phe Lys Tyr Ser Gln Met
Ile Asn Ile Ser Asp Tyr 995 1000
1005Ile Asn Arg Trp Ile Phe Val Thr Ile Thr Asn Asn Arg Leu Asn Asn
1010 1015 1020Ser Lys Ile Tyr Ile Asn Gly
Arg Leu Ile Asp Gln Lys Pro Ile Ser1025 1030
1035 1040Asn Leu Gly Asn Ile His Ala Ser Asn Asn Ile Met
Phe Lys Leu Asp 1045 1050
1055Gly Cys Arg Asp Thr His Arg Tyr Ile Trp Ile Lys Tyr Phe Asn Leu
1060 1065 1070Phe Asp Lys Glu Leu Asn
Glu Lys Glu Ile Lys Asp Leu Tyr Asp Asn 1075 1080
1085Gln Ser Asn Ser Gly Ile Leu Lys Asp Phe Trp Gly Asp Tyr
Leu Gln 1090 1095 1100Tyr Asp Lys Pro
Tyr Tyr Met Leu Asn Leu Tyr Asp Pro Asn Lys Tyr1105 1110
1115 1120Val Asp Val Asn Asn Val Gly Ile Arg
Gly Tyr Met Tyr Leu Lys Gly 1125 1130
1135Pro Arg Gly Ser Val Met Thr Thr Asn Ile Tyr Leu Asn Ser Ser
Leu 1140 1145 1150Tyr Arg Gly
Thr Lys Phe Ile Ile Lys Lys Tyr Ala Ser Gly Asn Lys 1155
1160 1165Asp Asn Ile Val Arg Asn Asn Asp Arg Val Tyr
Ile Asn Val Val Val 1170 1175 1180Lys
Asn Lys Glu Tyr Arg Leu Ala Thr Asn Ala Ser Gln Ala Gly Val1185
1190 1195 1200Glu Lys Ile Leu Ser Ala
Leu Glu Ile Pro Asp Val Gly Asn Leu Ser 1205
1210 1215Gln Val Val Val Met Lys Ser Lys Asn Asp Gln Gly
Ile Thr Asn Lys 1220 1225
1230Cys Lys Met Asn Leu Gln Asp Asn Asn Gly Asn Asp Ile Gly Phe Ile
1235 1240 1245Gly Phe His Gln Phe Asn Asn
Ile Ala Lys Leu Val Ala Ser Asn Trp 1250 1255
1260Tyr Asn Arg Gln Ile Glu Arg Ser Ser Arg Thr Leu Gly Cys Ser
Trp1265 1270 1275 1280Glu
Phe Ile Pro Val Asp Asp Gly Trp Gly Glu Arg Pro Leu 1285
12902121294PRTArtificial
SequencePEPTIDE(1)...(1294)BoNT/A_F8 212Met Pro Phe Val Asn Lys Gln Phe
Asn Tyr Lys Asp Pro Val Asn Gly1 5 10
15Val Asp Ile Ala Tyr Ile Lys Ile Pro Asn Ala Gly Gln Met
Gln Pro 20 25 30Val Lys Ala
Phe Lys Ile His Asn Lys Ile Trp Val Ile Pro Glu Arg 35
40 45Asp Thr Phe Thr Asn Pro Glu Glu Gly Asp Leu
Asn Pro Pro Pro Glu 50 55 60Ala Lys
Gln Val Pro Val Ser Tyr Tyr Asp Ser Thr Tyr Leu Ser Thr65
70 75 80Asp Asn Glu Lys Asp Asn Tyr
Leu Lys Gly Val Thr Lys Leu Phe Glu 85 90
95Arg Ile Tyr Ser Thr Asp Leu Gly Arg Met Leu Leu Thr
Ser Ile Val 100 105 110Arg Gly
Ile Pro Phe Trp Gly Gly Ser Thr Ile Asp Thr Glu Leu Lys 115
120 125Val Ile Asp Thr Asn Cys Ile Asn Val Ile
Gln Pro Asp Gly Ser Tyr 130 135 140Arg
Ser Glu Glu Leu Asn Leu Val Ile Ile Gly Pro Ser Ala Asp Ile145
150 155 160Ile Gln Phe Glu Cys Lys
Ser Phe Gly His Glu Val Leu Asn Leu Thr 165
170 175Arg Asn Gly Tyr Gly Ser Thr Gln Tyr Ile Arg Phe
Ser Pro Asp Phe 180 185 190Thr
Phe Gly Phe Glu Glu Ser Leu Glu Val Asp Thr Asn Pro Leu Leu 195
200 205Gly Ala Gly Lys Phe Ala Thr Asp Pro
Ala Val Thr Leu Ala His Glu 210 215
220Leu Ile His Ala Gly His Arg Leu Tyr Gly Ile Ala Ile Asn Pro Asn225
230 235 240Arg Val Phe Lys
Val Asn Thr Asn Ala Tyr Tyr Glu Met Ser Gly Leu 245
250 255Glu Val Ser Phe Glu Glu Leu Arg Thr Phe
Gly Gly His Asp Ala Lys 260 265
270Phe Ile Asp Ser Leu Gln Glu Asn Glu Phe Arg Leu Tyr Tyr Tyr Asn
275 280 285Lys Phe Lys Asp Ile Ala Ser
Thr Leu Asn Lys Ala Lys Ser Ile Val 290 295
300Gly Thr Thr Ala Ser Leu Gln Tyr Met Lys Asn Val Phe Lys Glu
Lys305 310 315 320Tyr Leu
Leu Ser Glu Asp Thr Ser Gly Lys Phe Ser Val Asp Lys Leu
325 330 335Lys Phe Asp Lys Leu Tyr Lys
Met Leu Thr Glu Ile Tyr Thr Glu Asp 340 345
350Asn Phe Val Lys Phe Phe Lys Val Leu Asn Arg Lys Thr Tyr
Leu Asn 355 360 365Phe Asp Lys Ala
Val Phe Lys Ile Asn Ile Val Pro Lys Val Asn Tyr 370
375 380Thr Ile Tyr Asp Gly Phe Asn Leu Arg Asn Thr Asn
Leu Ala Ala Asn385 390 395
400Phe Asn Gly Gln Asn Thr Glu Ile Asn Asn Met Asn Phe Thr Lys Leu
405 410 415Lys Asn Phe Thr Gly
Leu Phe Glu Phe Tyr Lys Leu Leu Cys Val Arg 420
425 430Gly Ile Ile Thr Ser Lys Glu Arg Asp Gln Lys Leu
Ser Glu Ala Leu 435 440 445Asn Asp
Leu Cys Ile Lys Val Asn Asn Trp Asp Leu Phe Phe Ser Pro 450
455 460Ser Glu Asp Asn Phe Thr Asn Asp Leu Asn Lys
Gly Glu Glu Ile Thr465 470 475
480Ser Asp Thr Asn Ile Glu Ala Ala Glu Glu Asn Ile Ser Leu Asp Leu
485 490 495Ile Gln Gln Tyr
Tyr Leu Thr Phe Asn Phe Asp Asn Glu Pro Glu Asn 500
505 510Ile Ser Ile Glu Asn Leu Ser Ser Asp Ile Ile
Gly Gln Leu Glu Leu 515 520 525Met
Pro Asn Ile Glu Arg Phe Pro Asn Gly Lys Lys Tyr Glu Leu Asp 530
535 540Lys Tyr Thr Met Phe His Tyr Leu Arg Ala
Gln Glu Phe Glu His Gly545 550 555
560Lys Ser Arg Ile Ala Leu Thr Asn Ser Val Asn Glu Ala Leu Leu
Asn 565 570 575Pro Ser Arg
Val Tyr Thr Phe Phe Ser Ser Asp Tyr Val Lys Lys Val 580
585 590Asn Lys Ala Thr Glu Ala Ala Met Phe Leu
Gly Trp Val Glu Gln Leu 595 600
605Val Tyr Asp Phe Thr Asp Glu Thr Ser Glu Val Ser Thr Thr Asp Lys 610
615 620Ile Ala Asp Ile Thr Ile Ile Ile
Pro Tyr Ile Gly Pro Ala Leu Asn625 630
635 640Ile Gly Asn Met Leu Tyr Lys Asp Asp Phe Val Gly
Ala Leu Ile Phe 645 650
655Ser Gly Ala Val Ile Leu Leu Glu Phe Ile Pro Glu Ile Ala Ile Pro
660 665 670Val Leu Gly Thr Phe Ala
Leu Val Ser Tyr Ile Ala Asn Lys Val Leu 675 680
685Thr Val Gln Thr Ile Asp Asn Ala Leu Ser Lys Arg Asn Glu
Lys Trp 690 695 700Asp Glu Val Tyr Lys
Tyr Ile Val Thr Asn Trp Leu Ala Lys Val Asn705 710
715 720Thr Gln Ile Asp Leu Ile Arg Lys Lys Met
Lys Glu Ala Leu Glu Asn 725 730
735Gln Ala Glu Ala Thr Lys Ala Ile Ile Asn Tyr Gln Tyr Asn Gln Tyr
740 745 750Thr Glu Glu Glu Lys
Asn Asn Ile Asn Phe Asn Ile Asp Asp Leu Ser 755
760 765Ser Lys Leu Asn Glu Ser Ile Asn Lys Ala Met Ile
Asn Ile Asn Lys 770 775 780Phe Leu Asn
Gln Cys Ser Val Ser Tyr Leu Met Asn Ser Met Ile Pro785
790 795 800Tyr Gly Val Lys Arg Leu Glu
Asp Phe Asp Ala Ser Leu Lys Asp Ala 805
810 815Leu Leu Lys Tyr Ile Tyr Asp Asn Arg Gly Thr Leu
Ile Gly Gln Val 820 825 830Asp
Arg Leu Lys Asp Lys Val Asn Asn Thr Leu Ser Thr Asp Ile Pro 835
840 845Phe Gln Leu Ser Lys Tyr Val Asp Asn
Gln Arg Leu Leu Ser Thr Phe 850 855
860Thr Glu Tyr Ile Lys Asn Ile Ile Asn Thr Ser Ile Leu Asn Leu Arg865
870 875 880Tyr Glu Ser Asn
His Leu Ile Asp Leu Ser Arg Tyr Ala Ser Lys Ile 885
890 895Asn Ile Gly Ser Lys Val Asn Phe Asp Pro
Ile Asp Lys Asn Gln Ile 900 905
910Gln Leu Phe Asn Leu Glu Ser Ser Lys Ile Glu Val Ile Leu Lys Asn
915 920 925Ala Ile Val Tyr Asn Ser Met
Tyr Glu Asn Phe Ser Thr Ser Phe Trp 930 935
940Ile Arg Ile Pro Lys Tyr Phe Asn Ser Ile Ser Leu Asn Asn Glu
Tyr945 950 955 960Thr Ile
Ile Asn Cys Met Glu Asn Asn Ser Gly Trp Lys Val Ser Leu
965 970 975Asn Tyr Gly Glu Ile Ile Trp
Thr Leu Gln Asp Thr Gln Glu Ile Lys 980 985
990Gln Arg Val Val Phe Lys Tyr Ser Gln Met Ile Asn Ile Ser
Asp Tyr 995 1000 1005Ile Asn Arg
Trp Ile Phe Val Thr Ile Thr Asn Asn Arg Leu Asn Asn 1010
1015 1020Ser Lys Ile Tyr Ile Asn Gly Arg Leu Ile Asp Gln
Lys Pro Ile Ser1025 1030 1035
1040Asn Leu Gly Asn Ile His Ala Ser Asn Asn Ile Met Phe Lys Leu Asp
1045 1050 1055Gly Cys Arg Asp Thr
His Arg Tyr Ile Trp Ile Lys Tyr Phe Asn Leu 1060
1065 1070Phe Asp Lys Glu Leu Asn Glu Lys Glu Ile Lys Asp
Leu Tyr Asp Asn 1075 1080 1085Gln
Ser Asn Ser Gly Ile Leu Lys Asp Phe Trp Gly Asp Tyr Leu Gln 1090
1095 1100Tyr Asp Lys Pro Tyr Tyr Met Leu Asn Leu
Tyr Asp Pro Asn Lys Tyr1105 1110 1115
1120Val Asp Val Asn Asn Val Gly Ile Arg Gly Tyr Met Tyr Leu Lys
Gly 1125 1130 1135Pro Arg
Gly Ser Val Met Thr Thr Asn Ile Tyr Leu Asn Ser Ser Leu 1140
1145 1150Tyr Arg Gly Thr Lys Phe Ile Ile Lys
Lys Tyr Ala Ser Gly Asn Lys 1155 1160
1165Asp Asn Ile Val Arg Asn Asn Asp Arg Val Tyr Ile Asn Val Val Val
1170 1175 1180Lys Asn Lys Glu Tyr Arg Leu
Ala Thr Asn Ala Ser Gln Ala Gly Val1185 1190
1195 1200Glu Lys Ile Leu Ser Ala Leu Glu Ile Pro Asp Val
Gly Asn Leu Ser 1205 1210
1215Gln Val Val Val Met Lys Ser Lys Asn Asp Gln Gly Ile Thr Asn Lys
1220 1225 1230Cys Lys Met Asn Leu Gln
Asp Asn Asn Gly Asn Asp Ile Gly Phe Ile 1235 1240
1245Gly Phe His Gln Phe Asn Asn Ile Ala Lys Leu Val Ala Ser
Asn Trp 1250 1255 1260Tyr Asn Arg Gln
Ile Glu Arg Ser Ser Arg Thr Leu Gly Cys Ser Trp1265 1270
1275 1280Glu Phe Ile Pro Val Asp Asp Gly Trp
Gly Glu Arg Pro Leu 1285
12902131294PRTArtificial SequencePEPTIDE(1)...(1294)BoNT/A_G8 213Met Pro
Phe Val Asn Lys Gln Phe Asn Tyr Lys Asp Pro Val Asn Gly1 5
10 15Val Asp Ile Ala Tyr Ile Lys Ile
Pro Asn Ala Gly Gln Met Gln Pro 20 25
30Val Lys Ala Phe Lys Ile His Asn Lys Ile Trp Val Ile Pro Glu
Arg 35 40 45Asp Thr Phe Thr Asn
Pro Glu Glu Gly Asp Leu Asn Pro Pro Pro Glu 50 55
60Ala Lys Gln Val Pro Val Ser Tyr Tyr Asp Ser Thr Tyr Leu
Ser Thr65 70 75 80Asp
Asn Glu Lys Asp Asn Tyr Leu Lys Gly Val Thr Lys Leu Phe Glu
85 90 95Arg Ile Tyr Ser Thr Asp Leu
Gly Arg Met Leu Leu Thr Ser Ile Val 100 105
110Arg Gly Ile Pro Phe Trp Gly Gly Ser Thr Ile Asp Thr Glu
Leu Lys 115 120 125Val Ile Asp Thr
Asn Cys Ile Asn Val Ile Gln Pro Asp Gly Ser Tyr 130
135 140Arg Ser Glu Glu Leu Asn Leu Val Ile Ile Gly Pro
Ser Ala Asp Ile145 150 155
160Ile Gln Phe Glu Cys Lys Ser Phe Gly His Glu Val Leu Asn Leu Thr
165 170 175Arg Asn Gly Tyr Gly
Ser Thr Gln Tyr Ile Arg Phe Ser Pro Asp Phe 180
185 190Thr Phe Gly Phe Glu Glu Ser Leu Glu Val Asp Thr
Asn Pro Leu Leu 195 200 205Gly Ala
Gly Lys Phe Ala Thr Asp Pro Ala Val Thr Leu Ala His Glu 210
215 220Leu Ile His Ala Gly His Arg Leu Tyr Gly Ile
Ala Ile Asn Pro Asn225 230 235
240Arg Val Phe Lys Val Asn Thr Asn Ala Tyr Tyr Glu Met Ser Gly Leu
245 250 255Glu Val Ser Phe
Glu Glu Leu Arg Thr Phe Gly Gly His Asp Ala Lys 260
265 270Phe Ile Asp Ser Leu Gln Glu Asn Glu Phe Arg
Leu Tyr Tyr Tyr Asn 275 280 285Lys
Phe Lys Asp Ile Ala Ser Thr Leu Asn Lys Ala Lys Ser Ile Val 290
295 300Gly Thr Thr Ala Ser Leu Gln Tyr Met Lys
Asn Val Phe Lys Glu Lys305 310 315
320Tyr Leu Leu Ser Glu Asp Thr Ser Gly Lys Phe Ser Val Asp Lys
Leu 325 330 335Lys Phe Asp
Lys Leu Tyr Lys Met Leu Thr Glu Ile Tyr Thr Glu Asp 340
345 350Asn Phe Val Lys Phe Phe Lys Val Leu Asn
Arg Lys Thr Tyr Leu Asn 355 360
365Phe Asp Lys Ala Val Phe Lys Ile Asn Ile Val Pro Lys Val Asn Tyr 370
375 380Thr Ile Tyr Asp Gly Phe Asn Leu
Arg Asn Thr Asn Leu Ala Ala Asn385 390
395 400Phe Asn Gly Gln Asn Thr Glu Ile Asn Asn Met Asn
Phe Thr Lys Leu 405 410
415Lys Asn Phe Thr Gly Leu Phe Glu Phe Tyr Lys Leu Leu Cys Val Arg
420 425 430Gly Ile Ile Thr Ser Lys
Glu Thr Ser Ala Ala Lys Leu Lys Ala Leu 435 440
445Asn Asp Leu Cys Ile Lys Val Asn Asn Trp Asp Leu Phe Phe
Ser Pro 450 455 460Ser Glu Asp Asn Phe
Thr Asn Asp Leu Asn Lys Gly Glu Glu Ile Thr465 470
475 480Ser Asp Thr Asn Ile Glu Ala Ala Glu Glu
Asn Ile Ser Leu Asp Leu 485 490
495Ile Gln Gln Tyr Tyr Leu Thr Phe Asn Phe Asp Asn Glu Pro Glu Asn
500 505 510Ile Ser Ile Glu Asn
Leu Ser Ser Asp Ile Ile Gly Gln Leu Glu Leu 515
520 525Met Pro Asn Ile Glu Arg Phe Pro Asn Gly Lys Lys
Tyr Glu Leu Asp 530 535 540Lys Tyr Thr
Met Phe His Tyr Leu Arg Ala Gln Glu Phe Glu His Gly545
550 555 560Lys Ser Arg Ile Ala Leu Thr
Asn Ser Val Asn Glu Ala Leu Leu Asn 565
570 575Pro Ser Arg Val Tyr Thr Phe Phe Ser Ser Asp Tyr
Val Lys Lys Val 580 585 590Asn
Lys Ala Thr Glu Ala Ala Met Phe Leu Gly Trp Val Glu Gln Leu 595
600 605Val Tyr Asp Phe Thr Asp Glu Thr Ser
Glu Val Ser Thr Thr Asp Lys 610 615
620Ile Ala Asp Ile Thr Ile Ile Ile Pro Tyr Ile Gly Pro Ala Leu Asn625
630 635 640Ile Gly Asn Met
Leu Tyr Lys Asp Asp Phe Val Gly Ala Leu Ile Phe 645
650 655Ser Gly Ala Val Ile Leu Leu Glu Phe Ile
Pro Glu Ile Ala Ile Pro 660 665
670Val Leu Gly Thr Phe Ala Leu Val Ser Tyr Ile Ala Asn Lys Val Leu
675 680 685Thr Val Gln Thr Ile Asp Asn
Ala Leu Ser Lys Arg Asn Glu Lys Trp 690 695
700Asp Glu Val Tyr Lys Tyr Ile Val Thr Asn Trp Leu Ala Lys Val
Asn705 710 715 720Thr Gln
Ile Asp Leu Ile Arg Lys Lys Met Lys Glu Ala Leu Glu Asn
725 730 735Gln Ala Glu Ala Thr Lys Ala
Ile Ile Asn Tyr Gln Tyr Asn Gln Tyr 740 745
750Thr Glu Glu Glu Lys Asn Asn Ile Asn Phe Asn Ile Asp Asp
Leu Ser 755 760 765Ser Lys Leu Asn
Glu Ser Ile Asn Lys Ala Met Ile Asn Ile Asn Lys 770
775 780Phe Leu Asn Gln Cys Ser Val Ser Tyr Leu Met Asn
Ser Met Ile Pro785 790 795
800Tyr Gly Val Lys Arg Leu Glu Asp Phe Asp Ala Ser Leu Lys Asp Ala
805 810 815Leu Leu Lys Tyr Ile
Tyr Asp Asn Arg Gly Thr Leu Ile Gly Gln Val 820
825 830Asp Arg Leu Lys Asp Lys Val Asn Asn Thr Leu Ser
Thr Asp Ile Pro 835 840 845Phe Gln
Leu Ser Lys Tyr Val Asp Asn Gln Arg Leu Leu Ser Thr Phe 850
855 860Thr Glu Tyr Ile Lys Asn Ile Ile Asn Thr Ser
Ile Leu Asn Leu Arg865 870 875
880Tyr Glu Ser Asn His Leu Ile Asp Leu Ser Arg Tyr Ala Ser Lys Ile
885 890 895Asn Ile Gly Ser
Lys Val Asn Phe Asp Pro Ile Asp Lys Asn Gln Ile 900
905 910Gln Leu Phe Asn Leu Glu Ser Ser Lys Ile Glu
Val Ile Leu Lys Asn 915 920 925Ala
Ile Val Tyr Asn Ser Met Tyr Glu Asn Phe Ser Thr Ser Phe Trp 930
935 940Ile Arg Ile Pro Lys Tyr Phe Asn Ser Ile
Ser Leu Asn Asn Glu Tyr945 950 955
960Thr Ile Ile Asn Cys Met Glu Asn Asn Ser Gly Trp Lys Val Ser
Leu 965 970 975Asn Tyr Gly
Glu Ile Ile Trp Thr Leu Gln Asp Thr Gln Glu Ile Lys 980
985 990Gln Arg Val Val Phe Lys Tyr Ser Gln Met
Ile Asn Ile Ser Asp Tyr 995 1000
1005Ile Asn Arg Trp Ile Phe Val Thr Ile Thr Asn Asn Arg Leu Asn Asn
1010 1015 1020Ser Lys Ile Tyr Ile Asn Gly
Arg Leu Ile Asp Gln Lys Pro Ile Ser1025 1030
1035 1040Asn Leu Gly Asn Ile His Ala Ser Asn Asn Ile Met
Phe Lys Leu Asp 1045 1050
1055Gly Cys Arg Asp Thr His Arg Tyr Ile Trp Ile Lys Tyr Phe Asn Leu
1060 1065 1070Phe Asp Lys Glu Leu Asn
Glu Lys Glu Ile Lys Asp Leu Tyr Asp Asn 1075 1080
1085Gln Ser Asn Ser Gly Ile Leu Lys Asp Phe Trp Gly Asp Tyr
Leu Gln 1090 1095 1100Tyr Asp Lys Pro
Tyr Tyr Met Leu Asn Leu Tyr Asp Pro Asn Lys Tyr1105 1110
1115 1120Val Asp Val Asn Asn Val Gly Ile Arg
Gly Tyr Met Tyr Leu Lys Gly 1125 1130
1135Pro Arg Gly Ser Val Met Thr Thr Asn Ile Tyr Leu Asn Ser Ser
Leu 1140 1145 1150Tyr Arg Gly
Thr Lys Phe Ile Ile Lys Lys Tyr Ala Ser Gly Asn Lys 1155
1160 1165Asp Asn Ile Val Arg Asn Asn Asp Arg Val Tyr
Ile Asn Val Val Val 1170 1175 1180Lys
Asn Lys Glu Tyr Arg Leu Ala Thr Asn Ala Ser Gln Ala Gly Val1185
1190 1195 1200Glu Lys Ile Leu Ser Ala
Leu Glu Ile Pro Asp Val Gly Asn Leu Ser 1205
1210 1215Gln Val Val Val Met Lys Ser Lys Asn Asp Gln Gly
Ile Thr Asn Lys 1220 1225
1230Cys Lys Met Asn Leu Gln Asp Asn Asn Gly Asn Asp Ile Gly Phe Ile
1235 1240 1245Gly Phe His Gln Phe Asn Asn
Ile Ala Lys Leu Val Ala Ser Asn Trp 1250 1255
1260Tyr Asn Arg Gln Ile Glu Arg Ser Ser Arg Thr Leu Gly Cys Ser
Trp1265 1270 1275 1280Glu
Phe Ile Pro Val Asp Asp Gly Trp Gly Glu Arg Pro Leu 1285
12902143918DNAArtificial
Sequencemat_peptide(1)...(3915)BoNT/A_A17 214atgccatttg ttaataaaca
atttaattat aaagatcctg taaatggtgt tgatattgct 60tatataaaaa ttccaaatgc
aggacaaatg caaccagtaa aagcttttaa aattcataat 120aaaatatggg ttattccaga
aagagataca tttacaaatc ctgaagaagg agatttaaat 180ccaccaccag aagcaaaaca
agttccagtt tcatattatg attcaacata tttaagtaca 240gataatgaaa aagataatta
tttaaaggga gttacaaaat tatttgagag aatttattca 300actgatcttg gaagaatgtt
gttaacatca atagtaaggg gaataccatt ttggggtgga 360agtacaatag atacagaatt
aaaagttatt gatactaatt gtattaatgt gatacaacca 420gatggtagtt atagatcaga
agaacttaat ctagtaataa taggaccctc agctgatatt 480atacagtttg aatgtaaaag
ctttggacat gaagttttga atcttacgcg aaatggttat 540ggctctactc aatacattag
atttagccca gattttacat ttggttttga ggagtcactt 600gaagttgata caaatcctct
tttaggtgca ggcaaatttg ctacagatcc agcagtaaca 660ttagcacatg aacttataca
tgctggacat agattatatg gaatagcaat taatccaaat 720agggttttta aagtaaatac
taatgcctat tatgaaatga gtgggttaga agtaagcttt 780gaggaactta gaacatttgg
gggacatgat gcaaagttta tagatagttt acaggaaaac 840gaatttcgtc tatattatta
taataagttt aaagatatag caagtacact taataaagct 900aaatcaatag taggtactac
tgcttcatta cagtatatga aaaatgtttt taaagagaaa 960tatctcctat ctgaagatac
atctggaaaa ttttcggtag ataaattaaa atttgataag 1020ttatacaaaa tgttaacaga
gatttacaca gaggataatt ttgttaagtt ttttaaagta 1080cttaacagaa aaacatattt
gaattttgat aaagccgtat ttaagataaa tatagtacct 1140aaggtaaatt acacaatata
tgatggattt aatttaagaa atacaaattt agcagcaaac 1200tttaatggtc aaaatacaga
aattaataat atgaatttta ctaaactaaa aaattttact 1260ggattgtttg aattttataa
gttgctatgt gtaagaggga taataacttc taaatccaac 1320aaaaccagaa ttgatgaggc
caaccaacgt gcaacaaaga tgctgaataa ggcattaaat 1380gatttatgta tcaaagttaa
taattgggac ttgtttttta gtccttcaga agataatttt 1440actaatgatc taaataaagg
agaagaaatt acatctgata ctaatataga agcagcagaa 1500gaaaatatta gtttagattt
aatacaacaa tattatttaa cctttaattt tgataatgaa 1560cctgaaaata tttcaataga
aaatctttca agtgacatta taggccaatt agaacttatg 1620cctaatatag aaagatttcc
taatggaaaa aagtatgagt tagataaata tactatgttc 1680cattatcttc gtgctcaaga
atttgaacat ggtaaatcta ggattgcttt aacaaattct 1740gttaacgaag cattattaaa
tcctagtcgt gtttatacat ttttttcttc agactatgta 1800aagaaagtta ataaagctac
ggaggcagct atgtttttag gctgggtaga acaattagta 1860tatgatttta ccgatgaaac
tagcgaagta agtactacgg ataaaattgc ggatataact 1920ataattattc catatatagg
acctgcttta aatataggta atatgttata taaagatgat 1980tttgtaggtg ctttaatatt
ttcaggagct gttattctgt tagaatttat accagagatt 2040gcaatacctg tattaggtac
ttttgcactt gtatcatata ttgcgaataa ggttctaacc 2100gttcaaacaa tagataatgc
tttaagtaaa agaaatgaaa aatgggatga ggtctataaa 2160tatatagtaa caaattggtt
agcaaaggtt aatacacaga ttgatctaat aagaaaaaaa 2220atgaaagaag ctttagaaaa
tcaagcagaa gcaacaaagg ctataataaa ctatcagtat 2280aatcaatata ctgaggaaga
gaaaaataat attaatttta atattgatga tttaagttcg 2340aaacttaatg agtctataaa
taaagctatg attaatataa ataaattttt gaatcaatgc 2400tctgtttcat atttaatgaa
ttctatgatc ccttatggtg ttaaacggtt agaagatttt 2460gatgctagtc ttaaagatgc
attattaaag tatatatatg ataatagagg aactttaatt 2520ggtcaagtag atagattaaa
agataaagtt aataatacac ttagtacaga tatacctttt 2580cagctttcca aatacgtaga
taatcaaaga ttattatcta catttactga atatattaag 2640aatattatta atacttctat
attgaattta agatatgaaa gtaatcattt aatagactta 2700tctaggtatg catcaaaaat
aaatattggt agtaaagtaa attttgatcc aatagataaa 2760aatcaaattc aattatttaa
tttagaaagt agtaaaattg aggtaatttt aaaaaatgct 2820attgtatata atagtatgta
tgaaaatttt agtactagct tttggataag aattcctaag 2880tattttaaca gtataagtct
aaataatgaa tatacaataa taaattgtat ggaaaataat 2940tcaggatgga aagtatcact
taattatggt gaaataatct ggactttaca ggatactcag 3000gaaataaaac aaagagtagt
ttttaaatac agtcaaatga ttaatatatc agattatata 3060aacagatgga tttttgtaac
tatcactaat aatagattaa ataactctaa aatttatata 3120aatggaagat taatagatca
aaaaccaatt tcaaatttag gtaatattca tgctagtaat 3180aatataatgt ttaaattaga
tggttgtaga gatacacata gatatatttg gataaaatat 3240tttaatcttt ttgataagga
attaaatgaa aaagaaatca aagatttata tgataatcaa 3300tcaaattcag gtattttaaa
agacttttgg ggtgattatt tacaatatga taaaccatac 3360tatatgttaa atttatatga
tccaaataaa tatgtcgatg taaataatgt aggtattaga 3420ggttatatgt atcttaaagg
gcctagaggt agcgtaatga ctacaaacat ttatttaaat 3480tcaagtttgt atagggggac
aaaatttatt ataaaaaaat atgcttctgg aaataaagat 3540aatattgtta gaaataatga
tcgtgtatat attaatgtag tagttaaaaa taaagaatat 3600aggttagcta ctaatgcgtc
acaggcaggc gtagaaaaaa tactaagtgc attagaaata 3660cctgatgtag gaaatctaag
tcaagtagta gtaatgaagt caaaaaatga tcaaggaata 3720acaaataaat gcaaaatgaa
tttacaagat aataatggga atgatatagg ctttatagga 3780tttcatcagt ttaataatat
agctaaacta gtagcaagta attggtataa tagacaaata 3840gaaagatcta gtaggacttt
gggttgctca tgggaattta ttcctgtaga tgatggatgg 3900ggagaaaggc cactgtaa
39182153891DNAArtificial
Sequencemat_peptide(1)...(3888)BoNT/A_A8 215atgccatttg ttaataaaca
atttaattat aaagatcctg taaatggtgt tgatattgct 60tatataaaaa ttccaaatgc
aggacaaatg caaccagtaa aagcttttaa aattcataat 120aaaatatggg ttattccaga
aagagataca tttacaaatc ctgaagaagg agatttaaat 180ccaccaccag aagcaaaaca
agttccagtt tcatattatg attcaacata tttaagtaca 240gataatgaaa aagataatta
tttaaaggga gttacaaaat tatttgagag aatttattca 300actgatcttg gaagaatgtt
gttaacatca atagtaaggg gaataccatt ttggggtgga 360agtacaatag atacagaatt
aaaagttatt gatactaatt gtattaatgt gatacaacca 420gatggtagtt atagatcaga
agaacttaat ctagtaataa taggaccctc agctgatatt 480atacagtttg aatgtaaaag
ctttggacat gaagttttga atcttacgcg aaatggttat 540ggctctactc aatacattag
atttagccca gattttacat ttggttttga ggagtcactt 600gaagttgata caaatcctct
tttaggtgca ggcaaatttg ctacagatcc agcagtaaca 660ttagcacatg aacttataca
tgctggacat agattatatg gaatagcaat taatccaaat 720agggttttta aagtaaatac
taatgcctat tatgaaatga gtgggttaga agtaagcttt 780gaggaactta gaacatttgg
gggacatgat gcaaagttta tagatagttt acaggaaaac 840gaatttcgtc tatattatta
taataagttt aaagatatag caagtacact taataaagct 900aaatcaatag taggtactac
tgcttcatta cagtatatga aaaatgtttt taaagagaaa 960tatctcctat ctgaagatac
atctggaaaa ttttcggtag ataaattaaa atttgataag 1020ttatacaaaa tgttaacaga
gatttacaca gaggataatt ttgttaagtt ttttaaagta 1080cttaacagaa aaacatattt
gaattttgat aaagccgtat ttaagataaa tatagtacct 1140aaggtaaatt acacaatata
tgatggattt aatttaagaa atacaaattt agcagcaaac 1200tttaatggtc aaaatacaga
aattaataat atgaatttta ctaaactaaa aaattttact 1260ggattgtttg aattttataa
gttgctatgt gtaagaggga taataacttc taaagaggcc 1320aaccaacgtg caacaaagaa
taaggcatta aatgatttat gtatcaaagt taataattgg 1380gacttgtttt ttagtccttc
agaagataat tttactaatg atctaaataa aggagaagaa 1440attacatctg atactaatat
agaagcagca gaagaaaata ttagtttaga tttaatacaa 1500caatattatt taacctttaa
ttttgataat gaacctgaaa atatttcaat agaaaatctt 1560tcaagtgaca ttataggcca
attagaactt atgcctaata tagaaagatt tcctaatgga 1620aaaaagtatg agttagataa
atatactatg ttccattatc ttcgtgctca agaatttgaa 1680catggtaaat ctaggattgc
tttaacaaat tctgttaacg aagcattatt aaatcctagt 1740cgtgtttata catttttttc
ttcagactat gtaaagaaag ttaataaagc tacggaggca 1800gctatgtttt taggctgggt
agaacaatta gtatatgatt ttaccgatga aactagcgaa 1860gtaagtacta cggataaaat
tgcggatata actataatta ttccatatat aggacctgct 1920ttaaatatag gtaatatgtt
atataaagat gattttgtag gtgctttaat attttcagga 1980gctgttattc tgttagaatt
tataccagag attgcaatac ctgtattagg tacttttgca 2040cttgtatcat atattgcgaa
taaggttcta accgttcaaa caatagataa tgctttaagt 2100aaaagaaatg aaaaatggga
tgaggtctat aaatatatag taacaaattg gttagcaaag 2160gttaatacac agattgatct
aataagaaaa aaaatgaaag aagctttaga aaatcaagca 2220gaagcaacaa aggctataat
aaactatcag tataatcaat atactgagga agagaaaaat 2280aatattaatt ttaatattga
tgatttaagt tcgaaactta atgagtctat aaataaagct 2340atgattaata taaataaatt
tttgaatcaa tgctctgttt catatttaat gaattctatg 2400atcccttatg gtgttaaacg
gttagaagat tttgatgcta gtcttaaaga tgcattatta 2460aagtatatat atgataatag
aggaacttta attggtcaag tagatagatt aaaagataaa 2520gttaataata cacttagtac
agatatacct tttcagcttt ccaaatacgt agataatcaa 2580agattattat ctacatttac
tgaatatatt aagaatatta ttaatacttc tatattgaat 2640ttaagatatg aaagtaatca
tttaatagac ttatctaggt atgcatcaaa aataaatatt 2700ggtagtaaag taaattttga
tccaatagat aaaaatcaaa ttcaattatt taatttagaa 2760agtagtaaaa ttgaggtaat
tttaaaaaat gctattgtat ataatagtat gtatgaaaat 2820tttagtacta gcttttggat
aagaattcct aagtatttta acagtataag tctaaataat 2880gaatatacaa taataaattg
tatggaaaat aattcaggat ggaaagtatc acttaattat 2940ggtgaaataa tctggacttt
acaggatact caggaaataa aacaaagagt agtttttaaa 3000tacagtcaaa tgattaatat
atcagattat ataaacagat ggatttttgt aactatcact 3060aataatagat taaataactc
taaaatttat ataaatggaa gattaataga tcaaaaacca 3120atttcaaatt taggtaatat
tcatgctagt aataatataa tgtttaaatt agatggttgt 3180agagatacac atagatatat
ttggataaaa tattttaatc tttttgataa ggaattaaat 3240gaaaaagaaa tcaaagattt
atatgataat caatcaaatt caggtatttt aaaagacttt 3300tggggtgatt atttacaata
tgataaacca tactatatgt taaatttata tgatccaaat 3360aaatatgtcg atgtaaataa
tgtaggtatt agaggttata tgtatcttaa agggcctaga 3420ggtagcgtaa tgactacaaa
catttattta aattcaagtt tgtatagggg gacaaaattt 3480attataaaaa aatatgcttc
tggaaataaa gataatattg ttagaaataa tgatcgtgta 3540tatattaatg tagtagttaa
aaataaagaa tataggttag ctactaatgc gtcacaggca 3600ggcgtagaaa aaatactaag
tgcattagaa atacctgatg taggaaatct aagtcaagta 3660gtagtaatga agtcaaaaaa
tgatcaagga ataacaaata aatgcaaaat gaatttacaa 3720gataataatg ggaatgatat
aggctttata ggatttcatc agtttaataa tatagctaaa 3780ctagtagcaa gtaattggta
taatagacaa atagaaagat ctagtaggac tttgggttgc 3840tcatgggaat ttattcctgt
agatgatgga tggggagaaa ggccactgta a 38912163972DNAArtificial
Sequencemat_peptide(1)...(3969)BoNT/A_BT35 216atgccatttg ttaataaaca
atttaattat aaagatcctg taaatggtgt tgatattgct 60tatataaaaa ttccaaatgc
aggacaaatg caaccagtaa aagcttttaa aattcataat 120aaaatatggg ttattccaga
aagagataca tttacaaatc ctgaagaagg agatttaaat 180ccaccaccag aagcaaaaca
agttccagtt tcatattatg attcaacata tttaagtaca 240gataatgaaa aagataatta
tttaaaggga gttacaaaat tatttgagag aatttattca 300actgatcttg gaagaatgtt
gttaacatca atagtaaggg gaataccatt ttggggtgga 360agtacaatag atacagaatt
aaaagttatt gatactaatt gtattaatgt gatacaacca 420gatggtagtt atagatcaga
agaacttaat ctagtaataa taggaccctc agctgatatt 480atacagtttg aatgtaaaag
ctttggacat gaagttttga atcttacgcg aaatggttat 540ggctctactc aatacattag
atttagccca gattttacat ttggttttga ggagtcactt 600gaagttgata caaatcctct
tttaggtgca ggcaaatttg ctacagatcc agcagtaaca 660ttagcacatg aacttataca
tgctggacat agattatatg gaatagcaat taatccaaat 720agggttttta aagtaaatac
taatgcctat tatgaaatga gtgggttaga agtaagcttt 780gaggaactta gaacatttgg
gggacatgat gcaaagttta tagatagttt acaggaaaac 840gaatttcgtc tatattatta
taataagttt aaagatatag caagtacact taataaagct 900aaatcaatag taggtactac
tgcttcatta cagtatatga aaaatgtttt taaagagaaa 960tatctcctat ctgaagatac
atctggaaaa ttttcggtag ataaattaaa atttgataag 1020ttatacaaaa tgttaacaga
gatttacaca gaggataatt ttgttaagtt ttttaaagta 1080cttaacagaa aaacatattt
gaattttgat aaagccgtat ttaagataaa tatagtacct 1140aaggtaaatt acacaatata
tgatggattt aatttaagaa atacaaattt agcagcaaac 1200tttaatggtc aaaatacaga
aattaataat atgaatttta ctaaactaaa aaattttact 1260ggattgtttg aattttataa
gttgctatgt gtaagaggga taataacttc taaactgtca 1320gagctggatg accgagctga
tgccttgcag gcaggagcat cacaatttga gagcagtgct 1380gcaaagctaa agaggaagta
ttggtggaaa aactgcaaga ataaggcatt aaatgattta 1440tgtatcaaag ttaataattg
ggacttgttt tttagtcctt cagaagataa ttttactaat 1500gatctaaata aaggagaaga
aattacatct gatactaata tagaagcagc agaagaaaat 1560attagtttag atttaataca
acaatattat ttaaccttta attttgataa tgaacctgaa 1620aatatttcaa tagaaaatct
ttcaagtgac attataggcc aattagaact tatgcctaat 1680atagaaagat ttcctaatgg
aaaaaagtat gagttagata aatatactat gttccattat 1740cttcgtgctc aagaatttga
acatggtaaa tctaggattg ctttaacaaa ttctgttaac 1800gaagcattat taaatcctag
tcgtgtttat acattttttt cttcagacta tgtaaagaaa 1860gttaataaag ctacggaggc
agctatgttt ttaggctggg tagaacaatt agtatatgat 1920tttaccgatg aaactagcga
agtaagtact acggataaaa ttgcggatat aactataatt 1980attccatata taggacctgc
tttaaatata ggtaatatgt tatataaaga tgattttgta 2040ggtgctttaa tattttcagg
agctgttatt ctgttagaat ttataccaga gattgcaata 2100cctgtattag gtacttttgc
acttgtatca tatattgcga ataaggttct aaccgttcaa 2160acaatagata atgctttaag
taaaagaaat gaaaaatggg atgaggtcta taaatatata 2220gtaacaaatt ggttagcaaa
ggttaataca cagattgatc taataagaaa aaaaatgaaa 2280gaagctttag aaaatcaagc
agaagcaaca aaggctataa taaactatca gtataatcaa 2340tatactgagg aagagaaaaa
taatattaat tttaatattg atgatttaag ttcgaaactt 2400aatgagtcta taaataaagc
tatgattaat ataaataaat ttttgaatca atgctctgtt 2460tcatatttaa tgaattctat
gatcccttat ggtgttaaac ggttagaaga ttttgatgct 2520agtcttaaag atgcattatt
aaagtatata tatgataata gaggaacttt aattggtcaa 2580gtagatagat taaaagataa
agttaataat acacttagta cagatatacc ttttcagctt 2640tccaaatacg tagataatca
aagattatta tctacattta ctgaatatat taagaatatt 2700attaatactt ctatattgaa
tttaagatat gaaagtaatc atttaataga cttatctagg 2760tatgcatcaa aaataaatat
tggtagtaaa gtaaattttg atccaataga taaaaatcaa 2820attcaattat ttaatttaga
aagtagtaaa attgaggtaa ttttaaaaaa tgctattgta 2880tataatagta tgtatgaaaa
ttttagtact agcttttgga taagaattcc taagtatttt 2940aacagtataa gtctaaataa
tgaatataca ataataaatt gtatggaaaa taattcagga 3000tggaaagtat cacttaatta
tggtgaaata atctggactt tacaggatac tcaggaaata 3060aaacaaagag tagtttttaa
atacagtcaa atgattaata tatcagatta tataaacaga 3120tggatttttg taactatcac
taataataga ttaaataact ctaaaattta tataaatgga 3180agattaatag atcaaaaacc
aatttcaaat ttaggtaata ttcatgctag taataatata 3240atgtttaaat tagatggttg
tagagataca catagatata tttggataaa atattttaat 3300ctttttgata aggaattaaa
tgaaaaagaa atcaaagatt tatatgataa tcaatcaaat 3360tcaggtattt taaaagactt
ttggggtgat tatttacaat atgataaacc atactatatg 3420ttaaatttat atgatccaaa
taaatatgtc gatgtaaata atgtaggtat tagaggttat 3480atgtatctta aagggcctag
aggtagcgta atgactacaa acatttattt aaattcaagt 3540ttgtataggg ggacaaaatt
tattataaaa aaatatgctt ctggaaataa agataatatt 3600gttagaaata atgatcgtgt
atatattaat gtagtagtta aaaataaaga atataggtta 3660gctactaatg cgtcacaggc
aggcgtagaa aaaatactaa gtgcattaga aatacctgat 3720gtaggaaatc taagtcaagt
agtagtaatg aagtcaaaaa atgatcaagg aataacaaat 3780aaatgcaaaa tgaatttaca
agataataat gggaatgata taggctttat aggatttcat 3840cagtttaata atatagctaa
actagtagca agtaattggt ataatagaca aatagaaaga 3900tctagtagga ctttgggttg
ctcatgggaa tttattcctg tagatgatgg atggggagaa 3960aggccactgt aa
39722173891DNAArtificial
Sequencemat_peptide(1)...(3888)BoNT/A_BT8 217atgccatttg ttaataaaca
atttaattat aaagatcctg taaatggtgt tgatattgct 60tatataaaaa ttccaaatgc
aggacaaatg caaccagtaa aagcttttaa aattcataat 120aaaatatggg ttattccaga
aagagataca tttacaaatc ctgaagaagg agatttaaat 180ccaccaccag aagcaaaaca
agttccagtt tcatattatg attcaacata tttaagtaca 240gataatgaaa aagataatta
tttaaaggga gttacaaaat tatttgagag aatttattca 300actgatcttg gaagaatgtt
gttaacatca atagtaaggg gaataccatt ttggggtgga 360agtacaatag atacagaatt
aaaagttatt gatactaatt gtattaatgt gatacaacca 420gatggtagtt atagatcaga
agaacttaat ctagtaataa taggaccctc agctgatatt 480atacagtttg aatgtaaaag
ctttggacat gaagttttga atcttacgcg aaatggttat 540ggctctactc aatacattag
atttagccca gattttacat ttggttttga ggagtcactt 600gaagttgata caaatcctct
tttaggtgca ggcaaatttg ctacagatcc agcagtaaca 660ttagcacatg aacttataca
tgctggacat agattatatg gaatagcaat taatccaaat 720agggttttta aagtaaatac
taatgcctat tatgaaatga gtgggttaga agtaagcttt 780gaggaactta gaacatttgg
gggacatgat gcaaagttta tagatagttt acaggaaaac 840gaatttcgtc tatattatta
taataagttt aaagatatag caagtacact taataaagct 900aaatcaatag taggtactac
tgcttcatta cagtatatga aaaatgtttt taaagagaaa 960tatctcctat ctgaagatac
atctggaaaa ttttcggtag ataaattaaa atttgataag 1020ttatacaaaa tgttaacaga
gatttacaca gaggataatt ttgttaagtt ttttaaagta 1080cttaacagaa aaacatattt
gaattttgat aaagccgtat ttaagataaa tatagtacct 1140aaggtaaatt acacaatata
tgatggattt aatttaagaa atacaaattt agcagcaaac 1200tttaatggtc aaaatacaga
aattaataat atgaatttta ctaaactaaa aaattttact 1260ggattgtttg aattttataa
gttgctatgt gtaagaggga taataacttc taaaggagca 1320tcacaatttg agaccagtaa
taaggcatta aatgatttat gtatcaaagt taataattgg 1380gacttgtttt ttagtccttc
agaagataat tttactaatg atctaaataa aggagaagaa 1440attacatctg atactaatat
agaagcagca gaagaaaata ttagtttaga tttaatacaa 1500caatattatt taacctttaa
ttttgataat gaacctgaaa atatttcaat agaaaatctt 1560tcaagtgaca ttataggcca
attagaactt atgcctaata tagaaagatt tcctaatgga 1620aaaaagtatg agttagataa
atatactatg ttccattatc ttcgtgctca agaatttgaa 1680catggtaaat ctaggattgc
tttaacaaat tctgttaacg aagcattatt aaatcctagt 1740cgtgtttata catttttttc
ttcagactat gtaaagaaag ttaataaagc tacggaggca 1800gctatgtttt taggctgggt
agaacaatta gtatatgatt ttaccgatga aactagcgaa 1860gtaagtacta cggataaaat
tgcggatata actataatta ttccatatat aggacctgct 1920ttaaatatag gtaatatgtt
atataaagat gattttgtag gtgctttaat attttcagga 1980gctgttattc tgttagaatt
tataccagag attgcaatac ctgtattagg tacttttgca 2040cttgtatcat atattgcgaa
taaggttcta accgttcaaa caatagataa tgctttaagt 2100aaaagaaatg aaaaatggga
tgaggtctat aaatatatag taacaaattg gttagcaaag 2160gttaatacac agattgatct
aataagaaaa aaaatgaaag aagctttaga aaatcaagca 2220gaagcaacaa aggctataat
aaactatcag tataatcaat atactgagga agagaaaaat 2280aatattaatt ttaatattga
tgatttaagt tcgaaactta atgagtctat aaataaagct 2340atgattaata taaataaatt
tttgaatcaa tgctctgttt catatttaat gaattctatg 2400atcccttatg gtgttaaacg
gttagaagat tttgatgcta gtcttaaaga tgcattatta 2460aagtatatat atgataatag
aggaacttta attggtcaag tagatagatt aaaagataaa 2520gttaataata cacttagtac
agatatacct tttcagcttt ccaaatacgt agataatcaa 2580agattattat ctacatttac
tgaatatatt aagaatatta ttaatacttc tatattgaat 2640ttaagatatg aaagtaatca
tttaatagac ttatctaggt atgcatcaaa aataaatatt 2700ggtagtaaag taaattttga
tccaatagat aaaaatcaaa ttcaattatt taatttagaa 2760agtagtaaaa ttgaggtaat
tttaaaaaat gctattgtat ataatagtat gtatgaaaat 2820tttagtacta gcttttggat
aagaattcct aagtatttta acagtataag tctaaataat 2880gaatatacaa taataaattg
tatggaaaat aattcaggat ggaaagtatc acttaattat 2940ggtgaaataa tctggacttt
acaggatact caggaaataa aacaaagagt agtttttaaa 3000tacagtcaaa tgattaatat
atcagattat ataaacagat ggatttttgt aactatcact 3060aataatagat taaataactc
taaaatttat ataaatggaa gattaataga tcaaaaacca 3120atttcaaatt taggtaatat
tcatgctagt aataatataa tgtttaaatt agatggttgt 3180agagatacac atagatatat
ttggataaaa tattttaatc tttttgataa ggaattaaat 3240gaaaaagaaa tcaaagattt
atatgataat caatcaaatt caggtatttt aaaagacttt 3300tggggtgatt atttacaata
tgataaacca tactatatgt taaatttata tgatccaaat 3360aaatatgtcg atgtaaataa
tgtaggtatt agaggttata tgtatcttaa agggcctaga 3420ggtagcgtaa tgactacaaa
catttattta aattcaagtt tgtatagggg gacaaaattt 3480attataaaaa aatatgcttc
tggaaataaa gataatattg ttagaaataa tgatcgtgta 3540tatattaatg tagtagttaa
aaataaagaa tataggttag ctactaatgc gtcacaggca 3600ggcgtagaaa aaatactaag
tgcattagaa atacctgatg taggaaatct aagtcaagta 3660gtagtaatga agtcaaaaaa
tgatcaagga ataacaaata aatgcaaaat gaatttacaa 3720gataataatg ggaatgatat
aggctttata ggatttcatc agtttaataa tatagctaaa 3780ctagtagcaa gtaattggta
taatagacaa atagaaagat ctagtaggac tttgggttgc 3840tcatgggaat ttattcctgt
agatgatgga tggggagaaa ggccactgta a 38912183891DNAArtificial
Sequencemat_peptide(1)...(3888)BoNT/A_Csyn8 218atgccatttg ttaataaaca
atttaattat aaagatcctg taaatggtgt tgatattgct 60tatataaaaa ttccaaatgc
aggacaaatg caaccagtaa aagcttttaa aattcataat 120aaaatatggg ttattccaga
aagagataca tttacaaatc ctgaagaagg agatttaaat 180ccaccaccag aagcaaaaca
agttccagtt tcatattatg attcaacata tttaagtaca 240gataatgaaa aagataatta
tttaaaggga gttacaaaat tatttgagag aatttattca 300actgatcttg gaagaatgtt
gttaacatca atagtaaggg gaataccatt ttggggtgga 360agtacaatag atacagaatt
aaaagttatt gatactaatt gtattaatgt gatacaacca 420gatggtagtt atagatcaga
agaacttaat ctagtaataa taggaccctc agctgatatt 480atacagtttg aatgtaaaag
ctttggacat gaagttttga atcttacgcg aaatggttat 540ggctctactc aatacattag
atttagccca gattttacat ttggttttga ggagtcactt 600gaagttgata caaatcctct
tttaggtgca ggcaaatttg ctacagatcc agcagtaaca 660ttagcacatg aacttataca
tgctggacat agattatatg gaatagcaat taatccaaat 720agggttttta aagtaaatac
taatgcctat tatgaaatga gtgggttaga agtaagcttt 780gaggaactta gaacatttgg
gggacatgat gcaaagttta tagatagttt acaggaaaac 840gaatttcgtc tatattatta
taataagttt aaagatatag caagtacact taataaagct 900aaatcaatag taggtactac
tgcttcatta cagtatatga aaaatgtttt taaagagaaa 960tatctcctat ctgaagatac
atctggaaaa ttttcggtag ataaattaaa atttgataag 1020ttatacaaaa tgttaacaga
gatttacaca gaggataatt ttgttaagtt ttttaaagta 1080cttaacagaa aaacatattt
gaattttgat aaagccgtat ttaagataaa tatagtacct 1140aaggtaaatt acacaatata
tgatggattt aatttaagaa atacaaattt agcagcaaac 1200tttaatggtc aaaatacaga
aattaataat atgaatttta ctaaactaaa aaattttact 1260ggattgtttg aattttataa
gttgctatgt gtaagaggga taataacttc taaagacacc 1320aagaaggccg tcaagtacaa
taaggcatta aatgatttat gtatcaaagt taataattgg 1380gacttgtttt ttagtccttc
agaagataat tttactaatg atctaaataa aggagaagaa 1440attacatctg atactaatat
agaagcagca gaagaaaata ttagtttaga tttaatacaa 1500caatattatt taacctttaa
ttttgataat gaacctgaaa atatttcaat agaaaatctt 1560tcaagtgaca ttataggcca
attagaactt atgcctaata tagaaagatt tcctaatgga 1620aaaaagtatg agttagataa
atatactatg ttccattatc ttcgtgctca agaatttgaa 1680catggtaaat ctaggattgc
tttaacaaat tctgttaacg aagcattatt aaatcctagt 1740cgtgtttata catttttttc
ttcagactat gtaaagaaag ttaataaagc tacggaggca 1800gctatgtttt taggctgggt
agaacaatta gtatatgatt ttaccgatga aactagcgaa 1860gtaagtacta cggataaaat
tgcggatata actataatta ttccatatat aggacctgct 1920ttaaatatag gtaatatgtt
atataaagat gattttgtag gtgctttaat attttcagga 1980gctgttattc tgttagaatt
tataccagag attgcaatac ctgtattagg tacttttgca 2040cttgtatcat atattgcgaa
taaggttcta accgttcaaa caatagataa tgctttaagt 2100aaaagaaatg aaaaatggga
tgaggtctat aaatatatag taacaaattg gttagcaaag 2160gttaatacac agattgatct
aataagaaaa aaaatgaaag aagctttaga aaatcaagca 2220gaagcaacaa aggctataat
aaactatcag tataatcaat atactgagga agagaaaaat 2280aatattaatt ttaatattga
tgatttaagt tcgaaactta atgagtctat aaataaagct 2340atgattaata taaataaatt
tttgaatcaa tgctctgttt catatttaat gaattctatg 2400atcccttatg gtgttaaacg
gttagaagat tttgatgcta gtcttaaaga tgcattatta 2460aagtatatat atgataatag
aggaacttta attggtcaag tagatagatt aaaagataaa 2520gttaataata cacttagtac
agatatacct tttcagcttt ccaaatacgt agataatcaa 2580agattattat ctacatttac
tgaatatatt aagaatatta ttaatacttc tatattgaat 2640ttaagatatg aaagtaatca
tttaatagac ttatctaggt atgcatcaaa aataaatatt 2700ggtagtaaag taaattttga
tccaatagat aaaaatcaaa ttcaattatt taatttagaa 2760agtagtaaaa ttgaggtaat
tttaaaaaat gctattgtat ataatagtat gtatgaaaat 2820tttagtacta gcttttggat
aagaattcct aagtatttta acagtataag tctaaataat 2880gaatatacaa taataaattg
tatggaaaat aattcaggat ggaaagtatc acttaattat 2940ggtgaaataa tctggacttt
acaggatact caggaaataa aacaaagagt agtttttaaa 3000tacagtcaaa tgattaatat
atcagattat ataaacagat ggatttttgt aactatcact 3060aataatagat taaataactc
taaaatttat ataaatggaa gattaataga tcaaaaacca 3120atttcaaatt taggtaatat
tcatgctagt aataatataa tgtttaaatt agatggttgt 3180agagatacac atagatatat
ttggataaaa tattttaatc tttttgataa ggaattaaat 3240gaaaaagaaa tcaaagattt
atatgataat caatcaaatt caggtatttt aaaagacttt 3300tggggtgatt atttacaata
tgataaacca tactatatgt taaatttata tgatccaaat 3360aaatatgtcg atgtaaataa
tgtaggtatt agaggttata tgtatcttaa agggcctaga 3420ggtagcgtaa tgactacaaa
catttattta aattcaagtt tgtatagggg gacaaaattt 3480attataaaaa aatatgcttc
tggaaataaa gataatattg ttagaaataa tgatcgtgta 3540tatattaatg tagtagttaa
aaataaagaa tataggttag ctactaatgc gtcacaggca 3600ggcgtagaaa aaatactaag
tgcattagaa atacctgatg taggaaatct aagtcaagta 3660gtagtaatga agtcaaaaaa
tgatcaagga ataacaaata aatgcaaaat gaatttacaa 3720gataataatg ggaatgatat
aggctttata ggatttcatc agtttaataa tatagctaaa 3780ctagtagcaa gtaattggta
taatagacaa atagaaagat ctagtaggac tttgggttgc 3840tcatgggaat ttattcctgt
agatgatgga tggggagaaa ggccactgta a 38912193891DNAArtificial
Sequencemat_peptide(1)...(3888)BoNT/A_Csnp8 219atgccatttg ttaataaaca
atttaattat aaagatcctg taaatggtgt tgatattgct 60tatataaaaa ttccaaatgc
aggacaaatg caaccagtaa aagcttttaa aattcataat 120aaaatatggg ttattccaga
aagagataca tttacaaatc ctgaagaagg agatttaaat 180ccaccaccag aagcaaaaca
agttccagtt tcatattatg attcaacata tttaagtaca 240gataatgaaa aagataatta
tttaaaggga gttacaaaat tatttgagag aatttattca 300actgatcttg gaagaatgtt
gttaacatca atagtaaggg gaataccatt ttggggtgga 360agtacaatag atacagaatt
aaaagttatt gatactaatt gtattaatgt gatacaacca 420gatggtagtt atagatcaga
agaacttaat ctagtaataa taggaccctc agctgatatt 480atacagtttg aatgtaaaag
ctttggacat gaagttttga atcttacgcg aaatggttat 540ggctctactc aatacattag
atttagccca gattttacat ttggttttga ggagtcactt 600gaagttgata caaatcctct
tttaggtgca ggcaaatttg ctacagatcc agcagtaaca 660ttagcacatg aacttataca
tgctggacat agattatatg gaatagcaat taatccaaat 720agggttttta aagtaaatac
taatgcctat tatgaaatga gtgggttaga agtaagcttt 780gaggaactta gaacatttgg
gggacatgat gcaaagttta tagatagttt acaggaaaac 840gaatttcgtc tatattatta
taataagttt aaagatatag caagtacact taataaagct 900aaatcaatag taggtactac
tgcttcatta cagtatatga aaaatgtttt taaagagaaa 960tatctcctat ctgaagatac
atctggaaaa ttttcggtag ataaattaaa atttgataag 1020ttatacaaaa tgttaacaga
gatttacaca gaggataatt ttgttaagtt ttttaaagta 1080cttaacagaa aaacatattt
gaattttgat aaagccgtat ttaagataaa tatagtacct 1140aaggtaaatt acacaatata
tgatggattt aatttaagaa atacaaattt agcagcaaac 1200tttaatggtc aaaatacaga
aattaataat atgaatttta ctaaactaaa aaattttact 1260ggattgtttg aattttataa
gttgctatgt gtaagaggga taataacttc taaagccaac 1320caacgtgcaa caaagatgaa
taaggcatta aatgatttat gtatcaaagt taataattgg 1380gacttgtttt ttagtccttc
agaagataat tttactaatg atctaaataa aggagaagaa 1440attacatctg atactaatat
agaagcagca gaagaaaata ttagtttaga tttaatacaa 1500caatattatt taacctttaa
ttttgataat gaacctgaaa atatttcaat agaaaatctt 1560tcaagtgaca ttataggcca
attagaactt atgcctaata tagaaagatt tcctaatgga 1620aaaaagtatg agttagataa
atatactatg ttccattatc ttcgtgctca agaatttgaa 1680catggtaaat ctaggattgc
tttaacaaat tctgttaacg aagcattatt aaatcctagt 1740cgtgtttata catttttttc
ttcagactat gtaaagaaag ttaataaagc tacggaggca 1800gctatgtttt taggctgggt
agaacaatta gtatatgatt ttaccgatga aactagcgaa 1860gtaagtacta cggataaaat
tgcggatata actataatta ttccatatat aggacctgct 1920ttaaatatag gtaatatgtt
atataaagat gattttgtag gtgctttaat attttcagga 1980gctgttattc tgttagaatt
tataccagag attgcaatac ctgtattagg tacttttgca 2040cttgtatcat atattgcgaa
taaggttcta accgttcaaa caatagataa tgctttaagt 2100aaaagaaatg aaaaatggga
tgaggtctat aaatatatag taacaaattg gttagcaaag 2160gttaatacac agattgatct
aataagaaaa aaaatgaaag aagctttaga aaatcaagca 2220gaagcaacaa aggctataat
aaactatcag tataatcaat atactgagga agagaaaaat 2280aatattaatt ttaatattga
tgatttaagt tcgaaactta atgagtctat aaataaagct 2340atgattaata taaataaatt
tttgaatcaa tgctctgttt catatttaat gaattctatg 2400atcccttatg gtgttaaacg
gttagaagat tttgatgcta gtcttaaaga tgcattatta 2460aagtatatat atgataatag
aggaacttta attggtcaag tagatagatt aaaagataaa 2520gttaataata cacttagtac
agatatacct tttcagcttt ccaaatacgt agataatcaa 2580agattattat ctacatttac
tgaatatatt aagaatatta ttaatacttc tatattgaat 2640ttaagatatg aaagtaatca
tttaatagac ttatctaggt atgcatcaaa aataaatatt 2700ggtagtaaag taaattttga
tccaatagat aaaaatcaaa ttcaattatt taatttagaa 2760agtagtaaaa ttgaggtaat
tttaaaaaat gctattgtat ataatagtat gtatgaaaat 2820tttagtacta gcttttggat
aagaattcct aagtatttta acagtataag tctaaataat 2880gaatatacaa taataaattg
tatggaaaat aattcaggat ggaaagtatc acttaattat 2940ggtgaaataa tctggacttt
acaggatact caggaaataa aacaaagagt agtttttaaa 3000tacagtcaaa tgattaatat
atcagattat ataaacagat ggatttttgt aactatcact 3060aataatagat taaataactc
taaaatttat ataaatggaa gattaataga tcaaaaacca 3120atttcaaatt taggtaatat
tcatgctagt aataatataa tgtttaaatt agatggttgt 3180agagatacac atagatatat
ttggataaaa tattttaatc tttttgataa ggaattaaat 3240gaaaaagaaa tcaaagattt
atatgataat caatcaaatt caggtatttt aaaagacttt 3300tggggtgatt atttacaata
tgataaacca tactatatgt taaatttata tgatccaaat 3360aaatatgtcg atgtaaataa
tgtaggtatt agaggttata tgtatcttaa agggcctaga 3420ggtagcgtaa tgactacaaa
catttattta aattcaagtt tgtatagggg gacaaaattt 3480attataaaaa aatatgcttc
tggaaataaa gataatattg ttagaaataa tgatcgtgta 3540tatattaatg tagtagttaa
aaataaagaa tataggttag ctactaatgc gtcacaggca 3600ggcgtagaaa aaatactaag
tgcattagaa atacctgatg taggaaatct aagtcaagta 3660gtagtaatga agtcaaaaaa
tgatcaagga ataacaaata aatgcaaaat gaatttacaa 3720gataataatg ggaatgatat
aggctttata ggatttcatc agtttaataa tatagctaaa 3780ctagtagcaa gtaattggta
taatagacaa atagaaagat ctagtaggac tttgggttgc 3840tcatgggaat ttattcctgt
agatgatgga tggggagaaa ggccactgta a 38912203984DNAArtificial
Sequencemat_peptide(1)...(3981)BoNT/A_DF39 220atgccatttg ttaataaaca
atttaattat aaagatcctg taaatggtgt tgatattgct 60tatataaaaa ttccaaatgc
aggacaaatg caaccagtaa aagcttttaa aattcataat 120aaaatatggg ttattccaga
aagagataca tttacaaatc ctgaagaagg agatttaaat 180ccaccaccag aagcaaaaca
agttccagtt tcatattatg attcaacata tttaagtaca 240gataatgaaa aagataatta
tttaaaggga gttacaaaat tatttgagag aatttattca 300actgatcttg gaagaatgtt
gttaacatca atagtaaggg gaataccatt ttggggtgga 360agtacaatag atacagaatt
aaaagttatt gatactaatt gtattaatgt gatacaacca 420gatggtagtt atagatcaga
agaacttaat ctagtaataa taggaccctc agctgatatt 480atacagtttg aatgtaaaag
ctttggacat gaagttttga atcttacgcg aaatggttat 540ggctctactc aatacattag
atttagccca gattttacat ttggttttga ggagtcactt 600gaagttgata caaatcctct
tttaggtgca ggcaaatttg ctacagatcc agcagtaaca 660ttagcacatg aacttataca
tgctggacat agattatatg gaatagcaat taatccaaat 720agggttttta aagtaaatac
taatgcctat tatgaaatga gtgggttaga agtaagcttt 780gaggaactta gaacatttgg
gggacatgat gcaaagttta tagatagttt acaggaaaac 840gaatttcgtc tatattatta
taataagttt aaagatatag caagtacact taataaagct 900aaatcaatag taggtactac
tgcttcatta cagtatatga aaaatgtttt taaagagaaa 960tatctcctat ctgaagatac
atctggaaaa ttttcggtag ataaattaaa atttgataag 1020ttatacaaaa tgttaacaga
gatttacaca gaggataatt ttgttaagtt ttttaaagta 1080cttaacagaa aaacatattt
gaattttgat aaagccgtat ttaagataaa tatagtacct 1140aaggtaaatt acacaatata
tgatggattt aatttaagaa atacaaattt agcagcaaac 1200tttaatggtc aaaatacaga
aattaataat atgaatttta ctaaactaaa aaattttact 1260ggattgtttg aattttataa
gttgctatgt gtaagaggga taataacttc taaagcacaa 1320gtggaggagg tggtggacat
catacgtgtg aacgtggaca aggtcctgga gagggaccag 1380aagctgtcag agctggatga
ccgagctgat gccttgcagg caggagcatc aaataaggca 1440ttaaatgatt tatgtatcaa
agttaataat tgggacttgt tttttagtcc ttcagaagat 1500aattttacta atgatctaaa
taaaggagaa gaaattacat ctgatactaa tatagaagca 1560gcagaagaaa atattagttt
agatttaata caacaatatt atttaacctt taattttgat 1620aatgaacctg aaaatatttc
aatagaaaat ctttcaagtg acattatagg ccaattagaa 1680cttatgccta atatagaaag
atttcctaat ggaaaaaagt atgagttaga taaatatact 1740atgttccatt atcttcgtgc
tcaagaattt gaacatggta aatctaggat tgctttaaca 1800aattctgtta acgaagcatt
attaaatcct agtcgtgttt atacattttt ttcttcagac 1860tatgtaaaga aagttaataa
agctacggag gcagctatgt ttttaggctg ggtagaacaa 1920ttagtatatg attttaccga
tgaaactagc gaagtaagta ctacggataa aattgcggat 1980ataactataa ttattccata
tataggacct gctttaaata taggtaatat gttatataaa 2040gatgattttg taggtgcttt
aatattttca ggagctgtta ttctgttaga atttatacca 2100gagattgcaa tacctgtatt
aggtactttt gcacttgtat catatattgc gaataaggtt 2160ctaaccgttc aaacaataga
taatgcttta agtaaaagaa atgaaaaatg ggatgaggtc 2220tataaatata tagtaacaaa
ttggttagca aaggttaata cacagattga tctaataaga 2280aaaaaaatga aagaagcttt
agaaaatcaa gcagaagcaa caaaggctat aataaactat 2340cagtataatc aatatactga
ggaagagaaa aataatatta attttaatat tgatgattta 2400agttcgaaac ttaatgagtc
tataaataaa gctatgatta atataaataa atttttgaat 2460caatgctctg tttcatattt
aatgaattct atgatccctt atggtgttaa acggttagaa 2520gattttgatg ctagtcttaa
agatgcatta ttaaagtata tatatgataa tagaggaact 2580ttaattggtc aagtagatag
attaaaagat aaagttaata atacacttag tacagatata 2640ccttttcagc tttccaaata
cgtagataat caaagattat tatctacatt tactgaatat 2700attaagaata ttattaatac
ttctatattg aatttaagat atgaaagtaa tcatttaata 2760gacttatcta ggtatgcatc
aaaaataaat attggtagta aagtaaattt tgatccaata 2820gataaaaatc aaattcaatt
atttaattta gaaagtagta aaattgaggt aattttaaaa 2880aatgctattg tatataatag
tatgtatgaa aattttagta ctagcttttg gataagaatt 2940cctaagtatt ttaacagtat
aagtctaaat aatgaatata caataataaa ttgtatggaa 3000aataattcag gatggaaagt
atcacttaat tatggtgaaa taatctggac tttacaggat 3060actcaggaaa taaaacaaag
agtagttttt aaatacagtc aaatgattaa tatatcagat 3120tatataaaca gatggatttt
tgtaactatc actaataata gattaaataa ctctaaaatt 3180tatataaatg gaagattaat
agatcaaaaa ccaatttcaa atttaggtaa tattcatgct 3240agtaataata taatgtttaa
attagatggt tgtagagata cacatagata tatttggata 3300aaatatttta atctttttga
taaggaatta aatgaaaaag aaatcaaaga tttatatgat 3360aatcaatcaa attcaggtat
tttaaaagac ttttggggtg attatttaca atatgataaa 3420ccatactata tgttaaattt
atatgatcca aataaatatg tcgatgtaaa taatgtaggt 3480attagaggtt atatgtatct
taaagggcct agaggtagcg taatgactac aaacatttat 3540ttaaattcaa gtttgtatag
ggggacaaaa tttattataa aaaaatatgc ttctggaaat 3600aaagataata ttgttagaaa
taatgatcgt gtatatatta atgtagtagt taaaaataaa 3660gaatataggt tagctactaa
tgcgtcacag gcaggcgtag aaaaaatact aagtgcatta 3720gaaatacctg atgtaggaaa
tctaagtcaa gtagtagtaa tgaagtcaaa aaatgatcaa 3780ggaataacaa ataaatgcaa
aatgaattta caagataata atgggaatga tataggcttt 3840ataggatttc atcagtttaa
taatatagct aaactagtag caagtaattg gtataataga 3900caaatagaaa gatctagtag
gactttgggt tgctcatggg aatttattcc tgtagatgat 3960ggatggggag aaaggccact
gtaa 39842213891DNAArtificial
Sequencemat_peptide(1)...(3888)BoNT/A_D8 221atgccatttg ttaataaaca
atttaattat aaagatcctg taaatggtgt tgatattgct 60tatataaaaa ttccaaatgc
aggacaaatg caaccagtaa aagcttttaa aattcataat 120aaaatatggg ttattccaga
aagagataca tttacaaatc ctgaagaagg agatttaaat 180ccaccaccag aagcaaaaca
agttccagtt tcatattatg attcaacata tttaagtaca 240gataatgaaa aagataatta
tttaaaggga gttacaaaat tatttgagag aatttattca 300actgatcttg gaagaatgtt
gttaacatca atagtaaggg gaataccatt ttggggtgga 360agtacaatag atacagaatt
aaaagttatt gatactaatt gtattaatgt gatacaacca 420gatggtagtt atagatcaga
agaacttaat ctagtaataa taggaccctc agctgatatt 480atacagtttg aatgtaaaag
ctttggacat gaagttttga atcttacgcg aaatggttat 540ggctctactc aatacattag
atttagccca gattttacat ttggttttga ggagtcactt 600gaagttgata caaatcctct
tttaggtgca ggcaaatttg ctacagatcc agcagtaaca 660ttagcacatg aacttataca
tgctggacat agattatatg gaatagcaat taatccaaat 720agggttttta aagtaaatac
taatgcctat tatgaaatga gtgggttaga agtaagcttt 780gaggaactta gaacatttgg
gggacatgat gcaaagttta tagatagttt acaggaaaac 840gaatttcgtc tatattatta
taataagttt aaagatatag caagtacact taataaagct 900aaatcaatag taggtactac
tgcttcatta cagtatatga aaaatgtttt taaagagaaa 960tatctcctat ctgaagatac
atctggaaaa ttttcggtag ataaattaaa atttgataag 1020ttatacaaaa tgttaacaga
gatttacaca gaggataatt ttgttaagtt ttttaaagta 1080cttaacagaa aaacatattt
gaattttgat aaagccgtat ttaagataaa tatagtacct 1140aaggtaaatt acacaatata
tgatggattt aatttaagaa atacaaattt agcagcaaac 1200tttaatggtc aaaatacaga
aattaataat atgaatttta ctaaactaaa aaattttact 1260ggattgtttg aattttataa
gttgctatgt gtaagaggga taataacttc taaaagggac 1320cagaagctgt cagagctgaa
taaggcatta aatgatttat gtatcaaagt taataattgg 1380gacttgtttt ttagtccttc
agaagataat tttactaatg atctaaataa aggagaagaa 1440attacatctg atactaatat
agaagcagca gaagaaaata ttagtttaga tttaatacaa 1500caatattatt taacctttaa
ttttgataat gaacctgaaa atatttcaat agaaaatctt 1560tcaagtgaca ttataggcca
attagaactt atgcctaata tagaaagatt tcctaatgga 1620aaaaagtatg agttagataa
atatactatg ttccattatc ttcgtgctca agaatttgaa 1680catggtaaat ctaggattgc
tttaacaaat tctgttaacg aagcattatt aaatcctagt 1740cgtgtttata catttttttc
ttcagactat gtaaagaaag ttaataaagc tacggaggca 1800gctatgtttt taggctgggt
agaacaatta gtatatgatt ttaccgatga aactagcgaa 1860gtaagtacta cggataaaat
tgcggatata actataatta ttccatatat aggacctgct 1920ttaaatatag gtaatatgtt
atataaagat gattttgtag gtgctttaat attttcagga 1980gctgttattc tgttagaatt
tataccagag attgcaatac ctgtattagg tacttttgca 2040cttgtatcat atattgcgaa
taaggttcta accgttcaaa caatagataa tgctttaagt 2100aaaagaaatg aaaaatggga
tgaggtctat aaatatatag taacaaattg gttagcaaag 2160gttaatacac agattgatct
aataagaaaa aaaatgaaag aagctttaga aaatcaagca 2220gaagcaacaa aggctataat
aaactatcag tataatcaat atactgagga agagaaaaat 2280aatattaatt ttaatattga
tgatttaagt tcgaaactta atgagtctat aaataaagct 2340atgattaata taaataaatt
tttgaatcaa tgctctgttt catatttaat gaattctatg 2400atcccttatg gtgttaaacg
gttagaagat tttgatgcta gtcttaaaga tgcattatta 2460aagtatatat atgataatag
aggaacttta attggtcaag tagatagatt aaaagataaa 2520gttaataata cacttagtac
agatatacct tttcagcttt ccaaatacgt agataatcaa 2580agattattat ctacatttac
tgaatatatt aagaatatta ttaatacttc tatattgaat 2640ttaagatatg aaagtaatca
tttaatagac ttatctaggt atgcatcaaa aataaatatt 2700ggtagtaaag taaattttga
tccaatagat aaaaatcaaa ttcaattatt taatttagaa 2760agtagtaaaa ttgaggtaat
tttaaaaaat gctattgtat ataatagtat gtatgaaaat 2820tttagtacta gcttttggat
aagaattcct aagtatttta acagtataag tctaaataat 2880gaatatacaa taataaattg
tatggaaaat aattcaggat ggaaagtatc acttaattat 2940ggtgaaataa tctggacttt
acaggatact caggaaataa aacaaagagt agtttttaaa 3000tacagtcaaa tgattaatat
atcagattat ataaacagat ggatttttgt aactatcact 3060aataatagat taaataactc
taaaatttat ataaatggaa gattaataga tcaaaaacca 3120atttcaaatt taggtaatat
tcatgctagt aataatataa tgtttaaatt agatggttgt 3180agagatacac atagatatat
ttggataaaa tattttaatc tttttgataa ggaattaaat 3240gaaaaagaaa tcaaagattt
atatgataat caatcaaatt caggtatttt aaaagacttt 3300tggggtgatt atttacaata
tgataaacca tactatatgt taaatttata tgatccaaat 3360aaatatgtcg atgtaaataa
tgtaggtatt agaggttata tgtatcttaa agggcctaga 3420ggtagcgtaa tgactacaaa
catttattta aattcaagtt tgtatagggg gacaaaattt 3480attataaaaa aatatgcttc
tggaaataaa gataatattg ttagaaataa tgatcgtgta 3540tatattaatg tagtagttaa
aaataaagaa tataggttag ctactaatgc gtcacaggca 3600ggcgtagaaa aaatactaag
tgcattagaa atacctgatg taggaaatct aagtcaagta 3660gtagtaatga agtcaaaaaa
tgatcaagga ataacaaata aatgcaaaat gaatttacaa 3720gataataatg ggaatgatat
aggctttata ggatttcatc agtttaataa tatagctaaa 3780ctagtagcaa gtaattggta
taatagacaa atagaaagat ctagtaggac tttgggttgc 3840tcatgggaat ttattcctgt
agatgatgga tggggagaaa ggccactgta a 38912223891DNAArtificial
Sequencemat_peptide(1)...(3888)BoNT/A_E8 222atgccatttg ttaataaaca
atttaattat aaagatcctg taaatggtgt tgatattgct 60tatataaaaa ttccaaatgc
aggacaaatg caaccagtaa aagcttttaa aattcataat 120aaaatatggg ttattccaga
aagagataca tttacaaatc ctgaagaagg agatttaaat 180ccaccaccag aagcaaaaca
agttccagtt tcatattatg attcaacata tttaagtaca 240gataatgaaa aagataatta
tttaaaggga gttacaaaat tatttgagag aatttattca 300actgatcttg gaagaatgtt
gttaacatca atagtaaggg gaataccatt ttggggtgga 360agtacaatag atacagaatt
aaaagttatt gatactaatt gtattaatgt gatacaacca 420gatggtagtt atagatcaga
agaacttaat ctagtaataa taggaccctc agctgatatt 480atacagtttg aatgtaaaag
ctttggacat gaagttttga atcttacgcg aaatggttat 540ggctctactc aatacattag
atttagccca gattttacat ttggttttga ggagtcactt 600gaagttgata caaatcctct
tttaggtgca ggcaaatttg ctacagatcc agcagtaaca 660ttagcacatg aacttataca
tgctggacat agattatatg gaatagcaat taatccaaat 720agggttttta aagtaaatac
taatgcctat tatgaaatga gtgggttaga agtaagcttt 780gaggaactta gaacatttgg
gggacatgat gcaaagttta tagatagttt acaggaaaac 840gaatttcgtc tatattatta
taataagttt aaagatatag caagtacact taataaagct 900aaatcaatag taggtactac
tgcttcatta cagtatatga aaaatgtttt taaagagaaa 960tatctcctat ctgaagatac
atctggaaaa ttttcggtag ataaattaaa atttgataag 1020ttatacaaaa tgttaacaga
gatttacaca gaggataatt ttgttaagtt ttttaaagta 1080cttaacagaa aaacatattt
gaattttgat aaagccgtat ttaagataaa tatagtacct 1140aaggtaaatt acacaatata
tgatggattt aatttaagaa atacaaattt agcagcaaac 1200tttaatggtc aaaatacaga
aattaataat atgaatttta ctaaactaaa aaattttact 1260ggattgtttg aattttataa
gttgctatgt gtaagaggga taataacttc taaacagatc 1320gacaggatca tggagaagaa
taaggcatta aatgatttat gtatcaaagt taataattgg 1380gacttgtttt ttagtccttc
agaagataat tttactaatg atctaaataa aggagaagaa 1440attacatctg atactaatat
agaagcagca gaagaaaata ttagtttaga tttaatacaa 1500caatattatt taacctttaa
ttttgataat gaacctgaaa atatttcaat agaaaatctt 1560tcaagtgaca ttataggcca
attagaactt atgcctaata tagaaagatt tcctaatgga 1620aaaaagtatg agttagataa
atatactatg ttccattatc ttcgtgctca agaatttgaa 1680catggtaaat ctaggattgc
tttaacaaat tctgttaacg aagcattatt aaatcctagt 1740cgtgtttata catttttttc
ttcagactat gtaaagaaag ttaataaagc tacggaggca 1800gctatgtttt taggctgggt
agaacaatta gtatatgatt ttaccgatga aactagcgaa 1860gtaagtacta cggataaaat
tgcggatata actataatta ttccatatat aggacctgct 1920ttaaatatag gtaatatgtt
atataaagat gattttgtag gtgctttaat attttcagga 1980gctgttattc tgttagaatt
tataccagag attgcaatac ctgtattagg tacttttgca 2040cttgtatcat atattgcgaa
taaggttcta accgttcaaa caatagataa tgctttaagt 2100aaaagaaatg aaaaatggga
tgaggtctat aaatatatag taacaaattg gttagcaaag 2160gttaatacac agattgatct
aataagaaaa aaaatgaaag aagctttaga aaatcaagca 2220gaagcaacaa aggctataat
aaactatcag tataatcaat atactgagga agagaaaaat 2280aatattaatt ttaatattga
tgatttaagt tcgaaactta atgagtctat aaataaagct 2340atgattaata taaataaatt
tttgaatcaa tgctctgttt catatttaat gaattctatg 2400atcccttatg gtgttaaacg
gttagaagat tttgatgcta gtcttaaaga tgcattatta 2460aagtatatat atgataatag
aggaacttta attggtcaag tagatagatt aaaagataaa 2520gttaataata cacttagtac
agatatacct tttcagcttt ccaaatacgt agataatcaa 2580agattattat ctacatttac
tgaatatatt aagaatatta ttaatacttc tatattgaat 2640ttaagatatg aaagtaatca
tttaatagac ttatctaggt atgcatcaaa aataaatatt 2700ggtagtaaag taaattttga
tccaatagat aaaaatcaaa ttcaattatt taatttagaa 2760agtagtaaaa ttgaggtaat
tttaaaaaat gctattgtat ataatagtat gtatgaaaat 2820tttagtacta gcttttggat
aagaattcct aagtatttta acagtataag tctaaataat 2880gaatatacaa taataaattg
tatggaaaat aattcaggat ggaaagtatc acttaattat 2940ggtgaaataa tctggacttt
acaggatact caggaaataa aacaaagagt agtttttaaa 3000tacagtcaaa tgattaatat
atcagattat ataaacagat ggatttttgt aactatcact 3060aataatagat taaataactc
taaaatttat ataaatggaa gattaataga tcaaaaacca 3120atttcaaatt taggtaatat
tcatgctagt aataatataa tgtttaaatt agatggttgt 3180agagatacac atagatatat
ttggataaaa tattttaatc tttttgataa ggaattaaat 3240gaaaaagaaa tcaaagattt
atatgataat caatcaaatt caggtatttt aaaagacttt 3300tggggtgatt atttacaata
tgataaacca tactatatgt taaatttata tgatccaaat 3360aaatatgtcg atgtaaataa
tgtaggtatt agaggttata tgtatcttaa agggcctaga 3420ggtagcgtaa tgactacaaa
catttattta aattcaagtt tgtatagggg gacaaaattt 3480attataaaaa aatatgcttc
tggaaataaa gataatattg ttagaaataa tgatcgtgta 3540tatattaatg tagtagttaa
aaataaagaa tataggttag ctactaatgc gtcacaggca 3600ggcgtagaaa aaatactaag
tgcattagaa atacctgatg taggaaatct aagtcaagta 3660gtagtaatga agtcaaaaaa
tgatcaagga ataacaaata aatgcaaaat gaatttacaa 3720gataataatg ggaatgatat
aggctttata ggatttcatc agtttaataa tatagctaaa 3780ctagtagcaa gtaattggta
taatagacaa atagaaagat ctagtaggac tttgggttgc 3840tcatgggaat ttattcctgt
agatgatgga tggggagaaa ggccactgta a 38912233891DNAArtificial
Sequencemat_peptide(1)...(3888)BoNT/A_F8 223atgccatttg ttaataaaca
atttaattat aaagatcctg taaatggtgt tgatattgct 60tatataaaaa ttccaaatgc
aggacaaatg caaccagtaa aagcttttaa aattcataat 120aaaatatggg ttattccaga
aagagataca tttacaaatc ctgaagaagg agatttaaat 180ccaccaccag aagcaaaaca
agttccagtt tcatattatg attcaacata tttaagtaca 240gataatgaaa aagataatta
tttaaaggga gttacaaaat tatttgagag aatttattca 300actgatcttg gaagaatgtt
gttaacatca atagtaaggg gaataccatt ttggggtgga 360agtacaatag atacagaatt
aaaagttatt gatactaatt gtattaatgt gatacaacca 420gatggtagtt atagatcaga
agaacttaat ctagtaataa taggaccctc agctgatatt 480atacagtttg aatgtaaaag
ctttggacat gaagttttga atcttacgcg aaatggttat 540ggctctactc aatacattag
atttagccca gattttacat ttggttttga ggagtcactt 600gaagttgata caaatcctct
tttaggtgca ggcaaatttg ctacagatcc agcagtaaca 660ttagcacatg aacttataca
tgctggacat agattatatg gaatagcaat taatccaaat 720agggttttta aagtaaatac
taatgcctat tatgaaatga gtgggttaga agtaagcttt 780gaggaactta gaacatttgg
gggacatgat gcaaagttta tagatagttt acaggaaaac 840gaatttcgtc tatattatta
taataagttt aaagatatag caagtacact taataaagct 900aaatcaatag taggtactac
tgcttcatta cagtatatga aaaatgtttt taaagagaaa 960tatctcctat ctgaagatac
atctggaaaa ttttcggtag ataaattaaa atttgataag 1020ttatacaaaa tgttaacaga
gatttacaca gaggataatt ttgttaagtt ttttaaagta 1080cttaacagaa aaacatattt
gaattttgat aaagccgtat ttaagataaa tatagtacct 1140aaggtaaatt acacaatata
tgatggattt aatttaagaa atacaaattt agcagcaaac 1200tttaatggtc aaaatacaga
aattaataat atgaatttta ctaaactaaa aaattttact 1260ggattgtttg aattttataa
gttgctatgt gtaagaggga taataacttc taaagagagg 1320gaccagaagc tgtcagagaa
taaggcatta aatgatttat gtatcaaagt taataattgg 1380gacttgtttt ttagtccttc
agaagataat tttactaatg atctaaataa aggagaagaa 1440attacatctg atactaatat
agaagcagca gaagaaaata ttagtttaga tttaatacaa 1500caatattatt taacctttaa
ttttgataat gaacctgaaa atatttcaat agaaaatctt 1560tcaagtgaca ttataggcca
attagaactt atgcctaata tagaaagatt tcctaatgga 1620aaaaagtatg agttagataa
atatactatg ttccattatc ttcgtgctca agaatttgaa 1680catggtaaat ctaggattgc
tttaacaaat tctgttaacg aagcattatt aaatcctagt 1740cgtgtttata catttttttc
ttcagactat gtaaagaaag ttaataaagc tacggaggca 1800gctatgtttt taggctgggt
agaacaatta gtatatgatt ttaccgatga aactagcgaa 1860gtaagtacta cggataaaat
tgcggatata actataatta ttccatatat aggacctgct 1920ttaaatatag gtaatatgtt
atataaagat gattttgtag gtgctttaat attttcagga 1980gctgttattc tgttagaatt
tataccagag attgcaatac ctgtattagg tacttttgca 2040cttgtatcat atattgcgaa
taaggttcta accgttcaaa caatagataa tgctttaagt 2100aaaagaaatg aaaaatggga
tgaggtctat aaatatatag taacaaattg gttagcaaag 2160gttaatacac agattgatct
aataagaaaa aaaatgaaag aagctttaga aaatcaagca 2220gaagcaacaa aggctataat
aaactatcag tataatcaat atactgagga agagaaaaat 2280aatattaatt ttaatattga
tgatttaagt tcgaaactta atgagtctat aaataaagct 2340atgattaata taaataaatt
tttgaatcaa tgctctgttt catatttaat gaattctatg 2400atcccttatg gtgttaaacg
gttagaagat tttgatgcta gtcttaaaga tgcattatta 2460aagtatatat atgataatag
aggaacttta attggtcaag tagatagatt aaaagataaa 2520gttaataata cacttagtac
agatatacct tttcagcttt ccaaatacgt agataatcaa 2580agattattat ctacatttac
tgaatatatt aagaatatta ttaatacttc tatattgaat 2640ttaagatatg aaagtaatca
tttaatagac ttatctaggt atgcatcaaa aataaatatt 2700ggtagtaaag taaattttga
tccaatagat aaaaatcaaa ttcaattatt taatttagaa 2760agtagtaaaa ttgaggtaat
tttaaaaaat gctattgtat ataatagtat gtatgaaaat 2820tttagtacta gcttttggat
aagaattcct aagtatttta acagtataag tctaaataat 2880gaatatacaa taataaattg
tatggaaaat aattcaggat ggaaagtatc acttaattat 2940ggtgaaataa tctggacttt
acaggatact caggaaataa aacaaagagt agtttttaaa 3000tacagtcaaa tgattaatat
atcagattat ataaacagat ggatttttgt aactatcact 3060aataatagat taaataactc
taaaatttat ataaatggaa gattaataga tcaaaaacca 3120atttcaaatt taggtaatat
tcatgctagt aataatataa tgtttaaatt agatggttgt 3180agagatacac atagatatat
ttggataaaa tattttaatc tttttgataa ggaattaaat 3240gaaaaagaaa tcaaagattt
atatgataat caatcaaatt caggtatttt aaaagacttt 3300tggggtgatt atttacaata
tgataaacca tactatatgt taaatttata tgatccaaat 3360aaatatgtcg atgtaaataa
tgtaggtatt agaggttata tgtatcttaa agggcctaga 3420ggtagcgtaa tgactacaaa
catttattta aattcaagtt tgtatagggg gacaaaattt 3480attataaaaa aatatgcttc
tggaaataaa gataatattg ttagaaataa tgatcgtgta 3540tatattaatg tagtagttaa
aaataaagaa tataggttag ctactaatgc gtcacaggca 3600ggcgtagaaa aaatactaag
tgcattagaa atacctgatg taggaaatct aagtcaagta 3660gtagtaatga agtcaaaaaa
tgatcaagga ataacaaata aatgcaaaat gaatttacaa 3720gataataatg ggaatgatat
aggctttata ggatttcatc agtttaataa tatagctaaa 3780ctagtagcaa gtaattggta
taatagacaa atagaaagat ctagtaggac tttgggttgc 3840tcatgggaat ttattcctgt
agatgatgga tggggagaaa ggccactgta a 38912243891DNAArtificial
Sequencemat_peptide(1)...(3888)BoNT/A_G8 224atgccatttg ttaataaaca
atttaattat aaagatcctg taaatggtgt tgatattgct 60tatataaaaa ttccaaatgc
aggacaaatg caaccagtaa aagcttttaa aattcataat 120aaaatatggg ttattccaga
aagagataca tttacaaatc ctgaagaagg agatttaaat 180ccaccaccag aagcaaaaca
agttccagtt tcatattatg attcaacata tttaagtaca 240gataatgaaa aagataatta
tttaaaggga gttacaaaat tatttgagag aatttattca 300actgatcttg gaagaatgtt
gttaacatca atagtaaggg gaataccatt ttggggtgga 360agtacaatag atacagaatt
aaaagttatt gatactaatt gtattaatgt gatacaacca 420gatggtagtt atagatcaga
agaacttaat ctagtaataa taggaccctc agctgatatt 480atacagtttg aatgtaaaag
ctttggacat gaagttttga atcttacgcg aaatggttat 540ggctctactc aatacattag
atttagccca gattttacat ttggttttga ggagtcactt 600gaagttgata caaatcctct
tttaggtgca ggcaaatttg ctacagatcc agcagtaaca 660ttagcacatg aacttataca
tgctggacat agattatatg gaatagcaat taatccaaat 720agggttttta aagtaaatac
taatgcctat tatgaaatga gtgggttaga agtaagcttt 780gaggaactta gaacatttgg
gggacatgat gcaaagttta tagatagttt acaggaaaac 840gaatttcgtc tatattatta
taataagttt aaagatatag caagtacact taataaagct 900aaatcaatag taggtactac
tgcttcatta cagtatatga aaaatgtttt taaagagaaa 960tatctcctat ctgaagatac
atctggaaaa ttttcggtag ataaattaaa atttgataag 1020ttatacaaaa tgttaacaga
gatttacaca gaggataatt ttgttaagtt ttttaaagta 1080cttaacagaa aaacatattt
gaattttgat aaagccgtat ttaagataaa tatagtacct 1140aaggtaaatt acacaatata
tgatggattt aatttaagaa atacaaattt agcagcaaac 1200tttaatggtc aaaatacaga
aattaataat atgaatttta ctaaactaaa aaattttact 1260ggattgtttg aattttataa
gttgctatgt gtaagaggga taataacttc taaagaaaca 1320agcgcagcca agctcaagaa
taaggcatta aatgatttat gtatcaaagt taataattgg 1380gacttgtttt ttagtccttc
agaagataat tttactaatg atctaaataa aggagaagaa 1440attacatctg atactaatat
agaagcagca gaagaaaata ttagtttaga tttaatacaa 1500caatattatt taacctttaa
ttttgataat gaacctgaaa atatttcaat agaaaatctt 1560tcaagtgaca ttataggcca
attagaactt atgcctaata tagaaagatt tcctaatgga 1620aaaaagtatg agttagataa
atatactatg ttccattatc ttcgtgctca agaatttgaa 1680catggtaaat ctaggattgc
tttaacaaat tctgttaacg aagcattatt aaatcctagt 1740cgtgtttata catttttttc
ttcagactat gtaaagaaag ttaataaagc tacggaggca 1800gctatgtttt taggctgggt
agaacaatta gtatatgatt ttaccgatga aactagcgaa 1860gtaagtacta cggataaaat
tgcggatata actataatta ttccatatat aggacctgct 1920ttaaatatag gtaatatgtt
atataaagat gattttgtag gtgctttaat attttcagga 1980gctgttattc tgttagaatt
tataccagag attgcaatac ctgtattagg tacttttgca 2040cttgtatcat atattgcgaa
taaggttcta accgttcaaa caatagataa tgctttaagt 2100aaaagaaatg aaaaatggga
tgaggtctat aaatatatag taacaaattg gttagcaaag 2160gttaatacac agattgatct
aataagaaaa aaaatgaaag aagctttaga aaatcaagca 2220gaagcaacaa aggctataat
aaactatcag tataatcaat atactgagga agagaaaaat 2280aatattaatt ttaatattga
tgatttaagt tcgaaactta atgagtctat aaataaagct 2340atgattaata taaataaatt
tttgaatcaa tgctctgttt catatttaat gaattctatg 2400atcccttatg gtgttaaacg
gttagaagat tttgatgcta gtcttaaaga tgcattatta 2460aagtatatat atgataatag
aggaacttta attggtcaag tagatagatt aaaagataaa 2520gttaataata cacttagtac
agatatacct tttcagcttt ccaaatacgt agataatcaa 2580agattattat ctacatttac
tgaatatatt aagaatatta ttaatacttc tatattgaat 2640ttaagatatg aaagtaatca
tttaatagac ttatctaggt atgcatcaaa aataaatatt 2700ggtagtaaag taaattttga
tccaatagat aaaaatcaaa ttcaattatt taatttagaa 2760agtagtaaaa ttgaggtaat
tttaaaaaat gctattgtat ataatagtat gtatgaaaat 2820tttagtacta gcttttggat
aagaattcct aagtatttta acagtataag tctaaataat 2880gaatatacaa taataaattg
tatggaaaat aattcaggat ggaaagtatc acttaattat 2940ggtgaaataa tctggacttt
acaggatact caggaaataa aacaaagagt agtttttaaa 3000tacagtcaaa tgattaatat
atcagattat ataaacagat ggatttttgt aactatcact 3060aataatagat taaataactc
taaaatttat ataaatggaa gattaataga tcaaaaacca 3120atttcaaatt taggtaatat
tcatgctagt aataatataa tgtttaaatt agatggttgt 3180agagatacac atagatatat
ttggataaaa tattttaatc tttttgataa ggaattaaat 3240gaaaaagaaa tcaaagattt
atatgataat caatcaaatt caggtatttt aaaagacttt 3300tggggtgatt atttacaata
tgataaacca tactatatgt taaatttata tgatccaaat 3360aaatatgtcg atgtaaataa
tgtaggtatt agaggttata tgtatcttaa agggcctaga 3420ggtagcgtaa tgactacaaa
catttattta aattcaagtt tgtatagggg gacaaaattt 3480attataaaaa aatatgcttc
tggaaataaa gataatattg ttagaaataa tgatcgtgta 3540tatattaatg tagtagttaa
aaataaagaa tataggttag ctactaatgc gtcacaggca 3600ggcgtagaaa aaatactaag
tgcattagaa atacctgatg taggaaatct aagtcaagta 3660gtagtaatga agtcaaaaaa
tgatcaagga ataacaaata aatgcaaaat gaatttacaa 3720gataataatg ggaatgatat
aggctttata ggatttcatc agtttaataa tatagctaaa 3780ctagtagcaa gtaattggta
taatagacaa atagaaagat ctagtaggac tttgggttgc 3840tcatgggaat ttattcctgt
agatgatgga tggggagaaa ggccactgta a 38912253912DNAArtificial
Sequencemat_peptide(1)...(3909)Polynucleotide encoding BoNT/A-A17,
optimized for E. coli expression 225atgccgttcg ttaacaaaca gttcaactac
aaagacccgg ttaacggcgt tgacatcgct 60tacatcaaaa tcccgaacgc tggccagatg
cagccggtta aagctttcaa aatccacaac 120aaaatctggg ttatcccgga acgtgacacc
ttcaccaacc cggaagaagg tgacctgaac 180ccgccgccgg aagctaaaca ggttccggtt
tcctactacg actccaccta cctgtccacc 240gacaacgaga aggacaacta cctgaaaggc
gttaccaaac tgttcgaacg tatctactcc 300actgacctgg gccgtatgct gctgactagc
atcgttcgtg gcatcccgtt ctggggcggc 360tccaccatcg acaccgaact gaaagttatc
gacaccaact gcatcaacgt tatccagccg 420gacggctcct accgttccga agaactgaac
ctggttatca tcggcccgtc cgctgacatc 480atccagttcg aatgcaaatc cttcggccac
gaagttctga acctgacccg taacggctac 540ggctccaccc agtacatccg tttctctccg
gacttcacct tcggcttcga agaatccctg 600gaagttgaca ctaacccgct gctgggcgct
ggtaaattcg ctaccgaccc ggctgtaacc 660ctggctcacg aactgatcca cgctggccac
cgtctgtacg gcatcgctat caacccgaac 720cgtgttttca aagttaacac caacgcttac
tacgaaatgt ccggcctgga agtttccttc 780gaagaactgc gtaccttcgg cggccacgac
gctaaattca tcgactccct gcaggaaaac 840gaattccgtc tgtactatta caacaaattc
aaagacatcg cttccaccct gaacaaagct 900aaatccatcg ttggcaccac cgcttccctg
cagtacatga agaacgtttt caaagagaag 960tacctgctgt ccgaagacac ctccggcaaa
ttctccgttg acaaactgaa attcgacaaa 1020ctgtacaaaa tgctgaccga aatctacacc
gaagacaact tcgttaaatt cttcaaagtt 1080ctgaaccgta aaacctacct gaacttcgac
aaagctgttt tcaaaatcaa catcgttccg 1140aaagttaact acaccatcta cgacggcttc
aacctgcgta acaccaacct ggctgctaac 1200ttcaacggcc agaacaccga aatcaacaac
atgaacttca ccaaactgaa gaacttcacc 1260ggcctgttcg aattctacaa actgctgtgc
gttcgtggca tcatcacctc caaatccaac 1320aaaacccgta tcgacgaagc taaccagcgt
gctaccaaaa tgctggctct gaacgacctg 1380tgcatcaaag ttaacaactg ggacctgttc
ttctccccgt ccgaagacaa cttcaccaac 1440gacctgaaca aaggcgaaga aatcacctcc
gacaccaaca tcgaagctgc tgaagaaaac 1500atctccctgg acctgatcca gcagtactac
ctgaccttca acttcgacaa cgaaccggaa 1560aacatctcca tcgaaaacct gtcctccgac
atcatcggcc agctggaact gatgccgaac 1620atcgaacgtt tcccgaacgg caagaagtat
gaactggaca aatacaccat gttccactac 1680ctgcgtgctc aggaattcga acacggcaaa
tcccgtatcg ctctgaccaa ctccgttaac 1740gaagctctgc tgaacccgtc ccgtgtttac
accttcttct cctccgacta cgttaagaag 1800gttaacaaag ctaccgaagc tgctatgttc
ctgggctggg ttgaacagct ggtttacgac 1860ttcaccgacg aaacctccga agtttccacc
accgacaaaa tcgctgacat caccatcatt 1920atcccgtaca tcggcccggc tctgaacatc
ggcaacatgc tgtacaaaga cgacttcgtt 1980ggcgctctga tcttctccgg cgctgttatc
ctgctggaat tcatcccgga aatcgctatc 2040ccggttctgg gcaccttcgc tctggtttcc
tacatcgcta acaaagttct gaccgttcag 2100accatcgaca acgctctgtc caaacgtaac
gagaagtggg acgaagttta caaatacatc 2160gttaccaact ggctggctaa agttaacacc
cagatcgacc tgatccgtaa gaagatgaaa 2220gaagctctgg aaaaccaggc tgaagctacc
aaagctatca tcaactacca gtacaaccag 2280tacaccgaag aggaaaagaa caacatcaac
ttcaacatcg acgacctgtc ctccaaactg 2340aacgaatcca tcaacaaagc tatgatcaac
atcaacaaat tcctgaacca gtgctccgtt 2400tcctacctga tgaactccat gatcccgtac
ggcgttaaac gtctggaaga cttcgacgct 2460tccctgaaag acgctctgct gaaatacatc
tacgacaacc gtggcaccct gatcggccag 2520gttgaccgtc tgaaagacaa agttaacaac
accctgtcca ccgacatccc gttccagctg 2580tccaaatacg ttgacaacca gcgtctgctg
tccaccttca ccgaatacat caagaacatc 2640atcaacacct ccatcctgaa cctgcgttac
gaatccaacc acctgatcga cctgtcccgt 2700tacgcttcca aaatcaacat cggctccaaa
gttaacttcg acccgatcga caagaaccag 2760atccagctgt tcaacctgga atcctccaaa
atcgaagtta tcctgaagaa cgctatcgtt 2820tacaactcca tgtacgaaaa cttctccacc
tccttctgga tccgtatccc gaaatacttc 2880aactccatct ccctgaacaa cgaatacacc
atcatcaact gcatggaaaa caactccggc 2940tggaaagttt ccctgaacta cggcgaaatc
atctggaccc tgcaggacac ccaggaaatc 3000aaacagcgtg ttgttttcaa atactcccag
atgatcaaca tctccgacta catcaaccgt 3060tggatcttcg ttaccatcac caacaaccgt
ctgaacaact ccaaaatcta catcaacggc 3120cgtctgatcg accagaaacc gatctccaac
ctgggcaaca tccacgcttc caacaacatc 3180atgttcaaac tggacggctg ccgtgacacc
caccgttaca tctggatcaa atacttcaac 3240ctgttcgaca aagaactgaa cgagaaggaa
atcaaagacc tgtacgacaa ccagtccaac 3300tccggcatcc tgaaagactt ctggggcgac
tacctgcagt atgacaaacc gtactacatg 3360ctgaacctgt acgacccgaa caaatacgtt
gacgttaaca acgttggcat ccgtggctac 3420atgtacctga aaggcccgcg tggctccgtt
atgaccacca acatctacct gaactcctcc 3480ctgtaccgtg gcaccaaatt catcatcaag
aagtacgctt ccggcaacaa agacaacatc 3540gttcgtaaca acgaccgtgt ttacatcaac
gttgtagtta agaacaaaga ataccgtctg 3600gctaccaacg cttcccaggc tggcgttgag
aagattctga gcgctctgga aatcccggac 3660gtaggcaacc tgtcccaagt tgtagttatg
aaatccaaga acgaccaggg catcaccaac 3720aagtgcaaga tgaacctgca ggacaacaac
ggcaacgaca tcggcttcat cggcttccac 3780cagttcaaca acatcgctaa actggttgct
tccaactggt acaaccgtca gattgaacgt 3840agctcccgta ccctgggctg cagctgggaa
tttatcccgg tagacgacgg ctggggtgaa 3900cgtccgctgt aa
39122263885DNAArtificial
Sequencemat_peptide(1)...(3882)Polynucleotide encoding BoNT/A-A8,
optimized for E. coli expression 226atgccgttcg ttaacaaaca gttcaactac
aaagacccgg ttaacggcgt tgacatcgct 60tacatcaaaa tcccgaacgc tggccagatg
cagccggtta aagctttcaa aatccacaac 120aaaatctggg ttatcccgga acgtgacacc
ttcaccaacc cggaagaagg cgacctgaac 180ccgccgccgg aagctaaaca ggttccggtt
tcctactacg actccaccta cctgtccacc 240gacaacgaga aggacaacta cctgaaaggc
gttaccaaac tgttcgaacg tatctactcc 300accgacctgg gccgtatgct gctgacctcc
atcgttcgtg gcatcccgtt ctggggcggc 360tccaccatcg acaccgaact gaaagttatc
gacaccaact gcatcaacgt tatccagccg 420gacggctcct accgttccga agaactgaac
ctggttatca tcggcccgtc cgctgacatc 480atccagttcg aatgcaaatc cttcggccac
gaagttctga acctgacccg taacggctac 540ggctccaccc agtacatccg tttctccccg
gacttcacct tcggcttcga agaatccctg 600gaagttgaca ccaacccgct gctgggcgct
ggcaaattcg ctaccgaccc ggctgttacc 660ctggctcacg aactgatcca cgctggccac
cgtctgtacg gcatcgctat caacccgaac 720cgtgttttca aagttaacac caacgcttac
tacgaaatgt ccggcctgga agtttccttc 780gaagaactgc gtaccttcgg cggccacgac
gctaaattca tcgactccct gcaggaaaac 840gaattccgtc tgtactatta caacaaattc
aaagacatcg cttccaccct gaacaaagct 900aaatccatcg ttggcaccac cgcttccctg
cagtacatga agaacgtttt caaagagaag 960tacctgctgt ccgaagacac ctccggcaaa
ttctccgttg acaaactgaa attcgacaaa 1020ctgtacaaga tgctgaccga aatctacacc
gaagacaact tcgttaaatt cttcaaagtt 1080ctgaaccgta aaacctacct gaacttcgac
aaagctgttt tcaaaatcaa catcgttccg 1140aaagttaact acaccatcta cgacggcttc
aacctgcgta acaccaacct ggctgctaac 1200ttcaacggcc agaacaccga aatcaacaac
atgaacttca ccaaactgaa gaacttcacc 1260ggcctgttcg aattctacaa actgctgtgc
gttcgtggca tcatcacctc caaagaagct 1320aaccagcgtg ctaccaaagc tctgaacgac
ctgtgcatca aagttaacaa ctgggacctg 1380ttcttctccc cgtccgaaga caacttcacc
aacgacctga acaaaggcga agaaatcacc 1440tccgacacca acatcgaagc tgctgaagaa
aacatctccc tggacctgat ccagcagtac 1500tacctgacct tcaacttcga caacgaaccg
gaaaacatct ccatcgaaaa cctgtcctcc 1560gacatcatcg gccagctgga actgatgccg
aacatcgaac gtttcccgaa cggcaagaag 1620tatgaactgg acaaatacac catgttccac
tacctgcgtg ctcaggaatt cgaacacggc 1680aaatcccgta tcgctctgac caactccgtt
aacgaagctc tgctgaaccc gtcccgtgtt 1740tacaccttct tctcctccga ctacgttaag
aaggttaaca aagctaccga agctgctatg 1800ttcctgggct gggttgaaca gctggtttac
gacttcaccg acgaaacctc cgaagtttcc 1860accaccgaca aaatcgctga catcaccatc
attatcccgt acatcggccc ggctctgaac 1920atcggcaaca tgctgtacaa agacgacttc
gttggcgctc tgatcttctc cggcgctgtt 1980atcctgctgg aattcatccc ggaaatcgct
atcccggttc tgggcacctt cgctctggtt 2040tcctacatcg ctaacaaagt tctgaccgtt
cagaccatcg acaacgctct gtccaaacgt 2100aacgagaagt gggacgaagt ttacaaatac
atcgttacca actggctggc taaagttaac 2160acccagatcg acctgatccg taagaagatg
aaagaagctc tggaaaacca ggctgaagct 2220accaaagcta tcatcaacta ccagtacaac
cagtacaccg aagaggaaaa gaacaacatc 2280aacttcaaca tcgacgacct gtcctccaaa
ctgaacgaat ccatcaacaa agctatgatc 2340aacatcaaca aattcctgaa ccagtgctcc
gtttcctacc tgatgaactc catgatcccg 2400tacggcgtta aacgtctgga agacttcgac
gcttccctga aagacgctct gctgaaatac 2460atctacgaca accgtggcac cctgatcggc
caggttgacc gtctgaaaga caaagttaac 2520aacaccctgt ccaccgacat cccgttccag
ctgtccaaat acgttgacaa ccagcgtctg 2580ctgtccacct tcaccgaata catcaagaac
atcatcaaca cctccatcct gaacctgcgt 2640tacgaatcca accacctgat cgacctgtcc
cgttacgctt ccaaaatcaa catcggctcc 2700aaagttaact tcgacccgat cgacaagaac
cagatccagc tgttcaacct ggaatcctcc 2760aaaatcgaag ttatcctgaa gaacgctatc
gtttacaact ccatgtacga gaacttctcc 2820acctccttct ggatccgtat cccgaaatac
ttcaactcca tctccctgaa caacgaatac 2880accatcatca actgcatgga aaacaactcc
ggctggaaag tttccctgaa ctacggcgaa 2940atcatctgga ccctgcagga cacccaggaa
atcaaacagc gtgttgtttt caaatactcc 3000cagatgatca acatctccga ctacatcaac
cgttggatct tcgttaccat caccaacaac 3060cgtctgaaca actccaaaat ctacatcaac
ggccgtctga tcgaccagaa accgatctcc 3120aacctgggca acatccacgc ttccaacaac
atcatgttca aactggacgg ctgccgtgac 3180acccaccgtt acatctggat caaatacttc
aacctgttcg acaaagaact gaacgagaag 3240gaaatcaaag acctgtacga caaccagtcc
aactccggca tcctgaaaga cttctggggc 3300gactacctgc agtatgacaa accgtactac
atgctgaacc tgtacgaccc gaacaaatac 3360gttgacgtta acaacgttgg catccgtggc
tacatgtacc tgaaaggccc gcgtggctcc 3420gttatgacca ccaacatcta cctgaactcc
tccctgtacc gtggcaccaa attcatcatc 3480aagaagtacg cttccggcaa caaagacaac
atcgttcgta acaacgaccg tgtttacatc 3540aacgttgtag ttaagaacaa agaataccgt
ctggctacca acgcttccca ggctggcgtt 3600gagaagattc tgtccgctct ggaaatcccg
gacgttggca acctgtccca agttgtagtt 3660atgaaatcca agaacgacca gggcatcacc
aacaagtgca aaatgaacct gcaggacaac 3720aacggcaacg acatcggctt catcggcttc
caccagttca acaacatcgc taaactggtt 3780gcttccaact ggtacaaccg tcagatcgaa
cgttcctccc gtaccctggg ctgctcctgg 3840gaattcatcc cggttgacga cggctggggc
gaacgtccgc tgtaa 38852273966DNAArtificial
Sequencemat_peptide(1)...(3963)Polynucleotide encoding BoNT/A-BT35,
optimized for E. coli expression 227atgccgttcg ttaacaaaca gttcaactac
aaagacccgg ttaacggcgt tgacatcgct 60tacatcaaaa tcccgaacgc tggccagatg
cagccggtta aagctttcaa aatccacaac 120aaaatctggg taatcccgga acgtgacacc
ttcaccaacc cggaagaagg tgacctgaac 180ccgccgccgg aagctaaaca ggttccggtt
tcctactacg actccaccta cctgtccacc 240gacaacgaga aggacaacta cctgaaaggc
gttaccaaac tgttcgaacg tatctactcc 300accgacctgg gccgtatgct gctgacctcc
atcgttcgtg gcatcccgtt ctggggcggc 360tccaccatcg acaccgaact gaaagttatc
gacaccaact gcatcaacgt tatccagccg 420gacggctcct accgttccga agaactgaac
ctggttatca tcggcccgtc cgctgacatc 480atccagttcg aatgcaaatc cttcggccac
gaagttctga acctgacccg taacggctac 540ggctccaccc agtacatccg tttctccccg
gacttcacct tcggcttcga agaatccctg 600gaagttgaca ctaacccgct gctgggcgct
ggtaaattcg ctaccgaccc ggctgtaacc 660ctggctcacg aactgatcca cgctggccac
cgtctgtacg gcatcgctat caacccgaac 720cgtgttttca aagttaacac caacgcttac
tacgaaatgt ccggcctgga agtttccttc 780gaagaactgc gtaccttcgg cggccacgac
gctaaattca tcgactccct gcaggaaaac 840gaattccgtc tgtactatta caacaaattc
aaagacatcg cttccaccct gaacaaagct 900aaatccatcg ttggcaccac cgcttccctg
cagtacatga agaacgtttt caaagagaag 960tacctgctgt ccgaagacac ctccggcaaa
ttctccgttg acaaactgaa attcgacaaa 1020ctgtacaaaa tgctgaccga aatctacacc
gaagacaact tcgttaaatt cttcaaagtt 1080ctgaaccgta aaacctacct gaacttcgac
aaagctgttt tcaaaatcaa catcgttccg 1140aaagttaact acaccatcta cgacggcttc
aacctgcgta acaccaacct ggctgctaac 1200ttcaacggcc agaacaccga aatcaacaac
atgaacttca ccaaactgaa gaacttcacc 1260ggcctgttcg aattctacaa actgctgtgc
gttcgtggca tcatcacctc caaactgtct 1320gaactggacg accgtgctga cgctctgcag
gctggcgctt cccagttcga atcctccgct 1380gctaaactga aacgtaaata ctggtggaag
aactgcaaag ctctgaacga cctgtgcatc 1440aaagttaaca actgggacct gttcttctcc
ccgtccgaag acaacttcac caacgacctg 1500aacaaaggcg aagaaatcac ctccgacacc
aacatcgaag ctgctgaaga aaacatctcc 1560ctggacctga tccagcagta ctacctgacc
ttcaacttcg acaacgaacc ggaaaacatc 1620tccatcgaaa acctgtcctc cgacatcatc
ggccagctgg aactgatgcc gaacatcgaa 1680cgtttcccga acggcaaaaa atatgaactg
gacaaataca ccatgttcca ctacctgcgt 1740gctcaggaat tcgaacacgg caaatcccgt
atcgctctga ccaactccgt taacgaagct 1800ctgctgaacc cgtcccgtgt ttacaccttc
ttctcctccg actacgttaa gaaggttaac 1860aaagctaccg aagctgctat gttcctgggc
tgggttgaac agctggttta cgacttcacc 1920gacgaaacct ccgaagtttc caccaccgac
aaaatcgctg acatcaccat cattatcccg 1980tacatcggcc cggctctgaa catcggcaac
atgctgtaca aagacgactt cgttggcgct 2040ctgatcttct ccggcgctgt tatcctgctg
gaattcatcc cggaaatcgc tatcccggtt 2100ctgggcacct tcgctctggt ttcctacatc
gctaacaaag ttctgaccgt tcagaccatc 2160gacaacgctc tgtccaaacg taacgagaag
tgggacgaag tttacaaata catcgttacc 2220aactggctgg ctaaagttaa cacccagatc
gacctgatcc gtaagaagat gaaagaagct 2280ctggaaaacc aggctgaagc taccaaagct
atcatcaact accagtacaa ccagtacacc 2340gaagaggaaa agaacaacat caacttcaac
atcgacgacc tgtcctccaa actgaacgaa 2400tccatcaaca aagctatgat caacatcaac
aaattcctga accagtgctc cgtttcctac 2460ctgatgaact ccatgatccc gtacggcgtt
aaacgtctgg aagacttcga cgcttccctg 2520aaagacgctc tgctgaaata catctacgac
aaccgtggca ccctgatcgg ccaggttgac 2580cgtctgaaag acaaagttaa caacaccctg
tccaccgaca tcccgttcca gctgtccaaa 2640tacgttgaca accagcgtct gctgtccacc
ttcaccgaat acatcaagaa catcatcaac 2700acctccatcc tgaacctgcg ttacgaatcc
aaccacctga tcgacctgtc ccgttacgct 2760tccaaaatca acatcggctc caaagttaac
ttcgacccga tcgacaagaa ccagatccag 2820ctgttcaacc tggaatcctc caaaatcgaa
gttatcctga agaacgctat cgtttacaac 2880tccatgtacg aaaacttctc cacctccttc
tggatccgta tcccgaaata cttcaactcc 2940atctccctga acaacgaata caccatcatc
aactgcatgg aaaacaactc cggctggaaa 3000gtttccctga actacggcga aatcatctgg
accctgcagg acacccagga aatcaaacag 3060cgtgttgttt tcaaatactc ccagatgatc
aacatctccg actacatcaa ccgttggatc 3120ttcgttacca tcaccaacaa ccgtctgaac
aactccaaaa tctacatcaa cggccgtctg 3180atcgaccaga aaccgatctc caacctgggc
aacatccacg cttccaacaa catcatgttc 3240aaactggacg gctgccgtga cacccaccgt
tacatctgga tcaaatactt caacctgttc 3300gacaaagaac tgaacgagaa ggaaatcaaa
gacctgtacg acaaccagtc caactccggc 3360atcctgaaag acttctgggg cgactacctg
cagtatgaca aaccgtacta catgctgaac 3420ctgtacgacc cgaacaaata cgttgacgtt
aacaacgttg gcatccgtgg ctacatgtac 3480ctgaaaggcc cgcgtggctc cgttatgacc
accaacatct acctgaactc ctccctgtac 3540cgtggcacca aattcatcat caagaagtac
gcttccggca acaaagacaa catcgttcgt 3600aacaacgacc gtgtttacat caacgttgta
gttaagaaca aagaataccg tctggctacc 3660aacgcttccc aggctggcgt tgagaagatt
ctgtccgctc tggaaatccc ggacgttggc 3720aacctgtccc aagttgtagt tatgaaatcc
aagaacgacc agggcatcac caacaagtgc 3780aagatgaacc tgcaggacaa caacggcaac
gacatcggct tcatcggctt ccaccagttc 3840aacaacatcg ctaaactggt tgcttccaac
tggtacaacc gtcagatcga acgttcctcc 3900cgtaccctgg gctgtagctg ggaattcatc
ccggttgacg acggctgggg cgaacgtccg 3960ctgtaa
39662283885DNAArtificial
Sequencemat_peptide(1)...(3882)Polynucleotide encoding BoNT/A-BT8,
optimized for E. coli expression 228atgccgttcg ttaacaaaca gttcaactac
aaagacccgg ttaacggcgt tgacatcgct 60tacatcaaaa tcccgaacgc tggccagatg
cagccggtta aagctttcaa aatccacaac 120aaaatctggg taatcccgga acgtgacacc
ttcaccaacc cggaagaagg tgacctgaac 180ccgccgccgg aagctaaaca ggttccggtt
tcctactacg actccaccta cctgtccacc 240gacaacgaga aggacaacta cctgaaaggc
gttaccaaac tgttcgaacg tatctactcc 300actgacctgg gccgtatgct gctgacctcc
atcgttcgtg gcatcccgtt ctggggcggc 360tccaccatcg acaccgaact gaaagttatc
gacaccaact gcatcaacgt tatccagccg 420gacggctcct accgttccga agaactgaac
ctggttatca tcggcccgtc cgctgacatc 480atccagttcg aatgcaaatc cttcggccac
gaagttctga acctgacccg taacggctac 540ggctccaccc agtacatccg tttctccccg
gacttcacct tcggcttcga agaatccctg 600gaagttgaca ctaacccgct gctgggcgct
ggtaaattcg ctaccgaccc ggctgttacc 660ctggctcacg aactgatcca cgctggccac
cgtctgtacg gcatcgctat caacccgaac 720cgtgttttca aagttaacac caacgcttac
tacgaaatgt ccggcctgga agtttccttc 780gaagaactgc gtaccttcgg cggccacgac
gctaaattca tcgactccct gcaggaaaac 840gaattccgtc tgtactatta caacaaattc
aaagacatcg cttccaccct gaacaaagct 900aaatccatcg ttggcaccac cgcttccctg
cagtacatga agaacgtttt caaagagaag 960tacctgctgt ccgaagacac ctccggcaaa
ttctccgttg acaaactgaa attcgacaaa 1020ctgtacaaaa tgctgaccga aatctacacc
gaagacaact tcgttaaatt cttcaaagtt 1080ctgaaccgta aaacctacct gaacttcgac
aaagctgttt tcaaaatcaa catcgttccg 1140aaagttaact acaccatcta cgacggcttc
aacctgcgta acaccaacct ggctgctaac 1200ttcaacggcc agaacaccga aatcaacaac
atgaacttca ccaaactgaa gaacttcacc 1260ggcctgttcg aattctacaa actgctgtgc
gttcgtggca tcatcacctc caaaggcgct 1320tcccagttcg aaacctccgc tctgaacgac
ctgtgcatca aagttaacaa ctgggacctg 1380ttcttctccc cgtccgaaga caacttcacc
aacgacctga acaaaggcga agaaatcacc 1440tccgacacca acatcgaagc tgctgaagaa
aacatctccc tggacctgat ccagcagtac 1500tacctgacct tcaacttcga caacgaaccg
gaaaacatct ccatcgaaaa cctgtcctcc 1560gacatcatcg gccagctgga actgatgccg
aacatcgaac gtttcccgaa cggcaagaag 1620tatgaactgg acaaatacac catgttccac
tacctgcgtg ctcaggaatt cgaacacggc 1680aaatcccgta tcgctctgac caactccgtt
aacgaagctc tgctgaaccc gtcccgtgtt 1740tacaccttct tctcctccga ctacgttaag
aaggttaaca aagctaccga agctgctatg 1800ttcctgggct gggttgaaca gctggtttac
gacttcaccg acgaaacctc cgaagtttcc 1860accaccgaca aaatcgctga catcaccatc
attatcccgt acatcggccc ggctctgaac 1920atcggcaaca tgctgtacaa agacgacttc
gttggcgctc tgatcttctc cggcgctgtt 1980atcctgctgg aattcatccc ggaaatcgct
atcccggttc tgggcacctt cgctctggtt 2040tcctacatcg ctaacaaagt tctgaccgtt
cagaccatcg acaacgctct gtccaaacgt 2100aacgagaagt gggacgaagt ttacaaatac
atcgttacca actggctggc taaagttaac 2160acccagatcg acctgatccg taagaagatg
aaagaagctc tggaaaacca ggctgaagct 2220accaaagcta tcatcaacta ccagtacaac
cagtacaccg aagaggaaaa gaacaacatc 2280aacttcaaca tcgacgacct gtcctccaaa
ctgaacgaat ccatcaacaa agctatgatc 2340aacatcaaca aattcctgaa ccagtgctcc
gtttcctacc tgatgaactc catgatcccg 2400tacggcgtta aacgtctgga agacttcgac
gcttccctga aagacgctct gctgaaatac 2460atctacgaca accgtggcac cctgatcggc
caggttgacc gtctgaaaga caaagttaac 2520aacaccctgt ccaccgacat cccgttccag
ctgtccaaat acgttgacaa ccagcgtctg 2580ctgtccacct tcaccgaata catcaagaac
atcatcaaca cctccatcct gaacctgcgt 2640tacgaatcca accacctgat cgacctgtcc
cgttacgctt ccaaaatcaa catcggctcc 2700aaagttaact tcgacccgat cgacaagaac
cagatccagc tgttcaacct ggaatcctcc 2760aaaatcgaag ttatcctgaa gaacgctatc
gtttacaact ccatgtacga aaacttctcc 2820acctccttct ggatccgtat cccgaaatac
ttcaactcca tctccctgaa caacgaatac 2880accatcatca actgcatgga aaacaactcc
ggctggaaag tttccctgaa ctacggcgaa 2940atcatctgga ccctgcagga cacccaggaa
atcaaacagc gtgttgtttt caaatactcc 3000cagatgatca acatctccga ctacatcaac
cgttggatct tcgttaccat caccaacaac 3060cgtctgaaca actccaaaat ctacatcaac
ggccgtctga tcgaccagaa accgatctcc 3120aacctgggca acatccacgc ttccaacaac
atcatgttca aactggacgg ctgccgtgac 3180acccaccgtt acatctggat caaatacttc
aacctgttcg acaaagaact gaacgagaag 3240gaaatcaaag acctgtacga caaccagtcc
aactccggca tcctgaaaga cttctggggc 3300gactacctgc agtatgacaa accgtactac
atgctgaacc tgtacgaccc gaacaaatac 3360gttgacgtta acaacgttgg catccgtggc
tacatgtacc tgaaaggccc gcgtggctcc 3420gttatgacca ccaacatcta cctgaactcc
tccctgtacc gtggcaccaa attcatcatc 3480aagaagtacg cttccggcaa caaagacaac
atcgttcgta acaacgaccg tgtttacatc 3540aacgttgtag ttaagaacaa agaataccgt
ctggctacca acgcttccca ggctggcgtt 3600gagaagattc tgtccgctct ggaaatcccg
gacgttggca acctgtccca agttgtagtt 3660atgaaatcca agaacgacca gggcatcacc
aacaagtgca aaatgaacct gcaggacaac 3720aacggcaacg acatcggctt catcggcttc
caccagttca acaacatcgc taaactggtt 3780gcttccaact ggtacaaccg tcagatcgaa
cgttcctccc gtaccctggg ctgctcctgg 3840gaattcatcc cggttgacga cggctggggc
gaacgtccgc tgtaa 38852293885DNAArtificial
Sequencemat_peptide(1)...(3882)Polynucleotide encoding BoNT/A-Csyp8,
optimized for E. coli expression 229atgccgttcg ttaacaaaca gttcaactac
aaagacccgg ttaacggcgt tgacatcgct 60tacatcaaaa tcccgaacgc tggccagatg
cagccggtta aagctttcaa aatccacaac 120aaaatctggg ttatcccgga acgtgacacc
ttcaccaacc cggaagaagg cgacctgaac 180ccgccgccgg aagctaaaca ggttccggtt
tcctactacg actccaccta cctgtccacc 240gacaacgaga aggacaacta cctgaaaggc
gttaccaaac tgttcgaacg tatctactcc 300accgacctgg gccgtatgct gctgacctcc
atcgttcgtg gcatcccgtt ctggggcggc 360tccaccatcg acaccgaact gaaagttatc
gacaccaact gcatcaacgt tatccagccg 420gacggctcct accgttccga agaactgaac
ctggttatca tcggcccgtc cgctgacatc 480atccagttcg aatgcaaatc cttcggccac
gaagttctga acctgacccg taacggctac 540ggctccaccc agtacatccg tttctctccg
gacttcacct tcggcttcga agaatccctg 600gaagttgaca ccaacccgct gctgggcgct
ggcaaattcg ctaccgaccc ggctgttacc 660ctggctcacg aactgatcca cgctggccac
cgtctgtacg gcatcgctat caacccgaac 720cgtgtattta aagttaacac caacgcttac
tacgaaatgt ccggcctgga agtttccttc 780gaagaactgc gtaccttcgg cggccacgac
gctaaattca tcgactccct gcaggaaaac 840gaattccgtc tgtactatta caacaaattc
aaagacatcg cttccaccct gaacaaagct 900aaatccatcg ttggcaccac cgcttccctg
cagtacatga agaacgtttt caaagagaag 960tacctgctgt ccgaagacac ctccggcaaa
ttctccgttg acaaactgaa attcgacaaa 1020ctgtacaaaa tgctgaccga aatctacacc
gaagacaact tcgttaaatt cttcaaagtt 1080ctgaaccgta aaacctacct gaacttcgac
aaagctgttt tcaaaatcaa catcgttccg 1140aaagttaact acaccatcta cgacggcttc
aacctgcgta acaccaacct ggctgctaac 1200ttcaacggcc agaacaccga aatcaacaac
atgaacttca ccaaactgaa gaacttcacc 1260ggcctgttcg aattctacaa actgctgtgc
gttcgtggca tcatcacctc caaagacacc 1320aagaaggctg ttaaatacgc tctgaacgac
ctgtgcatca aagttaacaa ctgggacctg 1380ttcttctctc cgtccgaaga caacttcacc
aacgacctga acaaaggcga agaaatcacc 1440tccgacacca acatcgaagc tgctgaagaa
aacatctccc tggacctgat ccagcagtac 1500tacctgacct tcaacttcga caacgaaccg
gaaaacatct ccatcgaaaa cctgtcctcc 1560gacatcatcg gccagctgga actgatgccg
aacatcgaac gtttcccgaa cggcaagaag 1620tatgaactgg acaaatacac catgttccac
tacctgcgtg ctcaggaatt cgaacacggc 1680aaatcccgta tcgctctgac caactccgtt
aacgaagctc tgctgaaccc gtcccgtgtt 1740tacaccttct tctcctccga ctacgttaag
aaggttaaca aagctaccga agctgctatg 1800ttcctgggct gggttgaaca gctggtttac
gacttcaccg acgaaacctc cgaagtttcc 1860accaccgaca aaatcgctga catcaccatc
attatcccgt acatcggccc ggctctgaac 1920atcggcaaca tgctgtacaa agacgacttc
gttggcgctc tgatcttctc cggcgctgtt 1980atcctgctgg aattcatccc ggaaatcgct
atcccggttc tgggcacctt cgctctggtt 2040tcctacatcg ctaacaaagt tctgaccgtt
cagaccatcg acaacgctct gtccaaacgt 2100aacgagaagt gggacgaagt ttacaaatac
atcgttacca actggctggc taaagttaac 2160acccagatcg acctgatccg taagaagatg
aaagaagctc tggagaacca ggctgaagct 2220accaaagcta tcatcaacta ccagtacaac
cagtacaccg aagaggaaaa gaacaacatc 2280aacttcaaca tcgacgacct gtcctccaaa
ctgaacgaat ccatcaacaa agctatgatc 2340aacatcaaca aattcctgaa ccagtgctcc
gtttcctacc tgatgaactc catgatcccg 2400tacggcgtta aacgtctgga agacttcgac
gcttccctga aagacgctct gctgaaatac 2460atctacgaca accgtggcac cctgatcggc
caggttgacc gtctgaaaga caaagttaac 2520aacaccctgt ccaccgacat cccgttccag
ctgtccaaat acgttgacaa ccagcgtctg 2580ctgtccacct tcaccgaata catcaagaac
atcatcaaca cctccatcct gaacctgcgt 2640tacgaatcca accacctgat cgacctgtcc
cgttacgctt ccaagattaa catcggctcc 2700aaagttaact tcgacccgat cgacaagaac
cagatccagc tgttcaacct ggaatcctcc 2760aagattgaag ttatcctgaa gaacgctatc
gtttacaact ccatgtacga aaacttctcc 2820acctccttct ggatccgtat cccgaaatac
ttcaactcca tctccctgaa caacgaatac 2880accatcatca actgcatgga aaacaactcc
ggctggaaag tttccctgaa ctacggcgaa 2940atcatctgga ccctgcagga cacccaggaa
atcaaacagc gtgttgtttt caaatactcc 3000cagatgatca acatctccga ctacatcaac
cgttggatct tcgttaccat caccaacaac 3060cgtctgaaca actccaagat ttacatcaac
ggccgtctga tcgaccagaa accgatctcc 3120aacctgggca acatccacgc ttccaacaac
atcatgttca aactggacgg ctgccgtgac 3180acccaccgtt acatctggat caaatacttc
aacctgttcg acaaagaact gaacgagaag 3240gaaatcaaag acctgtacga caaccagtcc
aactccggca tcctgaaaga cttctggggc 3300gactacctgc agtatgacaa accgtactac
atgctgaacc tgtacgaccc gaacaaatac 3360gttgacgtta acaacgttgg catccgtggc
tacatgtacc tgaaaggccc gcgtggctcc 3420gttatgacca ccaacatcta cctgaactcc
tccctgtacc gtggcaccaa attcatcatc 3480aagaagtacg cttccggcaa caaagacaac
atcgttcgta acaacgaccg tgtttacatc 3540aacgttgtag ttaagaacaa agaataccgt
ctggctacca acgcttccca ggctggcgtt 3600gagaagattc tgtccgctct ggaaatcccg
gacgttggca acctgtccca agttgtagtt 3660atgaaatcca agaacgacca gggcatcacc
aacaagtgca aaatgaacct gcaggacaac 3720aacggcaacg acatcggctt catcggcttc
caccagttca acaacatcgc taaactggtt 3780gcttccaact ggtacaaccg tcagatcgaa
cgttcctccc gtaccctggg ctgctcctgg 3840gaattcatcc cggttgacga cggctggggc
gaacgtccgc tgtaa 38852303885DNAArtificial
Sequencemat_peptide(1)...(3882)Polynucleotide encoding BoNT/A-Csnp8,
optimized for E. coli expression 230atgccgttcg ttaacaaaca gttcaactac
aaagacccgg ttaacggcgt tgacatcgct 60tacatcaaaa tcccgaacgc tggccagatg
cagccggtta aagctttcaa aatccacaac 120aaaatctggg ttatcccgga acgtgacacc
ttcaccaacc cggaagaagg cgacctgaac 180ccgccgccgg aagctaaaca ggttccggtt
tcctactacg actccaccta cctgtccacc 240gacaacgaga aggacaacta cctgaaaggc
gttaccaaac tgttcgaacg tatctactcc 300accgacctgg gccgtatgct gctgacctcc
atcgttcgtg gcatcccgtt ctggggcggc 360tccaccatcg acaccgaact gaaagttatc
gacaccaact gcatcaacgt tatccagccg 420gacggctcct accgttccga agaactgaac
ctggttatca tcggcccgtc cgctgacatc 480atccagttcg aatgcaaatc cttcggccac
gaagttctga acctgacccg taacggctac 540ggctccaccc agtacatccg tttctccccg
gacttcacct tcggcttcga agaatccctg 600gaagttgaca ccaacccgct gctgggcgct
ggcaaattcg ctaccgaccc ggctgttacc 660ctggctcacg aactgatcca cgctggccac
cgtctgtacg gcatcgctat caacccgaac 720cgtgttttca aagttaacac caacgcttac
tacgaaatgt ccggcctgga agtttccttc 780gaagaactgc gtaccttcgg cggccacgac
gctaaattca tcgactccct gcaggaaaac 840gaattccgtc tgtactatta caacaaattc
aaagacatcg cttccaccct gaacaaagct 900aaatccatcg ttggcaccac cgcttccctg
cagtacatga agaacgtttt caaagagaag 960tacctgctgt ccgaagacac ctccggcaaa
ttctccgttg acaaactgaa attcgacaaa 1020ctgtacaaaa tgctgaccga aatctacacc
gaagacaact tcgttaaatt cttcaaagtt 1080ctgaaccgta aaacctacct gaacttcgac
aaagctgttt tcaaaatcaa catcgttccg 1140aaagttaact acaccatcta cgacggcttc
aacctgcgta acaccaacct ggctgctaac 1200ttcaacggcc agaacaccga aatcaacaac
atgaacttca ccaaactgaa gaacttcacc 1260ggcctgttcg aattctacaa actgctgtgc
gttcgtggca tcatcacctc caaagctaac 1320cagcgtgcta ccaaaatggc tctgaacgac
ctgtgcatca aagttaacaa ctgggacctg 1380ttcttctccc cgtccgaaga caacttcacc
aacgacctga acaaaggcga agaaatcacc 1440tccgacacca acatcgaagc tgctgaagaa
aacatctccc tggacctgat ccagcagtac 1500tacctgacct tcaacttcga caacgaaccg
gaaaacatct ccatcgaaaa cctgtcctcc 1560gacatcatcg gccagctgga actgatgccg
aacatcgaac gtttcccgaa cggcaagaag 1620tatgaactgg acaaatacac catgttccac
tacctgcgtg ctcaggaatt cgaacacggc 1680aaatcccgta tcgctctgac caactccgtt
aacgaagctc tgctgaaccc gtcccgtgtt 1740tacaccttct tctcctccga ctacgttaag
aaggttaaca aagctaccga agctgctatg 1800ttcctgggct gggttgaaca gctggtttac
gacttcaccg acgaaacctc cgaagtttcc 1860accaccgaca aaatcgctga catcaccatc
attatcccgt acatcggccc ggctctgaac 1920atcggcaaca tgctgtacaa agacgacttc
gttggcgctc tgatcttctc cggcgctgtt 1980atcctgctgg aattcatccc ggaaatcgct
atcccggttc tgggcacctt cgctctggtt 2040tcctacatcg ctaacaaagt tctgaccgtt
cagaccatcg acaacgctct gtccaaacgt 2100aacgagaagt gggacgaagt ttacaaatac
atcgttacca actggctggc taaagttaac 2160acccagatcg acctgatccg taagaagatg
aaagaagctc tggaaaacca ggctgaagct 2220accaaagcta tcatcaacta ccagtacaac
cagtacaccg aagaggaaaa gaacaacatc 2280aacttcaaca tcgacgacct gtcctccaaa
ctgaacgaat ccatcaacaa agctatgatc 2340aacatcaaca aattcctgaa ccagtgctcc
gtttcctacc tgatgaactc catgatcccg 2400tacggcgtta aacgtctgga agacttcgac
gcttccctga aagacgctct gctgaaatac 2460atctacgaca accgtggcac cctgatcggc
caggttgacc gtctgaaaga caaagttaac 2520aacaccctgt ccaccgacat cccgttccag
ctgtccaaat acgttgacaa ccagcgtctg 2580ctgtccacct tcaccgaata catcaagaac
atcatcaaca cctccatcct gaacctgcgt 2640tacgaatcca accacctgat cgacctgtcc
cgttacgctt ccaagattaa catcggctcc 2700aaagttaact tcgacccgat cgacaagaac
cagatccagc tgttcaacct ggaatcctcc 2760aagattgaag ttatcctgaa gaacgctatc
gtttacaact ccatgtacga gaacttctcc 2820acctccttct ggatccgtat cccgaaatac
ttcaactcca tctccctgaa caacgaatac 2880accatcatca actgcatgga aaacaactcc
ggctggaaag tttccctgaa ctacggcgaa 2940atcatctgga ccctgcagga cacccaggaa
atcaaacagc gtgttgtttt caaatactcc 3000cagatgatca acatctccga ctacatcaac
cgttggatct tcgttaccat caccaacaac 3060cgtctgaaca actccaaaat ctacatcaac
ggccgtctga tcgaccagaa accgatctcc 3120aacctgggca acatccacgc ttccaacaac
atcatgttca aactggacgg ctgccgtgac 3180acccaccgtt acatctggat caaatacttc
aacctgttcg acaaagaact gaacgagaag 3240gaaatcaaag acctgtacga caaccagtcc
aactccggca tcctgaaaga cttctggggc 3300gactacctgc agtatgacaa accgtactac
atgctgaacc tgtacgaccc gaacaaatac 3360gttgacgtta acaacgttgg catccgtggc
tacatgtacc tgaaaggccc gcgtggctcc 3420gttatgacca ccaacatcta cctgaactcc
tccctgtacc gtggcaccaa attcatcatc 3480aagaagtacg cttccggcaa caaagacaac
atcgttcgta acaacgaccg tgtttacatc 3540aacgttgtag ttaagaacaa agaataccgt
ctggctacca acgcttccca ggctggcgtt 3600gagaagattc tgtccgctct ggaaatcccg
gacgttggca acctgtccca agttgtagtt 3660atgaaatcca agaacgacca gggcatcacc
aacaagtgca agatgaacct gcaggacaac 3720aacggcaacg acatcggctt catcggcttc
caccagttca acaacatcgc taaactggtt 3780gcttccaact ggtacaaccg tcagatcgaa
cgttcctccc gtaccctggg ctgctcctgg 3840gaattcatcc cggttgacga cggctggggc
gaacgtccgc tgtaa 38852313978DNAArtificial
Sequencemat_peptide(1)...(3975)Polynucleotide encoding BoNT/A-DF39,
optimized for E. coli expression 231atgccgttcg ttaacaaaca gttcaactac
aaagacccgg ttaacggcgt tgacatcgct 60tacatcaaaa tcccgaacgc tggccagatg
cagccggtta aagctttcaa aatccacaac 120aaaatctggg taatcccgga acgtgacacc
ttcaccaacc cggaagaagg cgacctgaac 180ccgccgccgg aagctaaaca ggttccggtt
tcctactacg actccaccta cctgtccacc 240gacaacgaga aggacaacta cctgaaaggc
gttaccaaac tgttcgaacg tatctactcc 300accgacctgg gccgtatgct gctgacctcc
atcgttcgtg gcatcccgtt ctggggcggc 360tccaccatcg acaccgaact gaaagttatc
gacaccaact gcatcaacgt tatccagccg 420gacggctcct accgttccga agaactgaac
ctggttatca tcggcccgtc cgctgacatc 480atccagttcg aatgcaaatc cttcggccac
gaagttctga acctgacccg taacggctac 540ggctccaccc agtacatccg tttctccccg
gacttcacct tcggcttcga agaatccctg 600gaagttgaca ccaacccgct gctgggcgct
ggcaaattcg ctaccgaccc ggctgttacc 660ctggctcacg aactgatcca cgctggccac
cgtctgtacg gcatcgctat caacccgaac 720cgtgttttca aagttaacac caacgcttac
tacgaaatgt ccggcctgga agtttccttc 780gaagaactgc gtaccttcgg cggccacgac
gctaaattca tcgactccct gcaggaaaac 840gaattccgtc tgtactatta caacaaattc
aaagacatcg cttccaccct gaacaaagct 900aaatccatcg ttggcaccac cgcttccctg
cagtacatga agaacgtttt caaagagaag 960tacctgctgt ccgaagacac ctccggcaaa
ttctccgttg acaaactgaa attcgacaaa 1020ctgtacaaga tgctgaccga aatctacacc
gaagacaact tcgttaaatt cttcaaagtt 1080ctgaaccgta aaacctacct gaacttcgac
aaagctgttt tcaaaatcaa catcgttccg 1140aaagttaact acaccatcta cgacggcttc
aacctgcgta acaccaacct ggctgctaac 1200ttcaacggcc agaacaccga aatcaacaac
atgaacttca ccaaactgaa gaacttcacc 1260ggcctgttcg aattctacaa actgctgtgc
gttcgtggca tcatcacctc caaagctcag 1320gttgaagaag ttgttgacat catccgtgtt
aacgttgaca aagttctgga acgtgaccag 1380aaactgtccg aactggacga ccgtgctgac
gctctgcagg ctggcgcttc cgctctgaac 1440gacctgtgca tcaaagttaa caactgggac
ctgttcttct ccccgtccga agacaacttc 1500accaacgacc tgaacaaagg cgaagaaatc
acctccgaca ccaacatcga agctgctgaa 1560gaaaacatct ccctggacct gatccagcag
tactacctga ccttcaactt cgacaacgaa 1620ccggaaaaca tctccatcga gaacctgtcc
tccgacatca tcggccagct ggaactgatg 1680ccgaacatcg aacgtttccc gaacggcaag
aagtatgaac tggacaaata caccatgttc 1740cactacctgc gtgctcagga attcgaacac
ggcaaatccc gtatcgctct gaccaactcc 1800gttaacgaag ctctgctgaa cccgtcccgt
gtttacacct tcttctcctc cgactacgtt 1860aagaaggtta acaaagctac cgaagctgct
atgttcctgg gctgggttga acagctggtt 1920tacgacttca ccgacgaaac ctccgaagtt
tccaccaccg acaagattgc tgacatcacc 1980atcattatcc cgtacatcgg cccggctctg
aacatcggca acatgctgta caaagacgac 2040ttcgttggcg ctctgatctt ctccggcgct
gttatcctgc tggaattcat cccggaaatc 2100gctatcccgg ttctgggcac cttcgctctg
gtttcctaca tcgctaacaa agttctgacc 2160gttcagacca tcgacaacgc tctgtccaaa
cgtaacgaga agtgggacga agtttacaaa 2220tacatcgtta ccaactggct ggctaaagtt
aacacccaga tcgacctgat ccgtaagaag 2280atgaaagaag ctctggagaa ccaggctgaa
gctaccaaag ctatcatcaa ctaccagtac 2340aaccagtaca ccgaagaaga gaagaacaac
atcaacttca acatcgacga cctgtcctcc 2400aaactgaacg aatccatcaa caaagctatg
atcaacatca acaaattcct gaaccagtgc 2460tccgtttcct acctgatgaa ctccatgatc
ccgtacggcg ttaaacgtct ggaagacttc 2520gacgcttccc tgaaagacgc tctgctgaaa
tacatctacg acaaccgtgg caccctgatc 2580ggccaggttg accgtctgaa agacaaagtt
aacaacaccc tgtccaccga catcccgttc 2640cagctgtcca aatacgttga caaccagcgt
ctgctgtcca ccttcaccga atacatcaag 2700aacatcatca acacctccat cctgaacctg
cgttacgaat ccaaccacct gatcgacctg 2760tcccgttacg cttccaagat taacatcggc
tccaaagtta acttcgaccc gatcgacaag 2820aaccagatcc agctgttcaa cctggaatcc
tccaagattg aagttatcct gaagaacgct 2880atcgtttaca actccatgta cgagaacttc
tccacctcct tctggatccg tatcccgaaa 2940tacttcaact ccatctccct gaacaacgaa
tacaccatca tcaactgcat ggaaaacaac 3000tccggctgga aagtttccct gaactacggc
gaaatcatct ggaccctgca ggacacccag 3060gaaatcaaac agcgtgttgt tttcaaatac
tcccagatga tcaacatctc cgactacatc 3120aaccgttgga tcttcgttac catcaccaac
aaccgtctga acaactccaa aatctacatc 3180aacggccgtc tgatcgacca gaaaccgatc
tccaacctgg gcaacatcca cgcttccaac 3240aacatcatgt tcaaactgga cggctgccgt
gacacccacc gttacatctg gatcaaatac 3300ttcaacctgt tcgacaaaga actgaacgag
aaggaaatca aagacctgta cgacaaccag 3360tccaactccg gcatcctgaa agacttctgg
ggcgactacc tgcagtatga caaaccgtac 3420tacatgctga acctgtacga cccgaacaaa
tacgttgacg ttaacaacgt tggcatccgt 3480ggctacatgt acctgaaagg cccgcgtggc
tccgttatga ccaccaacat ctacctgaac 3540tcctccctgt accgtggcac caaattcatc
atcaagaagt acgcttccgg caacaaagac 3600aacatcgttc gtaacaacga ccgtgtttac
atcaacgttg tagttaagaa caaagaatac 3660cgtctggcta ccaacgcttc ccaggctggc
gttgagaaga ttctgtccgc tctggaaatc 3720ccggacgttg gcaacctgtc ccaagttgta
gttatgaaat ccaagaacga ccagggcatc 3780accaacaagt gcaagatgaa cctgcaggac
aacaacggca acgacatcgg cttcatcggc 3840ttccaccagt tcaacaacat cgctaaactg
gttgcttcca actggtacaa ccgtcagatc 3900gaacgttcct cccgtaccct gggctgtagc
tgggaattca tcccggttga cgacggctgg 3960ggcgaacgtc cgctgtaa
39782323885DNAArtificial
SequencePolynucleotide encoding BoNT/A-D8, optimized for E. coli
expression 232atgccgttcg ttaacaaaca gttcaactac aaagacccgg ttaacggcgt
tgacatcgct 60tacatcaaaa tcccgaacgc tggccagatg cagccggtta aagctttcaa
aatccacaac 120aaaatctggg ttatcccgga acgtgacacc ttcaccaacc cggaagaagg
cgacctgaac 180ccgccgccgg aagctaaaca ggttccggtt tcctactacg actccaccta
cctgtccacc 240gacaacgaga aggacaacta cctgaaaggc gttaccaaac tgttcgaacg
tatctactcc 300accgacctgg gccgtatgct gctgacctcc atcgttcgtg gcatcccgtt
ctggggcggc 360tccaccatcg acaccgaact gaaagttatc gacaccaact gcatcaacgt
tatccagccg 420gacggctcct accgttccga agaactgaac ctggttatca tcggcccgtc
cgctgacatc 480atccagttcg aatgcaaatc cttcggccac gaagttctga acctgacccg
taacggctac 540ggctccaccc agtacatccg tttctccccg gacttcacct tcggcttcga
agaatccctg 600gaagttgaca ccaacccgct gctgggcgct ggcaaattcg ctaccgaccc
ggctgttacc 660ctggctcacg aactgatcca cgctggccac cgtctgtacg gcatcgctat
caacccgaac 720cgtgttttca aagttaacac caacgcttac tacgaaatgt ccggcctgga
agtttccttc 780gaagaactgc gtaccttcgg cggccacgac gctaaattca tcgactccct
gcaggaaaac 840gaattccgtc tgtactatta caacaaattc aaagacatcg cttccaccct
gaacaaagct 900aaatccatcg ttggcaccac cgcttccctg cagtacatga agaacgtttt
caaagagaag 960tacctgctgt ccgaagacac ctccggcaaa ttctccgttg acaaactgaa
attcgacaaa 1020ctgtacaaga tgctgaccga aatctacacc gaagacaact tcgttaaatt
cttcaaagtt 1080ctgaaccgta aaacctacct gaacttcgac aaagctgttt tcaaaatcaa
catcgttccg 1140aaagttaact acaccatcta cgacggcttc aacctgcgta acaccaacct
ggctgctaac 1200ttcaacggcc agaacaccga aatcaacaac atgaacttca ccaaactgaa
gaacttcacc 1260ggcctgttcg aattctacaa actgctgtgc gttcgtggca tcatcacctc
caaacgtgac 1320cagaaactgt ccgaactggc tctgaacgac ctgtgcatca aagttaacaa
ctgggacctg 1380ttcttctccc cgtccgaaga caacttcacc aacgacctga acaaaggcga
agaaatcacc 1440tccgacacca acatcgaagc tgctgaagaa aacatctccc tggacctgat
ccagcagtac 1500tacctgacct tcaacttcga caacgaaccg gaaaacatct ccatcgaaaa
cctgtcctcc 1560gacatcatcg gccagctgga actgatgccg aacatcgaac gtttcccgaa
cggcaagaag 1620tacgaactgg acaaatacac catgttccac tacctgcgtg ctcaggaatt
cgaacacggc 1680aaatcccgta tcgctctgac caactccgtt aacgaagctc tgctgaaccc
gtcccgtgtt 1740tacaccttct tctcctccga ctacgttaag aaggttaaca aagctaccga
agctgctatg 1800ttcctgggct gggttgaaca gctggtttac gacttcaccg acgaaacctc
cgaagtttcc 1860accaccgaca aaatcgctga catcaccatc attatcccgt acatcggccc
ggctctgaac 1920atcggcaaca tgctgtacaa agacgacttc gttggcgctc tgatcttctc
cggcgctgtt 1980atcctgctgg aattcatccc ggaaatcgct atcccggttc tgggcacctt
cgctctggtt 2040tcctacatcg ctaacaaagt tctgaccgtt cagaccatcg acaacgctct
gtccaaacgt 2100aacgagaagt gggacgaagt ttacaaatac atcgttacca actggctggc
taaagttaac 2160acccagatcg acctgatccg taagaagatg aaagaagctc tggaaaacca
ggctgaagct 2220accaaagcta tcatcaacta ccagtacaac cagtacaccg aagaagagaa
gaacaacatc 2280aacttcaaca tcgacgacct gtcctccaaa ctgaacgaat ccatcaacaa
agctatgatc 2340aacatcaaca aattcctgaa ccagtgctcc gtttcctacc tgatgaactc
catgatcccg 2400tacggcgtta aacgtctgga agacttcgac gcttccctga aagacgctct
gctgaaatac 2460atctacgaca accgtggcac cctgatcggc caggttgacc gtctgaaaga
caaagttaac 2520aacaccctgt ccaccgacat cccgttccag ctgtccaaat acgttgacaa
ccagcgtctg 2580ctgtccacct tcaccgaata catcaagaac atcatcaaca cctccatcct
gaacctgcgt 2640tacgaatcca accacctgat cgacctgtcc cgttacgctt ccaaaatcaa
catcggctcc 2700aaagttaact tcgacccgat cgacaagaac cagatccagc tgttcaacct
ggaatcctcc 2760aaaatcgaag ttatcctgaa gaacgctatc gtttacaact ccatgtacga
aaacttctcc 2820acctccttct ggatccgtat cccgaaatac ttcaactcca tctccctgaa
caacgaatac 2880accatcatca actgcatgga gaacaactcc ggctggaaag tttccctgaa
ctacggcgaa 2940atcatctgga ccctgcagga cacccaggaa atcaaacagc gtgttgtttt
caaatactcc 3000cagatgatca acatctccga ctacatcaac cgttggatct tcgttaccat
caccaacaac 3060cgtctgaaca actccaaaat ctacatcaac ggccgtctga tcgaccagaa
accgatctcc 3120aacctgggca acatccacgc ttccaacaac atcatgttca aactggacgg
ctgccgtgac 3180acccaccgtt acatctggat caaatacttc aacctgttcg acaaagaact
gaacgagaag 3240gaaatcaaag acctgtacga caaccagtcc aactccggca tcctgaaaga
cttctggggc 3300gactacctgc agtacgacaa accgtactac atgctgaacc tgtacgaccc
gaacaaatac 3360gttgacgtta acaacgttgg catccgtggc tacatgtacc tgaaaggccc
gcgtggctcc 3420gttatgacca ccaacatcta cctgaactcc tccctgtacc gtggcaccaa
attcatcatc 3480aagaagtacg cttccggcaa caaagacaac atcgttcgta acaacgaccg
tgtttacatc 3540aacgttgtag ttaagaacaa agaataccgt ctggctacca acgcttccca
ggctggcgtt 3600gagaagattc tgtccgctct ggaaatcccg gacgttggca acctgtccca
ggttgtagtt 3660atgaaatcca agaacgacca gggcatcacc aacaaatgca aaatgaacct
gcaggacaac 3720aacggcaacg acatcggctt catcggcttc caccagttca acaacatcgc
taaactggtt 3780gcttccaact ggtacaaccg tcagatcgaa cgttcctccc gtaccctggg
ctgctcctgg 3840gaattcatcc cggttgacga cggctggggc gaacgtccgc tgtaa
38852333885DNAArtificial
Sequencemat_peptide(1)...(3882)Polynucleotide encoding BoNT/A-E8,
optimized for E. coli expression 233atgccgttcg ttaacaaaca gttcaactac
aaagacccgg ttaacggcgt tgacatcgct 60tacatcaaaa tcccgaacgc tggccagatg
cagccggtta aagctttcaa aatccacaac 120aagatttggg taatcccgga acgtgacacc
ttcaccaacc cggaagaagg cgacctgaac 180ccgccgccgg aagctaaaca ggttccggtt
tcctactacg actccaccta cctgtccacc 240gacaacgaga aggacaacta cctgaaaggc
gttaccaaac tgttcgaacg tatctactcc 300accgacctgg gccgtatgct gctgacctcc
atcgttcgtg gcatcccgtt ctggggcggc 360tccaccatcg acaccgaact gaaagttatc
gacaccaact gcatcaacgt tatccagccg 420gacggctcct accgttccga agaactgaac
ctggttatca tcggcccgtc cgctgacatc 480atccagttcg aatgcaaatc cttcggccac
gaagttctga acctgacccg taacggctac 540ggctccaccc agtacatccg tttctccccg
gacttcacct tcggcttcga agaatccctg 600gaagttgaca ccaacccgct gctgggcgct
ggcaaattcg ctaccgaccc ggctgttacc 660ctggctcacg aactgatcca cgctggccac
cgtctgtacg gcatcgctat caacccgaac 720cgtgttttca aagttaacac caacgcttac
tacgaaatgt ccggcctgga agtttccttc 780gaagaactgc gtaccttcgg cggccacgac
gctaaattca tcgactccct gcaggaaaac 840gaattccgtc tgtactatta caacaaattc
aaagacatcg cttccaccct gaacaaagct 900aaatccatcg ttggcaccac cgcttccctg
cagtacatga agaacgtttt caaagagaag 960tacctgctgt ccgaagacac ctccggcaaa
ttctccgttg acaaactgaa attcgacaaa 1020ctgtacaaaa tgctgaccga aatctacacc
gaagacaact tcgttaaatt cttcaaagtt 1080ctgaaccgta aaacctacct gaacttcgac
aaagctgttt tcaaaatcaa catcgttccg 1140aaagttaact acaccatcta cgacggcttc
aacctgcgta acaccaacct ggctgctaac 1200ttcaacggcc agaacaccga aatcaacaac
atgaacttca ccaaactgaa gaacttcacc 1260ggcctgttcg aattctacaa actgctgtgc
gttcgtggca tcatcacctc caaacagatc 1320gaccgtatca tggagaaggc tctgaacgac
ctgtgcatca aagttaacaa ctgggacctg 1380ttcttctctc cgtccgaaga caacttcacc
aacgacctga acaaaggcga agaaatcacc 1440tccgacacca acatcgaagc tgctgaagaa
aacatctccc tggacctgat ccagcagtac 1500tacctgacct tcaacttcga caacgaaccg
gaaaacatct ccatcgaaaa cctgtcctcc 1560gacatcatcg gccagctgga actgatgccg
aacatcgaac gtttcccgaa cggcaagaag 1620tatgaactgg acaaatacac catgttccac
tacctgcgtg ctcaggaatt cgaacacggc 1680aaatcccgta tcgctctgac caactccgtt
aacgaagctc tgctgaaccc gtcccgtgtt 1740tacaccttct tctcctccga ctacgttaag
aaggttaaca aagctaccga agctgctatg 1800ttcctgggct gggttgaaca gctggtttac
gacttcaccg acgaaacctc cgaagtttcc 1860accaccgaca agattgctga catcaccatc
attatcccgt acatcggccc ggctctgaac 1920atcggcaaca tgctgtacaa agacgacttc
gttggcgctc tgatcttctc cggcgctgtt 1980atcctgctgg aattcatccc ggaaatcgct
atcccggttc tgggcacctt cgctctggtt 2040tcctacatcg ctaacaaagt tctgaccgtt
cagaccatcg acaacgctct gtccaaacgt 2100aacgagaagt gggacgaagt ttacaaatac
atcgttacca actggctggc taaagttaac 2160acccagatcg acctgatccg taagaagatg
aaagaagctc tggagaacca ggctgaagct 2220accaaagcta tcatcaacta ccagtacaac
cagtacaccg aagaggaaaa gaacaacatc 2280aacttcaaca tcgacgacct gtcctccaaa
ctgaacgaat ccatcaacaa agctatgatc 2340aacatcaaca aattcctgaa ccagtgctcc
gtttcctacc tgatgaactc catgatcccg 2400tacggcgtta aacgtctgga agacttcgac
gcttccctga aagacgctct gctgaaatac 2460atctacgaca accgtggcac cctgatcggc
caggttgacc gtctgaaaga caaagttaac 2520aacaccctgt ccaccgacat cccgttccag
ctgtccaaat acgttgacaa ccagcgtctg 2580ctgtccacct tcaccgaata catcaagaac
atcatcaaca cctccatcct gaacctgcgt 2640tacgaatcca accacctgat cgacctgtcc
cgttacgctt ccaagattaa catcggctcc 2700aaagttaact tcgacccgat cgacaagaac
cagatccagc tgttcaacct ggaatcctcc 2760aagattgaag ttatcctgaa gaacgctatc
gtttacaact ccatgtacga gaacttctcc 2820acctccttct ggatccgtat cccgaaatac
ttcaactcca tctccctgaa caacgaatac 2880accatcatca actgcatgga aaacaactcc
ggctggaaag tttccctgaa ctacggcgaa 2940atcatctgga ccctgcagga cacccaggaa
atcaaacagc gtgttgtttt caaatactcc 3000cagatgatca acatctccga ctacatcaac
cgttggatct tcgttaccat caccaacaac 3060cgtctgaaca actccaaaat ctacatcaac
ggccgtctga tcgaccagaa accgatctcc 3120aacctgggca acatccacgc ttccaacaac
atcatgttca aactggacgg ctgccgtgac 3180acccaccgtt acatctggat caaatacttc
aacctgttcg acaaagaact gaacgagaag 3240gaaatcaaag acctgtacga caaccagtcc
aactccggca tcctgaaaga cttctggggc 3300gactacctgc agtatgacaa accgtactac
atgctgaacc tgtacgaccc gaacaaatac 3360gttgacgtta acaacgttgg catccgtggc
tacatgtacc tgaaaggccc gcgtggctcc 3420gttatgacca ccaacatcta cctgaactcc
tccctgtacc gtggcaccaa attcatcatc 3480aagaagtacg cttccggcaa caaagacaac
atcgttcgta acaacgaccg tgtttacatc 3540aacgttgtag ttaagaacaa agaataccgt
ctggctacca acgcttccca ggctggcgtt 3600gagaagattc tgtccgctct ggaaatcccg
gacgttggca acctgagcca agttgtagtt 3660atgaaatcca agaacgacca gggcatcacc
aacaagtgca agatgaacct gcaggacaac 3720aacggcaacg acatcggctt catcggcttc
caccagttca acaacatcgc taaactggtt 3780gcttccaact ggtacaaccg tcagatcgaa
cgttcctccc gtaccctggg ctgctcctgg 3840gaattcatcc cggttgacga cggctggggt
gaacgtccgc tgtaa 38852343885DNAArtificial
Sequencemat_peptide(1)...(3882)Polynucleotide encoding BoNT/A-F8,
optimized for E. coli expression 234atgccgttcg ttaacaaaca gttcaactac
aaagacccgg ttaacggcgt tgacatcgct 60tacatcaaaa tcccgaacgc tggccagatg
cagccggtta aagctttcaa aatccacaac 120aaaatctggg ttatcccgga acgtgacacc
ttcaccaacc cggaagaagg cgacctgaac 180ccgccgccgg aagctaaaca ggttccggtt
tcctactacg actccaccta cctgtccacc 240gacaacgaga aggacaacta cctgaaaggc
gttaccaaac tgttcgaacg tatctactcc 300accgacctgg gccgtatgct gctgacctcc
atcgttcgtg gcatcccgtt ctggggcggc 360tccaccatcg acaccgaact gaaagttatc
gacaccaact gcatcaacgt tatccagccg 420gacggctcct accgttccga agaactgaac
ctggttatca tcggcccgtc cgctgacatc 480atccagttcg aatgcaaatc cttcggccac
gaagttctga acctgacccg taacggctac 540ggctccaccc agtacatccg tttctccccg
gacttcacct tcggcttcga agaatccctg 600gaagttgaca ccaacccgct gctgggcgct
ggcaaattcg ctaccgaccc ggctgttacc 660ctggctcacg aactgatcca cgctggccac
cgtctgtacg gcatcgctat caacccgaac 720cgtgttttca aagttaacac caacgcttac
tacgaaatgt ccggcctgga agtttccttc 780gaagaactgc gtaccttcgg cggccacgac
gctaaattca tcgactccct gcaggagaac 840gaattccgtc tgtactatta caacaaattc
aaagacatcg cttccaccct gaacaaagct 900aaatccatcg ttggcaccac cgcttccctg
cagtacatga agaacgtttt caaagagaag 960tacctgctgt ccgaagacac ctccggcaaa
ttctccgttg acaaactgaa attcgacaaa 1020ctgtacaaga tgctgaccga aatctacacc
gaagacaact tcgttaaatt cttcaaagtt 1080ctgaaccgta agacttacct gaacttcgac
aaagctgttt tcaaaatcaa catcgttccg 1140aaagttaact acaccatcta cgacggcttc
aacctgcgta acaccaacct ggctgctaac 1200ttcaacggcc agaacaccga aatcaacaac
atgaacttca ccaaactgaa gaacttcacc 1260ggcctgttcg aattctacaa actgctgtgc
gttcgtggca tcatcacctc caaagaacgt 1320gaccagaaac tgtccgaagc tctgaacgac
ctgtgcatca aagttaacaa ctgggacctg 1380ttcttctctc cgtccgaaga caacttcacc
aacgacctga acaaaggcga agaaatcacc 1440tccgacacca acatcgaagc tgctgaagag
aacatctccc tggacctgat ccagcagtac 1500tacctgacct tcaacttcga caacgaaccg
gaaaacatct ccatcgaaaa cctgtcctcc 1560gacatcatcg gccagctgga actgatgccg
aacatcgaac gtttcccgaa cggcaagaag 1620tatgaactgg acaaatacac catgttccac
tacctgcgtg ctcaggaatt cgaacacggc 1680aaatcccgta tcgctctgac caactccgtt
aacgaagctc tgctgaaccc gtcccgtgtt 1740tacaccttct tctcctccga ctacgttaag
aaggttaaca aagctaccga agctgctatg 1800ttcctgggct gggttgaaca gctggtttac
gacttcaccg acgaaacctc cgaagtttcc 1860accaccgaca agattgctga catcaccatc
attatcccgt acatcggccc ggctctgaac 1920atcggcaaca tgctgtacaa agacgacttc
gttggcgctc tgatcttctc cggcgctgtt 1980atcctgctgg aattcatccc ggaaatcgct
atcccggttc tgggcacctt cgctctggtt 2040tcctacatcg ctaacaaagt tctgaccgtt
cagaccatcg acaacgctct gtccaaacgt 2100aacgagaagt gggacgaagt ttacaaatac
atcgttacca actggctggc taaagttaac 2160acccagatcg acctgatccg taagaagatg
aaagaagctc tggagaacca ggctgaagct 2220accaaagcta tcatcaacta ccagtacaac
cagtacaccg aagaggaaaa gaacaacatc 2280aacttcaaca tcgacgacct gtcctccaaa
ctgaacgaat ccatcaacaa agctatgatc 2340aacatcaaca aattcctgaa ccagtgctcc
gtttcctacc tgatgaactc catgatcccg 2400tacggcgtta aacgtctgga agacttcgac
gcttccctga aagacgctct gctgaaatac 2460atctacgaca accgtggcac cctgatcggc
caggttgacc gtctgaaaga caaagttaac 2520aacaccctgt ccaccgacat cccgttccag
ctgtccaaat acgttgacaa ccagcgtctg 2580ctgtccacct tcaccgaata catcaagaac
atcatcaaca cctccatcct gaacctgcgt 2640tacgaatcca accacctgat cgacctgtcc
cgttacgctt ccaagattaa catcggctcc 2700aaagttaact tcgacccgat cgacaagaac
cagatccagc tgttcaacct ggaatcctcc 2760aagattgaag ttatcctgaa gaacgctatc
gtttacaact ccatgtacga gaacttctcc 2820acctccttct ggatccgtat cccgaaatac
ttcaactcca tctccctgaa caacgaatac 2880accatcatca actgcatgga aaacaactcc
ggctggaaag tttccctgaa ctacggcgaa 2940atcatctgga ccctgcagga cacccaggaa
atcaaacagc gtgttgtttt caaatactcc 3000cagatgatca acatctccga ctacatcaac
cgttggatct tcgttaccat caccaacaac 3060cgtctgaaca actccaaaat ctacatcaac
ggccgtctga tcgaccagaa accgatctcc 3120aacctgggca acatccacgc ttccaacaac
atcatgttca aactggacgg ctgccgtgac 3180acccaccgtt acatctggat caaatacttc
aacctgttcg acaaagaact gaacgagaag 3240gaaatcaaag acctgtacga caaccagtcc
aactccggca tcctgaaaga cttctggggc 3300gactacctgc agtatgacaa accgtactac
atgctgaacc tgtacgaccc gaacaaatac 3360gttgacgtta acaacgttgg catccgtggc
tacatgtacc tgaaaggccc gcgtggctcc 3420gttatgacca ccaacatcta cctgaactcc
tccctgtacc gtggcaccaa attcatcatc 3480aagaagtacg cttccggcaa caaagacaac
atcgttcgta acaacgaccg tgtttacatc 3540aacgttgtag ttaagaacaa agaataccgt
ctggctacca acgcttccca ggctggcgtt 3600gagaagattc tgtccgctct ggaaatcccg
gacgttggca acctgtccca agttgtagtt 3660atgaaatcca agaacgacca gggcatcacc
aacaagtgca agatgaacct gcaggacaac 3720aacggcaacg acatcggctt catcggcttc
caccagttca acaacatcgc taaactggtt 3780gcttccaact ggtacaaccg tcagatcgaa
cgttcctccc gtaccctggg ctgctcctgg 3840gaattcatcc cggttgacga cggctggggc
gaacgtccgc tgtaa 38852353885DNAArtificial
Sequencemat_peptide(1)...(3882)Polynucleotide encoding BoNT/A-G8,
optimized for E. coli expression 235atgccgttcg ttaacaaaca gttcaactac
aaagacccgg ttaacggcgt tgacatcgct 60tacatcaaaa tcccgaacgc tggccagatg
cagccggtta aagctttcaa aatccacaac 120aaaatctggg ttatcccgga acgtgacacc
ttcaccaacc cggaagaagg cgacctgaac 180ccgccgccgg aagctaaaca ggttccggtt
tcctactacg actccaccta cctgtccacc 240gacaacgaga aggacaacta cctgaaaggc
gttaccaaac tgttcgaacg tatctactcc 300accgacctgg gccgtatgct gctgacctcc
atcgttcgtg gcatcccgtt ctggggcggc 360tccaccatcg acaccgaact gaaagttatc
gacaccaact gcatcaacgt tatccagccg 420gacggctcct accgttccga agaactgaac
ctggttatca tcggcccgtc cgctgacatc 480atccagttcg aatgcaaatc cttcggccac
gaagttctga acctgacccg taacggctac 540ggctccaccc agtacatccg tttctccccg
gacttcacct tcggcttcga agaatccctg 600gaagttgaca ccaacccgct gctgggcgct
ggcaaattcg ctaccgaccc ggctgttacc 660ctggctcacg aactgatcca cgctggccac
cgtctgtacg gcatcgctat caacccgaac 720cgtgttttca aagttaacac caacgcttac
tacgaaatgt ccggcctgga agtttccttc 780gaagaactgc gtaccttcgg cggccacgac
gctaaattca tcgactccct gcaggaaaac 840gaattccgtc tgtactatta caacaaattc
aaagacatcg cttccaccct gaacaaagct 900aaatccatcg ttggcaccac cgcttccctg
cagtacatga agaacgtttt caaagagaag 960tacctgctgt ccgaagacac ctccggcaaa
ttctccgttg acaaactgaa attcgacaaa 1020ctgtacaaaa tgctgaccga aatctacacc
gaagacaact tcgttaaatt cttcaaagtt 1080ctgaaccgta aaacctacct gaacttcgac
aaagctgttt tcaaaatcaa catcgttccg 1140aaagttaact acaccatcta cgacggcttc
aacctgcgta acaccaacct ggctgctaac 1200ttcaacggcc agaacaccga aatcaacaac
atgaacttca ccaaactgaa gaacttcacc 1260ggcctgttcg aattctacaa actgctgtgc
gttcgtggca tcatcacctc caaagaaacc 1320tccgctgcta aactgaaagc tctgaacgac
ctgtgcatca aagttaacaa ctgggacctg 1380ttcttctccc cgtccgaaga caacttcacc
aacgacctga acaaaggcga agaaatcacc 1440tccgacacca acatcgaagc tgctgaagaa
aacatctccc tggacctgat ccagcagtac 1500tacctgacct tcaacttcga caacgaaccg
gaaaacatct ccatcgagaa cctgtcctcc 1560gacatcatcg gccagctgga actgatgccg
aacatcgaac gtttcccgaa cggcaagaag 1620tatgaactgg acaaatacac catgttccac
tacctgcgtg ctcaggaatt cgaacacggc 1680aaatcccgta tcgctctgac caactccgtt
aacgaagctc tgctgaaccc gtcccgtgtt 1740tacaccttct tctcctccga ctacgttaag
aaggttaaca aagctaccga agctgctatg 1800ttcctgggct gggttgaaca gctggtttac
gacttcaccg acgaaacctc cgaagtttcc 1860accaccgaca agattgctga catcaccatc
attatcccgt acatcggccc ggctctgaac 1920atcggcaaca tgctgtacaa agacgacttc
gttggcgctc tgatcttctc cggcgctgtt 1980atcctgctgg aattcatccc ggaaatcgct
atcccggttc tgggcacctt cgctctggtt 2040tcctacatcg ctaacaaagt tctgaccgtt
cagaccatcg acaacgctct gtccaaacgt 2100aacgagaagt gggacgaagt ttacaaatac
atcgttacca actggctggc taaagttaac 2160acccagatcg acctgatccg taagaagatg
aaagaagctc tggagaacca ggctgaagct 2220accaaagcta tcatcaacta ccagtacaac
cagtacaccg aagaggaaaa gaacaacatc 2280aacttcaaca tcgacgacct gtcctccaaa
ctgaacgaat ccatcaacaa agctatgatc 2340aacatcaaca aattcctgaa ccagtgctcc
gtttcctacc tgatgaactc catgatcccg 2400tacggcgtta aacgtctgga agacttcgac
gcttccctga aagacgctct gctgaaatac 2460atctacgaca accgtggcac cctgatcggc
caggttgacc gtctgaaaga caaagttaac 2520aacaccctgt ccaccgacat cccgttccag
ctgtccaaat acgttgacaa ccagcgtctg 2580ctgtccacct tcaccgaata catcaagaac
atcatcaaca cctccatcct gaacctgcgt 2640tacgaatcca accacctgat cgacctgtcc
cgttacgctt ccaagattaa catcggctcc 2700aaagttaact tcgacccgat cgacaagaac
cagatccagc tgttcaacct ggaatcctcc 2760aagattgaag ttatcctgaa gaacgctatc
gtttacaact ccatgtacga aaacttctcc 2820acctccttct ggatccgtat cccgaaatac
ttcaactcca tctccctgaa caacgaatac 2880accatcatca actgcatgga aaacaactcc
ggctggaaag tttccctgaa ctacggcgaa 2940atcatctgga ccctgcagga cacccaggaa
atcaaacagc gtgttgtttt caaatactcc 3000cagatgatca acatctccga ctacatcaac
cgttggatct tcgttaccat caccaacaac 3060cgtctgaaca actccaaaat ctacatcaac
ggccgtctga tcgaccagaa accgatctcc 3120aacctgggca acatccacgc ttccaacaac
atcatgttca aactggacgg ctgccgtgac 3180acccaccgtt acatctggat caaatacttc
aacctgttcg acaaagaact gaacgagaag 3240gaaatcaaag acctgtacga caaccagtcc
aactccggca tcctgaaaga cttctggggc 3300gactacctgc agtatgacaa accgtactac
atgctgaacc tgtacgaccc gaacaaatac 3360gttgacgtta acaacgttgg catccgtggc
tacatgtacc tgaaaggccc gcgtggctcc 3420gttatgacca ccaacatcta cctgaactcc
tccctgtacc gtggcaccaa attcatcatc 3480aagaagtacg cttccggcaa caaagacaac
atcgttcgta acaacgaccg tgtttacatc 3540aacgttgtag ttaagaacaa agaataccgt
ctggctacca acgcttccca ggctggcgtt 3600gagaagattc tgtccgctct ggaaatcccg
gacgttggca acctgtccca agttgtagtt 3660atgaaatcca agaacgacca gggcatcacc
aacaagtgca agatgaacct gcaggacaac 3720aacggcaacg acatcggctt catcggcttc
caccagttca acaacatcgc taaactggtt 3780gcttccaact ggtacaaccg tcagatcgaa
cgttcctccc gtaccctggg ctgctcctgg 3840gaattcatcc cggttgacga cggctggggc
gaacgtccgc tgtaa 38852363912DNAArtificial
Sequencemat_peptide(1)...(3909)Polynucleotide encoding BoNT/A-A17,
optimized for P. pastoris expression. 236atgccatttg ttaacaagca
atttaactac aaggatccag ttaacggtgt tgatattgct 60tacattaaaa ttccaaacgc
tggtcaaatg caaccagtta aggcattcaa gattcataac 120aagatttggg ttattccaga
aagagatact tttactaacc cagaagaagg tgatttgaac 180ccacctccag aagctaagca
agttccagtt tcttactacg attctactta cttgtctact 240gataacgaga aagataacta
cttgaagggt gttactaagt tgtttgaaag aatttactct 300actgatttgg gtagaatgtt
gttgacttct attgttagag gtattccatt ttggggtggt 360tctactattg atactgaatt
gaaggttatt gatactaact gtattaacgt tattcaacca 420gatggttctt acagatctga
agaattgaac ttggttatta ttggtccatc tgctgatatt 480attcaatttg aatgtaagtc
cttcggtcat gaagttttga acttgactag aaacggttac 540ggttctactc aatacattag
attctcccca gacttcactt ttggttttga agaatctttg 600gaagttgata ctaacccatt
gttgggtgct ggtaagtttg ctactgatcc agctgttact 660ttggctcatg aattgattca
tgctggtcat agattgtacg gtattgctat taacccaaac 720agagtcttca aggttaacac
taacgcttac tacgaaatgt ctggtttgga agtttccttc 780gaagaattga gaacttttgg
tggtcacgac gctaagttta ttgattcttt gcaagaaaac 840gaatttagat tgtactatta
caacaagttt aaggatattg cttctacttt gaacaaggct 900aagtctattg ttggtactac
tgcttctttg caatacatga agaacgtctt caaggagaaa 960tacttgttgt ctgaagatac
ttctggtaag ttctccgttg ataagttgaa gtttgataag 1020ttgtacaaga tgttgactga
aatttacact gaagataact ttgttaagtt cttcaaggtt 1080ttgaacagaa agacttactt
gaactttgat aaggctgtct tcaagattaa cattgttcca 1140aaggttaact acactattta
cgacggtttt aacttgagaa acactaactt ggctgctaac 1200tttaacggtc aaaacactga
aattaacaac atgaacttta ctaagttgaa gaactttact 1260ggtttgtttg aattttacaa
gttgttgtgt gttagaggta ttattacttc taagtctaac 1320aagactagaa ttgacgaagc
taaccaacgt gctactaaga tgttggcttt gaacgatttg 1380tgtattaagg ttaacaactg
ggatttgttc ttctccccat ctgaagataa ctttactaac 1440gatttgaaca agggtgaaga
aattacttct gatactaaca ttgaagctgc tgaagaaaac 1500atttctttgg atttgattca
acaatactac ttgactttta actttgataa cgaaccagaa 1560aacatttcta ttgaaaactt
gtcttctgat attattggtc aacttgaatt gatgccaaac 1620attgaaagat ttccaaacgg
taagaagtat gaacttgata aatacactat gtttcattac 1680ttgagagctc aagaatttga
acacggtaag tctagaattg ctttgactaa ctctgttaac 1740gaagctttgt tgaacccatc
tagagtttac acattcttct cctctgatta cgttaagaag 1800gttaacaaag ctactgaagc
tgctatgttc cttggttggg ttgaacaatt ggtttacgat 1860tttactgacg aaacttctga
agtttctact actgataaga ttgctgatat tactattatc 1920attccataca ttggtccagc
tttgaacatt ggtaacatgt tgtacaagga tgattttgtt 1980ggtgctttga tcttctccgg
tgctgttatt ttgttggaat ttattccaga aattgctatt 2040ccagttttgg gtacattcgc
tttggtttct tacattgcta acaaggtttt gactgttcaa 2100actattgata acgctttgtc
taagagaaac gaaaagtggg acgaagttta caagtacatt 2160gttactaact ggttggctaa
ggttaacact caaattgatt tgattagaaa gaagatgaag 2220gaagctttgg agaatcaagc
tgaagctact aaggctatta ttaactacca atacaaccaa 2280tacactgaag aggaaaagaa
caacattaac tttaacattg acgatttgtc ttctaagttg 2340aatgaatcta ttaacaaggc
tatgattaac attaacaagt tccttaacca atgttctgtt 2400tcttacttga tgaactctat
gattccatac ggtgttaaga gattggaaga ttttgacgct 2460tctttgaagg acgctttgtt
gaagtacatt tacgataaca gaggtacttt gattggtcaa 2520gttgatagat tgaaggataa
ggttaacaac actttgtcta ctgatattcc atttcaattg 2580tctaagtacg ttgataacca
aagattgttg tctactttta ctgaatacat taagaacatt 2640attaacactt ctattttgaa
cttgagatac gaatctaacc atttgattga tttgtctaga 2700tacgcttcta agattaacat
tggttctaag gttaactttg atccaattga taagaaccaa 2760attcaattgt ttaacttgga
atcttctaag attgaagtta ttttgaaaaa cgctattgtt 2820tacaactcta tgtacgaaaa
cttctccact tccttctgga ttagaattcc aaagtacttt 2880aactctattt ctttgaacaa
tgaatacact attattaact gtatggaaaa caactctggt 2940tggaaggttt ctttgaacta
cggtgaaatt atttggactt tgcaagatac tcaagaaatt 3000aagcaaagag ttgtcttcaa
atactctcaa atgattaaca tttctgatta cattaacaga 3060tggatcttcg ttactattac
taacaacaga ttgaacaact ctaagattta cattaacggt 3120agattgattg atcaaaagcc
aatttctaac ttgggtaaca ttcatgcttc taacaacatt 3180atgtttaagt tggatggttg
tagagatact catagataca tttggattaa gtactttaac 3240ttgtttgata aggaattgaa
cgaaaaggaa attaaggatt tgtacgataa ccaatctaac 3300tctggtattt tgaaggactt
ctggggtgat tacttgcaat atgataagcc atactacatg 3360ttgaacttgt acgatccaaa
caagtacgtt gacgttaaca acgttggtat tagaggttac 3420atgtacttga agggtccaag
aggttctgtt atgactacta acatttactt gaactcttct 3480ttgtacagag gtactaagtt
tattattaag aagtacgctt ctggtaacaa ggataacatt 3540gttagaaaca acgatagagt
ttacattaac gttgtcgtta agaacaagga atacagattg 3600gctactaacg cttctcaagc
tggtgttgaa aagattttgt ctgctttgga aattccagac 3660gttggtaact tgtctcaagt
tgtcgttatg aagtctaaga acgatcaagg tattactaac 3720aagtgtaaga tgaacttgca
agataacaac ggtaacgata ttggttttat tggttttcat 3780caatttaaca acattgctaa
gttggttgct tctaactggt acaacagaca aattgaaaga 3840tcttctagaa ctttgggttg
ttcttgggaa tttattccag ttgacgatgg ttggggtgaa 3900agaccattgt aa
39122373912DNAArtificial
Sequencemat_peptide(1)...(3909)Polynucleotide encoding BoNT/A-A17,
optimized for S. frugiperda expression. 237atgcccttcg tgaacaagca
gttcaactac aaggaccccg tgaacggtgt ggacatcgct 60tacatcaaaa tccccaacgc
tggtcagatg cagcccgtga aggctttcaa gatccacaac 120aagatctggg tgatccccga
gcgtgacacc ttcaccaacc ccgaggaggg tgacctgaat 180ccccctcccg aggctaagca
ggtgcccgtg tcctactacg actccaccta cctgtccacc 240gacaacgaga aggacaacta
cctgaagggt gtgaccaagc tgttcgagcg tatctactcc 300accgacctgg gtcgtatgct
gctgacctcc atcgtgcgtg gtatcccctt ctggggtggt 360tccaccatcg acaccgagct
gaaggtgatc gacaccaact gcatcaacgt gatccagccc 420gacggttcct accgttccga
ggagctgaac ctggtgatca tcggtccctc cgctgacatc 480atccagttcg agtgcaagtc
cttcggtcac gaggtgctga acctgacccg taacggttac 540ggttccaccc agtacatccg
tttctctcct gacttcacct tcggtttcga ggagtccctg 600gaggtggaca ccaatcctct
cctgggtgct ggtaagttcg ctaccgatcc tgctgtgacc 660ctggctcacg agctgatcca
cgctggtcac cgtctgtacg gtatcgctat caaccccaac 720cgtgtgttca aggtgaacac
caacgcttac tacgagatgt ccggtctgga ggtgtccttc 780gaggagctgc gtaccttcgg
tggtcacgac gctaagttca tcgactccct gcaggagaac 840gagttccgtc tgtactatta
caacaagttc aaggacatcg cttccaccct gaacaaggct 900aagtccatcg tgggtaccac
cgcttccctg cagtacatga agaacgtgtt caaggagaag 960tacctgctgt ccgaggacac
ctccggtaag ttctccgtgg acaagctgaa gttcgacaag 1020ctgtacaaga tgctgaccga
gatctacacc gaggacaact tcgtgaagtt cttcaaggtg 1080ctgaaccgta agacctacct
gaacttcgac aaggctgtgt tcaagatcaa catcgtgccc 1140aaggtgaact acaccatcta
cgacggtttc aacctgcgta acaccaacct ggctgctaac 1200ttcaacggtc aaaacaccga
gatcaacaac atgaacttca ccaagctgaa gaacttcacc 1260ggtctgttcg agttctacaa
gctgctgtgc gtgcgtggta tcatcacctc caagtccaac 1320aagacccgta tcgacgaagc
taaccagcgt gctaccaaga tgctggctct gaacgacctg 1380tgcatcaagg tgaacaactg
ggacctgttc ttctctcctt ccgaggacaa cttcaccaac 1440gacctgaaca agggtgagga
gatcacctcc gacaccaaca tcgaggctgc tgaggagaac 1500atctccctgg acctgatcca
gcagtactac ctgaccttca acttcgacaa cgagcccgag 1560aacatctcca tcgagaacct
gtcctccgac atcatcggtc agctcgagct gatgcccaac 1620atcgagcgtt tccccaacgg
taagaagtat gagctggaca aatacaccat gttccactac 1680ctgcgtgctc aggagttcga
gcacggtaag tcccgtatcg ctctgaccaa ctccgtgaac 1740gaggctctgc tgaacccctc
ccgtgtgtac accttcttct cctccgacta cgtgaagaag 1800gtgaacaagg ctaccgaagc
tgctatgttc ctgggttggg tggagcagct ggtgtacgac 1860ttcaccgacg agacctccga
ggtgtccacc accgacaaga tcgctgacat caccatcatt 1920atcccttaca tcggtcccgc
tctgaacatc ggtaacatgc tgtacaagga cgacttcgtg 1980ggtgctctga tcttctccgg
tgctgtgatc ctgctggagt tcatccccga gatcgctatc 2040cccgtgctgg gtaccttcgc
tctggtgtcc tacatcgcta acaaggtgct gaccgtgcag 2100accatcgaca acgctctgtc
caagcgtaac gagaagtggg acgaggtgta caagtacatc 2160gtgaccaact ggctggctaa
ggtgaacacc cagatcgacc tgatccgtaa gaagatgaag 2220gaggctctgg agaaccaggc
tgaggctacc aaggctatca tcaactacca gtacaaccag 2280tacaccgagg aagagaagaa
caacatcaac ttcaacatcg acgacctgtc ctccaagctg 2340aatgagtcca tcaacaaggc
tatgatcaac atcaacaagt tcctgaacca gtgctccgtg 2400agctacctga tgaactccat
gattccttac ggtgtgaagc gtcttgagga cttcgacgct 2460tccctgaagg acgctctgct
gaagtacatc tacgacaata ggggtaccct gataggtcag 2520gttgaccgtc tgaaggacaa
ggtgaacaac accctgtcca ccgacatccc cttccagctg 2580tccaagtacg tggacaacca
gcgtctgctg tccaccttca ccgagtacat caagaacatc 2640atcaacacct ccatcctgaa
cctgcgttac gagtccaacc acctgatcga cctgtcccgt 2700tacgcttcca agatcaacat
cggttccaag gtgaacttcg accccatcga caagaaccag 2760atccagctgt tcaacctgga
gtcctccaag atcgaggtga tcctgaaaaa cgctatcgtg 2820tacaactcca tgtacgagaa
cttctccacc tccttctgga tccgtattcc taagtacttc 2880aactccatct ccctgaacaa
tgaatacacc atcatcaact gcatggagaa caactccggt 2940tggaaggtgt ccctgaacta
cggtgagatc atctggaccc tgcaggacac ccaggagatc 3000aagcagcgtg tggtgttcaa
atactcccag atgatcaaca tctccgacta catcaaccgt 3060tggatcttcg tgaccatcac
caacaaccgt ctgaacaact ccaagatcta catcaacggt 3120cgtctgatcg accagaagcc
catctccaac ctgggtaaca tccacgcttc caacaacatc 3180atgttcaagc tggacggttg
ccgtgacacc caccgttaca tctggatcaa gtacttcaac 3240ctgttcgaca aggagctgaa
cgagaaggag atcaaggacc tgtacgacaa ccagtccaac 3300tccggtatcc tgaaggactt
ctggggtgac tacctgcagt atgacaagcc ctactacatg 3360ctgaacctgt acgaccccaa
caagtacgtg gacgtgaaca acgtgggtat ccgtggttac 3420atgtacctga agggtcctcg
cggttccgtg atgaccacca acatctacct gaactcctcc 3480ctgtaccgtg gtaccaagtt
catcatcaag aagtacgctt ccggtaacaa ggacaacatc 3540gtgcgtaaca acgaccgtgt
gtacatcaac gtggtcgtga agaacaagga gtaccgtctg 3600gctaccaacg cttcccaggc
tggtgtggag aagatcctgt ccgctctgga gatccccgac 3660gtgggtaacc tgtcccaagt
cgtcgtgatg aagtccaaga acgaccaggg tatcaccaac 3720aagtgcaaga tgaacctgca
ggacaacaac ggtaacgaca tcggtttcat cggtttccac 3780cagttcaaca acatagctaa
gctggtggct tccaactggt acaaccgtca gatcgagcgt 3840tcctcccgta ccctgggttg
ctcctgggag ttcattcctg tggacgacgg ttggggtgag 3900cgtcctctct aa
39122383912DNAArtificial
Sequencemat_peptide(1)...(3909)Polynucleotide encoding BoNT/A-A17,
optimized for H. sapiens expression. 238atgcccttcg tgaacaagca
gttcaactac aaggaccccg tgaacggcgt ggacatcgcc 60tacatcaaaa tcccaaacgc
cggccagatg cagcccgtga aggccttcaa gatccacaac 120aagatctggg tgatccccga
gagagacacc ttcaccaacc ccgaggaggg cgacctgaat 180ccaccaccag aggccaagca
ggtgcccgtg agctactacg acagcaccta cctgagcacc 240gacaacgaga aggacaacta
cctgaagggc gtgaccaagc tgttcgagag aatctacagc 300accgacctgg gcagaatgct
gctgaccagc atcgtgagag gcattccatt ctggggcggc 360agcaccatcg acaccgagct
gaaggtgatc gacaccaact gcatcaacgt gatccagccc 420gacggcagct acagaagcga
ggagctgaac ctggtgatca tcggaccaag cgccgacatc 480atccagttcg agtgcaagag
cttcggccac gaggtgctga acctgaccag aaacggctac 540ggcagcaccc agtacatcag
attctctccg gacttcacct tcggcttcga ggagagcctg 600gaggtggaca ccaatccact
cctgggcgcc ggcaagttcg ccaccgaccc cgccgtgacc 660ctggcccacg agctgatcca
cgccggccac agactgtacg gcatagccat caatccaaac 720agagtgttca aggtgaacac
caacgcctac tacgagatgt caggcctgga ggtgagcttc 780gaggagctga gaaccttcgg
cggccacgac gccaagttca tcgacagcct gcaggagaac 840gagttcagac tgtactatta
caacaagttc aaggacatcg ccagcaccct gaacaaggcc 900aagagcatcg tgggcaccac
cgccagcctg cagtacatga agaacgtgtt caaggagaag 960tacctgctga gcgaggacac
cagcggcaag ttcagcgtgg acaagctgaa gttcgacaag 1020ctgtacaaga tgctgaccga
gatctacacc gaggacaact tcgtgaagtt cttcaaggtg 1080ctgaacagaa agacctacct
gaacttcgac aaggccgtgt tcaagatcaa catcgtgccc 1140aaggtgaact acaccatcta
cgacggcttc aacctgagaa acaccaacct ggccgccaac 1200ttcaacggcc aaaacaccga
gatcaacaac atgaacttca ccaagctgaa gaacttcacc 1260ggcctgttcg agttctacaa
gctgctgtgc gtgagaggca tcatcaccag caagagcaac 1320aagaccagaa tcgacgaagc
caaccagaga gccaccaaga tgctggccct gaacgacctg 1380tgcatcaagg tgaacaactg
ggacctgttc ttcagcccca gcgaggacaa cttcaccaac 1440gacctgaaca agggcgagga
gatcaccagc gacaccaaca tcgaggccgc cgaggagaac 1500atcagcctgg acctgatcca
gcagtactac ctgaccttca acttcgacaa cgagcccgag 1560aacatcagca tcgagaacct
gagcagcgac atcatcggcc agctcgagct gatgcccaac 1620atcgagagat ttccaaacgg
caagaagtat gagctggaca aatacaccat gttccactac 1680ctgagagccc aggagttcga
gcacggcaag agcagaatcg ccctgaccaa cagcgtgaac 1740gaggccctgc tgaaccccag
cagagtgtac accttcttca gcagcgacta cgtgaagaag 1800gtgaacaaag ccaccgaagc
cgccatgttc ctgggctggg tggagcagct ggtgtacgac 1860ttcaccgacg agaccagcga
ggtgagcacc accgacaaga tcgccgacat caccatcatt 1920atcccctaca tcggaccagc
cctgaacatc ggcaacatgc tgtacaagga cgacttcgta 1980ggcgcgctga tcttcagcgg
cgccgtgatc ctgctggagt tcatccccga gatcgccatt 2040ccagtgctgg gcaccttcgc
cctggtgagc tacatcgcca acaaggtgct gaccgtgcag 2100accatcgaca acgccctgag
caagagaaac gagaagtggg acgaggtgta caagtacatc 2160gtgaccaact ggctggccaa
ggtgaacacc cagatcgacc tgatcagaaa gaagatgaag 2220gaggccctgg agaaccaggc
cgaggccacc aaggccatca tcaactacca gtacaaccag 2280tacaccgagg aagagaagaa
caacatcaac ttcaacatcg acgacctgag cagcaagctg 2340aatgaaagca tcaacaaggc
catgatcaac atcaacaagt tcctgaacca gtgcagcgtg 2400agctacctga tgaacagcat
gatcccctac ggcgtgaaga gactggagga cttcgacgcc 2460agcctgaagg acgccctgct
gaagtacatc tacgacaaca gaggcaccct gatcggccag 2520gtggacagac tgaaggacaa
ggtgaacaac accctgagca ccgacattcc attccagctg 2580agcaagtacg tggacaacca
gagactgctg agcaccttca ccgagtacat caagaacatc 2640atcaacacca gcatcctgaa
cctgagatac gagagcaacc acctgatcga cctgagcaga 2700tacgccagca agatcaacat
cggcagcaag gtgaacttcg accccatcga caagaaccag 2760atccagctgt tcaacctgga
gagcagcaag atcgaggtga tcctgaagaa tgccatcgtg 2820tacaacagca tgtacgagaa
cttcagcacc agcttctgga tcagaatccc caagtacttc 2880aacagcatca gcctgaacaa
tgaatacacc atcatcaact gcatggagaa caacagcggc 2940tggaaggtga gcctgaacta
cggcgagatc atctggaccc tgcaggacac ccaggagatc 3000aagcagagag tggtgttcaa
atacagccag atgatcaaca tcagcgacta catcaacaga 3060tggatcttcg tgaccatcac
caacaacaga ctgaacaaca gcaagatcta catcaacggc 3120agactgatcg accagaagcc
catcagcaac ctgggcaaca tccacgcctc caacaacatc 3180atgttcaagc tggacggctg
cagagacacc cacagataca tctggatcaa gtacttcaac 3240ctgttcgaca aggagctgaa
cgagaaggag atcaaggacc tgtacgacaa ccagagcaac 3300agcggcatcc tgaaggactt
ctggggcgac tacctgcagt atgacaagcc ctactacatg 3360ctgaacctgt acgatccaaa
caagtacgtg gacgtgaaca acgtgggcat cagaggctac 3420atgtacctga agggccccag
aggcagcgtg atgaccacca acatctacct gaacagcagc 3480ctgtacagag gcaccaagtt
catcatcaag aagtacgcca gcggcaacaa ggacaacatc 3540gtgagaaaca acgacagagt
gtacatcaac gtggtcgtga agaacaagga gtacagactg 3600gccaccaacg ccagccaggc
cggcgtggag aagatcctga gcgccctgga gattccagac 3660gtgggcaacc tgagccaagt
cgtcgtgatg aagagcaaga acgaccaggg catcaccaac 3720aagtgcaaga tgaacctgca
ggacaacaac ggcaacgaca tcggcttcat cggcttccac 3780cagttcaaca acatagccaa
gctggtggcc agcaactggt acaacagaca gatcgagaga 3840agcagcagaa ccctgggctg
tagctgggag ttcattccag tggacgacgg ctggggcgag 3900agaccactct ga
3912
User Contributions:
Comment about this patent or add new information about this topic: