Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees

Patent application title: METHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR

Inventors:  Alan Cowman (Victoria, AU)  Lin Chen (Victoria, AU)  Jacob Baum (Victoria, AU)
IPC8 Class: AA61K39015FI
USPC Class: 4241911
Class name: Antigen, epitope, or other immunospecific immunoeffector (e.g., immunospecific vaccine, immunospecific stimulator of cell-mediated immunity, immunospecific tolerogen, immunospecific immunosuppressor, etc.) amino acid sequence disclosed in whole or in part; or conjugate, complex, or fusion protein or fusion polypeptide including the same disclosed amino acid sequence derived from parasitic organism (e.g., dirofilaria, eimeria, trichinella, etc.)
Publication date: 2011-12-22
Patent application number: 20110311571



Abstract:

This invention relates to an immunogenic molecule comprising a contiguous amino acid sequence of an invasion ligand of a strain of Plasmodium falciparum, the invasion ligand capable of binding to an erythrocyte receptor, the receptor function being resistant to trypsin and neuraminidase and chymotrypsin, wherein when administered to a subject the molecule is capable of inducing an immune response to the strain. The invention further relates to compositions and methods for the treatment of diseases such as malaria.

Claims:

1. An immunogenic molecule comprising a contiguous amino acid sequence of an invasion ligand of a strain of Plasmodium falciparum, the invasion ligand capable of binding to an erythrocyte receptor, the receptor function being resistant to trypsin and neuraminidase and chymotrypsin, wherein when administered to a subject the molecule is capable of inducing an immune response to the strain.

2. An immunogenic molecule according to claim 1 wherein the invasion ligand is devoid of a transmembrane domain and/or a cytosolic domain normally present in other invasion ligands of Plasmodium falciparum.

3. An immunogenic molecule according to claim 1 wherein the invasion ligand has a molecular weight of about 62.5 kDa.

4. An immunogenic molecule according to claim 1 wherein the invasion ligand comprises a sequence selected from the group consisting of SEQ ID NOS:1, 2, 4, 5, 6, 7, 8, 9, 10, 11 and 12, or variants thereof.

5. An immunogenic molecule according to claim 1 wherein the contiguous amino acid sequence comprises about 5 or more amino acids.

6. (canceled)

7. (canceled)

8. (canceled)

9. (canceled)

10. (canceled)

11. An immunogenic molecule according to claim 1, wherein the immune response is an invasion-inhibitory immune response.

12. An immunogenic molecule according to claim 1, wherein the strain is a wild type strain.

13. A composition comprising an immunogenic molecule according to claim 1 and a pharmaceutically acceptable excipient.

14. A composition according to claim 13 comprising a vaccine adjuvant.

15. A composition according to claim 13 comprising an immunogenic molecule comprising a contiguous amino acid sequence of a reticulocyte-binding protein homologue (Rh) protein of the strain of Plasmodium falciparum, selected from the group consisting of Rh1, Rh2a, Rh2b, and Rh4.

16. A composition according to claim 15 wherein where the Rh protein is Rh1 the contiguous amino acid sequence is found between about residue 1 to about the transmembrane domain of Rh1,

17. (canceled)

18. A composition according to claim 15 wherein where the Rh protein is Rh2b the contiguous amino acid sequence is found in the region between about 31 amino acids N-terminal of the Prodom PD006364 homology region to about the transmembrane domain of Rh2b.

19. (canceled)

20. (canceled)

21. (canceled)

22. (canceled)

23. A composition according to claim 15 wherein where the Rh protein is Rh4 the contiguous amino acid sequence is found in the region from about the MTH1187/YkoF-like superfamily domain to about the transmembrane domain of Rh4.

24. A composition according to claim 15 wherein where the Rh protein is Rh4 the contiguous amino acid sequence is found in the region from about residue 1160 to about residue 1370 of Rh4.

25. A composition according to claim 13 comprising a contiguous amino acid sequence of an erythrocyte binding antigen (EBA) protein of the strain of Plasmodium falciparum, wherein the EBA protein is selected from the group consisting of EBA175, EBA140, and EBA181.

26. A composition according to claim 25 wherein the contiguous amino acid sequence is found in the region between the F2 domain and the transmembrane domain of the EBA protein.

27. (canceled)

28. (canceled)

29. (canceled)

30. A composition according to claim 25 wherein where the EBA is EBA175 the contiguous amino acid sequence is found in the region between the F2 domain and the transmembrane domain of EBA175.

31. (canceled)

32. (canceled)

33. (canceled)

34. A composition according to claim 13 wherein the contiguous amino acid sequence comprises about 5 or more amino acids.

35. (canceled)

36. (canceled)

37. (canceled)

38. (canceled)

39. (canceled)

40. A method of treating or preventing a condition caused by or associated with infection by Plasmodium falciparum comprising administering to a subject in need thereof an effective amount of a composition according to claim 13.

41. (canceled)

42. (canceled)

43. A method of screening for the presence of a Plasmodium falciparum invasion-inhibitory antibody in a subject, comprising obtaining a biological sample from the subject and identifying the presence or absence of an antibody capable of binding to an immunogenic molecule according to claim 1.

Description:

FIELD OF THE INVENTION

[0001] The present invention relates to vaccines for the treatment and prevention of malaria. In particular the invention provides antigens capable of eliciting antibodies capable of preventing invasion of Plasmodium parasite into erythrocytes.

BACKGROUND

[0002] Human malaria is caused by infection with protozoan parasites of the genus Plasmodium. Four species are known to cause human disease: Plasmodium falciparum, Plasmodium malariae, Plasmodium ovale and Plasmodium vivax. However, Plasmodium falciparum is responsible for the majority of severe disease and death. Recent estimates of the annual number of clinical malaria cases worldwide range from 214 to 397 million (World Health Organization. The world health report 2002: reducing risks, promoting healthy life. Geneva: World Health Organization, 2002; Breman et al (2004) American Journal of Tropical Medicine and Hygiene 71 Suppl 2:1-15), although a higher estimate of 515 million (range 300 to 660 million) clinical cases of Plasmodium falciparum in 2002 has been proposed (Snow et al. (2004) American Journal of Tropical Medicine and Hygiene 71(Suppl 2):16-24). Annual mortality (nearly all from Plasmodium falciparum malaria) is thought to be around 1.1 million (World Health Organization. The world health report 2002: reducing risks, promoting healthy life. Geneva: World Health Organization, 2002; Breman et al (2004) American Journal of Tropical Medicine and Hygiene 71 Suppl 2:1-15). Malaria also significantly increases the risk of childhood death from other causes (Snow et al. (2004) American Journal of Tropical Medicine and Hygiene 71 Suppl 2:16-24). Almost half of the world's population lives in areas where they are exposed to risk of malaria (Hay et al (2004) Lancet Infectious Diseases 4(6):327-36), and the increasing numbers of visitors to endemic areas are also at risk. Despite continued efforts to control malaria, it remains a major health problem in many regions of the world, and new ways to prevent and/or treat the disease are urgently needed.

[0003] Early optimism for vaccines based on malarial proteins (so called subunit vaccines) has been tempered over the last two decades as the problems caused by allelic polymorphism and antigenic variation, original antigenic sin, and the difficulty of generating high levels of durable immunity emerged, and with the notable failures of many promising subunit vaccines (such as SPf66) have led to calls for a change in approach towards a malaria vaccine. Consequently, this growing sense of frustration has lead to the pursuit of different approaches that focus on attenuated strains of malaria parasite or irradiated Plasmodium falciparum sporozoites (Hoffmann et al. (2002) J Infect Dis 185(8):1155-64). Similarly, both the limited success achieved to date with protein-based vaccines and the recognition that cell mediated immunity may be critical to protection against hepatic and perhaps blood stages of the parasite has led to a push for DNA and vectored vaccines, which generate relatively strong cell mediated immunity. To date DNA vaccines have demonstrated poor efficacy in humans with respect to antibody induction (Wang et al. (2001) PNAS 98: 10817-10822).

[0004] To be effective, a malaria vaccine could prevent infection altogether or mitigate against severe disease and death in those who become infected despite vaccination. Four stages of the malaria parasite's life cycle have been the targets of vaccine development efforts. The first two stages are often grouped as `pre-erythrocytic stages` (i.e. before the parasite invades the human red blood cells): these are the sporozoites inoculated by the mosquito into the human bloodstream, and the parasites developing inside human liver cells (hepatocytes). The other two targets are the stage when the parasite is invading or growing in the red blood cells (the asexual stage); and the gametocyte stage, when the parasites emerge from red blood cells and fuse to form a zygote inside the mosquito vector (gametocyte, gamete, or sexual stage). Vaccines based on the pre-erythrocytic stages usually aim to completely prevent infection. For asexual, blood stage vaccines, because the level of parasitaemia is in general proportional to the severity of disease (Miller, et al. (1994) Science 264, 1878-1883), vaccines aim to reduce or eliminate (e.g. induce stertile immunity) the parasite load once a person has been infected. However, most adults in malaria-endemic settings are clinically immune (e.g. do not suffer symptoms associated with malaria), but have parasites at low density in their blood. Gametocyte vaccines aim towards preventing the parasite being transmitted to others through mosquitoes. Ideally, a vaccine effective at all these parasite stages is desirable (Richie and Saul, Nature. (2002) 415(6872):694-701).

[0005] The SPf66 vaccine (Patorroyo et al. (1988) Nature 332:158-161) is a synthetic hybrid peptide polymer containing amino acid sequences derived from three Plasmodium falciparum asexual blood stage proteins (83, 55, and 35 kilodaltons; the 83 kD protein corresponding to merozoite surface protein (MSP)-1) linked by repeat sequences from a protein found on the Plasmodium falciparum sporozoite surface (circumsporozoite protein). Therefore it is technically a multistage vaccine. SPf66 was one of the first types of vaccine to be tested in randomized controlled trials in endemic areas and is the vaccine that has undergone the most extensive field testing to date. While having marginal efficacy in four trials in South America (Valero et al. (1993) Lancet 341(8847):705-10. Valero et al. (1996) Lancet 348(9029):701-7; Sempertegui et al. (1994) Vaccine 12(4):337-42; Urdaneta et al. (1998) American Journal of Tropical Medicine and Hygiene 58(3):378-85), these trials suggested a slightly elevated incidence of Plasmodium vivax in the vaccine groups. The vaccine has also been demonstrated to be ineffective for reducing new malaria episodes, malaria prevalence, or serious outcomes (severe morbidity and mortality) in Africa (Alonso et al. Lancet 1994; 344(8931):1175-81 and Alonso et al Vaccine 12(2):181-6); D'Alessandro et al. (1995) Lancet 346(8973):462-7.; Leach et al. (1995) Parasite Immunology 1995; 17(8): 441-4.; Masinde et al. (1998) American Journal of Tropical Medicine and Hygiene 59(4):600-5; Acosta 1999 Tropical Medicine and International Health 1999; 4(5):368-76) and Asia (Nosten et al. (1996) Lancet; 348(9029):701-7), and is consequently no longer being tested.

[0006] Four types of pre-erythrocytic vaccines (CS-NANP; CS102; RTS,S; and ME-TRAP) have been trialed. The CS-NANP-based pre-erythrocytic vaccines were the first to be tested, beginning in the 1980s. The vaccines used in the first trials comprised three different formulations of the four amino acid B cell epitope NANP, which is present as multiple repeats in the circumsporozoite protein covering the surface of the sporozoites of Plasmodium falciparum. The number of NANP repeats in these vaccines varied from three to 19, and three different carrier proteins were used. The CS-NAN P epitope alone appears to be ineffective in a vaccine, with no evidence for effectiveness of CS-NANP vaccines in three trials (Guiguemde et al. (1990) Bulletin de la Societe de Pathologie Exotique 83(2):217-27; Brown et al. (1994) Vaccine 12(2):102-7; Sherwood et al. (1996) Vaccine 14(8):817-27).

[0007] The CS102 vaccine is also based on the sporozoite CS protein, but it does not include the NANP epitope. It is a synthetic peptide consisting of a stretch of 102 amino acids containing T-cell epitopes from the C-terminal end of the molecule. All 14 participants in this small trial of non-immune individuals had malaria infection as detectable by PCR (Genton et al. (2005) Acta Tropica Suppl 95:84).

[0008] The RTS,S recombinant vaccine also includes the NANP epitope. It contains 19 NANP repeats plus the C terminus of the CS protein fused to hepatitis B surface antigen (HBsAg), expressed together with un-fused HBsAg in yeast. The resulting construct is formulated with the adjuvant ASO2/A. Thus the vaccine contains a large portion of the CS protein in addition to the NANP region, as well as the hepatitis B carrier. The RTS,S pre-erythrocytic vaccine has shown some modest efficacy, in particular with regard to prevention of severe malaria in children and duration of protection of 18 months (Kester et al. (2001) Journal of Infectious Diseases 2001; 183(4):640-7.1; Bojang et al. (2001) Lancet 358(9297):1927-34; Alonso et al. (2005) Lancet 366(9502):2012 Alonso et al. (2005) Lancet 366(9502):2012-8), Bojang et al. (2005) Vaccine 23(32):4148-57). In four trials, it was effective in preventing a significant number of clinical malaria episodes, including good protection against severe malaria in children, with no serious adverse effects (Graves et al. (2006) Cochrane Database of Systematic Reviews 4: CD006199). The RTS,S vaccine has shown significant efficacy against both experimental challenge (in non-immunes) and natural challenge (in participants living in endemic areas) with malaria. Although no evidence was found for efficacy of RTS,S against clinical malaria in adults in The Gambia in the first year of follow up, efficacy was observed in the second year after immunization, after a booster dose. However, there was no reduction in parasite densities (which positively associate with pathology). Nonetheless, in a recent study in Mozambique, the vaccine appeared to have efficacy in infants (Aponte et al. (2007) 370(9598) 1543-1551).

[0009] The ME-TRAP pre-erythrocytic vaccine is a DNA vaccine that uses the prime boost approach to immunization. It uses a malaria DNA sequence known as ME (multiple epitope)-TRAP (thrombospondin-related protein). The ME string contains 15 T-cell epitopes, 14 of which stimulate CD8 T-cells and the other of which stimulates CD4 T-cells, plus two B-cell epitopes from six pre-erythrocytic antigens of Plasmodium falciparum. It also contains two non-malarial CD4 T-cell epitopes and is fused in frame to the TRAP sequence. This sequence is given first as DNA (two doses) followed by one dose of the same DNA sequence in the viral vector MVA (modified vaccinia virus Ankara). There was no evidence for effectiveness of ME-TRAP vaccine in preventing new infections or clinical malaria episodes, and the vaccine did not reduce the density of parasites or increase mean packed cell volume (a measure of anaemia) in semi-immune adult males (Moorthy et al. (2004) Nature 363(9403):150-6).

[0010] The first blood-stage vaccine to be tested in challenge trials is Combination B, which is a mixture of three recombinant asexual blood-stage antigens: parts of two merozoite surface proteins (MSP-1 and MSP-2) together with a part of the ring-infected erythrocyte surface antigen (RESA), which is found on the inner surface of the infected red cell membrane. The MSP-1 antigen is a 175 amino acid fragment of the relatively conserved blocks 3 and 4 of the K1 parasite line; it also includes a T-cell epitope from the Plasmodium falciparum circumsporozoite (CS) protein as part of the MSP1 fusion protein. The MSP2 protein includes the nearly complete sequence from one allelic form (3D7) of the polymorphic MSP-2 protein. The RESA antigen consists of 70% of the native protein from the C-terminal end of the molecule. A small efficacy trial of Combination B in non-immune adults with experimental challenge showed no effect (Lawrence (2000) Vaccine 18(18):1925-31). In the single natural-challenge efficacy trial of in semi-immune children (Genton (2002) Journal of Infectious Diseases 185(6):820-7), no effect on clinical malaria infections was detected. In this trial, significant efficacy (measure by reduction in parasite density) was only observable in the group who were not pretreated with sulfadoxine-pyrimethamine. Also, in these children there was a reduction in the proportion of children with medium and high parasitaemia levels. Vaccines in the Genton et al. (2002) trial had a lower incidence and prevalence of parasites with the 3D7 type of MSP2 (the type included in the vaccine) than the placebo group, and a higher incidence of malaria episodes were associated with the FC27 type of MSP2, suggesting specific immunity. Importantly, there was no statistically significant change in prevalence of parasitemia, nor was there evidence for an effect of combination B against episodes of clinical malaria in either the group pretreated with the antimalarial or the group with no antimalarial, in fact the results for these subgroups tended in the opposite direction. Furthermore, the relative role of the three vaccine constituents cannot be assessed when based on the trials that have been carried out to date.

[0011] In addition to the asexual-stage components of Combination B, many other potential asexual stage vaccines have been under preclinical evaluation, such as regions of apical membrane antigen 1 (AMA1), the merozoite surface proteins MSP1, MSP2, MSP3, MSP4, and MSP5: glutamate-rich protein (GLURP), rhoptry associated protein-2 (RAP2), EBA-175, EBP2, MAEBL, and DBP, and Plasmodium falciparum (erythrocyte membrane protein-1 (PfEMP1). Importantly however, a recent examination of the vaccine candidate still under consideration (Moran et al. (2007) The Malaria Product Pipeline, The George Institute for International Health, September 2007) has shown that many preclinical vaccine projects are inactive; in particular vaccine projects using the F1 domain of EBA-175 (e.g. by ICGEB), EBA-140 (also known as BAEBL), and RAP-2 are inactive. The inactivity of these projects highlights that much work is needed to find blood stage antigens that will afford a protective immune response.

[0012] There are many problems faced in the selection of antigens for malaria vaccine development, including antigenic variation, antigen polymorphism, and original antigenic sin, and further problems such as MHC-limited non-responsiveness to malarial antigens, inhibition of antigen presentation, and the influence of maternal antibodies on the development of the immune system in infants.

[0013] Many blood stage vaccine candidates, such as MSP-1, MSP-2, MSP-3 and AMA-1, have substantial polymorphisms that may have an impact on both immunogenicity and protective effects, and in the case of MSP-1, and MSP-2, immune responses to particular allelic forms has been observed in vaccine trials (and also for MSP-3 and AMA-1 in mice). Molecular epidemiological studies can guide antigen selection and vaccine design as well as provide information that is needed to measure and interpret population responses to vaccines, both during efficacy trials and after introduction of vaccines into the population. They also may provide insight into the selective forces acting on antigen genes and potential implications of allele specific immunity. Consequently the different allelic forms would need to be included in any vaccine to counter the affect of antigenic polymorphism at immunogenic residues.

[0014] The cyclical recrudescences of malaria parasites in humans is thought to be due to the selective pressure placed upon parasitized red cells by antibodies to variant antigens, such as PfEMP1. Plasmodium falciparum possesses about 50 variant copies of PfEMP1 which are expressed clonally such that only one is expressed at a time, and the development of antibodies against the expanding clonal type then reduce this clone from the affected individual, and subsequently a different variant, not recognized by antibodies, emerges and cycling continues. This antigenic variation also poses a problem for vaccines containing clonally expressed antigens, and immunization studies with recombinant conserved CD36-binding portion of PfEMP1 failed to confer protection in Aotus monkeys (Makobongo et al. (2006) JID 193:731-740.

[0015] A third problem confounding malaria vaccine initiatives is original antigenic sin; a phenomenon in which individuals tend to make antibodies only to epitopes expressed on antigenic types to which they have been exposed (or cross-reactive antigens), even in subsequent infections carrying additional, highly immunogenic epitopes (Good, et al. (1993) Parasite Immunol. 15, 187-193. Taylor et al. (1996) Int. Immunol. 8, 905-915, Riley, (1996) Parasitology 112, S39-S51 (1996))

[0016] It has also been proposed that immunity to malaria relies on maintaining high levels of immune effector cells, rather than in the generation of effectors from resting memory cells (Struck and Riley (2004) Immunological Reviews 201: 268-290). Consequently, the time taken to generate sufficient levels of effector cells may be crucial in determining whether a protective memory response can be mounted to prevent disease. Also, malaria parasites may interfere directly with memory responses by interfering with antigen presentation by dendritic cells (Urban et al. (1999) Nature 400:73-77, Urban et al. (2001) PNAS 98:8750-8755), and premature apoptosis of memory cells (Toure-Balde et al. (1996) Infection and Immunity 64: 744-750, Balde et al. (2000) Parasite Immunology 22:307-318).

[0017] Furthermore, it has been demonstrated that antibodies to particular malarial antigens (such as MSP-1) may inhibit the activity of malaria-protective antibodies (Holder et al (1999) Parassitologica 41:409-14), and that there may be MHC-limited non-responsiveness to malarial antigens (Tian et al (1996) J Immunol 157:1176-1183, Stanisic et al. (2003) Infection and Immunity 71: 5700-5713). Maternally derived antibodies have also been shown to interfere with the development of antibody responses in infants, and has been implicated for malaria in mice (Hirunpetcharat and Good (1998) PNAS 95:1715-1720), consequently these problems need to be addressed for vaccination of children against malaria.

[0018] As will be apparent from the foregoing review of the prior art, there remained significant problems to be overcome in the design of an efficacious vaccine against malaria. It is an aspect of the present invention to overcome or ameliorate a problem of the prior art by providing antigens, and combinations of antigens capable of eliciting antibodies that can treat or prevent malaria.

[0019] A reference herein to a patent document or other matter which is given as prior art is not to be taken as an admission that that document or matter was known or that the information it contains was part of the common general knowledge as at the priority date of any of the claims.

SUMMARY OF THE INVENTION

[0020] In a first aspect, the present invention provides an immunogenic molecule comprising a contiguous amino acid sequence of an invasion ligand of a strain of Plasmodium falciparum, the invasion ligand capable of binding to an erythrocyte receptor, the receptor function being resistant to trypsin and neuraminidase and chymotrypsin, wherein when administered to a subject the molecule is capable of inducing an immune response to the strain. Applicant has discovered a new invasion ligand/receptor pathway in the invasion of erythrocytes by Plasmodium falciparum. The ligand is proposed to be useful as a vaccine (or as a component of a vaccine) whereby administration of the vaccine to a subject elicits antibodies capable of binding to the natural parasite. Binding of the antibodies to the parasite is proposed to inhibit invasion of erythroctyes thereby interrupting the life cycle of the parasite. In one embodiment, the invasion ligand is devoid of a transmembrane domain and/or a cytosolic domain normally present in other invasion ligands of Plasmodium falciparum. These domains are typically found at the C-terminus of other invasion ligands. The absence of one or both of these domains distinguishes the invasion ligands described herein with those of the prior art. In one embodiment, the invasion ligand has a molecular weight of about 62.5 kDa. This is significant smaller than other invasion ligands of Plasmodium falciparum, and again highlights the atypical nature of the invasion ligand described herein.

[0021] In one embodiment of the immunogenic molecule, the invasion ligand comprises a sequence selected from the group consisting of SEQ ID NOS:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 or variants thereof. The contiguous amino acid sequence may comprise at least about 5, 8, 10, 20, 50 or 100 or more amino acids of SEQ ID NO: 1 or 2, or variant thereof. In one embodiment, the invasion ligand comprises the entirety of SEQ ID NO:1 or 2 or variant thereof.

[0022] In one embodiment of the invention, the immune response is an invasion inhibitory response. Invasion of erythrocytes is an important step in the life history of the malaria parasite. Without wishing to be limited by theory in any way, it is proposed that the invasion ligands of the present invention play an important role in erythrocyte selection and commitment to invasion.

[0023] The strain of Plasmodium falciparum may be a wild type strain.

[0024] In a second aspect, the present invention provides a composition comprising an immunogenic molecule as described herein and a pharmaceutically acceptable excipient, and optionally a vaccine adjuvant.

[0025] The composition may comprise further invasion ligands of Plasmodium falciparum, thereby providing an improvement in vaccine efficacy. Accordingly, in one embodiment, the composition comprises an immunogenic molecule comprising a contiguous amino acid sequence of a reticulocyte-binding protein homologue (Rh) protein of a strain of Plasmodium falciparum, wherein the Rh protein is selected from the group consisting of Rh1, Rh2a, Rh2b, and Rh4.

[0026] Where the Rh protein is Rh1 the contiguous amino acid sequence may be found in the region between about residue 1 to about the transmembrane domain of Rh1, or the region from about residue 1 to about residue 2897.

[0027] Where the Rh protein is Rh2a the contiguous amino acid sequence may be found in the region between about 31 amino acids N-terminal of the Prodom PD006364 homology region to about the transmembrane domain of Rh2a. In certain embodiments, the contiguous amino acid sequence is found in the region from about residue 2027 to 3115 of Rh2a, or the region from about residue 2027 to about residue 2533 of Rh2a, or the region from about residue 2098 to about residue 2597 of Rh2a, or the region from about residue 2616 to about residue 3115 of Rh2a.

[0028] Where the Rh protein is Rh2b the contiguous amino acid sequence may be found in the region between about 31 amino acids N-terminal of the Prodom PD006364 homology region to about the transmembrane domain of Rh2b. In certain embodiments, the contiguous amino acid sequence is found in the region from about residue 2027 to 3115 of Rh2b, or the region from about residue 2027 to about residue 2533 of Rh2b, or the region from about residue 2098 to about residue 2597 of Rh2b, or the region from about residue 2616 to about residue 3115 of Rh2b.

[0029] Where the Rh protein is Rh4 the contiguous amino acid sequence may found in the region from about the MTH1187/YkoF-like superfamily domain to about the transmembrane domain of Rh4, or in the region from about residue 1160 to about residue 1370 of Rh4.

[0030] In certain embodiments, the composition comprises an immunogenic molecule comprising a contiguous amino acid sequence of an erythrocyte binding antigen (EBA) protein of a strain of Plasmodium falciparum. The contiguous amino acid sequence may be found in the region between the F2 domain and the transmembrane domain of the EBA protein. The contiguous amino acid sequence may be found in the region from about residue 746 to about residue 1339 of the EBA protein.

[0031] The EBA may be selected from the group consisting of EBA140, EBA175 and EBA181.

[0032] Where the EBA is EBA140, the contiguous amino acid sequence may be found in the region between the F2 domain and the transmembrane domain of EBA140, or in the region from about residue 746 to about residue 1045 of EBA140.

[0033] Where the EBA is EBA175 the contiguous amino acid sequence may be found in the region between the F2 domain and the transmembrane domain of EBA175. The contiguous amino acid sequence may be found in the region from about residue 761 to about residue 1271 of EBA175.

[0034] Where the EBA is EBA181 the contiguous amino acid sequence may be found in the region between the F2 domain and the transmembrane domain of EBA181. In one embodiment the contiguous amino acid sequence is found in the region from about residue 755 to about residue 1339 of EBA181.

[0035] In a third aspect, the present invention provides a method of treating or preventing a condition caused by or associated with infection by Plasmodium falciparum comprising administering to a subject in need thereof an effective amount of a composition as described herein.

[0036] A fourth aspect of the invention provides use of an immunogenic molecule or a composition as described herein in the manufacture of a medicament for the treatment or prevention of a condition caused by or associated with infection by Plasmodium falciparum.

[0037] A fifth aspect of the present invention provides a method of screening for the presence of a Plasmodium falciparum invasion-inhibitory antibody directed against an invasion ligand described herein, comprising obtaining a biological sample from a subject and identifying the presence or absence of an antibody capable of binding to an invasion ligand as described herein.

[0038] Throughout the description and the claims of this specification the word "comprise" and variations of the word, such as "comprising" and "comprises" is not intended to exclude other additives, components, integers or steps.

BRIEF DESCRIPTION OF THE FIGURES

[0039] FIG. 1. Characterization of invasion ligand of Plasmodium falciparum.

A) Immunoblot of whole P. falciparum parasite lysate at 8 hour intervals across the 48 hour lifecycle (0 hour=invasion) probed with rabbit polyclonal and mouse monoclonal serum raised against a recombinant portion of an invasion ligand according to SEQ ID NO:1. The bottom panel corresponds to a loading control using antibodies to aldolase. B) Immunoblot of proteins from post-schizont rupture supernatants released from the parasite lines 3D7, T996, HB3, D10, 7G8, K1, PF120, FCB1, T994 and W2mef. An asterisk marks those with known sequence. Double asterisk marks those that have a cysteine to tyrosine substitution at position 203.

[0040] FIG. 2. An invasion ligand according to SEQ ID NO: 1 is expressed in schizonts and merozoites and is refractory to knock-out but not C-terminal tagging.

A) Indirect immunofluorescence and phase contrast micrographs of late segmented schizonts and free merozoites using rabbit polyclonal serum raised the invasion ligand. The panels from left to right are rabbit anti-invasion ligand, DAPI nuclear stain, phase contrast image and an overlay of all three images. Scale bars=1 μM. B) The scheme for plasmid integration by single homologous crossover recombination to add a single Strep-tag II and triple Hemagluttinin (HA) tag to the invasion ligand C terminus. C) Immunoblot with anti--the invasion ligand monoclonal (clone 6H2) against culture supernatant from wild type 3D7 and D10, and HA tagged parasite lines in both to detect invasion ligand. The reactivity at ˜70 kDa is cross-reactivity of antibody with serum albumin which is present at high concentration in the supernatant medium. D) Immunoprecipitation of invasion ligand with rabbit polyclonal serum against invasion ligand (or pre-immune normal rabbit serum control) probed with invasion ligand monoclonal.

[0041] FIG. 3. Invasion ligand localizes to the apical pole of merozoites and follows the tight junction during invasion.

(A) Immunofluorescence and phase contrast micrographs of late segmented schizonts with anti-HA antibodies to detect the chimeric invasion ligand along with co-localisation using antibodies to invasion ligand. The panels from left to right are rat anti-HA, rabbit anti-invasion ligand, overlay of both with DAPI nuclear stain, phase contrast image and overlay of all images. (B) Immunofluorescence and phase contrast images of late schizonts or free merozoites (insets) to co-localise invasion ligand with AMA1 (top panel), Rh2a/b (middle panel) and RON4 (bottom panel). Each panel from left top right corresponds to anti-HA antibodies (to detect invasion ligand), rabbit anti-AMA1 or anti-Rh2a/b or anti-RON4, overlay of each with DAPI nuclear stain, phase contrast and overlay of all images. Insets show individual merozoites. (C) Co-localization of rat anti-HA with rabbit antisera against RON4 (a tight junction marker during invasion) in invading merozoites arrested using cytochalasin D. DAPI nuclear stain. Scale bars=1 μM.

[0042] FIG. 4. Invasion ligand binds to the erythrocyte surface.

A) Immunoblot of invasion ligand from culture supernatant (input) bound to erythrocytes and eluted using high salt from the host cell surface with and without a PBS wash. (B) Immunoblot of invasion ligand from culture supernatant bound to erythrocytes in the presence of different enzymes that modify surface receptors (Nm, neuraminidase; Chymo, chymotrypsin; Tryp, trypsin). EBA175 binding control (sensitive to Nm and Tryp treatment). (C) Immunoblot of invasion ligand from culture supernatant bound to erythrocytes in the presence of increasing concentrations of heparin (HEP) or chondroitin sulfate C(CSC). EBA175, binding control. (D) Immunoblot of unbound and bound/eluted fractions from culture supernatant incubated with heparin-agarose beads, showing selective depletion of invasion ligand (negative lane). The presence of soluble HEP but not CSC out-competes invasion ligand binding, increasing the amount in the unbound fractions and decreasing that which can be bound and then eluted.

[0043] FIG. 5. Antibodies against the invasion ligand inhibit merozoite invasion in vitro and recombinant full length invasion ligand is recognized by human malaria-immune sera.

A) Bar chart showing inhibition of invasion into untreated, neuraminidase (Nm)-, chymotrypsin (Chymo)- or trypsin (Tryp)-treated erythrocytes in the presence of rabbit antiserum raised against invasion ligand. Each data point represents the % invasion with respect to invasion into the same treated cells but for normal rabbit serum and is the average of at least four replicate assays (carried out in triplicate) with errors bars showing the 95% Cl. B) Generation of soluble recombinant full length invasion ligand: Lane 1, purified inclusion body; Lane 2, guanidine-HCl solubilized sample; Lane 3, Ni-resin purified invasion ligand; Lane 4, refolded invasion ligand. C) Reactivity of pooled sera from different malaria hyperendemic regions of Papua New Guinea (Pool P and M) and pooled Melbourne control sera with refolded full length invasion ligand. Rabbit anti-H His and mouse invasion ligand monoclonal are included as positive controls.

[0044] FIG. 6. Alignment of invasion ligand proteins from seven different P. falciparum strains and the partial sequence of the P. reichenowi invasion ligand orthologue.

[0045] FIG. 7. The invasion ligand localises to the rhoptry body.

(A) Immuno-electron microscopy of late schizonts localising invasion ligand (using anti-invasion ligand antibody) to the merozoite rhoptries. (B) Immuno-electron microscopy of late schizonts localising invasion ligand (using anti-HA in the tagged line) to the merozoite rhoptries. Scale bars=0.2 μM.

[0046] FIG. 8. The invasion ligand follows the tight junction during invasion.

Co-localisation of invasion ligand with rabbit antisera against two markers of the tight junction (A) RON4 and (B) AMA1 in invading merozoites arrested using cytochalasin D. Cartoon schematic is shown on the right, with black arrows marking tight junction. DAPI nuclear stain. Scale bars=1 μM.

DETAILED DESCRIPTION OF THE INVENTION

[0047] The present invention is predicated at least in part on the identification of a novel ligand/receptor mechanism facilitating invasion of the malaria parasite into erythrocytes. The invasion ligand is significantly smaller than the other invasion ligands of the parasite, and lacks transmembrane and cytosolic domains. The cognate receptor is distinguished by its' resistance to proteases that typically adversely affect the function of other receptors used for invasion by Plasmodium falciparum. Applicant has also characterized the role of the invasion ligand in invasion of the parasite into human red blood cells. The invasion of red blood cells is a key event in the infection of a subject with the malaria parasite, and it is therefore proposed that the invasion ligand described herein is useful as an antigen in the formulation of a vaccine against malaria. Accordingly, the present invention provides an immunogenic molecule comprising a contiguous amino acid sequence of an invasion ligand of a strain of Plasmodium falciparum, the invasion ligand capable of binding to an erythrocyte receptor, the receptor function being resistant to trypsin and neuraminidase and chymotrypsin, wherein when administered to a subject the molecule is capable of inducing an immune response to the strain.

[0048] This approach to formulating a vaccine for malaria is distinguished from approaches of the prior art, and is indeed contrary to the general teaching of the prior art prior to the present invention. Previous work characterizing the function of Rh proteins (and also erythrocyte binding antigen (EBA) proteins) in human red cell (erythrocyte) invasion by Plasmodium falciparum has demonstrated that these molecules are not essential for red cell invasion. Experiments have demonstrated that the genes encoding these molecules (e.g. EBA175, EBA140, EBA181, Rh1, Rh2a, Rh2b and Rh4) can be disrupted in different Plasmodium falciparum lines without an obvious effect on blood stage growth rates.

[0049] In contrast to other invasion ligands of Plasmodium falciparum which are each very large (220-350 kDa), type I transmembrane proteins localising to the rhoptries, the invasion ligands described herein uniquely lack a transmembrane domain and are significantly smaller in size. The absence of the transmembrane domain in the invasion ligand suggests that the protein is not accessible to the human immune system. Other invasion ligands (and their orthologues in P. vivax and P. yoelii) are large type-I integral membrane proteins with a putative transmembrane region close to the C-terminus.

[0050] In complete contrast to the teachings of the prior art, the present invention demonstrates that the invasion ligands described herein are involved in invasion of human erythrocytes, are subject to host mediated selection, binds human erythrocytes and are the target of human antibodies in natural infection. Applicant proposes that the present invasion ligands elicit an immune response in human infections.

[0051] To investigate whether the present invasion ligands are targets for host-mediated positive selection, Applicant sequenced the entire gene encoding the ligands in seven different strains of Plasmodium falciparum. The sequences, along with variants from sequenced genomes, show the presence of thirteen non-synonymous (but no silent) polymorphisms, predominantly in the N-terminal half of the gene. The imbalance in substitutions that alter amino acid residues indicates selection favouring diversity in the present invasion ligands, indicating the ligands elicit an immune response. This limited level of diversity may arise from the ability of the ligands to mediate phenotypic variation by differential expression (although this does not appear to be the case for the present invasion ligands) or alternatively may result from the localization of the ligands to the moving tight junction (as discussed infra), a location that results in a degree of immune exposure given the recognition of by recombinant invasion ligand by malaria immune-sera.

[0052] In one embodiment, the invasion ligand may have an amino acid sequence according to SEQ ID NO: 1. However, it will be understood that other strain-specific variants are also included in the scope of the invention. While the invasion ligand gene from different P. falciparum strains does reveal a small number of polymorphisms no predicted differences in molecular weight are seen. To experimentally determine if the protein showed any marked differences in the level of expression or unexpected size diversity, Applicant performed immunoblots with culture supernatants from a diverse panel of parasite lines. The 45 kDa processed product was detected in all parasite strains tested and shows no expression level variation (FIG. 1D) consistent with it having an important function across all strains.

[0053] Applicant has further demonstrated that the subject invasion ligands localise to the apical end of the merozoite. In order to determine the temporal expression pattern and subcellular localisation of invasion ligand, Applicant raised polyclonal and monoclonal antibodies against a central fragment that incorporated six cysteine residues from 3D7 (FIG. 1C). Immunoblots using both the polyclonal and monoclonal antibodies identified a protein band of ˜63 kDa, the predicted molecular weight of the invasion ligands, expressed predominantly in mature schizont stages (40-48 h) (FIG. 1C). Also observed was a smaller product of 45 kDa that likely corresponds to a processed fragment of full length the invasion ligand (FIG. 1C). Accordingly, in one embodiment, the invasion ligand is expressed in merozoite stages, and/or localizes to the apical complex (FIGS. 2, 3, 7 and 8).

[0054] The absence of a transmembrane region in the invasion ligand means that it cannot be processed by a rhomboid protease. While not definitive, this suggests that the ligand may form a complex with other merozoite proteins, at least one of which may be an integral membrane protein anchoring the ligand to the surface and, following processing, releasing the ligand into the culture supernatant. It is possible that the invasion ligand is dependent on an interaction with another Plasmodium protein for successful organelle targeting. Transmembrane proteins can act as an escort for soluble microneme proteins in the related apicomplexan parasite Toxoplasma gondii. Additionally, P. falciparum rhoptry proteins RAP2 and RAP3 which both lack transmembrane regions are escorted to the body of the rhoptries by RAP1 and the trafficking of the full complex appears to be dependent on interaction with the GPI-anchored protein RAMA.

[0055] Applicant has demonstrated that the invasion ligand is capable of binding to erythrocytes (FIG. 4). Demonstration of this ability is indicative that the ligand plays a key role in merozoite invasion. Enzyme treatment of red cells allows examination of the receptors to which the Plasmodium falciparum proteins bind. In particular, neuraminidase removes sialic acid residues from the erythrocyte surface and blocks invasion pathways dependent on sialic acid present on both glycophorin A and other receptors, trypsin treatment cleaves proteins such as glycophorin A and C, but does not affect glycophorin B, and chymotrypsin cleaves a non-overlapping set of proteins including glycophorin B and band 3 on the erythrocyte surface. Using this approach, invasion phenotypes can be broadly classified into two main groups: i) sialic acid (SA)-dependent invasion, demonstrated by poor invasion of neuraminidase-treated erythrocytes (neuraminidase cleaves SA on the erythrocyte surface), and ii) SA-independent invasion, demonstrated by efficient invasion of neuraminidase-treated erythrocytes. Applicant demonstrates binding of the invasion ligand described herein to erythrocytes is insensitive to neuraminidase, trypsin and chymotrypsin treatment but is substantially reduced in the presence of heparin, suggesting carbohydrate moieties are involved in the binding of the invasion ligand. Furthermore, binding may also involve a proteoglycan. Resistance to neuraminidase and all proteases tested indicates the erythrocyte receptor for the invasion ligand is distinct from the receptors that have been characterized for the other immunogens.

[0056] Demonstration that the present invasion ligands are involved in trypsin-, neuraminidase- and chymotrypsin-independent invasion of red cells, indicates that the interaction of the invasion ligand with a trypsin-, neuraminidase- and chymotrypsin-independent erythrocyte receptor is important for Plasmodium falciparum infection.

[0057] Applicant has further demonstrated that the invasion ligands appear important for parasite survival in all strains of P. falciparum tested, covering a range of preferred alternative invasion pathways. The adaptability of P. falciparum in its use of alternative receptors during erythrocyte invasion occurs by differential expression of proteins, as discussed supra, and in some cases silencing and activation of some genes following selection under specific conditions. In contrast, the invasion ligands described herein may play a conserved role across all parasite strains, including those that invade using alternate receptors or invasion pathways. Accordingly, in one embodiment the invasion ligands are expressed across all parasite lines. In another embodiment the ligands are refractory to genetic disruption in all parasite lines. This indicates a key role in invasion.

[0058] An immunoblot using a soluble recombinant invasion ligand (generated from refolding of ligand from E. coli inclusion bodies) demonstrates that the ligands are recognized in natural malaria infections, indicating it elicits immune responses in humans. Accordingly, in one embodiment the ligand is recognized to a greater level by pooled human sera from a malaria-endemic community as compared with pooled malaria-non-exposed immune sera (FIG. 5). This indicates that the ligand is recognized in natural malaria infections. This unexpected recognition of the invasion ligand by the human immune system, and its role of binding to and in invasion of human erythrocytes indicates that invasion using ligands of the present invention are targeted by immune responses in humans in natural malaria infection.

[0059] The targeting of the invasion ligands described herein by immune responses in humans in natural malaria infection may inhibit an interaction of the ligand with a trypsin-, neuraminidase- and chymotrypsin-independent erythrocyte receptor.

[0060] Antibodies that inhibit the growth of blood stage Plasmodium falciparum parasites in vitro are found in the sera of some, but not all, individuals living in malaria endemic regions (Marsh, et al (1989) Trans. R. Soc. Trop. Med. Hyg. 83:293, Brown, et al (1982) Nature. 297:591, Brown, et al. (1983) Infect. Immun. 39:1228, Bouharoun-Tayoun, et al. (1990) J. Exp. Med. 172:1633-1641). Inhibitory antibodies are likely to contribute to the clinical immunity observed in highly exposed individuals. Inhibitory antibodies may act in a manner involving direct anti-microbial activity, activation of compliment, opsonisation, the generation of antioxidants, or antibody-dependent cell cytotoxicity. Alternatively, inhibitory antibodies may act in a manner that is independent of complement or other cellular mediators and function by preventing invasion of erythrocytes by the extracellular merozoite form of the parasite.

[0061] The present invention requires that the immunogenic molecule is capable of inducing an immune response in the subject. Furthermore, the immunogenic molecule may be capable of inducing an immune response in the subject that is capable of inhibiting the interaction of Plasmodium falciparum with a host erythrocyte. Applicant has demonstrated that antibodies to invasion ligand inhibit invasion in vitro (FIG. 5). Accordingly, the immunogenic molecule may be further capable of inducing an invasion-inhibitory immune response in the subject. As used herein, the term "invasion-inhibitory" is intended to include the complete prevention of invasion of an invasion-competent erythrocyte for the life-span of the subject. The term is also intended to include the partial prevention of invasion, as measured by for example, the proportion of a population of invasion-competent erythrocytes that are invaded, the number of attempts by which it is necessary for a given parasite to invade an erythrocyte, the time taken for a parasite to invade an erythrocyte, and the number of parasites required to ensure that a single erythrocyte is invaded. The complete or partial inhibition of invasion may be for a short period of time (such as several hours), an intermediate period of time (such as weeks, or months), or a protracted period of time (such as years or decades). The inhibition of invasion may be measured in vivo or in vitro.

[0062] For the avoidance of doubt, the term "invasion" is intended to include the entire invasion process such that the complete parasite enters the cytoplasm, and is completely encircled by the cytoplasm. The term also includes components of the entire invasion process such as the binding of the parasite to the surface of the erythrocyte, the reorientation of the apical end of the parasite to contact the erythrocyte surface, entry of the parasite into a parasitophorous vacuole, release of protein from apical organelles, and the shedding of parasite surface protein by proteases. Furthermore, the term "invasion" includes both SA dependent and SA-independent invasion pathways. Immune responses to these pathways are known as type-A and type-B inhibitory responses, respectively.

[0063] The present invention includes immunogenic molecules capable of eliciting an immune response against a wild-type strain of P falciparum, or any of the following strains: 3D7, W2MEF, GHANA1, V1_S, RO-33, PREICH, HB3, SANTALUCIA, 7G8, SENEGAL3404, FCC-2, K1, RO-33, D6, DD2, or D10, or any other known or newly isolated strain of Plasmodium falciparum. An isolate or strain of Plasmodium falciparum is a sample of parasites taken from an infected individual on a unique occasion. Typically, an isolate is uncloned, and may therefore contain more than one genetically distinct parasite clone. A Plasmodium falciparum line is a lineage of parasites derived from a single isolate, not necessarily cloned, which have some common phenotype (e.g. drug-resistance, ability to invade enzyme treated red cells etc.). A Plasmodium falciparum clone is the progeny of a single parasite, normally obtained by manipulation or serial dilution of uncloned parasites and then maintained in the laboratory. All the members of a clone have been classically defined as genetically identical, but this is not necessarily the case, since members of the clone may undergo mutations, chromosomal rearrangements, etc, which may survive in in vitro culture conditions. While the immunogenic molecule will typically include amino acid sequences found in an invasion ligand of the strain for which protection is desired, this is not necessarily required.

[0064] Typically, the immunogenic molecule is a polypeptide, or includes a polypeptide region. As used herein, the term "polypeptide" refers to amino acid polymers of any length. The polymer may be linear or branched, it may comprise modified amino acids, and it may be interrupted by non-amino acids. The terms also encompass an amino acid polymer that has been modified naturally or by intervention; for example, disulfide bond formation, glycosylation, lipidation, acetylation, phosphorylation, or any other manipulation or modification, such as conjugation with a labeling component. Also included are, for example, polypeptides containing one or more analogs of an amino acid (including, for example, unnatural amino acids, etc.), as well as other modifications known in the art. Polypeptides can occur as single chains or associated chains.

[0065] In one form of the immunogenic molecule, the invasion ligand comprises an amino acid sequence as described in SEQ ID NO: 1, or a variant thereof.

TABLE-US-00001 Amino acid sequence of invasion ligand, with leader sequence. SEQ ID NO: 1 MIRIKKKLILTIIYIHLFILNRLSFENAIKKTKNQENNLTLLPIKSTEEEKDDIKNGKDI KKEIDNDKENIKTNNAKDHSTYIKSYLNTNVNDGLKYLFIPSHNSFIKKYSVFNQINDGM LLNEKNDVKNNEDYKNVDYKNVNFLQYHFKELSNYNIANSIDILQEKEGHLDFVIIPHYT FLDYYKHLSYNSIYHKSSTYGKCIAVDAFIKKINETYDKVKSKCNDIKNDLIATIKKLEH PYDINNKNDDSYRYDISEEIDDKSEETDDETEEVEDSIQDTDSNHTPSNKKKNDLMNRTF KKMMDEYNTKKKKLIKCIKNHENDFNKICMDMKNYGTNLFEQLSCYNNNFCNTNGIRYHY DEYIHKLILSVKSKNLNKDLSDMTNILQQSELLLTNLNKKMGSYIYIDTIKFIHKEMKHI FNRIEYHTKIINDKTKIIQDKIKLNIWRTFQKDELLKRILDMSNEYSLFITSDHLRQMLY NTFYSKEKHLNNIFHHLIYVLQMKFNDVPIKMEYFQTYKKNKPLTQ

[0066] The underlined residues comprise the leader sequence, and it will be understood that the leader sequence is not essential to the invention, and in some circumstances it may even be preferable to remove one or all of the residues comprising the leader sequence.

[0067] Variants of any of the sequences disclosed herein are included in the scope of this invention and include embodiments whereby E at amino acid 48 is replaced with K, Y at amino acid 147 is replaced with H, H at amino acid 148 is replaced with N, S at amino acid 197 is replaced with Y, C at amino acid 203 is replaced with Y, I at amino acid 204 is replaced with K or R, N at amino acid 347 is replaced with Y or D, Y at amino acid 358 is replaced with F, E at amino acid 362 is replaced with D, V at amino acid 371 is replaced with I, I at amino acid 407 is replaced with V, I at amino acid 410 is replaced with M, and K at amino acid 429 is replaced with N. These latter variable residues are indicated in bold typeface.

[0068] The present invention includes immunogenic molecules that are truncated or extended forms of the molecules described herein. It will be understood that these alternative forms of the sequences may be aligned at the amino acid level, and that the point mutations listed in the preceding paragraph may apply to the corresponding residues in any of SEQ ID NOs: 2 to 12, as described infra

[0069] For example, the immunogenic molecule may be devoid of any one or all of the residues that comprise a leader sequence of the immunogenic molecule as described in SEQ ID NO:1 (underlined). In one form of the molecule, the molecule is completely devoid of all leader residues, as described by SEQ ID NO:2, or variant thereof.

TABLE-US-00002 SEQ ID NO: 2 SFENAIKKTKNQENNLTLLPIKSTEEEKDDIKNGKDIKKEIDNDKENIKTNNAKDHSTYI KSYLNTNVNDGLKYLFIPSHNSFIKKYSVFNQINDGMLLNEKNDVKNNEDYKNVDYKNVN FLQYHFKELSNYNIANSIDILQEKEGHLDFVIIPHYTFLDYYKHLSYNSIYHKSSTYGKC IAVDAFIKKINETYDKVKSKCNDIKNDLIATIKKLEHPYDINNKNDDSYRYDISEEIDDK SEETDDETEEVEDSIQDTDSNHTPSNKKKNDLMNRTFKKMMDEYNTKKKKLIKCIKNHEN DFNKICMDMKNYGTNLFEQLSCYNNNFCNTNGIRYHYDEYIHKLILSVKSKNLNKDLSDM TNILQQSELLLTNLNKKMGSYIYIDTIKFIHKEMKHIFNRIEYHTKIINDKTKIIQDKIK LNIWRTFQKDELLKRILDMSNEYSLFITSDHLRQMLYNTFYSKEKHLNNIFHHLIYVLQM KFNDVPIKMEYFQTYKKNKPLTQ

[0070] In another form of the molecule SEQ ID NO: 2 possess an N-terminal methionine residue.

[0071] In another form of the invention the immunogenic molecule is yet further truncated, and comprises a sequence according to SEQ ID NO: 3, or variant thereof.

TABLE-US-00003 SEQ ID NO: 3 HFKELSNYNIANSIDILQEKEGHLDFVIIPHYTFLDYYKHLSYNSIYHKSSTYGKCIAV DAFIKKINETYDKVKSKCNDIKNDLIATIKKLEHPYDINNKNDDSYRYDISEEIDDKSE ETDDETEEVEDSIQDTDSNHTPSNKKKNDLMNRTFKKMMDEYNTKKKKLIKCIKNHEND FNKICMDMKNYGTNLFEQLSCYNNNFCNTNGIRYHYDEYIHKLILSVKSKNLNKDLSDM TNILQQSELLLTNLNKKMGSYIYIDTIKFIHKEMKHIFNRIEYHTKIINDKTKIIQDKI KLNIWRTFQKDELLKRILDMSNEYSLFITSDHLRQMLYNTFYSKEKHLNNIFHHLIYVL QMKFNDVPIKMEYFQTYKKNKPLTQ

[0072] In another form of the invention the immunogenic molecule comprises a sequence with 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 residues added to the N-terminus of the molecule described by SEQ ID NO: 3. For example, the molecule may be that described by to SEQ ID NO: 4, or variant thereof.

TABLE-US-00004 SEQ ID NO: 4 NFLQYHFKELSNYNIANSIDILQEKEGHLDFVIIPHYTFLDYYKHLSYNS IYHKSSTYGKCIAVDAFIKKINETYDKVKSKCNDIKNDLIATIKKLEHPY DINNKNDDSYRYDISEEIDDKSEETDDETEEVEDSIQDTDSNHTPSNKKK NDLMNRTFKKMMDEYNTKKKKLIKCIKNHENDFNKICMDMKNYGTNLFEQ LSCYNNNFCNTNGIRYHYDEYIHKLILSVKSKNLNKDLSDMTNILQQSEL LLTNLNKKMGSYIYIDTIKFIHKEMKHIFNRIEYHTKIINDKTKIIQDKI KLNIWRTFQKDELLKRILDMSNEYSLFITSDHLRQMLYNTFYSKEKHLNN IFHHLIYVLQMKFNDVPIKMEYFQTYKKNKPLTQ.

[0073] In another form of the invention the immunogenic molecule comprises a sequence according to SEQ ID NO: 5, or variant thereof.

TABLE-US-00005 SEQ ID NO: 5 DYKNVNFLQYHFKELSNYNIANSIDILQEKEGHLDFVIIPHYTFLDYYKH LSYNSIYHKSSTYGKCIAVDAFIKKINETYDKVKSKCNDIKNDLIATIKK LEHPYDINNKNDDSYRYDISEEIDDKSEETDDETEEVEDSIQDTDSNHTP SNKKKNDLMNRTFKKMMDEYNTKKKKLIKCIKNHENDFNKICMDMKNYGT NLFEQLSCYNNNFCNTNGIRYHYDEYIHKLILSVKSKNLNKDLSDMTNIL QQSELLLTNLNKKMGSYIYIDTIKFIHKEMKHIFNRIEYHTKIINDKTKI IQDKIKLNIWRTFQKDELLKRILDMSNEYSLFITSDHLRQMLYNTFYSKE KHLNNIFHHLIYVLQMKFNDVPIKMEYFQTYKKNKPLTQ

[0074] Alternatively, the immunogenic molecule may be a truncated form of the molecule described by SEQ ID NO:3. For example, the molecule may be truncated by 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 amino acid residues at the N-terminus. In one form of the invention the immunogenic molecule comprises a sequence according to SEQ ID NO: 6, or variant thereof.

TABLE-US-00006 SEQ ID NO: 6 SNYNIANSIDILQEKEGHLDFVIIPHYTFLDYYKHLSYNSIYHKSSTYGK CIAVDAFIKKINETYDKVKSKCNDIKNDLIATIKKLEHPYDINNKNDDSY RYDISEEIDDKSEETDDETEEVEDSIQDTDSNHTPSNKKKNDLMNRTFKK MMDEYNTKKKKLIKCIKNHENDFNKICMDMKNYGTNLFEQLSCYNNNFCN TNGIRYHYDEYIHKLILSVKSKNLNKDLSDMTNILQQSELLLTNLNKKMG SYIYIDTIKFIHKEMKHIFNRIEYHTKIINDKTKIIQDKIKLNIWRTFQK DELLKRILDMSNEYSLFITSDHLRQMLYNTFYSKEKHLNNIFHHLIYVLQ MKFNDVPIKMEYFQTYKKNKPLTQ

[0075] In another form of the invention the immunogenic molecule comprises a sequence according to SEQ ID NO: 7, or variant thereof.

TABLE-US-00007 SEQ ID NO: 7 ANSIDILQEKEGHLDFVIIPHYTFLDYYKHLSYNSIYHKSSTYGKCIAVD AFIKKINETYDKVKSKCNDIKNDLIATIKKLEHPYDINNKNDDSYRYDIS EEIDDKSEETDDETEEVEDSIQDTDSNHTPSNKKKNDLMNRTFKKMMDEY NTKKKKLIKCIKNHENDFNKICMDMKNYGTNLFEQLSCYNNNFCNTNGIR YHYDEYIHKLILSVKSKNLNKDLSDMTNILQQSELLLTNLNKKMGSYIYI DTIKFIHKEMKHIFNRIEYHTKIINDKTKIIQDKIKLNIWRTFQKDELLK RILDMSNEYSLFITSDHLRQMLYNTFYSKEKHLNNIFHHLIYVLQMKFND VPIKMEYFQTYKKNKPLTQ

[0076] In one form of the invention the immunogenic molecule is yet further truncated. In one form of the invention the immunogen molecule comprises SEQ ID NO: 8

TABLE-US-00008 SEQ ID NO: 8 NSIYHKSSTYGKCIAVDAFIKKINETYDKVKSKCNDIKNDLIATIKKLEH PYDINNKNDDSYRYDISEEIDDKSEETDDETEEVEDSIQDTDSNHTPSNK KKNDLMNRTFKKMMDEYNTKKKKLIKCIKNHENDFNKICMDMKNYGTNLF EQLSCYNNNFCNTNGIRYHY

[0077] Fragments of any of SEQ ID NOS: 1 to 8 are included in the scope of the invention. Exemplary fragments include that described by SEQ ID NO:9 or variant thereof.

TABLE-US-00009 SEQ ID NO: 9 IAVDAFIKKINETYDKVKSKCNDIKNDLIATIKKLEHPYDINNKNDDSYR YDISEEIDDKSEETDDETEEVEDSIQDTDSNHTPSNKKKNDLMNRTFKKM MDEYNTKKKKLIKCIKNHENDFNKICMDMKNYGTNLFEQLSCYNNNFCNT NGIRYHY

[0078] Alternatively, the fragment may comprise from about residue 204 to about residue 360 of SEQ ID NO:2. In one form of the invention, the immunogenic molecule is described by SEQ ID NO:10 or variant thereof.

TABLE-US-00010 SEQ ID NO: 10 IAVDAFIKKINETYDKVKSKCNDIKNDLIATIKKLEHPYDINNKNDDSYR YDISEEIDDKSEETDDETEEVEDSIQDTDSNHTPSNKKKNDLMNRTFKKM MDEYNTKKKKLIKCIKNHENDFNKICMDMKNYGTNLFEQLSCYNNNF

[0079] Alternatively, the fragment may comprise from about residue 204 to about residue 344 of SEQ ID NO:2. In one form of the invention, the immunogenic molecule is described by SEQ ID NO:11

TABLE-US-00011 IAVDAFIKKINETYDKVKSKCNDIKNDLIATIKKLEHPYDINNKNDDSYR YDISEEIDDKSEETDDETEEVEDSIQDTDSNHTPSNKKKNDLMNRTFKKM MDEYNTKKKKLIKCIKNHENDFNKICMDMKNYGTNLFEQLS

[0080] Alternatively, the fragment may comprise from about residue 204 to about residue 328 of SEQ ID NO:2. In one form of the invention, the immunogenic molecule is described by SEQ ID NO:12, or variant thereof.

TABLE-US-00012 SEQ ID NO: 12. IAVDAFIKKINETYDKVKSKCNDIKNDLIATIKKLEHPYDINNKNDDSYR YDISEEIDDKSEETDDETEEVEDSIQDTDSNHTPSNKKKNDLMNRTFKKM MDEYNTKKKKLIKCIKNHENDFNKI

[0081] It is understood that the present invention is not limited to immunogenic molecules having any of the specific amino acid sequences as described herein. Shorter molecules may exhibit immunogenicity sufficient for the inducement of an immune response, or possibly a protective immune response. For example, and without wishing to be limited by theory, it is thought that inclusion of 1, 2, or 3 of any of the 6 cysteine residues (found at positions 203, 224, 317, 329, 345, and 351 may be preferable for maintenance of disulfide bonding in the immunogenic molecule. Thus, in one embodiment the immunogenic molecule comprises residues from about residue 203 to about residue 224, 317, 329, 345, or 351; or residues from about residue 224 to about residue 317, 329, 345, or 351; or residues from about residue 329 to about residue 345 or 351, or residues from about residue 345 to about residue 351. In one embodiment, cysteines 203 (polymorphic in Plasmodium falciparum) and 329 (absent in Plasmodium reichenowi) pair in the molecule by way of disulfide bridge to form a loop. Accordingly, in one form of the invention the immunogenic molecule comprises amino acid residues from about residue 203 to about residue 329. It is further proposed that cysteines 224 and 317 pair with either cysteine 345 or cysteine 351, such that the immunogenic molecule comprise residues from about residue 224 to about residue 345 or 351; or from about residue 317 to about residue 345 or 351.

[0082] The contiguous amino acid sequence may comprise at least about 5, 8, 10, 20, 50 or 100 or more amino acids. The strain of Plasmodium falciparum may be a wild type strain. The immune response to the strain may be an invasion-inhibitory immune response. The skilled person is capable of routine experimentation designed to identify the shortest efficacious sequence, or the length of sequence that provides the greatest or most effective immune response or invasion-inhibitory response in the subject.

[0083] Similarly, the skilled person understands that strict compliance with any amino acid sequence described herein is not necessarily required, and he or she could decide by a matter of routine whether any further mutation is deleterious or preferred. Thus, the immunogenic molecules of the present invention include sequences having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to any protein described herein. The immunogenic molecules also include variants (e.g. allelic variants, homologs, orthologs, paralogs, mutants, etc.). The molecules may lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus.

[0084] Expression of the immunogenic molecules of the invention may take place in Plasmodium, however other heterologous hosts may be utilised. The heterologous host may be prokaryotic (e.g. a bacterium) or eukaryotic. It is preferably E. coli, but other suitable hosts include Bacillus subtilis, Vibrio cholerae, Salmonella typhi, Salmonella typhimurium, Neisseria lactamica, Neisseria cinerea, Mycobacteria (e.g. M. tuberculosis), yeasts, etc. The immunogenic molecules of the present invention may be present in the composition as individual separate polypeptides. Generally, the recombinant fusion proteins of the present invention are prepared as a GST-fusion protein and/or a His-tagged fusion protein.

[0085] Polypeptides of the invention can be prepared by various means (e.g. recombinant expression, purification from cell culture, chemical synthesis, etc.) and in various forms (e.g. native, fusions, non-glycosylated, lipidated, etc.). They are preferably prepared in substantially pure form (i.e. substantially free from other Plasmodial or host cell proteins).

[0086] While the immunogenic molecule may comprise a single antigenic region, by the use of well-known recombinant DNA methods, more than one antigenic region may be included in a single immunogenic molecule. At least two (i.e. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 or more) antigens can be expressed as a single polypeptide chain (a `hybrid` polypeptide). Hybrid polypeptides offer two principal advantages: first, a polypeptide that may be unstable or poorly expressed on its own can be assisted by adding a suitable hybrid partner that overcomes the problem; second, commercial manufacture is simplified as only one expression and purification need be employed in order to produce two polypeptides which are both antigenically useful.

[0087] Hybrid polypeptides can be represented by the formula NH2-A-(-X-L-)n--B--COOH, wherein: X is an amino acid sequence of a Plasmodium falciparum antigen as defined herein; L is an optional linker amino acid sequence; A is an optional N-terminal amino acid sequence; B is an optional C-terminal amino acid sequence; and n is 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15.

[0088] If a --X-- moiety has a leader peptide sequence in its wild-type form, this may be included or omitted in the hybrid protein. In some embodiments, leader peptides (if present) will be deleted except for that of the --X-- moiety located at the N-terminus of the hybrid protein i.e. a leader peptide of X1 will be retained, but the leader peptides of X2 . . . Xn will be omitted. This is equivalent to deleting all leader peptides and using the leader peptide of X1 as moiety -A-.

[0089] For each n instances of (--X-L-), linker amino acid sequence -L- may be present or absent. For instance, when n=2 the hybrid may be NH2--X1-L1-X2-L2-COOH, NH2--X1--X2--COOH5 NH2--X1-L1-X2--COOH, NH2--X1--X2-L2-COOH, etc. Linker amino acid sequence(s) -L- will typically be short (e.g. 20 or fewer amino acids i.e. 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1). Examples comprise short peptide sequences which facilitate cloning, poly-glycine linkers (i.e. comprising Glyn where n=2, 3, 4, 5, 6, 7, 8, 9, 10 or more), and histidine tags (i.e. Hisn where n=3, 4, 5, 6, 7, 8, 9, 10 or more). Other suitable linker amino acid sequences will be apparent to those skilled in the art. A useful linker is GSGGGG, with the Gly-Ser dipeptide being formed from a BamHI restriction site, thus aiding cloning and manipulation, and the (Gly)4 tetrapeptide being a typical poly-glycine linker. The same variants apply to (--Y-L-). Therefore, for each m instances of (--Y-L-), linker amino acid sequence -L- may be present or absent.

[0090] -A- is an optional N-terminal amino acid sequence. This will typically be short (e.g. 40 or fewer amino acids i.e. 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1). Examples include leader sequences to direct protein trafficking, or short peptide sequences which facilitate cloning or purification (e.g. histidine tags i.e. Hisn where n=3, 4, 5, 6, 7, 8, 9, 10 or more). Other suitable N-terminal amino acid sequences will be apparent to those skilled in the art. If X1 lacks its own N-terminus methionine, -A- is preferably an oligopeptide (e.g. with 1, 2, 3, 4, 5, 6, 7 or 8 amino acids) which provides an N-terminus methionine.

[0091] --B-- is an optional C-terminal amino acid sequence. This will typically be short (e.g. 40 or fewer amino acids i.e. 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1). Examples include sequences to direct protein trafficking, short peptide sequences which facilitate cloning or purification (e.g. comprising histidine tags i.e. Hisn, where n=3, 4, 5, 6, 7, 8, 9, 10 or more), or sequences which enhance protein stability. Other suitable C-terminal amino acid sequences will be apparent to those skilled in the art. Most preferably, n is 2 or 3.

[0092] The invention provides a process for producing an immunogenic molecule of the invention, comprising the step of synthesising at least part of the immunogenic molecule by chemical means.

[0093] Polypeptides used with the invention can be prepared by various means (e.g. recombinant expression, purification from cell culture, chemical synthesis, etc.). Recombinantly-expressed proteins are preferred, particularly for hybrid polypeptides.

[0094] Polypeptides used with the invention are preferably provided in purified or substantially purified form i.e. substantially free from other polypeptides (e.g. free from naturally-occurring polypeptides), particularly from other Plasmodium or host cell polypeptides, and are generally at least about 50% pure (by weight), and usually at least about 90% pure i.e. less than about 50%, and more preferably less than about 10% (e.g. 5%) of a composition is made up of other expressed polypeptides. Thus the antigens in the compositions are separated from the whole organism with which the molecule is expressed.

[0095] Another aspect of the present invention provides a composition comprising an immunogenic molecule as described herein and a pharmaceutically acceptable excipient and optionally a vaccine adjuvant. Such excipients include any excipient that does not itself induce the production of antibodies harmful to the individual receiving the composition. Suitable carriers are typically large, slowly metabolised macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, sucrose, trehalose, lactose, and lipid aggregates (such as oil droplets or liposomes). Such carriers are well known to those of ordinary skill in the art. The vaccines may also contain diluents, such as water, saline, glycerol, etc. Additionally, auxiliary substances, such as wetting or emulsifying agents, pH buffering substances, and the like, may be present. Sterile pyrogen-free, phosphate-buffered physiologic saline is a typical carrier.

[0096] The pH of the composition is preferably between 6 and 8, preferably about 7. The pH may be maintained by the use of a buffer. A phosphate buffer is typical. The composition may be sterile and/or pyrogen-free. The composition may be isotonic with respect to humans. Compositions may include sodium salts (e.g. sodium chloride) to give tonicity.

[0097] A concentration of 10+/-2 mg/ml NaCl is typical. Compositions may also comprise a detergent e.g. a Tween (polysorbate), such as Tween 80. Detergents are generally present at low levels e.g. <0.01%.

[0098] Compositions may comprise a sugar alcohol (e.g. mannitol) or a disaccharide (e.g. sucrose or trehalose) e.g. at around 15-30 mg/ml (e.g. 25 mg/ml), particularly if they are to be lyophilised or if they include material which has been reconstituted from lyophilised material. The pH of a composition for lyophilisation may be adjusted to around 6.1 prior to lyophilisation.

[0099] The composition may further comprise an antimalarial that is useful for the treatment of Plasmodial infection. Preferred antimalarials for use in the compositions include the chloroquine phosphate, proguanil, primaquine, doxycycline, mefloquine, clindamycin, halofantrine, quinine sulphate, quinine dihydrochloride, gluconate, primaquine phosphate and sulfadoxine.

[0100] The compositions of the invention may also comprise one or more immunoregulatory agents. Preferably, one or more of the immunoregulatory agents include(s) an adjuvant. The adjuvant may be selected from one or more of the group consisting of a TH1 adjuvant and TH2 adjuvant, further discussed below.

[0101] Adjuvants which may be used in compositions of the invention include, but are not limited to those described in the following passages.

[0102] Mineral containing compositions suitable for use as adjuvants in the invention include mineral salts, such as aluminium salts and calcium salts. The invention includes mineral salts such as hydroxides (e.g. oxyhydroxides), phosphates (e.g. hydroxyphosphates, orthophosphates), sulphates, etc. (e.g. see chapters 8 & 9 of Powell & Newman (eds.) Vaccine Design (1995) Plenum), or mixtures of different mineral compounds, with the compounds taking any suitable form (e.g. gel, crystalline, amorphous, etc.), and with adsorption being preferred. The mineral containing compositions may also be formulated as a particle of metal salt (WO00/23105).

[0103] A typical aluminium phosphate adjuvant is amorphous aluminium hydroxyphosphate with PO4/Al molar ratio between 0.84 and 0.92, included at 0.6 mg Al3+/ml. Adsorption with a low dose of aluminium phosphate may be used e.g. between 50 and 100 μg Al3+ per conjugate per dose. Where an aluminium phosphate it used and it is desired not to adsorb an antigen to the adjuvant, this is favoured by including free phosphate ions in solution (e.g. by the use of a phosphate buffer).

[0104] Oil emulsion compositions suitable for use as adjuvants in the invention include oil-in-water emulsions and water-in-oil emulsions.

[0105] A submicron oil-in-water emulsion may include squalene, Tween 80, and Span 85 e.g. with a composition by volume of about 5% squalene, about 0.5% polysorbate 80 and about 0.5% Span 85 (in weight terms, 4.3% squalene, 0.5% polysorbate 80 and 0.48% Span 85), known as `MF595` (57-59 chapter 10 of Powell & Newman (eds.) Vaccine Design (1995) Plenum; chapter 12 of 'Hagen (ed.) Vaccine Adjuvants: Preparation Methods and Research Protocols (Volume 42 of Methods in Molecular Medicine series)). The MF59 emulsion advantageously includes citrate ions e.g. 10 mM sodium citrate buffer.

[0106] An emulsion of squalene, a tocopherol, and Tween 80 can be used. The emulsion may include phosphate buffered saline. It may also include Span 85 (e.g. at 1%) and/or lecithin. These emulsions may have from 2 to 10% squalene, from 2 to 10% tocopherol and from 0.3 to 3% Tween 80, and the weight ratio of squalene tocopherol is preferably <1 as this provides a more stable emulsion. One such emulsion can be made by dissolving Tween 80 in PBS to give a 2% solution, then mixing 90 ml of this solution with a mixture of (5 g of DL-α-tocopherol and 5 ml squalene), then microfluidising the mixture. The resulting emulsion may have submicron oil droplets e.g. with an average diameter of between 100 and 250 nm, preferably about 180 nm.

[0107] An emulsion of squalene, a tocopherol, and a Triton detergent (e.g. Triton X-100) can be used.

[0108] An emulsion of squalane, polysorbate 80 and poloxamer 401 ("Pluronic® L 121") can be used. The emulsion can be formulated in phosphate buffered saline, pH 7.4. This emulsion is a useful delivery vehicle for muramyl dipeptides, and has been used with threonyl-MDP in the "SAF-I" adjuvant, (0.05-1% Thr-MDP, 5% squalane, 2.5% Pluronic L121 and 0.2% polysorbate 80). It can also be used without the Thr-MDP, as in the "AF" adjuvant (Hariharan et al. (1995) Cancer Res 55:3486-9) (5% squalane, 1.25% Pluronic L121 and 0.2% polysorbate 80). Microfluidisation is preferred.

[0109] Complete Freund's adjuvant (CFA) and incomplete Freund's adjuvant (IFA) may also be used.

[0110] Saponin formulations may also be used as adjuvants in the invention (see for example Chapter 22 of Powell & Newman (eds.) Vaccine Design (1995) Plenum). Saponins are a heterologous group of sterol glycosides and triterpenoid glycosides that are found in the bark, leaves, stems, roots and even flowers of a wide range of plant species. Saponin from the bark of the Quillaia saponaria Molina tree have been widely studied as adjuvants. Saponin can also be commercially obtained from Smilax ornata (sarsaprilla), Gypsophilla paniculata (brides veil), and Saponaria officianalis (soap root). Saponin adjuvant formulations include purified formulations, such as QS21, as well as lipid formulations, such as ISCOMs. QS21 is marketed as Stimulon®.

[0111] Saponin compositions have been purified using HPLC and RP-HPLC. Specific purified fractions using these techniques have been identified, including QS7, QS17, QSI 8, QS21, QH-A, QH-B and QH-C. Preferably, the saponin is QS21. A method of production of QS21 is disclosed in ref. 63. Saponin formulations may also comprise a sterol, such as cholesterol (WO96/33739).

[0112] As discussed supra, combinations of saponins and cholesterols can be used to form unique particles called immunostimulating complexs (ISCOMs) (see for example Chapter 23 of Powell & Newman (eds.) Vaccine Design (1995) Plenum). ISCOMs typically also include a phospholipid such as phosphatidylethanolamine or phosphatidylcholine. Any known saponin can be used in ISCOMs. Preferably, the ISCOM includes one or more of QuilA, QHA and QHC. ISCOMs are further described in WO96/33739, EP-A-0109942, WO96/11711). Optionally, the ISCOMS may be devoid of additional detergent WO00/07621.

[0113] A review of the development of saponin based adjuvants can be found in Barr et al. (1998) Advanced Drug Delivery Reviews 32:247-271 and Sjolanderet et al. (1998) Advanced Drug Delivery Reviews 32:321-338.

[0114] Virosomes and virus-like particles (VLPs) can also be used as adjuvants in the invention. These structures generally contain one or more proteins from a virus optionally combined or formulated with a phospholipid. They are generally non-pathogenic, non-replicating and generally do not contain any of the native viral genome. The viral proteins may be recombinantly produced or isolated from whole viruses. These viral proteins suitable for use in virosomes or VLPs include proteins derived from influenza virus (such as HA or NA), Hepatitis B virus (such as core or capsid proteins), Hepatitis E virus, measles virus, Sindbis virus, Rotavirus, Foot-and-Mouth Disease virus, Retrovirus, Norwalk virus, human Papilloma virus, HIV, RNA-phages, Qβ-phage (such as coat proteins), GA-phage, fr-phage, AP205 phage, and Ty (such as retrotransposon Ty protein pi). VLPs are discussed further in (Niikura et al. (2002) Virology 293:273-280, Lenz et al. (2001) J Immunol 166:5346-5355, Pinto et al. (2003) J Infect Dis 188:327-338, Gerber et al. (2001) Virol 75:4752-4760, WO03/024480 and WO03/024481). Virosomes are discussed further in, for example, Gluck et al. (2002) Vaccine 20:610-B16.

[0115] Adjuvants suitable for use in the invention include bacterial or microbial derivatives such as non-toxic derivatives of enterobacterial lipopolysaccharide (LPS), Lipid A derivatives, immunostiinulatory oligonucleotides and ADP-ribosylating toxins and detoxified derivatives thereof.

[0116] Non-toxic derivatives of LPS include monophosphoryl lipid A (MPL) and 3-O-deacylated MPL (3dMPL). 3dMPL is a mixture of 3 de-O-acylated monophosphoryl lipid A with 4, 5 or 6 acylated chains. A preferred "small particle" form of 3 De-O-acylated monophosphoryl lipid A is disclosed in ref. 77. Such "small particles" of 3dMPL are small enough to be sterile filtered through a 0.22 μm membrane (EP-A-0689454v). Other non-toxic LPS derivatives include monophosphoryl lipid A mimics, such as aminoalkyl glucosamine de phosphate derivatives e.g. RC-529 (Johnson et al (1999) Bioorg Med Chem Lett 9:2273-2278, Evans et al. (2003) Expert Rev Vaccines 2:219-229).

[0117] Lipid A derivatives include derivatives of lipid A from Escherichia coli such as OM-174. OM-174 is described for example in Meraldi et al. (2003) Vaccine 21:2485-2491, Pajak et al. (2003) Vaccine 21:836-842.

[0118] Immunostimulatory oligonucleotides suitable for use as adjuvants in the invention include nucleotide sequences containing a CpG motif (a dinucleotide sequence containing an unmethylated cytosine linked by a phosphate bond to a guanosine). Double-stranded RNAs and oligonucleotides containing palindromic or poly(dG) sequences have also been shown to be immunostimulatory.

[0119] The CpG's can include nucleotide modifications/analogs such as phosphorothioate modifications and can be double-stranded or single-stranded. Kandimalla et al (2003) Nucleic Acids Research 31: 2393-2400, WO02/26757 and WO99/62923 disclose possible analog substitutions e.g. replacement of guanosine with 2'-deoxy-7-deazaguanosine. The adjuvant effect of CpG oligonucleotides is further discussed in Krieg (2003) Nature Medicine 9:831-835, McCluskie et al. (2002) FEMS Immunology and Medical Microbiology 32:179-185, WO98/40100, U.S. Pat. No. 6,207,646, U.S. Pat. No. 6,239,116 and U.S. Pat. No. 6,429,199.

[0120] The CpG sequence may be directed to TLR9, such as the motif GTCGTT or TTCGTT (Kandimalla et al. (2003) Biochemical Society Transactions 31 (part 3):654-658). The CpG sequence may be specific for inducing a TH1 immune response, such as a CpG-A ODN, or it may be more specific for inducing a B cell response, such a CpG-B ODN. CpG-A and CpG-B ODNs are discussed in refs. Blackwell et al. (2003) J Immunol 170:4061-4068, Krieg (2002) Trends Immunol 23:64-65. Preferably, the CpG is a CpG-A ODN.

[0121] Preferably, the CpG oligonucleotide is constructed so that the 5' end is accessible for receptor recognition. Optionally, two CpG oligonucleotide sequences may be attached at their 3' ends to form "immunomers". See, for example, Kandimalla et al. (2003) Biochemical Society Transactions 31 (part 3):654-658, Kandimalla et al (2003), BBRC 306:948-953, Bhagat et al. (2003) BBRC 300:853-861 and WO03/035836.

[0122] Other immunostimulatory oligonucleotides include a double-stranded RNA or an oligonucleotide containing a palindromic sequence, or an oligonucleotide containing a poly(dG) sequence.

[0123] Bacterial ADP-ribosylating toxins and detoxified derivatives thereof may be used as adjuvants in the invention. Preferably, the protein is derived from E. coli (E. coli heat labile enterotoxin "LT"), cholera ("CT"), or pertussis ("PT"). The use of detoxified ADP-ribosylating toxins as mucosal adjuvants is described in WO95/17211 and as parenteral adjuvants in WO98/42375. The toxin or toxoid is preferably in the form of a holotoxin, comprising both A and B subunits. Preferably, the A subunit contains a detoxifying mutation; preferably the B subunit is not mutated. Preferably, the adjuvant is a detoxified LT mutant such as LT-K63, LT-R72, and LT-G192. The use of ADP-ribosylating toxins and detoxified derivatives thereof, particularly LT-K63 and LT-R72, as adjuvants can be found in Beignon et al. (2002) Infect Immun 70:3012-3019, Pizza et al. (2001) Vaccine 19:2534-2541, Pizza et al. (2000) Int J Med Microbiol 290:455-461, Scharton-Kersten et al. (2000) Infect Immun 68:5306-5313, Ryan et al. (1999) Infect Immun 67:6270-6280, Partidos et al. (1999) Immunol Lett 67:209-216, Peppoloni et al. (2003) Expert Rev Vaccines 2:285-293, Pine et al. (2002) J Control Release 85:263-270. Numerical reference for amino acid substitutions is preferably based on the alignments of the A and B subunits of ADP-ribosylating toxins set forth in Domenighini et al. (1995) Mol Microbiol 15:1165-1167, specifically incorporated herein by reference in its entirety.

[0124] Human immunomodulators suitable for use as adjuvants in the invention include cytokines, such as interleukins (e.g. IL-15 IL-2, IL-4, IL-5, IL-6, IL-7, IL-12, IL-17, IL-18 (WO99/40936), IL-23, IL27 (Matsui M. et al. (2004) J. Virol 78: 9093) etc.) (WO99/44636), interferons (e.g. interferon-γ), macrophage colony stimulating factor, tumor necrosis factor and macrophage inflammatory protein-1 alpha (MIP-1 alpha) and MIP-1 beta (Lillard J W et al, (2003) Blood 101(3):807-14).

[0125] Bioadhesives and mucoadhesives may also be used as adjuvants in the invention. Suitable bioadhesives include esterified hyaluronic acid microspheres (Singh et al) (2001) JCont Release 70:267-276) or mucoadhesives such as cross-linked derivatives of poly(acrylic acid), polyvinyl alcohol, polyvinyl pyrollidone, polysaccharides and carboxymethylcellulose. Chitosan and derivatives thereof may also be used as adjuvants in the invention (WO99/27960).

[0126] Microparticles may also be used as adjuvants in the invention. Microparticles (i.e. a particle of ˜100 nm to ˜150 μm in diameter, more preferably ˜200 nm to ˜30 μm in diameter, and most preferably ˜500 nm to ˜10 μm in diameter) formed from materials that are biodegradable and non-toxic (e.g. a poly(α-hydroxy acid), a polyhydroxybutyric acid, a polyorthoester, a polyanhydride, a polycaprolactone, etc.), with poly(lactide-co-glycolide) are preferred, optionally treated to have a negatively-charged surface (e.g. with SDS) or a positively-charged surface (e.g. with a cationic detergent, such as CTAB).

[0127] Examples of liposome formulations suitable for use as adjuvants are described in U.S. Pat. No. 6,090,406, U.S. Pat. No. 5,916,588, EP-A-0626169.

[0128] Adjuvants suitable for use in the invention include polyoxyethylene ethers and polyoxyethylene esters (WO99/52549). Such formulations further include polyoxyethylene sorbitan ester surfactants in combination with an octoxynol (WO01/21207) as well as polyoxyethylene alkyl ethers or ester surfactants in combination with at least one additional non-ionic surfactant such as an octoxynol (WO01/21152). Preferred polyoxyethylene ethers are selected from the following group: polyoxyethylene-9-lauryl ether (laureth 9), polyoxyethylene-9-steoryl ether, polyoxytheylene-8-steoryl ether, polyoxyethylene-4-lauryl ether, polyoxyethylene-35-lauryl ether, and polyoxyethylene-23-lauryl ether.

[0129] Phosphazene adjuvants include poly(di(carboxylatophenoxy)phosphazene) ("PCPP") as described, for example, in references Andrianov et al. (1998) Biomaterials 19:109-115 and Payne et al. (1998) Adv Drug Delivery Review 31:185-196.

[0130] Examples of muramyl peptides suitable for use as adjuvants in the invention include N-acetyl-m uramyl-L-threonyl-D-isoglutamine (thr-MDP), N-acetyl-normuramyl-L-alanyl-D-isoglutamine (nor-MDP), and N-acetylmuramyl-L-alanyl-D-isoglutaminyl-L-alanine-2-(1'-2'-dipalmitoyl-s- n-glycero-3-hydroxyphosphoryloxy)-ethylamine MTP-PE).

[0131] Imidazoquinoline adjuvants include Imiquimod ("R-837") (U.S. Pat. No. 4,680,338 and U.S. Pat. No. 4,988,815), Resiquimod ("R-848") (WO92/15582), and their analogs; and salts thereof (e.g. the hydrochloride salts). Further details about immunostimulatory imidazoquinolines can be found in references Stanley (2002) Clin Exp Dermatol 27:571-577, Wu et al. (2004) Antiviral Res. 64(2):79-83, Vasilakos et al. (2000) Cell Immunol. 204(I):64-74, U.S. Pat. Nos. 4,689,338, 4,929,624, 5,238,944, 5,266,575, 5,268,376, 5,346,905, 5,352,784, 5,389,640, 5,395,937, 5,482,936, 5,494,916, 5,525,612, 6,083,505, 6,440,992, 6,627,640, 6,656,938, 6,660,735, 6,660,747, 6,664,260, 6,664,264, 6,664,265, 6,667,312, 6,670,372, 6,677,347, 6,677,348, 6,677,349, 6,683,088, 6,703,402, 6,743,920, 6,800,624, 6,809,203, 6,888,000 and 6,924,293 and Jones (2003) Curr Opin Investig Drugs 4:214-218.

[0132] Thiosemicarbazone adjuvants include those disclosed in WO2004/060308. Methods of formulating, manufacturing, and screening for active compounds are also described in WO2004/060308. The thiosemicarbazones are particularly effective in the stimulation of human peripheral blood mononuclear cells for the production of cytokines, such as TNF-α.

[0133] Tryptanthrin adjuvants include those disclosed in WO2004/064759. Methods of formulating, manufacturing, and screening for active compounds are also described in WO2004/064759. The thiosemicarbazones are particularly effective in the stimulation of human peripheral blood mononuclear cells for the production of cytokines, such as TNF-α.

[0134] Various nucleoside analogs can be used as adjuvants, such as (a) Isatorabine (ANA-245; 7-thia-8-oxoguanosine) and prodrugs thereof; (b) ANA975; (c) ANA-025-1; (d) ANA380; (e) the compounds disclosed in U.S. Pat. No. 6,924,271, US2005/0070556 and U.S. Pat. No. 5,658,731, or (f) a pharmaceutically acceptable salt of any of (a) to (g), a tautomer of any of (a) to (g), or a pharmaceutically acceptable salt of the tautomer.

[0135] Q. Lipids linked to a phosphate-containing acyclic backbone Adjuvants containing lipids linked to a phosphate-containing acyclic backbone include the TLR4 antagonist E5564 (Wong et al. (2003) J Clin Pharmacol 43(7):735-42 and US2005/0215517).

[0136] Small molecule immunopotentiators useful ad adjuvants include N2-methyl-1-(2-methylpropyl)-1H-imidazo(4,5-c)quinoline-2,4-diamine; N2,N2-dimethyl-1-(2-methylpropyl)-1H-imidazo(4,5-c)quinoline-2,4-diamine; N2-ethyl-N2-methyl-1-(2-methylpropyl)-1H-imidazo(4,5-c)quinoline-2,4-diam- ine; N2-methyl-1-(2-methylpropyl)-N2-propyl-1H-imidazo(4,5-c)quinoline-2,4- -diamine; 1-(2-methylpropyl)-N2-propyl-1H-imidazo(4,5-c)quinoline-2,4-diam- ine; N2-butyl-1-(2-methylpropyl)-1H-imidazo(4,5-c)quinoline-2,4-diamine; N2-butyl-N2-methyl-1-(2-methylpropyl)-1H-imidazo(4,5-c)quinoline-2,4-diam- ine; N2-methyl-1-(2-methylpropyl)-N2-pentyl-1H-imidazo(4,5-c)quinoline-2,4- -diamine; N2-methyl-1-(2-methylpropyl)-N2-prop-2-enyl-1H-imidazo(4,5-c)qui- noline-2,4-diamine; 1-(2-methylpropyl)-2-((phenylmethyl)thio)-1H-imidazo (4,5-c)quinolin-4-amine; 1-(2-methylpropyl)-2-(propylthio)-1H-imidazo(4,5-c)quinolin-4-amine; 2-((4-amino-1-(2-methylpropyl)-1H-imidazo(4,5-c)quinolin-2-yl)(methyl)ami- no)ethanol; 2-((4-amino-1-(2-methylpropyl)-1H-imidazo(455-c)quinolin-2-yl)(methyl)ami- no)ethyl acetate; 4-amino-1-(2-methylpropyl)-1,3-dihydro-2H-imidazo(4,5-c)quinolin-2-one; N2-butyl-1-(2-methylpropyl)-N4,N4-bis(phenylmethyl)-1H-imidazo(4,5-c)quin- oline-2,4-diamine; N2-butyl-N2-methyl-1-(2-methylpropyl)-N4,N4-bis(phenylmethyl)-1H-imidazo(- 4,5-c)quinoline-2,4-diamine; N2-methyl-1-(2-methylpropyl)-N4,N4-bis(phenylmethyl)-1H-imidazo(4,5-c)qui- nolne-2,4-diamine; N2,N2-dimethyl-1-(2-methylpropyl)-N4,N4-bis(phenylmethyl)-1H-imidazo(4,5-- c)quinoline-2,4-diamine; 1-(4-amino-2-(methyl(propyl)amino)-1H-imidazo(4,5-c)quinolin-1-yl}-2-meth- ylpropan-2-ol; 1-(4-amino-2-(propylamino)-1H-imidazo(4,5-c)quinolin-1-yl)-2-methylpropan- -2-ol; N43N4-dibenzyl-1-(2-methoxy-2-methylpropyl)-N2propyl-1H-imidazo(4,5- -c)quinoline-2,4-diamine.

[0137] One potentially useful adjuvant is an outer membrane protein proteosome preparation prepared from a first Gram-negative bacterium in combination with a liposaccharide preparation derived from a second Gram-negative bacterium, wherein the outer membrane protein proteosome and liposaccharide preparations form a stable non-covalent adjuvant complex. Such complexes include "IVX-908", a complex comprised of Neisseria meningitidis outer membrane and lipopolysaccharides. They have been used as adjuvants for influenza vaccines (WO02/072012).

[0138] Other substances that act as immunostimulating agents are disclosed in Vaccine Design ((1995) eds. Powell & Newman. ISBN: 030644867X. Plenum) and Vaccine Adjuvants: Preparation Methods and Research Protocols (Volume 42 of Methods in Molecular Medicine series) (ISBN: 1-59259-083-7. Ed. O'Hagan). Further useful adjuvant substances include: Methyl inosine 5'-monophosphate ("MIMP") Signorelli & Hadden (2003) Int Immunopharmacol 3(8):1177); a polyhydroxlated pyrrolizidine compound (WO2004/064715), examples include, but are not limited to: casuarine, casuarine-6-α-D-glucopyranose, 3-epz-casuarine, 7-epz-casuarine, 3,7-diepz-casuarine, etc; a gamma inulin (Cooper (1995) Phar Biotechnol 6:559) or derivative thereof, such as algammulin; compounds disclosed in PCT/US2005/022769; compounds disclosed in WO2004/87153, including: Acylpiperazine compounds, Indoledione compounds, Tetrahydraisoquinoline (THIQ) compounds, Benzocyclodione compounds, Aminoazavinyl compounds, Aminobenzimidazole quinolinone (ABIQ) compounds (U.S. Pat. No. 6,606,617, WO02/018383), Hydrapthalamide compounds, Benzophenone compounds, Isoxazole compounds, Sterol compounds, Quinazilinone compounds, Pyrrole compounds (WO/04/018455), Anthraquinone compounds, Quinoxaline compounds, Triazine compounds, Pyrazalopyrimidine compounds, and Benzazole compounds (WO03/082272); loxoribine (7-allyl-8-oxoguanosine) (U.S. Pat. No. 5,011,828); a formulation of a cationic lipid and a (usually neutral) co-lipid, such as aminopropyl-dimethyl-myristoleyloxy-propanaminium bromide-diphytanoylphosphatidyl-ethanolamine (Vaxfectin®) or aminopropyl-dimethyl-bis-dodecyloxy-propanaminium bromide-dioleoylphosphatidyl-ethanolamine ("GAP-DLRIE:DOPE"). Formulations containing (±)-N-(3-aminopropyl)-N,N-dimethyl-2,3-bis(syn-9-tetradeceneyloxy)-1-p- ropanaminium salts are preferred (U.S. Pat. No. 6,586,409).

[0139] The invention may also comprise combinations of aspects of one or more of the adjuvants identified above. For example, the following adjuvant compositions may be used in the invention: (1) a saponin and an oil-in-water emulsion (WO99/11241); (2) a saponin (e.g. QS21)+a nontoxic LPS derivative (e.g. 3dMPL) (WO94/00153); (3) a saponin (e.g. QS21)+a non-toxic LPS derivative (e.g. 3dMPL)+a cholesterol; (4) a saponin (e.g. QS21)+3dMPL+IL-12 (optionally+a sterol) (WO98/57659); (5) combinations of 3dMPL with, for example, QS21 and/or oil-in-water emulsions (EP0835318, EP0735898, EP0761231); (6) Ribi® adjuvant system (RAS), (Ribi Immunochern) containing 2% squalene, 0.2% Tween 80, and one or more bacterial cell wall components from the group consisting of monophosphorylipid A (MPL), trehalose dimycolate (TDM), and cell wall skeleton (CWS), preferably MPL+CWS (Detox®); and (7) one or more mineral salts (such as an aluminum salt)+a non-toxic derivative of LPS (such as 3dMPL).

[0140] In some forms of the composition, the immunogenic molecule is present in combination with a contiguous amino acid sequence of one or more further invasion ligands relevant to the treatment or prevention of a condition caused by or associated with infection by Plasmodium facliparum. In one embodiment of the composition the further invasion ligand is a reticulocyte-binding protein homologue (Rh) protein of a strain of Plasmodium falciparum. The Rh protein may be Rh1, Rh2a, Rh2b, or Rh4. The contiguous amino acid sequence may comprise at least about 5, 8, 10, 20, 50 or 100 or more amino acids.

[0141] The Duffy-binding like (DBL) proteins include erythrocyte-binding antigen (EBA)175, EBA140 (also known as BAEBL) and EBA181 (also known as JSEBL). Another DBL gene family member, eba165 (also known as PEBL) of Plasmodium falciparum, appears not to be expressed as a functional protein. These proteins are orthologs of DBL proteins identified in Plasmodium vivax. The cysteine-rich dual DBL domains found toward the N-terminus of EBA175 (called F1 and F2 domains) mediates binding to its cognate receptor, and it is likely that similar domains in EBA140 and EBA181 also play receptor-binding roles. C-terminal of a transmembrane domain, is a cytoplasmic tail of the DBL proteins that does not appear to be directly linked to the actin-myosin motor. The sequence of Plasmodium falciparum EBA175 is described herein as SEQ ID NO; 6. The F1 and F2 domains of EBA175 are at amino acids 158 to 397, and 462 to 710, respectively. The transmembrane domain of EBA175 is located at amino acids 1425 to 1442. The sequence of Plasmodium falciparum EBA181 is described herein as SEQ ID NO; 7. The F1 and F2 domains of EBA181 are at amino acids 129 to 371, and 433 to 697, respectively. The transmembrane domain of EBA181 is located at amino acids 1488 to 1510. The sequence of Plasmodium falciparum EBA140 is described herein as SEQ ID NO; 8. The F1 and F2 domains of EBA140 are at amino acids 154 to 405, and 456 to 706, respectively. The transmembrane domain of EBA140 is located at amino acids 1134 to 1153.

[0142] As discussed supra, enzyme treatment of red blood cells has allowed examination of the receptors to which the Plasmodium falciparum proteins bind. In particular, DBL proteins bind erythrocytes in a sialic-acid-dependent manner as neuraminidase treatment of the host cell ablates binding. EBA175 and EBA140 bind to glycophorin A and C, respectively, and while sialic acid on these receptors is essential for binding, the protein backbone is also important for specificity. EBA181 and Rh1 also bind to glycosylated erythrocyte receptors, although their identity is currently unknown. In contrast, there is no evidence that Rh2a directly binds to erythrocytes. Rh2b and Rh4 have been implicated in merozoite invasion since disruption of the corresponding gene causes these parasites to change the receptor they use for invasion on enzyme-treated red cells.

[0143] In one embodiment the invasion ligand is Rh2a or Rh2b. Rh2a and Rh2b have a putative signal sequence at the N terminus and a potential transmembrane domain followed by a short cytoplasmic tail at the C terminus, similar to the structures of Py235, PvRBP-1, and PvRBP-2. Analysis of Rh2a and Rh2b has identified a region showing homology to the "0045457 Spectrin repeat" domain (SUPERFAMILY Accession: SSF46966) at amino acids 1735 to 1833, and a region showing homology to the "UPF0103 YJR008W C21ORF19-LIKE CEREVISIAE P47085 SACCHAROMYCES CHROMOSOME C2ORF4 PA5G0009 IPF893" domain (PRODOM Accession: PD006364) at amino acids 2133 to 2259 of Rh2a and amino acids 2058 to 2184 of Rh2b. The transmembrane domain of Rh2a is located at amino acids 3066 to 3088.

[0144] Where the further invasion ligand is Rh2b the contiguous amino acid sequence is found in SEQ ID NO: 13 as described below, or a variant thereof.

TABLE-US-00013 SEQ ID NO: 13 Amino acid sequence of Rh2b (PlasmoDB Accession No: MAL13P1.176) MKRSLINLENDLFRLEPISYIQRYYKKNINRSDIFHNKKERGSKVYSNVS SFHSFIQEGKEEVEVFSIWGSNSVLDHIDVLRDNGTVVFSVQPYYLDIYT CKEAILFTTSFYKDLDKSSITKINEDIEKFNEEIIKNEEQCLVGGKTDFD NLLIVLENAEKANVRKTLFDNTFNDYKNKKSSFYNCLKNKKNDYDKKIKN IKNEITKLLKNIESTGNMCKTESYVMNNNLYLLRVNEVKSTPIDLYLNRA KELLESSSKLVNPIKMKLGDNKNMYSIGYIHDEIKDIIKRYNFHLKHIEK GKEYIKRITQANNIADKMKKDELIKKIFESSKHFASFKYSNEMISKLDSL FIKNEEILNNLFNNIFNIFKKKYETYVDMKTIESKYTTVMTLSEHLLEYA MDVLKANPQKPIDPKANLDSEVVKLQIKINEKSNELDNAISQVKTLIIIM KSFYDIIISEKASMDEMEKKELSLNNYIEKTDYILQTYNIFKSKSNIINN NSKNISSKYITIEGLKNDIDELNSLISYFKDSQETLIKDDELKKNMKTDY LNNVKYIEENVTHINEIILLKDSITQRIADIDELNSLNLININDFINEKN ISQEKVSYNLNKLYKGSFEELESELSHFLDTKYLFHEKKSVNELQTILNT SNNECAKLNFMKSDNNNNNNNSNIINLLKTELSHLLSLKENIIKKLLNHI EQNIQNSSNKYTITYTDINNRMEDYKEEIESLEVYKHTIGNIQKEYILHL YENDKNALAVHNTSMQILQYKDAIQNIKNKISDDIKILKKYKEMNQDLLN YYEILDKKLKDNTYIKEMHTASLVQITQYIPYEDKTISELEQEFNNNNQK LDNILQDINAMNLNINILQTLNIGINACNTNNKNVEHLLNKKIELKNILN DQMKIIKNDDIIQDNEKENFSNVLKKEEEKLEKELDDIKFNNLKMDIHKL LNSYDHTKQNIESNLKINLDSFEKEKDSWVHFKSTIDSLYVEYNICNQKT HNTIKQQKNDIIELIYKRIKDINQEIIEKVDNYYSLSDKALTKLKSIHFN IDKEKYKNPKSQENIKLLEDRVMILEKKIKEDKDALIQIKNLSHDHFVNA DNEKKKQKEKEEDDEQTHYSKKRKVMGDIYKDIKKNLDELNNKNLIDITL NEANKIESEYEKILIDDICEQITNEAKKSDTIKEKIESYKKDIDYVDVDV SKTRNDHHLNGDKIHDSFFYEDTLNYKAYFDKLKDLYENINKLTNESNGL KSDAHNNNTQVDKLKEINLQVFSNLGNIIKYVEKLENTLHELKDMYEFLE TIDINKILKSIHNSMKKSEEYSNETKKIFEQSVNITNQFIEDVEILKTSI NPNYESLNDDQIDDNIKSLVLKKEEISEKRKQVNKYITDIESNKEQSDLH LRYASRSIYVIDLFIKHEIINPSDGKNFDIIKVKEMINKTKQVSNEAMEY ANKMDEKNKDIIKIENELYNLINNNIRSLKGVKYEKVRKQARNAIDDINN IHSNIKTILTKSKERLDEIKKQPNIKREGDVLNNDKTKIAYITIQINNGR IESNLLNILNMKHNIDTILNKAMDYMNDVSKSDQIVINIDSLNMNDIYNK DKDLLINILKEKQNMEAEYKKMNEMYNYVNETEKEIIKHKKNYEIRIMEH IKKETNEKKKKFMESNNKSLTTLMDSFRSMFYNEYINDYNINENFEKHQN ILNEIYNGFNESYNIINTKMTEIINDNLDYNEIKEIKEVAQTEYDKLNKK VDELKNYLNNIKEQEGHRLIDYIKEKIFNLYIKCSEQQNIIDDSYNYITV KKQYIKTIEDVKFLLDSLNTIEEKNKSVANLEICTNKEDIKNLLKHVIKL ANFSGIIVMSDTNTEITPENPLEDNDLLNLQLYFERKHEITSTLENDSDL ELDHLGSNSDESIDNLKVYNDIIELHTYSTQILKYLDNIQKLKGDCNDLV KDCKELRELSTALYDLKIQITSVINRENDISNNIDIVSNKLNEIDAIQYN FEKYKEIFDNVEEYKTLDDTKNAYIVKKAEILKNVDINKTKEDLDIYFND LDELEKSLTLSSNEMEIKTIVQNSYNSFSDINKNINDIDKEMKTLIPMLD ELLNEGHNIDISLYNFIIRNIQIKIGNDIKNIREQENDTNICFEYIQNNY NFIKSDISIFNKYDDHIKVDNYISNNIDVVNKHNSLLSEHVINATNIIEN IMTSIVEINEDTEMNSLEETQDKLLELYENFKKEKNIINNNYKIVHFNKL KEIENSLETYNSISTNFNKINETQNIDILKNEFNNIKTKINDKVKELVHV DSTLTLESIQTFNNLYGDLMSNIQDVYKYEDINNVELKKVKLYIENITNL LGRINTFIKELDKYQDENNGIDKYIEINKENNSYIIKLKEKANNLKENFS KLLQNIKRNETELYNINNIKDDIMNTGKSVNNIKQKFSSNLPLKEKLFQM EEMLLNINNIMNETKRISNTDAYTNITLQDIENNKNKENNNMNIETIDKL IDHIKIHNEKIQAEILIIDDAKRKVKEITDNINKAFNEITENYNNENNGV IKSAKNIVDKATYLNNELDKFLLKLNELLSHNNNDIKDLGDEKLILKEEE ERKERERLEKAKQEEERKERERIEKEKQEKERLEREKQEQLKKEALKKQE QERQEQQQKEEALKRQEQERLQKEEELKRQEQERLEREKQEQLQKEEELR KKEQEKQQQRNIQELEEQKKPEIINEALVKGDKILEGSDQRNMELSKPNV SMDNTNNSPISNSEITESDDIDNSENIHTSHMSDIESTQTSHRSNTHGQQ ISDIVEDQITHPSNIGGEKITHNDEISITGERNNISDVNDYSESSNIFEN GDSTINTSTRNTSSTHDESHISPISNAYDHVVSDNKKSMDENIKDKLKID ESITTDEQIRLDDNSNIVRIDSTDQRDASSHGSSNRDDDEISHVGSDIHM DSVDIHDSIDTDENADHRHNVNSVDSLSSSDYTDTQKDFSSIIKDGGNKE GHAENESKEYESQTEQTHEEGIMNPNKYSISEVDGIKLNEEAKHKITEKL VDIYPSTYRTLDEPMETHGPNEKFHMFGSPYVTEEDYTEKHDYDKHEDFN NERYSNHNKMDDFVYNAGGVVCCVLFFASITFFSMDRSNKDECDFDMCEE VNNNDHLSNYADKEEIIEIVFDENEEKYF

[0145] Variants of SEQ ID NO:13 are also included in the scope of this invention and include embodiments whereby D at amino acid 2471 is replaced with A, K at amino acid 2560 is replaced with E, K at amino acid 3090 is replaced with N,N at amino acid 3116 replaced with T, N at amino acid 3116 is replaced with Y.

[0146] More particularly, the contiguous amino acid sequence may found in the region between about 31 amino acids N-terminal of the Prodom PD006364 homology region to about the transmembrane domain of Rh2b. The contiguous amino acid sequence may also be found in the region from about residue 2027 to 3115 of Rh2b, or more particularly from about residue 2027 to about residue 2533 of Rh2b.

[0147] In another form of the immunogenic molecule the contiguous amino acid sequence is found in the region from about residue 2098 to about residue 2597, or the region from about 2616 to 3115 of Rh2b.

[0148] In one form of the composition, the further immunogenic molecule is Rh2a, and the contiguous amino acid sequence is found in SEQ ID NO: 14, or a variant thereof:

TABLE-US-00014 SEQ ID NO: 14 Amino acid sequence of Rh2a (PlasmoDB AccessionNo: PF13_0198) MKTTLFCSISFCNIIFFFLELSHEHFVGQSSNTHGASSVTDFNFSEEKNL KSFEGKNNNNDNYASINRLYRKKPYMKRSLINLENDLFRLEPISYIQRYY KKNINRSDIFHNKKERGSKVYSNVSSFHSFIQEGKEEVEVFSIWGSNSVL DHIDVLRDNGTVVFSVQPYYLDIYTCKEAILFTTSFYKDLDKSSITKINE DIEKFNEEIIKNEEQCLVGGKTDFDNLLIVLENAEKANVRKTLFDNTFND YKNKKSSFYNCLKNKKNDYDKKIKNIKNEITKLLKNIESTGNMCKTESYV MNNNLYLLRVNEVKSTPIDLYLNRAKELLESSSKLVNPIKMKLGDNKNMY SIGYIHDEIKDIIKRYNFHLKHIEKGKEYIKRITQANNIADKMKKDELIK KIFESSKHFASFKYSNEMISKLDSLFIKNEEILNNLFNNIFNIFKKKYET YVDMKTIESKYTTVMTLSEHLLEYAMDVLKANPQKPIDPKANLDSEVVKL QIKINEKSNELDNAISQVKTLIIIMKSFYDIIISEKASMDEMEKKELSLN NYIEKTDYILQTYNIFKSKSNIINNNSKNISSKYITIEGLKNDIDELNSL ISYFKDSQETLIKDDELKKNMKTDYLNNVKYIEENVTHINEIILLKDSIT QRIADIDELNSLNLININDFINEKNISQEKVSYNLNKLYKGSFEELESEL SHFLDTKYLFHEKKSVNELQTILNTSNNECAKLNFMKSDNNNNNNNSNII NLLKTELSHLLSLKENIIKKLLNHIEQNIQNSSNKYTITYTDINNRMEDY KEEIESLEVYKHTIGNIQKEYILHLYENDKNALAVHNTSMQILQYKDAIQ NIKNKISDDIKILKKYKEMNQDLLNYYEILDKKLKDNTYIKEMHTASLVQ ITQYIPYEDKTISELEQEFNNNNQKLDNILQDINAMNLNINILQTLNIGI NACNTNNKNVEHLLNKKIELKNILNDQMKIIKNDDIIQDNEKENFSNVLK KEEEKLEKELDDIKFNNLKMDIHKLLNSYDHTKQNIESNLKINLDSFEKE KDSWVHFKSTIDSLYVEYNICNQKTHNTIKQQKNDIIELIYKRIKDINQE IIEKVDNYYSLSDKALTKLKSIHFNIDKEKYKNPKSQENIKLLEDRVMIL EKKIKEDKDALIQIKNLSHDHFVNADNEKKKQKEKEEDDEQTHYSKKRKV MGDIYKDIKKNLDELNNKNLIDITLNEANKIESEYEKILIDDICEQITNE AKKSDTIKEKIESYKKDIDYVDVDVSKTRNDHHLNGDKIHDSFFYEDTLN YKAYFDKLKDLYENINKLTNESNGLKSDAHNNNTQVDKLKEINLQVFSNL GNIIKYVEKLENTLHELKDMYEFLETIDINKILKSIHNSMKKSEEYSNET KKIFEQSVNITNQFIEDVEILKTSINPNYESLNDDQIDDNIKSLVLKKEE ISEKRKQVNKYITDIESNKEQSDLHLRYASRSIYVIDLFIKHEIINPSDG KNFDIIKVKEMINKTKQVSNEAMEYANKMDEKNKDIIKIENELYNLINNN IRSLKGVKYEKVRKQARNAIDDINNIHSNIKTILTKSKERLDEIKKQPNI KREGDVLNNDKTKIAYITIQINNGRIESNLLNILNMKHNIDTILNKAMDY MNDVSKSDQIVINIDSLNMNDIYNKDKDLLINILKEKQNMEAEYKKMNEM YNYVNETEKEIIKHKKNYEIRIMEHIKKETNEKKKKFMESNNKSLTTLMD SFRSMFYNEYINDYNINENFEKHQNILNEIYNGFNESYNIINTKMTEIIN DNLDYNEIKEIKEVAQTEYDKLNKKVDELKNYLNNIKEQEGHRLIDYIKE KIFNLYIKCSEQQNIIDDSYNYITVKKQYIKTIEDVKFLLDSLNTIEEKN KSVANLEICTNKEDIKNLLKHVIKLANFSGIIVMSDTNTEITPENPLEDN DLLNLQLYFERKHEITSTLENDSDLELDHLGSNSDESIDNLKVYNDIIEL HTYSTQILKYLDNIQKLKGDCNDLVKDCKELRELSTALYDLKIQITSVIN RENDISNNIDIVSNKLNEIDAIQYNFEKYKEIFDNVEEYKTLDDTKNAYI VKKAEILKNVDINKTKEDLDIYFNDLDELEKSLTLSSNEMEIKTIVQNSY NSFSDINKNINDIDKEMKTLIPMLDELLNEGHNIDISLYNFIIRNIQIKI GNDIKNIREQENDTNICFEYIQNNYNFIKSDISIFNKYDDHIKVDNYISN NIDVVNKHNSLLSEHVINATNIIENIMTSIVEINEDTEMNSLEETQDKLL ELYENFKKEKNIINNNYKIVHFNKLKEIENSLETYNSISTNFNKINETQN IDILKNEFNNIKTKINDKVKELVHVDSTLTLESIQTFNNLYGDLMSNIQD VYKYEDINNVELKKVKLYIENITNLLGRINTFIKELDKYQDENNGIDKYI EINKENNSYIIKLKEKANNLKENFSKLLQNIKRNETELYNINNIKDDIMN TGKSVNNIKQKFSSNLPLKEKLFQMEEMLLNINNIMNETKRISNTAAYTN ITLQDIENNKNKENNNMNIETIDKLIDHIKIHNEKIQAEILIIDDAKRKV KEITDNINKAFNEITENYNNENNGVIKSAKNIVDEATYLNNELDKFLLKL NELLSHNNNDIKDLGDEKLILKEEEERKERERLEKAKQEEERKERERIEK EKQEKERLEREKQEQLKKEEELRKKEQERQEQQQKEEALKRQEQERLQKE EELKRQEQERLEREKQEQLQKEEELKRQEQERLQKEEALKRQEQERLQKE EELKRQEQERLEREKQEQLQKEEELKRQEQERLQKEEALKRQEQERLQKE EELKRQEQERLERKKIELAEREQHIKSKLESDMVKIIKDELTKEKDEIIK NKDIKLRHSLEQKWLKHLQNILSLKIDSLLNKNDEVIKDNETQLKTNILN SLKNQLYLNLKRELNEIIKEYEENQKKILHSNQLVNDSLEQKTNRLVDIK PTKHGDIYTNKLSDNETEMLITSKEKKDETESTKRSGTDHTNSSESTTDD NTNDRNFSRSKNLSVAIYTAGSVALCVLIFSSIGLLLIKTNSGDNNSNEI NEAFEPNDDVLFKEKDEIIEITFNDNDSTI

[0149] Variants of SEQ ID NO:14 are also included in the scope of this invention and include embodiments whereby A at amino acid 2546 is replaced with D, E at amino acid 2613 is replaced with G, R at amino acid 2723 is replaced with K, K at amino acid 2725 replaced with Q.

[0150] More particularly, the contiguous amino acid sequence may found in the region between about 31 amino acids N-terminal of the Prodom PD006364 homology region to about the transmembrane domain of Rh2a. The contiguous amino acid sequence may also be found in the region from about residue 2133 to about residue 3065 of Rh2a.

[0151] In another form of the composition the contiguous amino acid sequence is found in the region from about residue 2098 to about residue 2597, or the region from about residue 2616 to about residue 3115 of Rh2a.

[0152] In one form of the composition, the further invasion ligand is Rh1, and the contiguous amino acid sequence is found in SEQ ID NO: 15 or a variant thereof:

TABLE-US-00015 SEQ ID NO: 15 Amino acid sequence of Rh1 (PlasmoDB Accession No: PFD0110w) MQRWIFCNIVLHILIYLAEFSHEQESYSSNEKIRKDYSDDNNYEPTPSYE KRKKEYGKDESYIKNYRGNNFSYDLSKNSSIFLHMGNGSNSKTLKRCNKK KNIKTNFLRPIEEEKTVLNNYVYKGVNFLDTIKRNDSSYKFDVYKDTSFL KNREYKELITMQYDYAYLEATKEVLYLIPKDKDYHKFYKNELEKILFNLK DSLKLLREGYIQSKLEMIRIHSDIDILNEFHQGNIINDNYFNNEIKKKKE DMEKYIREYNLYIYKYENQLKIKIQKLTNEVSINLNKSTCEKNCYNYILK LEKYKNIIKDKINKWKDLPEIYIDDKSFSYTFLKDVINNKIDIYKTISSF ISTQKQLYYFEYIYIMNKNTLNLLSYNIQKTDINSSSKYTYTKSHFLKDN HILLSKYYTAKFIDILNKTYYYNLYKNKILLFNKYIIKLRNDLKEYAFKS IQFIQDKIKKHKDELSIENILQEVNNIYIKYDTSINEISKYNNLIINTDL QIVQQKLLEIKQKKNDITHKVQLINHIYKNIHDEILNKKNNEITKIIINN IKDHKKDLQDLLLFIQQIKQYNILTDHKITQCNNYYKEIIKMKEDINHIH IYIQPILNNLHTLKQVQNNKIKYEEHIKQILQKIYDKKESLKKIILLKDE AQLDITLLDDLIQKQTKKQTQTQTQTQKQTLIQNNETIQLISGQEDKHES NPFNHIQTYIQQKDTQNKNIQNLLKSLYNGNINTFIDTISKYILKQKDIE LTQHVYTDEKINDYLEEIKNEQNKIDKTIDDIKIQETLKQITHIVNNIKT IKKDLLKEFIQHLIKYMNERYQNMQQGYNNLTNYINQYEEENNNMKQYIT TIRNIQKIYYDNIYAKEKEIRSGQYYKDFITSRKNIYNIRENISKNVDMI KNEEKKKIQNCVDKYNSIKQYVKMLKNGDTQDENNNNNNDIYDKLIVPLD SIKQNIDKYNTEHNFITFTNKINTHNKKNQEMMEEFIYAYKRLKILKILN ISLKACEKNNKSINTLNDKTQELKKIVTHEIDLLQKDILTSQISNKNVLL LNDLLKEIEQYIIDVHKLKKKSNDLFTYYEQSKNYFYFKNKKDNFDIQKT INKMNEWLAIKNYINEINKNYQTLYEKKINVLLHNSKSYVQYFYDHIINL ILQKKNYLENTLKTKIQDNEHSLYALQQNEEYQKVKNEKDQNEIKKIKQL IEKNKNDILTYENNIEQIEQKNIELKTNAQNKDDQIVNTLNEVKKKIIYT YEKVDNQISNVLKNYEEGKVEYDKNVVQNVNDADDTNDIDEINDIDEIND IDEINDIDEINDIDEIKDIDHIKHFDDTKHFDDIYHADDTRDEYHIALSN YIKTELRNINLQEIKNNIIKIFKEFKSAHKEIKKESEQINKEFTKMDVVI NQLRDIDRQMLDLYKELDEKYSEFNKTKIEEINNIRENINNVEIWYEKNI IEYFLRHMNDQKDKAAKYMENIDTYKNNIEIISKQINPENYVETLNKSNM YSYVEKANDLFYKQINNIIINSNQLKNEAFTIDELQNIQKNRKNLLTKKQ QIIQYTNEIENIFNEIKNINNILVLTNYKSILQDISQNINHVSIYTEQLH NLYIKLEEEKEQMKTLYHKSNVLHNQINFNEDAFINNLLINIEKIKNDIT HIKEKTNIYMIDVNKSKNNAQLYFHNTLRGNEKIEYLKNLKNSTNQQITL QELKQVQENVEKVKDIYNQTIKYEEEIKKNYHIITDYENKINDILHNSFI KQINMESSNNKKQTKQIIDIINDKTFEEHIKTSKTKINMLKEQSQMKHID KTLLNEQALKLFVDINSTNNNLDNMLSEINSIQNNIHTYIQEANKSFDKF KIICDQNVNDLLNKLSLGDLNYMNHLKNLQNEIRNMNLEKNFMLDKSKKI DEEEKKLDILKVNISNINNSLDKLKKYYEEALFQKVKEKAEIQKENIEKI KQEINTLSDVFKKPFFFIQLNTDSSQHEKDINNNVETYKNNIDEIYNVFI QSYNLIQKYSSEIFSSTLNYIQTKEIKEKSIKEQNQLNQNEKEASVLLKN IKINETIKLFKQIKNERQNDVHNIKEDYNLLQQYLNYMKNEMEQLKKYKN DVHMDKNYVENNNGEKEKLLKETISSYYDKINNINNKLYIYKNKEDTYFN NMIKVSEILNIIIKKKQQNEQRIVINAEYDSSLINKDEEIKKEINNQIIE LNKHNENISNIFKDIQNIKKQSQDIITNMNDMYKSTILLVDIIQKKEEAL NKQKNILRNIDNILNKKENIIDKVIKCNCDDYKDILIQNETEYQKLQNIN HTYEEKKKSIDILKIKNIKQKNIQEYKNKLEQMNTIINQSIEQHVFINAD ILQNEKIKLEEIIKNLDILDEQIMTYHNSIDELYKLGIQCDNHLITTISV VVNKNTTKIMIHIKKQKEDIQKINNYIQTNYNIINEEALQFHRLYGHNLI SEDDKNNLVHIIKEQKNIYTQKEIDISKIIKHVKKGLYSLNEHDMNHDTH MNIINEHINNNILQPYTQLINMIKDIDNVFIKIQNNKFEQIQKYIEIIKS LEQLNKNINTDNLNKLKDTQNKLINIETEMKHKQKQLINKMNDIEKDNIT DQYMHDVQQNIFEPITLKMNEYNTLLNDNHNNNINNEHQFNHLNSLHTKI FSHNYNKEQQQEYITNIMQRIDVFINDLDTYQYEYYFYEWNQEYKQIDKN KINQHINNIKNNLIHVKKQFEHTLENIKNNENIFDNIQLKKKDIDDIIIN INNTKETYLKELNKKKNVTKKKKVDEKSEINNHHTLQHDNQNVEQKNKIK DHNLITKPNNNSSEESHQNEQMKEQNKNILEKQTRNIKPHHVHNHNHNHN QNQKDSTKLQEQDISTHKLHNTIHEQQSKDNHQGNREKKQKNGNHERMYF ASGIVVSILFLFSFGFVINSKNNKQEYDKEQEKQQQNDFVCDNNKMDDKS TQKYGRNQEEVMEIFFDNDYI

[0153] The present invention includes variants of SEQ ID NO:15. It is known to the skilled person that there are a large number of single nucleotide polymorphisms in Rh1 and these and any other variants are included within the scope of the invention.

[0154] More particularly, the contiguous amino acid sequence may found in the region between about amino acid residue 1 to transmembrane domain of Rh1. The contiguous amino acid sequence may also be found in the region from about residue 1 to about residue 2897 of Rh1.

[0155] In one form of the composition, the further invasion ligand is Rh4, and the contiguous amino acid sequence is found in SEQ ID NO: 16

TABLE-US-00016 SEQ ID NO: 16 Amino acid sequence of Rh4 (PlasmoDB Accession No: PFD1150c), as disclosed below. MNKNILWITFFYFLFFLLDMYQGNDAIPSKEKKNDPEADSKNSQNQHDIN KTHHTNNNYDLNIKDKDEKKRKNDNLINNYDYSLLKLSYNKNQDIYKNIQ NGQKLKTDIILNSFVQINSSNILMDEIENYVKKYTESNRIMYLQFKYIYL QSLNITVSFVPPNSPFRSYYDKNLNKDINETCHSIQTLLNNLISSKIIFK MLETTKEQILLLWNNKKISQQNYNQENQEKSKMIDSENEKLEKYTNKFEH NIKPHIEDIEKKVNEYINNSDCHLTCSKYKTIINNYIDEIITTNTNIYEN KYNLPQERIIKNYNHNGINNDDNFIEYNILNADPDLRSHFITLLVSRKQL IYIEYIYFINKHIVNKIQENFKLNQNKYIHFINSNNAVNAAKEYEYIIKY YTTFKYLQTLNKSLYDSIYKHKINNYSHNIEDLINQLQHKINNLMIISFD KNKSSDLMLQCTNIKKYTDDICLSIKPKALEVEYLRNINKHINKNEFLNK FMQNETFKKNIDDKIKEMNNIYDNIYIILKQKFLNKLNEIIQNHKNKQET KLNTTTIQELLQLLKDIKEIQTKQIDTKINTFNMYYNDIQQIKIKINQNE KEIKKVLPQLYIPKNEQEYIQIYKNELKDRIKETQTKINLFKQILELKEK EHYITNKHTYLNFTHKTIQQILQQQYKNNTQEKNTLAQFLYNADIKKYID ELIPITQQIQTKMYTTNNIEHIKQILINYIQECKPIQNISEHTIYTLYQE IKTNLENIEQKIMQNIQQTTNRLKINIKKIFDQINQKYDDLTKNINQMND EKIGLRQMENRLKGKYEEIKKANLQDRDIKYIVQNNDANNNNNNIIIING NNQTGDYNHILFDYTHLWDNAQFTRTKENINNLKDNIQININNIKSIIRN LQNELNNYNTLKSNSIHIYDKIHTLEELKILTQEINDKNVIRKIYDIETI YQNDLHNIEEIIKNITSIYYKINILNILIICIKQTYNNNKSIESLKLKIN NLTNSTQEYINQIKAIPTNLLPEHIKQKSVSELNIYMKQIYDKLNEHVIN NLYTKSKDSLQFYINEKNYNNNHDDHNDDHNDVYNDIKENEIYKNNKLYE CIQIKKDVDELYNIYDQLFKNISQNYNNHSLSFVHSINNHMLSIFQDTKY GKHKNQQILSDIENIIKQNEHTESYKNLDTSNIQLIKEQIKYFLQIFHIL QENITTFENQYKDLIIKMNHKINNNLKDITHIVINDNNTLQEQNRIYNEL QNKIKQIKNVSDVFTHNINYSQQILNYSQAQNSFFNIFMKFQNINNDINS KRYNVQKKITEIINSYDIINYNKNNIKDIYQQFKNIQQQLNTTETQLNHI KQNINHFKYFYESHQTISIVKNMQNEKLKIQEFNKKIQHFKEETQIMINK LIQPSHIHLHKMKLPITQQQLNTILHRNEQTKNATRSYNMNEEENEMGYG ITNKRKNSETNDMINTTIGDKTNVLKNDDQEKGKRGTSRNNNIHTNENNI NNEHTNENNINNEHTNEKNINNEHANEKNIYNEHTNENNINYEHPNNYQQ KNDEKISLQHKTINTSQRTIDDSNMDRNNRYNTSSQQKNNLHTNNNSNSR YNNNHDKQNEHKYNQGKSSGKDNAYYRIFYAGGITAVLLLCSSTAFFFIK NSNEPHHIFNIFQKEFSEADNAHSEEKEEYLPVYFDEVEDEVEDEVEDED ENENEVENENEDFNDI

[0156] The present invention includes variant forms of SEQ ID NO:16. Variants that are included within the scope of the invention include those whereby Y at amino acid 12 is replaced with A, L at amino acid 143 is replaced with I, N at amino acid 435 is replaced with K, Q at amino acid 438 is replaced with K, T at amino acid 506 replaced with K, N at amino acid 771 is replaced with S, N at amino acid 844 is replaced with I, K at amino acid 1482 is replaced with R, or N at amino acid 1498 is replaced with I.

[0157] More particularly, the contiguous amino acid sequence is found in the region from about the MTH1187/YkoF-like superfamily domain to about the transmembrane domain of Rh4.

[0158] In another form of the composition, the contiguous amino acid sequence is found in the region from about residue 1160 to about residue 1370 of Rh4.

[0159] In one form of the composition the further invasion ligand is an erythrocyte binding antigen (EBA) protein. In that form of the composition the immunogenic comprises a contiguous amino acid sequence of an erythrocyte binding antigen (EBA) protein of the strain of Plasmodium falciparum. The EBA protein may be EBA175, EBA140, or EBA181. The contiguous amino acid sequence may comprise at least about 5, 8, 10, 20, 50 or 100 or more amino acids.

[0160] In one form of the composition, the contiguous amino acid sequence of the EBA protein is found in the region between the F2 domain and the transmembrane domain of the EBA protein. More particularly, the contiguous amino acid sequence may be found in the region from about residue 746 to about residue 1339 of the EBA protein.

[0161] Where the EBA is EBA140 the contiguous amino acid sequence is found in the region from about residue 746 to about residue 1045 of EBA140. Where the EBA is EBA175 the contiguous amino acid sequence is found in the region from about residue 761 to about residue 1271 of EBA175. Where the EBA is EBA181 the contiguous amino acid sequence is found in the region from about residue 755 to about residue 1339 of EBA181.

[0162] In one form of the composition, the further invasion ligand is EBA175, and the contiguous amino acid sequence is found in SEQ ID NO: 17:

TABLE-US-00017 The amino acid sequence of EBA175 (PlasmoDB Accession No: MAL7P1.176) is given below (SEQ ID NO: 17) MKCNISIYFFASFFVLYFAKARNEYDIKENEKFLDVYKEKFNELDKKKYG NVQKTDKKIFTFIENKLDILNNSKFNKRWKSYGTPDNIDKNMSLINKHNN EEMFNNNYQSFLSTSSLIKQNKYVPINAVRVSRILSFLDSRINNGRNTSS NNEVLSNCREKRKGMKWDCKKKNDRSNYVCIPDRRIQLCIVNLSIIKTYT KETMKDHFIEASKKESQLLLKKNDNKYNSKFCNDLKNSFLDYGHLAMGND MDFGGYSTKAENKIQEVFKGAHGEISEHKIKNFRKKWWNEFREKLWEAML SEHKNNINNCKNIPQEELQITQWIKEWHGEFLLERDNRSKLPKSKCKNNT LYEACEKECIDPCMKYRDWIIRSKFEWHTLSKEYETQKVPKENAENYLIK ISENKNDAKVSLLLNNCDAEYSKYCDCKHTTTLVKSVLNGNDNTIKEKRE HIDLDDFSKFGCDKNSVDTNTKVWECKKPYKLSTKDVCVPPRRQELCLGN IDRIYDKNLLMIKEHILAIAIYESRILKRKYKNKDDKEVCKIINKTFADI RDIIGGTDYWNDLSNRKLVGKINTNSNYVHRNKQNDKLERDEWWKVIKKD VWNVISWVFKDKTVCKEDDIENIPQFFRWFSEWGDDYCQDKTKMIETLKV ECKEKPCEDDNCKRKCNSYKEWISKKKEEYNKQAKQYQEYQKGNNYKMYS EFKSIKPEVYLKKYSEKCSNLNFEDEFKEELHSDYKNKCTMCPEVKDVPI SIIRNNEQTSQEAVPEESTEIAHRTETRTDERKNQEPANKDLKNPQQSVG ENGTKDLLQEDLGGSRSEDEVTQEFGVNHGIPKGEDQTLGKSDAIPNIGE PETGISTTEESRHEEGHNKQALSTSVDEPELSDTLQLHEDTKENDKLPLE SSTITSPTESGSSDTEETPSISEGPKGNEQKKRDDDSLSKISVSPENSRP ETDAKDTSNLLKLKGDVDISMPKAVIGSSPNDNINVTEQGDNISGVNSKP LSDDVRPDKNHEEVKEHTSNSDNVQQSGGIVNMNVEKELKDTLENPSSSL DEGKAHEELSEPNLSSDQDMSNTPGPLDNTSEETTERISNNEYKVNEREG ERTLTKEYEDIVLKSHMNRESDDGELYDENSDLSTVNDESEDAEAKMKGN DTSEMSHNSSQHIESDQQKNDMKTVGDLGTTHVQNEISVPVTGEIDEKLR ESKESKIHKAEEERLSHTDIHKINPEDRNSNTLHLKDIRNEENERHLTNQ NINISQERDLQKHGFHTMNNLHGDGVSERSQINHSHHGNRQDRGGNSGNV LNMRSNNNNFNNIPSRYNLYDKKLDLDLYENRNDSTTKELIKKLAEINKC ENEISVKYCDHMIHEEIPLKTCTKEKTRNLCCAVSDYCMSYFTYDSEEYY NCTKREFDDPSYTCFRKEAFSSMPYYAGAGVLFIILVILGASQAKYQRLE KINKNKIEKNVN

[0163] The present invention includes variant forms of SEQ ID NO: 17. Variants that are included in the scope of the invention include N at amino acid 157 replaced with S, E at amino acid 274 replaced with K, K at amino acid 279 replaced with E, K at amino acid 286 replaced with E, D at amino acid 336 replaced with Y, K at amino acid 388 replaced with N, P at amino acid 390 replaced with S, E at amino acid 403 replaced with K, K at amino acid 448 replaced with E, K at amino acid 478 replaced with N K at amino acid 481 replaced with I, N at amino acid 577 replaced with K, Q at amino acid 584 replaced with K, R at amino acid 664 replaced with S, S at amino acid 768 replaced with N, E at amino acid 923 replaced with K, K at amino acid 932 replaced with E, E at amino acid 1058 replaced with V, or G at amino acid 1100 replaced with D.

[0164] In one form of the composition, the further invasion ligand is EBA181, and the contiguous amino acid sequence is found in SEQ ID NO: 18:

TABLE-US-00018 The amino acid sequence of EBA181 (PlasmoDB Accession No: MAL7P1.176) is given below (SEQ ID NO: 18) MKGKMNMCLFFFYSILYVVLCTYVLGISEEYLKERPQGLNVETNNNNNNN NNNNSNSNDAMSFVNEVIRFIENEKDDKEDKKVKIISRPVENTLHRYPVS SFLNIKKYGRKGEYLNRNSFVQRSYIRGCKGKRSTHTWICENKGNNNICI PDRRVQLCITALQDLKNSGSETTDRKLLRDKVFDSAMYETDLLWNKYGFR GFDDFCDDVKNSYLDYKDVIFGTDLDKNNISKLVEESLKRFFKKDSSVLN PTAWWRRYGTRLWKTMIQPYAHLGCRKPDENEPQINRWILEWGKYNCRLM KEKEKLLTGECSVNRKKSDCSTGCNNECYTYRSLINRQRYEVSILGKKYI KVVRYTIFRRKIVQPDNALDFLKLNCSECKDIDFKPFFEFEYGKYEEKCM CQSYIDLKIQFKNNDICSFNAQTDTVSSDKRFCLEKKEFKPWKCDKNSFE TVHHKGVCVSPRRQGFCLGNLNYLLNDDIYNVHNSQLLIEIIMASKQEGK LLWKKHGTILDNQNACKYINDSYVDYKDIVIGNDLWNDNNSIKVQNNLNL IFERNFGYKVGRNKLFKTIKELKNVWWILNRNKVWESMRCGIDEVDQRRK TCERIDELENMPQFFRWFSQWAHFFCKEKEYWELKLNDKCTGNNGKSLCQ DKTCQNVCTNMNYWTYTRKLAYEIQSVKYDKDRKLFSLAKDKNVTTFLKE NAKNCSNIDFTKIFDQLDKLFKERCSCMDTQVLEVKNKEMLSIDSNSEDA TDISEKNGEEELYVNHNSVSVASGNKEIEKSKDEKQPEKEAKQTNGTLTV RTDKDSDRNKGKDTATDTKNSPENLKVQEHGTNGETIKEEPPKLPESSET LQSQEQLEAEAQKQKQEEEPKKKQEEEPKKKQEEEQKREQEQKQEQEEEE QKQEEEQQIQDQSQSGLDQSSKVGVASEQNEISSGQEQNVKSSSPEVVPQ ETTSENGSSQDTKISSTEPNENSVVDRATDSMNLDPEKVHNENMSDPNTN TEPDASLKDDKKEVDDAKKELQSTVSRIESNEQDVQSTPPEDTPTVEGKV GDKAEMLTSPHATDNSESESGLNPTDDIKTTDGVVKEQEILGGGESATET SKSNLEKPKDVEPSHEISEPVLSGTTGKEESELLKSKSIETKGETDPRSN DQEDATDDVVENSRDDNNSLSNSVDNQSNVLNREDPIASETEVVSEPEDS SRIITTEVPSTTVKPPDEKRSEEVGEKEAKEIKVEPVVPRAIGEPMENSV SVQSPPNVEDVEKETLISENNGLHNDTHRGNISEKDLIDIHLLRNEAGST ILDDSRRNGEMTEGSESDVGELQEHNFSTQQKDEKDFDQIASDREKEEIQ KLLNIGHEEDEDVLKMDRTEDSMSDGVNSHLYYNNLSSEEKMEQYNNRDA SKDREEILNRSNTNTCSNEHSLKYCQYMERNKDLLETCSEDKRLHLCCEI SDYCLKFFNPKSIEYFDCTQKEFDDPTYNCFRKQRFTSMHYIAGGGIIAL LLFILGSASYRKNLDDEKGFYDSNLNDSAFEYNNNKYNKLPYMFDQQINV VNSDLYSEGIYDDTTTF

[0165] The present invention includes variant forms of SEQ ID NO: 18. Variants that are included in the scope of the invention include V at amino acid 64 replaced with L, Q at amino acid 364 replaced with H, V at amino acid 363 replaced with D, R at amino acid 358 replaced with K, N at amino acid 414 replaced with I, K at amino acid 443 replaced with Q, P at amino acid 878 replaced with Q, E at amino acid 884 replaced with Q, E at amino acid 1885 replaced with K, Q at amino acid 890 replaced with E, P at amino acid 1197 replaced with L, K at amino acid 1219 replaced with N, D at amino acid 1433 replaced with Y or N, or K at amino acid 1518 replaced with E.

[0166] In one form of the composition, the further invasion ligand is EBA141, and the contiguous amino acid sequence is found in SEQ ID NO: 19:

TABLE-US-00019 The amino acid sequence of EBA141 (PlasmoDB Accession No: MAL7P1.176) is given below (SEQ ID NO: 19) MKGYFNIYFLIPLIFLYNVIRINESIIGRTLYNRQDESSDISRVNSPELN NNHKTNIYDSDYEDVNNKLINSFVENKSVKKKRSLSFINNKTKSYDIIPP SYSYRNDKFNSLSENEDNSGNTNSNNFANTSEISIGKDNKQYTFIQKRTH LFACGIKRKSIKWICRENSEKITVCVPDRKIQLCIANFLNSRLETMEKFK EIFLISVNTEAKLLYNKNEGKDPSIFCNELRNSFSDFRNSFIGDDMDFGG NTDRVKGYINKKFSDYYKEKNVEKLNNIKKEWWEKNKANLWNHMIVNHKG NISKECAIIPAEEPQINLWIKEWNENFLMEKKRLFLNIKDKCVENKKYEA CFGGCRLPCSSYTSFMKKSKTQMEVLTNLYKKKNSGVDKNNFLNDLFKKN NKNDLDDFFKNEKEYDDLCDCRYTATIIKSFLNGPAKNDVDIASQINVND LRGFGCNYKSNNEKSWNCTGTFTNKFPGTCEPPRRQTLCLGRTYLLHRGH EEDYKEHLLGASIYEAQLLKYKYKEKDENALCSIIQNSYADLADIIKGSD IIKDYYGKKMEENLNKVNKDKKRNEESLKIFREKWWDENKENVWKVMSAV LKNKETCKDYDKFQKIPQFLRWFKEWGDDFCEKRKEKIYSFESFKVECKK KDCDENTCKNKCSEYKKWIDLKKSEYEKQVDKYTKDKNKKMYDNIDEVKN KEANVYLKEKSKECKDVNFDDKIFNESPNEYEDMCKKCDEIKYLNEIKYP KTKHDIYDIDTFSDTFGDGTPISINANINEQQSGKDTSNTGNSETSDSPV SHEPESDAAINVEKLSGDESSSETRGILDINDPSVTNNVNEVHDASNTQG SVSNTSDITNGHSESSLNRTTNAQDIKIGRSGNEQSDNQENSSHSSDNSG SLTIGQVPSEDNTQNTYDSQNPHRDTPNALASLPSDDKINEIEGFDSSRD SENGRGDTTSNTHDVRRTNIVSERRVNSHDFIRNGMANNNAHHQYITQIE NNGIIRGQEESAGNSVNYKDNPKRSNFSSENDHKKNIQEYNSRDTKRVRE EIIKLSKQNKCNNEYSMEYCTYSDERNSSPGPCSREERKKLCCQISDYCL KYFNFYSIEYYNCIKSEIKSPEYKCFKSEGQSSIPYFAAGGILVVIVLLL SSASRMGKSNEEYDIGESNIEATFEENNYLNKLSRIFNQEVQETNISDYS EYNYNEKNMY

[0167] The present invention includes variants of SEQ ID NO: 19. Variants that are included in the scope of the invention include V at amino acid 19 replaced with I, L at amino acid 112 replaced with F, I at amino acid 185 replaced with V, N at amino acid 239 replaced with S, K at amino acid 261 replaced with T.

[0168] In one form of the immunogenic molecule, the contiguous amino acid sequence of the EBA or Rh protein comprises about 5 or more amino acids. In another form, the contiguous amino acid sequence molecule comprises about 8, 10, 20, 50, or 100 amino acids. The skilled person is capable of routine experimentation designed to identify the shortest efficacious sequence, or the length of sequence that provides the greatest or most effective invasion-inhibitory response in the subject.

[0169] In some forms of the invention, the compositions contain more than one invasion ligand of the EBA family, and/or more than one invasion ligand of the Rh family. The composition may contain any combination of two or more invasion ligands derived from Rh1, Rh2a, Rh2b, Rh4. The composition may contain any combination of two or more invasion ligands derived from EBA175, EBA140 and EBA181.

[0170] It is proposed that certain compositions of the present invention may target multiple invasion ligands in order to improve efficacy, and to possibly ameliorate parasite immune evasion strategies. Data provided herein establishes that the invasion pathway mediated by the invasion ligands described herein are important for erythrocyte invasion. Applicant's findings indicate members of the EBA and Rh invasion ligand families are key targets of inhibitory antibodies. Therefore, compositions comprising multiple ligands involved in invasion via the same and/or different pathways facilitate the inhibition of invasion by the host immune response.

[0171] While EBA proteins and Rh2a, Rh2b and Rh4 are not essential for invasion, these molecules play a role in invasion of enzyme treated red cells. In particular, neuraminidase removes sialic acid residues from the erythrocyte surface and blocks invasion pathways dependent on sialic acid present on both glycophorin A and other receptors, trypsin treatment cleaves proteins such as glycophorin A and C, but does not affect glycophorin B, and chymotrypsin cleaves a non-overlapping set of proteins including glycophorin B and band 3 on the erythrocyte surface. Using this approach, invasion phenotypes can be broadly classified into two main groups: i) sialic acid (SA)-dependent invasion, demonstrated by poor invasion of neuraminidase-treated erythrocytes (neuraminidase cleaves SA on the erythrocyte surface), and ii) SA-independent invasion, demonstrated by efficient invasion of neuraminidase-treated erythrocytes, involves Rh2b and Rh4. SA-dependent (neuraminidase-sensitive) invasion of enzyme treated cells involves the three known EBAs (EBA175, EBA181, EBA140), Rh1. EBA175 and EBA140 bind to glycophorin A and C, respectively. EBA181 binds to SA on the erythrocyte surface and to band 4.1 protein.

[0172] The use of compositions further containing combinations of Rh and EBA proteins relates to the Applicant's further discovery that the Plasmodium falciparum parasite is capable of evading the host immune response by switching from the use of one invasion protein to another. For example, if the parasite initially utilised a Rh (e.g. Rh2b, Rh2a, Rh4)-mediated invasion pathway the host will generate antibodies capable of blocking the method of entry. The parasite is capable of then using an alternative pathway (such as an EBA-mediated pathway) in order to evade the host immune response.

[0173] In a further aspect the present invention provides a composition of the invention for use as a medicament. Accordingly, in a further aspect the present invention provides a method of treating or preventing a condition caused by or associated with infection by Plasmodium falciparum comprising administering to a subject in need thereof an effective amount of an immunogenic molecule described herein or a composition as described herein. The medicament is a malarial vaccine in one form of the composition.

[0174] Vaccines according to the present invention may either be prophylactic (i.e. to prevent or partially prevent infection) or therapeutic (i.e. to treat or partially treat infection), but will typically be prophylactic.

[0175] The compositions of the invention may elicit both a cell mediated immune response as well as a humoral immune response in order to effectively address a Plasmodium intracellular infection. This immune response will preferably induce long lasting antibodies and a cell mediated immunity that can quickly respond upon exposure to Plasmodium.

[0176] Two types of T cells, CD4 and CD8 cells, are generally thought necessary to initiate and/or enhance cell mediated immunity and humoral immunity. CD8 T cells can express a CD8 co-receptor and are commonly referred to as Cytotoxic T lymphocytes (CTLs). CD8 T cells are able to recognized or interact with antigens displayed on MHC Class I molecules.

[0177] CD4 T cells can express a CD4 co-receptor and are commonly referred to as T helper cells. CD4 T cells are able to recognize antigenic peptides bound to MHC class II molecules. Upon interaction with a MHC class II molecule, the CD4 cells can secrete factors such as cytokines. These secreted cytokines can activate B cells, cytotoxic T cells, macrophages, and other cells that participate in an immune response. Helper T cells or CD4+ cells can be further divided into two functionally distinct subsets: TH1 phenotype and TH2 phenotypes which differ in their cytokine and effector function.

[0178] Activated TH1 cells enhance cellular immunity (including an increase in antigen-specific CTL production) and are therefore of particular value in responding to intracellular infections. Activated TH1 cells may secrete one or more of IL-2, IFN-gamma, and TNF-beta. A TH1 immune response may result in local inflammatory reactions by activating macrophages, NK (natural killer) cells, and CD8 cytotoxic T cells (CTLs). A TH1 immune response may also act to expand the immune response by stimulating growth of B and T cells with IL-12. TH1 stimulated B cells may secrete IgG2a.

[0179] Activated TH2 cells enhance antibody production and are therefore of value in responding to extracellular infections. Activated TH2 cells may secrete one or more of IL-4, IL-5, IL-6, and IL-10. A TH2 immune response may result in the production of IgGl. IgE, IgA and memory B cells for future protection.

[0180] An enhanced immune response may include one or more of an enhanced TH1 immune response and a TH2 immune response.

[0181] An enhanced TH1 immune response may include one or more of an increase in CTLs, an increase in one or more of the cytokines associated with a TH1 immune response (such as IL-2, IFN-gamma, and TNF-beta), an increase in activated macrophages, an increase in NK activity, or an increase in the production of IgG2a. Preferably, the enhanced TH1 immune response will include an increase in IgG2a production.

[0182] A TH1 immune response may be elicited using a TH1 adjuvant. A TH1 adjuvant will generally elicit increased levels of IgG2a production relative to immunization of the antigen without adjuvant. TH1 adjuvants suitable for use in the invention may include for example saponin formulations, virosomes and virus like particles, non-toxic derivatives of enterobacterial lipopolysaccharide (LPS), immunostimulatory oligonucleotides. Immunostimulatory oligonucleotides, such as oligonucleotides containing a CpG motif, are preferred TH1 adjuvants for use in the invention.

[0183] An enhanced TH2 immune response may include one or more of an increase in one or more of the cytokines associated with a TH2 immune response (such as IL-4, IL-5, IL-6 and IL-10), or an increase in the production of IgGl, IgE, IgA and memory B cells. Preferably, the enhanced TH2 immune response will include an increase in IgGl production.

[0184] A TH2 immune response may be elicited using a TH2 adjuvant. A TH2 adjuvant will generally elicit increased levels of IgGl production relative to immunization of the antigen without adjuvant. TH2 adjuvants suitable for use in the invention include, for example, mineral containing compositions, oil-emulsions, and ADP-ribosylating toxins and detoxified derivatives thereof. Mineral containing compositions, such as aluminium salts are preferred TH2 adjuvants for use in the invention.

[0185] Preferably, the invention includes a composition comprising a combination of a TH1 adjuvant and a TH2 adjuvant. Preferably, such a composition elicits an enhanced TH1 and an enhanced TH2 response, i.e., an increase in the production of both IgGl and IgG2a production relative to immunization without an adjuvant. Still more preferably, the composition comprising a combination of a TH1 and a TH2 adjuvant elicits an increased TH1 and/or an increased TH2 immune response relative to immunization with a single adjuvant (i.e., relative to immunization with a TH1 adjuvant alone or immunization with a TH2 adjuvant alone).

[0186] The immune response may be one or both of a TH1 immune response and a TH2 response. Preferably, immune response provides for one or both of an enhanced TH1 response and an enhanced TH2 response. The TH1/TH2 response in mice may be measured by comparing IgG2a and IgGl titres, while the TH1/TH2 response in man may be measured by comparing the levels of cytokines specific for the two types of response (e.g. the IFN-γ/IL-4 ratio).

[0187] In one form of the method of treatment or prevention the subject is a human. The human may be an infant, a child, an adolescent, or an adult. Use of the vaccine may be especially important in women in child-bearing years. Pregnant women, particularly in the second and third trimesters of pregnancy are more likely to develop severe malaria than other adults, often complicated by pulmonary oedema and hypoglycaemia. Maternal mortality is approximately 50%, which is higher than in non-pregnant adults. Fetal death and premature labor are common.

[0188] One way of monitoring vaccine efficacy for therapeutic treatment involves monitoring Plasmodium falciparum infection after administration of the compositions of the invention. One way of checking efficacy of prophylactic treatment involves monitoring immune responses systemically (such as monitoring the level of IgGl and IgG2a production) against the Plasmodium antigens in the compositions of the invention after administration of the composition. Serum Plasmodium specific antibody responses may be determined post-immunisation and post-challenge.

[0189] The uses and methods are for the prevention and/or treatment of a disease caused by Plasmodium (e.g. malaria) and/or its clinical manifestations (e.g. prostration, impaired consciousness, respiratory distress (acidotic breathing), multiple convulsions, circulatory collapse, pulmonary oedema (radiological), abnormal bleeding, jaundice, haemoglobinuria, etc.).

[0190] The compositions of the present invention can be evaluated in in vitro and in vivo animal models prior to host, e.g., human, administration. For example, in vitro neutralization an/or invasion inhibition is suitable for testing vaccine compositions (such as immunogenic/immunoprotective compositions) directed toward Plasmodium.

[0191] Reaction to the vaccine may be evaluated in vitro and in vivo following host e.g. human, administration. For example, response to vaccine compositions may examined by Enzyme-Linked ImmunoSorbent Assay (ELISA). For example, ELISA may be conducted as follows: Plates (e.g. flat-bottomed microtiter plates (Maxisorp from Nunc NS or High Binding from Costar, Cat. No. 3590) may be coated with 50 μL of peptide solution or crude parasite antigen at 10 μg/mL in coating buffer. Keep the plate at 4° C. overnight. With many proteins or peptides, PBS can be used as a coating solution. Block with 100 μL of 0.5% BSA in coating buffer for 3 to 4 h at 37° C. Wash 4 times with 0.9% NaCl plus 0.05% Tween. Add 50 μL of serum samples diluted 1:1000; leave them for 1 h at 37° C. Wash 4 times with 0.9% NaCl plus 0.05% Tween. Add 50 μL of ALP-conjugated or biotinylated anti-Ig of appropriate specificity at the recommended concentration in Tween-buffer; leave for 1 h at 37° C. Wash the sample 4 times with 0.9% NaCl plus 0.05% Tween. If biotinylated antibody has been used, add 50 μL of streptavidin--ALP diluted 1:2000 in Tween-buffer; leave the sample for 1 h at 37° C. Wash the sample 4 times with 0.9% NaCl plus 0.05% Tween. Develop the sample with 50 μL of NPP (1 tablet/5 mL of substrate buffer) and read at OD405.

[0192] Infection may be established using typical signs and symptoms of malaria. The signs and symptoms of malaria, such as fever, chills, headache and anorexia. Preferably, more specific methods of diagnosis are preferred e.g. using a scoring matrix of clinical symptoms, light microscopy which allows quantification of malaria parasites (e.g. thick or thin film blood smears from patients stained with acridine orange or Giemsa, rapid diagnostic tests (e.g. immunochromatographic tests that detect parasite-specific antigens e.g. HRP2, parasite lactate dehydrogenase (pLDH), aldolase etc) in a finger-prick blood sample, and polymerase-chain reaction.

[0193] Vaccine efficacy may be measured e.g. by examining the number and frequency of cases of malaria (e.g. asexual Plasmodium falciparum at any level plus a temperature greater than or equal to 37.5° C. and headache, myalgia, arthralgia, malaise, nausea, dizziness, or abdominal pain), time to first infection with Plasmodium falciparum, parasitemia, geometric mean parasite density in first clinical episode, adverse events, anemia (measured by for example packed cell volume less than 25% or less than 15%), absence of parasites at the end of immunization, proportion of individuals with seroconversion to the antigens of the present invention at e.g. day 75 post immunization, proportion with "efficacious seroconversion" to the antigens of the present invention (4-fold elevation in antibody titre) at day 75, number of symptomatic Plasmodium falciparum cases after 1, 2, or 3 doses, number of days until Plasmodium falciparum positive blood slide, density of Plasmodium falciparum, prevalence of Plasmodium falciparum, Plasmodium vivax, and Plasmodium malariae, levels of anti-Rh or anti-EBA antibody by ELISA, geometric mean parasite density in first clinical episode, lymphocyte proliferation to Rh or EBA, T-cell responses to antigen frequency of fever, malaise, nausea, Malaria requiring hospital admission, cerebral malaria (e.g. Blantyre coma score <2) etc.

[0194] The vaccine may be administered using a variety of vaccination regimes familiar to the skilled person. In one form of the invention, the vaccine composition may be administered post antimalarial treatment. Preferred antimalarials for use include the chloroquine phosphate, proguanil, primaquine, doxycycline, mefloquine, clindamycin, halofantrine, quinine sulphate, quinine dihydrochloride, gluconate, primaquine phosphate and sulfadoxine. For example, blood stage parasitaemia may be cleared with Fansidar (25 mg sulfadoxine/0.75 mg pyrimethamine per kg body weight) before each vaccination. In another form of the invention antimalarial (e.g. Fansidar) treatment is given 1 to 2 weeks before the doses (e.g. first and third doses). In another form of the invention antimalarial (e.g. Fansidar) treatment is given before the first dose.

[0195] In another form of the invention, 3 doses of vaccine composition (e.g. 0.5 mg adsorbed onto 0.312 g alum in 0.125 mL) is administered in 3 doses, 2 mg per dose to >5 year olds, 1 mg to under 5 year olds, at weeks 0, 4, and 25. In another form of the invention, 3 doses of vaccine composition (e.g. 1 mg per dose) are given subcutaneously at weeks 0, 4, and 26. In another form of the invention, 3 doses of vaccine composition is administered on days 0, 30, and 180 at different doses (e.g. 1 mg; 0.5 mg). In another form of the invention, 3 doses of vaccine composition is administered at 3 to 4 month intervals either intramuscularly or subcutaneously. In another form of the invention 3 doses of vaccine composition is administered subcutaneously on days 0, 30, and about day 180. In another form of the invention, the vaccine composition is administered in 2 doses at 4-week intervals (e.g. 0.55 mL per dose containing 4 μg or 15 μg or 13.3 μg of each antigen). In another form of the invention, 3 doses of the vaccine composition is administered (e.g. 25 μg in 250 μL AS02A adjuvant) intramuscularly in deltoid (in alternating arms) at 0, 1, and 2 months. In another form of the invention 4 doses of the vaccine composition is given (e.g. 50 μg per 0.5 mL dose) on days 0, 28, and 150; and dose 4 given in the following year. In another form of the invention, where the vaccine is a DNA vaccine, the vaccine composition is administered in two doses (e.g. 2 mg on days 0 and 21 (2 intramuscular injections each time, 1 into each deltoid muscle). In another form of the invention, where the vaccine composition comprises an immunogenic molecule covalently linked to another molecule (e.g. Pseudomonas aeruginosa toxin A) the composition is administered in 3 doses (e.g. at 1, 8, and 24 weeks).

[0196] The present invention may be used to generate invasion-inhibitory antibodies useful as in vitro diagnostic reagents, or as therapeutics for passive immunization. The term "antibody" includes intact immunoglobulin molecules, as well as fragments thereof which are capable of binding an antigen. These include hybrid (chimeric) antibody molecules; F(ab')2 and F(ab) fragments and Fv molecules; non-covalent heterodimers; single-chain Fv molecules (sFv); dimeric and trimeric antibody fragment constructs; minibodies; humanized antibody molecules; and any functional fragments obtained from such molecules, as well as antibodies obtained through non-conventional processes such as phage display. Preferably, the antibodies are monoclonal antibodies. Methods of obtaining monoclonal antibodies are well known in the art.

[0197] Various immunoassays (e.g., Western blots, ELISAs, radioimmunoassays, immunohistochemical assays, immunoprecipitations, invasion-inhibition assays, or other immunochemical assays known in the art) can be used to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays are well known in the art. Such immunoassays typically involve the measurement of complex formation between an immunogen and an antibody which specifically binds to the immunogen. A preparation of antibodies which specifically bind to a particular antigen typically provides a detection signal at least 5-, 10-, or 20-fold higher than a detection signal provided with other proteins when used in an immunochemical assay. Preferably, the antibodies do not detect other proteins in immunochemical assays and can inimunoprecipitate the particular antigen from solution.

[0198] The surface-exposed antigens of the invention can be used to immunize a mammal, such as a mouse, rat, rabbit, guinea pig, monkey, or human, to produce polyclonal antibodies. If desired, an antigen can be conjugated to a carrier protein, such as bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin. Depending on the host species, various adjuvants can be used to increase the immunological response. Such adjuvants include those described above, as well as those not used in humans, for example, Freund's adjuvant.

[0199] Monoclonal antibodies which specifically bind to an antigen can be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These techniques include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique.

[0200] In addition, techniques developed for the production of "chimeric antibodies," the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity, can be used. Monoclonal and other antibodies also can be "humanized" to prevent a patient from mounting an immune response against the antibody when it is used therapeutically. Such antibodies may be sufficiently similar in sequence to human antibodies to be used directly in therapy or may require alteration of a few key residues. Sequence differences between rodent antibodies and human sequences can be minimized by replacing residues which differ from those in the human sequences by site directed mutagenesis of individual residues or by grating of entire complementarity determining regions.

[0201] Alternatively, humanized antibodies can be produced using recombinant methods, as described below. Antibodies which specifically bind to a particular antigen can contain antigen binding sites which are either partially or fully humanized.

[0202] Alternatively, techniques described for the production of single chain antibodies can be adapted using methods known in the art to produce single chain antibodies which specifically bind to a particular antigen. Antibodies with related specificity, but of distinct idiotypic composition, can be generated by chain shuffling from random combinatorial immunoglobin libraries.

[0203] Single-chain antibodies also can be constructed using a DNA amplification method, such as PCR, using hybridoma cDNA as a template. Single-chain antibodies can be mono- or bispecific, and can be bivalent or tetravalent.

[0204] A nucleotide sequence encoding a single-chain antibody can be constructed using manual or automated nucleotide synthesis, cloned into an expression construct using standard recombinant DNA methods, and introduced into a cell to express the coding sequence, as described below. Alternatively, single-chain antibodies can be produced directly using, for example, filamentous phage technology.

[0205] Antibodies which specifically bind to a particular antigen also can be produced by inducing in vivo production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents.

[0206] Chimeric antibodies can be constructed. Binding proteins which are derived from immunoglobulins and which are multivalent and multispecific, such as "diabodies" can also be prepared.

[0207] Antibodies can be purified by methods well known in the art. For example, antibodies can be affinity purified by passage over a column to which the relevant antigen is bound. The bound antibodies can then be eluted from the column using a buffer with a high salt concentration.

[0208] In another aspect the present invention provides use of a composition described herein in the manufacture of a medicament for the treatment or prevention of a condition caused by or associated with infection by Plasmodium falciparum.

[0209] The invention also provides nucleic acid encoding a polypeptide immunogenic molecule of the invention.

[0210] Also provided by the present invention are nucleic acid molecules encoding the invasion ligands of the present invention. The term "nucleic acid" includes DNA and RNA, and also their analogues, such as those containing modified backbones (e.g. phosphorothioates, etc.), and also peptide nucleic acids (PNA), etc. The invention includes nucleic acid comprising sequences complementary to those described above (e.g. for antisense or probing purposes). Nucleic acid molecules as described herein may be used, for example, in the context of expression vectors in the manufacture of the immunogenic molecules described herein.

TABLE-US-00020 The nucleotide sequence of the invasion ligand described by SEQ ID NO: 1 is given below (SEQ ID NO: 20) ATGATAAGAATAAAAAAAAAATTAATTTTGACCATTATATATATTCATCT GTTTATATTAAATAGATTAAGTTTTGAAAATGCAATAAAAAAAACGAAGA ATCAAGAAAATAATCTGACGTTACTACCAATAAAGAGCACTGAAGAAGAA AAAGATGATATAAAAAATGGAAAGGATATAAAAAAAGAAATTGATAATGA TAAAGAGAATATAAAAACAAATAATGCTAAAGATCATTCAACATATATAA AATCATATTTGAATACAAATGTAAATGATGGTTTAAAATATTTGTTTATT CCTTCTCATAATTCTTTTATAAAAAAATATTCTGTATTTAATCAAATAAA TGATGGCATGTTATTAAATGAAAAAAATGATGTGAAAAATAATGAAGACT ATAAAAATGTGGATTATAAAAATGTTAATTTTTTACAATATCATTTTAAA GAGTTATCAAATTATAACATTGCAAATTCTATTGATATTTTACAAGAAAA AGAAGGACATTTGGATTTTGTTATAATACCTCATTATACTTTTTTAGATT ATTATAAACATTTATCTTATAATTCTATATATCATAAGTCCTCTACATAT GGAAAGTGTATAGCTGTAGATGCTTTTATTAAGAAAATAAATGAAACATA TGACAAAGTGAAAAGTAAATGTAATGATATAAAGAATGATTTAATTGCAA CTATAAAAAAATTAGAGCATCCTTATGATATAAATAATAAGAATGATGAT TCCTATAGATATGATATATCTGAAGAAATCGATGATAAATCTGAAGAGAC AGATGATGAAACCGAAGAGGTAGAAGATAGTATACAAGATACAGATAGTA ATCATACTCCTTCAAATAAAAAAAAAAATGATCTTATGAATAGAACGTTT AAAAAGATGATGGATGAATATAATACAAAAAAAAAAAAATTAATTAAATG TATAAAAAACCATGAGAATGATTTTAATAAAATATGTATGGATATGAAAA ATTATGGTACAAACCTTTTTGAACAACTTTCATGTTACAATAATAATTTC TGTAATACAAACGGAATAAGATATCATTATGATGAATATATTCATAAATT AATATTATCTGTTAAATCAAAAAACTTAAATAAAGACCTATCAGATATGA CAAATATTTTACAACAAAGTGAATTATTATTAACCAATTTAAATAAAAAA ATGGGTTCCTATATATATATTGATACAATAAAATTTATACATAAAGAAAT GAAACATATTTTTAACAGAATTGAATATCATACAAAAATAATAAACGATA AAACTAAAATAATTCAAGACAAAATTAAATTAAATATATGGAGAACATTT CAAAAAGATGAATTATTAAAAAGAATTTTAGACATGTCAAATGAATATTC TTTATTTATTACTAGTGATCATTTAAGACAAATGTTATATAATACATTCT ATTCAAAAGAAAAACATTTAAATAATATATTTCATCATTTAATTTATGTA CTACAAATGAAGTTCAATGATGTCCCAATTAAAATGGAATATTTTCAAAC ATATAAAAAAAATAAACCACTTACACAATGA

[0211] Where the invention requires the use of further invasion ligands, the nucleotide sequences of those ligands is provided infra.

TABLE-US-00021 The nucleotide sequence of Rh2b is given below (SEQ ID NO: 21) ATGAAGAGATCGCTTATAAATTTAGAAAATGATCTTTTTAGATTAGAACC TATATCTTATATTCAAAGATATTATAAGAAGAATATAAACAGATCTGATA TTTTTCATAATAAAAAAGAAAGAGGTTCCAAAGTATATTCAAATGTGTCT TCATTCCATTCTTTTATTCAAGAGGGTAAAGAAGAAGTTGAGGTTTTTTC TATATGGGGTAGTAATAGCGTTTTAGATCATATAGATGTTCTTAGGGATA ATGGAACTGTCGTTTTTTCTGTTCAACCATATTACCTTGATATATATACG TGTAAAGAAGCCATATTATTTACTACATCATTTTACAAGGATCTTGATAA AAGTTCAATTACAAAAATTAATGAAGATATTGAAAAATTTAACGAAGAAA TAATCAAGAATGAAGAACAATGTTTAGTTGGTGGGAAAACAGATTTTGAT AATTTACTTATAGTTTTAGAAAATGCGGAAAAAGCAAATGTTAGAAAAAC ATTATTTGATAATACATTTAATGATTATAAAAATAAGAAATCTAGTTTTT ACAATTGTTTGAAAAATAAAAAAAATGATTATGATAAGAAAATAAAGAAT ATAAAGAATGAGATTACAAAATTGTTAAAAAATATTGAAAGTACAGGAAA TATGTGTAAAACGGAATCATATGTTATGAATAATAATTTATATCTATTAA GAGTGAATGAAGTTAAAAGTACACCTATTGATTTATACTTAAATCGAGCA AAAGAGCTATTAGAATCAAGTAGCAAATTAGTTAATCCTATAAAAATGAA ATTAGGTGATAATAAGAACATGTACTCTATTGGATATATACATGACGAAA TTAAAGATATTATAAAAAGATATAATTTTCATTTGAAACATATAGAAAAA GGAAAAGAATATATAAAAAGGATAACACAAGCAAATAATATTGCAGACAA AATGAAGAAAGATGAACTTATAAAAAAAATTTTTGAATCCTCAAAACATT TTGCTAGTTTTAAATATAGCAATGAAATGATAAGCAAATTAGATTCGTTA TTTATAAAAAATGAAGAAATACTTAATAATTTATTCAATAATATATTTAA TATATTCAAGAAAAAATATGAAACATATGTAGATATGAAAACAATTGAAT CTAAATATACAACAGTAATGACTCTATCAGAACATTTATTAGAATATGCA ATGGATGTTTTAAAAGCTAACCCTCAAAAACCTATTGATCCAAAAGCAAA TCTGGATTCAGAAGTAGTAAAATTACAAATAAAAATAAATGAGAAATCAA ATGAATTAGATAATGCTATAAGTCAAGTAAAAACACTAATAATAATAATG AAATCATTTTATGATATTATTATATCTGAAAAAGCCTCTATGGATGAAAT GGAAAAAAAGGAATTATCCTTAAATAATTATATTGAAAAAACAGATTATA TATTACAAACGTATAATATTTTTAAGTCTAAAAGTAATATTATAAATAAT AATAGTAAAAATATTAGTTCTAAATATATAACTATAGAAGGGTTAAAAAA TGATATTGATGAATTAAATAGTCTTATATCATATTTTAAGGATTCACAAG AAACATTAATAAAAGATGATGAATTAAAAAAAAACATGAAAACGGATTAT CTTAATAACGTGAAATATATAGAAGAAAATGTTACTCATATAAATGAAAT TATATTATTAAAAGATTCTATAACTCAACGAATAGCAGATATTGATGAAT TAAATAGTTTAAATTTAATAAATATAAATGATTTTATAAATGAAAAGAAT ATATCACAAGAGAAAGTATCATATAATCTTAATAAATTATATAAAGGAAG TTTTGAAGAATTAGAATCTGAACTATCTCATTTTTTAGACACAAAATATT TGTTTCATGAAAAAAAAAGTGTAAATGAACTTCAAACAATTTTAAATACA TCAAATAATGAATGTGCTAAATTAAATTTTATGAAATCTGATAATAATAA TAATAATAATAATAGTAATATAATTAACTTGTTAAAAACTGAATTAAGTC ATCTATTAAGTCTTAAAGAAAATATAATAAAAAAACTTTTAAATCATATA GAACAAAATATTCAAAACTCATCAAATAAGTATACTATTACATATACTGA TATTAATAATAGAATGGAAGATTATAAAGAAGAAATCGAAAGTTTAGAAG TATATAAACATACCATTGGAAATATACAAAAAGAATATATATTACATTTA TATGAGAATGATAAAAATGCTTTAGCTGTACATAATACATCAATGCAAAT ATTACAATATAAAGATGCTATACAAAATATAAAAAATAAAATTTCTGATG ATATAAAAATTTTAAAGAAATATAAAGAAATGAATCAAGATTTATTAAAT TATTATGAAATTCTAGATAAAAAATTAAAAGATAATACATATATCAAAGA AATGCATACTGCTTCTTTAGTTCAAATAACTCAATATATTCCTTATGAAG ATAAAACAATAAGTGAACTTGAGCAAGAATTTAATAATAATAATCAAAAA CTTGATAATATATTACAAGATATCAATGCAATGAATTTAAATATAAATAT TCTCCAAACCTTAAATATTGGTATAAATGCATGTAATACAAATAATAAAA ATGTAGAACACTTACTTAACAAGAAAATTGAATTAAAAAATATATTAAAT GATCAAATGAAAATTATAAAAAATGATGATATAATTCAAGATAATGAAAA AGAAAACTTTTCAAATGTTTTAAAAAAAGAAGAGGAAAAATTAGAAAAAG AATTAGATGATATCAAATTTAATAATTTGAAAATGGACATTCATAAATTG TTGAATTCGTATGACCATACAAAGCAAAATATAGAAAGCAATCTTAAAAT AAATTTAGATTCTTTCGAAAAGGAAAAAGATAGTTGGGTTCATTTTAAAA GTACTATAGATAGTTTATATGTGGAATATAACATATGTAATCAAAAGACT CATAATACTATCAAACAACAAAAAAATGATATCATAGAACTTATTTATAA ACGTATAAAAGATATAAATCAAGAAATAATCGAAAAGGTAGATAATTATT ATTCCCTGTCAGATAAAGCCTTAACTAAACTTAAATCTATTCATTTTAAT ATTGATAAGGAAAAATATAAAAATCCCAAAAGTCAAGAAAATATTAAATT ATTAGAAGATAGAGTTATGATACTTGAGAAAAAGATTAAGGAAGATAAAG ATGCTTTAATACAAATTAAGAATTTATCACATGATCATTTTGTAAATGCT GATAATGAGAAAAAAAAGCAGAAGGAGAAGGAGGAGGACGACGAACAAAC ACACTATAGTAAAAAAAGAAAAGTAATGGGAGATATATATAAGGATATTA AAAAAAACCTAGATGAGTTAAATAATAAAAATTTGATAGATATTACTTTA AATGAAGCAAATAAAATAGAATCAGAATATGAAAAAATATTAATTGATGA TATTTGTGAACAAATTACAAATGAAGCAAAAAAAAGTGATACTATTAAGG AAAAAATCGAATCATATAAAAAAGATATTGATTATGTAGATGTGGACGTT TCCAAAACGAGGAACGATCATCATTTGAATGGAGATAAAATACATGATTC TTTTTTTTATGAAGATACATTAAATTATAAAGCATATTTTGATAAATTAA AAGATTTATATGAAAATATAAACAAGTTAACAAATGAATCAAATGGATTA AAAAGTGATGCTCATAATAACAACACACAAGTTGATAAACTAAAAGAAAT TAATTTACAAGTATTCAGCAATTTAGGAAATATAATTAAATATGTTGAAA AACTTGAGAATACATTACATGAACTTAAAGATATGTACGAATTTCTAGAA ACGATCGATATTAATAAAATATTAAAAAGTATTCATAATAGCATGAAGAA ATCAGAAGAATATAGTAATGAAACGAAAAAAATATTTGAACAATCAGTAA ATATAACTAATCAATTTATAGAAGATGTTGAAATATTGAAAACGTCTATT AACCCAAACTATGAAAGCTTAAATGATGATCAAATTGATGATAATATAAA ATCACTTGTTCTAAAGAAAGAGGAAATATCCGAAAAAAGAAAACAAGTGA ATAAATACATAACAGATATTGAATCTAATAAAGAACAATCAGATTTACAT TTACGATATGCATCTAGAAGTATATATGTTATTGATCTTTTTATAAAACA TGAAATAATAAATCCTAGCGATGGAAAAAATTTTGATATTATAAAGGTTA AAGAAATGATAAATAAAACCAAACAAGTTTCAAATGAAGCTATGGAATAT GCTAATAAAATGGATGAAAAAAATAAGGACATTATAAAAATAGAAAATGA ACTTTATAATTTAATTAATAATAACATCCGTTCATTAAAAGGGGTAAAAT ATGAAAAAGTTAGGAAACAAGCAAGAAATGCAATTGATGATATAAATAAT ATACATTCTAATATTAAAACGATTTTAACCAAATCTAAAGAACGATTAGA TGAGATTAAGAAACAACCTAACATTAAAAGAGAAGGTGATGTTTTAAATA ATGATAAAACCAAAATAGCTTATATTACAATACAAATAAATAACGGAAGA ATAGAATCTAATTTATTAAATATATTAAATATGAAACATAACATAGATAC TATCTTGAATAAAGCTATGGATTATATGAATGATGTATCAAAATCTGACC AGATTGTTATTAATATAGATTCTTTGAATATGAACGATATATATAATAAG GATAAAGATCTTTTAATAAATATTTTAAAAGAAAAACAGAATATGGAGGC AGAATATAAAAAAATGAATGAAATGTATAATTACGTTAATGAAACAGAAA AAGAAATAATAAAACATAAAAAAAATTATGAAATAAGAATTATGGAACAT ATAAAAAAAGAAACAAATGAAAAAAAAAAAAAATTTATGGAATCTAATAA CAAATCATTAACTACTTTAATGGATTCATTCAGATCTATGTTTTATAATG AATATATAAATGATTATAATATAAATGAAAATTTTGAAAAACATCAAAAT ATATTGAATGAAATATATAATGGATTTAATGAATCATATAATATTATTAA TACAAAAATGACTGAAATTATAAATGATAATTTAGATTATAATGAAATAA AAGAAATTAAAGAAGTAGCACAAACAGAATATGATAAACTTAATAAAAAA GTTGATGAATTAAAAAATTATTTGAATAATATTAAAGAACAAGAAGGACA TCGATTAATTGATTATATAAAAGAAAAAATATTTAACTTATATATAAAAT GTTCAGAACAACAAAATATAATAGATGATTCTTATAATTATATTACAGTT AAAAAACAGTATATTAAAACTATTGAAGATGTGAAATTTTTATTAGATTC ATTGAACACAATAGAAGAAAAAAATAAATCAGTAGCAAATCTAGAAATTT GTACTAATAAAGAAGATATAAAAAATTTACTTAAACATGTTATAAAGTTG GCAAATTTTTCAGGTATTATTGTAATGTCTGATACAAATACGGAAATAAC TCCAGAAAATCCTTTAGAAGATAATGATTTATTAAATTTACAATTATATT TTGAAAGAAAACATGAAATAACATCAACATTGGAAAATGATTCTGATTTA GAGTTAGATCATTTAGGTAGTAATTCGGATGAATCTATAGATAATTTAAA GGTTTATAATGATATTATAGAATTACACACATATTCAACACAAATTCTTA AATATTTAGATAATATTCAAAAACTTAAAGGAGATTGCAATGATTTAGTA AAGGATTGTAAAGAATTACGTGAATTGTCTACGGCATTATATGATTTAAA AATACAAATTACTAGTGTAATTAATAGAGAAAATGATATTTCAAATAATA TTGATATTGTATCTAATAAATTAAATGAAATAGATGCTATACAATATAAT TTTGAAAAATATAAAGAAATTTTTGATAATGTAGAAGAATATAAAACATT AGATGATACAAAAAATGCATATATTGTAAAAAAGGCTGAAATTTTAAAAA ATGTAGATATAAATAAAACAAAAGAAGATTTAGATATATATTTTAATGAC TTAGACGAATTAGAAAAATCTCTTACATTATCATCTAATGAAATGGAAAT

TAAAACAATAGTACAGAACTCATATAATTCCTTTTCTGATATTAATAAGA ACATTAATGATATTGATAAAGAAATGAAAACACTGATCCCTATGCTTGAT GAATTATTAAATGAAGGACATAATATTGATATATCATTATATAATTTTAT AATTAGAAATATTCAGATTAAAATAGGTAATGATATAAAAAATATAAGAG AACAGGAAAATGATACTAATATATGTTTTGAGTATATTCAAAATAATTAT AATTTTATAAAGAGTGATATAAGTATCTTCAATAAATATGATGATCATAT AAAAGTAGATAATTATATATCTAATAATATTGATGTTGTCAATAAACATA ATAGTTTATTAAGTGAACATGTTATAAATGCTACAAATATTATAGAGAAT ATTATGACAAGTATTGTCGAAATAAATGAAGATACAGAAATGAATTCTTT AGAAGAGACACAAGACAAATTATTAGAACTATATGAAAATTTTAAGAAAG AAAAAAATATTATAAATAATAATTATAAAATAGTACATTTTAATAAATTA AAAGAAATAGAAAATAGTTTAGAGACATATAATTCAATATCAACAAACTT TAATAAAATAAATGAAACACAAAATATAGATATTTTAAAAAATGAATTTA ATAATATCAAAACAAAAATTAATGATAAAGTAAAAGAATTAGTTCATGTT GATAGTACATTAACACTTGAATCAATTCAAACGTTTAATAATTTATATGG TGACTTGATGTCTAATATACAAGATGTATATAAATATGAAGATATTAATA ATGTTGAATTGAAAAAGGTGAAATTATATATAGAAAATATTACAAATTTA TTAGGAAGAATAAACACATTCATAAAGGAGTTAGACAAATATCAGGATGA AAATAATGGTATAGATAAGTATATAGAAATCAATAAGGAAAATAATAGTT ATATAATAAAATTGAAAGAAAAAGCCAATAATCTAAAGGAAAATTTCTCA AAATTATTACAAAATATAAAAAGAAATGAAACTGAATTATATAATATAAA TAACATAAAGGATGATATTATGAATACGGGGAAATCTGTAAATAATATAA AACAAAAATTTTCTAGTAATTTGCCACTAAAAGAAAAATTATTTCAAATG GAAGAGATGTTACTTAATATAAATAATATTATGAATGAAACGAAAAGAAT ATCAAACACGGATGCATATACTAATATAACTCTCCAGGATATTGAAAATA ATAAAAATAAAGAAAATAATAATATGAATATTGAAACAATTGATAAATTA ATAGATCATATAAAAATACATAATGAAAAAATACAAGCAGAAATATTAAT AATTGATGATGCCAAAAGAAAAGTAAAGGAAATAACAGATAATATTAACA AGGCTTTTAATGAAATTACAGAAAATTATAATAATGAAAATAATGGGGTA ATTAAATCTGCAAAAAATATTGTCGATAAAGCTACTTATTTAAATAATGA ATTAGATAAATTTTTATTGAAATTGAATGAATTATTAAGTCATAATAATA ATGATATAAAGGATCTTGGTGATGAAAAATTAATATTAAAAGAAGAAGAA GAAAGAAAAGAAAGAGAAAGATTGGAAAAAGCGAAACAAGAAGAAGAAAG AAAAGAGAGAGAAAGAATAGAAAAAGAAAAACAAGAGAAAGAAAGACTGG AAAGAGAGAAACAAGAACAACTAAAAAAAGAAGCATTAAAAAAACAAGAG CAAGAAAGACAAGAACAACAACAAAAAGAAGAAGCATTAAAAAGACAAGA ACAAGAACGACTACAAAAAGAAGAAGAATTAAAAAGACAAGAGCAAGAAA GGCTGGAAAGAGAGAAACAAGAACAACTACAAAAAGAAGAAGAATTAAGA AAAAAAGAGCAGGAAAAACAACAACAAAGAAATATCCAAGAATTAGAAGA GCAAAAAAAGCCTGAAATAATAAATGAAGCATTGGTAAAGGGGGATAAAA TACTAGAAGGAAGTGATCAGAGAAATATGGAATTAAGCAAACCTAACGTT AGTATGGATAATACTAATAATAGTCCAATTAGTAACAGTGAAATTACAGA AAGCGATGATATTGATAACAGTGAAAATATACATACTAGTCATATGAGTG ACATCGAAAGTACACAAACTAGTCATAGAAGTAACACCCATGGGCAACAA ATCAGTGATATTGTTGAAGATCAAATTACACATCCTAGTAATATTGGAGG AGAAAAAATTACTCATAATGATGAAATTTCAATCACTGGTGAAAGAAATA ACATTAGCGATGTTAATGATTATAGTGAAAGTAGCAACATATTTGAAAAT GGTGACAGTACTATAAATACCAGTACAAGAAACACGTCTAGTACACATGA TGAATCCCATATAAGTCCTATCAGCAATGCGTATGATCATGTTGTTTCAG ATAATAAAAAAAGTATGGATGAAAACATAAAAGATAAATTAAAGATAGAT GAAAGTATAACTACAGATGAACAAATAAGATTAGATGATAATTCTAATAT TGTTAGAATTGATAGTACTGACCAACGTGATGCTAGTAGTCATGGTAGTA GTAATAGGGATGATGATGAAATAAGTCATGTTGGTAGCGACATTCATATG GATAGTGTTGATATTCATGATAGTATTGACACTGATGAAAATGCTGATCA CAGACATAATGTTAACTCTGTTGATAGTCTTAGTTCTAGTGATTACACTG ATACACAGAAAGACTTTAGTAGTATTATTAAAGATGGGGGAAATAAAGAA GGACATGCTGAGAATGAATCTAAAGAATATGAATCCCAAACAGAACAAAC ACATGAAGAAGGAATTATGAATCCAAATAAATATTCAATTAGTGAAGTTG ATGGTATTAAATTAAATGAAGAAGCTAAACATAAAATTACAGAAAAACTG GTAGATATCTATCCTTCTACATATAGAACACTTGATGAACCTATGGAAAC ACATGGTCCAAATGAAAAATTTCATATGTTTGGTAGTCCATATGTAACAG AAGAAGATTACACGGAAAAACATGATTATGATAAGCATGAAGATTTCAAT AATGAAAGGTATTCAAACCATAACAAAATGGATGATTTCGTATATAATGC TGGAGGAGTTGTTTGTTGTGTATTATTTTTTGCAAGTATTACTTTCTTTT CTATGGACAGATCAAATAAGGATGAATGCGATTTTGATATGTGTGAAGAA GTAAATAATAATGATCACTTATCGAATTATGCTGATAAAGAAGAAATTAT TGAAATTGTGTTTGATGAAAATGAAGAAAAATATTTTTAA The nucleotide sequence of Rh4 is given below (SEQ ID NO: 22) ATGAATAAGAATATATTGTGGATAACTTTTTTTTATTTTTTATTTTTTCT CTTGGATATGTACCAAGGAAATGACGCAATTCCCTCAAAAGAAAAAAAAA ACGATCCAGAAGCAGATTCTAAGAACTCACAGAATCAACATGATATAAAT AAAACACACCATACGAACAATAATTATGATCTGAATATTAAGGATAAAGA TGAGAAAAAAAGAAAAAATGATAATTTAATCAATAATTATGATTACTCTC TTTTAAAGTTATCTTATAATAAGAATCAAGATATATATAAGAATATACAA AATGGCCAAAAGCTTAAAACAGACATAATATTAAACTCATTTGTTCAAAT TAATTCATCAAACATATTAATGGATGAAATAGAAAATTATGTGAAAAAAT ATACGGAATCGAATCGTATTATGTACTTACAATTTAAATATATATATCTA CAATCCTTAAATATAACAGTATCTTTTGTACCTCCGAATTCACCATTTCG AAGTTATTATGACAAAAATTTAAATAAAGATATAAATGAAACTTGTCATT CCATACAAACACTTCTAAACAATCTAATATCTTCCAAAATTATATTTAAA ATGTTAGAAACTACAAAAGAACAAATATTACTTTTATGGAATAACAAAAA AATTAGTCAACAAAATTATAATCAAGAAAATCAAGAAAAAAGTAAAATGA TCGATTCGGAAAATGAAAAACTAGAAAAGTACACAAACAAGTTTGAACAT AATATCAAACCTCATATAGAAGATATAGAGAAAAAAGTAAATGAATATAT TAATAATTCCGATTGTCATTTAACATGTTCAAAATATAAAACAATTATCA ATAATTATATAGATGAAATAATAACAACTAATACAAACATATACGAAAAC AAATATAATCTACCACAAGAACGAATTATCAAAAACTATAATCATAATGG TATTAATAATGATGATAATTTTATAGAATATAATATTCTTAATGCAGATC CTGATTTAAGATCTCATTTTATAACACTTCTTGTTTCAAGAAAACAATTA ATCTATATTGAATATATTTATTTTATTAACAAACATATTGTAAATAAAAT TCAAGAAAACTTTAAATTAAATCAAAATAAATATATACATTTTATTAATT CAAATAATGCTGTTAATGCTGCTAAAGAATATGAATATATCATAAAATAT TATACTACATTCAAATATCTACAGACATTAAATAAATCATTATACGACTC TATATATAAACATAAAATAAATAATTATTCTCATAACATTGAAGATCTTA TAAACCAACTACAACATAAAATTAATAACCTAATGATTATCTCATTCGAT AAAAATAAATCATCAGATTTAATGTTACAATGTACAAATATAAAAAAATA TACCGATGATATATGTTTATCCATTAAACCTAAAGCATTAGAAGTCGAAT ATTTAAGAAATATAAATAAACACATCAACAAAAATGAATTCCTAAATAAA TTCATGCAAAACGAAACATTTAAAAAAAATATAGATGATAAAATCAAAGA AATGAATAATATATACGATAATATATATATCATATTAAAACAAAAATTCT TAAACAAATTAAACGAAATCATACAAAATCATAAAAATAAACAAGAAACA AAATTAAATACCACAACCATTCAAGAATTGTTACAACTTCTAAAGGATAT TAAAGAAATACAAACAAAACAAATCGATACAAAAATTAATACTTTTAATA TGTATTATAACGATATACAACAAATAAAAATAAAGATTAATCAAAATGAA AAAGAAATAAAAAAGGTACTCCCTCAATTATATATCCCAAAAAATGAACA AGAATATATACAAATATATAAAAATGAATTAAAGGATAGAATAAAAGAAA CACAAACAAAAATTAATTTATTTAAGCAAATTTTAGAATTAAAAGAAAAA GAACATTATATTACAAACAAACATACATACCTAAATTTTACACACAAAAC TATTCAACAAATATTACAACAACAATATAAAAACAACACACAAGAAAAAA ATACACTAGCACAATTTTTATACAATGCAGATATCAAAAAATATATTGAT GAATTAATACCTATCACACAACAAATACAAACCAAAATGTATACAACAAA TAATATAGAACATATTAAACAAATACTCATAAATTATATACAAGAATGTA AACCTATACAAAATATATCAGAACATACTATTTATACACTATATCAAGAA ATCAAAACAAATCTGGAAAACATCGAACAGAAAATTATGCAAAATATACA ACAAACTACAAATCGGTTAAAAATAAATATTAAAAAAATATTTGATCAAA TAAATCAAAAATATGACGACTTAACAAAAAATATAAACCAAATGAATGAT GAAAAAATTGGGTTACGACAAATGGAAAATAGGTTGAAAGGGAAATATGA AGAAATAAAAAAGGCAAATCTTCAAGATAGGGACATAAAATATATAGTCC AAAATAATGATGCTAATAATAATAATAATAATATTATTATTATTAATGGT AATAATCAAACCGGTGATTATAATCACATCTTGTTCGATTATACTCACCT TTGGGATAATGCACAATTTACTAGAACAAAAGAAAATATAAACAACCTAA AAGATAATATACAAATCAACATAAATAATATCAAAAGTATAATAAGAAAT TTACAAAACGAACTAAACAATTATAATACTCTTAAAAGCAATTCCATCCA TATTTATGATAAAATACACACATTAGAAGAATTAAAAATATTAACTCAAG AAATTAATGATAAAAATGTTATCAGAAAAATATATGATATTGAAACCATA

TATCAAAATGATTTACATAACATAGAAGAAATTATTAAAAATATTACAAG CATTTATTACAAAATAAATATCTTAAATATATTAATTATTTGCATCAAAC AAACATATAATAATAATAAATCCATTGAAAGCTTAAAACTTAAAATTAAT AACTTAACAAATTCAACACAAGAATATATTAATCAAATAAAAGCTATCCC AACTAATTTATTACCAGAACATATAAAACAAAAAAGTGTAAGCGAACTAA ATATTTATATGAAACAAATATATGATAAATTAAATGAACATGTTATTAAT AATTTATATACAAAATCAAAGGATTCATTACAATTTTATATTAACGAAAA AAATTATAATAATAATCATGATGATCATAATGATGACCATAATGATGTAT ATAATGATATCAAAGAAAATGAAATATATAAAAATAATAAATTATACGAA TGCATACAAATCAAAAAGGATGTAGACGAATTATATAATATTTATGATCA ACTCTTTAAAAATATATCCCAAAATTATAATAACCACTCCCTTAGTTTTG TACATTCAATAAATAATCATATGCTATCTATTTTTCAAGATACTAAATAT GGAAAACACAAAAATCAACAAATCCTATCCGATATAGAAAATATTATAAA ACAAAATGAACACACAGAATCATATAAAAATTTAGACACAAGTAATATAC AACTAATAAAAGAACAAATTAAATATTTCTTACAAATATTTCATATACTT CAAGAAAATATAACCACTTTCGAAAATCAATATAAAGATTTAATTATCAA AATGAACCATAAAATTAATAATAATCTAAAAGATATTACACATATTGTCA TAAACGATAACAATACATTACAAGAACAAAATCGTATTTATAACGAACTT CAAAACAAAATTAAACAAATAAAAAATGTCAGTGATGTATTCACACATAA TATTAATTACAGTCAACAAATATTAAATTATTCTCAAGCACAAAATAGTT TTTTTAATATATTTATGAAATTTCAAAACATTAATAATGATATTAATAGC AAACGATATAATGTACAAAAAAAAATTACAGAGATAATCAATTCATATGA TATAATAAATTATAACAAAAATAATATCAAAGATATTTATCAACAATTCA AAAATATACAACAACAATTAAATACAACAGAAACGCAATTGAATCATATA AAACAAAATATTAATCATTTCAAATATTTTTATGAATCTCATCAAACCAT ATCTATAGTAAAGAATATGCAAAATGAAAAACTAAAAATTCAAGAATTCA ACAAAAAAATACAACACTTCAAGGAAGAAACACAAATTATGATAAACAAG TTAATACAACCTAGCCACATACATTTACATAAAATGAAATTGCCTATAAC TCAACAGCAACTTAATACAATTCTTCATAGAAATGAACAAACAAAAAATG CTACAAGAAGTTACAATATGAATGAGGAGGAAAATGAAATGGGATATGGC ATAACTAATAAAAGGAAAAATAGTGAGACAAATGACATGATAAATACCAC CATAGGAGACAAGACAAATGTCTTAAAAAATGATGATCAAGAAAAAGGTA AAAGGGGAACTTCCAGAAATAATAATATTCATACAAATGAAAATAATATA AATAATGAACATACAAATGAAAATAATATAAATAATGAACATACAAATGA AAAGAATATAAATAATGAACATGCAAATGAAAAGAATATATATAATGAAC ATACAAATGAAAATAATATAAATTATGAACATCCAAATAATTATCAACAA AAAAATGATGAAAAAATATCACTACAACATAAAACAATTAATACATCACA ACGTACCATAGATGATTCGAATATGGATCGAAATAATAGATATAACACAT CATCACAACAAAAAAATAATTTGCATACAAATAATAATAGTAATAGTAGA TACAACAATAACCATGATAAACAAAATGAACATAAATATAATCAAGGAAA ATCTTCAGGGAAAGATAACGCATATTATAGAATTTTTTATGCTGGAGGAA TTACAGCTGTCTTACTTTTATGTTCAAGTACTGCATTCTTTTTTATAAAA AACTCTAATGAACCACATCATATTTTTAATATTTTTCAAAAGGAATTTAG TGAAGCAGATAATGCACATTCAGAAGAAAAAGAAGAATATCTACCTGTCT ATTTTGATGAAGTTGAAGATGAAGTTGAAGATGAAGTTGAAGATGAAGAT GAAAATGAAAATGAAGTTGAAAATGAAAATGAAGATTTTAATGACATATG A The nucleotide sequence of EBA175 is given below (SEQ ID NO: 23) ATGAAATGTAATATTAGTATATATTTTTTTGCTTCCTTCTTTGTGTTATA TTTTGCAAAAGCTAGGAATGAATATGATATAAAAGAGAATGAAAAATTTT TAGACGTGTATAAAGAAAAATTTAATGAATTAGATAAAAAGAAATATGGA AATGTTCAAAAAACTGATAAGAAAATATTTACTTTTATAGAAAATAAATT AGATATTTTAAATAATTCAAAATTTAATAAAAGATGGAAGAGTTATGGAA CTCCAGATAATATAGATAAAAATATGTCTTTAATAAATAAACATAATAAT GAAGAAATGTTTAACAACAATTATCAATCATTTTTATCGACAAGTTCATT AATAAAGCAAAATAAATATGTTCCTATTAACGCTGTACGTGTGTCTAGGA TATTAAGTTTCCTGGATTCTAGAATTAATAATGGAAGAAATACTTCATCT AATAACGAAGTTTTAAGTAATTGTAGGGAAAAAAGGAAAGGAATGAAATG GGATTGTAAAAAGAAAAATGATAGAAGCAACTATGTATGTATTCCTGATC GTAGAATCCAATTATGCATTGTTAATCTTAGCATTATTAAAACATATACA AAAGAGACCATGAAGGATCATTTCATTGAAGCCTCTAAAAAAGAATCTCA ACTTTTGCTTAAAAAAAATGATAACAAATATAATTCTAAATTTTGTAATG ATTTGAAGAATAGTTTTTTAGATTATGGACATCTTGCTATGGGAAATGAT ATGGATTTTGGAGGTTATTCAACTAAGGCAGAAAACAAAATTCAAGAAGT TTTTAAAGGGGCTCATGGGGAAATAAGTGAACATAAAATTAAAAATTTTA GAAAAAAATGGTGGAATGAATTTAGAGAGAAACTTTGGGAAGCTATGTTA TCTGAGCATAAAAATAATATAAATAATTGTAAAAATATTCCCCAAGAAGA ATTACAAATTACTCAATGGATAAAAGAATGGCATGGAGAATTTTTGCTTG AAAGAGATAATAGATCAAAATTGCCAAAAAGTAAATGTAAAAATAATACA TTATATGAAGCATGTGAGAAGGAATGTATTGATCCATGTATGAAATATAG AGATTGGATTATTAGAAGTAAATTTGAATGGCATACGTTATCGAAAGAAT ATGAAACTCAAAAAGTTCCAAAGGAAAATGCGGAAAATTATTTAATCAAA ATTTCAGAAAACAAGAATGATGCTAAAGTAAGTTTATTATTGAATAATTG TGATGCTGAATATTCAAAATATTGTGATTGTAAACATACTACTACTCTCG TTAAAAGCGTTTTAAATGGTAACGACAATACAATTAAGGAAAAGCGTGAA CATATTGATTTAGATGATTTTTCTAAATTTGGATGTGATAAAAATTCCGT TGATACAAACACAAAGGTGTGGGAATGTAAAAAACCTTATAAATTATCCA CTAAAGATGTATGTGTACCTCCGAGGAGGCAAGAATTATGTCTTGGAAAC ATTGATAGAATATACGATAAAAACCTATTAATGATAAAAGAGCATATTCT TGCTATTGCAATATATGAATCAAGAATATTGAAACGAAAATATAAGAATA AAGATGATAAAGAAGTTTGTAAAATCATAAATAAAACTTTCGCTGATATA AGAGATATTATAGGAGGTACTGATTATTGGAATGATTTGAGCAATAGAAA ATTAGTAGGAAAAATTAACACAAATTCAAATTATGTTCACAGGAATAAAC AAAATGATAAGCTTTTTCGTGATGAGTGGTGGAAAGTTATTAAAAAAGAT GTATGGAATGTGATATCATGGGTATTCAAGGATAAAACTGTTTGTAAAGA AGATGATATTGAAAATATACCACAATTCTTCAGATGGTTTAGTGAATGGG GTGATGATTATTGCCAGGATAAAACAAAAATGATAGAGACTCTGAAGGTT GAATGCAAAGAAAAACCTTGTGAAGATGACAATTGTAAACGTAAATGTAA TTCATATAAAGAATGGATATCAAAAAAAAAAGAAGAGTATAATAAACAAG CCAAACAATACCAAGAATATCAAAAAGGAAATAATTACAAAATGTATTCT GAATTTAAATCTATAAAACCAGAAGTTTATTTAAAGAAATACTCGGAAAA ATGTTCTAACCTAAATTTCGAAGATGAATTTAAGGAAGAATTACATTCAG ATTATAAAAATAAATGTACGATGTGTCCAGAAGTAAAGGATGTACCAATT TCTATAATAAGAAATAATGAACAAACTTCGCAAGAAGCAGTTCCTGAGGA AAGCACTGAAATAGCACACAGAACGGAAACTCGTACGGATGAACGAAAAA ATCAGGAACCAGCAAATAAGGATTTAAAGAATCCACAACAAAGTGTAGGA GAGAACGGAACTAAAGATTTATTACAAGAAGATTTAGGAGGATCACGAAG TGAAGACGAAGTGACACAAGAATTTGGAGTAAATCATGGAATACCTAAGG GTGAGGATCAAACGTTAGGAAAATCTGACGCCATTCCAAACATAGGCGAA CCCGAAACGGGAATTTCCACTACAGAAGAAAGTAGACATGAAGAAGGCCA CAATAAACAAGCATTGTCTACTTCAGTCGATGAGCCTGAATTATCTGATA CACTTCAATTGCATGAAGATACTAAAGAAAATGATAAACTACCCCTAGAA TCATCTACAATCACATCTCCTACGGAAAGTGGAAGTTCTGATACAGAGGA AACTCCATCTATCTCTGAAGGACCAAAAGGAAATGAACAAAAAAAACGTG ATGACGATAGTTTGAGTAAAATAAGTGTATCACCAGAAAATTCAAGACCT GAAACTGATGCTAAAGATACTTCTAACTTGTTAAAATTAAAAGGAGATGT TGATATTAGTATGCCTAAAGCAGTTATTGGGAGCAGTCCTAATGATAATA TAAATGTTACTGAACAAGGGGATAATATTTCCGGGGTGAATTCTAAACCT TTATCTGATGATGTACGTCCAGATAAAAATCATGAAGAGGTGAAAGAACA TACTAGTAATTCTGATAATGTTCAACAGTCTGGAGGAATTGTTAATATGA ATGTTGAGAAAGAACTAAAAGATACTTTAGAAAATCCTTCTAGTAGCTTG GATGAAGGAAAAGCACATGAAGAATTATCAGAACCAAATCTAAGCAGTGA CCAAGATATGTCTAATACACCTGGACCTTTGGATAACACCAGTGAAGAAA CTACAGAAAGAATTAGTAATAATGAATATAAAGTTAACGAGAGGGAAGGT GAGAGAACGCTTACTAAGGAATATGAAGATATTGTTTTGAAAAGTCATAT GAATAGAGAATCAGACGATGGTGAATTATATGACGAAAATTCAGACTTAT CTACTGTAAATGATGAATCAGAAGACGCTGAAGCAAAAATGAAAGGAAAT GATACATCTGAAATGTCGCATAATAGTAGTCAACATATTGAGAGTGATCA ACAGAAAAACGATATGAAAACTGTTGGTGATTTGGGAACCACACATGTAC AAAACGAAATTAGTGTTCCTGTTACAGGAGAAATTGATGAAAAATTAAGG GAAAGTAAAGAATCAAAAATTCATAAGGCTGAAGAGGAAAGATTAAGTCA TACAGATATACATAAAATTAATCCTGAAGATAGAAATAGTAATACATTAC ATTTAAAAGATATAAGAAATGAGGAAAACGAAAGACACTTAACTAATCAA AACATTAATATTAGTCAAGAAAGGGATTTGCAAAAACATGGATTCCATAC CATGAATAATCTACATGGAGATGGAGTTTCCGAAAGAAGTCAAATTAATC

ATAGTCATCATGGAAACAGACAAGATCGGGGGGGAAATTCTGGGAATGTT TTAAATATGAGATCTAATAATAATAATTTTAATAATATTCCAAGTAGATA TAATTTATATGATAAAAAATTAGATTTAGATCTTTATGAAAACAGAAATG ATAGTACAACAAAAGAATTAATAAAGAAATTAGCAGAAATAAATAAATGT GAGAACGAAATTTCTGTAAAATATTGTGACCATATGATTCATGAAGAAAT CCCATTAAAAACATGCACTAAAGAAAAAACAAGAAATCTGTGTTGTGCAG TATCAGATTACTGTATGAGCTATTTTACATATGATTCAGAGGAATATTAT AATTGTACGAAAAGGGAATTTGATGATCCATCTTATACATGTTTCAGAAA GGAGGCTTTTTCAAGTATGCCATATTATGCAGGAGCAGGTGTGTTATTTA TTATATTGGTTATTTTAGGTGCTTCACAAGCCAAATATCAAAGGTTAGAA AAAATAAATAAAAATAAAATTGAGAAGAATGTAAATTAA The nucleotide sequence of EBA181 is given below (SEQ ID NO: 24) ATGAAAGGGAAAATGAATATGTGTTTGTTTTTTTTCTATTCTATATTATA TGTTGTATTATGTACCTATGTATTAGGTATAAGTGAAGAGTATTTGAAGG AAAGGCCCCAAGGTTTAAATGTTGAGACTAATAATAATAATAATAATAAT AATAATAATAATAGTAATAGTAACGATGCGATGTCTTTTGTAAATGAAGT AATAAGGTTTATAGAAAACGAGAAGGATGATAAAGAAGATAAAAAAGTGA AGATAATATCTAGACCTGTTGAGAATACATTACATAGATATCCAGTTAGT TCTTTTCTGAATATCAAAAAGTATGGTAGGAAAGGGGAATATTTGAATAG AAATAGTTTTGTTCAAAGATCATATATAAGGGGTTGTAAAGGAAAAAGAA GCACACATACATGGATATGTGAAAATAAAGGGAATAATAATATATGTATT CCTGATAGACGTGTACAATTATGTATAACAGCTCTTCAAGATTTAAAAAA TTCAGGATCTGAAACGACTGATAGAAAATTATTAAGAGATAAAGTATTTG ATTCAGCTATGTATGAAACTGATTTGTTATGGAATAAATATGGTTTTCGT GGATTTGATGATTTTTGTGACGATGTAAAAAATAGTTATTTAGATTATAA AGATGTTATATTTGGAACCGATTTAGATAAAAATAATATATCAAAGTTAG TAGAGGAATCATTAAAACGTTTTTTTAAAAAAGATAGTAGTGTACTTAAT CCTACTGCTTGGTGGAGAAGGTATGGAACAAGACTATGGAAAACTATGAT ACAGCCATATGCTCATTTAGGATGTAGAAAACCTGATGAGAATGAACCTC AGATAAATAGATGGATTCTGGAATGGGGGAAATATAATTGTAGATTAATG AAGGAGAAAGAAAAATTGTTAACAGGAGAATGTTCTGTTAATAGAAAAAA ATCTGACTGCTCAACCGGATGTAATAATGAGTGTTATACCTATAGGAGTC TTATTAATAGACAAAGATATGAGGTCTCTATATTAGGAAAAAAATATATT AAAGTAGTACGATATACTATATTTAGGAGAAAAATAGTTCAACCTGATAA TGCTTTGGATTTTTTAAAATTAAATTGTTCTGAGTGTAAGGATATTGATT TTAAACCCTTTTTTGAATTTGAATATGGTAAATATGAAGAAAAATGTATG TGTCAATCATATATTGATTTAAAAATCCAATTTAAAAATAATGATATTTG TTCATTTAATGCTCAAACAGATACTGTTTCTAGCGATAAAAGATTTTGTC TTGAAAAGAAAGAATTTAAACCATGGAAATGTGATAAAAATTCTTTTGAA ACAGTTCATCATAAAGGTGTATGTGTGTCACCGAGAAGACAAGGTTTTTG TTTAGGAAATTTGAACTATCTACTGAATGATGATATTTATAATGTACATA ATTCACAACTACTTATCGAAATTATAATGGCTTCTAAACAAGAAGGAAAG TTATTATGGAAAAAACATGGAACAATACTTGATAACCAGAATGCATGCAA ATATATAAATGATAGTTATGTTGATTATAAAGATATAGTTATTGGAAATG ATTTATGGAATGATAACAACTCTATAAAAGTTCAAAATAATTTAAATTTA ATTTTTGAAAGAAATTTTGGTTATAAAGTTGGAAGAAATAAACTCTTTAA AACAATTAAAGAATTAAAAAATGTATGGTGGATATTAAATAGAAATAAAG TATGGGAATCAATGAGATGTGGAATTGACGAAGTAGATCAACGTAGAAAA ACTTGTGAAAGAATAGATGAACTAGAAAACATGCCACAATTCTTTAGATG GTTTTCACAATGGGCACATTTCTTTTGTAAGGAAAAAGAATATTGGGAAT TAAAATTAAATGATAAATGTACAGGTAATAATGGAAAATCCTTATGTCAG GATAAAACATGTCAAAATGTGTGTACTAATATGAATTATTGGACATATAC TAGAAAATTAGCTTATGAAATACAATCCGTAAAATATGATAAAGATAGAA AATTATTTAGTCTTGCTAAAGACAAAAATGTAACTACATTTTTAAAGGAA AATGCAAAAAATTGTTCTAATATAGATTTTACAAAAATATTCGATCAGCT TGACAAACTCTTTAAGGAAAGATGTTCATGTATGGATACACAAGTTTTAG AAGTAAAAAACAAAGAAATGTTATCTATAGACTCAAATAGTGAAGATGCG ACAGATATAAGTGAGAAAAATGGAGAGGAAGAATTATATGTAAATCACAA TTCTGTGAGTGTCGCAAGTGGTAATAAAGAAATCGAAAAGAGTAAGGATG AAAAGCAACCTGAAAAAGAAGCAAAACAAACTAATGGAACTTTAACCGTA CGAACTGACAAAGATTCAGATAGAAACAAAGGAAAAGATACAGCTACTGA TACAAAAAATTCACCTGAAAATTTAAAAGTACAGGAACATGGAACAAATG GAGAAACAATAAAAGAAGAACCACCAAAATTACCTGAATCATCTGAAACA TTACAATCACAAGAACAATTAGAAGCAGAAGCACAAAAACAAAAACAAGA AGAAGAACCAAAAAAAAAACAAGAAGAAGAACCAAAAAAAAAACAAGAAG AAGAACAAAAACGAGAACAAGAACAAAAACAAGAACAAGAAGAAGAAGAA CAAAAACAAGAAGAAGAACAACAAATACAAGATCAATCACAAAGTGGATT AGATCAATCCTCAAAAGTAGGAGTAGCGAGTGAACAAAATGAAATTTCTT CAGGACAAGAACAAAACGTAAAAAGCTCTTCACCTGAAGTAGTTCCACAA GAAACAACTAGTGAAAATGGGTCATCACAAGACACAAAAATATCAAGTAC TGAACCAAATGAGAATTCTGTTGTAGATAGAGCAACAGATAGTATGAATT TAGATCCTGAAAAGGTTCATAATGAAAATATGAGTGATCCAAATACAAAT ACTGAACCAGATGCATCTTTAAAAGATGATAAGAAGGAAGTTGATGATGC CAAAAAAGAACTTCAATCTACTGTATCAAGAATTGAATCTAATGAACAGG ACGTTCAAAGTACACCACCCGAAGATACTCCTACTGTTGAAGGAAAAGTA GGAGATAAAGCAGAAATGTTAACTTCTCCGCATGCGACAGATAATTCTGA GTCGGAATCAGGTTTAAATCCAACTGATGACATTAAAACAACTGATGGTG TTGTTAAAGAACAAGAAATATTAGGGGGAGGTGAAAGTGCAACTGAAACA TCAAAAAGTAATTTAGAAAAACCTAAGGATGTTGAACCTTCTCATGAAAT ATCTGAACCTGTTCTTTCTGGTACAACTGGTAAAGAAGAATCAGAGTTAT TAAAAAGTAAATCGATAGAGACGAAGGGGGAAACAGATCCTCGAAGTAAT GACCAAGAAGATGCTACTGACGATGTTGTAGAAAATAGTAGAGATGATAA TAATAGTCTCTCTAATAGCGTAGATAATCAAAGTAATGTTTTAAATAGAG AAGATCCTATTGCTTCTGAAACTGAAGTTGTAAGTGAACCTGAGGATTCA AGTAGGATAATCACTACAGAAGTTCCAAGTACTACTGTAAAACCCCCTGA TGAAAAACGATCTGAAGAAGTAGGAGAAAAAGAAGCTAAAGAAATTAAAG TAGAACCTGTTGTACCAAGAGCCATTGGAGAACCAATGGAAAATTCTGTG AGCGTACAGTCCCCTCCTAATGTAGAAGATGTTGAAAAAGAAACATTGAT ATCTGAGAATAATGGATTACATAATGATACACACAGAGGAAATATCAGTG AAAAGGATTTAATCGATATTCATTTGTTAAGAAATGAAGCGGGTAGTACA ATATTAGATGATTCTAGAAGAAATGGAGAAATGACAGAAGGTAGCGAAAG TGATGTTGGAGAATTACAAGAACATAATTTTAGCACACAACAAAAAGATG AAAAAGATTTTGACCAAATTGCGAGCGATAGAGAAAAAGAAGAAATTCAA AAATTACTTAATATAGGACATGAAGAGGATGAAGATGTATTAAAAATGGA TAGAACAGAGGATAGTATGAGTGATGGAGTTAATAGTCATTTGTATTATA ATAATCTATCAAGTGAAGAAAAAATGGAACAATATAATAATAGAGATGCT TCTAAAGATAGAGAAGAAATATTGAATAGGTCAAACACAAATACATGTTC TAATGAACATTCATTAAAATATTGTCAATATATGGAAAGAAATAAGGATT TATTAGAAACATGTTCTGAAGACAAAAGGTTACATTTATGTTGTGAAATA TCAGATTATTGTTTAAAATTTTTCAATCCTAAATCGATAGAATACTTTGA TTGTACACAAAAAGAATTTGATGACCCTACATATAATTGTTTTAGAAAAC AAAGATTTACAAGTATGCATTATATTGCCGGGGGTGGTATAATAGCCCTT TTATTGTTTATTTTAGGTTCAGCCAGCTATAGGAAGAATTTGGATGATGA AAAAGGATTCTACGATTCTAATTTAAATGATTCTGCTTTTGAATATAATA ATAATAAATATAATAAATTACCTTATATGTTTGATCAACAAATAAATGTA GTAAATTCTGATTTATATTCGGAGGGTATTTATGATGACACAACGACATT TTAA The nucleotide sequence of EBA140 is given below (SEQ ID NO: 25) ATGAAAGGATATTTTAATATATATTTTTTAATTCCTTTAATTTTTTTATA TAATGTAATAAGAATAAATGAATCAATTATAGGTAGAACACTTTATAATA GACAAGATGAATCATCAGATATTTCAAGGGTAAATTCACCCGAATTAAAT AATAATCATAAAACTAATATATATGATTCAGATTACGAAGATGTAAATAA TAAATTAATAAACAGTTTTGTAGAAAATAAAAGTGTGAAAAAAAAAAGGT CTTTAAGTTTTATAAATAATAAAACAAAATCATATGATATAATTCCACCT TCATATTCATATAGGAATGATAAATTTAATTCACTTTCCGAAAATGAAGA TAATTCTGGAAATACAAATAGTAATAATTTCGCAAATACTTCTGAAATAT CTATTGGAAAGGATAATAAACAATATACGTTTATACAGAAACGTACTCAT TTGTTTGCTTGTGGAATAAAAAGAAAATCAATAAAATGGATATGTCGAGA AAACAGTGAGAAAATTACTGTATGTGTTCCTGATAGAAAAATACAACTAT GTATTGCAAATTTTTTAAACTCACGTTTAGAAACAATGGAAAAGTTTAAA GAAATATTTTTAATTTCTGTTAATACAGAAGCAAAATTATTATATAACAA AAATGAAGGAAAAGATCCCTCAATATTTTGTAATGAATTAAGAAATAGTT TTTCAGATTTTAGAAATTCATTTATAGGTGATGATATGGATTTTGGTGGT AATACAGATAGAGTCAAAGGATATATTAATAAGAAGTTCTCCGATTATTA

TAAGGAAAAAAATGTTGAAAAATTAAATAATATCAAAAAAGAATGGTGGG AAAAAAATAAAGCAAATTTGTGGAATCACATGATAGTAAATCATAAAGGA AACATAAGTAAAGAATGTGCCATAATTCCCGCGGAAGAACCTCAAATTAA TCTATGGATAAAAGAATGGAATGAAAACTTCTTGATGGAAAAGAAGAGAT TGTTTTTAAATATAAAAGATAAGTGTGTTGAAAACAAAAAATATGAAGCA TGTTTTGGTGGATGTAGGCTTCCATGTTCTTCATATACATCATTTATGAA AAAAAGTAAAACACAAATGGAGGTTTTGACGAACTTGTATAAAAAGAAAA ATTCAGGAGTGGATAAAAATAATTTTCTGAATGATCTTTTTAAAAAAAAT AATAAAAATGATTTAGATGATTTTTTCAAAAATGAAAAGGAATATGATGA TTTATGTGATTGCAGATATACTGCTACTATTATTAAAAGTTTTCTAAATG GTCCTGCTAAAAATGATGTAGATATTGCATCACAAATTAATGTTAATGAT CTTCGAGGGTTTGGATGTAATTATAAAAGTAATAATGAAAAAAGTTGGAA TTGTACTGGAACATTTACGAACAAATTTCCTGGTACATGTGAACCCCCCA GAAGACAAACTTTATGTCTTGGACGTACATATCTTTTACATCGTGGTCAT GAGGAAGATTATAAGGAACATTTACTTGGAGCTTCAATATATGAGGCGCA ATTATTAAAATATAAATATAAGGAAAAGGATGAAAATGCATTGTGTAGTA TAATACAAAATAGTTATGCAGATTTGGCAGATATTATCAAGGGATCGGAT ATAATAAAAGATTATTATGGTAAAAAAATGGAAGAAAATTTAAATAAAGT AAACAAAGATAAAAAACGTAATGAAGAATCTTTGAAGATTTTTCGTGAAA AATGGTGGGATGAAAACAAGGAGAATGTATGGAAAGTAATGTCAGCAGTA CTTAAAAATAAGGAAACGTGTAAAGATTATGATAAGTTTCAAAAGATTCC TCAATTTTTAAGATGGTTTAAGGAATGGGGAGACGATTTTTGTGAGAAAA GAAAAGAGAAAATATATTCATTTGAGTCATTTAAGGTAGAATGTAAGAAA AAAGATTGTGATGAAAATACATGTAAAAATAAATGTAGTGAATATAAAAA ATGGATAGATTTGAAAAAAAGTGAATATGAGAAACAAGTTGATAAATACA CAAAAGATAAAAATAAAAAGATGTATGATAATATTGATGAAGTAAAAAAT AAAGAAGCCAATGTTTACTTAAAAGAAAAATCCAAAGAATGTAAAGATGT AAATTTCGATGATAAAATTTTTAATGAGAGTCCAAATGAATATGAAGATA TGTGTAAAAAATGTGATGAAATAAAATATTTAAATGAAATTAAATATCCT AAAACAAAACACGATATATATGATATAGATACATTTTCAGATACTTTTGG TGATGGAACGCCAATAAGTATTAATGCAAATATAAATGAACAACAAAGTG GGAAGGATACCTCAAATACTGGAAATAGTGAAACATCAGATTCACCGGTT AGTCATGAACCAGAAAGTGATGCTGCAATTAATGTAGAAAAGTTAAGTGG TGATGAAAGTTCAAGTGAAACAAGAGGAATATTAGATATTAATGATCCAA GTGTTACGAACAATGTCAATGAAGTTCATGATGCTTCAAATACACAAGGT AGTGTTTCAAATACTTCTGATATAACGAATGGACATTCGGAAAGTTCCCT GAATAGAACAACGAATGCACAAGATATTAAAATAGGCCGTTCAGGAAATG AACAAAGTGATAATCAAGAAAATAGTTCACATTCTAGTGATAATTCAGGT TCTTTGACAATCGGACAAGTTCCTTCAGAGGATAATACCCAAAATACATA TGATTCACAAAACCCTCATAGAGATACACCTAATGCATTAGCATCTTTAC CATCAGATGATAAAATTAATGAAATAGAGGGTTTCGATTCTAGTAGAGAT AGTGAAAATGGTAGGGGTGATACAACATCAAATACTCATGATGTACGTCG TACGAATATAGTAAGTGAGAGACGTGTGAATAGCCATGATTTTATTAGAA ACGGAATGGCGAATAACAATGCACATCATCAATATATAACGCAAATTGAG AATAATGGAATCATAAGAGGACAAGAGGAAAGTGCGGGGAATAGTGTTAA TTATAAAGATAATCCAAAGAGGAGTAATTTTTCCTCCGAAAATGATCATA AGAAAAATATACAGGAATATAATTCTAGAGATACTAAAAGAGTAAGGGAG GAAATAATTAAATTATCGAAGCAAAATAAATGCAACAATGAATATTCCAT GGAATATTGTACCTATTCTGACGAAAGGAATAGTTCACCGGGTCCTTGTT CTAGAGAAGAAAGAAAGAAATTATGTTGTCAGATTTCAGATTATTGTTTA AAATATTTTAACTTTTATTCAATTGAATATTATAATTGTATAAAATCTGA AATTAAAAGTCCAGAATATAAATGTTTTAAAAGCGAGGGTCAATCAAGCA TTCCTTATTTTGCTGCTGGAGGTATTTTAGTTGTAATAGTCTTACTTTTG AGTTCAGCATCTAGAATGGGGAAAAGTAATGAAGAATATGATATAGGAGA ATCTAATATAGAAGCAACTTTTGAAGAAAATAATTATTTAAATAAACTAT CGCGCATATTTAATCAAGAAGTACAAGAGACAAACATTTCAGATTATTCC GAGTACAATTATAATGAAAAGAATATGTATTAA The nucleotide sequence of Rh2a is given below (SEQ ID NO: 26) ATGAAGACCACACTATTTTGTAGCATATCTTTTTGTAATATTATATTTTT CTTCTTAGAATTAAGTCATGAGCATTTTGTTGGACAATCAAGTAATACCC ATGGAGCATCTTCAGTTACTGATTTTAATTTTAGTGAGGAGAAAAATTTA AAAAGTTTTGAAGGGAAGAATAATAATAATGATAATTATGCTTCAATTAA TCGTTTATATAGGAAGAAACCATATATGAAGAGATCGCTTATAAATTTAG AAAATGATCTTTTTAGATTAGAACCTATATCTTATATTCAAAGATATTAT AAGAAGAATATAAACAGATCTGATATTTTTCATAATAAAAAAGAAAGAGG TTCCAAAGTATATTCAAATGTGTCTTCATTCCATTCTTTTATTCAAGAGG GTAAAGAAGAAGTTGAGGTTTTTTCTATATGGGGTAGTAATAGCGTTTTA GATCATATAGATGTTCTTAGGGATAATGGAACTGTCGTTTTTTCTGTTCA ACCATATTACCTTGATATATATACGTGTAAAGAAGCCATATTATTTACTA CATCATTTTACAAGGATCTTGATAAAAGTTCAATTACAAAAATTAATGAA GATATTGAAAAATTTAACGAAGAAATAATCAAGAATGAAGAACAATGTTT AGTTGGTGGGAAAACAGATTTTGATAATTTACTTATAGTTTTAGAAAATG CGGAAAAAGCAAATGTTAGAAAAACATTATTTGATAATACATTTAATGAT TATAAAAATAAGAAATCTAGTTTTTACAATTGTTTGAAAAATAAAAAAAA TGATTATGATAAGAAAATAAAGAATATAAAGAATGAGATTACAAAATTGT TAAAAAATATTGAAAGTACAGGAAATATGTGTAAAACGGAATCATATGTT ATGAATAATAATTTATATCTATTAAGAGTGAATGAAGTTAAAAGTACACC TATTGATTTATACTTAAATCGAGCAAAAGAGCTATTAGAATCAAGTAGCA AATTAGTTAATCCTATAAAAATGAAATTAGGTGATAATAAGAACATGTAC TCTATTGGATATATACATGACGAAATTAAAGATATTATAAAAAGATATAA TTTTCATTTGAAACATATAGAAAAAGGAAAAGAATATATAAAAAGGATAA CACAAGCAAATAATATTGCAGACAAAATGAAGAAAGATGAACTTATAAAA AAAATTTTTGAATCCTCAAAACATTTTGCTAGTTTTAAATATAGCAATGA AATGATAAGCAAATTAGATTCGTTATTTATAAAAAATGAAGAAATACTTA ATAATTTATTCAATAATATATTTAATATATTCAAGAAAAAATATGAAACA TATGTAGATATGAAAACAATTGAATCTAAATATACAACAGTAATGACTCT ATCAGAACATTTATTAGAATATGCAATGGATGTTTTAAAAGCTAACCCTC AAAAACCTATTGATCCAAAAGCAAATCTGGATTCAGAAGTAGTAAAATTA CAAATAAAAATAAATGAGAAATCAAATGAATTAGATAATGCTATAAGTCA AGTAAAAACACTAATAATAATAATGAAATCATTTTATGATATTATTATAT CTGAAAAAGCCTCTATGGATGAAATGGAAAAAAAGGAATTATCCTTAAAT AATTATATTGAAAAAACAGATTATATATTACAAACGTATAATATTTTTAA GTCTAAAAGTAATATTATAAATAATAATAGTAAAAATATTAGTTCTAAAT ATATAACTATAGAAGGGTTAAAAAATGATATTGATGAATTAAATAGTCTT ATATCATATTTTAAGGATTCACAAGAAACATTAATAAAAGATGATGAATT AAAAAAAAACATGAAAACGGATTATCTTAATAACGTGAAATATATAGAAG AAAATGTTACTCATATAAATGAAATTATATTATTAAAAGATTCTATAACT CAACGAATAGCAGATATTGATGAATTAAATAGTTTAAATTTAATAAATAT AAATGATTTTATAAATGAAAAGAATATATCACAAGAGAAAGTATCATATA ATCTTAATAAATTATATAAAGGAAGTTTTGAAGAATTAGAATCTGAACTA TCTCATTTTTTAGACACAAAATATTTGTTTCATGAAAAAAAAAGTGTAAA TGAACTTCAAACAATTTTAAATACATCAAATAATGAATGTGCTAAATTAA ATTTTATGAAATCTGATAATAATAATAATAATAATAATAGTAATATAATT AACTTGTTAAAAACTGAATTAAGTCATCTATTAAGTCTTAAAGAAAATAT AATAAAAAAACTTTTAAATCATATAGAACAAAATATTCAAAACTCATCAA ATAAGTATACTATTACATATACTGATATTAATAATAGAATGGAAGATTAT AAAGAAGAAATCGAAAGTTTAGAAGTATATAAACATACCATTGGAAATAT ACAAAAAGAATATATATTACATTTATATGAGAATGATAAAAATGCTTTAG CTGTACATAATACATCAATGCAAATATTACAATATAAAGATGCTATACAA AATATAAAAAATAAAATTTCTGATGATATAAAAATTTTAAAGAAATATAA AGAAATGAATCAAGATTTATTAAATTATTATGAAATTCTAGATAAAAAAT TAAAAGATAATACATATATCAAAGAAATGCATACTGCTTCTTTAGTTCAA ATAACTCAATATATTCCTTATGAAGATAAAACAATAAGTGAACTTGAGCA AGAATTTAATAATAATAATCAAAAACTTGATAATATATTACAAGATATCA ATGCAATGAATTTAAATATAAATATTCTCCAAACCTTAAATATTGGTATA AATGCATGTAATACAAATAATAAAAATGTAGAACACTTACTTAACAAGAA AATTGAATTAAAAAATATATTAAATGATCAAATGAAAATTATAAAAAATG ATGATATAATTCAAGATAATGAAAAAGAAAACTTTTCAAATGTTTTAAAA AAAGAAGAGGAAAAATTAGAAAAAGAATTAGATGATATCAAATTTAATAA TTTGAAAATGGACATTCATAAATTGTTGAATTCGTATGACCATACAAAGC AAAATATAGAAAGCAATCTTAAAATAAATTTAGATTCTTTCGAAAAGGAA AAAGATAGTTGGGTTCATTTTAAAAGTACTATAGATAGTTTATATGTGGA ATATAACATATGTAATCAAAAGACTCATAATACTATCAAACAACAAAAAA ATGATATCATAGAACTTATTTATAAACGTATAAAAGATATAAATCAAGAA ATAATCGAAAAGGTAGATAATTATTATTCCCTGTCAGATAAAGCCTTAAC

TAAACTTAAATCTATTCATTTTAATATTGATAAGGAAAAATATAAAAATC CCAAAAGTCAAGAAAATATTAAATTATTAGAAGATAGAGTTATGATACTT GAGAAAAAGATTAAGGAAGATAAAGATGCTTTAATACAAATTAAGAATTT ATCACATGATCATTTTGTAAATGCTGATAATGAGAAAAAAAAGCAGAAGG AGAAGGAGGAGGACGACGAACAAACACACTATAGTAAAAAAAGAAAAGTA ATGGGAGATATATATAAGGATATTAAAAAAAACCTAGATGAGTTAAATAA TAAAAATTTGATAGATATTACTTTAAATGAAGCAAATAAAATAGAATCAG AATATGAAAAAATATTAATTGATGATATTTGTGAACAAATTACAAATGAA GCAAAAAAAAGTGATACTATTAAGGAAAAAATCGAATCATATAAAAAAGA TATTGATTATGTAGATGTGGACGTTTCCAAAACGAGGAACGATCATCATT TGAATGGAGATAAAATACATGATTCTTTTTTTTATGAAGATACATTAAAT TATAAAGCATATTTTGATAAATTAAAAGATTTATATGAAAATATAAACAA GTTAACAAATGAATCAAATGGATTAAAAAGTGATGCTCATAATAACAACA CACAAGTTGATAAACTAAAAGAAATTAATTTACAAGTATTCAGCAATTTA GGAAATATAATTAAATATGTTGAAAAACTTGAGAATACATTACATGAACT TAAAGATATGTACGAATTTCTAGAAACGATCGATATTAATAAAATATTAA AAAGTATTCATAATAGCATGAAGAAATCAGAAGAATATAGTAATGAAACG AAAAAAATATTTGAACAATCAGTAAATATAACTAATCAATTTATAGAAGA TGTTGAAATATTGAAAACGTCTATTAACCCAAACTATGAAAGCTTAAATG ATGATCAAATTGATGATAATATAAAATCACTTGTTCTAAAGAAAGAGGAA ATATCCGAAAAAAGAAAACAAGTGAATAAATACATAACAGATATTGAATC TAATAAAGAACAATCAGATTTACATTTACGATATGCATCTAGAAGTATAT ATGTTATTGATCTTTTTATAAAACATGAAATAATAAATCCTAGCGATGGA AAAAATTTTGATATTATAAAGGTTAAAGAAATGATAAATAAAACCAAACA AGTTTCAAATGAAGCTATGGAATATGCTAATAAAATGGATGAAAAAAATA AGGACATTATAAAAATAGAAAATGAACTTTATAATTTAATTAATAATAAC ATCCGTTCATTAAAAGGGGTAAAATATGAAAAAGTTAGGAAACAAGCAAG AAATGCAATTGATGATATAAATAATATACATTCTAATATTAAAACGATTT TAACCAAATCTAAAGAACGATTAGATGAGATTAAGAAACAACCTAACATT AAAAGAGAAGGTGATGTTTTAAATAATGATAAAACCAAAATAGCTTATAT TACAATACAAATAAATAACGGAAGAATAGAATCTAATTTATTAAATATAT TAAATATGAAACATAACATAGATACTATCTTGAATAAAGCTATGGATTAT ATGAATGATGTATCAAAATCTGACCAGATTGTTATTAATATAGATTCTTT GAATATGAACGATATATATAATAAGGATAAAGATCTTTTAATAAATATTT TAAAAGAAAAACAGAATATGGAGGCAGAATATAAAAAAATGAATGAAATG TATAATTACGTTAATGAAACAGAAAAAGAAATAATAAAACATAAAAAAAA TTATGAAATAAGAATTATGGAACATATAAAAAAAGAAACAAATGAAAAAA AAAAAAAATTTATGGAATCTAATAACAAATCATTAACTACTTTAATGGAT TCATTCAGATCTATGTTTTATAATGAATATATAAATGATTATAATATAAA TGAAAATTTTGAAAAACATCAAAATATATTGAATGAAATATATAATGGAT TTAATGAATCATATAATATTATTAATACAAAAATGACTGAAATTATAAAT GATAATTTAGATTATAATGAAATAAAAGAAATTAAAGAAGTAGCACAAAC AGAATATGATAAACTTAATAAAAAAGTTGATGAATTAAAAAATTATTTGA ATAATATTAAAGAACAAGAAGGACATCGATTAATTGATTATATAAAAGAA AAAATATTTAACTTATATATAAAATGTTCAGAACAACAAAATATAATAGA TGATTCTTATAATTATATTACAGTTAAAAAACAGTATATTAAAACTATTG AAGATGTGAAATTTTTATTAGATTCATTGAACACAATAGAAGAAAAAAAT AAATCAGTAGCAAATCTAGAAATTTGTACTAATAAAGAAGATATAAAAAA TTTACTTAAACATGTTATAAAGTTGGCAAATTTTTCAGGTATTATTGTAA TGTCTGATACAAATACGGAAATAACTCCAGAAAATCCTTTAGAAGATAAT GATTTATTAAATTTACAATTATATTTTGAAAGAAAACATGAAATAACATC AACATTGGAAAATGATTCTGATTTAGAGTTAGATCATTTAGGTAGTAATT CGGATGAATCTATAGATAATTTAAAGGTTTATAATGATATTATAGAATTA CACACATATTCAACACAAATTCTTAAATATTTAGATAATATTCAAAAACT TAAAGGAGATTGCAATGATTTAGTAAAGGATTGTAAAGAATTACGTGAAT TGTCTACGGCATTATATGATTTAAAAATACAAATTACTAGTGTAATTAAT AGAGAAAATGATATTTCAAATAATATTGATATTGTATCTAATAAATTAAA TGAAATAGATGCTATACAATATAATTTTGAAAAATATAAAGAAATTTTTG ATAATGTAGAAGAATATAAAACATTAGATGATACAAAAAATGCATATATT GTAAAAAAGGCTGAAATTTTAAAAAATGTAGATATAAATAAAACAAAAGA AGATTTAGATATATATTTTAATGACTTAGACGAATTAGAAAAATCTCTTA CATTATCATCTAATGAAATGGAAATTAAAACAATAGTACAGAACTCATAT AATTCCTTTTCTGATATTAATAAGAACATTAATGATATTGATAAAGAAAT GAAAACACTGATCCCTATGCTTGATGAATTATTAAATGAAGGACATAATA TTGATATATCATTATATAATTTTATAATTAGAAATATTCAGATTAAAATA GGTAATGATATAAAAAATATAAGAGAACAGGAAAATGATACTAATATATG TTTTGAGTATATTCAAAATAATTATAATTTTATAAAGAGTGATATAAGTA TCTTCAATAAATATGATGATCATATAAAAGTAGATAATTATATATCTAAT AATATTGATGTTGTCAATAAACATAATAGTTTATTAAGTGAACATGTTAT AAATGCTACAAATATTATAGAGAATATTATGACAAGTATTGTCGAAATAA ATGAAGATACAGAAATGAATTCTTTAGAAGAGACACAAGACAAATTATTA GAACTATATGAAAATTTTAAGAAAGAAAAAAATATTATAAATAATAATTA TAAAATAGTACATTTTAATAAATTAAAAGAAATAGAAAATAGTTTAGAGA CATATAATTCAATATCAACAAACTTTAATAAAATAAATGAAACACAAAAT ATAGATATTTTAAAAAATGAATTTAATAATATCAAAACAAAAATTAATGA TAAAGTAAAAGAATTAGTTCATGTTGATAGTACATTAACACTTGAATCAA TTCAAACGTTTAATAATTTATATGGTGACTTGATGTCTAATATACAAGAT GTATATAAATATGAAGATATTAATAATGTTGAATTGAAAAAGGTGAAATT ATATATAGAAAATATTACAAATTTATTAGGAAGAATAAACACATTCATAA AGGAGTTAGACAAATATCAGGATGAAAATAATGGTATAGATAAGTATATA GAAATCAATAAGGAAAATAATAGTTATATAATAAAATTGAAAGAAAAAGC CAATAATCTAAAGGAAAATTTCTCAAAATTATTACAAAATATAAAAAGAA ATGAAACTGAATTATATAATATAAATAACATAAAGGATGATATTATGAAT ACGGGGAAATCTGTAAATAATATAAAACAAAAATTTTCTAGTAATTTGCC ACTAAAAGAAAAATTATTTCAAATGGAAGAGATGTTACTTAATATAAATA ATATTATGAATGAAACGAAAAGAATATCAAACACGGCTGCATATACTAAT ATAACTCTCCAGGATATTGAAAATAATAAAAATAAAGAAAATAATAATAT GAATATTGAAACAATTGATAAATTAATAGATCATATAAAAATACATAATG AAAAAATACAAGCAGAAATATTAATAATTGATGATGCCAAAAGAAAAGTA AAGGAAATAACAGATAATATTAACAAGGCTTTTAATGAAATTACAGAAAA TTATAATAATGAAAATAATGGGGTAATTAAATCTGCAAAAAATATTGTCG ATGAAGCTACTTATTTAAATAATGAATTAGATAAATTTTTATTGAAATTG AATGAATTATTAAGTCATAATAATAATGATATAAAGGATCTTGGTGATGA AAAATTAATATTAAAAGAAGAAGAAGAAAGAAAAGAAAGAGAAAGATTGG AAAAAGCGAAACAAGAAGAAGAAAGAAAAGAGAGAGAAAGAATAGAAAAA GAAAAACAAGAGAAAGAAAGACTGGAAAGAGAGAAACAAGAACAACTAAA AAAAGAAGAAGAATTAAGAAAAAAAGAGCAGGAAAGACAAGAACAACAAC AAAAAGAAGAAGCATTAAAAAGACAAGAACAAGAACGACTACAAAAAGAA GAAGAATTAAAAAGACAAGAGCAAGAAAGGCTGGAAAGAGAGAAACAAGA ACAACTACAAAAAGAAGAAGAATTAAAAAGACAAGAACAAGAACGACTAC AAAAAGAAGAAGCATTAAAAAGACAAGAACAAGAACGACTACAAAAAGAA GAAGAATTAAAAAGACAAGAGCAAGAAAGGCTGGAAAGAGAGAAACAAGA ACAACTACAAAAAGAAGAAGAATTAAAAAGACAAGAACAAGAACGACTAC AAAAAGAAGAAGCATTAAAAAGACAAGAACAAGAACGACTACAAAAAGAA GAAGAATTAAAAAGACAAGAGCAAGAAAGACTGGAAAGAAAGAAAATCGA GTTAGCAGAAAGAGAACAACACATAAAAAGTAAACTAGAATCTGATATGG TGAAAATAATAAAGGATGAACTAACAAAAGAAAAAGATGAAATAATAAAA AACAAAGATATAAAACTTAGACATAGTTTGGAACAGAAATGGTTAAAACA TTTACAAAATATATTATCGTTAAAAATAGATAGTCTATTAAATAAAAATG ATGAGGTCATAAAAGATAATGAGACACAATTGAAAACAAATATATTGAAC TCATTAAAAAATCAATTATATCTTAATTTGAAACGTGAACTTAATGAAAT TATAAAGGAATACGAAGAAAACCAGAAAAAAATATTGCATTCAAATCAAC TTGTTAACGATAGTTTAGAGCAAAAAACTAATAGACTCGTCGATATTAAA CCTACAAAGCATGGTGATATATATACTAATAAACTTTCTGATAATGAAAC TGAAATGCTGATAACATCTAAAGAAAAAAAAGATGAAACAGAATCAACTA AAAGATCAGGAACAGATCATACTAATAGTTCGGAAAGTACTACTGATGAT AATACCAATGATAGAAATTTTTCTCGATCAAAGAATTTGAGTGTTGCTAT ATACACAGCAGGAAGTGTAGCTTTATGTGTGTTAATATTTTCTAGTATAG GATTATTACTTATAAAGACTAATAGTGGAGATAACAATTCTAATGAAATT AATGAAGCTTTTGAACCGAATGATGATGTTCTCTTTAAGGAGAAGGATGA AATCATTGAAATCACTTTTAATGATAATGATAGTACAATTTAA The nucleotide sequence of Rh1 is given below (SEQ ID NO: 27) ATGCAAAGGTGGATTTTCTGCAACATTGTTTTGCATATATTAATTTACTT AGCAGAATTTAGCCATGAACAGGAAAGTTATTCTTCCAATGAAAAAATAA GAAAGGACTATTCAGATGATAATAATTATGAACCTACCCCTTCATATGAA

AAAAGAAAAAAAGAATATGGAAAAGATGAAAGTTATATAAAAAATTACAG AGGTAATAATTTTTCCTATGATTTGTCTAAAAATTCTAGTATATTTCTTC ACATGGGTAACGGTAGTAACTCGAAAACACTAAAAAGATGTAACAAGAAA AAAAATATAAAGACCAATTTTTTAAGACCTATCGAGGAAGAGAAAACGGT ATTAAATAATTATGTATATAAAGGTGTAAATTTTTTAGATACAATAAAAA GAAATGATTCCTCTTATAAATTTGATGTTTATAAAGATACTTCCTTTTTA AAAAATAGAGAATATAAAGAATTAATTACTATGCAGTATGATTATGCTTA TTTAGAAGCAACAAAAGAGGTTCTTTATTTAATTCCGAAGGATAAAGATT ATCACAAATTTTATAAAAATGAACTTGAGAAAATTCTTTTCAATTTAAAA GATTCACTTAAATTATTAAGAGAAGGATATATACAAAGCAAACTGGAAAT GATTAGAATCCATTCGGATATAGATATATTAAATGAGTTTCATCAAGGAA ATATTATAAACGATAATTATTTTAATAATGAAATAAAAAAAAAAAAGGAA GACATGGAAAAATATATAAGAGAATATAATTTATACATATATAAATATGA AAATCAGCTTAAAATAAAAATACAGAAATTAACAAATGAAGTTTCTATAA ATTTAAATAAATCTACATGTGAAAAGAATTGTTATAATTATATTTTAAAA TTAGAAAAATATAAAAATATAATAAAAGATAAGATAAATAAATGGAAAGA TTTACCAGAAATATATATTGATGATAAAAGTTTCTCATATACATTTTTAA AAGATGTAATAAATAATAAGATAGATATATATAAAACAATAAGTTCTTTT ATATCTACTCAGAAACAATTATATTATTTTGAATATATATATATAATGAA TAAAAATACATTAAACCTACTTTCATATAATATACAAAAAACAGATATAA ATTCTAGTAGTAAATACACATATACAAAATCTCATTTTTTAAAAGATAAT CATATATTGTTATCTAAATATTATACTGCCAAATTTATTGATATCCTAAA TAAAACATATTATTATAATTTATATAAAAATAAAATTCTTTTATTCAATA AATATATTATAAAGCTTAGAAACGATTTAAAAGAATATGCATTTAAATCT ATACAATTTATTCAAGATAAAATCAAAAAACATAAAGATGAATTATCCAT AGAAAATATATTACAAGAAGTTAATAATATATATATAAAATATGATACTT CGATAAATGAAATATCTAAATATAACAATTTAATTATTAATACTGATTTA CAAATAGTACAACAAAAACTTTTAGAAATCAAACAAAAAAAAAATGATAT TACACACAAAGTACAACTTATAAATCATATATATAAAAATATACATGATG AAATATTAAACAAAAAAAATAATGAAATAACAAAGATTATTATAAATAAT ATAAAAGATCATAAAAAAGATTTACAAGATCTCTTACTATTTATACAACA AATCAAACAATATAATATATTAACAGATCATAAAATTACACAATGTAATA ATTATTATAAGGAAATCATAAAAATGAAAGAAGATATAAATCATATTCAT ATATATATACAACCAATTCTAAATAATTTACACACATTAAAACAAGTACA AAATAATAAAATCAAATATGAAGAGCACATCAAACAAATATTACAAAAAA TTTATGATAAAAAGGAATCTTTAAAAAAAATTATTCTCTTAAAAGATGAA GCACAATTAGACATTACCCTCCTCGATGACTTAATACAAAAGCAAACAAA AAAACAAACACAAACACAAACACAAACACAAAAACAAACACTAATACAAA ATAATGAGACGATTCAACTTATTTCTGGACAAGAAGATAAACATGAATCC AATCCATTTAATCATATACAAACCTATATTCAACAAAAAGATACACAAAA TAAAAACATCCAAAATCTTCTTAAATCCTTGTATAATGGAAATATTAACA CATTCATAGACACAATTTCTAAATATATATTAAAACAAAAAGATATAGAA TTAACACAACACGTTTATACAGACGAAAAAATTAATGATTATCTTGAAGA AATAAAAAATGAACAAAACAAAATAGATAAGACCATCGACGATATAAAAA TACAAGAAACATTAAAACAAATAACTCATATTGTTAACAATATAAAAACC ATCAAAAAGGATTTGCTCAAAGAATTTATTCAACATTTAATAAAATATAT GAACGAAAGATATCAGAATATGCAACAGGGTTATAATAATTTAACAAATT ATATTAATCAATATGAAGAAGAAAATAATAATATGAAACAATATATTACT ACCATACGAAATATCCAAAAAATATATTATGATAATATATATGCTAAGGA AAAGGAAATTCGCTCGGGACAATATTATAAGGATTTTATCACATCAAGGA AAAATATTTATAATATAAGGGAAAATATATCCAAAAATGTAGATATGATA AAAAATGAAGAAAAGAAGAAAATACAGAATTGTGTAGATAAATATAATTC TATAAAACAATATGTAAAAATGCTTAAAAATGGAGACACACAAGATGAAA ATAATAATAATAATAATGATATATACGACAAGTTAATTGTCCCCCTTGAT TCAATAAAACAAAATATCGATAAATACAACACAGAACATAATTTTATAAC ATTTACAAATAAAATAAATACACATAATAAGAAGAACCAAGAAATGATGG AAGAATTCATATATGCATATAAAAGGTTAAAAATTTTAAAAATATTAAAT ATATCCTTAAAAGCTTGTGAAAAAAATAATAAATCTATCAATACATTAAA TGACAAAACACAAGAATTAAAAAAAATTGTAACACACGAAATAGATCTTC TACAAAAAGATATTTTAACAAGTCAAATATCAAATAAAAATGTTTTATTA TTAAACGATTTATTAAAAGAAATTGAACAATATATTATAGATGTACACAA ATTAAAAAAAAAATCAAACGATCTATTTACATATTATGAACAATCCAAAA ATTATTTCTATTTTAAAAACAAAAAAGATAATTTTGATATACAAAAAACA ATCAATAAAATGAATGAATGGCTAGCTATCAAAAATTATATAAATGAAAT TAATAAAAATTATCAAACATTATATGAAAAAAAAATAAATGTACTCCTAC ATAATTCAAAAAGTTATGTACAATACTTTTATGATCATATAATAAATCTA ATTCTTCAAAAAAAAAATTATTTGGAAAATACTTTAAAGACAAAAATACA AGATAACGAACATTCACTATATGCTTTACAACAAAATGAAGAATACCAAA AGGTAAAGAACGAAAAGGATCAAAACGAAATTAAGAAAATTAAACAATTA ATCGAAAAAAATAAAAATGATATACTTACATATGAAAACAACATTGAACA AATTGAACAAAAAAATATTGAGTTAAAAACAAATGCTCAAAATAAGGATG ATCAAATAGTAAATACCTTAAATGAGGTTAAGAAAAAAATAATATATACA TATGAAAAGGTAGATAATCAAATATCGAACGTTTTAAAAAATTATGAAGA AGGAAAAGTAGAATATGATAAAAATGTTGTACAAAATGTTAACGATGCGG ATGATACAAACGATATTGATGAAATAAACGATATTGATGAAATAAACGAT ATTGATGAAATAAACGATATTGATGAAATAAACGATATTGATGAAATAAA AGACATTGACCATATAAAACATTTTGACGATACAAAACATTTTGACGATA TATACCATGCTGATGATACACGTGATGAATACCATATAGCCCTTTCAAAT TATATAAAGACAGAACTAAGAAATATAAACCTGCAAGAAATAAAAAACAA TATAATAAAAATATTTAAAGAATTCAAATCTGCACACAAAGAAATTAAAA AAGAATCAGAACAAATTAATAAAGAATTTACCAAAATGGATGTCGTCATA AATCAATTAAGAGATATAGACAGACAAATGCTTGATCTTTATAAAGAATT AGATGAAAAATATTCTGAATTTAATAAAACAAAAATTGAAGAAATAAATA ATATAAGGGAAAATATTAATAATGTGGAAATATGGTATGAAAAAAATATA ATTGAATATTTCTTACGTCATATGAATGATCAAAAAGATAAAGCTGCAAA ATATATGGAAAACATTGATACATATAAAAATAATATTGAAATTATTAGTA AACAAATAAATCCAGAAAATTATGTTGAAACATTAAACAAATCAAATATG TATTCTTATGTAGAAAAGGCTAATGATCTATTTTATAAACAAATAAATAA TATAATCATAAATTCAAATCAACTAAAAAACGAAGCTTTTACAATAGATG AATTACAAAATATTCAAAAAAACAGAAAAAATCTTCTTACAAAGAAACAA CAAATTATTCAGTATACAAATGAAATAGAAAATATATTTAATGAAATTAA AAATATTAATAACATATTAGTCTTAACAAATTATAAATCTATCCTTCAAG ATATATCACAAAATATAAATCATGTTAGTATATATACGGAACAATTACAT AATTTATATATAAAATTAGAAGAAGAAAAAGAACAAATGAAAACACTCTA TCATAAATCAAATGTGTTACATAACCAAATTAATTTTAATGAAGATGCTT TTATTAATAATTTATTAATTAATATAGAAAAAATTAAAAATGATATTACA CATATAAAGGAAAAAACAAATATATATATGATAGATGTAAACAAATCTAA AAATAATGCTCAACTATATTTTCATAATACACTAAGAGGTAATGAAAAAA TAGAATATTTAAAAAATCTTAAGAATTCAACAAACCAACAAATAACTTTA CAAGAATTAAAACAAGTACAAGAAAATGTTGAGAAGGTAAAAGATATATA CAATCAAACTATAAAATATGAAGAAGAAATTAAAAAAAATTATCATATTA TAACAGATTATGAGAATAAAATAAATGATATTTTACATAATTCATTTATT AAACAAATAAATATGGAATCTAGCAATAATAAAAAACAAACAAAACAAAT TATAGACATAATAAACGATAAAACATTTGAAGAACATATAAAAACATCCA AAACCAAAATAAACATGCTAAAAGAACAATCACAAATGAAACATATAGAC AAAACTTTATTAAATGAACAAGCACTCAAATTATTTGTAGATATTAATTC TACTAATAATAATTTAGATAATATGTTATCTGAAATAAATTCTATACAAA ATAATATACATACATATATCCAAGAAGCAAACAAATCATTTGACAAATTT AAAATTATATGTGATCAAAATGTAAACGATTTATTAAACAAATTAAGTTT AGGAGATCTAAATTATATGAATCATTTAAAAAATCTGCAAAACGAAATAA GAAACATGAATCTAGAAAAAAATTTCATGTTAGATAAAAGTAAAAAAATA GATGAGGAAGAAAAAAAATTAGATATATTAAAAGTTAACATATCAAATAT AAATAATTCTTTAGATAAATTAAAAAAATATTACGAAGAAGCGCTCTTTC AAAAGGTTAAAGAAAAAGCAGAAATTCAAAAGGAAAATATAGAAAAAATA AAACAAGAAATAAATACACTGAGCGATGTTTTTAAGAAACCATTTTTTTT TATACAACTTAATACAGATTCATCACAACATGAAAAAGATATAAACAATA ATGTAGAAACATATAAAAATAATATAGATGAAATATATAATGTTTTTATA CAATCATATAATTTAATACAAAAATATTCTTCAGAAATTTTTTCATCCAC CTTGAATTATATACAAACAAAAGAAATAAAAGAAAAATCCATAAAGGAAC AAAACCAATTAAATCAAAATGAAAAGGAAGCATCTGTTTTATTAAAAAAT ATAAAAATAAATGAAACCATAAAATTATTTAAACAAATAAAAAATGAAAG ACAAAACGATGTACACAATATAAAAGAGGACTATAACTTGTTACAACAAT ATTTAAATTATATGAAAAATGAAATGGAACAATTAAAAAAATATAAAAAT GATGTTCATATGGATAAAAATTATGTTGAAAATAATAATGGTGAAAAAGA AAAATTACTTAAAGAAACCATTTCTTCATATTATGATAAAATAAATAATA TAAATAATAAGCTATATATATATAAAAACAAAGAAGACACTTATTTTAAT

AATATGATCAAAGTATCAGAAATTTTAAACATAATTATAAAAAAAAAACA ACAAAATGAACAAAGAATTGTTATAAATGCAGAATATGACTCTTCATTAA TTAATAAGGATGAAGAAATTAAAAAAGAAATTAATAATCAAATAATTGAA TTAAATAAACATAATGAAAATATTTCCAATATTTTTAAGGATATACAAAA TATAAAAAAACAAAGTCAAGATATTATCACAAATATGAACGACATGTATA AAAGTACAATCCTTTTAGTAGACATCATACAGAAAAAAGAAGAAGCTCTA AATAAACAAAAAAATATTTTAAGAAATATAGACAATATATTAAATAAAAA AGAAAATATTATAGATAAAGTTATAAAATGTAATTGTGATGATTATAAAG ATATCTTAATACAAAACGAAACGGAATATCAAAAATTACAAAATATAAAT CATACATATGAAGAAAAAAAAAAATCAATAGATATATTAAAAATTAAAAA TATAAAACAAAAAAATATTCAAGAATATAAAAACAAATTAGAACAAATGA ATACAATAATTAATCAAAGTATAGAACAACATGTATTCATAAACGCTGAT ATTTTACAAAATGAAAAAATAAAATTAGAAGAAATCATAAAAAATCTAGA TATACTAGATGAACAAATTATGACATATCATAATTCAATAGATGAATTAT ATAAACTAGGAATACAATGTGACAATCATCTAATTACAACTATTAGTGTT GTTGTTAATAAAAATACAACAAAAATTATGATACATATAAAAAAACAAAA AGAGGATATACAAAAAATTAATAACTATATTCAAACAAATTATAATATAA TAAATGAAGAAGCTCTACAATTTCACAGGCTCTATGGACACAATCTTATA AGTGAAGATGACAAAAATAATTTGGTACATATTATAAAAGAACAAAAGAA TATATATACACAAAAGGAAATAGATATTTCTAAAATAATTAAACATGTTA AAAAAGGATTATATTCATTGAATGAACATGATATGAATCATGATACACAT ATGAATATAATAAATGAACATATAAATAATAATATTTTACAACCATACAC ACAATTAATAAACATGATAAAAGATATTGATAATGTTTTTATAAAAATAC AAAATAATAAATTCGAACAAATACAAAAATATATAGAAATTATTAAATCT TTAGAACAATTAAATAAAAATATAAACACAGATAATTTAAATAAATTAAA AGATACACAAAACAAATTAATAAATATAGAAACAGAAATGAAACATAAAC AAAAACAATTAATAAACAAAATGAATGATATAGAAAAGGATAATATTACA GATCAATATATGCATGATGTTCAGCAAAATATATTTGAACCTATAACATT AAAAATGAATGAATATAATACATTATTAAATGATAATCATAATAATAATA TAAATAATGAACATCAATTTAATCATTTAAATAGTCTTCATACAAAAATA TTTAGTCATAATTATAATAAAGAACAACAACAAGAATATATAACCAACAT CATGCAAAGAATTGATGTATTCATAAATGATTTAGATACTTACCAATATG AATATTATTTTTATGAATGGAATCAAGAATATAAACAAATAGACAAAAAT AAAATAAATCAACATATAAACAATATTAAAAATAATCTAATTCATGTTAA GAAACAATTTGAACACACCTTAGAAAATATAAAAAATAATGAAAATATTT TCGACAACATACAATTGAAAAAAAAAGATATTGACGATATTATTATAAAC ATTAATAATACAAAAGAAACATATCTAAAAGAATTGAACAAAAAAAAAAA TGTTACAAAAAAAAAAAAAGTTGATGAAAAATCAGAAATAAATAATCATC ACACATTACAACATGATAATCAAAATGTTGAACAAAAAAATAAAATTAAA GATCATAATTTAATAACCAAGCCAAATAACAATTCATCAGAAGAATCTCA TCAAAATGAACAAATGAAAGAACAAAACAAAAATATACTTGAAAAACAAA CAAGAAATATCAAACCACATCATGTTCATAATCATAATCATAATCATAAT CAAAATCAAAAAGATTCAACAAAATTACAGGAACAAGATATATCTACACA CAAATTACATAATACTATACATGAGCAACAAAGTAAAGATAATCATCAAG GTAATAGAGAAAAAAAACAAAAAAATGGAAACCATGAAAGAATGTATTTT GCCAGTGGAATAGTTGTATCCATTTTATTTTTATTTAGTTTTGGATTTGT TATAAATAGTAAAAATAATAAACAAGAATATGATAAAGAGCAAGAAAAAC AACAACAAAATGATTTTGTATGTGATAATAACAAAATGGATGATAAAAGC ACACAAAAATATGGTAGAAATCAAGAAGAGGTAATGGAGATATTTTTTGA TAATGATTATATTTAA

[0212] As a matter of routine, the skilled person will be able to identify the regions of the above nucleic acid molecules that encode the specific regions described for the Rh and EBA proteins described elsewhere herein. The present invention includes those specific nucleotide subsequences, and any alterations that are available by virtue of the degeneracy of the genetic code. Furthermore, the invention provides nucleic acid which can hybridise to these nucleic acid molecules, preferably under "high stringency" conditions (e.g. 65° C. in a 0.1×SSC, 0.5% SDS solution). Nucleic acid according to the invention can be prepared in many ways (e.g. by chemical synthesis, from genomic or cDNA libraries, from the organism itself, etc.) and can take various forms (e.g. single stranded, double stranded, vectors, probes, etc.). They are preferably prepared in substantially pure form (i.e. substantially free from other Plasmodial or host cell nucleic acids).

[0213] A further aspect of the present invention provides a method of screening for the presence of a Plasmodium falciparum invasion-inhibitory antibody directed against reticulocyte-binding homologue protein 5 (the invasion ligand) of a strain of Plasmodium falciparum in a subject, comprising obtaining a biological sample from the subject and identifying the presence or absence of an antibody capable of binding to an immunogenic molecule as described herein.

[0214] The invention also provides a process for producing an immunogenic molecule of the invention, comprising the step of culturing a host cell transformed with a nucleic acid as described herein under conditions which induce polypeptide expression. The isolated nucleic acid molecule is suitable for expressing a polypeptide immunogenic molecule of the invention. By `suitable for expressing` is meant that the nucleic acid molecule is a polynucleotide that may be translated to form the polypeptide, for example RNA, or that the polynucleotide (which is preferably DNA) encoding the polypeptide of the invention is inserted into an expression vector, such as a plasmid, in proper orientation and correct reading frame for expression. The polynucleotide may be linked to the appropriate transcriptional and translational regulatory control nucleotide sequences recognised by any desired host; such controls may be incorporated in the expression vector.

[0215] The nucleic acid molecule (or polynucleotide) may be expressed in a suitable host to produce a polypeptide of the invention. Thus, the polynucleotide encoding the polypeptide of the invention may be used in accordance with known techniques, appropriately modified in view of the teachings contained herein, to construct an expression vector, which is then used to transform an appropriate host cell for the expression and production of a polypeptide of the invention

[0216] The nucleic acid molecule encoding the polypeptide of the invention may be joined to a wide variety of other polynucleotide sequences for introduction into an appropriate host. The companion polynucleotide will depend upon the nature of the host, the manner of the introduction of the polynucleotide into the host, and whether episomal maintenance or integration is desired.

[0217] Generally, the nucleic acid molecule is inserted into an expression vector, for example a plasmid, in proper orientation and correct reading frame for expression. If necessary, the nucleic acid molecule may be linked to the appropriate transcriptional and translational regulatory control nucleotide sequences recognised by the desired host, although such controls are generally available in the expression vector. The vector is then introduced into the host through standard techniques. Generally, not all of the hosts will be transformed by the vector. Therefore, it will be necessary to select for transformed host cells. One selection technique involves incorporating into the expression vector a polynucleotide sequence, with any necessary control elements, that codes for a selectable trait in the transformed cell, such as antibiotic resistance. Alternatively, the gene for such selectable trait can be on another vector, which is used to co-transform the desired host cell.

[0218] Host cells that have been transformed by the recombinant nucleic acid molecule of the invention are then cultured for a sufficient time and under appropriate conditions known to those skilled in the art in view of the teachings disclosed herein to permit the expression of the polypeptide, which can then be recovered. Many expression systems are known, including bacteria (for example E. coli and Bacillus subtilis), yeasts (for example Saccharomyces cerevisiae), filamentous fungi (for example Aspergillus), plant cells, animal cells and insect cells. The peptides of the present invention may also be produced in Apicomplexa, for example, Plasmodium falciparum.

[0219] The vectors typically include a prokaryotic replicon, such as the ColEI on, for propagation in a prokaryote, even if the vector is to be used for expression in other, non-prokaryotic, cell types. The vectors can also include an appropriate promoter such as a prokaryotic promoter capable of directing the expression (transcription and translation) of the genes in a bacterial host cell, such as E. coli, transformed therewith. Promoter sequences compatible with exemplary bacterial hosts are typically provided in plasmid vectors containing convenient restriction sites for insertion of a polynucleotide of the present invention.

[0220] Typical prokaryotic vector plasmids are pUC18, pUC19, pBR322 and pBR329 available from Biorad Laboratories, (Richmond, Calif., USA) and pTrc99A and pKK223-3 available from Pharmacia, Piscataway, N.J., USA.

[0221] A typical mammalian cell vector plasmid is pSVL available from Pharmacia, Piscataway, N.J., USA. This vector uses the SV40 late promoter to drive expression of cloned genes, the highest level of expression being found in T antigen-producing cells, such as COS-1 cells.

[0222] An example of an inducible mammalian expression vector is pMSG, also available from Pharmacia. This vector uses the glucocorticoid-inducible promoter of the mouse mammary tumour virus long terminal repeat to drive expression of the cloned gene.

[0223] Useful yeast plasmid vectors are pRS403-406 and pRS413-416 and are generally available from Stratagene Cloning Systems, La Jolla, Calif. 92037, USA. Plasmids pRS403, pRS404, pRS405 and pRS406 are Yeast Integrating plasmids (Yips) and incorporate the yeast selectable markers HIS3, TRPI, LEU2 and URA3. Plasmids pRS413-416 are Yeast Centromere plasmids (YCps).

[0224] Useful vectors for transformation and/or expression in Plasmodium falciparum include pHC1, pHC2, pHC3, pHD22Y, pHC4, pHC5, pTgDTS.CAM5/3.KP, pHHT-TK and pHH1, and derivatives thereof. Other suitable vectors include those deposited at the Malaria Research and Reference Reagent Resource Center.

[0225] The present invention also relates to a host cell transformed with a polynucleotide vector construct of the present invention. The host cell can be either prokaryotic or eukaryotic. Bacterial cells are preferred prokaryotic host cells and typically are a strain of E. coli such as, for example, the E. coli strains DH5 available from Bethesda Research Laboratories Inc., Bethesda, Md., USA, and RRI available from the American Type Culture Collection (ATCC) of Rockville, Md., USA (No ATCC 31343). Preferred eukaryotic host cells include yeast, insect and mammalian cells, vertebrate cells such as those from a mouse, rat, monkey or human fibroblastic and kidney cell lines, and Apicomplexan cells. Yeast host cells include YPH499, YPH500 and YPH501 which are generally available from Stratagene Cloning Systems, La Jolla, Calif. 92037, USA. Preferred mammalian host cells include Chinese hamster ovary (CHO) cells available from the ATCC as CCL61, NIH Swiss mouse embryo cells NIH/3T3 available from the ATCC as CRL 1658, monkey kidney-derived COS-I cells available from the ATCC as CRL 1650 and 293 cells which are human embryonic kidney cells. Preferred insect cells are Sf9 cells which can be transfected with baculovirus expression vectors. Apicomplexan cells may include Plasmodium falciparum cell lines, such as a wild-type strain of P falciparum, or any of the following strains: 3D7, W2MEF, GHANA1, V1_S, RO-33, PREICH, HB3, SANTALUCIA, 7G8, SENEGAL3404, FCC-2, K1, RO-33, D6, DD2, or D10. Further suitable include those deposited at the Malaria Research and Reference Reagent Resource Center.

[0226] Transformation of appropriate cell hosts with a nucleic acid molecule of the present invention is accomplished by well known methods that typically depend on the type of vector used. With regard to transformation of prokaryotic host cells, see for example Sambrook & Russell (supra). Transformation of yeast cells is described in numerous reviews, for example see Gietz & Woods (2001) Biotechniques 30:816-228. With regard to vertebrate cells, reagents useful in transfecting such cells, for example calcium phosphate and DEAE-dextran or liposome formulations, are available from Stratagene Cloning Systems, or Life Technologies Inc., Gaithersburg, Md. 20877, USA.

[0227] Electroporation is also useful for transforming and/or transfecting cells and is well known in the art for transforming yeast cell, bacterial cells, insect cells and vertebrate cells. For example, many bacterial species may be transformed by the methods described in Luchansky et al. (1988) Mol. Microbiol. 2:637-646. Methods for transformation of yeast by electroporation are disclosed in Becker & Guarente (1990) Methods Enzymol. 194:182.

[0228] Successfully transformed cells, i.e. cells that contain a nucleic acid molecule of the present invention, can be identified by well known techniques. For example, cells resulting from the introduction of an expression construct of the present invention can be grown to produce the polypeptide of the invention. Cells can be harvested and lysed and their DNA content examined for the presence of the DNA. Alternatively, the presence of the protein in the supernatant can be detected using antibodies.

[0229] In addition to assaying directly for the presence of recombinant DNA, successful transformation can be confirmed by well known immunological methods when the recombinant DNA is capable of directing the expression of the protein. For example, cells successfully transformed with an expression vector produce proteins displaying appropriate antigenicity. Samples of cells suspected of being transformed are harvested and assayed for the protein using suitable antibodies.

[0230] Thus, a further aspect of the invention provides a vector comprising a nucleic acid molecule according as described above. The vector may be an expression vector. The vector is suitable for replication in a eukaryotic cell, such as a mammalian cell. Preferred vectors may be selected from the group consisting of pBudCE4.1 pTWIN, pShuttle, pUC18, pUC19, pBacPAK, pBR322, pBR329, pTrc99A, pKK223-3, pSVL, pMSG, pRS403 to 406, pRS413 to 416 and pPicZalpha.

[0231] A further aspect of the invention provides a host cell comprising a nucleic acid molecule as described above or a vector described above. The host cell may be a prokaryotic or a eukaryotic cell, for example a mammalian cell or a Plasmodium falciparum cell. The host cell may selected from the group consisting of E. coli strain DH5, RR1, ER2566, CHO cells (e.g. CCL61), NIH Swiss mouse embryo cells (NIH/3T3), COS-I cells (e.g. CRL 1650 and 293), Sf9 cells and yeast cell lines YPH499 to 501, or Pichia Pastoris such as KM71H.

[0232] In addition to the transformed host cells themselves, the present invention also contemplates a culture of those cells, preferably a monoclonal (clonally homogeneous) culture, or a culture derived from a monoclonal culture, in a nutrient medium.

[0233] The present invention will now be more fully described by reference to the following non-limiting Examples.

Example 1

Materials and Methods

Sequence Analysis of Invasion Ligand.

[0234] Preparation of genomic DNA from 3D7, BT3, D10, HB3, MCAMP and PF120 was performed using standard techniques. The invasion ligand gene (minus the first exon encoding the signal peptide) was amplified from genomic DNA using the primers: _GeneF: 5'-CAGGATTAAGTTTTGAAAATGC-3' and GeneR: 5'-CCATGTTTTGTCATTTCATTG-3' and sequenced using two additional primers _MidF 5'-GATGATGAAACCGAAGAG-3' and _MidR 5'-CTGTATCTTGTATACTATC-3'. DNA sequencing was performed using BigDye® Terminator Cycle sequencing (PerkinElmer). Single variant polymorphisms were verified by re-sequencing to avoid incorporation of polymerisation errors.

Parasite Cell Culture.

[0235] P. falciparum asexual parasites were maintained in human erythrocytes (blood group O+) at a hematocrit of 4% with 10% Albumax® II (Gibco). 3D7 was originally obtained from David Walliker at Edinburgh University. Cultures were synchronized using standard techniques.

Invasion Inhibition Assays.

[0236] Methods for measuring invasion-inhibitory antibodies in serum samples have been described and evaluated in detail elsewhere [Persson, et al. J. Clin. Microbiol. (2006) 44:1665-1673]. Plasmodium falciparum lines are cultured in vitro as described [Beeson et al (1999) J. Infect. Dis. 180:464-472]. Synchronized (by 5% D-sorbitol) parasites are cultured with human O+ erythrocytes in RPMI-HEPES medium with hypoxanthine 50 μg/ml, NaHCO3 25 mM, gentamicin 20 μg/ml, 5% v/v heat-inactivated pooled human Australian sera, and 0.25% Albumax II (Gibco, Invitrogen, Mount Waverley, Australia) in 1% O2, 4% CO2, and 95% N2 at 37° C. Invasion inhibition assays are started at late pigmented trophozoite to schizont stage. Inhibitory activity is measured over two cycles of parasite replication. Starting parasitemia is 0.2-0.3%, hematocrit 1%, and cells are resuspended in RPMI-HEPES supplemented as described above. Assays are performed in 96-well U-bottom culture plates (25 μl of cell suspension+2.5 μl of test sample/well). All samples are tested in duplicate. After 48 hours, 5 μl of fresh culture medium is added. Parasitemia is determined by flow cytometry (FACSCalibur, Becton Dickinson, Franklin Lakes, N.J.) after 80-90 hours using ethidium bromide (10 μg/ml, Bio-Rad, Hercules, Calif., USA) to label parasitised erythrocytes. Incubation time is influenced by the stage and synchronicity of parasite cultures at commencement of the assay, and by the length of the lifecycle of the parasite line used. Inhibitory effects of treated samples are confirmed by testing immunoglobulin purified from the same samples. All serum samples tested for inhibitory antibodies are first treated to remove non-specific inhibitors that may be present and to equilibrate pH [Persson, et al. J. Clin. Microbiol. (2006) 44:1665-1673]. Serum samples (100 μl) are dialyzed against phosphate-buffered saline (PBS; pH 7.3) in 50 kDa MWCO microdialysis tubes (2051, Chemicon, Temecula, Calif., USA) and subsequently re-concentrated to the original starting volume using centrifugal concentration tubes (100 kDa MWCO; Pall Corp., Ann Arbor, Mich., USA). Analysis of flow cytometry data is performed using FlowJo software (Tree Star Inc., Ashland, Oreg., USA). Samples from non-exposed donors are included as negative controls in all assays, and e.g. anti-MSP1 and/or anti-AMA1 antibodies are used as a positive control. Samples are tested for inhibition of the different lines in parallel in the same experiments. A difference between the lines of ≧25% in invasion is designated as the cut-off for differential inhibition by samples. A selection of sera was is tested for antibodies to the surface of uninfected erythrocytes (maintained in culture) by flow cytometry [Beeson et al (1999) J. Infect. Dis. 180:464-472]; to determine reactivity against normal erythrocytes. P. falciparum merozoite invasion may be captured following treatment with 0.1 μM cytochalasin D to arrest invasion.

Growth Inhibition Assays

[0237] Inhibition assays were performed as described previously (Thompson et al, (2001), Mol. Microbiol. 41: 47-58. and Baum et al., (2005), PLoS Pathog. 1: e37) in triplicate at 4% haematocrit with 0.5% parasitemia. IgG purified rabbit anti-invasion ligand-2 or normal pre-immunisation serum (NRS) was added to 2 mg/ml in PBS. Assays were repeated at least three times to calculate mean and standard error of invasion inhibition relative to the NRS control (100%).

Enzyme Treatment of Erythrocytes.

[0238] Erythrocytes were first washed with RPMI-HEPES/25 mM NaHCO3, pH7.4, and subsequently incubated with neurminidase (0.067 units/ml; Calbiochem, 45 min) or chymotrypsin (1 mg/ml; Worthington Biochemical, 15 min) at 37° C. Control treatment was RPMI-HEPES only. After incubation, chymotrypsin-treated cells were washed once with RPMI-HEPES containing 20% human serum and twice with normal culture medium (containing 5% serum) to inhibit enzyme activity. The neurminidase-treated cells were washed with parasite culture medium three times. Treated erythrocytes were then used in invasion inhibition assays as described. All results presented are comparisons to control-treated cells.

Antisera, SDS/PAGE and Immunoblot Analysis of the Invasion Ligand.

[0239] Rabbit and mouse antisera were raised against the invasion ligand. A recombinant protein covering a central region of the invasion ligand (residues N191 to H359) using the following primers: 2F 5'-GATCggatccAATTCTATATATCATAAGTCCTC-3' and 2R 5'-GATCctcgagTTAATGATATCTTATTCCGTTTG-3'. PCR products were treated with BamHI/XhoI (small case letters underscored in primers), purified, and cloned into pGEX 4T-1 (Pharmacia Biotech). This was transformed into E. coli (strain BL21(DE3)) with positive colonies screened for protein expression. The expressed, soluble, fusion protein was affinity-purified on glutathione agarose, then used to immunize rabbits and mice. The anti--the invasion ligand antibodies were affinity-purified on the immunizing fusion protein coupled to Sepharose4B and used for indirect immunofluorescence microscopy (IFA) and immunoblots.

[0240] For immunoblots, saponin lysed parasite pellets from highly synchronous 3D7 parasites (samples taken at 8 hour intervals through the lifecycle), 3D7, D10 or transfectant parasite schizont pellets or culture supernatants (post schizont rupture) for any of the other lines were separated in sample buffer on 4-12% SDS-NuPAGE gels (Invitrogen) under reducing conditions and transferred to nitrocellulose membranes (Schleicher & Schuell). Invasion ligand rabbit polyclonal and mouse monoclonal antisera (clone 6H2) were diluted in 0.1% Tween20-PBS with 1% wt/vol skim milk [1:200 and 1:500 respectively]. Appropriate secondary antibodies were used and immunoblots were developed by enhanced chemiluminescence (ECL, Amersham Biosciences).

Invasion Ligand Vector Construction and Transfection.

[0241] C' terminal tagging of the invasion ligand with a Strep-tag II and triple Haemagluttinin (3*HA) tag was undertaken using a vector derived from pARL. Invasion ligand sequences were amplified using the primers 5'-GATCagatctCATGAGAATGATTTTAATAAAATATGTATGG-3' and 5' GATCctgcagTTGTGTAAGTGGTTTATTTTTTTTATATGTTTG-3'. The cross-over flank was treated with BglII/PstII (small case letters underscored in primers), purified, and cloned into pARL-StrepII-3*HA (Pharmacia Biotech) generating p1.5-SHA.

[0242] Parasites were transfected as described previously with 100 μg purified plasmid DNA (QIAGEN). Positive selection for transfectants was achieved using 10 nM WR99210, followed by cycles on and off drug to select for integrants. After three cycles off drug parasites were screened with the invasion ligand antibodies and a commercial HA monoclonal (Roche Applied Science, clone 3F10) to test for successful integration of the tag.

Microscopy and Immunofluorescence for Localization of the Invasion Ligand.

[0243] Light microscopy was performed with synchronized parasites at various lifecycle stages. For indirect immunofluorescence, parasites were fixed for 5 minutes with 100% methanol at -20° C., blocked for 30 minutes in 3% Bovine Serum Albumin (BSA) in PBS then incubated for 1 hour with the relevant antisera (rabbit anti-invasion ligand [1:200]; rabbit anti-AMA1 [1:100]; rabbit anti-Rh2a/2b [1:100]; rabbit anti-PfRON4 [1:200]). Following 2×5 minute washes in 3% BSA-PBS, slides were incubated for 1 hour with appropriate Alexa Fluor 488/594 secondary antibodies (Molecular Probes) and mounted in Vectashield® (Vector Laboratories) with 10 ug/ml DAPI (Boehringer). Parasites for electron microscopy immunolabeling were fixed and prepared as described previously (Baum et al., 2008 Cell Host Microbe 3: 188-198). Samples were post-stained with 2% aqueous uranyl-acetate then 5% triple lead before observing at 120 kV on a Philips CM120 BioTWIN Transmission Electron Microscope.

Erythrocyte Binding Assays.

[0244] High percentage (3-5%) parasitemia cultures were grown until late stages (-36 hours post invasion) and transferred to medium depleted of Albumax® II (Gibco). Post-schizont rupture, culture supernatant was centrifuged twice at 3000 rpm and store at 4° C. for use. 250 μl of culture supernatant was mixed with 50 μl of packed erythrocytes for 1 hr at room temperature. The erythrocytes were separated from supernatant by centrifugation through silicone oil dibutyl phthalate at 12000×g. Bound proteins were eluted by incubation with 10 μl 1.5 M NaCl for 15 minutes followed by centrifugation at 12000×g. Bound and unbound fractions were separated in sample buffer on 4-12% SDS-NuPAGE gels (Invitrogen) under reducing conditions and probed with relevant antibodies. To assess binding affinity an additional phosphate buffer solution (PBS) wash step was included before salt elution. Enyzme pre-treatments of erythrocytes were as described supra.

[0245] Heparin (sodium salt, porcine intestinal mucosa) or chondroitin sulfate C(CSC, from shark cartilage) were tested for their ability to inhibit the invasion ligand binding by pre-incubating concentrated culture supernatant at a dilution gradient of 0, 7, 71, 179 and 357 μg/ml (numbers relate to standard units of clinical grade heparin, in which 140U=1 mg) of either sugar. PBS was added to a final volume of 400 ul and the binding assay was repeated as described supra.

Heparin Column-Binding Assay.

[0246] Heparin-agarose beads were washed once with 1% casein in PBS, once in PBS, and then blocked with 1% casein in PBS overnight at 4° C. Culture supernatants from ruptured 3D7 schizonts were concentrated 5-fold (Amicon Ultra Centrifugal Filter, 10 000MWCO (Millipore)) and incubated with beads containing 0.1% casein and 200 p g/mL of test inhibitor, or PBS as control, overnight at 4° C.; 50 μL of packed beads and 250 μL of culture supernatant were used for each test sample. Inhibitors used were heparin and CSC. Unbound proteins in the supernatant were collected through Micro Bio-Spin Chromatography Columns (Bio-Rad). After incubation, beads were washed 5 times with PBS containing 0.1% casein and 1% Triton-X100. Bound proteins were eluted from beads with 50 μL of warmed reducing sample buffer. Bound and unbound proteins were separated by SDS-PAGE under reducing conditions and blotted onto membranes for probing with antibody detection.

Expression and Refolding of Full-Length the Invasion Ligand.

[0247] To generate a recombinant full-length the invasion ligand (the invasion ligand), a codon-optimised gene encoding the mature full-length invasion ligand (TOP Gene Technologies, Inc., Canada) was cloned into NdeI and BamH1 sites of pET14b vector (Novagen). The plasmid carrying the invasion ligand gene was then transformed into BL21 RIL cells for protein expression. The protein with hexa-His tag at the N-terminus was expressed in E. coli as an inclusion body, with soluble invasion ligand obtained by solubilizing with 6 M guanidine-HCl in 20 mM Tris, pH 8.0 containing 0.5 M NaCl and 10 mM Tcep. After centrifugation, the invasion ligand was purified from the clear supernatant by passing over Ni-resin (Qiagen) in the presence of guanidine-HCl. The purified invasion ligand was then refolded into PBS containing 10% glycerol, 1 mM reduced glutathione and 0.1 mM oxidized glutathione by dilution. After incubation at room temperature for three hours, the sample was centrifuged at 14,500 rpm at 4° C. for 5 minutes. The supernatant containing refolded invasion ligand was collected for experiments with the concentration of refolded protein ranging from 10 to 50 μg/mL.

Antibodies to Recombinant Proteins by ELISA.

[0248] 96-well plates (Maxisorp, Nunc, Roskilde, Denmark) are coated with recombinant GST fusion proteins at 0.5 μg/ml in PBS overnight at 4° C. Plates are washed and blocked with 10% skim milk powder (Diploma, Rowville, Australia) in PBS Tween 0.05% for 2 hours. After washing, serum samples (100 μl/well in duplicate), at 1/500 dilution in PBS Tween 0.05% plus 5% skim milk, are incubated for two hours. Plates are washed and incubated for one hour with HRP-conjugated anti-human IgG at 1/5000 (Chemicon, Melbourne, Australia) in PBS Tween 0.05% plus 5% milk. After washing, colour is developed by adding OPhenylenediamine (Sigma, Castle Hill, Australia; stopped with concentrated sulphuric acid) or azino-bis(3-ethylbenthiazoline-6-sulfonic acid) liquid substrate system (Sigma-Aldrich, Sydney; stopped with 1% SDS) and absorbance read by spectrophotometry. All washes are performed with PBS containing 0.05% Tween 20, and all incubations are at room temperature. For each serum, the absorbance from wells containing GST only is deducted from the absorbance from EBA or Rh GST fusion proteins. Positive and negative controls are included on all plates to enable standardisation. Recombinant proteins used are the invasion ligand (e.g. amino acids 1 to 526) EBA140 (e.g. amino acids 746-1045), EBA175 W2mef and 3D7 alleles (e.g. amino acids 761-1271), EBA181 (e.g. amino acids 755-1339), Rh4 (e.g. amino acids 1160-1370), and Rh2 (e.g. amino acids 2027-2533). Schizonts are separated on a 60% Percoll gradient, washed three times in serum-free RPMI 1640, pelleted by centrifugation and resuspended. The cells are lysed through freeze-thawing and the supernatant is preserved. Antibody reactivity of a sample is considered positive if the O.D. was >mean+3SD of the nonexposed controls.

Study Population and Serum Samples.

[0249] Serum samples (50 adults and 100 children aged 14 years) are randomly selected from a community-based cross-sectional survey of children and adults resident in the Kilifi District, Kenya, in 1998, a year that was preceded with a relatively high incidence of malaria in the region. The area is endemic for Plasmodium falciparum. Samples are also obtained from non-exposed adult residents in Melbourne, Australia (n=20) and Oxford, UK (n=20). Ethical approval is obtained from the Ethics Committee of the Kenya Medical Research Institute, Nairobi, Kenya and from the Walter and Eliza Hall Institute Ethics Committee, Melbourne, Australia. All samples are obtained after written informed consent. All serum samples are tested for antibodies by ELISA. A subset of these samples is randomly selected for use in invasion inhibition assays. The same samples are used in all comparative inhibition assays.

Papua New Guinea Clinical Study.

[0250] 206 children aged 5-14, resident in the Madang Province PNG, were enrolled and treated with artesunate to clear any existing parasitemia (Michon P., et al., AJTMH 2007). Children were screened every 2 weeks for the presence of blood-stage parasitemia or any signs or symptoms of clinical illness. Malaria episodes were also identified at participant-initiated visit to the local health clinic. Malaria episodes were defined as presence of fever or symptoms of fever together with a parasitemia of P. falciparum of greater than 5000 parasites/ul. Antibodies are measured to recombinant Rh and EBA proteins (as described above). Children are categorized into high, medium, or low responder groups to each antigen on the basis of terciles of rankings, and risk of malaria episodes from time zero to 6 months is calculated for each antibody group and plotted.

Statistical Analysis.

[0251] Statistical analyses are performed with SPSS and STATA software. The chi squared test or Fischer's exact test is used for comparisons of proportions. For comparisons of continuous variables, Mann-Whitney U test or Kruskal-Wallis tests are used for non-parametric data, and t-tests or ANOVA were used for normally-distributed data, as appropriate. Associations between antibodies to recombinant antigens by ELISA and invasion-inhibitory antibodies are examined by two approaches. Tests are for correlations between ELISA OD values and total invasion inhibition by samples, or the extent of differential inhibition of two comparison parasite lines, and the mean or median inhibition by samples grouped as high or low responders according to reactivity by ELISA is compared. For all analyses p<0.05 is classified as statistically significant.

Example 2

Examination of Immune Selection of Invasion Ligand

[0252] Applicant identifies a Plasmodium falciparum immunogen invasion ligand which differs from other falciparum immunogens in that it is considerably smaller, with a predicted molecular weight of 62.5 kDa and importantly, lacks a C-terminal transmembrane domain.

[0253] To investigate whether the invasion ligand is a target for host-mediated positive selection, Applicant sequenced the entire gene in seven different laboratory strains. The sequences showed the presence of six non-synonymous (but no silent) polymorphisms, predominantly in the N-terminal half of the gene. The imbalance in substitutions that alter amino acid residues is indicates selection favouring diversity in the protein, indicating the invasion ligand elicits an immune response. Intriguingly, one of these polymorphisms is a non-conservative Cys to Tyr residue change (at position 203), which may have significant structural and functional implications. While no orthologues of the invasion ligand are identifiable in syntenic regions of mouse malaria genomes, Applicant identified an orthologue of the invasion ligand in the closely related chimpanzee parasite, P. reichenowi, suggesting that this locus evolved after the divergence of rodent and primate malaria parasites. The invasion ligand protein has six cysteine residues in the 3D7 and W2mef parasite lines, but only five (the first at position 203 being absent) in the other lines sequenced. While P. reichenowi invasion ligand (which has five cysteine residues) lacks Cys 329, it does however have an additional cysteine further towards the N-terminus, suggesting that not all of the cysteines are paired as disulphide bonds in the protein, with some (such as Cys 203 and 329) possibly unpaired or buried within the protein structure.

Example 3

Invasion Ligand is Expressed in all P. Falciparum Strains Tested and is Important for Parasite Survival

[0254] In order to determine the temporal expression pattern and subcellular localisation of the invasion ligand Applicant raised polyclonal and monoclonal antibodies against a central fragment that incorporated six cysteine residues from 3D7 (FIG. 1C). Immunoblots using both the polyclonal and monoclonal antibodies identified a protein band of ˜63 kDa, the predicted molecular weight of the invasion ligand, expressed predominantly in mature schizont stages (40-48 h) (FIG. 1C). Also observed was a smaller product of 45 kDa that likely corresponds to a processed fragment of full length invasion ligand (FIG. 1C).

[0255] Rh proteins show differential levels of expression and, for Rh2a/b, considerable amounts of size diversity across strains that have been analysed. While the invasion ligand gene from different P. falciparum strains does reveal a small number of polymorphisms no predicted differences in molecular weight are seen. To experimentally determine if the protein showed any marked differences in the level of expression or unexpected size diversity, Applicant performed immunoblots with culture supernatants from a diverse panel of parasite lines. The 45 kDa processed product was detected in all parasite strains tested and shows no expression level variation (FIG. 1D) consistent with it having an important function across all strains.

[0256] To address the function of the invasion ligand Applicant attempted to disrupt the gene in 3D7, W2mef, HB3 and D10 using the vector pCC1, a vector that has been used successfully to knock out several P. falciparum genes. Despite numerous attempts to derive lines lacking expression of the invasion ligand, the gene proved refractory to disruption. The gene can be targeted with similar plasmid constructs as long as the gene is reconstituted, as demonstrated by Applicant's ability to C-terminally tag the invasion ligand with a triple HA in both 3D7 and D10 (as discussed below). This suggests that the invasion ligand is important for parasite survival.

Example 4

The Invasion Ligand Co-Localizes with Apical Proteins and the Tight Junction During Invasion

[0257] An apical subcellular localisation in the merozoite would be expected if the invasion ligand were involved in merozoite invasion. Immunofluorescence microscopy with anti-invasion ligand antibodies showed that the protein gives a speckled pattern in schizont stages and localizes at the apical end of the merozoites, probably in the rhoptries (FIG. 2A). In order to further characterise the invasion ligand, a Strep II and Haemagglutinin (HA) tag was inserted at the 3' end of the invasion ligand gene by homologous recombination in frame with the last amino acid of the protein to derive parasite lines 3D7-invasion ligandHA and D10-invasion ligandHA (FIG. 2B). Immunoblots with culture supernatant from the transgenic lines 3D7-invasion ligandHA and D10-invasion ligandHA showed the invasion ligand protein, larger by approximately 5 kDa, when probed with anti-HA and the invasion ligand antibodies; consistent with successful tagging (FIG. 2C). Immunoprecipitation using anti-invasion ligand antibodies confirmed the tagging and specificity of the antibodies and, with the detection of the processed product, suggests that processing of the invasion ligand occurs at the N-terminus of the protein.

[0258] To further localise the invasion ligand in schizont stages and during merozoite invasion, Applicant performed immunofluorescence on fixed parasites including probes to other proteins known to play a role in invasion (FIG. 3). Localisation of the anti-HA antibodies was identical to that observed for invasion ligand-specific antibodies, providing evidence that the tagged protein could be used to follow the protein during invasion (FIG. 3A and FIG. 7). The invasion ligand showed essentially no co-localisation with AMA1, suggesting it is not present within micronemes, the known subcellular localisation of AMA1 (FIG. 3B). In contrast, the orthologue Rh2a/b showed a very similar pattern of localisation with respect to the invasion ligand (FIG. 3B). Rh2a/b localises to the neck of the rhoptries by both immunofluorescence and immuno-electron microscopy suggesting that the invasion ligand is also localised to these structures. RON4, is a recently described protein that has also been shown to be present in the neck of the rhoptries prior to invasion. It shows a very similar localisation pattern compared to the invasion ligand, adding further support to the invasion ligand's presence in the rhoptry neck. Immuno-electron microscopy of late schizonts confirmed localisation to the rhoptries, predominantly in the main body of these large secretory organelles using both anti-HA and anti-invasion ligand antibodies (FIG. 7). Some staining was also observed at the periphery of the rhoptry body though, unlike PfRh2a/b and RON4, none was seen definitively in the rhoptry neck, suggesting the invasion ligand may localise differently to other invasion ligand proteins.

[0259] Immunofluorescence microscopy of merozoites that have been arrested during invasion, shows that the invasion ligand co-localises with RON4 and AMA1 at the moving tight junction that forms between the invading merozoite and the host erythrocyte (FIG. 3C and FIG. 8). AMA1 and RON4 are known to form a complex and associate at the tight junction in malaria parasites and Toxoplasma gondii. Taken together, these results imply that the invasion ligand plays an important role in entry of the parasite into the host erythrocyte.

Example 5

The Invasion Ligand Binds to a Novel Receptor on the Red Cell Surface

[0260] As discussed supra, Rh1 and Rh4 both bind to the surface of the erythrocyte and their properties suggest a specific interaction with a host receptor. In red blood cell binding assays with concentrated culture supernatant both the 68 and 45 kDa protein products of the invasion ligand were found to bind to the host cell, with the smaller processed form binding at significantly increased levels suggesting a higher affinity interaction (FIG. 4A). Similar binding results were observed with the invasion ligand HA tagged protein (data not shown). Invasion ligand binding to erythrocytes was insensitive to chymotrypsin, trypsin and neuraminidase in contrast to the neuraminidase and trypsin sensitivity of EBA175 binding (FIG. 4B) and in a manner unlike any previously shown erythrocyte binding parasite adhesin. These results suggest that this protein binds to erythrocytes in a sialic acid independent manner, in contrast to other ligands such as EBA175, EBA140, EBA181 and Rh1.

[0261] Searching through the sequence of the invasion ligand it is possible to identify several putative heparin binding motifs (conforming to the xBBxBx or xBBBxxBx binding motifs, where x is hydropathic and B is basic). The form of heparin associated with the human erythrocyte is heparan sulfate, expressed as a proteoglycan, consisting of a sulfated carbohydrate chain covalently attached to core proteins and epitopes on the erythrocyte surface. Because of its insensitivity to neuraminidase we reasoned that heparin-binding could explain the invasion ligand's binding insensitivity to the standard suite of enzyme treatments. In in vitro binding assays heparin was able to inhibit binding of the invasion ligand in a dose-dependent manner which was more sensitive than that observed for the sialic acid binding ligand EBA175 (FIG. 4C). To determine if this inhibition of binding was specific, chondroitin sulfate C(CSC), a glycosaminoglycan expressed extensively across tissues as a chondroitin sulfate proteogylcan, was also tested. CSC did not inhibit either the invasion ligand or EBA175 binding, even at high concentrations (FIG. 4C). The affinity of the invasion ligand for heparin was further strengthened by the ability of agarose beads, coated in heparin, to selectively deplete the invasion ligand from concentrated supernatant (FIG. 4D). In the same assay, selective depletion of the invasion ligand could be inhibited by pre-incubating with soluble heparin but not CSC (FIG. 4D), suggesting that during invasion the invasion ligand binds to the erythrocyte via a novel receptor that includes a carbohydrate (and as such highly charged) moiety related to heparin.

Example 6

Antibodies Against the Invasion Ligand Inhibit Invasion In Vitro and Recombinant Full-Length Invasion Ligand is Recognized by Human Immune Sera from Malaria Endemic Populations

[0262] Antibodies against the invasion ligand were tested for their ability to inhibit invasion into untreated and enzyme treated parasites. Invasion of 3D7 wild type parasites into untreated erythrocytes showed no significant inhibition with these antibodies compared with invasion in the presence of normal pre-immune rabbit serum (mean inhibition 96.6% with 95% CI±6.1, FIG. 5A). However, when the repertoire of potential surface receptors was depleted by enzymatic pre-treatment of target erythrocytes, inhibition increased significantly. Inhibition of invasion by anti-invasion ligand was marked following 0.1 μM trypsin pre-treatment of erythrocytes (mean inhibition 80.3%, with 95% CI±5.6) compared with normal serum and, though less significantly, following 1.0 μM chymotrypsin--(mean inhibition 90.2%, with 95% CI±8.1) or neuraminidase--(mean inhibition 91.0% with 95%, CI±7.3) pre-treatment.

[0263] An immunoblot using soluble recombinant invasion ligand (generated from refolding of the invasion ligand from E. coli inclusion bodies) demonstrates that the invasion ligand is recognized by pooled human sera from malaria-endemic communities but significantly not from pooled malaria-nonexposed immune sera (FIG. 5). This indicates that the invasion ligand, as discussed supra for other members of the Rh family, is recognized in natural malaria infections.

[0264] While the foregoing written description of the invention enables one of ordinary skill to make and use what is considered presently to be the best mode thereof, those of ordinary skill will understand and appreciate the existence of variations, combinations, and equivalents of the specific embodiment, method, and examples herein. The invention should therefore not be limited by the above described embodiment, method, and examples, but by all embodiments and methods within the scope and spirit of the invention as broadly described herein.

Sequence CWU 1

351526PRTPlasmodium falciparum 1Met Ile Arg Ile Lys Lys Lys Leu Ile Leu Thr Ile Ile Tyr Ile His1 5 10 15Leu Phe Ile Leu Asn Arg Leu Ser Phe Glu Asn Ala Ile Lys Lys Thr 20 25 30Lys Asn Gln Glu Asn Asn Leu Thr Leu Leu Pro Ile Lys Ser Thr Glu 35 40 45Glu Glu Lys Asp Asp Ile Lys Asn Gly Lys Asp Ile Lys Lys Glu Ile 50 55 60Asp Asn Asp Lys Glu Asn Ile Lys Thr Asn Asn Ala Lys Asp His Ser65 70 75 80Thr Tyr Ile Lys Ser Tyr Leu Asn Thr Asn Val Asn Asp Gly Leu Lys 85 90 95Tyr Leu Phe Ile Pro Ser His Asn Ser Phe Ile Lys Lys Tyr Ser Val 100 105 110Phe Asn Gln Ile Asn Asp Gly Met Leu Leu Asn Glu Lys Asn Asp Val 115 120 125Lys Asn Asn Glu Asp Tyr Lys Asn Val Asp Tyr Lys Asn Val Asn Phe 130 135 140Leu Gln Tyr His Phe Lys Glu Leu Ser Asn Tyr Asn Ile Ala Asn Ser145 150 155 160Ile Asp Ile Leu Gln Glu Lys Glu Gly His Leu Asp Phe Val Ile Ile 165 170 175Pro His Tyr Thr Phe Leu Asp Tyr Tyr Lys His Leu Ser Tyr Asn Ser 180 185 190Ile Tyr His Lys Ser Ser Thr Tyr Gly Lys Cys Ile Ala Val Asp Ala 195 200 205Phe Ile Lys Lys Ile Asn Glu Thr Tyr Asp Lys Val Lys Ser Lys Cys 210 215 220Asn Asp Ile Lys Asn Asp Leu Ile Ala Thr Ile Lys Lys Leu Glu His225 230 235 240Pro Tyr Asp Ile Asn Asn Lys Asn Asp Asp Ser Tyr Arg Tyr Asp Ile 245 250 255Ser Glu Glu Ile Asp Asp Lys Ser Glu Glu Thr Asp Asp Glu Thr Glu 260 265 270Glu Val Glu Asp Ser Ile Gln Asp Thr Asp Ser Asn His Thr Pro Ser 275 280 285Asn Lys Lys Lys Asn Asp Leu Met Asn Arg Thr Phe Lys Lys Met Met 290 295 300Asp Glu Tyr Asn Thr Lys Lys Lys Lys Leu Ile Lys Cys Ile Lys Asn305 310 315 320His Glu Asn Asp Phe Asn Lys Ile Cys Met Asp Met Lys Asn Tyr Gly 325 330 335Thr Asn Leu Phe Glu Gln Leu Ser Cys Tyr Asn Asn Asn Phe Cys Asn 340 345 350Thr Asn Gly Ile Arg Tyr His Tyr Asp Glu Tyr Ile His Lys Leu Ile 355 360 365Leu Ser Val Lys Ser Lys Asn Leu Asn Lys Asp Leu Ser Asp Met Thr 370 375 380Asn Ile Leu Gln Gln Ser Glu Leu Leu Leu Thr Asn Leu Asn Lys Lys385 390 395 400Met Gly Ser Tyr Ile Tyr Ile Asp Thr Ile Lys Phe Ile His Lys Glu 405 410 415Met Lys His Ile Phe Asn Arg Ile Glu Tyr His Thr Lys Ile Ile Asn 420 425 430Asp Lys Thr Lys Ile Ile Gln Asp Lys Ile Lys Leu Asn Ile Trp Arg 435 440 445Thr Phe Gln Lys Asp Glu Leu Leu Lys Arg Ile Leu Asp Met Ser Asn 450 455 460Glu Tyr Ser Leu Phe Ile Thr Ser Asp His Leu Arg Gln Met Leu Tyr465 470 475 480Asn Thr Phe Tyr Ser Lys Glu Lys His Leu Asn Asn Ile Phe His His 485 490 495Leu Ile Tyr Val Leu Gln Met Lys Phe Asn Asp Val Pro Ile Lys Met 500 505 510Glu Tyr Phe Gln Thr Tyr Lys Lys Asn Lys Pro Leu Thr Gln 515 520 5252503PRTPlasmodium falciparum 2Ser Phe Glu Asn Ala Ile Lys Lys Thr Lys Asn Gln Glu Asn Asn Leu1 5 10 15Thr Leu Leu Pro Ile Lys Ser Thr Glu Glu Glu Lys Asp Asp Ile Lys 20 25 30Asn Gly Lys Asp Ile Lys Lys Glu Ile Asp Asn Asp Lys Glu Asn Ile 35 40 45Lys Thr Asn Asn Ala Lys Asp His Ser Thr Tyr Ile Lys Ser Tyr Leu 50 55 60Asn Thr Asn Val Asn Asp Gly Leu Lys Tyr Leu Phe Ile Pro Ser His65 70 75 80Asn Ser Phe Ile Lys Lys Tyr Ser Val Phe Asn Gln Ile Asn Asp Gly 85 90 95Met Leu Leu Asn Glu Lys Asn Asp Val Lys Asn Asn Glu Asp Tyr Lys 100 105 110Asn Val Asp Tyr Lys Asn Val Asn Phe Leu Gln Tyr His Phe Lys Glu 115 120 125Leu Ser Asn Tyr Asn Ile Ala Asn Ser Ile Asp Ile Leu Gln Glu Lys 130 135 140Glu Gly His Leu Asp Phe Val Ile Ile Pro His Tyr Thr Phe Leu Asp145 150 155 160Tyr Tyr Lys His Leu Ser Tyr Asn Ser Ile Tyr His Lys Ser Ser Thr 165 170 175Tyr Gly Lys Cys Ile Ala Val Asp Ala Phe Ile Lys Lys Ile Asn Glu 180 185 190Thr Tyr Asp Lys Val Lys Ser Lys Cys Asn Asp Ile Lys Asn Asp Leu 195 200 205Ile Ala Thr Ile Lys Lys Leu Glu His Pro Tyr Asp Ile Asn Asn Lys 210 215 220Asn Asp Asp Ser Tyr Arg Tyr Asp Ile Ser Glu Glu Ile Asp Asp Lys225 230 235 240Ser Glu Glu Thr Asp Asp Glu Thr Glu Glu Val Glu Asp Ser Ile Gln 245 250 255Asp Thr Asp Ser Asn His Thr Pro Ser Asn Lys Lys Lys Asn Asp Leu 260 265 270Met Asn Arg Thr Phe Lys Lys Met Met Asp Glu Tyr Asn Thr Lys Lys 275 280 285Lys Lys Leu Ile Lys Cys Ile Lys Asn His Glu Asn Asp Phe Asn Lys 290 295 300Ile Cys Met Asp Met Lys Asn Tyr Gly Thr Asn Leu Phe Glu Gln Leu305 310 315 320Ser Cys Tyr Asn Asn Asn Phe Cys Asn Thr Asn Gly Ile Arg Tyr His 325 330 335Tyr Asp Glu Tyr Ile His Lys Leu Ile Leu Ser Val Lys Ser Lys Asn 340 345 350Leu Asn Lys Asp Leu Ser Asp Met Thr Asn Ile Leu Gln Gln Ser Glu 355 360 365Leu Leu Leu Thr Asn Leu Asn Lys Lys Met Gly Ser Tyr Ile Tyr Ile 370 375 380Asp Thr Ile Lys Phe Ile His Lys Glu Met Lys His Ile Phe Asn Arg385 390 395 400Ile Glu Tyr His Thr Lys Ile Ile Asn Asp Lys Thr Lys Ile Ile Gln 405 410 415Asp Lys Ile Lys Leu Asn Ile Trp Arg Thr Phe Gln Lys Asp Glu Leu 420 425 430Leu Lys Arg Ile Leu Asp Met Ser Asn Glu Tyr Ser Leu Phe Ile Thr 435 440 445Ser Asp His Leu Arg Gln Met Leu Tyr Asn Thr Phe Tyr Ser Lys Glu 450 455 460Lys His Leu Asn Asn Ile Phe His His Leu Ile Tyr Val Leu Gln Met465 470 475 480Lys Phe Asn Asp Val Pro Ile Lys Met Glu Tyr Phe Gln Thr Tyr Lys 485 490 495Lys Asn Lys Pro Leu Thr Gln 5003379PRTPlasmodium falciparum 3His Phe Lys Glu Leu Ser Asn Tyr Asn Ile Ala Asn Ser Ile Asp Ile1 5 10 15Leu Gln Glu Lys Glu Gly His Leu Asp Phe Val Ile Ile Pro His Tyr 20 25 30Thr Phe Leu Asp Tyr Tyr Lys His Leu Ser Tyr Asn Ser Ile Tyr His 35 40 45Lys Ser Ser Thr Tyr Gly Lys Cys Ile Ala Val Asp Ala Phe Ile Lys 50 55 60Lys Ile Asn Glu Thr Tyr Asp Lys Val Lys Ser Lys Cys Asn Asp Ile65 70 75 80Lys Asn Asp Leu Ile Ala Thr Ile Lys Lys Leu Glu His Pro Tyr Asp 85 90 95Ile Asn Asn Lys Asn Asp Asp Ser Tyr Arg Tyr Asp Ile Ser Glu Glu 100 105 110Ile Asp Asp Lys Ser Glu Glu Thr Asp Asp Glu Thr Glu Glu Val Glu 115 120 125Asp Ser Ile Gln Asp Thr Asp Ser Asn His Thr Pro Ser Asn Lys Lys 130 135 140Lys Asn Asp Leu Met Asn Arg Thr Phe Lys Lys Met Met Asp Glu Tyr145 150 155 160Asn Thr Lys Lys Lys Lys Leu Ile Lys Cys Ile Lys Asn His Glu Asn 165 170 175Asp Phe Asn Lys Ile Cys Met Asp Met Lys Asn Tyr Gly Thr Asn Leu 180 185 190Phe Glu Gln Leu Ser Cys Tyr Asn Asn Asn Phe Cys Asn Thr Asn Gly 195 200 205Ile Arg Tyr His Tyr Asp Glu Tyr Ile His Lys Leu Ile Leu Ser Val 210 215 220Lys Ser Lys Asn Leu Asn Lys Asp Leu Ser Asp Met Thr Asn Ile Leu225 230 235 240Gln Gln Ser Glu Leu Leu Leu Thr Asn Leu Asn Lys Lys Met Gly Ser 245 250 255Tyr Ile Tyr Ile Asp Thr Ile Lys Phe Ile His Lys Glu Met Lys His 260 265 270Ile Phe Asn Arg Ile Glu Tyr His Thr Lys Ile Ile Asn Asp Lys Thr 275 280 285Lys Ile Ile Gln Asp Lys Ile Lys Leu Asn Ile Trp Arg Thr Phe Gln 290 295 300Lys Asp Glu Leu Leu Lys Arg Ile Leu Asp Met Ser Asn Glu Tyr Ser305 310 315 320Leu Phe Ile Thr Ser Asp His Leu Arg Gln Met Leu Tyr Asn Thr Phe 325 330 335Tyr Ser Lys Glu Lys His Leu Asn Asn Ile Phe His His Leu Ile Tyr 340 345 350Val Leu Gln Met Lys Phe Asn Asp Val Pro Ile Lys Met Glu Tyr Phe 355 360 365Gln Thr Tyr Lys Lys Asn Lys Pro Leu Thr Gln 370 3754384PRTPlasmodium falciparum 4Asn Phe Leu Gln Tyr His Phe Lys Glu Leu Ser Asn Tyr Asn Ile Ala1 5 10 15Asn Ser Ile Asp Ile Leu Gln Glu Lys Glu Gly His Leu Asp Phe Val 20 25 30Ile Ile Pro His Tyr Thr Phe Leu Asp Tyr Tyr Lys His Leu Ser Tyr 35 40 45Asn Ser Ile Tyr His Lys Ser Ser Thr Tyr Gly Lys Cys Ile Ala Val 50 55 60Asp Ala Phe Ile Lys Lys Ile Asn Glu Thr Tyr Asp Lys Val Lys Ser65 70 75 80Lys Cys Asn Asp Ile Lys Asn Asp Leu Ile Ala Thr Ile Lys Lys Leu 85 90 95Glu His Pro Tyr Asp Ile Asn Asn Lys Asn Asp Asp Ser Tyr Arg Tyr 100 105 110Asp Ile Ser Glu Glu Ile Asp Asp Lys Ser Glu Glu Thr Asp Asp Glu 115 120 125Thr Glu Glu Val Glu Asp Ser Ile Gln Asp Thr Asp Ser Asn His Thr 130 135 140Pro Ser Asn Lys Lys Lys Asn Asp Leu Met Asn Arg Thr Phe Lys Lys145 150 155 160Met Met Asp Glu Tyr Asn Thr Lys Lys Lys Lys Leu Ile Lys Cys Ile 165 170 175Lys Asn His Glu Asn Asp Phe Asn Lys Ile Cys Met Asp Met Lys Asn 180 185 190Tyr Gly Thr Asn Leu Phe Glu Gln Leu Ser Cys Tyr Asn Asn Asn Phe 195 200 205Cys Asn Thr Asn Gly Ile Arg Tyr His Tyr Asp Glu Tyr Ile His Lys 210 215 220Leu Ile Leu Ser Val Lys Ser Lys Asn Leu Asn Lys Asp Leu Ser Asp225 230 235 240Met Thr Asn Ile Leu Gln Gln Ser Glu Leu Leu Leu Thr Asn Leu Asn 245 250 255Lys Lys Met Gly Ser Tyr Ile Tyr Ile Asp Thr Ile Lys Phe Ile His 260 265 270Lys Glu Met Lys His Ile Phe Asn Arg Ile Glu Tyr His Thr Lys Ile 275 280 285Ile Asn Asp Lys Thr Lys Ile Ile Gln Asp Lys Ile Lys Leu Asn Ile 290 295 300Trp Arg Thr Phe Gln Lys Asp Glu Leu Leu Lys Arg Ile Leu Asp Met305 310 315 320Ser Asn Glu Tyr Ser Leu Phe Ile Thr Ser Asp His Leu Arg Gln Met 325 330 335Leu Tyr Asn Thr Phe Tyr Ser Lys Glu Lys His Leu Asn Asn Ile Phe 340 345 350His His Leu Ile Tyr Val Leu Gln Met Lys Phe Asn Asp Val Pro Ile 355 360 365Lys Met Glu Tyr Phe Gln Thr Tyr Lys Lys Asn Lys Pro Leu Thr Gln 370 375 3805389PRTPlasmodium falciparum 5Asp Tyr Lys Asn Val Asn Phe Leu Gln Tyr His Phe Lys Glu Leu Ser1 5 10 15Asn Tyr Asn Ile Ala Asn Ser Ile Asp Ile Leu Gln Glu Lys Glu Gly 20 25 30His Leu Asp Phe Val Ile Ile Pro His Tyr Thr Phe Leu Asp Tyr Tyr 35 40 45Lys His Leu Ser Tyr Asn Ser Ile Tyr His Lys Ser Ser Thr Tyr Gly 50 55 60Lys Cys Ile Ala Val Asp Ala Phe Ile Lys Lys Ile Asn Glu Thr Tyr65 70 75 80Asp Lys Val Lys Ser Lys Cys Asn Asp Ile Lys Asn Asp Leu Ile Ala 85 90 95Thr Ile Lys Lys Leu Glu His Pro Tyr Asp Ile Asn Asn Lys Asn Asp 100 105 110Asp Ser Tyr Arg Tyr Asp Ile Ser Glu Glu Ile Asp Asp Lys Ser Glu 115 120 125Glu Thr Asp Asp Glu Thr Glu Glu Val Glu Asp Ser Ile Gln Asp Thr 130 135 140Asp Ser Asn His Thr Pro Ser Asn Lys Lys Lys Asn Asp Leu Met Asn145 150 155 160Arg Thr Phe Lys Lys Met Met Asp Glu Tyr Asn Thr Lys Lys Lys Lys 165 170 175Leu Ile Lys Cys Ile Lys Asn His Glu Asn Asp Phe Asn Lys Ile Cys 180 185 190Met Asp Met Lys Asn Tyr Gly Thr Asn Leu Phe Glu Gln Leu Ser Cys 195 200 205Tyr Asn Asn Asn Phe Cys Asn Thr Asn Gly Ile Arg Tyr His Tyr Asp 210 215 220Glu Tyr Ile His Lys Leu Ile Leu Ser Val Lys Ser Lys Asn Leu Asn225 230 235 240Lys Asp Leu Ser Asp Met Thr Asn Ile Leu Gln Gln Ser Glu Leu Leu 245 250 255Leu Thr Asn Leu Asn Lys Lys Met Gly Ser Tyr Ile Tyr Ile Asp Thr 260 265 270Ile Lys Phe Ile His Lys Glu Met Lys His Ile Phe Asn Arg Ile Glu 275 280 285Tyr His Thr Lys Ile Ile Asn Asp Lys Thr Lys Ile Ile Gln Asp Lys 290 295 300Ile Lys Leu Asn Ile Trp Arg Thr Phe Gln Lys Asp Glu Leu Leu Lys305 310 315 320Arg Ile Leu Asp Met Ser Asn Glu Tyr Ser Leu Phe Ile Thr Ser Asp 325 330 335His Leu Arg Gln Met Leu Tyr Asn Thr Phe Tyr Ser Lys Glu Lys His 340 345 350Leu Asn Asn Ile Phe His His Leu Ile Tyr Val Leu Gln Met Lys Phe 355 360 365Asn Asp Val Pro Ile Lys Met Glu Tyr Phe Gln Thr Tyr Lys Lys Asn 370 375 380Lys Pro Leu Thr Gln3856374PRTPlasmodium falciparum 6Ser Asn Tyr Asn Ile Ala Asn Ser Ile Asp Ile Leu Gln Glu Lys Glu1 5 10 15Gly His Leu Asp Phe Val Ile Ile Pro His Tyr Thr Phe Leu Asp Tyr 20 25 30Tyr Lys His Leu Ser Tyr Asn Ser Ile Tyr His Lys Ser Ser Thr Tyr 35 40 45Gly Lys Cys Ile Ala Val Asp Ala Phe Ile Lys Lys Ile Asn Glu Thr 50 55 60Tyr Asp Lys Val Lys Ser Lys Cys Asn Asp Ile Lys Asn Asp Leu Ile65 70 75 80Ala Thr Ile Lys Lys Leu Glu His Pro Tyr Asp Ile Asn Asn Lys Asn 85 90 95Asp Asp Ser Tyr Arg Tyr Asp Ile Ser Glu Glu Ile Asp Asp Lys Ser 100 105 110Glu Glu Thr Asp Asp Glu Thr Glu Glu Val Glu Asp Ser Ile Gln Asp 115 120 125Thr Asp Ser Asn His Thr Pro Ser Asn Lys Lys Lys Asn Asp Leu Met 130 135 140Asn Arg Thr Phe Lys Lys Met Met Asp Glu Tyr Asn Thr Lys Lys Lys145 150 155 160Lys Leu Ile Lys Cys Ile Lys Asn His Glu Asn Asp Phe Asn Lys Ile 165 170 175Cys Met Asp Met Lys Asn Tyr Gly Thr Asn Leu Phe Glu Gln Leu Ser 180 185 190Cys Tyr Asn Asn Asn Phe Cys Asn Thr Asn Gly Ile Arg Tyr His Tyr 195 200 205Asp Glu Tyr Ile His Lys Leu Ile Leu Ser Val Lys Ser Lys Asn Leu 210 215 220Asn Lys Asp Leu Ser Asp Met Thr Asn Ile Leu Gln Gln Ser Glu Leu225 230 235 240Leu Leu Thr Asn Leu Asn Lys Lys Met Gly Ser Tyr Ile Tyr Ile Asp 245 250 255Thr Ile Lys Phe Ile His Lys Glu Met Lys His Ile Phe Asn Arg Ile 260 265 270Glu Tyr His Thr Lys

Ile Ile Asn Asp Lys Thr Lys Ile Ile Gln Asp 275 280 285Lys Ile Lys Leu Asn Ile Trp Arg Thr Phe Gln Lys Asp Glu Leu Leu 290 295 300Lys Arg Ile Leu Asp Met Ser Asn Glu Tyr Ser Leu Phe Ile Thr Ser305 310 315 320Asp His Leu Arg Gln Met Leu Tyr Asn Thr Phe Tyr Ser Lys Glu Lys 325 330 335His Leu Asn Asn Ile Phe His His Leu Ile Tyr Val Leu Gln Met Lys 340 345 350Phe Asn Asp Val Pro Ile Lys Met Glu Tyr Phe Gln Thr Tyr Lys Lys 355 360 365Asn Lys Pro Leu Thr Gln 3707369PRTPlasmodium falciparum 7Ala Asn Ser Ile Asp Ile Leu Gln Glu Lys Glu Gly His Leu Asp Phe1 5 10 15Val Ile Ile Pro His Tyr Thr Phe Leu Asp Tyr Tyr Lys His Leu Ser 20 25 30Tyr Asn Ser Ile Tyr His Lys Ser Ser Thr Tyr Gly Lys Cys Ile Ala 35 40 45Val Asp Ala Phe Ile Lys Lys Ile Asn Glu Thr Tyr Asp Lys Val Lys 50 55 60Ser Lys Cys Asn Asp Ile Lys Asn Asp Leu Ile Ala Thr Ile Lys Lys65 70 75 80Leu Glu His Pro Tyr Asp Ile Asn Asn Lys Asn Asp Asp Ser Tyr Arg 85 90 95Tyr Asp Ile Ser Glu Glu Ile Asp Asp Lys Ser Glu Glu Thr Asp Asp 100 105 110Glu Thr Glu Glu Val Glu Asp Ser Ile Gln Asp Thr Asp Ser Asn His 115 120 125Thr Pro Ser Asn Lys Lys Lys Asn Asp Leu Met Asn Arg Thr Phe Lys 130 135 140Lys Met Met Asp Glu Tyr Asn Thr Lys Lys Lys Lys Leu Ile Lys Cys145 150 155 160Ile Lys Asn His Glu Asn Asp Phe Asn Lys Ile Cys Met Asp Met Lys 165 170 175Asn Tyr Gly Thr Asn Leu Phe Glu Gln Leu Ser Cys Tyr Asn Asn Asn 180 185 190Phe Cys Asn Thr Asn Gly Ile Arg Tyr His Tyr Asp Glu Tyr Ile His 195 200 205Lys Leu Ile Leu Ser Val Lys Ser Lys Asn Leu Asn Lys Asp Leu Ser 210 215 220Asp Met Thr Asn Ile Leu Gln Gln Ser Glu Leu Leu Leu Thr Asn Leu225 230 235 240Asn Lys Lys Met Gly Ser Tyr Ile Tyr Ile Asp Thr Ile Lys Phe Ile 245 250 255His Lys Glu Met Lys His Ile Phe Asn Arg Ile Glu Tyr His Thr Lys 260 265 270Ile Ile Asn Asp Lys Thr Lys Ile Ile Gln Asp Lys Ile Lys Leu Asn 275 280 285Ile Trp Arg Thr Phe Gln Lys Asp Glu Leu Leu Lys Arg Ile Leu Asp 290 295 300Met Ser Asn Glu Tyr Ser Leu Phe Ile Thr Ser Asp His Leu Arg Gln305 310 315 320Met Leu Tyr Asn Thr Phe Tyr Ser Lys Glu Lys His Leu Asn Asn Ile 325 330 335Phe His His Leu Ile Tyr Val Leu Gln Met Lys Phe Asn Asp Val Pro 340 345 350Ile Lys Met Glu Tyr Phe Gln Thr Tyr Lys Lys Asn Lys Pro Leu Thr 355 360 365Gln 8170PRTPlasmodium falciparum 8Asn Ser Ile Tyr His Lys Ser Ser Thr Tyr Gly Lys Cys Ile Ala Val1 5 10 15Asp Ala Phe Ile Lys Lys Ile Asn Glu Thr Tyr Asp Lys Val Lys Ser 20 25 30Lys Cys Asn Asp Ile Lys Asn Asp Leu Ile Ala Thr Ile Lys Lys Leu 35 40 45Glu His Pro Tyr Asp Ile Asn Asn Lys Asn Asp Asp Ser Tyr Arg Tyr 50 55 60Asp Ile Ser Glu Glu Ile Asp Asp Lys Ser Glu Glu Thr Asp Asp Glu65 70 75 80Thr Glu Glu Val Glu Asp Ser Ile Gln Asp Thr Asp Ser Asn His Thr 85 90 95Pro Ser Asn Lys Lys Lys Asn Asp Leu Met Asn Arg Thr Phe Lys Lys 100 105 110Met Met Asp Glu Tyr Asn Thr Lys Lys Lys Lys Leu Ile Lys Cys Ile 115 120 125Lys Asn His Glu Asn Asp Phe Asn Lys Ile Cys Met Asp Met Lys Asn 130 135 140Tyr Gly Thr Asn Leu Phe Glu Gln Leu Ser Cys Tyr Asn Asn Asn Phe145 150 155 160Cys Asn Thr Asn Gly Ile Arg Tyr His Tyr 165 1709157PRTPlasmodium falciparum 9Ile Ala Val Asp Ala Phe Ile Lys Lys Ile Asn Glu Thr Tyr Asp Lys1 5 10 15Val Lys Ser Lys Cys Asn Asp Ile Lys Asn Asp Leu Ile Ala Thr Ile 20 25 30Lys Lys Leu Glu His Pro Tyr Asp Ile Asn Asn Lys Asn Asp Asp Ser 35 40 45Tyr Arg Tyr Asp Ile Ser Glu Glu Ile Asp Asp Lys Ser Glu Glu Thr 50 55 60Asp Asp Glu Thr Glu Glu Val Glu Asp Ser Ile Gln Asp Thr Asp Ser65 70 75 80Asn His Thr Pro Ser Asn Lys Lys Lys Asn Asp Leu Met Asn Arg Thr 85 90 95Phe Lys Lys Met Met Asp Glu Tyr Asn Thr Lys Lys Lys Lys Leu Ile 100 105 110Lys Cys Ile Lys Asn His Glu Asn Asp Phe Asn Lys Ile Cys Met Asp 115 120 125Met Lys Asn Tyr Gly Thr Asn Leu Phe Glu Gln Leu Ser Cys Tyr Asn 130 135 140Asn Asn Phe Cys Asn Thr Asn Gly Ile Arg Tyr His Tyr145 150 15510147PRTPlasmodium falciparum 10Ile Ala Val Asp Ala Phe Ile Lys Lys Ile Asn Glu Thr Tyr Asp Lys1 5 10 15Val Lys Ser Lys Cys Asn Asp Ile Lys Asn Asp Leu Ile Ala Thr Ile 20 25 30Lys Lys Leu Glu His Pro Tyr Asp Ile Asn Asn Lys Asn Asp Asp Ser 35 40 45Tyr Arg Tyr Asp Ile Ser Glu Glu Ile Asp Asp Lys Ser Glu Glu Thr 50 55 60Asp Asp Glu Thr Glu Glu Val Glu Asp Ser Ile Gln Asp Thr Asp Ser65 70 75 80Asn His Thr Pro Ser Asn Lys Lys Lys Asn Asp Leu Met Asn Arg Thr 85 90 95Phe Lys Lys Met Met Asp Glu Tyr Asn Thr Lys Lys Lys Lys Leu Ile 100 105 110Lys Cys Ile Lys Asn His Glu Asn Asp Phe Asn Lys Ile Cys Met Asp 115 120 125Met Lys Asn Tyr Gly Thr Asn Leu Phe Glu Gln Leu Ser Cys Tyr Asn 130 135 140Asn Asn Phe14511141PRTPlasmodium falciparum 11Ile Ala Val Asp Ala Phe Ile Lys Lys Ile Asn Glu Thr Tyr Asp Lys1 5 10 15Val Lys Ser Lys Cys Asn Asp Ile Lys Asn Asp Leu Ile Ala Thr Ile 20 25 30Lys Lys Leu Glu His Pro Tyr Asp Ile Asn Asn Lys Asn Asp Asp Ser 35 40 45Tyr Arg Tyr Asp Ile Ser Glu Glu Ile Asp Asp Lys Ser Glu Glu Thr 50 55 60Asp Asp Glu Thr Glu Glu Val Glu Asp Ser Ile Gln Asp Thr Asp Ser65 70 75 80Asn His Thr Pro Ser Asn Lys Lys Lys Asn Asp Leu Met Asn Arg Thr 85 90 95Phe Lys Lys Met Met Asp Glu Tyr Asn Thr Lys Lys Lys Lys Leu Ile 100 105 110Lys Cys Ile Lys Asn His Glu Asn Asp Phe Asn Lys Ile Cys Met Asp 115 120 125Met Lys Asn Tyr Gly Thr Asn Leu Phe Glu Gln Leu Ser 130 135 14012125PRTPlasmodium falciparum 12Ile Ala Val Asp Ala Phe Ile Lys Lys Ile Asn Glu Thr Tyr Asp Lys1 5 10 15Val Lys Ser Lys Cys Asn Asp Ile Lys Asn Asp Leu Ile Ala Thr Ile 20 25 30Lys Lys Leu Glu His Pro Tyr Asp Ile Asn Asn Lys Asn Asp Asp Ser 35 40 45Tyr Arg Tyr Asp Ile Ser Glu Glu Ile Asp Asp Lys Ser Glu Glu Thr 50 55 60Asp Asp Glu Thr Glu Glu Val Glu Asp Ser Ile Gln Asp Thr Asp Ser65 70 75 80Asn His Thr Pro Ser Asn Lys Lys Lys Asn Asp Leu Met Asn Arg Thr 85 90 95Phe Lys Lys Met Met Asp Glu Tyr Asn Thr Lys Lys Lys Lys Leu Ile 100 105 110Lys Cys Ile Lys Asn His Glu Asn Asp Phe Asn Lys Ile 115 120 125133179PRTPlasmodium falciparum 13Met Lys Arg Ser Leu Ile Asn Leu Glu Asn Asp Leu Phe Arg Leu Glu1 5 10 15Pro Ile Ser Tyr Ile Gln Arg Tyr Tyr Lys Lys Asn Ile Asn Arg Ser 20 25 30Asp Ile Phe His Asn Lys Lys Glu Arg Gly Ser Lys Val Tyr Ser Asn 35 40 45Val Ser Ser Phe His Ser Phe Ile Gln Glu Gly Lys Glu Glu Val Glu 50 55 60Val Phe Ser Ile Trp Gly Ser Asn Ser Val Leu Asp His Ile Asp Val65 70 75 80Leu Arg Asp Asn Gly Thr Val Val Phe Ser Val Gln Pro Tyr Tyr Leu 85 90 95Asp Ile Tyr Thr Cys Lys Glu Ala Ile Leu Phe Thr Thr Ser Phe Tyr 100 105 110Lys Asp Leu Asp Lys Ser Ser Ile Thr Lys Ile Asn Glu Asp Ile Glu 115 120 125Lys Phe Asn Glu Glu Ile Ile Lys Asn Glu Glu Gln Cys Leu Val Gly 130 135 140Gly Lys Thr Asp Phe Asp Asn Leu Leu Ile Val Leu Glu Asn Ala Glu145 150 155 160Lys Ala Asn Val Arg Lys Thr Leu Phe Asp Asn Thr Phe Asn Asp Tyr 165 170 175Lys Asn Lys Lys Ser Ser Phe Tyr Asn Cys Leu Lys Asn Lys Lys Asn 180 185 190Asp Tyr Asp Lys Lys Ile Lys Asn Ile Lys Asn Glu Ile Thr Lys Leu 195 200 205Leu Lys Asn Ile Glu Ser Thr Gly Asn Met Cys Lys Thr Glu Ser Tyr 210 215 220Val Met Asn Asn Asn Leu Tyr Leu Leu Arg Val Asn Glu Val Lys Ser225 230 235 240Thr Pro Ile Asp Leu Tyr Leu Asn Arg Ala Lys Glu Leu Leu Glu Ser 245 250 255Ser Ser Lys Leu Val Asn Pro Ile Lys Met Lys Leu Gly Asp Asn Lys 260 265 270Asn Met Tyr Ser Ile Gly Tyr Ile His Asp Glu Ile Lys Asp Ile Ile 275 280 285Lys Arg Tyr Asn Phe His Leu Lys His Ile Glu Lys Gly Lys Glu Tyr 290 295 300Ile Lys Arg Ile Thr Gln Ala Asn Asn Ile Ala Asp Lys Met Lys Lys305 310 315 320Asp Glu Leu Ile Lys Lys Ile Phe Glu Ser Ser Lys His Phe Ala Ser 325 330 335Phe Lys Tyr Ser Asn Glu Met Ile Ser Lys Leu Asp Ser Leu Phe Ile 340 345 350Lys Asn Glu Glu Ile Leu Asn Asn Leu Phe Asn Asn Ile Phe Asn Ile 355 360 365Phe Lys Lys Lys Tyr Glu Thr Tyr Val Asp Met Lys Thr Ile Glu Ser 370 375 380Lys Tyr Thr Thr Val Met Thr Leu Ser Glu His Leu Leu Glu Tyr Ala385 390 395 400Met Asp Val Leu Lys Ala Asn Pro Gln Lys Pro Ile Asp Pro Lys Ala 405 410 415Asn Leu Asp Ser Glu Val Val Lys Leu Gln Ile Lys Ile Asn Glu Lys 420 425 430Ser Asn Glu Leu Asp Asn Ala Ile Ser Gln Val Lys Thr Leu Ile Ile 435 440 445Ile Met Lys Ser Phe Tyr Asp Ile Ile Ile Ser Glu Lys Ala Ser Met 450 455 460Asp Glu Met Glu Lys Lys Glu Leu Ser Leu Asn Asn Tyr Ile Glu Lys465 470 475 480Thr Asp Tyr Ile Leu Gln Thr Tyr Asn Ile Phe Lys Ser Lys Ser Asn 485 490 495Ile Ile Asn Asn Asn Ser Lys Asn Ile Ser Ser Lys Tyr Ile Thr Ile 500 505 510Glu Gly Leu Lys Asn Asp Ile Asp Glu Leu Asn Ser Leu Ile Ser Tyr 515 520 525Phe Lys Asp Ser Gln Glu Thr Leu Ile Lys Asp Asp Glu Leu Lys Lys 530 535 540Asn Met Lys Thr Asp Tyr Leu Asn Asn Val Lys Tyr Ile Glu Glu Asn545 550 555 560Val Thr His Ile Asn Glu Ile Ile Leu Leu Lys Asp Ser Ile Thr Gln 565 570 575Arg Ile Ala Asp Ile Asp Glu Leu Asn Ser Leu Asn Leu Ile Asn Ile 580 585 590Asn Asp Phe Ile Asn Glu Lys Asn Ile Ser Gln Glu Lys Val Ser Tyr 595 600 605Asn Leu Asn Lys Leu Tyr Lys Gly Ser Phe Glu Glu Leu Glu Ser Glu 610 615 620Leu Ser His Phe Leu Asp Thr Lys Tyr Leu Phe His Glu Lys Lys Ser625 630 635 640Val Asn Glu Leu Gln Thr Ile Leu Asn Thr Ser Asn Asn Glu Cys Ala 645 650 655Lys Leu Asn Phe Met Lys Ser Asp Asn Asn Asn Asn Asn Asn Asn Ser 660 665 670Asn Ile Ile Asn Leu Leu Lys Thr Glu Leu Ser His Leu Leu Ser Leu 675 680 685Lys Glu Asn Ile Ile Lys Lys Leu Leu Asn His Ile Glu Gln Asn Ile 690 695 700Gln Asn Ser Ser Asn Lys Tyr Thr Ile Thr Tyr Thr Asp Ile Asn Asn705 710 715 720Arg Met Glu Asp Tyr Lys Glu Glu Ile Glu Ser Leu Glu Val Tyr Lys 725 730 735His Thr Ile Gly Asn Ile Gln Lys Glu Tyr Ile Leu His Leu Tyr Glu 740 745 750Asn Asp Lys Asn Ala Leu Ala Val His Asn Thr Ser Met Gln Ile Leu 755 760 765Gln Tyr Lys Asp Ala Ile Gln Asn Ile Lys Asn Lys Ile Ser Asp Asp 770 775 780Ile Lys Ile Leu Lys Lys Tyr Lys Glu Met Asn Gln Asp Leu Leu Asn785 790 795 800Tyr Tyr Glu Ile Leu Asp Lys Lys Leu Lys Asp Asn Thr Tyr Ile Lys 805 810 815Glu Met His Thr Ala Ser Leu Val Gln Ile Thr Gln Tyr Ile Pro Tyr 820 825 830Glu Asp Lys Thr Ile Ser Glu Leu Glu Gln Glu Phe Asn Asn Asn Asn 835 840 845Gln Lys Leu Asp Asn Ile Leu Gln Asp Ile Asn Ala Met Asn Leu Asn 850 855 860Ile Asn Ile Leu Gln Thr Leu Asn Ile Gly Ile Asn Ala Cys Asn Thr865 870 875 880Asn Asn Lys Asn Val Glu His Leu Leu Asn Lys Lys Ile Glu Leu Lys 885 890 895Asn Ile Leu Asn Asp Gln Met Lys Ile Ile Lys Asn Asp Asp Ile Ile 900 905 910Gln Asp Asn Glu Lys Glu Asn Phe Ser Asn Val Leu Lys Lys Glu Glu 915 920 925Glu Lys Leu Glu Lys Glu Leu Asp Asp Ile Lys Phe Asn Asn Leu Lys 930 935 940Met Asp Ile His Lys Leu Leu Asn Ser Tyr Asp His Thr Lys Gln Asn945 950 955 960Ile Glu Ser Asn Leu Lys Ile Asn Leu Asp Ser Phe Glu Lys Glu Lys 965 970 975Asp Ser Trp Val His Phe Lys Ser Thr Ile Asp Ser Leu Tyr Val Glu 980 985 990Tyr Asn Ile Cys Asn Gln Lys Thr His Asn Thr Ile Lys Gln Gln Lys 995 1000 1005Asn Asp Ile Ile Glu Leu Ile Tyr Lys Arg Ile Lys Asp Ile Asn Gln 1010 1015 1020Glu Ile Ile Glu Lys Val Asp Asn Tyr Tyr Ser Leu Ser Asp Lys Ala1025 1030 1035 1040Leu Thr Lys Leu Lys Ser Ile His Phe Asn Ile Asp Lys Glu Lys Tyr 1045 1050 1055Lys Asn Pro Lys Ser Gln Glu Asn Ile Lys Leu Leu Glu Asp Arg Val 1060 1065 1070Met Ile Leu Glu Lys Lys Ile Lys Glu Asp Lys Asp Ala Leu Ile Gln 1075 1080 1085Ile Lys Asn Leu Ser His Asp His Phe Val Asn Ala Asp Asn Glu Lys 1090 1095 1100Lys Lys Gln Lys Glu Lys Glu Glu Asp Asp Glu Gln Thr His Tyr Ser1105 1110 1115 1120Lys Lys Arg Lys Val Met Gly Asp Ile Tyr Lys Asp Ile Lys Lys Asn 1125 1130 1135Leu Asp Glu Leu Asn Asn Lys Asn Leu Ile Asp Ile Thr Leu Asn Glu 1140 1145 1150Ala Asn Lys Ile Glu Ser Glu Tyr Glu Lys Ile Leu Ile Asp Asp Ile 1155 1160 1165Cys Glu Gln Ile Thr Asn Glu Ala Lys Lys Ser Asp Thr Ile Lys Glu 1170 1175 1180Lys Ile Glu Ser Tyr Lys Lys Asp Ile Asp Tyr Val Asp Val Asp Val1185 1190 1195 1200Ser Lys Thr Arg Asn Asp His His Leu Asn Gly Asp Lys Ile His Asp 1205 1210 1215Ser Phe Phe Tyr Glu Asp Thr Leu Asn Tyr Lys Ala Tyr Phe Asp Lys 1220 1225 1230Leu Lys Asp Leu Tyr Glu

Asn Ile Asn Lys Leu Thr Asn Glu Ser Asn 1235 1240 1245Gly Leu Lys Ser Asp Ala His Asn Asn Asn Thr Gln Val Asp Lys Leu 1250 1255 1260Lys Glu Ile Asn Leu Gln Val Phe Ser Asn Leu Gly Asn Ile Ile Lys1265 1270 1275 1280Tyr Val Glu Lys Leu Glu Asn Thr Leu His Glu Leu Lys Asp Met Tyr 1285 1290 1295Glu Phe Leu Glu Thr Ile Asp Ile Asn Lys Ile Leu Lys Ser Ile His 1300 1305 1310Asn Ser Met Lys Lys Ser Glu Glu Tyr Ser Asn Glu Thr Lys Lys Ile 1315 1320 1325Phe Glu Gln Ser Val Asn Ile Thr Asn Gln Phe Ile Glu Asp Val Glu 1330 1335 1340Ile Leu Lys Thr Ser Ile Asn Pro Asn Tyr Glu Ser Leu Asn Asp Asp1345 1350 1355 1360Gln Ile Asp Asp Asn Ile Lys Ser Leu Val Leu Lys Lys Glu Glu Ile 1365 1370 1375Ser Glu Lys Arg Lys Gln Val Asn Lys Tyr Ile Thr Asp Ile Glu Ser 1380 1385 1390Asn Lys Glu Gln Ser Asp Leu His Leu Arg Tyr Ala Ser Arg Ser Ile 1395 1400 1405Tyr Val Ile Asp Leu Phe Ile Lys His Glu Ile Ile Asn Pro Ser Asp 1410 1415 1420Gly Lys Asn Phe Asp Ile Ile Lys Val Lys Glu Met Ile Asn Lys Thr1425 1430 1435 1440Lys Gln Val Ser Asn Glu Ala Met Glu Tyr Ala Asn Lys Met Asp Glu 1445 1450 1455Lys Asn Lys Asp Ile Ile Lys Ile Glu Asn Glu Leu Tyr Asn Leu Ile 1460 1465 1470Asn Asn Asn Ile Arg Ser Leu Lys Gly Val Lys Tyr Glu Lys Val Arg 1475 1480 1485Lys Gln Ala Arg Asn Ala Ile Asp Asp Ile Asn Asn Ile His Ser Asn 1490 1495 1500Ile Lys Thr Ile Leu Thr Lys Ser Lys Glu Arg Leu Asp Glu Ile Lys1505 1510 1515 1520Lys Gln Pro Asn Ile Lys Arg Glu Gly Asp Val Leu Asn Asn Asp Lys 1525 1530 1535Thr Lys Ile Ala Tyr Ile Thr Ile Gln Ile Asn Asn Gly Arg Ile Glu 1540 1545 1550Ser Asn Leu Leu Asn Ile Leu Asn Met Lys His Asn Ile Asp Thr Ile 1555 1560 1565Leu Asn Lys Ala Met Asp Tyr Met Asn Asp Val Ser Lys Ser Asp Gln 1570 1575 1580Ile Val Ile Asn Ile Asp Ser Leu Asn Met Asn Asp Ile Tyr Asn Lys1585 1590 1595 1600Asp Lys Asp Leu Leu Ile Asn Ile Leu Lys Glu Lys Gln Asn Met Glu 1605 1610 1615Ala Glu Tyr Lys Lys Met Asn Glu Met Tyr Asn Tyr Val Asn Glu Thr 1620 1625 1630Glu Lys Glu Ile Ile Lys His Lys Lys Asn Tyr Glu Ile Arg Ile Met 1635 1640 1645Glu His Ile Lys Lys Glu Thr Asn Glu Lys Lys Lys Lys Phe Met Glu 1650 1655 1660Ser Asn Asn Lys Ser Leu Thr Thr Leu Met Asp Ser Phe Arg Ser Met1665 1670 1675 1680Phe Tyr Asn Glu Tyr Ile Asn Asp Tyr Asn Ile Asn Glu Asn Phe Glu 1685 1690 1695Lys His Gln Asn Ile Leu Asn Glu Ile Tyr Asn Gly Phe Asn Glu Ser 1700 1705 1710Tyr Asn Ile Ile Asn Thr Lys Met Thr Glu Ile Ile Asn Asp Asn Leu 1715 1720 1725Asp Tyr Asn Glu Ile Lys Glu Ile Lys Glu Val Ala Gln Thr Glu Tyr 1730 1735 1740Asp Lys Leu Asn Lys Lys Val Asp Glu Leu Lys Asn Tyr Leu Asn Asn1745 1750 1755 1760Ile Lys Glu Gln Glu Gly His Arg Leu Ile Asp Tyr Ile Lys Glu Lys 1765 1770 1775Ile Phe Asn Leu Tyr Ile Lys Cys Ser Glu Gln Gln Asn Ile Ile Asp 1780 1785 1790Asp Ser Tyr Asn Tyr Ile Thr Val Lys Lys Gln Tyr Ile Lys Thr Ile 1795 1800 1805Glu Asp Val Lys Phe Leu Leu Asp Ser Leu Asn Thr Ile Glu Glu Lys 1810 1815 1820Asn Lys Ser Val Ala Asn Leu Glu Ile Cys Thr Asn Lys Glu Asp Ile1825 1830 1835 1840Lys Asn Leu Leu Lys His Val Ile Lys Leu Ala Asn Phe Ser Gly Ile 1845 1850 1855Ile Val Met Ser Asp Thr Asn Thr Glu Ile Thr Pro Glu Asn Pro Leu 1860 1865 1870Glu Asp Asn Asp Leu Leu Asn Leu Gln Leu Tyr Phe Glu Arg Lys His 1875 1880 1885Glu Ile Thr Ser Thr Leu Glu Asn Asp Ser Asp Leu Glu Leu Asp His 1890 1895 1900Leu Gly Ser Asn Ser Asp Glu Ser Ile Asp Asn Leu Lys Val Tyr Asn1905 1910 1915 1920Asp Ile Ile Glu Leu His Thr Tyr Ser Thr Gln Ile Leu Lys Tyr Leu 1925 1930 1935Asp Asn Ile Gln Lys Leu Lys Gly Asp Cys Asn Asp Leu Val Lys Asp 1940 1945 1950Cys Lys Glu Leu Arg Glu Leu Ser Thr Ala Leu Tyr Asp Leu Lys Ile 1955 1960 1965Gln Ile Thr Ser Val Ile Asn Arg Glu Asn Asp Ile Ser Asn Asn Ile 1970 1975 1980Asp Ile Val Ser Asn Lys Leu Asn Glu Ile Asp Ala Ile Gln Tyr Asn1985 1990 1995 2000Phe Glu Lys Tyr Lys Glu Ile Phe Asp Asn Val Glu Glu Tyr Lys Thr 2005 2010 2015Leu Asp Asp Thr Lys Asn Ala Tyr Ile Val Lys Lys Ala Glu Ile Leu 2020 2025 2030Lys Asn Val Asp Ile Asn Lys Thr Lys Glu Asp Leu Asp Ile Tyr Phe 2035 2040 2045Asn Asp Leu Asp Glu Leu Glu Lys Ser Leu Thr Leu Ser Ser Asn Glu 2050 2055 2060Met Glu Ile Lys Thr Ile Val Gln Asn Ser Tyr Asn Ser Phe Ser Asp2065 2070 2075 2080Ile Asn Lys Asn Ile Asn Asp Ile Asp Lys Glu Met Lys Thr Leu Ile 2085 2090 2095Pro Met Leu Asp Glu Leu Leu Asn Glu Gly His Asn Ile Asp Ile Ser 2100 2105 2110Leu Tyr Asn Phe Ile Ile Arg Asn Ile Gln Ile Lys Ile Gly Asn Asp 2115 2120 2125Ile Lys Asn Ile Arg Glu Gln Glu Asn Asp Thr Asn Ile Cys Phe Glu 2130 2135 2140Tyr Ile Gln Asn Asn Tyr Asn Phe Ile Lys Ser Asp Ile Ser Ile Phe2145 2150 2155 2160Asn Lys Tyr Asp Asp His Ile Lys Val Asp Asn Tyr Ile Ser Asn Asn 2165 2170 2175Ile Asp Val Val Asn Lys His Asn Ser Leu Leu Ser Glu His Val Ile 2180 2185 2190Asn Ala Thr Asn Ile Ile Glu Asn Ile Met Thr Ser Ile Val Glu Ile 2195 2200 2205Asn Glu Asp Thr Glu Met Asn Ser Leu Glu Glu Thr Gln Asp Lys Leu 2210 2215 2220Leu Glu Leu Tyr Glu Asn Phe Lys Lys Glu Lys Asn Ile Ile Asn Asn2225 2230 2235 2240Asn Tyr Lys Ile Val His Phe Asn Lys Leu Lys Glu Ile Glu Asn Ser 2245 2250 2255Leu Glu Thr Tyr Asn Ser Ile Ser Thr Asn Phe Asn Lys Ile Asn Glu 2260 2265 2270Thr Gln Asn Ile Asp Ile Leu Lys Asn Glu Phe Asn Asn Ile Lys Thr 2275 2280 2285Lys Ile Asn Asp Lys Val Lys Glu Leu Val His Val Asp Ser Thr Leu 2290 2295 2300Thr Leu Glu Ser Ile Gln Thr Phe Asn Asn Leu Tyr Gly Asp Leu Met2305 2310 2315 2320Ser Asn Ile Gln Asp Val Tyr Lys Tyr Glu Asp Ile Asn Asn Val Glu 2325 2330 2335Leu Lys Lys Val Lys Leu Tyr Ile Glu Asn Ile Thr Asn Leu Leu Gly 2340 2345 2350Arg Ile Asn Thr Phe Ile Lys Glu Leu Asp Lys Tyr Gln Asp Glu Asn 2355 2360 2365Asn Gly Ile Asp Lys Tyr Ile Glu Ile Asn Lys Glu Asn Asn Ser Tyr 2370 2375 2380Ile Ile Lys Leu Lys Glu Lys Ala Asn Asn Leu Lys Glu Asn Phe Ser2385 2390 2395 2400Lys Leu Leu Gln Asn Ile Lys Arg Asn Glu Thr Glu Leu Tyr Asn Ile 2405 2410 2415Asn Asn Ile Lys Asp Asp Ile Met Asn Thr Gly Lys Ser Val Asn Asn 2420 2425 2430Ile Lys Gln Lys Phe Ser Ser Asn Leu Pro Leu Lys Glu Lys Leu Phe 2435 2440 2445Gln Met Glu Glu Met Leu Leu Asn Ile Asn Asn Ile Met Asn Glu Thr 2450 2455 2460Lys Arg Ile Ser Asn Thr Asp Ala Tyr Thr Asn Ile Thr Leu Gln Asp2465 2470 2475 2480Ile Glu Asn Asn Lys Asn Lys Glu Asn Asn Asn Met Asn Ile Glu Thr 2485 2490 2495Ile Asp Lys Leu Ile Asp His Ile Lys Ile His Asn Glu Lys Ile Gln 2500 2505 2510Ala Glu Ile Leu Ile Ile Asp Asp Ala Lys Arg Lys Val Lys Glu Ile 2515 2520 2525Thr Asp Asn Ile Asn Lys Ala Phe Asn Glu Ile Thr Glu Asn Tyr Asn 2530 2535 2540Asn Glu Asn Asn Gly Val Ile Lys Ser Ala Lys Asn Ile Val Asp Lys2545 2550 2555 2560Ala Thr Tyr Leu Asn Asn Glu Leu Asp Lys Phe Leu Leu Lys Leu Asn 2565 2570 2575Glu Leu Leu Ser His Asn Asn Asn Asp Ile Lys Asp Leu Gly Asp Glu 2580 2585 2590Lys Leu Ile Leu Lys Glu Glu Glu Glu Arg Lys Glu Arg Glu Arg Leu 2595 2600 2605Glu Lys Ala Lys Gln Glu Glu Glu Arg Lys Glu Arg Glu Arg Ile Glu 2610 2615 2620Lys Glu Lys Gln Glu Lys Glu Arg Leu Glu Arg Glu Lys Gln Glu Gln2625 2630 2635 2640Leu Lys Lys Glu Ala Leu Lys Lys Gln Glu Gln Glu Arg Gln Glu Gln 2645 2650 2655Gln Gln Lys Glu Glu Ala Leu Lys Arg Gln Glu Gln Glu Arg Leu Gln 2660 2665 2670Lys Glu Glu Glu Leu Lys Arg Gln Glu Gln Glu Arg Leu Glu Arg Glu 2675 2680 2685Lys Gln Glu Gln Leu Gln Lys Glu Glu Glu Leu Arg Lys Lys Glu Gln 2690 2695 2700Glu Lys Gln Gln Gln Arg Asn Ile Gln Glu Leu Glu Glu Gln Lys Lys2705 2710 2715 2720Pro Glu Ile Ile Asn Glu Ala Leu Val Lys Gly Asp Lys Ile Leu Glu 2725 2730 2735Gly Ser Asp Gln Arg Asn Met Glu Leu Ser Lys Pro Asn Val Ser Met 2740 2745 2750Asp Asn Thr Asn Asn Ser Pro Ile Ser Asn Ser Glu Ile Thr Glu Ser 2755 2760 2765Asp Asp Ile Asp Asn Ser Glu Asn Ile His Thr Ser His Met Ser Asp 2770 2775 2780Ile Glu Ser Thr Gln Thr Ser His Arg Ser Asn Thr His Gly Gln Gln2785 2790 2795 2800Ile Ser Asp Ile Val Glu Asp Gln Ile Thr His Pro Ser Asn Ile Gly 2805 2810 2815Gly Glu Lys Ile Thr His Asn Asp Glu Ile Ser Ile Thr Gly Glu Arg 2820 2825 2830Asn Asn Ile Ser Asp Val Asn Asp Tyr Ser Glu Ser Ser Asn Ile Phe 2835 2840 2845Glu Asn Gly Asp Ser Thr Ile Asn Thr Ser Thr Arg Asn Thr Ser Ser 2850 2855 2860Thr His Asp Glu Ser His Ile Ser Pro Ile Ser Asn Ala Tyr Asp His2865 2870 2875 2880Val Val Ser Asp Asn Lys Lys Ser Met Asp Glu Asn Ile Lys Asp Lys 2885 2890 2895Leu Lys Ile Asp Glu Ser Ile Thr Thr Asp Glu Gln Ile Arg Leu Asp 2900 2905 2910Asp Asn Ser Asn Ile Val Arg Ile Asp Ser Thr Asp Gln Arg Asp Ala 2915 2920 2925Ser Ser His Gly Ser Ser Asn Arg Asp Asp Asp Glu Ile Ser His Val 2930 2935 2940Gly Ser Asp Ile His Met Asp Ser Val Asp Ile His Asp Ser Ile Asp2945 2950 2955 2960Thr Asp Glu Asn Ala Asp His Arg His Asn Val Asn Ser Val Asp Ser 2965 2970 2975Leu Ser Ser Ser Asp Tyr Thr Asp Thr Gln Lys Asp Phe Ser Ser Ile 2980 2985 2990Ile Lys Asp Gly Gly Asn Lys Glu Gly His Ala Glu Asn Glu Ser Lys 2995 3000 3005Glu Tyr Glu Ser Gln Thr Glu Gln Thr His Glu Glu Gly Ile Met Asn 3010 3015 3020Pro Asn Lys Tyr Ser Ile Ser Glu Val Asp Gly Ile Lys Leu Asn Glu3025 3030 3035 3040Glu Ala Lys His Lys Ile Thr Glu Lys Leu Val Asp Ile Tyr Pro Ser 3045 3050 3055Thr Tyr Arg Thr Leu Asp Glu Pro Met Glu Thr His Gly Pro Asn Glu 3060 3065 3070Lys Phe His Met Phe Gly Ser Pro Tyr Val Thr Glu Glu Asp Tyr Thr 3075 3080 3085Glu Lys His Asp Tyr Asp Lys His Glu Asp Phe Asn Asn Glu Arg Tyr 3090 3095 3100Ser Asn His Asn Lys Met Asp Asp Phe Val Tyr Asn Ala Gly Gly Val3105 3110 3115 3120Val Cys Cys Val Leu Phe Phe Ala Ser Ile Thr Phe Phe Ser Met Asp 3125 3130 3135Arg Ser Asn Lys Asp Glu Cys Asp Phe Asp Met Cys Glu Glu Val Asn 3140 3145 3150Asn Asn Asp His Leu Ser Asn Tyr Ala Asp Lys Glu Glu Ile Ile Glu 3155 3160 3165Ile Val Phe Asp Glu Asn Glu Glu Lys Tyr Phe 3170 3175143130PRTPlasmodium falciparum 14Met Lys Thr Thr Leu Phe Cys Ser Ile Ser Phe Cys Asn Ile Ile Phe1 5 10 15Phe Phe Leu Glu Leu Ser His Glu His Phe Val Gly Gln Ser Ser Asn 20 25 30Thr His Gly Ala Ser Ser Val Thr Asp Phe Asn Phe Ser Glu Glu Lys 35 40 45Asn Leu Lys Ser Phe Glu Gly Lys Asn Asn Asn Asn Asp Asn Tyr Ala 50 55 60Ser Ile Asn Arg Leu Tyr Arg Lys Lys Pro Tyr Met Lys Arg Ser Leu65 70 75 80Ile Asn Leu Glu Asn Asp Leu Phe Arg Leu Glu Pro Ile Ser Tyr Ile 85 90 95Gln Arg Tyr Tyr Lys Lys Asn Ile Asn Arg Ser Asp Ile Phe His Asn 100 105 110Lys Lys Glu Arg Gly Ser Lys Val Tyr Ser Asn Val Ser Ser Phe His 115 120 125Ser Phe Ile Gln Glu Gly Lys Glu Glu Val Glu Val Phe Ser Ile Trp 130 135 140Gly Ser Asn Ser Val Leu Asp His Ile Asp Val Leu Arg Asp Asn Gly145 150 155 160Thr Val Val Phe Ser Val Gln Pro Tyr Tyr Leu Asp Ile Tyr Thr Cys 165 170 175Lys Glu Ala Ile Leu Phe Thr Thr Ser Phe Tyr Lys Asp Leu Asp Lys 180 185 190Ser Ser Ile Thr Lys Ile Asn Glu Asp Ile Glu Lys Phe Asn Glu Glu 195 200 205Ile Ile Lys Asn Glu Glu Gln Cys Leu Val Gly Gly Lys Thr Asp Phe 210 215 220Asp Asn Leu Leu Ile Val Leu Glu Asn Ala Glu Lys Ala Asn Val Arg225 230 235 240Lys Thr Leu Phe Asp Asn Thr Phe Asn Asp Tyr Lys Asn Lys Lys Ser 245 250 255Ser Phe Tyr Asn Cys Leu Lys Asn Lys Lys Asn Asp Tyr Asp Lys Lys 260 265 270Ile Lys Asn Ile Lys Asn Glu Ile Thr Lys Leu Leu Lys Asn Ile Glu 275 280 285Ser Thr Gly Asn Met Cys Lys Thr Glu Ser Tyr Val Met Asn Asn Asn 290 295 300Leu Tyr Leu Leu Arg Val Asn Glu Val Lys Ser Thr Pro Ile Asp Leu305 310 315 320Tyr Leu Asn Arg Ala Lys Glu Leu Leu Glu Ser Ser Ser Lys Leu Val 325 330 335Asn Pro Ile Lys Met Lys Leu Gly Asp Asn Lys Asn Met Tyr Ser Ile 340 345 350Gly Tyr Ile His Asp Glu Ile Lys Asp Ile Ile Lys Arg Tyr Asn Phe 355 360 365His Leu Lys His Ile Glu Lys Gly Lys Glu Tyr Ile Lys Arg Ile Thr 370 375 380Gln Ala Asn Asn Ile Ala Asp Lys Met Lys Lys Asp Glu Leu Ile Lys385 390 395 400Lys Ile Phe Glu Ser Ser Lys His Phe Ala Ser Phe Lys Tyr Ser Asn 405 410 415Glu Met Ile Ser Lys Leu Asp Ser Leu Phe Ile Lys Asn Glu Glu Ile 420 425 430Leu Asn Asn Leu Phe Asn Asn Ile Phe Asn Ile Phe Lys Lys Lys Tyr 435 440 445Glu Thr Tyr Val Asp Met Lys Thr Ile Glu Ser Lys Tyr Thr Thr Val 450 455 460Met Thr Leu Ser Glu His Leu Leu Glu Tyr Ala Met Asp Val Leu Lys465 470 475 480Ala Asn Pro Gln Lys Pro Ile Asp Pro Lys Ala Asn Leu Asp Ser Glu 485 490 495Val Val Lys Leu Gln Ile Lys Ile Asn Glu Lys Ser Asn Glu Leu Asp 500 505 510Asn Ala Ile Ser Gln Val

Lys Thr Leu Ile Ile Ile Met Lys Ser Phe 515 520 525Tyr Asp Ile Ile Ile Ser Glu Lys Ala Ser Met Asp Glu Met Glu Lys 530 535 540Lys Glu Leu Ser Leu Asn Asn Tyr Ile Glu Lys Thr Asp Tyr Ile Leu545 550 555 560Gln Thr Tyr Asn Ile Phe Lys Ser Lys Ser Asn Ile Ile Asn Asn Asn 565 570 575Ser Lys Asn Ile Ser Ser Lys Tyr Ile Thr Ile Glu Gly Leu Lys Asn 580 585 590Asp Ile Asp Glu Leu Asn Ser Leu Ile Ser Tyr Phe Lys Asp Ser Gln 595 600 605Glu Thr Leu Ile Lys Asp Asp Glu Leu Lys Lys Asn Met Lys Thr Asp 610 615 620Tyr Leu Asn Asn Val Lys Tyr Ile Glu Glu Asn Val Thr His Ile Asn625 630 635 640Glu Ile Ile Leu Leu Lys Asp Ser Ile Thr Gln Arg Ile Ala Asp Ile 645 650 655Asp Glu Leu Asn Ser Leu Asn Leu Ile Asn Ile Asn Asp Phe Ile Asn 660 665 670Glu Lys Asn Ile Ser Gln Glu Lys Val Ser Tyr Asn Leu Asn Lys Leu 675 680 685Tyr Lys Gly Ser Phe Glu Glu Leu Glu Ser Glu Leu Ser His Phe Leu 690 695 700Asp Thr Lys Tyr Leu Phe His Glu Lys Lys Ser Val Asn Glu Leu Gln705 710 715 720Thr Ile Leu Asn Thr Ser Asn Asn Glu Cys Ala Lys Leu Asn Phe Met 725 730 735Lys Ser Asp Asn Asn Asn Asn Asn Asn Asn Ser Asn Ile Ile Asn Leu 740 745 750Leu Lys Thr Glu Leu Ser His Leu Leu Ser Leu Lys Glu Asn Ile Ile 755 760 765Lys Lys Leu Leu Asn His Ile Glu Gln Asn Ile Gln Asn Ser Ser Asn 770 775 780Lys Tyr Thr Ile Thr Tyr Thr Asp Ile Asn Asn Arg Met Glu Asp Tyr785 790 795 800Lys Glu Glu Ile Glu Ser Leu Glu Val Tyr Lys His Thr Ile Gly Asn 805 810 815Ile Gln Lys Glu Tyr Ile Leu His Leu Tyr Glu Asn Asp Lys Asn Ala 820 825 830Leu Ala Val His Asn Thr Ser Met Gln Ile Leu Gln Tyr Lys Asp Ala 835 840 845Ile Gln Asn Ile Lys Asn Lys Ile Ser Asp Asp Ile Lys Ile Leu Lys 850 855 860Lys Tyr Lys Glu Met Asn Gln Asp Leu Leu Asn Tyr Tyr Glu Ile Leu865 870 875 880Asp Lys Lys Leu Lys Asp Asn Thr Tyr Ile Lys Glu Met His Thr Ala 885 890 895Ser Leu Val Gln Ile Thr Gln Tyr Ile Pro Tyr Glu Asp Lys Thr Ile 900 905 910Ser Glu Leu Glu Gln Glu Phe Asn Asn Asn Asn Gln Lys Leu Asp Asn 915 920 925Ile Leu Gln Asp Ile Asn Ala Met Asn Leu Asn Ile Asn Ile Leu Gln 930 935 940Thr Leu Asn Ile Gly Ile Asn Ala Cys Asn Thr Asn Asn Lys Asn Val945 950 955 960Glu His Leu Leu Asn Lys Lys Ile Glu Leu Lys Asn Ile Leu Asn Asp 965 970 975Gln Met Lys Ile Ile Lys Asn Asp Asp Ile Ile Gln Asp Asn Glu Lys 980 985 990Glu Asn Phe Ser Asn Val Leu Lys Lys Glu Glu Glu Lys Leu Glu Lys 995 1000 1005Glu Leu Asp Asp Ile Lys Phe Asn Asn Leu Lys Met Asp Ile His Lys 1010 1015 1020Leu Leu Asn Ser Tyr Asp His Thr Lys Gln Asn Ile Glu Ser Asn Leu1025 1030 1035 1040Lys Ile Asn Leu Asp Ser Phe Glu Lys Glu Lys Asp Ser Trp Val His 1045 1050 1055Phe Lys Ser Thr Ile Asp Ser Leu Tyr Val Glu Tyr Asn Ile Cys Asn 1060 1065 1070Gln Lys Thr His Asn Thr Ile Lys Gln Gln Lys Asn Asp Ile Ile Glu 1075 1080 1085Leu Ile Tyr Lys Arg Ile Lys Asp Ile Asn Gln Glu Ile Ile Glu Lys 1090 1095 1100Val Asp Asn Tyr Tyr Ser Leu Ser Asp Lys Ala Leu Thr Lys Leu Lys1105 1110 1115 1120Ser Ile His Phe Asn Ile Asp Lys Glu Lys Tyr Lys Asn Pro Lys Ser 1125 1130 1135Gln Glu Asn Ile Lys Leu Leu Glu Asp Arg Val Met Ile Leu Glu Lys 1140 1145 1150Lys Ile Lys Glu Asp Lys Asp Ala Leu Ile Gln Ile Lys Asn Leu Ser 1155 1160 1165His Asp His Phe Val Asn Ala Asp Asn Glu Lys Lys Lys Gln Lys Glu 1170 1175 1180Lys Glu Glu Asp Asp Glu Gln Thr His Tyr Ser Lys Lys Arg Lys Val1185 1190 1195 1200Met Gly Asp Ile Tyr Lys Asp Ile Lys Lys Asn Leu Asp Glu Leu Asn 1205 1210 1215Asn Lys Asn Leu Ile Asp Ile Thr Leu Asn Glu Ala Asn Lys Ile Glu 1220 1225 1230Ser Glu Tyr Glu Lys Ile Leu Ile Asp Asp Ile Cys Glu Gln Ile Thr 1235 1240 1245Asn Glu Ala Lys Lys Ser Asp Thr Ile Lys Glu Lys Ile Glu Ser Tyr 1250 1255 1260Lys Lys Asp Ile Asp Tyr Val Asp Val Asp Val Ser Lys Thr Arg Asn1265 1270 1275 1280Asp His His Leu Asn Gly Asp Lys Ile His Asp Ser Phe Phe Tyr Glu 1285 1290 1295Asp Thr Leu Asn Tyr Lys Ala Tyr Phe Asp Lys Leu Lys Asp Leu Tyr 1300 1305 1310Glu Asn Ile Asn Lys Leu Thr Asn Glu Ser Asn Gly Leu Lys Ser Asp 1315 1320 1325Ala His Asn Asn Asn Thr Gln Val Asp Lys Leu Lys Glu Ile Asn Leu 1330 1335 1340Gln Val Phe Ser Asn Leu Gly Asn Ile Ile Lys Tyr Val Glu Lys Leu1345 1350 1355 1360Glu Asn Thr Leu His Glu Leu Lys Asp Met Tyr Glu Phe Leu Glu Thr 1365 1370 1375Ile Asp Ile Asn Lys Ile Leu Lys Ser Ile His Asn Ser Met Lys Lys 1380 1385 1390Ser Glu Glu Tyr Ser Asn Glu Thr Lys Lys Ile Phe Glu Gln Ser Val 1395 1400 1405Asn Ile Thr Asn Gln Phe Ile Glu Asp Val Glu Ile Leu Lys Thr Ser 1410 1415 1420Ile Asn Pro Asn Tyr Glu Ser Leu Asn Asp Asp Gln Ile Asp Asp Asn1425 1430 1435 1440Ile Lys Ser Leu Val Leu Lys Lys Glu Glu Ile Ser Glu Lys Arg Lys 1445 1450 1455Gln Val Asn Lys Tyr Ile Thr Asp Ile Glu Ser Asn Lys Glu Gln Ser 1460 1465 1470Asp Leu His Leu Arg Tyr Ala Ser Arg Ser Ile Tyr Val Ile Asp Leu 1475 1480 1485Phe Ile Lys His Glu Ile Ile Asn Pro Ser Asp Gly Lys Asn Phe Asp 1490 1495 1500Ile Ile Lys Val Lys Glu Met Ile Asn Lys Thr Lys Gln Val Ser Asn1505 1510 1515 1520Glu Ala Met Glu Tyr Ala Asn Lys Met Asp Glu Lys Asn Lys Asp Ile 1525 1530 1535Ile Lys Ile Glu Asn Glu Leu Tyr Asn Leu Ile Asn Asn Asn Ile Arg 1540 1545 1550Ser Leu Lys Gly Val Lys Tyr Glu Lys Val Arg Lys Gln Ala Arg Asn 1555 1560 1565Ala Ile Asp Asp Ile Asn Asn Ile His Ser Asn Ile Lys Thr Ile Leu 1570 1575 1580Thr Lys Ser Lys Glu Arg Leu Asp Glu Ile Lys Lys Gln Pro Asn Ile1585 1590 1595 1600Lys Arg Glu Gly Asp Val Leu Asn Asn Asp Lys Thr Lys Ile Ala Tyr 1605 1610 1615Ile Thr Ile Gln Ile Asn Asn Gly Arg Ile Glu Ser Asn Leu Leu Asn 1620 1625 1630Ile Leu Asn Met Lys His Asn Ile Asp Thr Ile Leu Asn Lys Ala Met 1635 1640 1645Asp Tyr Met Asn Asp Val Ser Lys Ser Asp Gln Ile Val Ile Asn Ile 1650 1655 1660Asp Ser Leu Asn Met Asn Asp Ile Tyr Asn Lys Asp Lys Asp Leu Leu1665 1670 1675 1680Ile Asn Ile Leu Lys Glu Lys Gln Asn Met Glu Ala Glu Tyr Lys Lys 1685 1690 1695Met Asn Glu Met Tyr Asn Tyr Val Asn Glu Thr Glu Lys Glu Ile Ile 1700 1705 1710Lys His Lys Lys Asn Tyr Glu Ile Arg Ile Met Glu His Ile Lys Lys 1715 1720 1725Glu Thr Asn Glu Lys Lys Lys Lys Phe Met Glu Ser Asn Asn Lys Ser 1730 1735 1740Leu Thr Thr Leu Met Asp Ser Phe Arg Ser Met Phe Tyr Asn Glu Tyr1745 1750 1755 1760Ile Asn Asp Tyr Asn Ile Asn Glu Asn Phe Glu Lys His Gln Asn Ile 1765 1770 1775Leu Asn Glu Ile Tyr Asn Gly Phe Asn Glu Ser Tyr Asn Ile Ile Asn 1780 1785 1790Thr Lys Met Thr Glu Ile Ile Asn Asp Asn Leu Asp Tyr Asn Glu Ile 1795 1800 1805Lys Glu Ile Lys Glu Val Ala Gln Thr Glu Tyr Asp Lys Leu Asn Lys 1810 1815 1820Lys Val Asp Glu Leu Lys Asn Tyr Leu Asn Asn Ile Lys Glu Gln Glu1825 1830 1835 1840Gly His Arg Leu Ile Asp Tyr Ile Lys Glu Lys Ile Phe Asn Leu Tyr 1845 1850 1855Ile Lys Cys Ser Glu Gln Gln Asn Ile Ile Asp Asp Ser Tyr Asn Tyr 1860 1865 1870Ile Thr Val Lys Lys Gln Tyr Ile Lys Thr Ile Glu Asp Val Lys Phe 1875 1880 1885Leu Leu Asp Ser Leu Asn Thr Ile Glu Glu Lys Asn Lys Ser Val Ala 1890 1895 1900Asn Leu Glu Ile Cys Thr Asn Lys Glu Asp Ile Lys Asn Leu Leu Lys1905 1910 1915 1920His Val Ile Lys Leu Ala Asn Phe Ser Gly Ile Ile Val Met Ser Asp 1925 1930 1935Thr Asn Thr Glu Ile Thr Pro Glu Asn Pro Leu Glu Asp Asn Asp Leu 1940 1945 1950Leu Asn Leu Gln Leu Tyr Phe Glu Arg Lys His Glu Ile Thr Ser Thr 1955 1960 1965Leu Glu Asn Asp Ser Asp Leu Glu Leu Asp His Leu Gly Ser Asn Ser 1970 1975 1980Asp Glu Ser Ile Asp Asn Leu Lys Val Tyr Asn Asp Ile Ile Glu Leu1985 1990 1995 2000His Thr Tyr Ser Thr Gln Ile Leu Lys Tyr Leu Asp Asn Ile Gln Lys 2005 2010 2015Leu Lys Gly Asp Cys Asn Asp Leu Val Lys Asp Cys Lys Glu Leu Arg 2020 2025 2030Glu Leu Ser Thr Ala Leu Tyr Asp Leu Lys Ile Gln Ile Thr Ser Val 2035 2040 2045Ile Asn Arg Glu Asn Asp Ile Ser Asn Asn Ile Asp Ile Val Ser Asn 2050 2055 2060Lys Leu Asn Glu Ile Asp Ala Ile Gln Tyr Asn Phe Glu Lys Tyr Lys2065 2070 2075 2080Glu Ile Phe Asp Asn Val Glu Glu Tyr Lys Thr Leu Asp Asp Thr Lys 2085 2090 2095Asn Ala Tyr Ile Val Lys Lys Ala Glu Ile Leu Lys Asn Val Asp Ile 2100 2105 2110Asn Lys Thr Lys Glu Asp Leu Asp Ile Tyr Phe Asn Asp Leu Asp Glu 2115 2120 2125Leu Glu Lys Ser Leu Thr Leu Ser Ser Asn Glu Met Glu Ile Lys Thr 2130 2135 2140Ile Val Gln Asn Ser Tyr Asn Ser Phe Ser Asp Ile Asn Lys Asn Ile2145 2150 2155 2160Asn Asp Ile Asp Lys Glu Met Lys Thr Leu Ile Pro Met Leu Asp Glu 2165 2170 2175Leu Leu Asn Glu Gly His Asn Ile Asp Ile Ser Leu Tyr Asn Phe Ile 2180 2185 2190Ile Arg Asn Ile Gln Ile Lys Ile Gly Asn Asp Ile Lys Asn Ile Arg 2195 2200 2205Glu Gln Glu Asn Asp Thr Asn Ile Cys Phe Glu Tyr Ile Gln Asn Asn 2210 2215 2220Tyr Asn Phe Ile Lys Ser Asp Ile Ser Ile Phe Asn Lys Tyr Asp Asp2225 2230 2235 2240His Ile Lys Val Asp Asn Tyr Ile Ser Asn Asn Ile Asp Val Val Asn 2245 2250 2255Lys His Asn Ser Leu Leu Ser Glu His Val Ile Asn Ala Thr Asn Ile 2260 2265 2270Ile Glu Asn Ile Met Thr Ser Ile Val Glu Ile Asn Glu Asp Thr Glu 2275 2280 2285Met Asn Ser Leu Glu Glu Thr Gln Asp Lys Leu Leu Glu Leu Tyr Glu 2290 2295 2300Asn Phe Lys Lys Glu Lys Asn Ile Ile Asn Asn Asn Tyr Lys Ile Val2305 2310 2315 2320His Phe Asn Lys Leu Lys Glu Ile Glu Asn Ser Leu Glu Thr Tyr Asn 2325 2330 2335Ser Ile Ser Thr Asn Phe Asn Lys Ile Asn Glu Thr Gln Asn Ile Asp 2340 2345 2350Ile Leu Lys Asn Glu Phe Asn Asn Ile Lys Thr Lys Ile Asn Asp Lys 2355 2360 2365Val Lys Glu Leu Val His Val Asp Ser Thr Leu Thr Leu Glu Ser Ile 2370 2375 2380Gln Thr Phe Asn Asn Leu Tyr Gly Asp Leu Met Ser Asn Ile Gln Asp2385 2390 2395 2400Val Tyr Lys Tyr Glu Asp Ile Asn Asn Val Glu Leu Lys Lys Val Lys 2405 2410 2415Leu Tyr Ile Glu Asn Ile Thr Asn Leu Leu Gly Arg Ile Asn Thr Phe 2420 2425 2430Ile Lys Glu Leu Asp Lys Tyr Gln Asp Glu Asn Asn Gly Ile Asp Lys 2435 2440 2445Tyr Ile Glu Ile Asn Lys Glu Asn Asn Ser Tyr Ile Ile Lys Leu Lys 2450 2455 2460Glu Lys Ala Asn Asn Leu Lys Glu Asn Phe Ser Lys Leu Leu Gln Asn2465 2470 2475 2480Ile Lys Arg Asn Glu Thr Glu Leu Tyr Asn Ile Asn Asn Ile Lys Asp 2485 2490 2495Asp Ile Met Asn Thr Gly Lys Ser Val Asn Asn Ile Lys Gln Lys Phe 2500 2505 2510Ser Ser Asn Leu Pro Leu Lys Glu Lys Leu Phe Gln Met Glu Glu Met 2515 2520 2525Leu Leu Asn Ile Asn Asn Ile Met Asn Glu Thr Lys Arg Ile Ser Asn 2530 2535 2540Thr Ala Ala Tyr Thr Asn Ile Thr Leu Gln Asp Ile Glu Asn Asn Lys2545 2550 2555 2560Asn Lys Glu Asn Asn Asn Met Asn Ile Glu Thr Ile Asp Lys Leu Ile 2565 2570 2575Asp His Ile Lys Ile His Asn Glu Lys Ile Gln Ala Glu Ile Leu Ile 2580 2585 2590Ile Asp Asp Ala Lys Arg Lys Val Lys Glu Ile Thr Asp Asn Ile Asn 2595 2600 2605Lys Ala Phe Asn Glu Ile Thr Glu Asn Tyr Asn Asn Glu Asn Asn Gly 2610 2615 2620Val Ile Lys Ser Ala Lys Asn Ile Val Asp Glu Ala Thr Tyr Leu Asn2625 2630 2635 2640Asn Glu Leu Asp Lys Phe Leu Leu Lys Leu Asn Glu Leu Leu Ser His 2645 2650 2655Asn Asn Asn Asp Ile Lys Asp Leu Gly Asp Glu Lys Leu Ile Leu Lys 2660 2665 2670Glu Glu Glu Glu Arg Lys Glu Arg Glu Arg Leu Glu Lys Ala Lys Gln 2675 2680 2685Glu Glu Glu Arg Lys Glu Arg Glu Arg Ile Glu Lys Glu Lys Gln Glu 2690 2695 2700Lys Glu Arg Leu Glu Arg Glu Lys Gln Glu Gln Leu Lys Lys Glu Glu2705 2710 2715 2720Glu Leu Arg Lys Lys Glu Gln Glu Arg Gln Glu Gln Gln Gln Lys Glu 2725 2730 2735Glu Ala Leu Lys Arg Gln Glu Gln Glu Arg Leu Gln Lys Glu Glu Glu 2740 2745 2750Leu Lys Arg Gln Glu Gln Glu Arg Leu Glu Arg Glu Lys Gln Glu Gln 2755 2760 2765Leu Gln Lys Glu Glu Glu Leu Lys Arg Gln Glu Gln Glu Arg Leu Gln 2770 2775 2780Lys Glu Glu Ala Leu Lys Arg Gln Glu Gln Glu Arg Leu Gln Lys Glu2785 2790 2795 2800Glu Glu Leu Lys Arg Gln Glu Gln Glu Arg Leu Glu Arg Glu Lys Gln 2805 2810 2815Glu Gln Leu Gln Lys Glu Glu Glu Leu Lys Arg Gln Glu Gln Glu Arg 2820 2825 2830Leu Gln Lys Glu Glu Ala Leu Lys Arg Gln Glu Gln Glu Arg Leu Gln 2835 2840 2845Lys Glu Glu Glu Leu Lys Arg Gln Glu Gln Glu Arg Leu Glu Arg Lys 2850 2855 2860Lys Ile Glu Leu Ala Glu Arg Glu Gln His Ile Lys Ser Lys Leu Glu2865 2870 2875 2880Ser Asp Met Val Lys Ile Ile Lys Asp Glu Leu Thr Lys Glu Lys Asp 2885 2890 2895Glu Ile Ile Lys Asn Lys Asp Ile Lys Leu Arg His Ser Leu Glu Gln 2900 2905 2910Lys Trp Leu Lys His Leu Gln Asn Ile Leu Ser Leu Lys Ile Asp Ser 2915 2920 2925Leu Leu Asn Lys Asn Asp Glu Val Ile Lys Asp Asn Glu Thr Gln Leu 2930 2935 2940Lys Thr Asn Ile Leu Asn Ser Leu Lys Asn Gln Leu Tyr Leu Asn Leu2945 2950 2955 2960Lys Arg Glu Leu Asn Glu Ile Ile Lys Glu Tyr Glu Glu Asn Gln Lys 2965 2970

2975Lys Ile Leu His Ser Asn Gln Leu Val Asn Asp Ser Leu Glu Gln Lys 2980 2985 2990Thr Asn Arg Leu Val Asp Ile Lys Pro Thr Lys His Gly Asp Ile Tyr 2995 3000 3005Thr Asn Lys Leu Ser Asp Asn Glu Thr Glu Met Leu Ile Thr Ser Lys 3010 3015 3020Glu Lys Lys Asp Glu Thr Glu Ser Thr Lys Arg Ser Gly Thr Asp His3025 3030 3035 3040Thr Asn Ser Ser Glu Ser Thr Thr Asp Asp Asn Thr Asn Asp Arg Asn 3045 3050 3055Phe Ser Arg Ser Lys Asn Leu Ser Val Ala Ile Tyr Thr Ala Gly Ser 3060 3065 3070Val Ala Leu Cys Val Leu Ile Phe Ser Ser Ile Gly Leu Leu Leu Ile 3075 3080 3085Lys Thr Asn Ser Gly Asp Asn Asn Ser Asn Glu Ile Asn Glu Ala Phe 3090 3095 3100Glu Pro Asn Asp Asp Val Leu Phe Lys Glu Lys Asp Glu Ile Ile Glu3105 3110 3115 3120Ile Thr Phe Asn Asp Asn Asp Ser Thr Ile 3125 3130152971PRTPlasmodium falciparum 15Met Gln Arg Trp Ile Phe Cys Asn Ile Val Leu His Ile Leu Ile Tyr1 5 10 15Leu Ala Glu Phe Ser His Glu Gln Glu Ser Tyr Ser Ser Asn Glu Lys 20 25 30Ile Arg Lys Asp Tyr Ser Asp Asp Asn Asn Tyr Glu Pro Thr Pro Ser 35 40 45Tyr Glu Lys Arg Lys Lys Glu Tyr Gly Lys Asp Glu Ser Tyr Ile Lys 50 55 60Asn Tyr Arg Gly Asn Asn Phe Ser Tyr Asp Leu Ser Lys Asn Ser Ser65 70 75 80Ile Phe Leu His Met Gly Asn Gly Ser Asn Ser Lys Thr Leu Lys Arg 85 90 95Cys Asn Lys Lys Lys Asn Ile Lys Thr Asn Phe Leu Arg Pro Ile Glu 100 105 110Glu Glu Lys Thr Val Leu Asn Asn Tyr Val Tyr Lys Gly Val Asn Phe 115 120 125Leu Asp Thr Ile Lys Arg Asn Asp Ser Ser Tyr Lys Phe Asp Val Tyr 130 135 140Lys Asp Thr Ser Phe Leu Lys Asn Arg Glu Tyr Lys Glu Leu Ile Thr145 150 155 160Met Gln Tyr Asp Tyr Ala Tyr Leu Glu Ala Thr Lys Glu Val Leu Tyr 165 170 175Leu Ile Pro Lys Asp Lys Asp Tyr His Lys Phe Tyr Lys Asn Glu Leu 180 185 190Glu Lys Ile Leu Phe Asn Leu Lys Asp Ser Leu Lys Leu Leu Arg Glu 195 200 205Gly Tyr Ile Gln Ser Lys Leu Glu Met Ile Arg Ile His Ser Asp Ile 210 215 220Asp Ile Leu Asn Glu Phe His Gln Gly Asn Ile Ile Asn Asp Asn Tyr225 230 235 240Phe Asn Asn Glu Ile Lys Lys Lys Lys Glu Asp Met Glu Lys Tyr Ile 245 250 255Arg Glu Tyr Asn Leu Tyr Ile Tyr Lys Tyr Glu Asn Gln Leu Lys Ile 260 265 270Lys Ile Gln Lys Leu Thr Asn Glu Val Ser Ile Asn Leu Asn Lys Ser 275 280 285Thr Cys Glu Lys Asn Cys Tyr Asn Tyr Ile Leu Lys Leu Glu Lys Tyr 290 295 300Lys Asn Ile Ile Lys Asp Lys Ile Asn Lys Trp Lys Asp Leu Pro Glu305 310 315 320Ile Tyr Ile Asp Asp Lys Ser Phe Ser Tyr Thr Phe Leu Lys Asp Val 325 330 335Ile Asn Asn Lys Ile Asp Ile Tyr Lys Thr Ile Ser Ser Phe Ile Ser 340 345 350Thr Gln Lys Gln Leu Tyr Tyr Phe Glu Tyr Ile Tyr Ile Met Asn Lys 355 360 365Asn Thr Leu Asn Leu Leu Ser Tyr Asn Ile Gln Lys Thr Asp Ile Asn 370 375 380Ser Ser Ser Lys Tyr Thr Tyr Thr Lys Ser His Phe Leu Lys Asp Asn385 390 395 400His Ile Leu Leu Ser Lys Tyr Tyr Thr Ala Lys Phe Ile Asp Ile Leu 405 410 415Asn Lys Thr Tyr Tyr Tyr Asn Leu Tyr Lys Asn Lys Ile Leu Leu Phe 420 425 430Asn Lys Tyr Ile Ile Lys Leu Arg Asn Asp Leu Lys Glu Tyr Ala Phe 435 440 445Lys Ser Ile Gln Phe Ile Gln Asp Lys Ile Lys Lys His Lys Asp Glu 450 455 460Leu Ser Ile Glu Asn Ile Leu Gln Glu Val Asn Asn Ile Tyr Ile Lys465 470 475 480Tyr Asp Thr Ser Ile Asn Glu Ile Ser Lys Tyr Asn Asn Leu Ile Ile 485 490 495Asn Thr Asp Leu Gln Ile Val Gln Gln Lys Leu Leu Glu Ile Lys Gln 500 505 510Lys Lys Asn Asp Ile Thr His Lys Val Gln Leu Ile Asn His Ile Tyr 515 520 525Lys Asn Ile His Asp Glu Ile Leu Asn Lys Lys Asn Asn Glu Ile Thr 530 535 540Lys Ile Ile Ile Asn Asn Ile Lys Asp His Lys Lys Asp Leu Gln Asp545 550 555 560Leu Leu Leu Phe Ile Gln Gln Ile Lys Gln Tyr Asn Ile Leu Thr Asp 565 570 575His Lys Ile Thr Gln Cys Asn Asn Tyr Tyr Lys Glu Ile Ile Lys Met 580 585 590Lys Glu Asp Ile Asn His Ile His Ile Tyr Ile Gln Pro Ile Leu Asn 595 600 605Asn Leu His Thr Leu Lys Gln Val Gln Asn Asn Lys Ile Lys Tyr Glu 610 615 620Glu His Ile Lys Gln Ile Leu Gln Lys Ile Tyr Asp Lys Lys Glu Ser625 630 635 640Leu Lys Lys Ile Ile Leu Leu Lys Asp Glu Ala Gln Leu Asp Ile Thr 645 650 655Leu Leu Asp Asp Leu Ile Gln Lys Gln Thr Lys Lys Gln Thr Gln Thr 660 665 670Gln Thr Gln Thr Gln Lys Gln Thr Leu Ile Gln Asn Asn Glu Thr Ile 675 680 685Gln Leu Ile Ser Gly Gln Glu Asp Lys His Glu Ser Asn Pro Phe Asn 690 695 700His Ile Gln Thr Tyr Ile Gln Gln Lys Asp Thr Gln Asn Lys Asn Ile705 710 715 720Gln Asn Leu Leu Lys Ser Leu Tyr Asn Gly Asn Ile Asn Thr Phe Ile 725 730 735Asp Thr Ile Ser Lys Tyr Ile Leu Lys Gln Lys Asp Ile Glu Leu Thr 740 745 750Gln His Val Tyr Thr Asp Glu Lys Ile Asn Asp Tyr Leu Glu Glu Ile 755 760 765Lys Asn Glu Gln Asn Lys Ile Asp Lys Thr Ile Asp Asp Ile Lys Ile 770 775 780Gln Glu Thr Leu Lys Gln Ile Thr His Ile Val Asn Asn Ile Lys Thr785 790 795 800Ile Lys Lys Asp Leu Leu Lys Glu Phe Ile Gln His Leu Ile Lys Tyr 805 810 815Met Asn Glu Arg Tyr Gln Asn Met Gln Gln Gly Tyr Asn Asn Leu Thr 820 825 830Asn Tyr Ile Asn Gln Tyr Glu Glu Glu Asn Asn Asn Met Lys Gln Tyr 835 840 845Ile Thr Thr Ile Arg Asn Ile Gln Lys Ile Tyr Tyr Asp Asn Ile Tyr 850 855 860Ala Lys Glu Lys Glu Ile Arg Ser Gly Gln Tyr Tyr Lys Asp Phe Ile865 870 875 880Thr Ser Arg Lys Asn Ile Tyr Asn Ile Arg Glu Asn Ile Ser Lys Asn 885 890 895Val Asp Met Ile Lys Asn Glu Glu Lys Lys Lys Ile Gln Asn Cys Val 900 905 910Asp Lys Tyr Asn Ser Ile Lys Gln Tyr Val Lys Met Leu Lys Asn Gly 915 920 925Asp Thr Gln Asp Glu Asn Asn Asn Asn Asn Asn Asp Ile Tyr Asp Lys 930 935 940Leu Ile Val Pro Leu Asp Ser Ile Lys Gln Asn Ile Asp Lys Tyr Asn945 950 955 960Thr Glu His Asn Phe Ile Thr Phe Thr Asn Lys Ile Asn Thr His Asn 965 970 975Lys Lys Asn Gln Glu Met Met Glu Glu Phe Ile Tyr Ala Tyr Lys Arg 980 985 990Leu Lys Ile Leu Lys Ile Leu Asn Ile Ser Leu Lys Ala Cys Glu Lys 995 1000 1005Asn Asn Lys Ser Ile Asn Thr Leu Asn Asp Lys Thr Gln Glu Leu Lys 1010 1015 1020Lys Ile Val Thr His Glu Ile Asp Leu Leu Gln Lys Asp Ile Leu Thr1025 1030 1035 1040Ser Gln Ile Ser Asn Lys Asn Val Leu Leu Leu Asn Asp Leu Leu Lys 1045 1050 1055Glu Ile Glu Gln Tyr Ile Ile Asp Val His Lys Leu Lys Lys Lys Ser 1060 1065 1070Asn Asp Leu Phe Thr Tyr Tyr Glu Gln Ser Lys Asn Tyr Phe Tyr Phe 1075 1080 1085Lys Asn Lys Lys Asp Asn Phe Asp Ile Gln Lys Thr Ile Asn Lys Met 1090 1095 1100Asn Glu Trp Leu Ala Ile Lys Asn Tyr Ile Asn Glu Ile Asn Lys Asn1105 1110 1115 1120Tyr Gln Thr Leu Tyr Glu Lys Lys Ile Asn Val Leu Leu His Asn Ser 1125 1130 1135Lys Ser Tyr Val Gln Tyr Phe Tyr Asp His Ile Ile Asn Leu Ile Leu 1140 1145 1150Gln Lys Lys Asn Tyr Leu Glu Asn Thr Leu Lys Thr Lys Ile Gln Asp 1155 1160 1165Asn Glu His Ser Leu Tyr Ala Leu Gln Gln Asn Glu Glu Tyr Gln Lys 1170 1175 1180Val Lys Asn Glu Lys Asp Gln Asn Glu Ile Lys Lys Ile Lys Gln Leu1185 1190 1195 1200Ile Glu Lys Asn Lys Asn Asp Ile Leu Thr Tyr Glu Asn Asn Ile Glu 1205 1210 1215Gln Ile Glu Gln Lys Asn Ile Glu Leu Lys Thr Asn Ala Gln Asn Lys 1220 1225 1230Asp Asp Gln Ile Val Asn Thr Leu Asn Glu Val Lys Lys Lys Ile Ile 1235 1240 1245Tyr Thr Tyr Glu Lys Val Asp Asn Gln Ile Ser Asn Val Leu Lys Asn 1250 1255 1260Tyr Glu Glu Gly Lys Val Glu Tyr Asp Lys Asn Val Val Gln Asn Val1265 1270 1275 1280Asn Asp Ala Asp Asp Thr Asn Asp Ile Asp Glu Ile Asn Asp Ile Asp 1285 1290 1295Glu Ile Asn Asp Ile Asp Glu Ile Asn Asp Ile Asp Glu Ile Asn Asp 1300 1305 1310Ile Asp Glu Ile Lys Asp Ile Asp His Ile Lys His Phe Asp Asp Thr 1315 1320 1325Lys His Phe Asp Asp Ile Tyr His Ala Asp Asp Thr Arg Asp Glu Tyr 1330 1335 1340His Ile Ala Leu Ser Asn Tyr Ile Lys Thr Glu Leu Arg Asn Ile Asn1345 1350 1355 1360Leu Gln Glu Ile Lys Asn Asn Ile Ile Lys Ile Phe Lys Glu Phe Lys 1365 1370 1375Ser Ala His Lys Glu Ile Lys Lys Glu Ser Glu Gln Ile Asn Lys Glu 1380 1385 1390Phe Thr Lys Met Asp Val Val Ile Asn Gln Leu Arg Asp Ile Asp Arg 1395 1400 1405Gln Met Leu Asp Leu Tyr Lys Glu Leu Asp Glu Lys Tyr Ser Glu Phe 1410 1415 1420Asn Lys Thr Lys Ile Glu Glu Ile Asn Asn Ile Arg Glu Asn Ile Asn1425 1430 1435 1440Asn Val Glu Ile Trp Tyr Glu Lys Asn Ile Ile Glu Tyr Phe Leu Arg 1445 1450 1455His Met Asn Asp Gln Lys Asp Lys Ala Ala Lys Tyr Met Glu Asn Ile 1460 1465 1470Asp Thr Tyr Lys Asn Asn Ile Glu Ile Ile Ser Lys Gln Ile Asn Pro 1475 1480 1485Glu Asn Tyr Val Glu Thr Leu Asn Lys Ser Asn Met Tyr Ser Tyr Val 1490 1495 1500Glu Lys Ala Asn Asp Leu Phe Tyr Lys Gln Ile Asn Asn Ile Ile Ile1505 1510 1515 1520Asn Ser Asn Gln Leu Lys Asn Glu Ala Phe Thr Ile Asp Glu Leu Gln 1525 1530 1535Asn Ile Gln Lys Asn Arg Lys Asn Leu Leu Thr Lys Lys Gln Gln Ile 1540 1545 1550Ile Gln Tyr Thr Asn Glu Ile Glu Asn Ile Phe Asn Glu Ile Lys Asn 1555 1560 1565Ile Asn Asn Ile Leu Val Leu Thr Asn Tyr Lys Ser Ile Leu Gln Asp 1570 1575 1580Ile Ser Gln Asn Ile Asn His Val Ser Ile Tyr Thr Glu Gln Leu His1585 1590 1595 1600Asn Leu Tyr Ile Lys Leu Glu Glu Glu Lys Glu Gln Met Lys Thr Leu 1605 1610 1615Tyr His Lys Ser Asn Val Leu His Asn Gln Ile Asn Phe Asn Glu Asp 1620 1625 1630Ala Phe Ile Asn Asn Leu Leu Ile Asn Ile Glu Lys Ile Lys Asn Asp 1635 1640 1645Ile Thr His Ile Lys Glu Lys Thr Asn Ile Tyr Met Ile Asp Val Asn 1650 1655 1660Lys Ser Lys Asn Asn Ala Gln Leu Tyr Phe His Asn Thr Leu Arg Gly1665 1670 1675 1680Asn Glu Lys Ile Glu Tyr Leu Lys Asn Leu Lys Asn Ser Thr Asn Gln 1685 1690 1695Gln Ile Thr Leu Gln Glu Leu Lys Gln Val Gln Glu Asn Val Glu Lys 1700 1705 1710Val Lys Asp Ile Tyr Asn Gln Thr Ile Lys Tyr Glu Glu Glu Ile Lys 1715 1720 1725Lys Asn Tyr His Ile Ile Thr Asp Tyr Glu Asn Lys Ile Asn Asp Ile 1730 1735 1740Leu His Asn Ser Phe Ile Lys Gln Ile Asn Met Glu Ser Ser Asn Asn1745 1750 1755 1760Lys Lys Gln Thr Lys Gln Ile Ile Asp Ile Ile Asn Asp Lys Thr Phe 1765 1770 1775Glu Glu His Ile Lys Thr Ser Lys Thr Lys Ile Asn Met Leu Lys Glu 1780 1785 1790Gln Ser Gln Met Lys His Ile Asp Lys Thr Leu Leu Asn Glu Gln Ala 1795 1800 1805Leu Lys Leu Phe Val Asp Ile Asn Ser Thr Asn Asn Asn Leu Asp Asn 1810 1815 1820Met Leu Ser Glu Ile Asn Ser Ile Gln Asn Asn Ile His Thr Tyr Ile1825 1830 1835 1840Gln Glu Ala Asn Lys Ser Phe Asp Lys Phe Lys Ile Ile Cys Asp Gln 1845 1850 1855Asn Val Asn Asp Leu Leu Asn Lys Leu Ser Leu Gly Asp Leu Asn Tyr 1860 1865 1870Met Asn His Leu Lys Asn Leu Gln Asn Glu Ile Arg Asn Met Asn Leu 1875 1880 1885Glu Lys Asn Phe Met Leu Asp Lys Ser Lys Lys Ile Asp Glu Glu Glu 1890 1895 1900Lys Lys Leu Asp Ile Leu Lys Val Asn Ile Ser Asn Ile Asn Asn Ser1905 1910 1915 1920Leu Asp Lys Leu Lys Lys Tyr Tyr Glu Glu Ala Leu Phe Gln Lys Val 1925 1930 1935Lys Glu Lys Ala Glu Ile Gln Lys Glu Asn Ile Glu Lys Ile Lys Gln 1940 1945 1950Glu Ile Asn Thr Leu Ser Asp Val Phe Lys Lys Pro Phe Phe Phe Ile 1955 1960 1965Gln Leu Asn Thr Asp Ser Ser Gln His Glu Lys Asp Ile Asn Asn Asn 1970 1975 1980Val Glu Thr Tyr Lys Asn Asn Ile Asp Glu Ile Tyr Asn Val Phe Ile1985 1990 1995 2000Gln Ser Tyr Asn Leu Ile Gln Lys Tyr Ser Ser Glu Ile Phe Ser Ser 2005 2010 2015Thr Leu Asn Tyr Ile Gln Thr Lys Glu Ile Lys Glu Lys Ser Ile Lys 2020 2025 2030Glu Gln Asn Gln Leu Asn Gln Asn Glu Lys Glu Ala Ser Val Leu Leu 2035 2040 2045Lys Asn Ile Lys Ile Asn Glu Thr Ile Lys Leu Phe Lys Gln Ile Lys 2050 2055 2060Asn Glu Arg Gln Asn Asp Val His Asn Ile Lys Glu Asp Tyr Asn Leu2065 2070 2075 2080Leu Gln Gln Tyr Leu Asn Tyr Met Lys Asn Glu Met Glu Gln Leu Lys 2085 2090 2095Lys Tyr Lys Asn Asp Val His Met Asp Lys Asn Tyr Val Glu Asn Asn 2100 2105 2110Asn Gly Glu Lys Glu Lys Leu Leu Lys Glu Thr Ile Ser Ser Tyr Tyr 2115 2120 2125Asp Lys Ile Asn Asn Ile Asn Asn Lys Leu Tyr Ile Tyr Lys Asn Lys 2130 2135 2140Glu Asp Thr Tyr Phe Asn Asn Met Ile Lys Val Ser Glu Ile Leu Asn2145 2150 2155 2160Ile Ile Ile Lys Lys Lys Gln Gln Asn Glu Gln Arg Ile Val Ile Asn 2165 2170 2175Ala Glu Tyr Asp Ser Ser Leu Ile Asn Lys Asp Glu Glu Ile Lys Lys 2180 2185 2190Glu Ile Asn Asn Gln Ile Ile Glu Leu Asn Lys His Asn Glu Asn Ile 2195 2200 2205Ser Asn Ile Phe Lys Asp Ile Gln Asn Ile Lys Lys Gln Ser Gln Asp 2210 2215 2220Ile Ile Thr Asn Met Asn Asp Met Tyr Lys Ser Thr Ile Leu Leu Val2225 2230 2235 2240Asp Ile Ile Gln Lys Lys Glu Glu Ala Leu Asn Lys Gln Lys Asn Ile 2245 2250 2255Leu Arg Asn Ile Asp Asn Ile Leu Asn Lys Lys Glu Asn Ile Ile Asp 2260 2265 2270Lys Val Ile Lys Cys Asn Cys Asp Asp Tyr Lys Asp Ile Leu Ile Gln 2275 2280 2285Asn Glu Thr Glu Tyr Gln Lys Leu Gln Asn Ile Asn His Thr Tyr Glu 2290 2295 2300Glu

Lys Lys Lys Ser Ile Asp Ile Leu Lys Ile Lys Asn Ile Lys Gln2305 2310 2315 2320Lys Asn Ile Gln Glu Tyr Lys Asn Lys Leu Glu Gln Met Asn Thr Ile 2325 2330 2335Ile Asn Gln Ser Ile Glu Gln His Val Phe Ile Asn Ala Asp Ile Leu 2340 2345 2350Gln Asn Glu Lys Ile Lys Leu Glu Glu Ile Ile Lys Asn Leu Asp Ile 2355 2360 2365Leu Asp Glu Gln Ile Met Thr Tyr His Asn Ser Ile Asp Glu Leu Tyr 2370 2375 2380Lys Leu Gly Ile Gln Cys Asp Asn His Leu Ile Thr Thr Ile Ser Val2385 2390 2395 2400Val Val Asn Lys Asn Thr Thr Lys Ile Met Ile His Ile Lys Lys Gln 2405 2410 2415Lys Glu Asp Ile Gln Lys Ile Asn Asn Tyr Ile Gln Thr Asn Tyr Asn 2420 2425 2430Ile Ile Asn Glu Glu Ala Leu Gln Phe His Arg Leu Tyr Gly His Asn 2435 2440 2445Leu Ile Ser Glu Asp Asp Lys Asn Asn Leu Val His Ile Ile Lys Glu 2450 2455 2460Gln Lys Asn Ile Tyr Thr Gln Lys Glu Ile Asp Ile Ser Lys Ile Ile2465 2470 2475 2480Lys His Val Lys Lys Gly Leu Tyr Ser Leu Asn Glu His Asp Met Asn 2485 2490 2495His Asp Thr His Met Asn Ile Ile Asn Glu His Ile Asn Asn Asn Ile 2500 2505 2510Leu Gln Pro Tyr Thr Gln Leu Ile Asn Met Ile Lys Asp Ile Asp Asn 2515 2520 2525Val Phe Ile Lys Ile Gln Asn Asn Lys Phe Glu Gln Ile Gln Lys Tyr 2530 2535 2540Ile Glu Ile Ile Lys Ser Leu Glu Gln Leu Asn Lys Asn Ile Asn Thr2545 2550 2555 2560Asp Asn Leu Asn Lys Leu Lys Asp Thr Gln Asn Lys Leu Ile Asn Ile 2565 2570 2575Glu Thr Glu Met Lys His Lys Gln Lys Gln Leu Ile Asn Lys Met Asn 2580 2585 2590Asp Ile Glu Lys Asp Asn Ile Thr Asp Gln Tyr Met His Asp Val Gln 2595 2600 2605Gln Asn Ile Phe Glu Pro Ile Thr Leu Lys Met Asn Glu Tyr Asn Thr 2610 2615 2620Leu Leu Asn Asp Asn His Asn Asn Asn Ile Asn Asn Glu His Gln Phe2625 2630 2635 2640Asn His Leu Asn Ser Leu His Thr Lys Ile Phe Ser His Asn Tyr Asn 2645 2650 2655Lys Glu Gln Gln Gln Glu Tyr Ile Thr Asn Ile Met Gln Arg Ile Asp 2660 2665 2670Val Phe Ile Asn Asp Leu Asp Thr Tyr Gln Tyr Glu Tyr Tyr Phe Tyr 2675 2680 2685Glu Trp Asn Gln Glu Tyr Lys Gln Ile Asp Lys Asn Lys Ile Asn Gln 2690 2695 2700His Ile Asn Asn Ile Lys Asn Asn Leu Ile His Val Lys Lys Gln Phe2705 2710 2715 2720Glu His Thr Leu Glu Asn Ile Lys Asn Asn Glu Asn Ile Phe Asp Asn 2725 2730 2735Ile Gln Leu Lys Lys Lys Asp Ile Asp Asp Ile Ile Ile Asn Ile Asn 2740 2745 2750Asn Thr Lys Glu Thr Tyr Leu Lys Glu Leu Asn Lys Lys Lys Asn Val 2755 2760 2765Thr Lys Lys Lys Lys Val Asp Glu Lys Ser Glu Ile Asn Asn His His 2770 2775 2780Thr Leu Gln His Asp Asn Gln Asn Val Glu Gln Lys Asn Lys Ile Lys2785 2790 2795 2800Asp His Asn Leu Ile Thr Lys Pro Asn Asn Asn Ser Ser Glu Glu Ser 2805 2810 2815His Gln Asn Glu Gln Met Lys Glu Gln Asn Lys Asn Ile Leu Glu Lys 2820 2825 2830Gln Thr Arg Asn Ile Lys Pro His His Val His Asn His Asn His Asn 2835 2840 2845His Asn Gln Asn Gln Lys Asp Ser Thr Lys Leu Gln Glu Gln Asp Ile 2850 2855 2860Ser Thr His Lys Leu His Asn Thr Ile His Glu Gln Gln Ser Lys Asp2865 2870 2875 2880Asn His Gln Gly Asn Arg Glu Lys Lys Gln Lys Asn Gly Asn His Glu 2885 2890 2895Arg Met Tyr Phe Ala Ser Gly Ile Val Val Ser Ile Leu Phe Leu Phe 2900 2905 2910Ser Phe Gly Phe Val Ile Asn Ser Lys Asn Asn Lys Gln Glu Tyr Asp 2915 2920 2925Lys Glu Gln Glu Lys Gln Gln Gln Asn Asp Phe Val Cys Asp Asn Asn 2930 2935 2940Lys Met Asp Asp Lys Ser Thr Gln Lys Tyr Gly Arg Asn Gln Glu Glu2945 2950 2955 2960Val Met Glu Ile Phe Phe Asp Asn Asp Tyr Ile 2965 2970161716PRTPlasmodium falciparum 16Met Asn Lys Asn Ile Leu Trp Ile Thr Phe Phe Tyr Phe Leu Phe Phe1 5 10 15Leu Leu Asp Met Tyr Gln Gly Asn Asp Ala Ile Pro Ser Lys Glu Lys 20 25 30Lys Asn Asp Pro Glu Ala Asp Ser Lys Asn Ser Gln Asn Gln His Asp 35 40 45Ile Asn Lys Thr His His Thr Asn Asn Asn Tyr Asp Leu Asn Ile Lys 50 55 60Asp Lys Asp Glu Lys Lys Arg Lys Asn Asp Asn Leu Ile Asn Asn Tyr65 70 75 80Asp Tyr Ser Leu Leu Lys Leu Ser Tyr Asn Lys Asn Gln Asp Ile Tyr 85 90 95Lys Asn Ile Gln Asn Gly Gln Lys Leu Lys Thr Asp Ile Ile Leu Asn 100 105 110Ser Phe Val Gln Ile Asn Ser Ser Asn Ile Leu Met Asp Glu Ile Glu 115 120 125Asn Tyr Val Lys Lys Tyr Thr Glu Ser Asn Arg Ile Met Tyr Leu Gln 130 135 140Phe Lys Tyr Ile Tyr Leu Gln Ser Leu Asn Ile Thr Val Ser Phe Val145 150 155 160Pro Pro Asn Ser Pro Phe Arg Ser Tyr Tyr Asp Lys Asn Leu Asn Lys 165 170 175Asp Ile Asn Glu Thr Cys His Ser Ile Gln Thr Leu Leu Asn Asn Leu 180 185 190Ile Ser Ser Lys Ile Ile Phe Lys Met Leu Glu Thr Thr Lys Glu Gln 195 200 205Ile Leu Leu Leu Trp Asn Asn Lys Lys Ile Ser Gln Gln Asn Tyr Asn 210 215 220Gln Glu Asn Gln Glu Lys Ser Lys Met Ile Asp Ser Glu Asn Glu Lys225 230 235 240Leu Glu Lys Tyr Thr Asn Lys Phe Glu His Asn Ile Lys Pro His Ile 245 250 255Glu Asp Ile Glu Lys Lys Val Asn Glu Tyr Ile Asn Asn Ser Asp Cys 260 265 270His Leu Thr Cys Ser Lys Tyr Lys Thr Ile Ile Asn Asn Tyr Ile Asp 275 280 285Glu Ile Ile Thr Thr Asn Thr Asn Ile Tyr Glu Asn Lys Tyr Asn Leu 290 295 300Pro Gln Glu Arg Ile Ile Lys Asn Tyr Asn His Asn Gly Ile Asn Asn305 310 315 320Asp Asp Asn Phe Ile Glu Tyr Asn Ile Leu Asn Ala Asp Pro Asp Leu 325 330 335Arg Ser His Phe Ile Thr Leu Leu Val Ser Arg Lys Gln Leu Ile Tyr 340 345 350Ile Glu Tyr Ile Tyr Phe Ile Asn Lys His Ile Val Asn Lys Ile Gln 355 360 365Glu Asn Phe Lys Leu Asn Gln Asn Lys Tyr Ile His Phe Ile Asn Ser 370 375 380Asn Asn Ala Val Asn Ala Ala Lys Glu Tyr Glu Tyr Ile Ile Lys Tyr385 390 395 400Tyr Thr Thr Phe Lys Tyr Leu Gln Thr Leu Asn Lys Ser Leu Tyr Asp 405 410 415Ser Ile Tyr Lys His Lys Ile Asn Asn Tyr Ser His Asn Ile Glu Asp 420 425 430Leu Ile Asn Gln Leu Gln His Lys Ile Asn Asn Leu Met Ile Ile Ser 435 440 445Phe Asp Lys Asn Lys Ser Ser Asp Leu Met Leu Gln Cys Thr Asn Ile 450 455 460Lys Lys Tyr Thr Asp Asp Ile Cys Leu Ser Ile Lys Pro Lys Ala Leu465 470 475 480Glu Val Glu Tyr Leu Arg Asn Ile Asn Lys His Ile Asn Lys Asn Glu 485 490 495Phe Leu Asn Lys Phe Met Gln Asn Glu Thr Phe Lys Lys Asn Ile Asp 500 505 510Asp Lys Ile Lys Glu Met Asn Asn Ile Tyr Asp Asn Ile Tyr Ile Ile 515 520 525Leu Lys Gln Lys Phe Leu Asn Lys Leu Asn Glu Ile Ile Gln Asn His 530 535 540Lys Asn Lys Gln Glu Thr Lys Leu Asn Thr Thr Thr Ile Gln Glu Leu545 550 555 560Leu Gln Leu Leu Lys Asp Ile Lys Glu Ile Gln Thr Lys Gln Ile Asp 565 570 575Thr Lys Ile Asn Thr Phe Asn Met Tyr Tyr Asn Asp Ile Gln Gln Ile 580 585 590Lys Ile Lys Ile Asn Gln Asn Glu Lys Glu Ile Lys Lys Val Leu Pro 595 600 605Gln Leu Tyr Ile Pro Lys Asn Glu Gln Glu Tyr Ile Gln Ile Tyr Lys 610 615 620Asn Glu Leu Lys Asp Arg Ile Lys Glu Thr Gln Thr Lys Ile Asn Leu625 630 635 640Phe Lys Gln Ile Leu Glu Leu Lys Glu Lys Glu His Tyr Ile Thr Asn 645 650 655Lys His Thr Tyr Leu Asn Phe Thr His Lys Thr Ile Gln Gln Ile Leu 660 665 670Gln Gln Gln Tyr Lys Asn Asn Thr Gln Glu Lys Asn Thr Leu Ala Gln 675 680 685Phe Leu Tyr Asn Ala Asp Ile Lys Lys Tyr Ile Asp Glu Leu Ile Pro 690 695 700Ile Thr Gln Gln Ile Gln Thr Lys Met Tyr Thr Thr Asn Asn Ile Glu705 710 715 720His Ile Lys Gln Ile Leu Ile Asn Tyr Ile Gln Glu Cys Lys Pro Ile 725 730 735Gln Asn Ile Ser Glu His Thr Ile Tyr Thr Leu Tyr Gln Glu Ile Lys 740 745 750Thr Asn Leu Glu Asn Ile Glu Gln Lys Ile Met Gln Asn Ile Gln Gln 755 760 765Thr Thr Asn Arg Leu Lys Ile Asn Ile Lys Lys Ile Phe Asp Gln Ile 770 775 780Asn Gln Lys Tyr Asp Asp Leu Thr Lys Asn Ile Asn Gln Met Asn Asp785 790 795 800Glu Lys Ile Gly Leu Arg Gln Met Glu Asn Arg Leu Lys Gly Lys Tyr 805 810 815Glu Glu Ile Lys Lys Ala Asn Leu Gln Asp Arg Asp Ile Lys Tyr Ile 820 825 830Val Gln Asn Asn Asp Ala Asn Asn Asn Asn Asn Asn Ile Ile Ile Ile 835 840 845Asn Gly Asn Asn Gln Thr Gly Asp Tyr Asn His Ile Leu Phe Asp Tyr 850 855 860Thr His Leu Trp Asp Asn Ala Gln Phe Thr Arg Thr Lys Glu Asn Ile865 870 875 880Asn Asn Leu Lys Asp Asn Ile Gln Ile Asn Ile Asn Asn Ile Lys Ser 885 890 895Ile Ile Arg Asn Leu Gln Asn Glu Leu Asn Asn Tyr Asn Thr Leu Lys 900 905 910Ser Asn Ser Ile His Ile Tyr Asp Lys Ile His Thr Leu Glu Glu Leu 915 920 925Lys Ile Leu Thr Gln Glu Ile Asn Asp Lys Asn Val Ile Arg Lys Ile 930 935 940Tyr Asp Ile Glu Thr Ile Tyr Gln Asn Asp Leu His Asn Ile Glu Glu945 950 955 960Ile Ile Lys Asn Ile Thr Ser Ile Tyr Tyr Lys Ile Asn Ile Leu Asn 965 970 975Ile Leu Ile Ile Cys Ile Lys Gln Thr Tyr Asn Asn Asn Lys Ser Ile 980 985 990Glu Ser Leu Lys Leu Lys Ile Asn Asn Leu Thr Asn Ser Thr Gln Glu 995 1000 1005Tyr Ile Asn Gln Ile Lys Ala Ile Pro Thr Asn Leu Leu Pro Glu His 1010 1015 1020Ile Lys Gln Lys Ser Val Ser Glu Leu Asn Ile Tyr Met Lys Gln Ile1025 1030 1035 1040Tyr Asp Lys Leu Asn Glu His Val Ile Asn Asn Leu Tyr Thr Lys Ser 1045 1050 1055Lys Asp Ser Leu Gln Phe Tyr Ile Asn Glu Lys Asn Tyr Asn Asn Asn 1060 1065 1070His Asp Asp His Asn Asp Asp His Asn Asp Val Tyr Asn Asp Ile Lys 1075 1080 1085Glu Asn Glu Ile Tyr Lys Asn Asn Lys Leu Tyr Glu Cys Ile Gln Ile 1090 1095 1100Lys Lys Asp Val Asp Glu Leu Tyr Asn Ile Tyr Asp Gln Leu Phe Lys1105 1110 1115 1120Asn Ile Ser Gln Asn Tyr Asn Asn His Ser Leu Ser Phe Val His Ser 1125 1130 1135Ile Asn Asn His Met Leu Ser Ile Phe Gln Asp Thr Lys Tyr Gly Lys 1140 1145 1150His Lys Asn Gln Gln Ile Leu Ser Asp Ile Glu Asn Ile Ile Lys Gln 1155 1160 1165Asn Glu His Thr Glu Ser Tyr Lys Asn Leu Asp Thr Ser Asn Ile Gln 1170 1175 1180Leu Ile Lys Glu Gln Ile Lys Tyr Phe Leu Gln Ile Phe His Ile Leu1185 1190 1195 1200Gln Glu Asn Ile Thr Thr Phe Glu Asn Gln Tyr Lys Asp Leu Ile Ile 1205 1210 1215Lys Met Asn His Lys Ile Asn Asn Asn Leu Lys Asp Ile Thr His Ile 1220 1225 1230Val Ile Asn Asp Asn Asn Thr Leu Gln Glu Gln Asn Arg Ile Tyr Asn 1235 1240 1245Glu Leu Gln Asn Lys Ile Lys Gln Ile Lys Asn Val Ser Asp Val Phe 1250 1255 1260Thr His Asn Ile Asn Tyr Ser Gln Gln Ile Leu Asn Tyr Ser Gln Ala1265 1270 1275 1280Gln Asn Ser Phe Phe Asn Ile Phe Met Lys Phe Gln Asn Ile Asn Asn 1285 1290 1295Asp Ile Asn Ser Lys Arg Tyr Asn Val Gln Lys Lys Ile Thr Glu Ile 1300 1305 1310Ile Asn Ser Tyr Asp Ile Ile Asn Tyr Asn Lys Asn Asn Ile Lys Asp 1315 1320 1325Ile Tyr Gln Gln Phe Lys Asn Ile Gln Gln Gln Leu Asn Thr Thr Glu 1330 1335 1340Thr Gln Leu Asn His Ile Lys Gln Asn Ile Asn His Phe Lys Tyr Phe1345 1350 1355 1360Tyr Glu Ser His Gln Thr Ile Ser Ile Val Lys Asn Met Gln Asn Glu 1365 1370 1375Lys Leu Lys Ile Gln Glu Phe Asn Lys Lys Ile Gln His Phe Lys Glu 1380 1385 1390Glu Thr Gln Ile Met Ile Asn Lys Leu Ile Gln Pro Ser His Ile His 1395 1400 1405Leu His Lys Met Lys Leu Pro Ile Thr Gln Gln Gln Leu Asn Thr Ile 1410 1415 1420Leu His Arg Asn Glu Gln Thr Lys Asn Ala Thr Arg Ser Tyr Asn Met1425 1430 1435 1440Asn Glu Glu Glu Asn Glu Met Gly Tyr Gly Ile Thr Asn Lys Arg Lys 1445 1450 1455Asn Ser Glu Thr Asn Asp Met Ile Asn Thr Thr Ile Gly Asp Lys Thr 1460 1465 1470Asn Val Leu Lys Asn Asp Asp Gln Glu Lys Gly Lys Arg Gly Thr Ser 1475 1480 1485Arg Asn Asn Asn Ile His Thr Asn Glu Asn Asn Ile Asn Asn Glu His 1490 1495 1500Thr Asn Glu Asn Asn Ile Asn Asn Glu His Thr Asn Glu Lys Asn Ile1505 1510 1515 1520Asn Asn Glu His Ala Asn Glu Lys Asn Ile Tyr Asn Glu His Thr Asn 1525 1530 1535Glu Asn Asn Ile Asn Tyr Glu His Pro Asn Asn Tyr Gln Gln Lys Asn 1540 1545 1550Asp Glu Lys Ile Ser Leu Gln His Lys Thr Ile Asn Thr Ser Gln Arg 1555 1560 1565Thr Ile Asp Asp Ser Asn Met Asp Arg Asn Asn Arg Tyr Asn Thr Ser 1570 1575 1580Ser Gln Gln Lys Asn Asn Leu His Thr Asn Asn Asn Ser Asn Ser Arg1585 1590 1595 1600Tyr Asn Asn Asn His Asp Lys Gln Asn Glu His Lys Tyr Asn Gln Gly 1605 1610 1615Lys Ser Ser Gly Lys Asp Asn Ala Tyr Tyr Arg Ile Phe Tyr Ala Gly 1620 1625 1630Gly Ile Thr Ala Val Leu Leu Leu Cys Ser Ser Thr Ala Phe Phe Phe 1635 1640 1645Ile Lys Asn Ser Asn Glu Pro His His Ile Phe Asn Ile Phe Gln Lys 1650 1655 1660Glu Phe Ser Glu Ala Asp Asn Ala His Ser Glu Glu Lys Glu Glu Tyr1665 1670 1675 1680Leu Pro Val Tyr Phe Asp Glu Val Glu Asp Glu Val Glu Asp Glu Val 1685 1690 1695Glu Asp Glu Asp Glu Asn Glu Asn Glu Val Glu Asn Glu Asn Glu Asp 1700 1705 1710Phe Asn Asp Ile 1715171462PRTPlasmodium falciparum 17Met Lys Cys Asn Ile Ser Ile Tyr Phe Phe Ala Ser Phe Phe Val Leu1 5 10 15Tyr Phe Ala Lys Ala Arg Asn Glu Tyr Asp Ile Lys Glu Asn Glu Lys 20 25 30Phe Leu Asp Val Tyr Lys Glu Lys Phe Asn Glu Leu Asp Lys Lys Lys 35 40 45Tyr Gly Asn Val Gln Lys Thr Asp Lys Lys Ile Phe Thr Phe Ile Glu 50 55 60Asn Lys Leu Asp Ile Leu Asn Asn Ser Lys Phe Asn Lys Arg

Trp Lys65 70 75 80Ser Tyr Gly Thr Pro Asp Asn Ile Asp Lys Asn Met Ser Leu Ile Asn 85 90 95Lys His Asn Asn Glu Glu Met Phe Asn Asn Asn Tyr Gln Ser Phe Leu 100 105 110Ser Thr Ser Ser Leu Ile Lys Gln Asn Lys Tyr Val Pro Ile Asn Ala 115 120 125Val Arg Val Ser Arg Ile Leu Ser Phe Leu Asp Ser Arg Ile Asn Asn 130 135 140Gly Arg Asn Thr Ser Ser Asn Asn Glu Val Leu Ser Asn Cys Arg Glu145 150 155 160Lys Arg Lys Gly Met Lys Trp Asp Cys Lys Lys Lys Asn Asp Arg Ser 165 170 175Asn Tyr Val Cys Ile Pro Asp Arg Arg Ile Gln Leu Cys Ile Val Asn 180 185 190Leu Ser Ile Ile Lys Thr Tyr Thr Lys Glu Thr Met Lys Asp His Phe 195 200 205Ile Glu Ala Ser Lys Lys Glu Ser Gln Leu Leu Leu Lys Lys Asn Asp 210 215 220Asn Lys Tyr Asn Ser Lys Phe Cys Asn Asp Leu Lys Asn Ser Phe Leu225 230 235 240Asp Tyr Gly His Leu Ala Met Gly Asn Asp Met Asp Phe Gly Gly Tyr 245 250 255Ser Thr Lys Ala Glu Asn Lys Ile Gln Glu Val Phe Lys Gly Ala His 260 265 270Gly Glu Ile Ser Glu His Lys Ile Lys Asn Phe Arg Lys Lys Trp Trp 275 280 285Asn Glu Phe Arg Glu Lys Leu Trp Glu Ala Met Leu Ser Glu His Lys 290 295 300Asn Asn Ile Asn Asn Cys Lys Asn Ile Pro Gln Glu Glu Leu Gln Ile305 310 315 320Thr Gln Trp Ile Lys Glu Trp His Gly Glu Phe Leu Leu Glu Arg Asp 325 330 335Asn Arg Ser Lys Leu Pro Lys Ser Lys Cys Lys Asn Asn Thr Leu Tyr 340 345 350Glu Ala Cys Glu Lys Glu Cys Ile Asp Pro Cys Met Lys Tyr Arg Asp 355 360 365Trp Ile Ile Arg Ser Lys Phe Glu Trp His Thr Leu Ser Lys Glu Tyr 370 375 380Glu Thr Gln Lys Val Pro Lys Glu Asn Ala Glu Asn Tyr Leu Ile Lys385 390 395 400Ile Ser Glu Asn Lys Asn Asp Ala Lys Val Ser Leu Leu Leu Asn Asn 405 410 415Cys Asp Ala Glu Tyr Ser Lys Tyr Cys Asp Cys Lys His Thr Thr Thr 420 425 430Leu Val Lys Ser Val Leu Asn Gly Asn Asp Asn Thr Ile Lys Glu Lys 435 440 445Arg Glu His Ile Asp Leu Asp Asp Phe Ser Lys Phe Gly Cys Asp Lys 450 455 460Asn Ser Val Asp Thr Asn Thr Lys Val Trp Glu Cys Lys Lys Pro Tyr465 470 475 480Lys Leu Ser Thr Lys Asp Val Cys Val Pro Pro Arg Arg Gln Glu Leu 485 490 495Cys Leu Gly Asn Ile Asp Arg Ile Tyr Asp Lys Asn Leu Leu Met Ile 500 505 510Lys Glu His Ile Leu Ala Ile Ala Ile Tyr Glu Ser Arg Ile Leu Lys 515 520 525Arg Lys Tyr Lys Asn Lys Asp Asp Lys Glu Val Cys Lys Ile Ile Asn 530 535 540Lys Thr Phe Ala Asp Ile Arg Asp Ile Ile Gly Gly Thr Asp Tyr Trp545 550 555 560Asn Asp Leu Ser Asn Arg Lys Leu Val Gly Lys Ile Asn Thr Asn Ser 565 570 575Asn Tyr Val His Arg Asn Lys Gln Asn Asp Lys Leu Phe Arg Asp Glu 580 585 590Trp Trp Lys Val Ile Lys Lys Asp Val Trp Asn Val Ile Ser Trp Val 595 600 605Phe Lys Asp Lys Thr Val Cys Lys Glu Asp Asp Ile Glu Asn Ile Pro 610 615 620Gln Phe Phe Arg Trp Phe Ser Glu Trp Gly Asp Asp Tyr Cys Gln Asp625 630 635 640Lys Thr Lys Met Ile Glu Thr Leu Lys Val Glu Cys Lys Glu Lys Pro 645 650 655Cys Glu Asp Asp Asn Cys Lys Arg Lys Cys Asn Ser Tyr Lys Glu Trp 660 665 670Ile Ser Lys Lys Lys Glu Glu Tyr Asn Lys Gln Ala Lys Gln Tyr Gln 675 680 685Glu Tyr Gln Lys Gly Asn Asn Tyr Lys Met Tyr Ser Glu Phe Lys Ser 690 695 700Ile Lys Pro Glu Val Tyr Leu Lys Lys Tyr Ser Glu Lys Cys Ser Asn705 710 715 720Leu Asn Phe Glu Asp Glu Phe Lys Glu Glu Leu His Ser Asp Tyr Lys 725 730 735Asn Lys Cys Thr Met Cys Pro Glu Val Lys Asp Val Pro Ile Ser Ile 740 745 750Ile Arg Asn Asn Glu Gln Thr Ser Gln Glu Ala Val Pro Glu Glu Ser 755 760 765Thr Glu Ile Ala His Arg Thr Glu Thr Arg Thr Asp Glu Arg Lys Asn 770 775 780Gln Glu Pro Ala Asn Lys Asp Leu Lys Asn Pro Gln Gln Ser Val Gly785 790 795 800Glu Asn Gly Thr Lys Asp Leu Leu Gln Glu Asp Leu Gly Gly Ser Arg 805 810 815Ser Glu Asp Glu Val Thr Gln Glu Phe Gly Val Asn His Gly Ile Pro 820 825 830Lys Gly Glu Asp Gln Thr Leu Gly Lys Ser Asp Ala Ile Pro Asn Ile 835 840 845Gly Glu Pro Glu Thr Gly Ile Ser Thr Thr Glu Glu Ser Arg His Glu 850 855 860Glu Gly His Asn Lys Gln Ala Leu Ser Thr Ser Val Asp Glu Pro Glu865 870 875 880Leu Ser Asp Thr Leu Gln Leu His Glu Asp Thr Lys Glu Asn Asp Lys 885 890 895Leu Pro Leu Glu Ser Ser Thr Ile Thr Ser Pro Thr Glu Ser Gly Ser 900 905 910Ser Asp Thr Glu Glu Thr Pro Ser Ile Ser Glu Gly Pro Lys Gly Asn 915 920 925Glu Gln Lys Lys Arg Asp Asp Asp Ser Leu Ser Lys Ile Ser Val Ser 930 935 940Pro Glu Asn Ser Arg Pro Glu Thr Asp Ala Lys Asp Thr Ser Asn Leu945 950 955 960Leu Lys Leu Lys Gly Asp Val Asp Ile Ser Met Pro Lys Ala Val Ile 965 970 975Gly Ser Ser Pro Asn Asp Asn Ile Asn Val Thr Glu Gln Gly Asp Asn 980 985 990Ile Ser Gly Val Asn Ser Lys Pro Leu Ser Asp Asp Val Arg Pro Asp 995 1000 1005Lys Asn His Glu Glu Val Lys Glu His Thr Ser Asn Ser Asp Asn Val 1010 1015 1020Gln Gln Ser Gly Gly Ile Val Asn Met Asn Val Glu Lys Glu Leu Lys1025 1030 1035 1040Asp Thr Leu Glu Asn Pro Ser Ser Ser Leu Asp Glu Gly Lys Ala His 1045 1050 1055Glu Glu Leu Ser Glu Pro Asn Leu Ser Ser Asp Gln Asp Met Ser Asn 1060 1065 1070Thr Pro Gly Pro Leu Asp Asn Thr Ser Glu Glu Thr Thr Glu Arg Ile 1075 1080 1085Ser Asn Asn Glu Tyr Lys Val Asn Glu Arg Glu Gly Glu Arg Thr Leu 1090 1095 1100Thr Lys Glu Tyr Glu Asp Ile Val Leu Lys Ser His Met Asn Arg Glu1105 1110 1115 1120Ser Asp Asp Gly Glu Leu Tyr Asp Glu Asn Ser Asp Leu Ser Thr Val 1125 1130 1135Asn Asp Glu Ser Glu Asp Ala Glu Ala Lys Met Lys Gly Asn Asp Thr 1140 1145 1150Ser Glu Met Ser His Asn Ser Ser Gln His Ile Glu Ser Asp Gln Gln 1155 1160 1165Lys Asn Asp Met Lys Thr Val Gly Asp Leu Gly Thr Thr His Val Gln 1170 1175 1180Asn Glu Ile Ser Val Pro Val Thr Gly Glu Ile Asp Glu Lys Leu Arg1185 1190 1195 1200Glu Ser Lys Glu Ser Lys Ile His Lys Ala Glu Glu Glu Arg Leu Ser 1205 1210 1215His Thr Asp Ile His Lys Ile Asn Pro Glu Asp Arg Asn Ser Asn Thr 1220 1225 1230Leu His Leu Lys Asp Ile Arg Asn Glu Glu Asn Glu Arg His Leu Thr 1235 1240 1245Asn Gln Asn Ile Asn Ile Ser Gln Glu Arg Asp Leu Gln Lys His Gly 1250 1255 1260Phe His Thr Met Asn Asn Leu His Gly Asp Gly Val Ser Glu Arg Ser1265 1270 1275 1280Gln Ile Asn His Ser His His Gly Asn Arg Gln Asp Arg Gly Gly Asn 1285 1290 1295Ser Gly Asn Val Leu Asn Met Arg Ser Asn Asn Asn Asn Phe Asn Asn 1300 1305 1310Ile Pro Ser Arg Tyr Asn Leu Tyr Asp Lys Lys Leu Asp Leu Asp Leu 1315 1320 1325Tyr Glu Asn Arg Asn Asp Ser Thr Thr Lys Glu Leu Ile Lys Lys Leu 1330 1335 1340Ala Glu Ile Asn Lys Cys Glu Asn Glu Ile Ser Val Lys Tyr Cys Asp1345 1350 1355 1360His Met Ile His Glu Glu Ile Pro Leu Lys Thr Cys Thr Lys Glu Lys 1365 1370 1375Thr Arg Asn Leu Cys Cys Ala Val Ser Asp Tyr Cys Met Ser Tyr Phe 1380 1385 1390Thr Tyr Asp Ser Glu Glu Tyr Tyr Asn Cys Thr Lys Arg Glu Phe Asp 1395 1400 1405Asp Pro Ser Tyr Thr Cys Phe Arg Lys Glu Ala Phe Ser Ser Met Pro 1410 1415 1420Tyr Tyr Ala Gly Ala Gly Val Leu Phe Ile Ile Leu Val Ile Leu Gly1425 1430 1435 1440Ala Ser Gln Ala Lys Tyr Gln Arg Leu Glu Lys Ile Asn Lys Asn Lys 1445 1450 1455Ile Glu Lys Asn Val Asn 1460181567PRTPlasmodium falciparum 18Met Lys Gly Lys Met Asn Met Cys Leu Phe Phe Phe Tyr Ser Ile Leu1 5 10 15Tyr Val Val Leu Cys Thr Tyr Val Leu Gly Ile Ser Glu Glu Tyr Leu 20 25 30Lys Glu Arg Pro Gln Gly Leu Asn Val Glu Thr Asn Asn Asn Asn Asn 35 40 45Asn Asn Asn Asn Asn Asn Ser Asn Ser Asn Asp Ala Met Ser Phe Val 50 55 60Asn Glu Val Ile Arg Phe Ile Glu Asn Glu Lys Asp Asp Lys Glu Asp65 70 75 80Lys Lys Val Lys Ile Ile Ser Arg Pro Val Glu Asn Thr Leu His Arg 85 90 95Tyr Pro Val Ser Ser Phe Leu Asn Ile Lys Lys Tyr Gly Arg Lys Gly 100 105 110Glu Tyr Leu Asn Arg Asn Ser Phe Val Gln Arg Ser Tyr Ile Arg Gly 115 120 125Cys Lys Gly Lys Arg Ser Thr His Thr Trp Ile Cys Glu Asn Lys Gly 130 135 140Asn Asn Asn Ile Cys Ile Pro Asp Arg Arg Val Gln Leu Cys Ile Thr145 150 155 160Ala Leu Gln Asp Leu Lys Asn Ser Gly Ser Glu Thr Thr Asp Arg Lys 165 170 175Leu Leu Arg Asp Lys Val Phe Asp Ser Ala Met Tyr Glu Thr Asp Leu 180 185 190Leu Trp Asn Lys Tyr Gly Phe Arg Gly Phe Asp Asp Phe Cys Asp Asp 195 200 205Val Lys Asn Ser Tyr Leu Asp Tyr Lys Asp Val Ile Phe Gly Thr Asp 210 215 220Leu Asp Lys Asn Asn Ile Ser Lys Leu Val Glu Glu Ser Leu Lys Arg225 230 235 240Phe Phe Lys Lys Asp Ser Ser Val Leu Asn Pro Thr Ala Trp Trp Arg 245 250 255Arg Tyr Gly Thr Arg Leu Trp Lys Thr Met Ile Gln Pro Tyr Ala His 260 265 270Leu Gly Cys Arg Lys Pro Asp Glu Asn Glu Pro Gln Ile Asn Arg Trp 275 280 285Ile Leu Glu Trp Gly Lys Tyr Asn Cys Arg Leu Met Lys Glu Lys Glu 290 295 300Lys Leu Leu Thr Gly Glu Cys Ser Val Asn Arg Lys Lys Ser Asp Cys305 310 315 320Ser Thr Gly Cys Asn Asn Glu Cys Tyr Thr Tyr Arg Ser Leu Ile Asn 325 330 335Arg Gln Arg Tyr Glu Val Ser Ile Leu Gly Lys Lys Tyr Ile Lys Val 340 345 350Val Arg Tyr Thr Ile Phe Arg Arg Lys Ile Val Gln Pro Asp Asn Ala 355 360 365Leu Asp Phe Leu Lys Leu Asn Cys Ser Glu Cys Lys Asp Ile Asp Phe 370 375 380Lys Pro Phe Phe Glu Phe Glu Tyr Gly Lys Tyr Glu Glu Lys Cys Met385 390 395 400Cys Gln Ser Tyr Ile Asp Leu Lys Ile Gln Phe Lys Asn Asn Asp Ile 405 410 415Cys Ser Phe Asn Ala Gln Thr Asp Thr Val Ser Ser Asp Lys Arg Phe 420 425 430Cys Leu Glu Lys Lys Glu Phe Lys Pro Trp Lys Cys Asp Lys Asn Ser 435 440 445Phe Glu Thr Val His His Lys Gly Val Cys Val Ser Pro Arg Arg Gln 450 455 460Gly Phe Cys Leu Gly Asn Leu Asn Tyr Leu Leu Asn Asp Asp Ile Tyr465 470 475 480Asn Val His Asn Ser Gln Leu Leu Ile Glu Ile Ile Met Ala Ser Lys 485 490 495Gln Glu Gly Lys Leu Leu Trp Lys Lys His Gly Thr Ile Leu Asp Asn 500 505 510Gln Asn Ala Cys Lys Tyr Ile Asn Asp Ser Tyr Val Asp Tyr Lys Asp 515 520 525Ile Val Ile Gly Asn Asp Leu Trp Asn Asp Asn Asn Ser Ile Lys Val 530 535 540Gln Asn Asn Leu Asn Leu Ile Phe Glu Arg Asn Phe Gly Tyr Lys Val545 550 555 560Gly Arg Asn Lys Leu Phe Lys Thr Ile Lys Glu Leu Lys Asn Val Trp 565 570 575Trp Ile Leu Asn Arg Asn Lys Val Trp Glu Ser Met Arg Cys Gly Ile 580 585 590Asp Glu Val Asp Gln Arg Arg Lys Thr Cys Glu Arg Ile Asp Glu Leu 595 600 605Glu Asn Met Pro Gln Phe Phe Arg Trp Phe Ser Gln Trp Ala His Phe 610 615 620Phe Cys Lys Glu Lys Glu Tyr Trp Glu Leu Lys Leu Asn Asp Lys Cys625 630 635 640Thr Gly Asn Asn Gly Lys Ser Leu Cys Gln Asp Lys Thr Cys Gln Asn 645 650 655Val Cys Thr Asn Met Asn Tyr Trp Thr Tyr Thr Arg Lys Leu Ala Tyr 660 665 670Glu Ile Gln Ser Val Lys Tyr Asp Lys Asp Arg Lys Leu Phe Ser Leu 675 680 685Ala Lys Asp Lys Asn Val Thr Thr Phe Leu Lys Glu Asn Ala Lys Asn 690 695 700Cys Ser Asn Ile Asp Phe Thr Lys Ile Phe Asp Gln Leu Asp Lys Leu705 710 715 720Phe Lys Glu Arg Cys Ser Cys Met Asp Thr Gln Val Leu Glu Val Lys 725 730 735Asn Lys Glu Met Leu Ser Ile Asp Ser Asn Ser Glu Asp Ala Thr Asp 740 745 750Ile Ser Glu Lys Asn Gly Glu Glu Glu Leu Tyr Val Asn His Asn Ser 755 760 765Val Ser Val Ala Ser Gly Asn Lys Glu Ile Glu Lys Ser Lys Asp Glu 770 775 780Lys Gln Pro Glu Lys Glu Ala Lys Gln Thr Asn Gly Thr Leu Thr Val785 790 795 800Arg Thr Asp Lys Asp Ser Asp Arg Asn Lys Gly Lys Asp Thr Ala Thr 805 810 815Asp Thr Lys Asn Ser Pro Glu Asn Leu Lys Val Gln Glu His Gly Thr 820 825 830Asn Gly Glu Thr Ile Lys Glu Glu Pro Pro Lys Leu Pro Glu Ser Ser 835 840 845Glu Thr Leu Gln Ser Gln Glu Gln Leu Glu Ala Glu Ala Gln Lys Gln 850 855 860Lys Gln Glu Glu Glu Pro Lys Lys Lys Gln Glu Glu Glu Pro Lys Lys865 870 875 880Lys Gln Glu Glu Glu Gln Lys Arg Glu Gln Glu Gln Lys Gln Glu Gln 885 890 895Glu Glu Glu Glu Gln Lys Gln Glu Glu Glu Gln Gln Ile Gln Asp Gln 900 905 910Ser Gln Ser Gly Leu Asp Gln Ser Ser Lys Val Gly Val Ala Ser Glu 915 920 925Gln Asn Glu Ile Ser Ser Gly Gln Glu Gln Asn Val Lys Ser Ser Ser 930 935 940Pro Glu Val Val Pro Gln Glu Thr Thr Ser Glu Asn Gly Ser Ser Gln945 950 955 960Asp Thr Lys Ile Ser Ser Thr Glu Pro Asn Glu Asn Ser Val Val Asp 965 970 975Arg Ala Thr Asp Ser Met Asn Leu Asp Pro Glu Lys Val His Asn Glu 980 985 990Asn Met Ser Asp Pro Asn Thr Asn Thr Glu Pro Asp Ala Ser Leu Lys 995 1000 1005Asp Asp Lys Lys Glu Val Asp Asp Ala Lys Lys Glu Leu Gln Ser Thr 1010 1015 1020Val Ser Arg Ile Glu Ser Asn Glu Gln Asp Val Gln Ser Thr Pro Pro1025 1030 1035 1040Glu Asp Thr Pro Thr Val Glu Gly Lys Val Gly Asp Lys Ala Glu Met 1045 1050 1055Leu Thr Ser Pro His Ala Thr Asp Asn Ser Glu Ser Glu Ser Gly Leu 1060 1065 1070Asn Pro Thr Asp Asp Ile

Lys Thr Thr Asp Gly Val Val Lys Glu Gln 1075 1080 1085Glu Ile Leu Gly Gly Gly Glu Ser Ala Thr Glu Thr Ser Lys Ser Asn 1090 1095 1100Leu Glu Lys Pro Lys Asp Val Glu Pro Ser His Glu Ile Ser Glu Pro1105 1110 1115 1120Val Leu Ser Gly Thr Thr Gly Lys Glu Glu Ser Glu Leu Leu Lys Ser 1125 1130 1135Lys Ser Ile Glu Thr Lys Gly Glu Thr Asp Pro Arg Ser Asn Asp Gln 1140 1145 1150Glu Asp Ala Thr Asp Asp Val Val Glu Asn Ser Arg Asp Asp Asn Asn 1155 1160 1165Ser Leu Ser Asn Ser Val Asp Asn Gln Ser Asn Val Leu Asn Arg Glu 1170 1175 1180Asp Pro Ile Ala Ser Glu Thr Glu Val Val Ser Glu Pro Glu Asp Ser1185 1190 1195 1200Ser Arg Ile Ile Thr Thr Glu Val Pro Ser Thr Thr Val Lys Pro Pro 1205 1210 1215Asp Glu Lys Arg Ser Glu Glu Val Gly Glu Lys Glu Ala Lys Glu Ile 1220 1225 1230Lys Val Glu Pro Val Val Pro Arg Ala Ile Gly Glu Pro Met Glu Asn 1235 1240 1245Ser Val Ser Val Gln Ser Pro Pro Asn Val Glu Asp Val Glu Lys Glu 1250 1255 1260Thr Leu Ile Ser Glu Asn Asn Gly Leu His Asn Asp Thr His Arg Gly1265 1270 1275 1280Asn Ile Ser Glu Lys Asp Leu Ile Asp Ile His Leu Leu Arg Asn Glu 1285 1290 1295Ala Gly Ser Thr Ile Leu Asp Asp Ser Arg Arg Asn Gly Glu Met Thr 1300 1305 1310Glu Gly Ser Glu Ser Asp Val Gly Glu Leu Gln Glu His Asn Phe Ser 1315 1320 1325Thr Gln Gln Lys Asp Glu Lys Asp Phe Asp Gln Ile Ala Ser Asp Arg 1330 1335 1340Glu Lys Glu Glu Ile Gln Lys Leu Leu Asn Ile Gly His Glu Glu Asp1345 1350 1355 1360Glu Asp Val Leu Lys Met Asp Arg Thr Glu Asp Ser Met Ser Asp Gly 1365 1370 1375Val Asn Ser His Leu Tyr Tyr Asn Asn Leu Ser Ser Glu Glu Lys Met 1380 1385 1390Glu Gln Tyr Asn Asn Arg Asp Ala Ser Lys Asp Arg Glu Glu Ile Leu 1395 1400 1405Asn Arg Ser Asn Thr Asn Thr Cys Ser Asn Glu His Ser Leu Lys Tyr 1410 1415 1420Cys Gln Tyr Met Glu Arg Asn Lys Asp Leu Leu Glu Thr Cys Ser Glu1425 1430 1435 1440Asp Lys Arg Leu His Leu Cys Cys Glu Ile Ser Asp Tyr Cys Leu Lys 1445 1450 1455Phe Phe Asn Pro Lys Ser Ile Glu Tyr Phe Asp Cys Thr Gln Lys Glu 1460 1465 1470Phe Asp Asp Pro Thr Tyr Asn Cys Phe Arg Lys Gln Arg Phe Thr Ser 1475 1480 1485Met His Tyr Ile Ala Gly Gly Gly Ile Ile Ala Leu Leu Leu Phe Ile 1490 1495 1500Leu Gly Ser Ala Ser Tyr Arg Lys Asn Leu Asp Asp Glu Lys Gly Phe1505 1510 1515 1520Tyr Asp Ser Asn Leu Asn Asp Ser Ala Phe Glu Tyr Asn Asn Asn Lys 1525 1530 1535Tyr Asn Lys Leu Pro Tyr Met Phe Asp Gln Gln Ile Asn Val Val Asn 1540 1545 1550Ser Asp Leu Tyr Ser Glu Gly Ile Tyr Asp Asp Thr Thr Thr Phe 1555 1560 1565191210PRTPlasmodium falciparum 19Met Lys Gly Tyr Phe Asn Ile Tyr Phe Leu Ile Pro Leu Ile Phe Leu1 5 10 15Tyr Asn Val Ile Arg Ile Asn Glu Ser Ile Ile Gly Arg Thr Leu Tyr 20 25 30Asn Arg Gln Asp Glu Ser Ser Asp Ile Ser Arg Val Asn Ser Pro Glu 35 40 45Leu Asn Asn Asn His Lys Thr Asn Ile Tyr Asp Ser Asp Tyr Glu Asp 50 55 60Val Asn Asn Lys Leu Ile Asn Ser Phe Val Glu Asn Lys Ser Val Lys65 70 75 80Lys Lys Arg Ser Leu Ser Phe Ile Asn Asn Lys Thr Lys Ser Tyr Asp 85 90 95Ile Ile Pro Pro Ser Tyr Ser Tyr Arg Asn Asp Lys Phe Asn Ser Leu 100 105 110Ser Glu Asn Glu Asp Asn Ser Gly Asn Thr Asn Ser Asn Asn Phe Ala 115 120 125Asn Thr Ser Glu Ile Ser Ile Gly Lys Asp Asn Lys Gln Tyr Thr Phe 130 135 140Ile Gln Lys Arg Thr His Leu Phe Ala Cys Gly Ile Lys Arg Lys Ser145 150 155 160Ile Lys Trp Ile Cys Arg Glu Asn Ser Glu Lys Ile Thr Val Cys Val 165 170 175Pro Asp Arg Lys Ile Gln Leu Cys Ile Ala Asn Phe Leu Asn Ser Arg 180 185 190Leu Glu Thr Met Glu Lys Phe Lys Glu Ile Phe Leu Ile Ser Val Asn 195 200 205Thr Glu Ala Lys Leu Leu Tyr Asn Lys Asn Glu Gly Lys Asp Pro Ser 210 215 220Ile Phe Cys Asn Glu Leu Arg Asn Ser Phe Ser Asp Phe Arg Asn Ser225 230 235 240Phe Ile Gly Asp Asp Met Asp Phe Gly Gly Asn Thr Asp Arg Val Lys 245 250 255Gly Tyr Ile Asn Lys Lys Phe Ser Asp Tyr Tyr Lys Glu Lys Asn Val 260 265 270Glu Lys Leu Asn Asn Ile Lys Lys Glu Trp Trp Glu Lys Asn Lys Ala 275 280 285Asn Leu Trp Asn His Met Ile Val Asn His Lys Gly Asn Ile Ser Lys 290 295 300Glu Cys Ala Ile Ile Pro Ala Glu Glu Pro Gln Ile Asn Leu Trp Ile305 310 315 320Lys Glu Trp Asn Glu Asn Phe Leu Met Glu Lys Lys Arg Leu Phe Leu 325 330 335Asn Ile Lys Asp Lys Cys Val Glu Asn Lys Lys Tyr Glu Ala Cys Phe 340 345 350Gly Gly Cys Arg Leu Pro Cys Ser Ser Tyr Thr Ser Phe Met Lys Lys 355 360 365Ser Lys Thr Gln Met Glu Val Leu Thr Asn Leu Tyr Lys Lys Lys Asn 370 375 380Ser Gly Val Asp Lys Asn Asn Phe Leu Asn Asp Leu Phe Lys Lys Asn385 390 395 400Asn Lys Asn Asp Leu Asp Asp Phe Phe Lys Asn Glu Lys Glu Tyr Asp 405 410 415Asp Leu Cys Asp Cys Arg Tyr Thr Ala Thr Ile Ile Lys Ser Phe Leu 420 425 430Asn Gly Pro Ala Lys Asn Asp Val Asp Ile Ala Ser Gln Ile Asn Val 435 440 445Asn Asp Leu Arg Gly Phe Gly Cys Asn Tyr Lys Ser Asn Asn Glu Lys 450 455 460Ser Trp Asn Cys Thr Gly Thr Phe Thr Asn Lys Phe Pro Gly Thr Cys465 470 475 480Glu Pro Pro Arg Arg Gln Thr Leu Cys Leu Gly Arg Thr Tyr Leu Leu 485 490 495His Arg Gly His Glu Glu Asp Tyr Lys Glu His Leu Leu Gly Ala Ser 500 505 510Ile Tyr Glu Ala Gln Leu Leu Lys Tyr Lys Tyr Lys Glu Lys Asp Glu 515 520 525Asn Ala Leu Cys Ser Ile Ile Gln Asn Ser Tyr Ala Asp Leu Ala Asp 530 535 540Ile Ile Lys Gly Ser Asp Ile Ile Lys Asp Tyr Tyr Gly Lys Lys Met545 550 555 560Glu Glu Asn Leu Asn Lys Val Asn Lys Asp Lys Lys Arg Asn Glu Glu 565 570 575Ser Leu Lys Ile Phe Arg Glu Lys Trp Trp Asp Glu Asn Lys Glu Asn 580 585 590Val Trp Lys Val Met Ser Ala Val Leu Lys Asn Lys Glu Thr Cys Lys 595 600 605Asp Tyr Asp Lys Phe Gln Lys Ile Pro Gln Phe Leu Arg Trp Phe Lys 610 615 620Glu Trp Gly Asp Asp Phe Cys Glu Lys Arg Lys Glu Lys Ile Tyr Ser625 630 635 640Phe Glu Ser Phe Lys Val Glu Cys Lys Lys Lys Asp Cys Asp Glu Asn 645 650 655Thr Cys Lys Asn Lys Cys Ser Glu Tyr Lys Lys Trp Ile Asp Leu Lys 660 665 670Lys Ser Glu Tyr Glu Lys Gln Val Asp Lys Tyr Thr Lys Asp Lys Asn 675 680 685Lys Lys Met Tyr Asp Asn Ile Asp Glu Val Lys Asn Lys Glu Ala Asn 690 695 700Val Tyr Leu Lys Glu Lys Ser Lys Glu Cys Lys Asp Val Asn Phe Asp705 710 715 720Asp Lys Ile Phe Asn Glu Ser Pro Asn Glu Tyr Glu Asp Met Cys Lys 725 730 735Lys Cys Asp Glu Ile Lys Tyr Leu Asn Glu Ile Lys Tyr Pro Lys Thr 740 745 750Lys His Asp Ile Tyr Asp Ile Asp Thr Phe Ser Asp Thr Phe Gly Asp 755 760 765Gly Thr Pro Ile Ser Ile Asn Ala Asn Ile Asn Glu Gln Gln Ser Gly 770 775 780Lys Asp Thr Ser Asn Thr Gly Asn Ser Glu Thr Ser Asp Ser Pro Val785 790 795 800Ser His Glu Pro Glu Ser Asp Ala Ala Ile Asn Val Glu Lys Leu Ser 805 810 815Gly Asp Glu Ser Ser Ser Glu Thr Arg Gly Ile Leu Asp Ile Asn Asp 820 825 830Pro Ser Val Thr Asn Asn Val Asn Glu Val His Asp Ala Ser Asn Thr 835 840 845Gln Gly Ser Val Ser Asn Thr Ser Asp Ile Thr Asn Gly His Ser Glu 850 855 860Ser Ser Leu Asn Arg Thr Thr Asn Ala Gln Asp Ile Lys Ile Gly Arg865 870 875 880Ser Gly Asn Glu Gln Ser Asp Asn Gln Glu Asn Ser Ser His Ser Ser 885 890 895Asp Asn Ser Gly Ser Leu Thr Ile Gly Gln Val Pro Ser Glu Asp Asn 900 905 910Thr Gln Asn Thr Tyr Asp Ser Gln Asn Pro His Arg Asp Thr Pro Asn 915 920 925Ala Leu Ala Ser Leu Pro Ser Asp Asp Lys Ile Asn Glu Ile Glu Gly 930 935 940Phe Asp Ser Ser Arg Asp Ser Glu Asn Gly Arg Gly Asp Thr Thr Ser945 950 955 960Asn Thr His Asp Val Arg Arg Thr Asn Ile Val Ser Glu Arg Arg Val 965 970 975Asn Ser His Asp Phe Ile Arg Asn Gly Met Ala Asn Asn Asn Ala His 980 985 990His Gln Tyr Ile Thr Gln Ile Glu Asn Asn Gly Ile Ile Arg Gly Gln 995 1000 1005Glu Glu Ser Ala Gly Asn Ser Val Asn Tyr Lys Asp Asn Pro Lys Arg 1010 1015 1020Ser Asn Phe Ser Ser Glu Asn Asp His Lys Lys Asn Ile Gln Glu Tyr1025 1030 1035 1040Asn Ser Arg Asp Thr Lys Arg Val Arg Glu Glu Ile Ile Lys Leu Ser 1045 1050 1055Lys Gln Asn Lys Cys Asn Asn Glu Tyr Ser Met Glu Tyr Cys Thr Tyr 1060 1065 1070Ser Asp Glu Arg Asn Ser Ser Pro Gly Pro Cys Ser Arg Glu Glu Arg 1075 1080 1085Lys Lys Leu Cys Cys Gln Ile Ser Asp Tyr Cys Leu Lys Tyr Phe Asn 1090 1095 1100Phe Tyr Ser Ile Glu Tyr Tyr Asn Cys Ile Lys Ser Glu Ile Lys Ser1105 1110 1115 1120Pro Glu Tyr Lys Cys Phe Lys Ser Glu Gly Gln Ser Ser Ile Pro Tyr 1125 1130 1135Phe Ala Ala Gly Gly Ile Leu Val Val Ile Val Leu Leu Leu Ser Ser 1140 1145 1150Ala Ser Arg Met Gly Lys Ser Asn Glu Glu Tyr Asp Ile Gly Glu Ser 1155 1160 1165Asn Ile Glu Ala Thr Phe Glu Glu Asn Asn Tyr Leu Asn Lys Leu Ser 1170 1175 1180Arg Ile Phe Asn Gln Glu Val Gln Glu Thr Asn Ile Ser Asp Tyr Ser1185 1190 1195 1200Glu Tyr Asn Tyr Asn Glu Lys Asn Met Tyr 1205 1210201581DNAPlasmodium falciparum 20atgataagaa taaaaaaaaa attaattttg accattatat atattcatct gtttatatta 60aatagattaa gttttgaaaa tgcaataaaa aaaacgaaga atcaagaaaa taatctgacg 120ttactaccaa taaagagcac tgaagaagaa aaagatgata taaaaaatgg aaaggatata 180aaaaaagaaa ttgataatga taaagagaat ataaaaacaa ataatgctaa agatcattca 240acatatataa aatcatattt gaatacaaat gtaaatgatg gtttaaaata tttgtttatt 300ccttctcata attcttttat aaaaaaatat tctgtattta atcaaataaa tgatggcatg 360ttattaaatg aaaaaaatga tgtgaaaaat aatgaagact ataaaaatgt ggattataaa 420aatgttaatt ttttacaata tcattttaaa gagttatcaa attataacat tgcaaattct 480attgatattt tacaagaaaa agaaggacat ttggattttg ttataatacc tcattatact 540tttttagatt attataaaca tttatcttat aattctatat atcataagtc ctctacatat 600ggaaagtgta tagctgtaga tgcttttatt aagaaaataa atgaaacata tgacaaagtg 660aaaagtaaat gtaatgatat aaagaatgat ttaattgcaa ctataaaaaa attagagcat 720ccttatgata taaataataa gaatgatgat tcctatagat atgatatatc tgaagaaatc 780gatgataaat ctgaagagac agatgatgaa accgaagagg tagaagatag tatacaagat 840acagatagta atcatactcc ttcaaataaa aaaaaaaatg atcttatgaa tagaacgttt 900aaaaagatga tggatgaata taatacaaaa aaaaaaaaat taattaaatg tataaaaaac 960catgagaatg attttaataa aatatgtatg gatatgaaaa attatggtac aaaccttttt 1020gaacaacttt catgttacaa taataatttc tgtaatacaa acggaataag atatcattat 1080gatgaatata ttcataaatt aatattatct gttaaatcaa aaaacttaaa taaagaccta 1140tcagatatga caaatatttt acaacaaagt gaattattat taaccaattt aaataaaaaa 1200atgggttcct atatatatat tgatacaata aaatttatac ataaagaaat gaaacatatt 1260tttaacagaa ttgaatatca tacaaaaata ataaacgata aaactaaaat aattcaagac 1320aaaattaaat taaatatatg gagaacattt caaaaagatg aattattaaa aagaatttta 1380gacatgtcaa atgaatattc tttatttatt actagtgatc atttaagaca aatgttatat 1440aatacattct attcaaaaga aaaacattta aataatatat ttcatcattt aatttatgta 1500ctacaaatga agttcaatga tgtcccaatt aaaatggaat attttcaaac atataaaaaa 1560aataaaccac ttacacaatg a 1581219540DNAPlasmodium falciparum 21atgaagagat cgcttataaa tttagaaaat gatcttttta gattagaacc tatatcttat 60attcaaagat attataagaa gaatataaac agatctgata tttttcataa taaaaaagaa 120agaggttcca aagtatattc aaatgtgtct tcattccatt cttttattca agagggtaaa 180gaagaagttg aggttttttc tatatggggt agtaatagcg ttttagatca tatagatgtt 240cttagggata atggaactgt cgttttttct gttcaaccat attaccttga tatatatacg 300tgtaaagaag ccatattatt tactacatca ttttacaagg atcttgataa aagttcaatt 360acaaaaatta atgaagatat tgaaaaattt aacgaagaaa taatcaagaa tgaagaacaa 420tgtttagttg gtgggaaaac agattttgat aatttactta tagttttaga aaatgcggaa 480aaagcaaatg ttagaaaaac attatttgat aatacattta atgattataa aaataagaaa 540tctagttttt acaattgttt gaaaaataaa aaaaatgatt atgataagaa aataaagaat 600ataaagaatg agattacaaa attgttaaaa aatattgaaa gtacaggaaa tatgtgtaaa 660acggaatcat atgttatgaa taataattta tatctattaa gagtgaatga agttaaaagt 720acacctattg atttatactt aaatcgagca aaagagctat tagaatcaag tagcaaatta 780gttaatccta taaaaatgaa attaggtgat aataagaaca tgtactctat tggatatata 840catgacgaaa ttaaagatat tataaaaaga tataattttc atttgaaaca tatagaaaaa 900ggaaaagaat atataaaaag gataacacaa gcaaataata ttgcagacaa aatgaagaaa 960gatgaactta taaaaaaaat ttttgaatcc tcaaaacatt ttgctagttt taaatatagc 1020aatgaaatga taagcaaatt agattcgtta tttataaaaa atgaagaaat acttaataat 1080ttattcaata atatatttaa tatattcaag aaaaaatatg aaacatatgt agatatgaaa 1140acaattgaat ctaaatatac aacagtaatg actctatcag aacatttatt agaatatgca 1200atggatgttt taaaagctaa ccctcaaaaa cctattgatc caaaagcaaa tctggattca 1260gaagtagtaa aattacaaat aaaaataaat gagaaatcaa atgaattaga taatgctata 1320agtcaagtaa aaacactaat aataataatg aaatcatttt atgatattat tatatctgaa 1380aaagcctcta tggatgaaat ggaaaaaaag gaattatcct taaataatta tattgaaaaa 1440acagattata tattacaaac gtataatatt tttaagtcta aaagtaatat tataaataat 1500aatagtaaaa atattagttc taaatatata actatagaag ggttaaaaaa tgatattgat 1560gaattaaata gtcttatatc atattttaag gattcacaag aaacattaat aaaagatgat 1620gaattaaaaa aaaacatgaa aacggattat cttaataacg tgaaatatat agaagaaaat 1680gttactcata taaatgaaat tatattatta aaagattcta taactcaacg aatagcagat 1740attgatgaat taaatagttt aaatttaata aatataaatg attttataaa tgaaaagaat 1800atatcacaag agaaagtatc atataatctt aataaattat ataaaggaag ttttgaagaa 1860ttagaatctg aactatctca ttttttagac acaaaatatt tgtttcatga aaaaaaaagt 1920gtaaatgaac ttcaaacaat tttaaataca tcaaataatg aatgtgctaa attaaatttt 1980atgaaatctg ataataataa taataataat aatagtaata taattaactt gttaaaaact 2040gaattaagtc atctattaag tcttaaagaa aatataataa aaaaactttt aaatcatata 2100gaacaaaata ttcaaaactc atcaaataag tatactatta catatactga tattaataat 2160agaatggaag attataaaga agaaatcgaa agtttagaag tatataaaca taccattgga 2220aatatacaaa aagaatatat attacattta tatgagaatg ataaaaatgc tttagctgta 2280cataatacat caatgcaaat attacaatat aaagatgcta tacaaaatat aaaaaataaa 2340atttctgatg atataaaaat tttaaagaaa tataaagaaa tgaatcaaga tttattaaat 2400tattatgaaa ttctagataa aaaattaaaa gataatacat atatcaaaga aatgcatact 2460gcttctttag ttcaaataac tcaatatatt ccttatgaag ataaaacaat aagtgaactt 2520gagcaagaat ttaataataa taatcaaaaa cttgataata tattacaaga tatcaatgca 2580atgaatttaa atataaatat tctccaaacc ttaaatattg gtataaatgc atgtaataca 2640aataataaaa atgtagaaca cttacttaac aagaaaattg aattaaaaaa tatattaaat 2700gatcaaatga aaattataaa aaatgatgat ataattcaag ataatgaaaa agaaaacttt 2760tcaaatgttt taaaaaaaga agaggaaaaa ttagaaaaag aattagatga tatcaaattt 2820aataatttga aaatggacat tcataaattg ttgaattcgt atgaccatac aaagcaaaat 2880atagaaagca atcttaaaat aaatttagat tctttcgaaa aggaaaaaga tagttgggtt 2940cattttaaaa gtactataga tagtttatat

gtggaatata acatatgtaa tcaaaagact 3000cataatacta tcaaacaaca aaaaaatgat atcatagaac ttatttataa acgtataaaa 3060gatataaatc aagaaataat cgaaaaggta gataattatt attccctgtc agataaagcc 3120ttaactaaac ttaaatctat tcattttaat attgataagg aaaaatataa aaatcccaaa 3180agtcaagaaa atattaaatt attagaagat agagttatga tacttgagaa aaagattaag 3240gaagataaag atgctttaat acaaattaag aatttatcac atgatcattt tgtaaatgct 3300gataatgaga aaaaaaagca gaaggagaag gaggaggacg acgaacaaac acactatagt 3360aaaaaaagaa aagtaatggg agatatatat aaggatatta aaaaaaacct agatgagtta 3420aataataaaa atttgataga tattacttta aatgaagcaa ataaaataga atcagaatat 3480gaaaaaatat taattgatga tatttgtgaa caaattacaa atgaagcaaa aaaaagtgat 3540actattaagg aaaaaatcga atcatataaa aaagatattg attatgtaga tgtggacgtt 3600tccaaaacga ggaacgatca tcatttgaat ggagataaaa tacatgattc ttttttttat 3660gaagatacat taaattataa agcatatttt gataaattaa aagatttata tgaaaatata 3720aacaagttaa caaatgaatc aaatggatta aaaagtgatg ctcataataa caacacacaa 3780gttgataaac taaaagaaat taatttacaa gtattcagca atttaggaaa tataattaaa 3840tatgttgaaa aacttgagaa tacattacat gaacttaaag atatgtacga atttctagaa 3900acgatcgata ttaataaaat attaaaaagt attcataata gcatgaagaa atcagaagaa 3960tatagtaatg aaacgaaaaa aatatttgaa caatcagtaa atataactaa tcaatttata 4020gaagatgttg aaatattgaa aacgtctatt aacccaaact atgaaagctt aaatgatgat 4080caaattgatg ataatataaa atcacttgtt ctaaagaaag aggaaatatc cgaaaaaaga 4140aaacaagtga ataaatacat aacagatatt gaatctaata aagaacaatc agatttacat 4200ttacgatatg catctagaag tatatatgtt attgatcttt ttataaaaca tgaaataata 4260aatcctagcg atggaaaaaa ttttgatatt ataaaggtta aagaaatgat aaataaaacc 4320aaacaagttt caaatgaagc tatggaatat gctaataaaa tggatgaaaa aaataaggac 4380attataaaaa tagaaaatga actttataat ttaattaata ataacatccg ttcattaaaa 4440ggggtaaaat atgaaaaagt taggaaacaa gcaagaaatg caattgatga tataaataat 4500atacattcta atattaaaac gattttaacc aaatctaaag aacgattaga tgagattaag 4560aaacaaccta acattaaaag agaaggtgat gttttaaata atgataaaac caaaatagct 4620tatattacaa tacaaataaa taacggaaga atagaatcta atttattaaa tatattaaat 4680atgaaacata acatagatac tatcttgaat aaagctatgg attatatgaa tgatgtatca 4740aaatctgacc agattgttat taatatagat tctttgaata tgaacgatat atataataag 4800gataaagatc ttttaataaa tattttaaaa gaaaaacaga atatggaggc agaatataaa 4860aaaatgaatg aaatgtataa ttacgttaat gaaacagaaa aagaaataat aaaacataaa 4920aaaaattatg aaataagaat tatggaacat ataaaaaaag aaacaaatga aaaaaaaaaa 4980aaatttatgg aatctaataa caaatcatta actactttaa tggattcatt cagatctatg 5040ttttataatg aatatataaa tgattataat ataaatgaaa attttgaaaa acatcaaaat 5100atattgaatg aaatatataa tggatttaat gaatcatata atattattaa tacaaaaatg 5160actgaaatta taaatgataa tttagattat aatgaaataa aagaaattaa agaagtagca 5220caaacagaat atgataaact taataaaaaa gttgatgaat taaaaaatta tttgaataat 5280attaaagaac aagaaggaca tcgattaatt gattatataa aagaaaaaat atttaactta 5340tatataaaat gttcagaaca acaaaatata atagatgatt cttataatta tattacagtt 5400aaaaaacagt atattaaaac tattgaagat gtgaaatttt tattagattc attgaacaca 5460atagaagaaa aaaataaatc agtagcaaat ctagaaattt gtactaataa agaagatata 5520aaaaatttac ttaaacatgt tataaagttg gcaaattttt caggtattat tgtaatgtct 5580gatacaaata cggaaataac tccagaaaat cctttagaag ataatgattt attaaattta 5640caattatatt ttgaaagaaa acatgaaata acatcaacat tggaaaatga ttctgattta 5700gagttagatc atttaggtag taattcggat gaatctatag ataatttaaa ggtttataat 5760gatattatag aattacacac atattcaaca caaattctta aatatttaga taatattcaa 5820aaacttaaag gagattgcaa tgatttagta aaggattgta aagaattacg tgaattgtct 5880acggcattat atgatttaaa aatacaaatt actagtgtaa ttaatagaga aaatgatatt 5940tcaaataata ttgatattgt atctaataaa ttaaatgaaa tagatgctat acaatataat 6000tttgaaaaat ataaagaaat ttttgataat gtagaagaat ataaaacatt agatgataca 6060aaaaatgcat atattgtaaa aaaggctgaa attttaaaaa atgtagatat aaataaaaca 6120aaagaagatt tagatatata ttttaatgac ttagacgaat tagaaaaatc tcttacatta 6180tcatctaatg aaatggaaat taaaacaata gtacagaact catataattc cttttctgat 6240attaataaga acattaatga tattgataaa gaaatgaaaa cactgatccc tatgcttgat 6300gaattattaa atgaaggaca taatattgat atatcattat ataattttat aattagaaat 6360attcagatta aaataggtaa tgatataaaa aatataagag aacaggaaaa tgatactaat 6420atatgttttg agtatattca aaataattat aattttataa agagtgatat aagtatcttc 6480aataaatatg atgatcatat aaaagtagat aattatatat ctaataatat tgatgttgtc 6540aataaacata atagtttatt aagtgaacat gttataaatg ctacaaatat tatagagaat 6600attatgacaa gtattgtcga aataaatgaa gatacagaaa tgaattcttt agaagagaca 6660caagacaaat tattagaact atatgaaaat tttaagaaag aaaaaaatat tataaataat 6720aattataaaa tagtacattt taataaatta aaagaaatag aaaatagttt agagacatat 6780aattcaatat caacaaactt taataaaata aatgaaacac aaaatataga tattttaaaa 6840aatgaattta ataatatcaa aacaaaaatt aatgataaag taaaagaatt agttcatgtt 6900gatagtacat taacacttga atcaattcaa acgtttaata atttatatgg tgacttgatg 6960tctaatatac aagatgtata taaatatgaa gatattaata atgttgaatt gaaaaaggtg 7020aaattatata tagaaaatat tacaaattta ttaggaagaa taaacacatt cataaaggag 7080ttagacaaat atcaggatga aaataatggt atagataagt atatagaaat caataaggaa 7140aataatagtt atataataaa attgaaagaa aaagccaata atctaaagga aaatttctca 7200aaattattac aaaatataaa aagaaatgaa actgaattat ataatataaa taacataaag 7260gatgatatta tgaatacggg gaaatctgta aataatataa aacaaaaatt ttctagtaat 7320ttgccactaa aagaaaaatt atttcaaatg gaagagatgt tacttaatat aaataatatt 7380atgaatgaaa cgaaaagaat atcaaacacg gatgcatata ctaatataac tctccaggat 7440attgaaaata ataaaaataa agaaaataat aatatgaata ttgaaacaat tgataaatta 7500atagatcata taaaaataca taatgaaaaa atacaagcag aaatattaat aattgatgat 7560gccaaaagaa aagtaaagga aataacagat aatattaaca aggcttttaa tgaaattaca 7620gaaaattata ataatgaaaa taatggggta attaaatctg caaaaaatat tgtcgataaa 7680gctacttatt taaataatga attagataaa tttttattga aattgaatga attattaagt 7740cataataata atgatataaa ggatcttggt gatgaaaaat taatattaaa agaagaagaa 7800gaaagaaaag aaagagaaag attggaaaaa gcgaaacaag aagaagaaag aaaagagaga 7860gaaagaatag aaaaagaaaa acaagagaaa gaaagactgg aaagagagaa acaagaacaa 7920ctaaaaaaag aagcattaaa aaaacaagag caagaaagac aagaacaaca acaaaaagaa 7980gaagcattaa aaagacaaga acaagaacga ctacaaaaag aagaagaatt aaaaagacaa 8040gagcaagaaa ggctggaaag agagaaacaa gaacaactac aaaaagaaga agaattaaga 8100aaaaaagagc aggaaaaaca acaacaaaga aatatccaag aattagaaga gcaaaaaaag 8160cctgaaataa taaatgaagc attggtaaag ggggataaaa tactagaagg aagtgatcag 8220agaaatatgg aattaagcaa acctaacgtt agtatggata atactaataa tagtccaatt 8280agtaacagtg aaattacaga aagcgatgat attgataaca gtgaaaatat acatactagt 8340catatgagtg acatcgaaag tacacaaact agtcatagaa gtaacaccca tgggcaacaa 8400atcagtgata ttgttgaaga tcaaattaca catcctagta atattggagg agaaaaaatt 8460actcataatg atgaaatttc aatcactggt gaaagaaata acattagcga tgttaatgat 8520tatagtgaaa gtagcaacat atttgaaaat ggtgacagta ctataaatac cagtacaaga 8580aacacgtcta gtacacatga tgaatcccat ataagtccta tcagcaatgc gtatgatcat 8640gttgtttcag ataataaaaa aagtatggat gaaaacataa aagataaatt aaagatagat 8700gaaagtataa ctacagatga acaaataaga ttagatgata attctaatat tgttagaatt 8760gatagtactg accaacgtga tgctagtagt catggtagta gtaataggga tgatgatgaa 8820ataagtcatg ttggtagcga cattcatatg gatagtgttg atattcatga tagtattgac 8880actgatgaaa atgctgatca cagacataat gttaactctg ttgatagtct tagttctagt 8940gattacactg atacacagaa agactttagt agtattatta aagatggggg aaataaagaa 9000ggacatgctg agaatgaatc taaagaatat gaatcccaaa cagaacaaac acatgaagaa 9060ggaattatga atccaaataa atattcaatt agtgaagttg atggtattaa attaaatgaa 9120gaagctaaac ataaaattac agaaaaactg gtagatatct atccttctac atatagaaca 9180cttgatgaac ctatggaaac acatggtcca aatgaaaaat ttcatatgtt tggtagtcca 9240tatgtaacag aagaagatta cacggaaaaa catgattatg ataagcatga agatttcaat 9300aatgaaaggt attcaaacca taacaaaatg gatgatttcg tatataatgc tggaggagtt 9360gtttgttgtg tattattttt tgcaagtatt actttctttt ctatggacag atcaaataag 9420gatgaatgcg attttgatat gtgtgaagaa gtaaataata atgatcactt atcgaattat 9480gctgataaag aagaaattat tgaaattgtg tttgatgaaa atgaagaaaa atatttttaa 9540225151DNAPlasmodium falciparum 22atgaataaga atatattgtg gataactttt ttttattttt tattttttct cttggatatg 60taccaaggaa atgacgcaat tccctcaaaa gaaaaaaaaa acgatccaga agcagattct 120aagaactcac agaatcaaca tgatataaat aaaacacacc atacgaacaa taattatgat 180ctgaatatta aggataaaga tgagaaaaaa agaaaaaatg ataatttaat caataattat 240gattactctc ttttaaagtt atcttataat aagaatcaag atatatataa gaatatacaa 300aatggccaaa agcttaaaac agacataata ttaaactcat ttgttcaaat taattcatca 360aacatattaa tggatgaaat agaaaattat gtgaaaaaat atacggaatc gaatcgtatt 420atgtacttac aatttaaata tatatatcta caatccttaa atataacagt atcttttgta 480cctccgaatt caccatttcg aagttattat gacaaaaatt taaataaaga tataaatgaa 540acttgtcatt ccatacaaac acttctaaac aatctaatat cttccaaaat tatatttaaa 600atgttagaaa ctacaaaaga acaaatatta cttttatgga ataacaaaaa aattagtcaa 660caaaattata atcaagaaaa tcaagaaaaa agtaaaatga tcgattcgga aaatgaaaaa 720ctagaaaagt acacaaacaa gtttgaacat aatatcaaac ctcatataga agatatagag 780aaaaaagtaa atgaatatat taataattcc gattgtcatt taacatgttc aaaatataaa 840acaattatca ataattatat agatgaaata ataacaacta atacaaacat atacgaaaac 900aaatataatc taccacaaga acgaattatc aaaaactata atcataatgg tattaataat 960gatgataatt ttatagaata taatattctt aatgcagatc ctgatttaag atctcatttt 1020ataacacttc ttgtttcaag aaaacaatta atctatattg aatatattta ttttattaac 1080aaacatattg taaataaaat tcaagaaaac tttaaattaa atcaaaataa atatatacat 1140tttattaatt caaataatgc tgttaatgct gctaaagaat atgaatatat cataaaatat 1200tatactacat tcaaatatct acagacatta aataaatcat tatacgactc tatatataaa 1260cataaaataa ataattattc tcataacatt gaagatctta taaaccaact acaacataaa 1320attaataacc taatgattat ctcattcgat aaaaataaat catcagattt aatgttacaa 1380tgtacaaata taaaaaaata taccgatgat atatgtttat ccattaaacc taaagcatta 1440gaagtcgaat atttaagaaa tataaataaa cacatcaaca aaaatgaatt cctaaataaa 1500ttcatgcaaa acgaaacatt taaaaaaaat atagatgata aaatcaaaga aatgaataat 1560atatacgata atatatatat catattaaaa caaaaattct taaacaaatt aaacgaaatc 1620atacaaaatc ataaaaataa acaagaaaca aaattaaata ccacaaccat tcaagaattg 1680ttacaacttc taaaggatat taaagaaata caaacaaaac aaatcgatac aaaaattaat 1740acttttaata tgtattataa cgatatacaa caaataaaaa taaagattaa tcaaaatgaa 1800aaagaaataa aaaaggtact ccctcaatta tatatcccaa aaaatgaaca agaatatata 1860caaatatata aaaatgaatt aaaggataga ataaaagaaa cacaaacaaa aattaattta 1920tttaagcaaa ttttagaatt aaaagaaaaa gaacattata ttacaaacaa acatacatac 1980ctaaatttta cacacaaaac tattcaacaa atattacaac aacaatataa aaacaacaca 2040caagaaaaaa atacactagc acaattttta tacaatgcag atatcaaaaa atatattgat 2100gaattaatac ctatcacaca acaaatacaa accaaaatgt atacaacaaa taatatagaa 2160catattaaac aaatactcat aaattatata caagaatgta aacctataca aaatatatca 2220gaacatacta tttatacact atatcaagaa atcaaaacaa atctggaaaa catcgaacag 2280aaaattatgc aaaatataca acaaactaca aatcggttaa aaataaatat taaaaaaata 2340tttgatcaaa taaatcaaaa atatgacgac ttaacaaaaa atataaacca aatgaatgat 2400gaaaaaattg ggttacgaca aatggaaaat aggttgaaag ggaaatatga agaaataaaa 2460aaggcaaatc ttcaagatag ggacataaaa tatatagtcc aaaataatga tgctaataat 2520aataataata atattattat tattaatggt aataatcaaa ccggtgatta taatcacatc 2580ttgttcgatt atactcacct ttgggataat gcacaattta ctagaacaaa agaaaatata 2640aacaacctaa aagataatat acaaatcaac ataaataata tcaaaagtat aataagaaat 2700ttacaaaacg aactaaacaa ttataatact cttaaaagca attccatcca tatttatgat 2760aaaatacaca cattagaaga attaaaaata ttaactcaag aaattaatga taaaaatgtt 2820atcagaaaaa tatatgatat tgaaaccata tatcaaaatg atttacataa catagaagaa 2880attattaaaa atattacaag catttattac aaaataaata tcttaaatat attaattatt 2940tgcatcaaac aaacatataa taataataaa tccattgaaa gcttaaaact taaaattaat 3000aacttaacaa attcaacaca agaatatatt aatcaaataa aagctatccc aactaattta 3060ttaccagaac atataaaaca aaaaagtgta agcgaactaa atatttatat gaaacaaata 3120tatgataaat taaatgaaca tgttattaat aatttatata caaaatcaaa ggattcatta 3180caattttata ttaacgaaaa aaattataat aataatcatg atgatcataa tgatgaccat 3240aatgatgtat ataatgatat caaagaaaat gaaatatata aaaataataa attatacgaa 3300tgcatacaaa tcaaaaagga tgtagacgaa ttatataata tttatgatca actctttaaa 3360aatatatccc aaaattataa taaccactcc cttagttttg tacattcaat aaataatcat 3420atgctatcta tttttcaaga tactaaatat ggaaaacaca aaaatcaaca aatcctatcc 3480gatatagaaa atattataaa acaaaatgaa cacacagaat catataaaaa tttagacaca 3540agtaatatac aactaataaa agaacaaatt aaatatttct tacaaatatt tcatatactt 3600caagaaaata taaccacttt cgaaaatcaa tataaagatt taattatcaa aatgaaccat 3660aaaattaata ataatctaaa agatattaca catattgtca taaacgataa caatacatta 3720caagaacaaa atcgtattta taacgaactt caaaacaaaa ttaaacaaat aaaaaatgtc 3780agtgatgtat tcacacataa tattaattac agtcaacaaa tattaaatta ttctcaagca 3840caaaatagtt tttttaatat atttatgaaa tttcaaaaca ttaataatga tattaatagc 3900aaacgatata atgtacaaaa aaaaattaca gagataatca attcatatga tataataaat 3960tataacaaaa ataatatcaa agatatttat caacaattca aaaatataca acaacaatta 4020aatacaacag aaacgcaatt gaatcatata aaacaaaata ttaatcattt caaatatttt 4080tatgaatctc atcaaaccat atctatagta aagaatatgc aaaatgaaaa actaaaaatt 4140caagaattca acaaaaaaat acaacacttc aaggaagaaa cacaaattat gataaacaag 4200ttaatacaac ctagccacat acatttacat aaaatgaaat tgcctataac tcaacagcaa 4260cttaatacaa ttcttcatag aaatgaacaa acaaaaaatg ctacaagaag ttacaatatg 4320aatgaggagg aaaatgaaat gggatatggc ataactaata aaaggaaaaa tagtgagaca 4380aatgacatga taaataccac cataggagac aagacaaatg tcttaaaaaa tgatgatcaa 4440gaaaaaggta aaaggggaac ttccagaaat aataatattc atacaaatga aaataatata 4500aataatgaac atacaaatga aaataatata aataatgaac atacaaatga aaagaatata 4560aataatgaac atgcaaatga aaagaatata tataatgaac atacaaatga aaataatata 4620aattatgaac atccaaataa ttatcaacaa aaaaatgatg aaaaaatatc actacaacat 4680aaaacaatta atacatcaca acgtaccata gatgattcga atatggatcg aaataataga 4740tataacacat catcacaaca aaaaaataat ttgcatacaa ataataatag taatagtaga 4800tacaacaata accatgataa acaaaatgaa cataaatata atcaaggaaa atcttcaggg 4860aaagataacg catattatag aattttttat gctggaggaa ttacagctgt cttactttta 4920tgttcaagta ctgcattctt ttttataaaa aactctaatg aaccacatca tatttttaat 4980atttttcaaa aggaatttag tgaagcagat aatgcacatt cagaagaaaa agaagaatat 5040ctacctgtct attttgatga agttgaagat gaagttgaag atgaagttga agatgaagat 5100gaaaatgaaa atgaagttga aaatgaaaat gaagatttta atgacatatg a 5151234389DNAPlasmodium falciparum 23atgaaatgta atattagtat atattttttt gcttccttct ttgtgttata ttttgcaaaa 60gctaggaatg aatatgatat aaaagagaat gaaaaatttt tagacgtgta taaagaaaaa 120tttaatgaat tagataaaaa gaaatatgga aatgttcaaa aaactgataa gaaaatattt 180acttttatag aaaataaatt agatatttta aataattcaa aatttaataa aagatggaag 240agttatggaa ctccagataa tatagataaa aatatgtctt taataaataa acataataat 300gaagaaatgt ttaacaacaa ttatcaatca tttttatcga caagttcatt aataaagcaa 360aataaatatg ttcctattaa cgctgtacgt gtgtctagga tattaagttt cctggattct 420agaattaata atggaagaaa tacttcatct aataacgaag ttttaagtaa ttgtagggaa 480aaaaggaaag gaatgaaatg ggattgtaaa aagaaaaatg atagaagcaa ctatgtatgt 540attcctgatc gtagaatcca attatgcatt gttaatctta gcattattaa aacatataca 600aaagagacca tgaaggatca tttcattgaa gcctctaaaa aagaatctca acttttgctt 660aaaaaaaatg ataacaaata taattctaaa ttttgtaatg atttgaagaa tagtttttta 720gattatggac atcttgctat gggaaatgat atggattttg gaggttattc aactaaggca 780gaaaacaaaa ttcaagaagt ttttaaaggg gctcatgggg aaataagtga acataaaatt 840aaaaatttta gaaaaaaatg gtggaatgaa tttagagaga aactttggga agctatgtta 900tctgagcata aaaataatat aaataattgt aaaaatattc cccaagaaga attacaaatt 960actcaatgga taaaagaatg gcatggagaa tttttgcttg aaagagataa tagatcaaaa 1020ttgccaaaaa gtaaatgtaa aaataataca ttatatgaag catgtgagaa ggaatgtatt 1080gatccatgta tgaaatatag agattggatt attagaagta aatttgaatg gcatacgtta 1140tcgaaagaat atgaaactca aaaagttcca aaggaaaatg cggaaaatta tttaatcaaa 1200atttcagaaa acaagaatga tgctaaagta agtttattat tgaataattg tgatgctgaa 1260tattcaaaat attgtgattg taaacatact actactctcg ttaaaagcgt tttaaatggt 1320aacgacaata caattaagga aaagcgtgaa catattgatt tagatgattt ttctaaattt 1380ggatgtgata aaaattccgt tgatacaaac acaaaggtgt gggaatgtaa aaaaccttat 1440aaattatcca ctaaagatgt atgtgtacct ccgaggaggc aagaattatg tcttggaaac 1500attgatagaa tatacgataa aaacctatta atgataaaag agcatattct tgctattgca 1560atatatgaat caagaatatt gaaacgaaaa tataagaata aagatgataa agaagtttgt 1620aaaatcataa ataaaacttt cgctgatata agagatatta taggaggtac tgattattgg 1680aatgatttga gcaatagaaa attagtagga aaaattaaca caaattcaaa ttatgttcac 1740aggaataaac aaaatgataa gctttttcgt gatgagtggt ggaaagttat taaaaaagat 1800gtatggaatg tgatatcatg ggtattcaag gataaaactg tttgtaaaga agatgatatt 1860gaaaatatac cacaattctt cagatggttt agtgaatggg gtgatgatta ttgccaggat 1920aaaacaaaaa tgatagagac tctgaaggtt gaatgcaaag aaaaaccttg tgaagatgac 1980aattgtaaac gtaaatgtaa ttcatataaa gaatggatat caaaaaaaaa agaagagtat 2040aataaacaag ccaaacaata ccaagaatat caaaaaggaa ataattacaa aatgtattct 2100gaatttaaat ctataaaacc agaagtttat ttaaagaaat actcggaaaa atgttctaac 2160ctaaatttcg aagatgaatt taaggaagaa ttacattcag attataaaaa taaatgtacg 2220atgtgtccag aagtaaagga tgtaccaatt tctataataa gaaataatga acaaacttcg 2280caagaagcag ttcctgagga aagcactgaa atagcacaca gaacggaaac tcgtacggat 2340gaacgaaaaa atcaggaacc agcaaataag gatttaaaga atccacaaca aagtgtagga 2400gagaacggaa ctaaagattt attacaagaa gatttaggag gatcacgaag tgaagacgaa 2460gtgacacaag aatttggagt aaatcatgga atacctaagg gtgaggatca aacgttagga 2520aaatctgacg ccattccaaa cataggcgaa cccgaaacgg gaatttccac tacagaagaa 2580agtagacatg aagaaggcca caataaacaa gcattgtcta cttcagtcga tgagcctgaa 2640ttatctgata cacttcaatt gcatgaagat actaaagaaa atgataaact acccctagaa 2700tcatctacaa tcacatctcc tacggaaagt ggaagttctg atacagagga aactccatct 2760atctctgaag gaccaaaagg aaatgaacaa aaaaaacgtg atgacgatag tttgagtaaa 2820ataagtgtat caccagaaaa ttcaagacct gaaactgatg ctaaagatac ttctaacttg 2880ttaaaattaa aaggagatgt tgatattagt atgcctaaag cagttattgg gagcagtcct 2940aatgataata taaatgttac tgaacaaggg gataatattt ccggggtgaa ttctaaacct 3000ttatctgatg atgtacgtcc agataaaaat catgaagagg tgaaagaaca tactagtaat 3060tctgataatg ttcaacagtc tggaggaatt gttaatatga atgttgagaa agaactaaaa 3120gatactttag aaaatccttc tagtagcttg gatgaaggaa aagcacatga agaattatca 3180gaaccaaatc taagcagtga ccaagatatg tctaatacac ctggaccttt ggataacacc 3240agtgaagaaa ctacagaaag aattagtaat

aatgaatata aagttaacga gagggaaggt 3300gagagaacgc ttactaagga atatgaagat attgttttga aaagtcatat gaatagagaa 3360tcagacgatg gtgaattata tgacgaaaat tcagacttat ctactgtaaa tgatgaatca 3420gaagacgctg aagcaaaaat gaaaggaaat gatacatctg aaatgtcgca taatagtagt 3480caacatattg agagtgatca acagaaaaac gatatgaaaa ctgttggtga tttgggaacc 3540acacatgtac aaaacgaaat tagtgttcct gttacaggag aaattgatga aaaattaagg 3600gaaagtaaag aatcaaaaat tcataaggct gaagaggaaa gattaagtca tacagatata 3660cataaaatta atcctgaaga tagaaatagt aatacattac atttaaaaga tataagaaat 3720gaggaaaacg aaagacactt aactaatcaa aacattaata ttagtcaaga aagggatttg 3780caaaaacatg gattccatac catgaataat ctacatggag atggagtttc cgaaagaagt 3840caaattaatc atagtcatca tggaaacaga caagatcggg ggggaaattc tgggaatgtt 3900ttaaatatga gatctaataa taataatttt aataatattc caagtagata taatttatat 3960gataaaaaat tagatttaga tctttatgaa aacagaaatg atagtacaac aaaagaatta 4020ataaagaaat tagcagaaat aaataaatgt gagaacgaaa tttctgtaaa atattgtgac 4080catatgattc atgaagaaat cccattaaaa acatgcacta aagaaaaaac aagaaatctg 4140tgttgtgcag tatcagatta ctgtatgagc tattttacat atgattcaga ggaatattat 4200aattgtacga aaagggaatt tgatgatcca tcttatacat gtttcagaaa ggaggctttt 4260tcaagtatgc catattatgc aggagcaggt gtgttattta ttatattggt tattttaggt 4320gcttcacaag ccaaatatca aaggttagaa aaaataaata aaaataaaat tgagaagaat 4380gtaaattaa 4389244704DNAPlasmodium falciparum 24atgaaaggga aaatgaatat gtgtttgttt tttttctatt ctatattata tgttgtatta 60tgtacctatg tattaggtat aagtgaagag tatttgaagg aaaggcccca aggtttaaat 120gttgagacta ataataataa taataataat aataataata atagtaatag taacgatgcg 180atgtcttttg taaatgaagt aataaggttt atagaaaacg agaaggatga taaagaagat 240aaaaaagtga agataatatc tagacctgtt gagaatacat tacatagata tccagttagt 300tcttttctga atatcaaaaa gtatggtagg aaaggggaat atttgaatag aaatagtttt 360gttcaaagat catatataag gggttgtaaa ggaaaaagaa gcacacatac atggatatgt 420gaaaataaag ggaataataa tatatgtatt cctgatagac gtgtacaatt atgtataaca 480gctcttcaag atttaaaaaa ttcaggatct gaaacgactg atagaaaatt attaagagat 540aaagtatttg attcagctat gtatgaaact gatttgttat ggaataaata tggttttcgt 600ggatttgatg atttttgtga cgatgtaaaa aatagttatt tagattataa agatgttata 660tttggaaccg atttagataa aaataatata tcaaagttag tagaggaatc attaaaacgt 720ttttttaaaa aagatagtag tgtacttaat cctactgctt ggtggagaag gtatggaaca 780agactatgga aaactatgat acagccatat gctcatttag gatgtagaaa acctgatgag 840aatgaacctc agataaatag atggattctg gaatggggga aatataattg tagattaatg 900aaggagaaag aaaaattgtt aacaggagaa tgttctgtta atagaaaaaa atctgactgc 960tcaaccggat gtaataatga gtgttatacc tataggagtc ttattaatag acaaagatat 1020gaggtctcta tattaggaaa aaaatatatt aaagtagtac gatatactat atttaggaga 1080aaaatagttc aacctgataa tgctttggat tttttaaaat taaattgttc tgagtgtaag 1140gatattgatt ttaaaccctt ttttgaattt gaatatggta aatatgaaga aaaatgtatg 1200tgtcaatcat atattgattt aaaaatccaa tttaaaaata atgatatttg ttcatttaat 1260gctcaaacag atactgtttc tagcgataaa agattttgtc ttgaaaagaa agaatttaaa 1320ccatggaaat gtgataaaaa ttcttttgaa acagttcatc ataaaggtgt atgtgtgtca 1380ccgagaagac aaggtttttg tttaggaaat ttgaactatc tactgaatga tgatatttat 1440aatgtacata attcacaact acttatcgaa attataatgg cttctaaaca agaaggaaag 1500ttattatgga aaaaacatgg aacaatactt gataaccaga atgcatgcaa atatataaat 1560gatagttatg ttgattataa agatatagtt attggaaatg atttatggaa tgataacaac 1620tctataaaag ttcaaaataa tttaaattta atttttgaaa gaaattttgg ttataaagtt 1680ggaagaaata aactctttaa aacaattaaa gaattaaaaa atgtatggtg gatattaaat 1740agaaataaag tatgggaatc aatgagatgt ggaattgacg aagtagatca acgtagaaaa 1800acttgtgaaa gaatagatga actagaaaac atgccacaat tctttagatg gttttcacaa 1860tgggcacatt tcttttgtaa ggaaaaagaa tattgggaat taaaattaaa tgataaatgt 1920acaggtaata atggaaaatc cttatgtcag gataaaacat gtcaaaatgt gtgtactaat 1980atgaattatt ggacatatac tagaaaatta gcttatgaaa tacaatccgt aaaatatgat 2040aaagatagaa aattatttag tcttgctaaa gacaaaaatg taactacatt tttaaaggaa 2100aatgcaaaaa attgttctaa tatagatttt acaaaaatat tcgatcagct tgacaaactc 2160tttaaggaaa gatgttcatg tatggataca caagttttag aagtaaaaaa caaagaaatg 2220ttatctatag actcaaatag tgaagatgcg acagatataa gtgagaaaaa tggagaggaa 2280gaattatatg taaatcacaa ttctgtgagt gtcgcaagtg gtaataaaga aatcgaaaag 2340agtaaggatg aaaagcaacc tgaaaaagaa gcaaaacaaa ctaatggaac tttaaccgta 2400cgaactgaca aagattcaga tagaaacaaa ggaaaagata cagctactga tacaaaaaat 2460tcacctgaaa atttaaaagt acaggaacat ggaacaaatg gagaaacaat aaaagaagaa 2520ccaccaaaat tacctgaatc atctgaaaca ttacaatcac aagaacaatt agaagcagaa 2580gcacaaaaac aaaaacaaga agaagaacca aaaaaaaaac aagaagaaga accaaaaaaa 2640aaacaagaag aagaacaaaa acgagaacaa gaacaaaaac aagaacaaga agaagaagaa 2700caaaaacaag aagaagaaca acaaatacaa gatcaatcac aaagtggatt agatcaatcc 2760tcaaaagtag gagtagcgag tgaacaaaat gaaatttctt caggacaaga acaaaacgta 2820aaaagctctt cacctgaagt agttccacaa gaaacaacta gtgaaaatgg gtcatcacaa 2880gacacaaaaa tatcaagtac tgaaccaaat gagaattctg ttgtagatag agcaacagat 2940agtatgaatt tagatcctga aaaggttcat aatgaaaata tgagtgatcc aaatacaaat 3000actgaaccag atgcatcttt aaaagatgat aagaaggaag ttgatgatgc caaaaaagaa 3060cttcaatcta ctgtatcaag aattgaatct aatgaacagg acgttcaaag tacaccaccc 3120gaagatactc ctactgttga aggaaaagta ggagataaag cagaaatgtt aacttctccg 3180catgcgacag ataattctga gtcggaatca ggtttaaatc caactgatga cattaaaaca 3240actgatggtg ttgttaaaga acaagaaata ttagggggag gtgaaagtgc aactgaaaca 3300tcaaaaagta atttagaaaa acctaaggat gttgaacctt ctcatgaaat atctgaacct 3360gttctttctg gtacaactgg taaagaagaa tcagagttat taaaaagtaa atcgatagag 3420acgaaggggg aaacagatcc tcgaagtaat gaccaagaag atgctactga cgatgttgta 3480gaaaatagta gagatgataa taatagtctc tctaatagcg tagataatca aagtaatgtt 3540ttaaatagag aagatcctat tgcttctgaa actgaagttg taagtgaacc tgaggattca 3600agtaggataa tcactacaga agttccaagt actactgtaa aaccccctga tgaaaaacga 3660tctgaagaag taggagaaaa agaagctaaa gaaattaaag tagaacctgt tgtaccaaga 3720gccattggag aaccaatgga aaattctgtg agcgtacagt cccctcctaa tgtagaagat 3780gttgaaaaag aaacattgat atctgagaat aatggattac ataatgatac acacagagga 3840aatatcagtg aaaaggattt aatcgatatt catttgttaa gaaatgaagc gggtagtaca 3900atattagatg attctagaag aaatggagaa atgacagaag gtagcgaaag tgatgttgga 3960gaattacaag aacataattt tagcacacaa caaaaagatg aaaaagattt tgaccaaatt 4020gcgagcgata gagaaaaaga agaaattcaa aaattactta atataggaca tgaagaggat 4080gaagatgtat taaaaatgga tagaacagag gatagtatga gtgatggagt taatagtcat 4140ttgtattata ataatctatc aagtgaagaa aaaatggaac aatataataa tagagatgct 4200tctaaagata gagaagaaat attgaatagg tcaaacacaa atacatgttc taatgaacat 4260tcattaaaat attgtcaata tatggaaaga aataaggatt tattagaaac atgttctgaa 4320gacaaaaggt tacatttatg ttgtgaaata tcagattatt gtttaaaatt tttcaatcct 4380aaatcgatag aatactttga ttgtacacaa aaagaatttg atgaccctac atataattgt 4440tttagaaaac aaagatttac aagtatgcat tatattgccg ggggtggtat aatagccctt 4500ttattgttta ttttaggttc agccagctat aggaagaatt tggatgatga aaaaggattc 4560tacgattcta atttaaatga ttctgctttt gaatataata ataataaata taataaatta 4620ccttatatgt ttgatcaaca aataaatgta gtaaattctg atttatattc ggagggtatt 4680tatgatgaca caacgacatt ttaa 4704253633DNAPlasmodium falciparum 25atgaaaggat attttaatat atatttttta attcctttaa tttttttata taatgtaata 60agaataaatg aatcaattat aggtagaaca ctttataata gacaagatga atcatcagat 120atttcaaggg taaattcacc cgaattaaat aataatcata aaactaatat atatgattca 180gattacgaag atgtaaataa taaattaata aacagttttg tagaaaataa aagtgtgaaa 240aaaaaaaggt ctttaagttt tataaataat aaaacaaaat catatgatat aattccacct 300tcatattcat ataggaatga taaatttaat tcactttccg aaaatgaaga taattctgga 360aatacaaata gtaataattt cgcaaatact tctgaaatat ctattggaaa ggataataaa 420caatatacgt ttatacagaa acgtactcat ttgtttgctt gtggaataaa aagaaaatca 480ataaaatgga tatgtcgaga aaacagtgag aaaattactg tatgtgttcc tgatagaaaa 540atacaactat gtattgcaaa ttttttaaac tcacgtttag aaacaatgga aaagtttaaa 600gaaatatttt taatttctgt taatacagaa gcaaaattat tatataacaa aaatgaagga 660aaagatccct caatattttg taatgaatta agaaatagtt tttcagattt tagaaattca 720tttataggtg atgatatgga ttttggtggt aatacagata gagtcaaagg atatattaat 780aagaagttct ccgattatta taaggaaaaa aatgttgaaa aattaaataa tatcaaaaaa 840gaatggtggg aaaaaaataa agcaaatttg tggaatcaca tgatagtaaa tcataaagga 900aacataagta aagaatgtgc cataattccc gcggaagaac ctcaaattaa tctatggata 960aaagaatgga atgaaaactt cttgatggaa aagaagagat tgtttttaaa tataaaagat 1020aagtgtgttg aaaacaaaaa atatgaagca tgttttggtg gatgtaggct tccatgttct 1080tcatatacat catttatgaa aaaaagtaaa acacaaatgg aggttttgac gaacttgtat 1140aaaaagaaaa attcaggagt ggataaaaat aattttctga atgatctttt taaaaaaaat 1200aataaaaatg atttagatga ttttttcaaa aatgaaaagg aatatgatga tttatgtgat 1260tgcagatata ctgctactat tattaaaagt tttctaaatg gtcctgctaa aaatgatgta 1320gatattgcat cacaaattaa tgttaatgat cttcgagggt ttggatgtaa ttataaaagt 1380aataatgaaa aaagttggaa ttgtactgga acatttacga acaaatttcc tggtacatgt 1440gaacccccca gaagacaaac tttatgtctt ggacgtacat atcttttaca tcgtggtcat 1500gaggaagatt ataaggaaca tttacttgga gcttcaatat atgaggcgca attattaaaa 1560tataaatata aggaaaagga tgaaaatgca ttgtgtagta taatacaaaa tagttatgca 1620gatttggcag atattatcaa gggatcggat ataataaaag attattatgg taaaaaaatg 1680gaagaaaatt taaataaagt aaacaaagat aaaaaacgta atgaagaatc tttgaagatt 1740tttcgtgaaa aatggtggga tgaaaacaag gagaatgtat ggaaagtaat gtcagcagta 1800cttaaaaata aggaaacgtg taaagattat gataagtttc aaaagattcc tcaattttta 1860agatggttta aggaatgggg agacgatttt tgtgagaaaa gaaaagagaa aatatattca 1920tttgagtcat ttaaggtaga atgtaagaaa aaagattgtg atgaaaatac atgtaaaaat 1980aaatgtagtg aatataaaaa atggatagat ttgaaaaaaa gtgaatatga gaaacaagtt 2040gataaataca caaaagataa aaataaaaag atgtatgata atattgatga agtaaaaaat 2100aaagaagcca atgtttactt aaaagaaaaa tccaaagaat gtaaagatgt aaatttcgat 2160gataaaattt ttaatgagag tccaaatgaa tatgaagata tgtgtaaaaa atgtgatgaa 2220ataaaatatt taaatgaaat taaatatcct aaaacaaaac acgatatata tgatatagat 2280acattttcag atacttttgg tgatggaacg ccaataagta ttaatgcaaa tataaatgaa 2340caacaaagtg ggaaggatac ctcaaatact ggaaatagtg aaacatcaga ttcaccggtt 2400agtcatgaac cagaaagtga tgctgcaatt aatgtagaaa agttaagtgg tgatgaaagt 2460tcaagtgaaa caagaggaat attagatatt aatgatccaa gtgttacgaa caatgtcaat 2520gaagttcatg atgcttcaaa tacacaaggt agtgtttcaa atacttctga tataacgaat 2580ggacattcgg aaagttccct gaatagaaca acgaatgcac aagatattaa aataggccgt 2640tcaggaaatg aacaaagtga taatcaagaa aatagttcac attctagtga taattcaggt 2700tctttgacaa tcggacaagt tccttcagag gataataccc aaaatacata tgattcacaa 2760aaccctcata gagatacacc taatgcatta gcatctttac catcagatga taaaattaat 2820gaaatagagg gtttcgattc tagtagagat agtgaaaatg gtaggggtga tacaacatca 2880aatactcatg atgtacgtcg tacgaatata gtaagtgaga gacgtgtgaa tagccatgat 2940tttattagaa acggaatggc gaataacaat gcacatcatc aatatataac gcaaattgag 3000aataatggaa tcataagagg acaagaggaa agtgcgggga atagtgttaa ttataaagat 3060aatccaaaga ggagtaattt ttcctccgaa aatgatcata agaaaaatat acaggaatat 3120aattctagag atactaaaag agtaagggag gaaataatta aattatcgaa gcaaaataaa 3180tgcaacaatg aatattccat ggaatattgt acctattctg acgaaaggaa tagttcaccg 3240ggtccttgtt ctagagaaga aagaaagaaa ttatgttgtc agatttcaga ttattgttta 3300aaatatttta acttttattc aattgaatat tataattgta taaaatctga aattaaaagt 3360ccagaatata aatgttttaa aagcgagggt caatcaagca ttccttattt tgctgctgga 3420ggtattttag ttgtaatagt cttacttttg agttcagcat ctagaatggg gaaaagtaat 3480gaagaatatg atataggaga atctaatata gaagcaactt ttgaagaaaa taattattta 3540aataaactat cgcgcatatt taatcaagaa gtacaagaga caaacatttc agattattcc 3600gagtacaatt ataatgaaaa gaatatgtat taa 3633269393DNAPlasmodium falciparum 26atgaagacca cactattttg tagcatatct ttttgtaata ttatattttt cttcttagaa 60ttaagtcatg agcattttgt tggacaatca agtaataccc atggagcatc ttcagttact 120gattttaatt ttagtgagga gaaaaattta aaaagttttg aagggaagaa taataataat 180gataattatg cttcaattaa tcgtttatat aggaagaaac catatatgaa gagatcgctt 240ataaatttag aaaatgatct ttttagatta gaacctatat cttatattca aagatattat 300aagaagaata taaacagatc tgatattttt cataataaaa aagaaagagg ttccaaagta 360tattcaaatg tgtcttcatt ccattctttt attcaagagg gtaaagaaga agttgaggtt 420ttttctatat ggggtagtaa tagcgtttta gatcatatag atgttcttag ggataatgga 480actgtcgttt tttctgttca accatattac cttgatatat atacgtgtaa agaagccata 540ttatttacta catcatttta caaggatctt gataaaagtt caattacaaa aattaatgaa 600gatattgaaa aatttaacga agaaataatc aagaatgaag aacaatgttt agttggtggg 660aaaacagatt ttgataattt acttatagtt ttagaaaatg cggaaaaagc aaatgttaga 720aaaacattat ttgataatac atttaatgat tataaaaata agaaatctag tttttacaat 780tgtttgaaaa ataaaaaaaa tgattatgat aagaaaataa agaatataaa gaatgagatt 840acaaaattgt taaaaaatat tgaaagtaca ggaaatatgt gtaaaacgga atcatatgtt 900atgaataata atttatatct attaagagtg aatgaagtta aaagtacacc tattgattta 960tacttaaatc gagcaaaaga gctattagaa tcaagtagca aattagttaa tcctataaaa 1020atgaaattag gtgataataa gaacatgtac tctattggat atatacatga cgaaattaaa 1080gatattataa aaagatataa ttttcatttg aaacatatag aaaaaggaaa agaatatata 1140aaaaggataa cacaagcaaa taatattgca gacaaaatga agaaagatga acttataaaa 1200aaaatttttg aatcctcaaa acattttgct agttttaaat atagcaatga aatgataagc 1260aaattagatt cgttatttat aaaaaatgaa gaaatactta ataatttatt caataatata 1320tttaatatat tcaagaaaaa atatgaaaca tatgtagata tgaaaacaat tgaatctaaa 1380tatacaacag taatgactct atcagaacat ttattagaat atgcaatgga tgttttaaaa 1440gctaaccctc aaaaacctat tgatccaaaa gcaaatctgg attcagaagt agtaaaatta 1500caaataaaaa taaatgagaa atcaaatgaa ttagataatg ctataagtca agtaaaaaca 1560ctaataataa taatgaaatc attttatgat attattatat ctgaaaaagc ctctatggat 1620gaaatggaaa aaaaggaatt atccttaaat aattatattg aaaaaacaga ttatatatta 1680caaacgtata atatttttaa gtctaaaagt aatattataa ataataatag taaaaatatt 1740agttctaaat atataactat agaagggtta aaaaatgata ttgatgaatt aaatagtctt 1800atatcatatt ttaaggattc acaagaaaca ttaataaaag atgatgaatt aaaaaaaaac 1860atgaaaacgg attatcttaa taacgtgaaa tatatagaag aaaatgttac tcatataaat 1920gaaattatat tattaaaaga ttctataact caacgaatag cagatattga tgaattaaat 1980agtttaaatt taataaatat aaatgatttt ataaatgaaa agaatatatc acaagagaaa 2040gtatcatata atcttaataa attatataaa ggaagttttg aagaattaga atctgaacta 2100tctcattttt tagacacaaa atatttgttt catgaaaaaa aaagtgtaaa tgaacttcaa 2160acaattttaa atacatcaaa taatgaatgt gctaaattaa attttatgaa atctgataat 2220aataataata ataataatag taatataatt aacttgttaa aaactgaatt aagtcatcta 2280ttaagtctta aagaaaatat aataaaaaaa cttttaaatc atatagaaca aaatattcaa 2340aactcatcaa ataagtatac tattacatat actgatatta ataatagaat ggaagattat 2400aaagaagaaa tcgaaagttt agaagtatat aaacatacca ttggaaatat acaaaaagaa 2460tatatattac atttatatga gaatgataaa aatgctttag ctgtacataa tacatcaatg 2520caaatattac aatataaaga tgctatacaa aatataaaaa ataaaatttc tgatgatata 2580aaaattttaa agaaatataa agaaatgaat caagatttat taaattatta tgaaattcta 2640gataaaaaat taaaagataa tacatatatc aaagaaatgc atactgcttc tttagttcaa 2700ataactcaat atattcctta tgaagataaa acaataagtg aacttgagca agaatttaat 2760aataataatc aaaaacttga taatatatta caagatatca atgcaatgaa tttaaatata 2820aatattctcc aaaccttaaa tattggtata aatgcatgta atacaaataa taaaaatgta 2880gaacacttac ttaacaagaa aattgaatta aaaaatatat taaatgatca aatgaaaatt 2940ataaaaaatg atgatataat tcaagataat gaaaaagaaa acttttcaaa tgttttaaaa 3000aaagaagagg aaaaattaga aaaagaatta gatgatatca aatttaataa tttgaaaatg 3060gacattcata aattgttgaa ttcgtatgac catacaaagc aaaatataga aagcaatctt 3120aaaataaatt tagattcttt cgaaaaggaa aaagatagtt gggttcattt taaaagtact 3180atagatagtt tatatgtgga atataacata tgtaatcaaa agactcataa tactatcaaa 3240caacaaaaaa atgatatcat agaacttatt tataaacgta taaaagatat aaatcaagaa 3300ataatcgaaa aggtagataa ttattattcc ctgtcagata aagccttaac taaacttaaa 3360tctattcatt ttaatattga taaggaaaaa tataaaaatc ccaaaagtca agaaaatatt 3420aaattattag aagatagagt tatgatactt gagaaaaaga ttaaggaaga taaagatgct 3480ttaatacaaa ttaagaattt atcacatgat cattttgtaa atgctgataa tgagaaaaaa 3540aagcagaagg agaaggagga ggacgacgaa caaacacact atagtaaaaa aagaaaagta 3600atgggagata tatataagga tattaaaaaa aacctagatg agttaaataa taaaaatttg 3660atagatatta ctttaaatga agcaaataaa atagaatcag aatatgaaaa aatattaatt 3720gatgatattt gtgaacaaat tacaaatgaa gcaaaaaaaa gtgatactat taaggaaaaa 3780atcgaatcat ataaaaaaga tattgattat gtagatgtgg acgtttccaa aacgaggaac 3840gatcatcatt tgaatggaga taaaatacat gattcttttt tttatgaaga tacattaaat 3900tataaagcat attttgataa attaaaagat ttatatgaaa atataaacaa gttaacaaat 3960gaatcaaatg gattaaaaag tgatgctcat aataacaaca cacaagttga taaactaaaa 4020gaaattaatt tacaagtatt cagcaattta ggaaatataa ttaaatatgt tgaaaaactt 4080gagaatacat tacatgaact taaagatatg tacgaatttc tagaaacgat cgatattaat 4140aaaatattaa aaagtattca taatagcatg aagaaatcag aagaatatag taatgaaacg 4200aaaaaaatat ttgaacaatc agtaaatata actaatcaat ttatagaaga tgttgaaata 4260ttgaaaacgt ctattaaccc aaactatgaa agcttaaatg atgatcaaat tgatgataat 4320ataaaatcac ttgttctaaa gaaagaggaa atatccgaaa aaagaaaaca agtgaataaa 4380tacataacag atattgaatc taataaagaa caatcagatt tacatttacg atatgcatct 4440agaagtatat atgttattga tctttttata aaacatgaaa taataaatcc tagcgatgga 4500aaaaattttg atattataaa ggttaaagaa atgataaata aaaccaaaca agtttcaaat 4560gaagctatgg aatatgctaa taaaatggat gaaaaaaata aggacattat aaaaatagaa 4620aatgaacttt ataatttaat taataataac atccgttcat taaaaggggt aaaatatgaa 4680aaagttagga aacaagcaag aaatgcaatt gatgatataa ataatataca ttctaatatt 4740aaaacgattt taaccaaatc taaagaacga ttagatgaga ttaagaaaca acctaacatt 4800aaaagagaag gtgatgtttt aaataatgat aaaaccaaaa tagcttatat tacaatacaa 4860ataaataacg gaagaataga atctaattta ttaaatatat taaatatgaa acataacata 4920gatactatct tgaataaagc tatggattat atgaatgatg tatcaaaatc tgaccagatt 4980gttattaata tagattcttt gaatatgaac gatatatata ataaggataa agatctttta 5040ataaatattt taaaagaaaa acagaatatg gaggcagaat ataaaaaaat gaatgaaatg 5100tataattacg ttaatgaaac agaaaaagaa ataataaaac ataaaaaaaa ttatgaaata 5160agaattatgg aacatataaa aaaagaaaca aatgaaaaaa aaaaaaaatt tatggaatct 5220aataacaaat cattaactac tttaatggat tcattcagat ctatgtttta taatgaatat 5280ataaatgatt ataatataaa tgaaaatttt gaaaaacatc aaaatatatt gaatgaaata 5340tataatggat ttaatgaatc atataatatt attaatacaa aaatgactga aattataaat

5400gataatttag attataatga aataaaagaa attaaagaag tagcacaaac agaatatgat 5460aaacttaata aaaaagttga tgaattaaaa aattatttga ataatattaa agaacaagaa 5520ggacatcgat taattgatta tataaaagaa aaaatattta acttatatat aaaatgttca 5580gaacaacaaa atataataga tgattcttat aattatatta cagttaaaaa acagtatatt 5640aaaactattg aagatgtgaa atttttatta gattcattga acacaataga agaaaaaaat 5700aaatcagtag caaatctaga aatttgtact aataaagaag atataaaaaa tttacttaaa 5760catgttataa agttggcaaa tttttcaggt attattgtaa tgtctgatac aaatacggaa 5820ataactccag aaaatccttt agaagataat gatttattaa atttacaatt atattttgaa 5880agaaaacatg aaataacatc aacattggaa aatgattctg atttagagtt agatcattta 5940ggtagtaatt cggatgaatc tatagataat ttaaaggttt ataatgatat tatagaatta 6000cacacatatt caacacaaat tcttaaatat ttagataata ttcaaaaact taaaggagat 6060tgcaatgatt tagtaaagga ttgtaaagaa ttacgtgaat tgtctacggc attatatgat 6120ttaaaaatac aaattactag tgtaattaat agagaaaatg atatttcaaa taatattgat 6180attgtatcta ataaattaaa tgaaatagat gctatacaat ataattttga aaaatataaa 6240gaaatttttg ataatgtaga agaatataaa acattagatg atacaaaaaa tgcatatatt 6300gtaaaaaagg ctgaaatttt aaaaaatgta gatataaata aaacaaaaga agatttagat 6360atatatttta atgacttaga cgaattagaa aaatctctta cattatcatc taatgaaatg 6420gaaattaaaa caatagtaca gaactcatat aattcctttt ctgatattaa taagaacatt 6480aatgatattg ataaagaaat gaaaacactg atccctatgc ttgatgaatt attaaatgaa 6540ggacataata ttgatatatc attatataat tttataatta gaaatattca gattaaaata 6600ggtaatgata taaaaaatat aagagaacag gaaaatgata ctaatatatg ttttgagtat 6660attcaaaata attataattt tataaagagt gatataagta tcttcaataa atatgatgat 6720catataaaag tagataatta tatatctaat aatattgatg ttgtcaataa acataatagt 6780ttattaagtg aacatgttat aaatgctaca aatattatag agaatattat gacaagtatt 6840gtcgaaataa atgaagatac agaaatgaat tctttagaag agacacaaga caaattatta 6900gaactatatg aaaattttaa gaaagaaaaa aatattataa ataataatta taaaatagta 6960cattttaata aattaaaaga aatagaaaat agtttagaga catataattc aatatcaaca 7020aactttaata aaataaatga aacacaaaat atagatattt taaaaaatga atttaataat 7080atcaaaacaa aaattaatga taaagtaaaa gaattagttc atgttgatag tacattaaca 7140cttgaatcaa ttcaaacgtt taataattta tatggtgact tgatgtctaa tatacaagat 7200gtatataaat atgaagatat taataatgtt gaattgaaaa aggtgaaatt atatatagaa 7260aatattacaa atttattagg aagaataaac acattcataa aggagttaga caaatatcag 7320gatgaaaata atggtataga taagtatata gaaatcaata aggaaaataa tagttatata 7380ataaaattga aagaaaaagc caataatcta aaggaaaatt tctcaaaatt attacaaaat 7440ataaaaagaa atgaaactga attatataat ataaataaca taaaggatga tattatgaat 7500acggggaaat ctgtaaataa tataaaacaa aaattttcta gtaatttgcc actaaaagaa 7560aaattatttc aaatggaaga gatgttactt aatataaata atattatgaa tgaaacgaaa 7620agaatatcaa acacggctgc atatactaat ataactctcc aggatattga aaataataaa 7680aataaagaaa ataataatat gaatattgaa acaattgata aattaataga tcatataaaa 7740atacataatg aaaaaataca agcagaaata ttaataattg atgatgccaa aagaaaagta 7800aaggaaataa cagataatat taacaaggct tttaatgaaa ttacagaaaa ttataataat 7860gaaaataatg gggtaattaa atctgcaaaa aatattgtcg atgaagctac ttatttaaat 7920aatgaattag ataaattttt attgaaattg aatgaattat taagtcataa taataatgat 7980ataaaggatc ttggtgatga aaaattaata ttaaaagaag aagaagaaag aaaagaaaga 8040gaaagattgg aaaaagcgaa acaagaagaa gaaagaaaag agagagaaag aatagaaaaa 8100gaaaaacaag agaaagaaag actggaaaga gagaaacaag aacaactaaa aaaagaagaa 8160gaattaagaa aaaaagagca ggaaagacaa gaacaacaac aaaaagaaga agcattaaaa 8220agacaagaac aagaacgact acaaaaagaa gaagaattaa aaagacaaga gcaagaaagg 8280ctggaaagag agaaacaaga acaactacaa aaagaagaag aattaaaaag acaagaacaa 8340gaacgactac aaaaagaaga agcattaaaa agacaagaac aagaacgact acaaaaagaa 8400gaagaattaa aaagacaaga gcaagaaagg ctggaaagag agaaacaaga acaactacaa 8460aaagaagaag aattaaaaag acaagaacaa gaacgactac aaaaagaaga agcattaaaa 8520agacaagaac aagaacgact acaaaaagaa gaagaattaa aaagacaaga gcaagaaaga 8580ctggaaagaa agaaaatcga gttagcagaa agagaacaac acataaaaag taaactagaa 8640tctgatatgg tgaaaataat aaaggatgaa ctaacaaaag aaaaagatga aataataaaa 8700aacaaagata taaaacttag acatagtttg gaacagaaat ggttaaaaca tttacaaaat 8760atattatcgt taaaaataga tagtctatta aataaaaatg atgaggtcat aaaagataat 8820gagacacaat tgaaaacaaa tatattgaac tcattaaaaa atcaattata tcttaatttg 8880aaacgtgaac ttaatgaaat tataaaggaa tacgaagaaa accagaaaaa aatattgcat 8940tcaaatcaac ttgttaacga tagtttagag caaaaaacta atagactcgt cgatattaaa 9000cctacaaagc atggtgatat atatactaat aaactttctg ataatgaaac tgaaatgctg 9060ataacatcta aagaaaaaaa agatgaaaca gaatcaacta aaagatcagg aacagatcat 9120actaatagtt cggaaagtac tactgatgat aataccaatg atagaaattt ttctcgatca 9180aagaatttga gtgttgctat atacacagca ggaagtgtag ctttatgtgt gttaatattt 9240tctagtatag gattattact tataaagact aatagtggag ataacaattc taatgaaatt 9300aatgaagctt ttgaaccgaa tgatgatgtt ctctttaagg agaaggatga aatcattgaa 9360atcactttta atgataatga tagtacaatt taa 9393278916DNAPlasmodium falciparum 27atgcaaaggt ggattttctg caacattgtt ttgcatatat taatttactt agcagaattt 60agccatgaac aggaaagtta ttcttccaat gaaaaaataa gaaaggacta ttcagatgat 120aataattatg aacctacccc ttcatatgaa aaaagaaaaa aagaatatgg aaaagatgaa 180agttatataa aaaattacag aggtaataat ttttcctatg atttgtctaa aaattctagt 240atatttcttc acatgggtaa cggtagtaac tcgaaaacac taaaaagatg taacaagaaa 300aaaaatataa agaccaattt tttaagacct atcgaggaag agaaaacggt attaaataat 360tatgtatata aaggtgtaaa ttttttagat acaataaaaa gaaatgattc ctcttataaa 420tttgatgttt ataaagatac ttccttttta aaaaatagag aatataaaga attaattact 480atgcagtatg attatgctta tttagaagca acaaaagagg ttctttattt aattccgaag 540gataaagatt atcacaaatt ttataaaaat gaacttgaga aaattctttt caatttaaaa 600gattcactta aattattaag agaaggatat atacaaagca aactggaaat gattagaatc 660cattcggata tagatatatt aaatgagttt catcaaggaa atattataaa cgataattat 720tttaataatg aaataaaaaa aaaaaaggaa gacatggaaa aatatataag agaatataat 780ttatacatat ataaatatga aaatcagctt aaaataaaaa tacagaaatt aacaaatgaa 840gtttctataa atttaaataa atctacatgt gaaaagaatt gttataatta tattttaaaa 900ttagaaaaat ataaaaatat aataaaagat aagataaata aatggaaaga tttaccagaa 960atatatattg atgataaaag tttctcatat acatttttaa aagatgtaat aaataataag 1020atagatatat ataaaacaat aagttctttt atatctactc agaaacaatt atattatttt 1080gaatatatat atataatgaa taaaaataca ttaaacctac tttcatataa tatacaaaaa 1140acagatataa attctagtag taaatacaca tatacaaaat ctcatttttt aaaagataat 1200catatattgt tatctaaata ttatactgcc aaatttattg atatcctaaa taaaacatat 1260tattataatt tatataaaaa taaaattctt ttattcaata aatatattat aaagcttaga 1320aacgatttaa aagaatatgc atttaaatct atacaattta ttcaagataa aatcaaaaaa 1380cataaagatg aattatccat agaaaatata ttacaagaag ttaataatat atatataaaa 1440tatgatactt cgataaatga aatatctaaa tataacaatt taattattaa tactgattta 1500caaatagtac aacaaaaact tttagaaatc aaacaaaaaa aaaatgatat tacacacaaa 1560gtacaactta taaatcatat atataaaaat atacatgatg aaatattaaa caaaaaaaat 1620aatgaaataa caaagattat tataaataat ataaaagatc ataaaaaaga tttacaagat 1680ctcttactat ttatacaaca aatcaaacaa tataatatat taacagatca taaaattaca 1740caatgtaata attattataa ggaaatcata aaaatgaaag aagatataaa tcatattcat 1800atatatatac aaccaattct aaataattta cacacattaa aacaagtaca aaataataaa 1860atcaaatatg aagagcacat caaacaaata ttacaaaaaa tttatgataa aaaggaatct 1920ttaaaaaaaa ttattctctt aaaagatgaa gcacaattag acattaccct cctcgatgac 1980ttaatacaaa agcaaacaaa aaaacaaaca caaacacaaa cacaaacaca aaaacaaaca 2040ctaatacaaa ataatgagac gattcaactt atttctggac aagaagataa acatgaatcc 2100aatccattta atcatataca aacctatatt caacaaaaag atacacaaaa taaaaacatc 2160caaaatcttc ttaaatcctt gtataatgga aatattaaca cattcataga cacaatttct 2220aaatatatat taaaacaaaa agatatagaa ttaacacaac acgtttatac agacgaaaaa 2280attaatgatt atcttgaaga aataaaaaat gaacaaaaca aaatagataa gaccatcgac 2340gatataaaaa tacaagaaac attaaaacaa ataactcata ttgttaacaa tataaaaacc 2400atcaaaaagg atttgctcaa agaatttatt caacatttaa taaaatatat gaacgaaaga 2460tatcagaata tgcaacaggg ttataataat ttaacaaatt atattaatca atatgaagaa 2520gaaaataata atatgaaaca atatattact accatacgaa atatccaaaa aatatattat 2580gataatatat atgctaagga aaaggaaatt cgctcgggac aatattataa ggattttatc 2640acatcaagga aaaatattta taatataagg gaaaatatat ccaaaaatgt agatatgata 2700aaaaatgaag aaaagaagaa aatacagaat tgtgtagata aatataattc tataaaacaa 2760tatgtaaaaa tgcttaaaaa tggagacaca caagatgaaa ataataataa taataatgat 2820atatacgaca agttaattgt cccccttgat tcaataaaac aaaatatcga taaatacaac 2880acagaacata attttataac atttacaaat aaaataaata cacataataa gaagaaccaa 2940gaaatgatgg aagaattcat atatgcatat aaaaggttaa aaattttaaa aatattaaat 3000atatccttaa aagcttgtga aaaaaataat aaatctatca atacattaaa tgacaaaaca 3060caagaattaa aaaaaattgt aacacacgaa atagatcttc tacaaaaaga tattttaaca 3120agtcaaatat caaataaaaa tgttttatta ttaaacgatt tattaaaaga aattgaacaa 3180tatattatag atgtacacaa attaaaaaaa aaatcaaacg atctatttac atattatgaa 3240caatccaaaa attatttcta ttttaaaaac aaaaaagata attttgatat acaaaaaaca 3300atcaataaaa tgaatgaatg gctagctatc aaaaattata taaatgaaat taataaaaat 3360tatcaaacat tatatgaaaa aaaaataaat gtactcctac ataattcaaa aagttatgta 3420caatactttt atgatcatat aataaatcta attcttcaaa aaaaaaatta tttggaaaat 3480actttaaaga caaaaataca agataacgaa cattcactat atgctttaca acaaaatgaa 3540gaataccaaa aggtaaagaa cgaaaaggat caaaacgaaa ttaagaaaat taaacaatta 3600atcgaaaaaa ataaaaatga tatacttaca tatgaaaaca acattgaaca aattgaacaa 3660aaaaatattg agttaaaaac aaatgctcaa aataaggatg atcaaatagt aaatacctta 3720aatgaggtta agaaaaaaat aatatataca tatgaaaagg tagataatca aatatcgaac 3780gttttaaaaa attatgaaga aggaaaagta gaatatgata aaaatgttgt acaaaatgtt 3840aacgatgcgg atgatacaaa cgatattgat gaaataaacg atattgatga aataaacgat 3900attgatgaaa taaacgatat tgatgaaata aacgatattg atgaaataaa agacattgac 3960catataaaac attttgacga tacaaaacat tttgacgata tataccatgc tgatgataca 4020cgtgatgaat accatatagc cctttcaaat tatataaaga cagaactaag aaatataaac 4080ctgcaagaaa taaaaaacaa tataataaaa atatttaaag aattcaaatc tgcacacaaa 4140gaaattaaaa aagaatcaga acaaattaat aaagaattta ccaaaatgga tgtcgtcata 4200aatcaattaa gagatataga cagacaaatg cttgatcttt ataaagaatt agatgaaaaa 4260tattctgaat ttaataaaac aaaaattgaa gaaataaata atataaggga aaatattaat 4320aatgtggaaa tatggtatga aaaaaatata attgaatatt tcttacgtca tatgaatgat 4380caaaaagata aagctgcaaa atatatggaa aacattgata catataaaaa taatattgaa 4440attattagta aacaaataaa tccagaaaat tatgttgaaa cattaaacaa atcaaatatg 4500tattcttatg tagaaaaggc taatgatcta ttttataaac aaataaataa tataatcata 4560aattcaaatc aactaaaaaa cgaagctttt acaatagatg aattacaaaa tattcaaaaa 4620aacagaaaaa atcttcttac aaagaaacaa caaattattc agtatacaaa tgaaatagaa 4680aatatattta atgaaattaa aaatattaat aacatattag tcttaacaaa ttataaatct 4740atccttcaag atatatcaca aaatataaat catgttagta tatatacgga acaattacat 4800aatttatata taaaattaga agaagaaaaa gaacaaatga aaacactcta tcataaatca 4860aatgtgttac ataaccaaat taattttaat gaagatgctt ttattaataa tttattaatt 4920aatatagaaa aaattaaaaa tgatattaca catataaagg aaaaaacaaa tatatatatg 4980atagatgtaa acaaatctaa aaataatgct caactatatt ttcataatac actaagaggt 5040aatgaaaaaa tagaatattt aaaaaatctt aagaattcaa caaaccaaca aataacttta 5100caagaattaa aacaagtaca agaaaatgtt gagaaggtaa aagatatata caatcaaact 5160ataaaatatg aagaagaaat taaaaaaaat tatcatatta taacagatta tgagaataaa 5220ataaatgata ttttacataa ttcatttatt aaacaaataa atatggaatc tagcaataat 5280aaaaaacaaa caaaacaaat tatagacata ataaacgata aaacatttga agaacatata 5340aaaacatcca aaaccaaaat aaacatgcta aaagaacaat cacaaatgaa acatatagac 5400aaaactttat taaatgaaca agcactcaaa ttatttgtag atattaattc tactaataat 5460aatttagata atatgttatc tgaaataaat tctatacaaa ataatataca tacatatatc 5520caagaagcaa acaaatcatt tgacaaattt aaaattatat gtgatcaaaa tgtaaacgat 5580ttattaaaca aattaagttt aggagatcta aattatatga atcatttaaa aaatctgcaa 5640aacgaaataa gaaacatgaa tctagaaaaa aatttcatgt tagataaaag taaaaaaata 5700gatgaggaag aaaaaaaatt agatatatta aaagttaaca tatcaaatat aaataattct 5760ttagataaat taaaaaaata ttacgaagaa gcgctctttc aaaaggttaa agaaaaagca 5820gaaattcaaa aggaaaatat agaaaaaata aaacaagaaa taaatacact gagcgatgtt 5880tttaagaaac catttttttt tatacaactt aatacagatt catcacaaca tgaaaaagat 5940ataaacaata atgtagaaac atataaaaat aatatagatg aaatatataa tgtttttata 6000caatcatata atttaataca aaaatattct tcagaaattt tttcatccac cttgaattat 6060atacaaacaa aagaaataaa agaaaaatcc ataaaggaac aaaaccaatt aaatcaaaat 6120gaaaaggaag catctgtttt attaaaaaat ataaaaataa atgaaaccat aaaattattt 6180aaacaaataa aaaatgaaag acaaaacgat gtacacaata taaaagagga ctataacttg 6240ttacaacaat atttaaatta tatgaaaaat gaaatggaac aattaaaaaa atataaaaat 6300gatgttcata tggataaaaa ttatgttgaa aataataatg gtgaaaaaga aaaattactt 6360aaagaaacca tttcttcata ttatgataaa ataaataata taaataataa gctatatata 6420tataaaaaca aagaagacac ttattttaat aatatgatca aagtatcaga aattttaaac 6480ataattataa aaaaaaaaca acaaaatgaa caaagaattg ttataaatgc agaatatgac 6540tcttcattaa ttaataagga tgaagaaatt aaaaaagaaa ttaataatca aataattgaa 6600ttaaataaac ataatgaaaa tatttccaat atttttaagg atatacaaaa tataaaaaaa 6660caaagtcaag atattatcac aaatatgaac gacatgtata aaagtacaat ccttttagta 6720gacatcatac agaaaaaaga agaagctcta aataaacaaa aaaatatttt aagaaatata 6780gacaatatat taaataaaaa agaaaatatt atagataaag ttataaaatg taattgtgat 6840gattataaag atatcttaat acaaaacgaa acggaatatc aaaaattaca aaatataaat 6900catacatatg aagaaaaaaa aaaatcaata gatatattaa aaattaaaaa tataaaacaa 6960aaaaatattc aagaatataa aaacaaatta gaacaaatga atacaataat taatcaaagt 7020atagaacaac atgtattcat aaacgctgat attttacaaa atgaaaaaat aaaattagaa 7080gaaatcataa aaaatctaga tatactagat gaacaaatta tgacatatca taattcaata 7140gatgaattat ataaactagg aatacaatgt gacaatcatc taattacaac tattagtgtt 7200gttgttaata aaaatacaac aaaaattatg atacatataa aaaaacaaaa agaggatata 7260caaaaaatta ataactatat tcaaacaaat tataatataa taaatgaaga agctctacaa 7320tttcacaggc tctatggaca caatcttata agtgaagatg acaaaaataa tttggtacat 7380attataaaag aacaaaagaa tatatataca caaaaggaaa tagatatttc taaaataatt 7440aaacatgtta aaaaaggatt atattcattg aatgaacatg atatgaatca tgatacacat 7500atgaatataa taaatgaaca tataaataat aatattttac aaccatacac acaattaata 7560aacatgataa aagatattga taatgttttt ataaaaatac aaaataataa attcgaacaa 7620atacaaaaat atatagaaat tattaaatct ttagaacaat taaataaaaa tataaacaca 7680gataatttaa ataaattaaa agatacacaa aacaaattaa taaatataga aacagaaatg 7740aaacataaac aaaaacaatt aataaacaaa atgaatgata tagaaaagga taatattaca 7800gatcaatata tgcatgatgt tcagcaaaat atatttgaac ctataacatt aaaaatgaat 7860gaatataata cattattaaa tgataatcat aataataata taaataatga acatcaattt 7920aatcatttaa atagtcttca tacaaaaata tttagtcata attataataa agaacaacaa 7980caagaatata taaccaacat catgcaaaga attgatgtat tcataaatga tttagatact 8040taccaatatg aatattattt ttatgaatgg aatcaagaat ataaacaaat agacaaaaat 8100aaaataaatc aacatataaa caatattaaa aataatctaa ttcatgttaa gaaacaattt 8160gaacacacct tagaaaatat aaaaaataat gaaaatattt tcgacaacat acaattgaaa 8220aaaaaagata ttgacgatat tattataaac attaataata caaaagaaac atatctaaaa 8280gaattgaaca aaaaaaaaaa tgttacaaaa aaaaaaaaag ttgatgaaaa atcagaaata 8340aataatcatc acacattaca acatgataat caaaatgttg aacaaaaaaa taaaattaaa 8400gatcataatt taataaccaa gccaaataac aattcatcag aagaatctca tcaaaatgaa 8460caaatgaaag aacaaaacaa aaatatactt gaaaaacaaa caagaaatat caaaccacat 8520catgttcata atcataatca taatcataat caaaatcaaa aagattcaac aaaattacag 8580gaacaagata tatctacaca caaattacat aatactatac atgagcaaca aagtaaagat 8640aatcatcaag gtaatagaga aaaaaaacaa aaaaatggaa accatgaaag aatgtatttt 8700gccagtggaa tagttgtatc cattttattt ttatttagtt ttggatttgt tataaatagt 8760aaaaataata aacaagaata tgataaagag caagaaaaac aacaacaaaa tgattttgta 8820tgtgataata acaaaatgga tgataaaagc acacaaaaat atggtagaaa tcaagaagag 8880gtaatggaga tattttttga taatgattat atttaa 89162822DNAArtificialOligonucleotide primer 28caggattaag ttttgaaaat gc 222921DNAArtificialOligonucleotide primer 29ccatgttttg tcatttcatt g 213018DNAArtificialOligonucleotide primer 30gatgatgaaa ccgaagag 183119DNAArtificialOligonucleotide primer 31ctgtatcttg tatactatc 193233DNAArtificialOligonucleotide primer 32gatcggatcc aattctatat atcataagtc ctc 333333DNAArtificialOligonucleotide primer 33gatcctcgag ttaatgatat cttattccgt ttg 333441DNAArtificialOligonucleotide primer 34gatcagatct catgagaatg attttaataa aatatgtatg g 413543DNAArtificialOligonucleotide primer 35gatcctgcag ttgtgtaagt ggtttatttt ttttatatgt ttg 43


Patent applications by Alan Cowman, Victoria AU

Patent applications in class Disclosed amino acid sequence derived from parasitic organism (e.g., Dirofilaria, Eimeria, Trichinella, etc.)

Patent applications in all subclasses Disclosed amino acid sequence derived from parasitic organism (e.g., Dirofilaria, Eimeria, Trichinella, etc.)


User Contributions:

Comment about this patent or add new information about this topic:

CAPTCHA
Images included with this patent application:
METHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and imageMETHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and image
METHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and imageMETHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and image
METHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and imageMETHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and image
METHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and imageMETHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and image
METHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and imageMETHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and image
METHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and imageMETHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and image
METHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and imageMETHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and image
METHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and imageMETHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and image
METHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and imageMETHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and image
METHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and imageMETHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and image
METHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and imageMETHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and image
METHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and imageMETHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and image
METHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and imageMETHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and image
METHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and imageMETHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and image
METHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and imageMETHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and image
METHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and imageMETHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and image
METHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and imageMETHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and image
METHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and imageMETHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and image
METHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and imageMETHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and image
METHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and imageMETHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and image
METHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and imageMETHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and image
METHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and imageMETHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and image
METHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and imageMETHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and image
METHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and imageMETHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and image
METHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and imageMETHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and image
METHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and imageMETHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and image
METHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and imageMETHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and image
METHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and imageMETHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and image
METHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and imageMETHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and image
METHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and imageMETHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and image
METHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and imageMETHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and image
METHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and imageMETHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and image
METHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and imageMETHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and image
METHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and imageMETHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and image
METHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and imageMETHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and image
METHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and imageMETHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and image
METHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and imageMETHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and image
METHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and imageMETHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and image
METHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and imageMETHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and image
METHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and imageMETHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and image
METHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and imageMETHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and image
METHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and imageMETHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and image
METHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and imageMETHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and image
METHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and imageMETHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and image
METHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and imageMETHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and image
METHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and imageMETHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and image
METHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and imageMETHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and image
METHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and imageMETHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and image
METHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and imageMETHODS AND COMPOSITIONS FOR TREATING AND PREVENTING MALARIA USING AN     INVASION LIGAND DIRECTED TO A PROTEASE-RESISTANT RECEPTOR diagram and image
Similar patent applications:
DateTitle
2009-06-18Methods and compositions for treatment and diagnosis of encephalitis or epilepsy
2009-06-11Methods and compositions for modulating and detecting wisp activity
2009-06-18Methods and compositions for the treatment of autoimmune disorders using clofarabine
2009-05-14Uses and compositions for treatment of ankylosing spondylitis
2009-05-28Methods and compositions for inhibiting cd32b expressing cells
New patent applications in this class:
DateTitle
2019-05-16Biomarkers and immunogenic compositions for filarial parasites
2017-08-17In vivo induced toxoplasma gondii protein for application in diagnosis, vaccine and therapy
2017-08-17Novel antigen for use in malaria
2016-07-07Inducing cellular immune responses to plasmodium falciparum using peptide and nucleic acid compositions
2016-06-09Vaccines comprising leishmania polypeptides for the treatment and diagnosis of leishmaniasis
New patent applications from these inventors:
DateTitle
2012-02-16Compounds and methods for modulating an immune response
Top Inventors for class "Drug, bio-affecting and body treating compositions"
RankInventor's name
1David M. Goldenberg
2Hy Si Bui
3Lowell L. Wood, Jr.
4Roderick A. Hyde
5Yat Sun Or
Website © 2025 Advameg, Inc.