Patent application title: POLYNUCLEOTIDES AND METHODS FOR THE IMPROVEMENT OF PLANTS
Inventors:
Sathish Puthigae (Auckland, NZ)
Sathish Puthigae (Auckland, NZ)
Jonathan Robert Phillips (Brussels, BE)
Claudia Jeannette Smith-Espinoza (Brussels, BE)
Catherine Jane Bryant (Auckland, NZ)
Catherine Jane Bryant (Auckland, NZ)
Kieran Michael Elborough (Pukekohe, NZ)
Margaret Biswas (Auckland, NZ)
IPC8 Class: AC12N1582FI
USPC Class:
800278
Class name: Multicellular living organisms and unmodified parts thereof and related processes method of introducing a polynucleotide molecule into or rearrangement of genetic material within a plant or plant part
Publication date: 2011-12-08
Patent application number: 20110302670
Abstract:
The invention provides methods for producing a plant with altered seed
yield, the methods comprising transformation of a plant with a genetic
construct including a polynucleotide encoding of a polypeptide with the
amino acid sequence of SEQ ID NO: 1 or a variant or fragment thereof. The
method also provides isolated polypeptides, polynucleotides, constructs
and vectors useful for producing a plant with altered seed yield. The
method also provides plant cell and plants transformed to contain and
express the polypeptides, polynucleotides and constructs. The invention
also provides plants produced by methods of the invention.Claims:
1. A method for producing a plant with altered seed yield, the method
comprising transformation of a plant with: a) a polynucleotide encoding
of a polypeptide with the amino acid sequence of SEQ ID NO:1 or a variant
of the polypeptide, wherein the variant is capable of modulating seed
yield in a plant; b) a polynucleotide comprising a fragment, of at least
15 nucleotides in length, of the polynucleotide of a), or c) a
polynucleotide comprising a compliment, of at least 15 nucleotides in
length, of the polynucleotide of a).
2. The method of claim 1 in which the variant has at least 70% sequence identity to a polypeptide with the amino acid sequence of SEQ ID NO: 1.
3. The method of claim 1 or claim 2 in which the variant is derived from a plant species and comprises the amino acid sequence of SEQ ID NO: 32.
4. The method of any one of claims 1 to 3 in which the variant is derived from a monocotyledonous species and comprises the amino acid sequence of SEQ ID NO: 33.
5. The method of any one of claims 1 to 3 in which the variant comprises an amino acid sequence selected from any one of SEQ ID NO: 2-31.
6. The method of any one of claims 1 to 5 in which the variant is a glutamate decarboxylase.
7. The method of claim 1 in which the polynucleotide of a) encodes a polypeptide with the amino acid sequence of SEQ ID NO: 1.
8. A method of producing a plant with altered seed yield, the method comprising transformation of a plant cell or plant with: a) a polynucleotide comprising the nucleotide sequence of SEQ ID NO: 34, or a variant thereof, wherein the variant encodes a polypeptide capable of modulating seed yield in a plant; b) a polynucleotide comprising a fragment, of at least 15 nucleotides in length, of the polynucleotide of a), or c) a polynucleotide comprising a complement, of at least 15 nucleotides in length, of the polynucleotide of a).
9. The method of claim 8 in which the variant has at least 70% sequence identity to SEQ ID NO: 34.
10. The method of claim 8 in which the variant has at least 70% sequence identity to the coding sequence of SEQ ID NO: 34.
11. The method of claim 8 in which the variant comprises the sequence of any one of SEQ ID NO: 35 to 65.
12. The method of claim 8 in which the variant comprises the coding sequence of any one of SEQ ID NO: 35 to 65.
13. The method of any one of claims 8 to 12 in which the polypeptide is a glutamate decarboxylase.
14. The method of claim 8 in which the polynucleotide of a) comprises the sequence of SEQ ID NO: 34.
15. The method of claim 8 in which the polynucleotide of a) comprises the coding sequence of SEQ ID NO: 34.
16. The method of any one of claims 1 to 15 in which the plant produced has increased seed yield relative to a suitable control plant.
17. A plant cell or plant produced by a method of any one of claims 1 to 16.
18. An isolated polynucleotide encoding a polypeptide with at least 75% sequence identity to the amino acid sequence of SEQ ID NO: 1, wherein the polynucleotide encodes a polypeptide capable of modulating seed yield in a plant.
19. The isolated polynucleotide of claim 18 wherein the polypeptide is a glutamate decarboxylase.
20. The isolated polynucleotide of claim 18 comprising the sequence of SEQ ID NO: 34.
21. The isolated polynucleotide of claim 18 comprising coding sequence of SEQ ID NO: 34.
22. An isolated polypeptide having at least 83% sequence identity to the amino acid sequence of SEQ ID NO: 1, wherein the polypeptide is capable of modulating seed yield in a plant.
23. The isolated polypeptide of claim 22, wherein the polypeptide is a glutamate decarboxylase.
24. The isolated polypeptide of claim 22 comprising the amino acid sequence of SEQ ID NO: 1.
25. A genetic construct which comprises a polynucleotide of any one of claims 18 to 21.
26. A genetic construct including a polynucleotide consisting of at least one of: a) a fragment, of at least 15 nucleotides in length, of a polynucleotide of any one of claims 18 to 21; b) a complement, of at least 15 nucleotides in length, of the polynucleotide of any one of claims 18 to 21; or c) a sequence, of at least 15 nucleotides in length, capable of hybridising to the polynucleotide of any one of claims 18 to 21.
27. The genetic construct of claim 26 comprising a promoter sequence operably linked to the polynucleotide.
28. The genetic construct of claim 26 or 27 comprising a terminator sequence operably linked to the polynucleotide.
29. A host cell genetically modified to express a polynucleotide of any one of claims 18 to 21, or a polypeptide of any one of claims 22 to 24.
30. A host cell comprising a genetic construct any one of claims 25 to 28.
31. A plant cell genetically modified to express a polynucleotide of any one of claims 18 to 21, or a polypeptide of any one of claim 22 or 24.
32. A plant cell which comprises a genetic construct any one of claims 25 to 28.
33. A plant which comprises a plant cell of claim 31 or 32.
34. A method for selecting a plant with altered seed yield relative to suitable control plant, the method comprising testing of a plant for altered expression of a polynucleotide of any one of claims 18 to 21.
35. A method for selecting a plant with altered seed yield relative to a suitable control plant, the method comprising testing of a plant for altered expression of a polypeptide of claims 22 to 24.
36. A group of plants selected by the method of claim 34 or 35.
37. An antibody raised against a polypeptide of any one of claims 22 to 24.
Description:
TECHNICAL FIELD
[0001] The present invention relates to compositions and methods for producing plants with increased seed yield.
BACKGROUND ART
[0002] As the population of the world increases, a major goal of agricultural research is to improve the grain yield of crop plant species.
[0003] Such improvements have until recently depended on selective breeding of plants for desirable characteristics. However for many plants the heterogeneous genetic compliments produced in off-spring do not result in the same desirable traits as those of their parents, thus limiting the effectiveness of selective breeding approaches.
[0004] Advances in molecular biology now make it possible to genetically manipulate the germplasm of both plants and animals. Genetic engineering of plants involves the isolation and manipulation of genetic material and the subsequent introduction of such material into a plant. This technology has led to the development of plants that are capable of expressing pharmaceuticals and other chemicals, plants with increased pest resistance, increased stress tolerance, and plants that express other beneficial traits.
[0005] Improvements in the grain yield of plant crop plants may be achieved by developing plants that produce more seed or grain than the equivalent wild-type plants.
[0006] Thus, there exists a need for plants with increased seed yield relative to their normally cultivated counterparts.
[0007] It is an object of the invention to provide improved compositions and/or methods for developing plant varieties with improved seed or grain seed yield or at least to provide the public with a useful choice.
SUMMARY OF THE INVENTION
[0008] In a first aspect the invention provides a method for producing a plant with altered seed yield, the method comprising transformation of a plant with: [0009] a) a polynucleotide encoding of a polypeptide with the amino acid sequence of SEQ ID. NO:1 or a variant of the polypeptide, wherein the variant is capable of modulating seed yield in a plant; [0010] b) a polynucleotide comprising a fragment, of at least 15 nucleotides in length, of the polynucleotide of a), or [0011] c) a polynucleotide comprising a compliment, of at least 15 nucleotides in length, of the polynucleotide of a).
[0012] In one embodiment the variant has at least 70% sequence identity to a polypeptide with the amino acid sequence of SEQ ID NO: 1.
[0013] Preferably the variant is derived from a plant species and comprises the sequence of SEQ ID NO: 32.
[0014] In one embodiment the variant is from a monocotyledonous species and comprises the sequence of SEQ ID NO: 33.
[0015] In a preferred embodiment the variant comprises an amino acid sequence selected from any one of SEQ ID NO: 2-31.
[0016] In a preferred embodiment the polypeptide or variant is a glutamate decarboxylase.
[0017] In a preferred embodiment the polynucleotide of a) encodes a polypeptide with the amino acid sequence of SEQ ID NO: 1.
[0018] In a preferred embodiment the plant is transformed with a genetic construct containing the polynucleotide.
[0019] In a further aspect the invention provides a method of producing a plant with altered seed yield, the method comprising transformation of a plant cell or plant with: [0020] a) a polynucleotide comprising the nucleotide sequence of SEQ ID NO: 34, or a variant thereof, wherein the variant encodes a polypeptide capable of modulating seed yield in a plant; [0021] b) a polynucleotide comprising a fragment, of at least 15 nucleotides in length, of the polynucleotide of a), or [0022] c) a polynucleotide comprising a complement, of at least 15 nucleotides in length, of the polynucleotide of a).
[0023] In a one embodiment the variant comprises the sequence of any one of SEQ ID NO: 35 to 65.
[0024] In a preferred embodiment the polynucleotide or variant in a) encodes a polypeptide which is a glutamate decarboxylase.
[0025] In a further embodiment the polynucleotide of a) comprises the sequence of SEQ ID NO: 34.
[0026] In a further embodiment the polynucleotide of a) comprises the coding sequence of SEQ ID NO: 34.
[0027] In a preferred embodiment the plant is transformed with a genetic construct containing the polynucleotide.
[0028] Preferably the plant produced by the method of the invention has increased seed yield relative to a suitable control plant.
[0029] In a further embodiment the method for producing a plant with altered seed yield comprises transformation of a plant cell, or plant with a genetic construct capable or altering expression of a polypeptide which modulates seed yield.
[0030] In one embodiment, the method results in a plant with decreased seed yield, relative to a suitable control, due to transformation of a plant cell or plant, with a genetic construct capable of down-regulating expression of a polypeptide which positively modulates seed yield.
[0031] In a preferred embodiment, the method results in a plant with increased seed yield, relative to a suitable control, due to transformation of a plant cell or plant, with a genetic construct capable of up-regulating expression of a polypeptide which positively modulates seed yield.
[0032] In a further aspect the invention provides a plant cell or plant produced by a method of the invention.
[0033] Preferably the plant produced by the method of the invention has increased seed yield relative to a suitable control plant.
[0034] In a further aspect the invention provides an isolated polynucleotide having at least 75% sequence identity to a nucleotide sequence that encodes a polypeptide comprising an amino acid sequence selected of SEQ ID NO: 1, wherein the polynucleotide encodes a polypeptide capable of modulating seed yield in a plant.
[0035] In one embodiment said nucleotide sequence comprises the sequence of SEQ ID NO: 34.
[0036] In a further embodiment said nucleotide sequence comprises the full-length coding sequence of SEQ ID NO:34.
[0037] In a further aspect the invention provides a polynucleotide encoding a polypeptide with at least 70% identity to the amino acid sequence of SEQ ID NO: 1.
[0038] Preferably the polypeptide is capable of modulating seed yield in a plant.
[0039] Preferably the polypeptide is a glutamate decarboxylase.
[0040] In a further aspect the invention provides an isolated polynucleotide that encodes a polypeptide comprising an amino acid sequence SEQ ID NO: 1.
[0041] In a further embodiment the polynucleotide comprises the sequence of SEQ ID NO: 34.
[0042] In a further embodiment the polynucleotide comprises the full-length coding sequence of SEQ ID NO: 34.
[0043] In a further aspect the invention provides an isolated polynucleotide comprising the sequence of SEQ ID NO: 34 or a variant thereof, wherein the variant is from ryegrass or fescue, and encodes a polypeptide capable of modulating seed yield in a plant.
[0044] In one embodiment the polypeptide is a glutamate decarboxylase.
[0045] In one embodiment the isolated polynucleotide comprises the sequence of SEQ ID NO: 34.
[0046] In a further aspect the invention provides an isolated polypeptide having at least 83% sequence identity to the amino acid sequence of SEQ ID NO: 1, wherein the polypeptide is capable of modulating seed yield in a plant.
[0047] In one embodiment the isolated polypeptide of comprises the amino acid sequence of SEQ ID NO: 1.
[0048] In a further aspect the invention provides an isolated polynucleotide encoding a polypeptide of the invention.
[0049] In a further aspect the invention provides an isolated polynucleotide comprising: [0050] a) a polynucleotide comprising a fragment, of at least 15 nucleotides in length, of a polynucleotide of the invention; [0051] b) a polynucleotide comprising a complement, of at least 15 nucleotides in length, of the polynucleotide of the invention; or [0052] c) a polynucleotide comprising a sequence, of at least 15 nucleotides in length, capable of hybridising to the polynucleotide of the invention.
[0053] In a further aspect the invention provides a genetic construct which comprises a polynucleotide of the invention.
[0054] In one embodiment the genetic construct is an expression construct.
[0055] In one embodiment the construct comprises a promoter operably linked to the polynucleotide.
[0056] In a further embodiment the construct comprises a terminator operably linked to the polynucleotide.
[0057] Preferably the promoter, the terminator, or both is/are derived from a different source than the polynucleotide.
[0058] In one embodiment the different source is a different species:
[0059] In a further aspect the invention provides a vector comprising a genetic construct or expression construct of the invention.
[0060] In a further aspect the invention provides a host cell genetically modified, to express a polynucleotide of the invention, or a polypeptide of the invention.
[0061] In a further aspect the invention provides a host cell comprising a genetic construct or expression construct of the invention.
[0062] In a further aspect the invention provides a plant cell genetically modified to express a polynucleotide of the invention, or a polypeptide of the invention.
[0063] In a further aspect the invention provides a plant cell which comprises a genetic construct of the invention or the expression construct of the invention.
[0064] In a further aspect the invention provides a plant which comprises a plant cell of the invention.
[0065] In a further aspect the invention provides a method for selecting a plant with altered seed yield relative to suitable contrast, the method comprising testing of a plant for altered expression of a polynucleotide of the invention.
[0066] In a further aspect the invention provides a method for selecting a plant with altered seed yield relative to a suitable control, the method comprising testing of a plant for altered expression of a polypeptide of the invention.
[0067] In a further aspect the invention provides a plant cell or plant produced by the method of the invention.
[0068] In a further aspect the invention provides a plant selected by the method of the invention.
[0069] In a further aspect the invention provides a population or group of plants selected by the method of the invention.
[0070] In a further aspect the invention provides an antibody raised against a polypeptide of the invention.
[0071] The polynucleotides and polynucleotide variants of the invention may be derived from any species and/or may be produced synthetically or recombinantly.
[0072] In one embodiment the polynucleotide or variant, is derived from a plant species.
[0073] In a further embodiment the polynucleotide or variant, is derived from a gymnosperm plant species.
[0074] In a further embodiment the polynucleotide or variant, is derived from an angiosperm plant species.
[0075] In a further embodiment the polynucleotide or variant, is derived from a from dicotyledonous plant species.
[0076] In a further embodiment the polynucleotide or variant, is derived from a monocotylenouous plant species.
[0077] The polypeptide and polypeptide variants, of the invention may be derived from any species and/or may be produced synthetically or recombinantly.
[0078] In one embodiment the polypeptide or variant, is derived from a plant species.
[0079] In a further embodiment the polypeptide or variant, is derived from a gymnosperm plant species.
[0080] In a further embodiment the polypeptide or variant, is derived from an angiosperm plant species.
[0081] In a further embodiment the polypeptide or variant, is derived from a from dicotyledonous plant species.
[0082] In a further embodiment the polypeptide or variant, is derived from a monocotylenouous plant species.
[0083] The plant cells and plants, of the invention may be derived from any species.
[0084] In one embodiment the plant cell or plant, is derived from a gymnosperm plant species.
[0085] In a further embodiment the plant cell or plant, is derived from an angiosperm plant species.
[0086] In a further embodiment the plant cell or plant, is derived from a from dicotyledonous plant species.
[0087] In a further embodiment the plant cell or plant, is derived from a monocotylenouous plant species.
[0088] Preferred dicotyledonous genera include: Amygdalus, Anacardium, Arachis, Brassica, Cajanus, Cannabis, Carthamus, Carya, Ceiba, Cicer, Cocos, Coriandrum, Coronilla, Cossypium, Crotalaria, Dolichos, Elaeis, lycine, Gossypium, Helianthus, Lathyrus, Lens, Lespedeza, Linum, Lotus, Lupinus, Macadamia, Medicago, Melilotus, Mucuna, Olea, Onobrychis, Ornithopus, Papaver, Phaseolus, Phoenix, Pistacia, Pisum, Prunus, Pueraria, Ribes, Ricinus, Sesamum, Theobroma, Trifolium, Trigonella, Vicia and Vigna.
[0089] Preferred dicotyledonous species include: Amygdalus communis, Anacardium occidentale, Arachis hypogaea, Arachis hypogea, Brassica napus Rape, Brassica nigra. Brassica campestris, Cajanus cajan, Cajanus indicus, Cannabis sativa, Carthamus tinctorius, Carya illinoinensis, Ceiba pentandra, Cicer arietinum, Cocos nucifera, Coriandrum sativum, Coronilla varia, Cossypium hirsutum, Crotalaria juncea, Dolichos lablab, Elaeis guineensis, Gossypium arboreum, Gossypium nanking, Gossypium barbadense, Gossypium herbaceum, Gossypium hirsutum, Glycine max, Glycine ussuriensis, Glycine gracilis, Helianthus annus, Lathyrus angustifolius, Lathyrus luteus, Lathyrus mutabilis, Lathyrus sericea, Lathyrus striata, Lathyrus uliginosus, Lathyrus sativus, Lens culinaris, Lespedeza stipulacea, Linum usitatissimum, Lotus corniculatus, Lupinus albus, Medicago arabica, Medicago arborea, Medicago falcate, Medicago hispida, Medicago officinalis, Medicago sativa, Medicago tribuloides, Macadamia integrifolia, Melilotus albus, Mucuna pruriens, Olea europaea, Onobrychis viciifolia, Ornithopus sativus, Phaseolus aureus, Phaseolus aureus cerasifera, Phaseolus aureus cerasus, Phaseolus aureus coccineus, Phaseolus aureus domestica, Phaseolus aureus lunatus, Phaseolus aureus maheleb, Phaseolus aureus mungo, Phaseolus aureus persica, Phaseolus aureus pseudocerasus, Phaseolus aureus vulgaris, Papaver somniferum, Phaseolus acutifolius, Phoenix dactylifera, Pistacia vera, Pisum sativum, Prunus amygdalus, Prunus armeniaca, Pueraria thunbergiana, Ribes nigrum, Ribes rubrum, Ribes grossularia, Ricinus communis, Sesamum indicum, Trifolium augustifolium, Trifolium diffusum, Trifolium hybridum, Trifolium incarnatum, Trifolium ingrescens, Trifolium pratense, Trifolium repens, Trifolium resupinatum, Trifolium subterraneum, Theobroma cacao, Trifolium alexandrinum, Trigonella foenumgraecum, Vigna angustifolia, Vigna atropurpurea, Vigna calcarata, Vigna dasycarpa, Vigna ervilia, Vigna oxycoccos, Vigna pannonica, Vigna sesquipedalis, Vigna sinensis, Vigna villosa, Vicia faba, Vicia sative and Vigna angularis.
[0090] Preferred monocotyledonous genera include: Agropyron, Allium, Alopecurus, Andropogon, Arrhenatherum, Asparagus, Avena, Bambusa, Bothrichloa, Bouteloua, Bromus, Cenchrus, Chloris, Cymbopogon, Cynodon, Dactylis, Dichanthium, Digitaria, Eleusine, Elymus, Eragrostis, Fagopyrum, Festuca, Hordeum, Lolium, Oryza, Panicum, Paspalum, Pennisetum, Phalaris, Phleum, Poa, Saccharum, Secale, Setaria, Sorghastrum, Sorghum, Triticum, Vanilla, x Triticosecale and Zea.
[0091] Preferred monocotyledonous species include: Agropyron desertorum, Agropyron elongatum, Agropyron spicatum, Agropyron trachycaulum, Agropyron trichophorum, Allium fistulosum, Allium sativum, Alopecurus pratensis, Andropogon gerardi, Arrhenatherum elatius, Asparagus officinalis, Avena sativa, Bambusa vulgaris, Bothrichloa barbinodis, Bothrichloa ischaemum, Bouteloua curipendula, Bouteloua gracilis, Bromus erectus, Cenchrus ciliaris, Chloris gayana, Cymbopogon nardus, Cynodon dactylon, Dactylis glomerata, Dichanthium annulatum, Digitaria decumbens, Eleusine coracan, Elymus angustus, Eragrostis curvula, Eragrostis tef, Fagopyrum esculentum, Fagopyrum tataricum, Festuca arundinacea, Hordeum distichum, Hordeum vulgare, Lolium perenne, Lolium multiflorum, Oryza sativa, Panicum italicium, Panicum maximum, Panicum miliaceum, Paspalum dilatatum, Pennisetum clandestinum, Pennisetum glaucum, Phalaris arundinacea, Phleum bertolinii, Poa fendleriana, Poa nemoralis, Saccharum robustum, Saccharum sinense, Secale cereale, Setaria sphacelata, Sorghastrum nutans, Sorghum dochna, Sorghum halepense, Sorghum bicolor, Triticum aestivum, Triticum dicoccum, X Triticosecale, Zea mays, Agropyron cristatum, Agropyron intermedium, Agropyron smithii, Allium ascalonicum, Allium cepa, Allium chinense, Allium porrum, Allium schoenoprasum, Avena nuda, Bambusa vulgaris, Bothrichloa saccharoides, Bouteloua eriopoda, Bromus inermis, Bromus riparius, Dactylis aristatum, Dactylis sericeum, Digitaria smutsii, Elymus junceus, Festuca ovina, Festuca pratensis, Festuca rubra, Panicum purpurascens, Panicum virgatum, Paspalum notatum, Pennisetum purpureum, Pennisetum spicatum, Phleum pratense, Poa pratensis, Saccharum officinarum, Saccharum spontaneum, Sorghum sudanense, Triticum durum, Triticum monococcum, Vanilla fragrans and Zea mays.
[0092] Preferred plants are from the genera Lolium and Trifolium. Particularly preferred are the species Lolium perenne and Trifolium repens.
[0093] Particularly preferred monocotyledonous plant species are: Lolium perenne and Oryza sativa.
[0094] The term "plant" is intended to include a whole plant, any part of a plant, propagules and progeny of a plant.
[0095] The term `propagule` means any part of a plant that may be used in reproduction or propagation, either sexual or asexual, including seeds and cuttings.
DETAILED DESCRIPTION
General Definitions
[0096] The term "comprising" as used in this specification means "consisting at least in part of". When interpreting each statement in this specification that includes the term "comprising", features other than that or those prefaced by the term may also be present. Related terms such as "comprise" and "comprises" are to be interpreted in the same manner.
[0097] In this specification where reference has been made to patent specifications, other external documents, or other sources of information, this is generally for the purpose of providing a context for discussing the features of the invention. Unless specifically stated otherwise, reference to such external documents is not to be construed as an admission that such documents, or such sources of information, in any jurisdiction, are prior art, or form part of the common general knowledge in the art.
Polynucleotides and Fragments
[0098] The term "polynucleotide(s)," as used herein, means a single or double-stranded deoxyribonucleotide or ribonucleotide polymer of any length but preferably at least 15 nucleotides, and include as non-limiting examples, coding and non-coding sequences of a gene, sense and antisense sequences complements, exons, introns, genomic DNA, cDNA, pre-mRNA, mRNA, rRNA, siRNA, miRNA, tRNA, ribozymes, recombinant polypeptides, isolated and purified naturally occurring DNA or RNA sequences, synthetic RNA and DNA sequences, nucleic acid probes, primers and fragments.
[0099] A "fragment" of a polynucleotide sequence provided herein is a subsequence of contiguous nucleotides that is capable of specific hybridization to a target of interest, e.g., a sequence that is at least 15 nucleotides in length. The fragments of the invention comprise 15 nucleotides, preferably at least 20 nucleotides, more preferably at least 30 nucleotides, more preferably at least 50 nucleotides, more preferably at least 50 nucleotides and most preferably at least 60 nucleotides of contiguous nucleotides of a polynucleotide of the invention. A fragment of a polynucleotide sequence can be used in antisense, gene silencing, triple helix or ribozyme technology, or as a primer, a probe, included in a microarray, or used in polynucleotide-based selection methods of the invention.
[0100] The term "primer" refers to a short polynucleotide, usually having a free 3'OH group, that is hybridized to a template and used for priming polymerization of a polynucleotide complementary to the target.
[0101] The term "probe" refers to a short polynucleotide that is used to detect a polynucleotide sequence, that is complementary to the probe, in a hybridization-based assay. The probe may consist of a "fragment" of a polynucleotide as defined herein.
Polypeptides and Fragments
[0102] The term "polypeptide", as used herein, encompasses amino acid chains of any length but preferably at least 5 amino acids, including full-length proteins, in which amino acid residues are linked by covalent peptide bonds. Polypeptides of the present invention may be purified natural products, or may be produced partially or wholly using recombinant or synthetic techniques. The term may refer to a polypeptide, an aggregate of a polypeptide such as a dimer or other multimer, a fusion polypeptide, a polypeptide fragment, a polypeptide variant, or derivative thereof.
[0103] A "fragment" of a polypeptide is a subsequence of the polypeptide that performs a function that is required for the biological activity and/or provides three dimensional structure of the polypeptide. The term may refer to a polypeptide, an aggregate of a polypeptide such as a dimer or other multimer, a fusion polypeptide, a polypeptide fragment, a polypeptide variant, or derivative thereof capable of performing the above enzymatic activity.
[0104] The term "isolated" as applied to the polynucleotide or polypeptide sequences disclosed herein is used to refer to sequences that are removed from their natural cellular environment. An isolated molecule may be obtained by any method or combination of methods including biochemical, recombinant, and synthetic techniques.
[0105] The term "recombinant" refers to a polynucleotide sequence that is removed from sequences that surround it in its natural context and/or is recombined with sequences that are not present in its natural context.
[0106] A "recombinant" polypeptide sequence is produced by translation from a "recombinant" polynucleotide sequence.
[0107] The term "derived from" with respect to polynucleotides or polypeptides of the invention being derived from a particular genera or species, means that the polynucleotide or polypeptide has the same sequence as a polynucleotide or polypeptide found naturally in that genera or species. The polynucleotide or polypeptide, derived from a particular genera or species, may therefore be produced synthetically or recombinantly.
Variants
[0108] As used herein, the term "variant" refers to polynucleotide or polypeptide sequences different from the specifically identified sequences, wherein one or more nucleotides or amino acid residues is deleted, substituted, or added. Variants may be naturally occurring allelic variants, or non-naturally occurring variants. Variants may be from the same or from other species and may encompass homologues, paralogues and orthologues. In certain embodiments, variants of the inventive polypeptides and polypeptides possess biological activities that are the same or similar to those of the inventive polypeptides or polypeptides. The term "variant" with reference to polypeptides and polypeptides encompasses all forms of polypeptides and polypeptides as defined herein.
Polynucleotide Variants
[0109] Variant polynucleotide sequences preferably exhibit at least 50%, more preferably at least 51%, more preferably at least 52%, more preferably at least 53%, more preferably at least 54%, more preferably at least 55%, more preferably at least 56%, more preferably at least 57%, more preferably at least 58%, more preferably at least 59%, more preferably at least 60%, more preferably at least 61%, more preferably at least 62%, more preferably at least 63%, more preferably at least 64%, more preferably at least 65%, more preferably at least 66%, more preferably at least 67%, more preferably at least 68%, more preferably at least 69%, more preferably at least 70%, more preferably at least 71%, more preferably at least 72%, more preferably at least 73%, more preferably at least 74%, more preferably at least 75%, more preferably at least 76%, more preferably at least 77%, more preferably at least 78%, more preferably at least 79%, more preferably at least 80%, more preferably at least 81%, more preferably at least 82%, more preferably at least 83%, more preferably at least 84%, more preferably at least 85%, more preferably at least 86%, more preferably at least 87%, more preferably at least 88%, more preferably at least 89%, more preferably at least 90%, more preferably at least 91%, more preferably at least 92%, more preferably at least 93%, more preferably at least 94%, more preferably at least 95%, more preferably at least 96%, more preferably at least 97%, more preferably at least 98%, and most preferably at least 99% identity to a specified polynucleotide sequence. Identity is found over a comparison window of at least 20 nucleotide positions, preferably at least 50 nucleotide positions, more preferably at least 100 nucleotide positions, and most preferably over the entire length of the specified polynucleotide sequence.
[0110] Polynucleotide sequence identity can be determined in the following manner. The subject polynucleotide sequence is compared to a candidate polynucleotide sequence using BLASTN (from the BLAST suite of programs, version 2.2.5 [Nov. 2002]) in bl2seq (Tatiana A. Tatusova, Thomas L. Madden (1999), "Blast 2 sequences--a new tool for comparing protein and nucleotide sequences", FEMS Microbiol Lett. 174:247-250), which is publicly available from NCBI (ftp://ftp.ncbi.nih.gov/blast/). The default parameters of bl2seq are utilized except that filtering of low complexity parts should be turned off.
[0111] The identity of polynucleotide sequences may be examined using the following unix command line parameters:
bl2seq -i nucleotideseq1 -j nucleotideseq2 -F F -p blastn
[0112] The parameter -F F turns off filtering of low complexity sections. The parameter -p selects the appropriate algorithm for the pair of sequences. The bl2seq program reports sequence identity as both the number and percentage of identical nucleotides in a line "Identities=".
[0113] Polynucleotide sequence identity may also be calculated over the entire length of the overlap between a candidate and subject polynucleotide sequences using global sequence alignment programs (e.g. Needleman, S. B. and Wunsch, C. D. (1970) J. Mol. Biol. 48, 443-453). A full implementation of the Needleman-Wunsch global alignment algorithm is found in the needle program in the EMBOSS package (Rice, P. Longden, I. and Bleasby, A. EMBOSS: The European Molecular Biology Open Software Suite, Trends in Genetics June 2000, vol 16, No 6. pp. 276-277) which can be obtained from http://www.hgmp.mrc.ac.uk/Software/EMBOSS/. The European Bioinformatics Institute server also provides the facility to perform EMBOSS-needle global alignments between two sequences on line at http:/www.ebi.ac.uk/emboss/align/.
[0114] Alternatively the GAP program may be used which computes an optimal global alignment of two sequences without penalizing terminal gaps. GAP is described in the following paper: Huang, X. (1994) On Global Sequence Alignment. Computer Applications in the Biosciences 10, 227-235.
[0115] Polynucleotide variants of the present invention also encompass those which exhibit a similarity to one or more of the specifically identified sequences that is likely to preserve the functional equivalence of those sequences and which could not reasonably be expected to have occurred by random chance. Such sequence similarity with respect to polypeptides may be determined using the publicly available bl2seq program from the BLAST suite of programs (version 2.2.5 [Nov. 2002]) from NCBI (ftp://ftp.ncbi.nih.gov/blast/).
[0116] The similarity of polynucleotide sequences may be examined using the following unix command line parameters:
[0117] bl2seq -i nucleotideseq1 -j nucleotideseq2 -F F -p tblastx
[0118] The parameter -F F turns off filtering of low complexity sections. The parameter -p selects the appropriate algorithm for the pair of sequences. This program finds regions of similarity between the sequences and for each such region reports an "E value" which is the expected number of times one could expect to see such a match by chance in a database of a fixed reference size containing random sequences. The size of this database is set by default in the bl2seq program. For small E values, much less than one, the E value is approximately the probability of such a random match.
[0119] Variant polynucleotide sequences preferably exhibit an E value of less than 1×10-10 more preferably less than 1×10-20, more preferably less than 1×10-30, more preferably less than 1×10-40, more preferably less than 1×10-50, more preferably less than 1×10-60, more preferably less than 1×10-70, more preferably less than 1×10-80, more preferably less than 1×10-90, more preferably less than 1×10-100, more preferably less than 1×10-110, and most preferably less than 1×10-120 when compared with any one of the specifically identified sequences.
[0120] Alternatively, variant polynucleotides of the present invention hybridize to a specified polynucleotide sequence, or complements thereof under stringent conditions.
[0121] The term "hybridize under stringent conditions", and grammatical equivalents thereof, refers to the ability of a polynucleotide molecule to hybridize to a target polynucleotide molecule (such as a target polynucleotide molecule immobilized on a DNA or RNA blot, such as a Southern blot or Northern blot) under defined conditions of temperature and salt concentration. The ability to hybridize under stringent hybridization conditions can be determined by initially hybridizing under less stringent conditions then increasing the stringency to the desired stringency.
[0122] With respect to polynucleotide molecules greater than about 100 bases in length, typical stringent hybridization conditions are no more than 25 to 30° C. (for example, 10° C.) below the melting temperature (Tm) of the native duplex (see generally, Sambrook et al., Eds, 1987, Molecular Cloning, A Laboratory Manual, 2nd Ed. Cold Spring Harbor Press; Ausubel et al., 1987, Current Protocols in Molecular Biology, Greene Publishing,). Tm for polynucleotide molecules greater than about 100 bases can be calculated by the formula Tm=81.5+0.41% (G+C-log(Na+). (Sambrook et al., Eds, 1987, Molecular Cloning, A Laboratory Manual, 2nd Ed. Cold Spring Harbor Press; Bolton and McCarthy, 1962, PNAS 84:1390). Typical stringent conditions for polynucleotide of greater than 100 bases in length would be hybridization conditions such as prewashing in a solution of 6×SSC, 0.2% SDS; hybridizing at 65° C., 6×SSC, 0.2% SDS overnight; followed by two washes of 30 minutes each in 1×SSC, 0.1% SDS at 65° C. and two washes of 30 minutes each in 0.2×SSC, 0.1% SDS at 65° C.
[0123] With respect to polynucleotide molecules having a length less than 100 bases, exemplary stringent hybridization conditions are 5 to 10° C. below Tm. On average, the Tm of a polynucleotide molecule of length less than 100 by is reduced by approximately (500/oligonucleotide length)° C.
[0124] With respect to the DNA mimics known as peptide nucleic acids (PNAs) (Nielsen et al., Science. 1991 Dec. 6; 254(5037):1497-500) Tm values are higher than those for DNA-DNA or DNA-RNA hybrids, and can be calculated using the formula described in Giesen et al., Nucleic Acids Res. 1998 Nov. 1; 26(21):5004-6. Exemplary stringent hybridization conditions for a DNA-PNA hybrid having a length less than 100 bases are 5 to 10° C. below the Tm.
[0125] Variant polynucleotides of the present invention also encompasses polynucleotides that differ from the sequences of the invention but that, as a consequence of the degeneracy of the genetic code, encode a polypeptide having similar activity to a polypeptide encoded by a polynucleotide of the present invention. A sequence alteration that does not change the amino acid sequence of the polypeptide is a "silent variation". Except for ATG (methionine) and TGG (tryptophan), other codons for the same amino acid may be changed by art recognized techniques, e.g., to optimize codon expression in a particular host organism.
[0126] Polynucleotide sequence alterations resulting in conservative substitutions of one or several amino acids in the encoded polypeptide sequence without significantly altering its biological activity are also included in the invention. A skilled artisan will be aware of methods for making phenotypically silent amino acid substitutions (see, e.g., Bowie et al., 1990, Science 247, 1306).
[0127] Variant polynucleotides due to silent variations and conservative substitutions in the encoded polypeptide sequence may be determined using the publicly available bl2seq program from the BLAST suite of programs (version 2.2.5 [Nov. 2002]) from NCBI (ftp://ftp.ncbi.nih.gov/blast/) via the tblastx algorithm as previously described.
Polypeptide Variants
[0128] The term "variant" with reference to polypeptides encompasses naturally occurring, recombinantly and synthetically produced polypeptides. Variant polypeptide sequences preferably exhibit at least 50%, more preferably at least 51%, more preferably at least 52%, more preferably at least 53%, more preferably at least 54%, more preferably at least 55%, more preferably at least 56%, more preferably at least 57%, more preferably at least 58%, more preferably at least 59%, more preferably at least 60%, more preferably at least 61%, more preferably at least 62%, more preferably at least 63%, more preferably at least 64%, more preferably at least 65%, more preferably at least 66%, more preferably at least 67%, more preferably at least 68%, more preferably at least 69%, more preferably at least 70%, more preferably at least 71%, more preferably at least 72%, more preferably at least 73%, more preferably at least 74%, more preferably at least 75%, more preferably at least 76%, more preferably at least 77%, more preferably at least 78%, more preferably at least 79%, more preferably at least 80%, more preferably at least 81%, more preferably at least 82%, more preferably at least 83%, more preferably at least 84%, more preferably at least 85%, more preferably at least 86%, more preferably at least 87%, more preferably at least 88%, more preferably at least 89%, more preferably at least 90%, more preferably at least 91%, more preferably at least 92%, more preferably at least 93%, more preferably at least 94%, more preferably at least 95%, more preferably at least 96%, more preferably at least 97%, more preferably at least 98%, and most preferably at least 99% identity to a sequences of the present invention. Identity is found over a comparison window of at least 20 amino acid positions, preferably at least 50 amino acid positions, more preferably at least 100 amino acid positions, and most preferably over the entire length of a polypeptide of the invention.
[0129] Polypeptide sequence identity can be determined in the following manner. The subject polypeptide sequence is compared to a candidate polypeptide sequence using BLASTP (from the BLAST suite of programs, version 2.2.5 [Nov. 2002]) in bl2seq, which is publicly available from NCBI (ftp://ftp.ncbi.nih.gov/blast/). The default parameters of bl2seq are utilized except that filtering of low complexity regions should be turned off.
[0130] Polypeptide sequence identity may also be calculated over the entire length of the overlap between a candidate and subject polynucleotide sequences using global sequence alignment programs. EMBOSS-needle (available at http:/www.ebi.ac.uk/emboss/align/) and GAP (Huang, X. (1994) On Global Sequence Alignment. Computer Applications in the Biosciences 10, 227-235.) as discussed above are also suitable global sequence alignment programs for calculating polypeptide sequence identity.
[0131] Use of BLASTP as described above is preferred for use in the determination of polypeptide variants according to the present invention.
[0132] Polypeptide variants of the present invention also encompass those which exhibit a similarity to one or more of the specifically identified sequences that is likely to preserve the functional equivalence of those sequences and which could not reasonably be expected to have occurred by random chance. Such sequence similarity with respect to polypeptides may be determined using the publicly available bl2seq program from the BLAST suite of programs (version 2.2.5 [Nov. 2002]) from NCBI (ftp://ftp.ncbi.nih.gov/blast/). The similarity of polypeptide sequences may be examined using the following unix command line parameters:
[0133] bl2seq -i peptideseq1 -j peptideseq2 -F F -p blastp
[0134] Variant polypeptide sequences preferably exhibit an E value of less than 1×10-10 more preferably less than 1×10-20, more preferably less than 1×10-30, more preferably less than 1×10-40, more preferably less than 1×10-50, more preferably less than 1×10-60, more preferably less than 1×10-70, more preferably less than 1×10-80, more preferably less than 1×10-90, more preferably less than 1×10-100 more preferably less than 1×10-110 more preferably less than 1×10-120 more preferably less than 1×10-130, more preferably less than 1×10-140 more preferably less than 1×10-150, more preferably less than 1×10-160, more preferably less than 1×10-170, more preferably less than 1×10-180, more preferably less than 1×10-190, more preferably less than 1×10-200, more preferably less than 1×10-210, more preferably less than 1×10-220, and most preferably less than 1×10-222 when compared with any one of the specifically identified sequences.
[0135] The parameter -F F turns off filtering of low complexity sections. The parameter -p selects the appropriate algorithm for the pair of sequences. This program finds regions of similarity between the sequences and for each such region reports an "E value" which is the expected number of times one could expect to see such a match by chance in a database of a fixed reference size containing random sequences. For small E values, much less than one, this is approximately the probability of such a random match.
[0136] Conservative substitutions of one or several amino acids of a described polypeptide sequence without significantly altering its biological activity are also included in the invention. A skilled artisan will be aware of methods for making phenotypically silent amino acid substitutions (see, e.g., Bowie et al., 1990, Science 247, 1306).
Constructs, Vectors and Components Thereof
[0137] The term "genetic construct" refers to a polynucleotide molecule, usually double-stranded DNA; which may have inserted into it another polynucleotide molecule (the insert polynucleotide molecule) such as, but not limited to, a cDNA molecule. A genetic construct may contain the necessary elements that permit transcribing the insert polynucleotide molecule, and, optionally, translating the transcript into a polypeptide. The insert polynucleotide molecule may be derived from the host cell, or may be derived from a different cell or organism and/or may be a recombinant polynucleotide. Once inside the host cell the genetic construct may become integrated in the host chromosomal DNA. The genetic construct may be linked to a vector.
[0138] The term "vector" refers to a polynucleotide molecule, usually double stranded DNA, which is used to transport the genetic construct into a host cell. The vector may be capable of replication in at least one additional host system, such as E. coli.
[0139] The term "expression construct" refers to a genetic construct that includes the necessary elements that permit transcribing the insert polynucleotide molecule, and, optionally, translating the transcript into a polypeptide. An expression construct typically comprises in a 5' to 3' direction: [0140] a) a promoter functional in the host cell into which the construct will be transformed, [0141] b) the polynucleotide to be expressed, and [0142] c) a terminator functional in the host cell into which the construct will be transformed.
[0143] The term "coding region" or "open reading frame" (ORF) refers to the sense strand of a genomic DNA sequence or a cDNA sequence that is capable of producing a transcription product and/or a polypeptide under the control of appropriate regulatory sequences. The coding sequence is identified by the presence of a 5' translation start codon and a 3' translation stop codon. When inserted into a genetic construct, a "coding sequence" is capable of being expressed when it is operably linked to promoter and terminator sequences.
[0144] "Operably-linked" means that the sequenced to be expressed is placed under the control of regulatory elements that include promoters, tissue-specific regulatory elements, temporal regulatory elements, enhancers, repressors and terminators.
[0145] The term "noncoding region" refers to untranslated sequences that are upstream of the translational start site and downstream of the translational stop site. These sequences are also referred to respectively as the 5' UTR and the 3' UTR. These regions include elements required for transcription initiation and termination and for regulation of translation efficiency.
[0146] Terminators are sequences, which terminate transcription, and are found in the 3' untranslated ends of genes downstream of the translated sequence. Terminators are important determinants of mRNA stability and in some cases have been found to have spatial regulatory functions.
[0147] The term "promoter" refers to nontranscribed cis-regulatory elements upstream of the coding region that regulate gene transcription. Promoters comprise cis-initiator elements which specify the transcription initiation site and conserved boxes such as the TATA box, and motifs that are bound by transcription factors.
[0148] A "transgene" is a polynucleotide that is taken from one organism and introduced into a different organism by transformation. The transgene may be derived from the same species or from a different species as the species of the organism into which the transgene is introduced.
[0149] An "inverted repeat" is a sequence that is repeated, where the second half of the repeat is in the complementary strand, e.g.,
TABLE-US-00001 (5')GATCTA.......TAGATC(3') (3')CTAGAT.......ATCTAG(5')
[0150] Read-through transcription will produce a transcript that undergoes complementary base-pairing to form a hairpin structure provided that there is a 3-5 bp spacer between the repeated regions.
[0151] A "transgenic plant" refers to a plant which contains new genetic material as a result of genetic manipulation or transformation. The new genetic material may be derived from a plant of the same species as the resulting transgenic plant or from a different species.
[0152] The terms "to alter expression of" and "altered expression" of a polynucleotide or polypeptide of the invention, are intended to encompass the situation where genomic DNA corresponding to a polynucleotide of the invention is modified thus leading to altered expression of a polynucleotide or polypeptide of the invention. Modification of the genomic DNA may be through genetic transformation or other methods known in the art for inducing mutations. The "altered expression" can be related to an increase or decrease in the amount of messenger RNA and/or polypeptide produced and may also result in altered activity of a polypeptide due to alterations in the sequence of a polynucleotide and polypeptide produced.
[0153] The term "seed yield" refers to the size and/or mass and/or number of seed or grain produced by a plant. Thus a plant with increased seed yield has increased size and/or mass and/or number of seed or grain relative to a suitable control plant at the same age or an equivalent developmental stage. Conversely, a plant with decreased seed yield has increased size and/or mass and/or number of seed or grain relative to a suitable control plant the same age or an equivalent development stage.
[0154] Suitable control plants may include non-transformed plants of the same species and variety, or plants of the same species or variety transformed with a control construct.
[0155] The term "altered" with reference to seed yield is intended to encompass either a decrease or increase in seed yield.
[0156] The term "modulating" with reference to seed yield is intended to encompass either decreasing or increasing seed yield.
[0157] The invention provides methods for producing and/or selecting plants with altered seed yield relative to suitable control plants, including plants with both increased and decreased seed yield and plants produced by such methods.
[0158] The invention provides a polynucleotide (SEQ ID NO: 34) encoding a polypeptide (SEQ ID NO:1) which modulates seed yield in plants. The invention provides polynucleotide variants of SEQ ID NO:34 (SEQ ID NO: 35 to 65) which encode polypeptide variants of SEQ ID NO: 1 (SEQ ID NO:2 to 31). The applicants have also identified a consensus polypeptide sequence (SEQ ID NO: 32) present in SEQ ID NO: 1 to 31 and a second consensus polypeptide sequence (SEQ ID NO:33) present in the sequences from monocotyledonous plants selected from within SEQ ID NO:1 to 31.
Methods for Isolating or Producing Polynucleotides
[0159] The polynucleotide molecules of the invention can be isolated by using a variety of techniques known to those of ordinary skill in the art. By way of example, such polynucleotides can be isolated through use of the polymerase chain reaction (PCR) described in Mullis et al., Eds. 1994 The Polymerase Chain Reaction, Birkhauser, incorporated herein by reference. The polypeptides of the invention can be amplified using primers, as defined herein, derived from the polynucleotide sequences of the invention.
[0160] Further methods for isolating polynucleotides, of the invention or useful in the methods of the invention, include use of all, or portions of, the polynucleotides set forth herein as hybridization probes. The technique of hybridizing labeled polynucleotide probes to polynucleotides immobilized on solid supports such as nitrocellulose filters or nylon membranes, can be used to screen the genomic or cDNA libraries. Exemplary hybridization and wash conditions are: hybridization for 20 hours at 65° C. in 5.0×SSC, 0.5% sodium dodecyl sulfate, 1X Denhardt's solution; washing (three washes of twenty minutes each at 55° C.) in 1.0×SSC, 1% (w/v) sodium dodecyl sulfate, and optionally one wash (for twenty minutes) in 0.5 X SSC, 1% (w/v) sodium dodecyl sulfate, at 60° C. An optional further wash (for twenty minutes) can be conducted under conditions of 0.1×SSC, 1% (w/v) sodium dodecyl sulfate, at 60° C.
[0161] The polynucleotide fragments of the invention may be produced by techniques well-known in the art such as restriction endonuclease digestion and oligonucleotide synthesis.
[0162] A partial polynucleotide sequence may be used, in methods well-known in the art to identify the corresponding full length polynucleotide sequence. Such methods include PCR-based methods, 5'RACE (Frohman M A, 1993, Methods Enzymol. 218: 340-56) and hybridization-based method, computer/database-based methods. Further, by way of example, inverse PCR permits acquisition of unknown sequences, flanking the polynucleotide sequences disclosed herein, starting with primers based on a known region (Triglia et al., 1998, Nucleic Acids Res 16, 8186, incorporated herein by reference). The method uses several restriction enzymes to generate a suitable fragment in the known region of a gene. The fragment is then circularized by intramolecular ligation and used as a PCR template. Divergent primers are designed from the known region. In order to physically assemble full-length clones, standard molecular biology approaches can be utilized (Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Press, 1987).
[0163] It may be beneficial, when producing a transgenic plant from a particular species, to transform such a plant with a sequence or sequences derived from that species. The benefit may be to alleviate public concerns regarding cross-species transformation in generating transgenic organisms. Additionally when down-regulation of a gene is the desired result, it may be necessary to utilise a sequence identical (or at least highly similar) to that in the plant, for which reduced expression is desired. For these reasons among others, it is desirable to be able to identify and isolate orthologues of a particular gene in several different plant species. Variants (including orthologues) may be identified by the methods described.
Methods for Identifying Variants
Physical Methods
[0164] Variant polynucleotides may be identified using PCR-based methods (Mullis et al., Eds. 1994 The Polymerase Chain Reaction, Birkhauser). Typically, the polynucleotide sequence of a primer, useful to amplify variant polynucleotide molecules PCR, may be based on a sequence encoding a conserved region of the corresponding amino acid sequence.
[0165] Alternatively library screening methods, well known to those skilled in the art, may be employed (Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Press, 1987). When identifying variants of the probe sequence, hybridization and/or wash stringency will typically be reduced relatively to when exact sequence matches are sought.
[0166] Polypeptide variants may also be identified by physical methods, for example by screening expression libraries using antibodies raised against polypeptides of the invention (Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Press, 1987) or by identifying polypeptides from natural sources with the aid of such antibodies.
Computer Based Methods
[0167] Polynucleotide and polypeptide variants, may also be identified by computer-based methods well-known to those skilled in the art, using public domain sequence alignment algorithms and sequence similarity search tools to search sequence databases (public domain databases include Genbank, EMBL, Swiss-Prot, PIR and others). See, e.g., Nucleic Acids Res. 29: 1-10 and 11-16, 2001 for examples of online resources. Similarity searches retrieve and align target sequences for comparison with a sequence to be analyzed (i.e., a query sequence). Sequence comparison algorithms use scoring matrices to assign an overall score to each of the alignments.
[0168] An exemplary family of programs useful for identifying variants in sequence databases is the BLAST suite of programs (version 2.2.5 [Nov. 2002]) including BLASTN, BLASTP, BLASTX, tBLASTN and tBLASTX, which are publicly available from (ftp://ftp.ncbi.nih.gov/blast/) or from the National Center for Biotechnology Information (NCBI), National Library of Medicine, Building 38A, Room 8N805, Bethesda, Md. 20894 USA. The NCBI server also provides the facility to use the programs to screen a number of publicly available sequence databases. BLASTN compares a nucleotide query sequence against a nucleotide sequence database. BLASTP compares an amino acid query sequence against a protein sequence database. BLASTX compares a nucleotide query sequence translated in all reading frames against a protein sequence database. tBLASTN compares a protein query sequence against a nucleotide sequence database dynamically translated in all reading frames. tBLASTX compares the six-frame translations of a nucleotide query sequence against the six-frame translations of a nucleotide sequence database. The BLAST programs may be used with default parameters or the parameters may be altered as required to refine the screen.
[0169] The use of the BLAST family of algorithms, including BLASTN, BLASTP, and BLASTX, is described in the publication of Altschul et al., Nucleic Acids Res. 25: 3389-3402, 1997.
[0170] The "hits" to one or more database sequences by a queried sequence produced by BLASTN, BLASTP, BLASTX, tBLASTN, tBLASTX, or a similar algorithm, align and identify similar portions of sequences. The hits are arranged in order of the degree of similarity and the length of sequence overlap. Hits to a database sequence generally represent an overlap over only a fraction of the sequence length of the queried sequence.
[0171] The BLASTN, BLASTP, BLASTX, tBLASTN and tBLASTX algorithms also produce "Expect" values for alignments. The Expect value (E) indicates the number of hits one can "expect" to see by chance when searching a database of the same size containing random contiguous sequences. The Expect value is used as a significance threshold for determining whether the hit to a database indicates true similarity. For example, an E value of 0.1 assigned to a polynucleotide hit is interpreted as meaning that in a database of the size of the database screened, one might expect to see 0.1 matches over the aligned portion of the sequence with a similar score simply by chance. For sequences having an E value of 0.01 or less over aligned and matched portions, the probability of finding a match by chance in that database is 1% or less using the BLASTN, BLASTP, BLASTX, tBLASTN or tBLASTX algorithm.
[0172] Multiple sequence alignments of a group of related sequences can be carried out with DbCLUSTAL (Thompson J. D., Plewnial F., Thierry J.-C. and Poch O. (2000) Rapid and reliable global multiple alignments of protein sequences detected by database searches. Nucleic Acid Research, Vol. 28, No 15: 2919-2926, http://www.ebi.ac.uk/cgi-bin/dbclustal/submit) or CLUSTALW (Thompson, J. D., Higgins, D. G. and Gibson, T. J. (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22:4673-4680, http://www-igbmc.u-strasbg.fr/BioInfo/ClustalW/Top.html) or T-COFFEE (Cedric Notredame, Desmond G. Higgins, Jaap Hering a, T-Coffee: A novel method for fast and accurate multiple sequence alignment, J. Mol. Biol. (2000) 302: 205-217)) or PILEUP, which uses progressive, pairwise alignments. (Feng and Doolittle, 1987, J. Mol. Evol. 25, 351).
[0173] Pattern recognition software applications are available for finding motifs or signature sequences. For example, MEME (Multiple Em for Motif Elicitation) finds motifs and signature sequences in a set of sequences, and MAST (Motif Alignment and Search Tool) uses these motifs to identify similar or the same motifs in query sequences. The MAST results are provided as a series of alignments with appropriate statistical data and a visual overview of the motifs found. MEME and MAST were developed at the University of California, San Diego.
[0174] PROSITE (Bairoch and Bucher, 1994, Nucleic Acids Res. 22, 3583; Hofmann et al., 1999, Nucleic Acids Res. 27, 215) is a method of identifying the functions of uncharacterized proteins translated from genomic or cDNA sequences. The PROSITE database (www.expasy.org/prosite) contains biologically significant patterns and profiles and is designed so that it can be used with appropriate computational tools to assign a new sequence to a known family of proteins or to determine which known domain(s) are present in the sequence (Falquet et al., 2002, Nucleic Acids Res. 30, 235). Prosearch is a tool that can search SWISS-PROT and EMBL databases with a given sequence pattern or signature.
Methods for Isolating Polypeptides
[0175] The polypeptides of the invention, including variant polypeptides, may be prepared using peptide synthesis methods well known in the art such as direct peptide synthesis using solid phase techniques (e.g. Stewart et al., 1969, in Solid-Phase Peptide Synthesis, WH Freeman Co, San Francisco Calif., or automated synthesis, for example using an Applied Biosystems 431A Peptide Synthesizer (Foster City, Calif.). Mutated forms of the polypeptides may also be produced during such syntheses.
[0176] The polypeptides and variant polypeptides of the invention may also be purified from natural sources using a variety of techniques that are well known in the art (e.g. Deutscher, 1990, Ed, Methods in Enzymology, Vol. 182, Guide to Protein Purification).
[0177] Alternatively the polypeptides and variant polypeptides of the invention may be expressed recombinantly in suitable host cells and separated from the cells as discussed below.
Methods for Producing Constructs and Vectors
[0178] The genetic constructs of the present invention comprise one or more polynucleotide sequences of the invention and/or polynucleotides encoding polypeptides of the invention, and may be useful for transforming, for example, bacterial, fungal, insect, mammalian or plant organisms. The genetic constructs of the invention are intended to include expression constructs as herein defined.
[0179] Methods for producing and using genetic constructs and vectors are well known in the art and are described generally in Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Press, 1987; Ausubel et al., Current Protocols in Molecular Biology, Greene Publishing, 1987).
Methods for Producing Host Cells Comprising Constructs and Vectors
[0180] The invention provides a host cell which comprises a genetic construct or vector of the invention. Host cells may be derived from, for example, bacterial, fungal, insect, mammalian or plant organisms.
[0181] Host cells comprising genetic constructs, such as expression constructs, of the invention are useful in methods well known in the art (e.g. Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Press, 1987; Ausubel et al., Current Protocols in Molecular Biology, Greene Publishing, 1987) for recombinant production of polypeptides of the invention. Such methods may involve the culture of host cells in an appropriate medium in conditions suitable for or conducive to expression of a polypeptide of the invention. The expressed recombinant polypeptide, which may optionally be secreted into the culture, may then be separated from the medium, host cells or culture medium by methods well known in the art (e.g. Deutscher, Ed, 1990, Methods in Enzymology, Vol 182, Guide to Protein Purification).
[0182] Host cells of the invention may also be useful in methods for production of an enzymatic product generated by an expressed polypeptide of the invention. Such methods may involve culturing the host cells of the invention in a medium suitable for expression of a recombinant polypeptide of the invention, optionally in the presence of additional enzymatic substrate for the expressed polypeptide of the invention. The enzymatic product produced may then be separated from the host cells or medium by a variety of art standard methods.
Methods for Producing Plant Cells and Plants Comprising Constructs and Vectors
[0183] The invention further provides plant cells which comprise a genetic construct of the invention, and plant cells modified to alter expression of a polynucleotide or polypeptide of the invention. Plants comprising such cells also form an aspect of the invention.
[0184] Production of plants altered in seed yield may be achieved through methods of the invention. Such methods may involve the transformation of plant cells and plants, with a construct designed to alter expression of a polynucleotide or polypeptide capable of modulating seed yield in such plant cells and plants. Such methods also include the transformation of plant cells and plants with a combination of constructs designed to alter expression of one or more polypeptides or polypeptides capable of modulating seed yield in such plant cells and plants.
[0185] Methods for transforming plant cells, plants and portions thereof with polynucleotides are described in Draper et al., 1988, Plant Genetic Transformation and Gene Expression. A Laboratory Manual, Blackwell Sci. Pub. Oxford, p. 365; Potrykus and Spangenburg, 1995, Gene Transfer to Plants. Springer-Verlag, Berlin; and Gelvin et al., 1993, Plant Molecular Biol. Manual. Kluwer Acad. Pub. Dordrecht. A review of transgenic plants, including transformation techniques, is provided in Galun and Breiman, 1997, Transgenic Plants. Imperial College Press, London.
Methods for Genetic Manipulation of Plants
[0186] A number of strategies for genetically manipulating plants are available (e.g. Birch, 1997, Ann Rev Plant Phys Plant Mol Biol, 48, 297). For example, strategies may be designed to increase expression of a polynucleotide/polypeptide in a plant cell, organ and/or at a particular developmental stage where/when it is normally expressed or to ectopically express a polynucleotide/polypeptide in a cell, tissue, organ and/or at. a particular developmental stage which/when it is not normally expressed. The expressed polynucleotide/polypeptide may be derived from the plant species to be transformed or may be derived from a different plant species.
[0187] Transformation strategies may be designed to reduce expression of a polynucleotide/polypeptide in a plant cell, tissue, organ or at a particular developmental stage which/when it is normally expressed. Such strategies are known as gene silencing strategies.
[0188] Genetic constructs for expression of genes in transgenic plants typically include promoters for driving the expression of one or more cloned polynucleotide, terminators and selectable marker sequences to detest presence of the genetic construct in the transformed plant.
[0189] The promoters suitable for use in the constructs of this invention are functional in a cell, tissue or organ of a monocot or dicot plant and include cell-, tissue- and organ-specific promoters, cell cycle specific promoters, temporal promoters, inducible promoters, constitutive promoters that are active in most plant tissues, and recombinant promoters. Choice of promoter will depend upon the temporal and spatial expression of the cloned polynucleotide, so desired. The promoters may be those normally associated with a transgene of interest, or promoters which are derived from genes of other plants, viruses, and plant pathogenic bacteria and fungi. Those skilled in the art will, without undue experimentation, be able to select promoters that are suitable for use in modifying and modulating plant traits using genetic constructs comprising the polynucleotide sequences of the invention. Examples of constitutive plant promoters include the CaMV 35S promoter, the nopaline synthase promoter and the octopine synthase promoter, and the Ubi 1 promoter from maize. Plant promoters which are active in specific tissues, respond to internal developmental signals or external abiotic or biotic stresses are described in the scientific literature. Exemplary promoters are described, e.g., in WO 02/00894, which is herein incorporated by reference.
[0190] Exemplary terminators that are commonly used in plant transformation genetic construct include, e.g., the cauliflower mosaic virus (CaMV) 35S terminator, the Agrobacterium tumefaciens nopaline synthase or octopine synthase terminators, the Zea mays zin gene terminator, the Oryza sativa ADP-glucose pyrophosphorylase terminator and the Solanum tuberosum PI-II terminator.
[0191] Selectable markers commonly used in plant transformation include the neomycin phophotransferase II gene (NPT II) which confers kanamycin resistance, the aadA gene, which confers spectinomycin and streptomycin resistance, the phosphinothricin acetyl transferase (bar gene) for Ignite (AgrEvo) and Basta (Hoechst) resistance, and the hygromycin phosphotransferase gene (hpt) for hygromycin resistance.
[0192] Use of genetic constructs comprising reporter genes (coding sequences which express an activity that is foreign to the host, usually an enzymatic activity and/or a visible signal (e.g., luciferase, GUS, GFP) which may be used for promoter expression analysis in plants and plant tissues are also contemplated. The reporter gene literature is reviewed in Herrera-Estrella et al., 1993, Nature 303, 209, and Schrott, 1995, In: Gene Transfer to Plants (Potrykus, T., Spangenbert. Eds) Springer Verlag. Berline, pp. 325-336.
[0193] Gene silencing strategies may be focused on the gene itself or regulatory elements which effect expression of the encoded polypeptide. "Regulatory elements" is used here in the widest possible sense and includes other genes which interact with the gene of interest.
[0194] Genetic constructs designed to decrease or silence the expression of a polynucleotide/polypeptide of the invention may include an antisense copy of a polynucleotide of the invention. In such constructs the polynucleotide is placed in an antisense orientation with respect to the promoter and terminator.
[0195] An "antisense" polynucleotide is obtained by inverting a polynucleotide or a segment of the polynucleotide so that the transcript produced will be complementary to the mRNA transcript of the gene, e.g.,
TABLE-US-00002 5'GATCTA 3' 3'CTAGAT 5' (coding strand) (antisense strand) 3'CUAGAU 5' 5'GAUCUCG 3' mRNA antisense RNA
[0196] Genetic constructs designed for gene silencing may also include an inverted repeat. An `inverted repeat` is a sequence that is repeated where the second half of the repeat is in the complementary strand, e.g.,
TABLE-US-00003 5'-GATCTA.........TAGATC-3' 3'-CTAGAT.........ATCTAG-5'
[0197] The transcript formed may undergo complementary base pairing to form a hairpin structure. Usually a spacer of at least 3-5 bp between the repeated region is required to allow hairpin formation.
[0198] Another silencing approach involves the use of a small antisense RNA targeted to the transcript equivalent to an miRNA (Llave et al., 2002, Science 297, 2053). Use of such small antisense RNA corresponding to polynucleotide of the invention is expressly contemplated.
[0199] The term genetic construct as used herein also includes small antisense RNAs and other such polypeptides effecting gene silencing.
[0200] Transformation with an expression construct, as herein defined, may also result in gene silencing through a process known as sense suppression (e.g. Napoli et al., 1990, Plant Cell 2, 279; de Carvalho Niebel et al., 1995, Plant Cell, 7, 347). In some cases sense suppression may involve over-expression of the whole or a partial coding sequence but may also involve expression of non-coding region of the gene, such as an intron or a 5' or 3' untranslated region (UTR). Chimeric partial sense constructs can be used to coordinately silence multiple genes (Abbott et al., 2002, Plant Physiol. 128(3): 844-53; Jones et al., 1998, Planta 204: 499-505). The use of such sense suppression strategies to silence the expression of a polynucleotide of the invention is also contemplated.
[0201] The polynucleotide inserts in genetic constructs designed for gene silencing may correspond to coding sequence and/or non-coding sequence, such as promoter and/or intron and/or 5' or 3' UTR sequence, or the corresponding gene.
[0202] Other gene silencing strategies include dominant negative approaches and the use of ribozyme constructs (McIntyre, 1996, Transgenic Res, 5, 257)
[0203] Pre-transcriptional silencing may be brought about through mutation of the gene itself or its regulatory elements. Such mutations may include point mutations, frameshifts, insertions, deletions and substitutions.
[0204] The following are representative publications disclosing genetic transformation protocols that can be used to genetically transform the following plant species: Rice (Alam et al., 1999, Plant Cell Rep. 18, 572); maize (U.S. Pat. Nos. 5,177,010 and 5,981,840); wheat (Ortiz et al., 1996, Plant Cell Rep. 15, 1996, 877); tomato (U.S. Pat. No. 5,159,135); potato (Kumar et al., 1996 Plant J. 9: 821); cassaya (Li et al., 1996 Nat. Biotechnology 14, 736); lettuce (Michelmore et al., 1987, Plant Cell Rep. 6, 439); tobacco (Horsch et al., 1985, Science 227, 1229); cotton (U.S. Pat. Nos. 5,846,797 and 5,004,863); grasses (U.S. Pat. Nos. 5,187,073, 6,020,539); peppermint (Niu et al., 1998, Plant Cell Rep. 17, 165); citrus plants (Pena et al., 1995; Plant Sci. 104, 183); caraway (Krens et al., 1997, Plant Cell Rep, 17, 39); banana (U.S. Pat. No. 5,792,935); soybean (U.S. Pat. Nos. 5,416,011; 5,569,834; 5,824,877; 5,563,044,55 and 5,968,830); pineapple (U.S. Pat. No. 5,952,543); poplar (U.S. Pat. No. 4,795,855); monocots in general (U.S. Pat. Nos. 5,591,616 and 6,037,522); brassica (U.S. Pat. Nos. 5,188,985; 5,463,174 and 5,750,871); and cereals (U.S. Pat. No. 6,074,877). Other species are contemplated and suitable methods and protocols are available to in the scientific literature for use by those skilled in the art.
[0205] Several further methods known in the art may be employed to alter expression of a nucleotide and/or polypeptide of the invention. Such methods include but are not limited to Tilling (Till et al., 2003, Methods Mol Biol, 2%, 205), so called "Deletagene" technology (Li et al., 2001, Plant Journal 27(3), 235) and the use of artificial transcription factors such as synthetic zinc finger transcription factors. (e.g. Jouvenot et al., 2003, Gene Therapy 10, 513). Additionally antibodies or fragments thereof, targeted to a particular polypeptide may also be expressed in plants to modulate the activity of that polypeptide (Jobling et al., 2003, Nat. Biotechnol., 21(1), 35). Transposon tagging approaches may also be applied. Additionally peptides interacting with a polypeptide of the invention may be identified through technologies such as phase-display (Dyax Corporation). Such interacting peptides may be expressed in or applied to a plant to affect activity of a polypeptide of the invention. Use of each of the above approaches in alteration of expression of a nucleotide and/or polypeptide of the invention is specifically contemplated.
Methods for Selecting Plants
[0206] Methods are also provided for selecting plants with altered seed yield. Such methods involve testing of plants for altered for the expression of a polynucleotide or polypeptide of the invention. Such methods may be applied at a young age or early developmental stage when the altered seed yield may not necessarily be visible, to accelerate breeding programs directed toward improving seed yield.
[0207] The expression of a polynucleotide, such as a messenger RNA, is often used as an indicator of expression of a corresponding polypeptide. Exemplary methods for measuring the expression of a polynucleotide include but are not limited to Northern analysis, RT-PCR and dot-blot analysis (Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Press, 1987). Polynucleotides or portions of the polynucleotides of the invention are thus useful as probes or primers, as herein defined, in methods for the identification of plants with altered seed yield. The polypeptides of the invention may be used as probes in hybridization experiments, or as primers in PCR based experiments, designed to identify such plants.
[0208] Alternatively antibodies may be raised against polypeptides of the invention. Methods for raising and using antibodies are standard in the art (see for example: Antibodies, A Laboratory Manual, Harlow A Lane, Eds, Cold Spring Harbour Laboratory, 1998). Such antibodies may be used in methods to detect altered expression of polypeptides which modulate seed yield in plants. Such methods may include ELISA (Kemeny, 1991, A Practical Guide to ELISA, NY Pergamon Press) and Western analysis (Towbin & Gordon, 1994, J Immunol Methods, 72, 313).
[0209] These approaches for analysis of polynucleotide or polypeptide expression and the selection of plants with altered expression are useful in conventional breeding programs designed to produce varieties with altered seed yield.
Plants
[0210] The plants of the invention may be grown and either self-ed or crossed with a different plant strain and the resulting hybrids, with the desired phenotypic characteristics, may be identified. Two or more generations may be grown to ensure that the subject phenotypic characteristics are stably maintained and inherited. Plants resulting from such standard breeding approaches also form an aspect of the present invention.
[0211] Seed yield in a plant may also be altered through methods of the invention. Such methods may involve the transformation of plant cells and plants, with a construct of the invention designed to alter expression of a polynucleotide or polypeptide which modulates seed yield in such plant cells and plants. Such methods also include the transformation of plant cells and plants with a combination of the construct of the invention and one or more other constructs designed to alter expression of one or more polynucleotides or polypeptides which modulates seed yield in plants.
[0212] Exemplary methods for assessing seed yield in plants are provided in Boyes D C et al., 2001, Plant Cell. 13(7):1499-510; Lancashire P. D et al., 1991, Ann. Appl. Biol. 119:560-601, and in Example 1 below.
[0213] This invention may also be said broadly to consist in the parts, elements and features referred to or indicated in the specification of the application, individually or collectively, and any or all combinations of any two or more said parts, elements or features, and where specific integers are mentioned herein which have known equivalents in the art to which this invention relates, such known equivalents are deemed to be incorporated herein as if individually set forth.
BRIEF DESCRIPTION OF THE DRAWINGS
[0214] The present invention will be better understood with reference to the accompanying drawings in which:
[0215] FIG. 1 shows the output summary of a BLASTP search of the uniref100 database (version 2.0 MP-WashU [4 May 2006]) in which the ORF56 polypeptide was used as a seed sequence.
[0216] FIG. 2 shows a "Prettyplot" alignment of polypeptides (SEQ ID NO: 1 to 31) including ORF56 and variants thereof and illustrates a consensus region identified by the applicants which is present in all of the sequences.
[0217] FIG. 3 shows a "Prettyplot" alignment of polypeptides of the invention, including ORF56 SEQ ID NO:1 and sequences from all variants of SEQ ID NO:1 and illustrates a consensus GAD region identified by the applicants which is present in all of the such sequences.
[0218] FIG. 4 shows another "Prettyplot" alignment of polypeptides of the invention, including ORF 56 SEQ ID NO: 1 and sequence variants SEQ ID NO:2-31 and illustrates a consensus CaM region identified by the applicants which is present in all of the such sequences.
[0219] FIG. 5 shows a map of an over-expression vector, for plant transformation, comprising ORF56 cloned in sense orientation (SEQ ID NO:66).
[0220] FIG. 6 shows a DNA gel-blot analysis on genomic DNA from ORF56 T0 transgenic plants digested with a restriction enzyme and probed with a fragment of ORF56 coding sequence to determine gene copy number and to identify independent transformation events.
[0221] FIGS. 7a-7d show the growth parameters observed for transgenic ORF56 T1 plant lines compared to the best performing wild type control (Nipponbare). Where FIG. 7a. Plant height measurements from experiment 1, FIG. 7b. Plant tiller measurements from experiment 1, FIG. 7c. Plant height measurements from experiment 2, FIG. 7d. Plant tiller measurements from experiment 1.
[0222] FIGS. 8a-8e show the seed and grain characteristics for transgenic ORF56 T1 plant lines compared to the best performing wild type control (Nipponbare). Where FIG. 8a, Seed yield per plant in different ORF56 T1 lines, FIG. 8b Total number of seeds per plant in different ORF56 T1 lines, FIG. 8c Average mass of an individual seed in each ORF56 T1 line, FIG. 8d Binomial distribution for seed yields in different ORF56 T1 lines, FIG. 8e Shift in seed yield distribution in the different ORF56 T1 lines.
[0223] FIG. 9 shows the seeds/grain harvested from the best yielding control plant (Nipponbare) and ORF56 T1 plant.
[0224] FIG. 10 shows an alignment of the ORF56 polypeptide sequence (SEQ ID NO: 1) and all of the other variants sequences disclosed that are from monocotyledonous species. The position of a completely conserved motif within the GAD region is shown. The sequence of the completely conserved motif is shown in SEQ ID NO: 32.
[0225] FIG. 11 shows an alignment of the ORF56 polypeptide sequence (SEQ ID NO: 1) and all of the other variant sequences disclosed that are from dicotyledonous species. The position of a completely conserved motif within the GAD region is shown. This sequence motif is completely conserved in all of the dicotyledonous sequences and all of the monocotyledonous sequences (see FIG. 10) and is shown on SEQ ID NO: 33.
EXAMPLES
[0226] The invention will now be illustrated with reference to the following non-limiting examples.
Example 1
Altered Seed Yield by in-Plant Expression of a Polynucleotide of the Invention
ORF56
[0227] A polynucleotide designated ORF56 (SEQ ID NO:34) was identified in a ViaLactia Biosciences Ltd proprietary ryegrass (Lolium perenne) GeneThresher (Orion Genomics) genomic library. ORF56 appears to encode a polypeptide (SEQ ID NO:1) which is a glutamate decarboxylase (GAD). GAD catalyses the reaction of glutamate into carbon dioxide and gamma-aminobutyrate (GABA). GAD is believed to be essential for cytosolic pH regulation as well as basic morphological development. The synthesis of GABA is highly regulated under normal growth conditions and in response to stresses such as cold, heat, water or mechanical (Bouche et al 2004; Mayer et al 1990: Patterson and Graham 1987; Wallace et al. 1984). It has been shown that GABA stimulates ethylene production in sunflower, apparently by causing increases in ACC synthase mRNA accumulation, ACC levels, ACC oxidase mRNA levels and ACC oxidase activity, suggesting that GABA may play a role in signaling (Kathiresan et al 1997). High GABA has been reported to impair pollen tube growth, and consequently seed set, while lower levels are reported to be stimulatory (Updegraff and Preuss 2004). The glutamate decarboxylase encoded by ORF56 contains two major domains, the GAD catalytic domain and a second Calmodulin binding domain (CaM). CaM has been shown to stimulate GAD activity by binding to a C-terminal `extension` not found in prokaryotes such as E. coli or mammalian forms of GAD. Truncation of this domain results in shorter, more branched plants with delayed greening and lacking pollen (Baum et al 1996; Akama and Takaiwa 2007). Post-translational modifications of GAD may account for different phenotypes observed. GAD is a monomer in aqueous solutions. Normally, the binding of a Trp residue in the hydrophobic region of the peptide to the C-terminal domain of CaM (boxed residue in FIG. 4) initiates the peptide complex formation. Subsequently, the N-terminal lobe of CaM binds to the hydrophobic and positively charged residues of the region of the peptide 10-12 residues away from the Trp residue (Yuan and Vogel 1998). However, in perennial ryegrass, SEQ ID: 1, the CaM binding domain, lacks the hydrophobic residue Trp, but instead is replaced with a polar but non-charged Cys residue in a hydrophobic setting. The negative charges in perennial ryegrass CaM domain are also disposed in such a way that interaction of the N-terminal lobe of CaM with the region either N- or C-terminal to the GAD would not be energetically favourable, thereby facilitating binding of a second or multiple GAD peptides to the hydrophobic surface in the N-terminal region of CaM. This essentially results in the dimerization or multimerization of the GAD-Ca2+-CaM complex. There are possibilities for the GAD such dimerization, which seems to be induced by Ca2+-CaM binding (Yuan and Vogel 1998). In plants, there is evidence for the oligomerization of petunia GAD and it appears that only oligomerized GAD seem to be active in petunia (Baum et al 1996). In addition, various isoforms of active GAD extracted from barley were reported to have a mass of ˜256 kDa and ˜120 kDa (Inatomi and Slaughter 1975). The activity of the barley GADs were also reported to exhibit a reversible inhibition in the presence of 2-Mercaptoethanol. Given these evidences, it is not unreasonable to expect the Cys residue, at the normally Trp residue position in the CaM domain, to play a role in stabilizing the dimerized GAD-Ca2+-CaM complex.
ORF56 Variants
[0228] The polypeptide sequence encoded by the ORF56 was used as seed sequence to perform WU-blastp search against uniref100 database (2.0 MP-WashU [4 May 2006]) to identify variants of ORF56. The WU-blastp output summary is shown in FIG. 1. A cut-off e value of less than or equal to 5.5e-169, was identified as distinguishing variants of ORF56 from unrelated proteins, based upon assessment of the associated score value and annotations in the public database. Selected variant sequences were aligned using the DbCLUSTAL (Thompson J. D., Plewnial F., Thierry J.-C. and Poch O.: 2000), which is an interface to the popular multiple alignment program ClustalW. Aligned sequences were visualised using another EMBOSS tool called Prettyplot as shown in FIG. 2.
[0229] The variant polypeptide sequences of ORF56 are listed as SEQ ID NO:2-31 in the sequence listing. The corresponding polynucleotide sequences are listed as SEQ ID NO: 35-65.
[0230] All but four of the variant polypeptide sequences appear to have both a proper GAD catalytic domain and a proper CaM binding domain. Four of the sequences (polypeptide SEQ ID NO: 11, 15, 22 and 29; polynucleotide SEQ ID NO:61 to 66) appear to have a proper GAD catalytic domain with a variant CaM binding domain.
[0231] A conserved GAD polypeptide sequence region present in ORF56 and all of the identified variants of ORF 56 was identified using Prettyplot alignment as shown in FIG. 3.
[0232] A further conserved CaM polypeptide sequence region present in polypeptide sequences SEQ ID NO: 1-31 was also identified using Prettyplot alignment as shown in FIG. 4.
[0233] A completely conserved polypeptide sequence motif was identified in the GAD region in all of the variant sequences, and is shown on SEQ ID NO: 32.
[0234] A completely conserved polypeptide sequence motif was also identified in the GAD region in all of the variant sequences that are from monocotyledonous species and is shown in SEQ ID NO: 33.
Construction of a Vector for Over-Expression of ORF56 Via Plant Transformation
[0235] A vector for over-expression ORF56 was produced by standard molecular biology techniques. A map of the binary vector is shown in FIG. 5. The sequence of the vector is shown in SEQ ID NO: 66.
Plant Transformation
[0236] Agrobacterium tumefaciens strains can be transformed with binary plasmid DNA using either a freeze/thaw (Chen et. al 1994) or electroporation method (den Dulk-Ras A and Hooykaas P J.). Purified plasmid DNA of ORF56 was introduced into Agrobacterium strain EHA105 by electroporation and the suspension was incubated at 26° C. for 30 minutes. A small aliquot was plated on AB minimal medium (Schmidt-Eisenlohr et. al 1999) containing Kanamycin at 100 mg/L. Plates were incubated at 26° C. for 3 days and single colonies were tested for presence of the plasmid using construct specific primers and transformation confirmed.
[0237] Agrobacterium cultures were grown in AG minimal medium containing 100 mg/L kanamycin at 26° C. with shaking (200 rpm). The Agrobacterium suspensions were pelleted at 5,000 rpm for 5 minutes, washed once in basal MS medium containing 1% glucose and 3% sucrose, pH 5.2, and re-suspended in same medium containing 200 μM acetosyringone to OD600 0.6-0.8.
[0238] A. tumefaciens containing the binary vector ORF56 were used to co-cultivate at least 1,000 immature rice (Oryza sativa) cv. Nipponbare embryos. Immature seeds from rice were washed in sterile water and then surface sterilized with sodium hypochlorite containing 1.25% active chlorine with 10 μl, Tween® 20 for 20 minutes. After sterilization, the seeds were washed several times with sterile water and blotted dry on sterile filter paper (3M). The seeds were de-husked manually using sterile pair of forceps and the embryo dissected out with sterile knife. The isolated embryos were immersed in Agrobacterium suspension for 30 minutes with continuous shaking at 100 rpm in a 10 mL culture tube. The excess liquid was drained off and the embryos blotted on to sterile filter paper before placing them on to co-cultivation medium containing MS medium (Murashige and Skoog, 1964) supplemented with 3% sucrose, 1% glucose, 2 mg/L 2,4-D, 0.1 mg/L BA, 400 μM acetosyringone, pH 5.2 for 4 days in dark. After co-cultivation, the calli forming embryos were sub-cultured once every two weeks on selection medium consisting of MS medium supplemented with 3% sucrose, 1% glucose, 2 mg/L 2,4-D (2,4-dichlorophenoxy acetic acid), 0.1 mg/L BA (benzyl adenine) and containing 50 mg/L hygromycin and 300 mg/L Timentin® (ticarcillin+clavulanic acid) till at-least 30 healthy calli showing green spots indicative of healthy shoot emergence was achieved. Calli containing the green spots were transferred to selection medium lacking 2,4-D to regenerate a minimum of 10 transformed plants. Regenerated plants were rooted and then transplanted to six inch pots containing soil and plants grown in greenhouse. DNA gel-blot analysis was carried out (FIG. 6) to determine gene copy number and identify five independent transformation events. T1 seeds were harvested from the transformed plants (T0).
T1 Plant Phenotyping
[0239] Thirty seeds from Southern positive T0 plants were sown in individual cups containing cocopeat and twenty healthy plants out of them were transplanted in the green house. These plants were arranged using a CRD using the random numbers from a random table.
[0240] T1 plant phenotyping was carried out in two separate experiments. The first experiment involved progeny lines from T0 events 1129105 and 1129106 and Nipponbare (a wild-type control), and the second experiment involved progeny lines from T0 events 1129102, 1129103 and 112904 and Nipponbare (a wild-type control.)
Phenotypic Analysis of T0 Lines
[0241] The physiological state of T0 plants is presented in Table 1, below.
TABLE-US-00004 TABLE 1 Physiological measurements of T0 lines Pollen Productive Tillers/ Plant Seed T0 line fertility Total Number of Tillers height (cms) yield 1129102 72.2% 9/9 64.3 30 1129103 91.5% 14/15 69.6 30 1129104 79.7% 9/9 65.6 50 1129105 85.6% 8/8 84.2 130 1129106 81.5% 7/7 75.5 160
Phenotypic Analysis of T1 Lines
[0242] Plants height and tiller numbers were measured once every week post-transplanting until seed set was achieved. FIGS. 7a, b, c and d depict the growth parameters observed for these plants. Transgenic ORF56 plants (T1) were not different in terms of plant height and tillering capacity based upon standard statistical analysis. Transgenic ORF56 plants can be said to be normal in all aspects assessed (data not shown) except for seed yield, which was found in one of the plant progenies analysed to be as high as 3.55 times the normal seed yield.
[0243] FIG. 8a, b, c, d, and e describe the seed yield per plant, total number of seeds per plant, average mass of an individual seed in each line, binomial distribution for seed yields in different lines and shift in seed yield distribution in the lines analysed. It is evident from this analysis that the increase in seed yield is the result of an increase in seed number rather than an increase in individual seed weight (FIG. 8a, b and c). Given that the analysis was carried out using the segregating population in T1, it is not surprising that a shift is observed in the binomial distribution for seed yield trait in the transgenic populations investigated (FIGS. 8d and e). Conventional breeding techniques, such as single seed descent, can fix the trait for enhanced seed yield.
[0244] The seed yield from the best seed yielding plant from wild-type Nipponbare and the T10RF56 plant is presented in FIG. 9.
REFERENCES
[0245] Adams et al. 1991, Science 252:1651-1656. [0246] Akama, K and Takaiwa (2007) J Exp Bot.: 58 (10) 2699-2707. [0247] Baum G, Lev-Yadun S, Fridmann Y, Arazi T, Katsnelson H, Zik M, and Fromm H (1996) EMBO J.: 15 (12) 2988-2996. [0248] Bouche N, Fait A, Zik M, Fromm H. (2004) Plant Mol. Biol.; 55 (3): 315-25. [0249] Chen H, Nelson R S, Sherwood J L. (1994) Biotechniques; 16 (4): 664-8, 670. [0250] Chen et al. 2002, Nucleic Acids Res. 31:101-105 [0251] den Dulk-Ras A, Hooykaas P J. (1995) Methods Mol. Biol.; 55: 63-72. [0252] Inatomi, K and Slaughter, J C (1975) Biochem J. 147: 479-484. [0253] Kathiresan A, Tung P, Chinnappa C C, Reid D M (1997) Plant Physiol. 115: 129-135. [0254] Lee et al. 2003, PNAS 99:12257-12262 [0255] Lee and Lee, 2003 Plant Physiol. 132: 517-529 [0256] Mayer R R, Cherry J H, Rhodes D (1990) Plant Physiol. 94: 796-810. [0257] Murashige T, Skoog F (1962) Physiol Plant 15: 473-497 [0258] Patterson B D, Graham D (1987) In (DD Davies ed) "The Biochemistry of Plants", Vol 12, Academic Press, New York, pp. 153-199. [0259] Richmond and Somerville 2000, Current Opinion in Plant Biology. 3:108-116 [0260] Ruan et al. 2004, Trends in Biotechnology 22: 23-30. [0261] Schmidt-Eisenlohr H, Domke N, Angerer C, Wanner G, Zambryski P C, Baron C. (1999) J. Bacteriol.; 181 (24): 7485-92. [0262] Sun et al. 2004, BMC Genomics 5: 1.1-1.4 [0263] Thompson, J. D., Higgins, D. G. and Gibson, T. J. (1994) CABIOS, 10, 19-29. [0264] Updegraff E, Preuss D (2004) in International Arabidopsis Conference, Germany [0265] Velculescu et al. 1995, Science 270: 484-487 [0266] Wallace W, Secor J, Schrader L E (1984) Plant Physiol. 75: 170-175. [0267] Yuan, T and Vogel, H J (1998) J. Biol. Chem. 273 (46) 30328-30335.
[0268] The above examples illustrate practice of the invention. It will be appreciated by those skilled in the art that numerous variations and modifications may be made without departing from the spirit and scope of the invention.
SUMMARY OF SEQUENCES
TABLE-US-00005 [0269] SEQ ID NO: Sequence type Information Species 1 polypeptide ORF 56 Lolium perenne 2 polypeptide UniRef100_Q42521 Arabidopsis thaliana Glutamate decarboxylase 1 3 polypeptide UniRef100_Q42472 Arabidopsis thaliana Glutamate decarboxylase 2 4 polypeptide UniRef100_Q07346 Petunia hybrida Glutamate decarboxylase 5 polypeptide UniRef100_P54767 Lycopersicon esculentum Glutamate decarboxylase 6 polypeptide UniRef100_A0EJ88 Populus tremula × Glutamate decarboxylase Populus alba 7 polypeptide UniRef100_A2XEB3 Oryza sativa subsp. Putative uncharacterized indica protein 8 polypeptide UniRef100_A3AM59 Oryza sativa subsp. Putative uncharacterized japonica protein 9 polypeptide UniRef100_A5BI27 Vitis vinifera Putative uncharacterized protein 10 polypeptide UniRef100_A7P433 Vitis vinifera Chromosome chr1 scaffold_5, whole genome shotgun sequence 11 polypeptide UniRef100_A7P434 Vitis vinifera Chromosome chr1 scaffold_5, whole genome shotgun sequence 12 polypeptide UniRef100_O81101 Nicotiana tabacum Glutamate decarboxylase isozyme 2 13 polypeptide UniRef100_O81102 Nicotiana tabacum Glutamate decarboxylase isozyme 1 14 polypeptide UniRef100_P93369 Nicotiana tabacum Glutamate decarboxylase 15 polypeptide UniRef100_Q01J81 Oryza sativa OSIGBa0152K17.6 16 polypeptide UniRef100_Q1I1D8 Citrus sinensis Glutamate decarboxylase 17 polypeptide UniRef100_Q6ASV4 Oryza sativa subsp. Putative glutamate japonica decarboxylase isozyme 18 polypeptide UniRef100_Q6Q4I1 Brassica juncea Glutamate decarboxylase 4b 19 polypeptide UniRef100_Q6Q4I2 Brassica juncea Glutamate decarboxylase 4a 20 polypeptide UniRef100_Q6Q4I3 Brassica juncea Glutamate decarboxylase 2 21 polypeptide UniRef100_Q6YSB2 Oryza sativa subsp. japonica 22 polypeptide UniRef100_Q7XZU7 Hordeum vulgare GAD1 23 polypeptide UniRef100_Q84U04 Oryza sativa subsp. Glutamate decarboxylase japonica 24 polypeptide UniRef100_Q8LFR4 Arabidopsis thaliana Glutamate decarboxylase, putative 25 polypeptide UniRef100_Q8LKR4 Nicotiana tabacum Glutamate decarboxylase 26 polypeptide UniRef100_Q944L6 Arabidopsis thaliana At1g65960/F12P19_12 27 polypeptide UniRef100_Q94KK8 Nicotiana tabacum Glutamate decarboxylase isozyme 3 28 polypeptide UniRef100_Q9AR41 Oryza sativa subsp. Glutamate decaroxylase japonica 29 polypeptide UniRef100_Q9AR41 Oryza sativa subsp. Glutamate decarboxylase japonica 30 polypeptide UniRef100_Q9AT17 Nicotiana tabacum Glutamate decarboxylase isozyme 1 31 polypeptide UniRef100_Q9LSH2 Arabidopsis thaliana Glutamate dearboxylase 32 polypeptide GAD plant consensus Artificial 33 polypeptide CaM monocot plant Artificial consensus 34 polynucleotide ORF 56 Lolium perenne 35 polynucleotide XP_462650.10 Oryza sativa 36 polynucleotide AAN46801.1 Arabidopsis thaliana 37 polynucleotide XP_482841.1 Oryza sativa 38 polynucleotide AAS79671.1 Brassica juncea 39 polynucleotide AAS79670.1 Brassica juncea 40 polynucleotide AAS79669.1 Brassica juncea 41 polynucleotide BAB02870.1 Arabidopsis thaliana 42 polynucleotide AAM70569.1 Arabidopsis thaliana 43 polynucleotide BAC42751.1 Arabidopsis thaliana 44 polynucleotide AAK38667.1 | AF353615_1 Nicotiana tabacum 45 polynucleotide AAK18620.1 | AF352732_1 Nicotiana tabacum 46 polynucleotide AAP85548.1 Glycine Max 47 polynucleotide AAM48129.1 | AF506366_1 Nicotiana tabacum 48 polynucleotide AAM61251.1 Arabidopsis thaliana 49 polynucleotide AAP79441.1 Oryza sativa 50 polynucleotide AAL91148.1 Arabidopsis thaliana 51 polynucleotide XP_482840.1 Oryza sativa 52 polynucleotide AAL16126.1 | AF428294_1 Arabidopsis thaliana 53 polynucleotide AAC39483.1 Nicotiana tabacum 54 polynucleotide AAM70582.1 Arabidopsis thaliana 55 polynucleotide AAC24195.1 Nicotiana tabacum 56 polynucleotide AAB40608.1 Nicotiana tabacum 57 polynucleotide AAA93132.1 Arabidopsis thaliana 58 polynucleotide A48767 Petunia hybrida 59 polynucleotide AAL83983.1 Oryza sativa 60 polynucleotide CAA56812.1 Lycopersicon esculentum 61 polynucleotide XP_462654.1 Oryza sativa 62 polynucleotide AAM7304.1 | AF377946_6 Oryza sativa 63 polynucleotide BAB32871.1 Oryza sativa 64 polynucleotide AAT77842.1 Oryza sativa 65 polynucleotide AAP46640.1 Hordeum vulgare 66 polynucleotide vector Artificial 67 polynucleotide U10034.1 | codes AAA93132 Arabidopsis thaliana and UniRef100_Q42521 68 polynucleotide U46665.1 | codes AAC33485 Arabidopsis thaliana and UniRef100_Q42472 69 polynucleotide L16797.1 codes AAA33709 Petunia × hybrida and UniRef100_Q07346 70 polynucleotide X80840.1 | codes CAA56812 Solanum lycopersicum and UniRef100_P54767 71 polynucleotide DQ125945.1 | codes Populus tremula × Populus alba ABA18652 and UniRef100_A0EJ88 72 polynucleotide CM000128.1 | codes Oryza sativa Indica EAY89173 and UniRef100_A2XEB3 73 polynucleotide CM000140.1 | codes Oryza sativa Japonica EAZ28398 and UniRef100_A3AM59 74 polynucleotide AM460203.2 | codes Vitis vinifera CAN67952 and UniRef100_A5BI27 75 polynucleotide CU459222.1 | codes Vitis vinifera CAO42441 and UniRef100_A7P433 76 polynucleotide CU459222.1 | codes Vitis vinifera CAO42442 and UniRef100_A7P434 77 polynucleotide AF020424.1 | codes Nicotiana tabacum AAC39483 and UniRef100_O81101 78 polynucleotide AF020425.1 | codes Nicotiana tabacum AAC24195 and UniRef100_O81102 79 polynucleotide U54774.1 | codes AAB40608 Nicotiana tabacum and UniRef100_P93369 80 polynucleotide CR855179.1 | codes Oryza sativa CAH67194 and UniRef100_Q01J81 81 polynucleotide DQ001727.1 | codes Citrus sinensis AAZ05070 and UniRef100_Q1I1D8 82 polynucleotide DP000009.2 | codes Oryza sativa Japonica ABF98584 and UniRef100_Q6ASV4 83 polynucleotide AY559320.1 | codes Brassica juncea AAS79671 and UniRef100_Q6Q4I1 84 polynucleotide AY559319.1 | codes Brassica juncea AAS79670 and UniRef100_Q6Q4I2 85 polynucleotide AY559318.1 | codes Brassica juncea AAS79669 and UniRef100_Q6Q4I3 86 polynucleotide AP006461.3 | codes Oryza sativa Japonica BAD10771 and UniRef100_Q6YSB2 87 polynucleotide AF521177.1 | codes Hordeum vulgare AAP46640 and UniRef100_Q7XZU7 88 polynucleotide AY318775.1 | codes Oryza sativa Japonica AAP79441 and UniRef100_Q84U04 89 polynucleotide AY084689.1 | codes Arabidopsis thaliana AAM61251 and UniRef100_Q8LFR4 90 polynucleotide AF506366.1 | codes Nicotiana tabacum AAM48129 and UniRef100_Q8LKR4 91 polynucleotide AF428294.1 | codes Arabidopsis thaliana AAL16126 and UniRef100_Q944L6 92 polynucleotide AF353615.1 | codes Nicotiana tabacum AAK38667 and UniRef100_Q94KK8 93 polynucleotide AB056061.1 | codes Oryza sativa Japonica BAB32869 and UniRef100_Q9AR41 94 polynucleotide AB056061.1 | codes Oryza sativa Japonica BAB32869 and UniRef100_Q9AR41 95 polynucleotide AF352732.1 | codes Nicotiana tabacum AAK18620 and UniRef100_Q9AT17 96 polynucleotide AB026646.1 | codes Arabidopsis thaliana BAB02870 and UniRef100_Q9LSH2 97 polypeptide XP_462650 Oryza sativa 98 polypeptide AAN46801.1 Arabidopsis thaliana 99 polypeptide XP_482841.1 Oryza sativa 100 polypeptide AAS79671.1 Brassica juncea 101 polypeptide AAS79670.1 Brassica juncea 102 polypeptide AAS79669.1 Brassica juncea 103 polypeptide BAB02870.1 Arabidopsis thaliana 104 polypeptide AAM70569.1 Arabidopsis thaliana 105 polypeptide BAC42751.1 Arabidopsis thaliana 106 polypeptide AAK38667.1 | AF353615_1 Nicotiana tabacum 107 polypeptide AAK18620.1 | AF352732_1 Nicotiana tabacum 108 polypeptide AAP85548.1 Glycine max 109 polypeptide AAM48129.1 | AF506366_1 Nicotiana tabacum 110 polypeptide AAM61251.1 Arabidopsis thaliana 111 polypeptide AAP79441.1 Oryza sativa 112 polypeptide AAL91148.1 Arabidopsis thaliana 113 polypeptide XP_482840.1 Oryza sativa 114 polypeptide AAL16126.1 | AF428294_1 Arabidopsis thaliana 115 polypeptide AAC39483.1 Nicotiana tabacum 116 polypeptide AAM70582.1 Arabidopsis thaliana 117 polypeptide AAC24195.1 Nicotiana tabacum 118 polypeptide AAB40608.1 Nicotiana tabacum 119 polypeptide AAA93132.1 Arabidopsis thaliana 120 polypeptide A48767 Petunia × hybrida 121 polypeptide AAL83983.1 Oryza sativa 122 polypeptide CAA56812.1 Lycopersicon esculentum 123 polypeptide XP_46254.1 Oryza sativa 124 polypeptide AAM47304.1 | AF377946_6 Oryza sativa 125 polypeptide BAB32871.1 Oryza sativa 126 polypeptide AAT77842.1 Oryza sativa 127 polypeptide AAP46640.1 Hordeum vulgare
Sequence CWU
1
1271502PRTLolium perenne 1Met Val Leu Thr Val Ala Ala Thr Ala Ala Asp Thr
Ala Glu Pro Leu1 5 10
15Asn Ser Thr Phe Phe Ala Thr Arg Tyr Val Arg Asp Gln Leu Pro Arg
20 25 30Tyr Arg Met Pro Glu Asn Ser
Ile Pro Lys Glu Ala Ala Tyr Gln Ile 35 40
45Ile Ser Asp Glu Leu Met Leu Asp Gly Asn Pro Arg Leu Asn Leu
Ala 50 55 60Ser Phe Val Thr Thr Arg
Met Glu Pro Glu Val Gly Lys Leu Ile Met65 70
75 80Asp Ser Val Asn Lys Asn Tyr Val Asp Met Asp
Glu Tyr Pro Val Thr 85 90
95Thr Glu Leu Gln Asn Arg Cys Val Asn Met Ile Ala His Leu Phe Asn
100 105 110Ala Pro Ile Lys Glu Glu
Glu Thr Ala Ile Gly Val Ala Thr Val Gly 115 120
125Ser Ser Glu Ala Ile Met Leu Ala Gly Leu Ala Phe Lys Arg
Lys Trp 130 135 140Ala Asn Lys Arg Lys
Glu Glu Gly Lys Pro Tyr Asp Lys Pro Asn Ile145 150
155 160Val Thr Gly Ala Asn Val Gln Val Cys Trp
Glu Lys Phe Ala Arg Tyr 165 170
175Phe Glu Val Glu Leu Lys Glu Val Lys Leu Thr Glu Gly Tyr Tyr Val
180 185 190Met Asp Pro Leu Lys
Ala Val Glu Met Val Asp Glu Asn Thr Ile Cys 195
200 205Val Ala Ala Ile Leu Gly Ser Thr Leu Thr Gly Glu
Tyr Glu Asp Val 210 215 220Lys Leu Leu
Asn Asp Leu Leu Val Glu Lys Asn Lys Lys Thr Gly Phe225
230 235 240Asn Val Pro Ile His Val Asp
Ala Ala Ser Gly Gly Phe Ile Ala Pro 245
250 255Phe Leu His Pro Glu Leu Glu Trp Asp Phe Arg Leu
Pro Leu Val Lys 260 265 270Ser
Ile Asn Val Ser Gly His Lys Tyr Gly Leu Val Tyr Pro Gly Val 275
280 285Gly Trp Val Ile Trp Arg Ser Lys Asp
Asp Leu Pro Gly Glu Leu Ile 290 295
300Phe His Ile Asn Tyr Leu Gly Thr Asp Gln Pro Thr Phe Thr Leu Asn305
310 315 320Phe Ser Lys Gly
Ala Ser Gln Ile Ile Ala Gln Tyr Tyr Gln Leu Ile 325
330 335Arg Leu Gly Phe Glu Gly Tyr Lys His Ile
Met Glu Asn Cys Gln Ala 340 345
350Asn Ala Thr Ala Leu Arg Glu Gly Leu Glu Ala Thr Gly Arg Phe Asp
355 360 365Ile Leu Ser Lys Glu Asp Gly
Val Pro Leu Val Ala Ile Arg Leu Lys 370 375
380Asp Ser Ser Lys Phe Ser Val Phe Asp Ile Ser Glu Asn Leu Arg
Arg385 390 395 400Phe Gly
Trp Ile Val Pro Ala Tyr Thr Met Pro Ala Asp Ala Glu His
405 410 415Val Ala Val Leu Arg Val Val
Ile Arg Glu Asp Phe Asn Arg Ser Leu 420 425
430Ser Gln Arg Leu Leu Ala Asp Ile Asn Arg Val Val Gln Glu
Leu Asp 435 440 445Ala His Ala Val
His Ala Ile Lys Met Thr Thr Ala Ile Ala Thr Gln 450
455 460Thr Gly Glu Gly Ala Glu Asp Gly Val Val Thr Lys
Lys Gly Val Leu465 470 475
480Asp Ile Glu Lys Glu Phe Ala Ala Ala Cys Lys Asp Leu Val Lys Asn
485 490 495Lys Lys Thr Gly Pro
Cys 5002502PRTArabidopsis thaliana 2Met Val Leu Ser His Ala
Val Ser Glu Ser Asp Val Ser Val His Ser1 5
10 15Thr Phe Ala Ser Arg Tyr Val Arg Thr Ser Leu Pro
Arg Phe Lys Met 20 25 30Pro
Glu Asn Ser Ile Pro Lys Glu Ala Ala Tyr Gln Ile Ile Asn Asp 35
40 45Glu Leu Met Leu Asp Gly Asn Pro Arg
Leu Asn Leu Ala Ser Phe Val 50 55
60Thr Thr Trp Met Glu Pro Glu Cys Asp Lys Leu Ile Met Ser Ser Ile65
70 75 80Asn Lys Asn Tyr Val
Asp Met Asp Glu Tyr Pro Val Thr Thr Glu Leu 85
90 95Gln Asn Arg Cys Val Asn Met Ile Ala His Leu
Phe Asn Ala Pro Leu 100 105
110Glu Glu Ala Glu Thr Ala Val Gly Val Gly Thr Val Gly Ser Ser Glu
115 120 125Ala Ile Met Leu Ala Gly Leu
Ala Phe Lys Arg Lys Trp Gln Asn Lys 130 135
140Arg Lys Ala Glu Gly Lys Pro Val Asp Lys Pro Asn Ile Val Thr
Gly145 150 155 160Ala Asn
Val Gln Val Cys Trp Glu Lys Phe Ala Arg Tyr Phe Glu Val
165 170 175Glu Leu Lys Glu Val Lys Leu
Ser Glu Gly Tyr Tyr Val Met Asp Pro 180 185
190Gln Gln Ala Val Asp Met Val Asp Glu Asn Thr Ile Cys Val
Ala Ala 195 200 205Ile Leu Gly Ser
Thr Leu Asn Gly Glu Phe Glu Asp Val Lys Leu Leu 210
215 220Asn Asp Leu Leu Val Glu Lys Asn Lys Glu Thr Gly
Trp Asp Thr Pro225 230 235
240Ile His Val Asp Ala Ala Ser Gly Gly Phe Ile Ala Pro Phe Leu Tyr
245 250 255Pro Glu Leu Glu Trp
Asp Phe Arg Leu Pro Leu Val Lys Ser Ile Asn 260
265 270Val Ser Gly His Lys Tyr Gly Leu Val Tyr Ala Gly
Ile Gly Trp Val 275 280 285Ile Trp
Arg Asn Lys Glu Asp Leu Pro Glu Glu Leu Ile Phe His Ile 290
295 300Asn Tyr Leu Gly Ala Asp Gln Pro Thr Phe Thr
Leu Asn Phe Ser Lys305 310 315
320Gly Ser Ser Gln Val Ile Ala Gln Tyr Tyr Gln Leu Ile Arg Leu Gly
325 330 335His Glu Gly Tyr
Arg Asn Val Met Glu Asn Cys Arg Glu Asn Met Ile 340
345 350Val Leu Arg Glu Gly Leu Glu Lys Thr Glu Arg
Phe Asn Ile Val Ser 355 360 365Lys
Asp Glu Gly Val Pro Leu Val Ala Phe Ser Leu Lys Asp Ser Ser 370
375 380Cys His Thr Glu Phe Glu Ile Ser Asp Met
Leu Arg Arg Tyr Gly Trp385 390 395
400Ile Val Pro Ala Tyr Thr Met Pro Pro Asn Ala Gln His Ile Thr
Val 405 410 415Leu Arg Val
Val Ile Arg Glu Asp Phe Ser Arg Thr Leu Ala Glu Arg 420
425 430Leu Val Ile Asp Ile Glu Lys Val Met Arg
Glu Leu Asp Glu Leu Pro 435 440
445Ser Arg Val Ile His Lys Ile Ser Leu Gly Gln Glu Lys Ser Glu Ser 450
455 460Asn Ser Asp Asn Leu Met Val Thr
Val Lys Lys Ser Asp Ile Asp Lys465 470
475 480Gln Arg Asp Ile Ile Thr Gly Trp Lys Lys Phe Val
Ala Asp Arg Lys 485 490
495Lys Thr Ser Gly Ile Cys 5003494PRTArabidopsis thaliana 3Met
Val Leu Thr Lys Thr Ala Thr Asn Asp Glu Ser Val Cys Thr Met1
5 10 15Phe Gly Ser Arg Tyr Val Arg
Thr Thr Leu Pro Lys Tyr Glu Ile Gly 20 25
30Glu Asn Ser Ile Pro Lys Asp Ala Ala Tyr Gln Ile Ile Lys
Asp Glu 35 40 45Leu Met Leu Asp
Gly Asn Pro Arg Leu Asn Leu Ala Ser Phe Val Thr 50 55
60Thr Trp Met Glu Pro Glu Cys Asp Lys Leu Ile Met Asp
Ser Ile Asn65 70 75
80Lys Asn Tyr Val Asp Met Asp Glu Tyr Pro Val Thr Thr Glu Leu Gln
85 90 95Asn Arg Cys Val Asn Ile
Ile Ala Arg Leu Phe Asn Ala Pro Leu Glu 100
105 110Glu Ser Glu Thr Ala Val Gly Val Gly Thr Val Gly
Ser Ser Glu Ala 115 120 125Ile Met
Leu Ala Gly Leu Ala Phe Lys Arg Lys Trp Gln Asn Lys Arg 130
135 140Lys Ala Glu Gly Lys Pro Tyr Asp Lys Pro Asn
Ile Val Thr Gly Ala145 150 155
160Asn Val Gln Val Cys Trp Glu Lys Phe Ala Arg Tyr Phe Glu Val Glu
165 170 175Leu Lys Glu Val
Asn Leu Ser Glu Gly Tyr Tyr Val Met Asp Pro Asp 180
185 190Lys Ala Ala Glu Met Val Asp Glu Asn Thr Ile
Cys Val Ala Ala Ile 195 200 205Leu
Gly Ser Thr Leu Asn Gly Glu Phe Glu Asp Val Lys Arg Leu Asn 210
215 220Asp Leu Leu Val Lys Lys Asn Glu Glu Thr
Gly Trp Asn Thr Pro Ile225 230 235
240His Val Asp Ala Ala Ser Gly Gly Phe Ile Ala Pro Phe Ile Tyr
Pro 245 250 255Glu Leu Glu
Trp Asp Phe Arg Leu Pro Leu Val Lys Ser Ile Asn Val 260
265 270Ser Gly His Lys Tyr Gly Leu Val Tyr Ala
Gly Ile Gly Trp Val Val 275 280
285Trp Arg Ala Ala Glu Asp Leu Pro Glu Glu Leu Ile Phe His Ile Asn 290
295 300Tyr Leu Gly Ala Asp Gln Pro Thr
Phe Thr Leu Asn Phe Ser Lys Gly305 310
315 320Ser Ser Gln Ile Ile Ala Gln Tyr Tyr Gln Leu Ile
Arg Leu Gly Phe 325 330
335Glu Gly Tyr Lys Asn Val Met Glu Asn Cys Ile Glu Asn Met Val Val
340 345 350Leu Lys Glu Gly Ile Glu
Lys Thr Glu Arg Phe Asn Ile Val Ser Lys 355 360
365Asp Gln Gly Val Pro Val Val Ala Phe Ser Leu Lys Asp His
Ser Phe 370 375 380His Asn Glu Phe Glu
Ile Ser Glu Met Leu Arg Arg Phe Gly Trp Ile385 390
395 400Val Pro Ala Tyr Thr Met Pro Ala Asp Ala
Gln His Ile Thr Val Leu 405 410
415Arg Val Val Ile Arg Glu Asp Phe Ser Arg Thr Leu Ala Glu Arg Leu
420 425 430Val Ala Asp Ile Ser
Lys Val Leu His Glu Leu Asp Thr Leu Pro Ser 435
440 445Lys Ile Ser Lys Lys Met Gly Ile Glu Gly Ile Ala
Glu Asn Val Lys 450 455 460Glu Lys Lys
Met Glu Lys Glu Ile Leu Met Glu Val Ile Val Gly Trp465
470 475 480Arg Lys Phe Val Lys Glu Arg
Lys Lys Met Asn Gly Val Cys 485
4904500PRTPetunia hybrida 4Met Val Leu Ser Lys Thr Val Ser Gln Ser Asp
Val Ser Ile His Ser1 5 10
15Thr Phe Ala Ser Arg Tyr Val Arg Thr Ser Leu Pro Arg Phe Lys Met
20 25 30Pro Asp Asn Ser Ile Pro Lys
Glu Ala Ala Tyr Gln Ile Ile Asn Asp 35 40
45Glu Leu Met Leu Asp Gly Asn Pro Arg Leu Asn Leu Ala Ser Phe
Val 50 55 60Thr Thr Trp Met Glu Pro
Glu Cys Asp Lys Leu Met Met Asp Ser Ile65 70
75 80Asn Lys Asn Tyr Val Asp Met Asp Glu Tyr Pro
Val Thr Thr Glu Leu 85 90
95Gln Asn Arg Cys Val Asn Met Ile Ala His Leu Phe Asn Ala Pro Leu
100 105 110Glu Asp Gly Glu Thr Ala
Val Gly Val Gly Thr Val Gly Ser Ser Glu 115 120
125Ala Ile Met Leu Ala Gly Leu Ala Phe Lys Arg Lys Trp Gln
Asn Lys 130 135 140Met Lys Ala Gln Gly
Lys Pro Cys Asp Lys Pro Asn Ile Val Thr Gly145 150
155 160Ala Asn Val Gln Val Cys Trp Glu Lys Phe
Ala Arg Tyr Phe Glu Val 165 170
175Glu Leu Lys Glu Val Lys Leu Ser Glu Gly Tyr Tyr Val Met Asp Pro
180 185 190Glu Lys Ala Val Glu
Met Val Asp Glu Asn Thr Ile Cys Val Ala Ala 195
200 205Ile Leu Gly Ser Thr Leu Asn Gly Glu Phe Glu Asp
Val Lys Arg Leu 210 215 220Asn Asp Leu
Leu Val Glu Lys Asn Lys Glu Thr Gly Trp Asp Thr Pro225
230 235 240Ile His Val Asp Ala Ala Ser
Gly Gly Phe Ile Ala Pro Phe Ile Tyr 245
250 255Pro Glu Leu Glu Trp Asp Phe Arg Leu Pro Leu Val
Lys Ser Ile Asn 260 265 270Val
Ser Gly His Lys Tyr Gly Leu Val Tyr Ala Gly Ile Gly Trp Val 275
280 285Val Trp Arg Asn Lys Asp Asp Leu Pro
Asp Glu Leu Ile Phe His Ile 290 295
300Asn Tyr Leu Gly Ala Asp Gln Pro Thr Phe Thr Leu Asn Phe Ser Lys305
310 315 320Gly Ser Ser Gln
Val Ile Ala Gln Tyr Tyr Gln Leu Ile Arg Leu Gly 325
330 335Tyr Glu Gly Tyr Lys Asn Val Met Glu Asn
Cys Gln Glu Asn Ala Ser 340 345
350Val Leu Arg Glu Gly Leu Glu Lys Thr Gly Arg Phe Asn Ile Ile Ser
355 360 365Lys Glu Ile Gly Val Pro Leu
Val Ala Phe Ser Leu Lys Asp Asn Arg 370 375
380Gln His Asn Glu Phe Glu Ile Ser Glu Thr Leu Arg Arg Phe Gly
Trp385 390 395 400Ile Val
Pro Ala Tyr Thr Met Pro Pro Asn Ala Gln His Ile Thr Val
405 410 415Leu Arg Val Val Ile Arg Glu
Asp Phe Ser Arg Thr Leu Ala Glu Arg 420 425
430Leu Val Arg Asp Ile Glu Lys Val Leu His Glu Leu Asp Thr
Leu Pro 435 440 445Ala Arg Val Asn
Ala Lys Leu Ala Val Ala Glu Glu Gln Ala Ala Ala 450
455 460Asn Gly Ser Glu Val His Lys Lys Thr Asp Ser Glu
Val Gln Leu Glu465 470 475
480Met Ile Thr Ala Trp Lys Lys Phe Val Glu Glu Lys Lys Lys Lys Thr
485 490 495Asn Arg Val Cys
5005502PRTLycopersicon esculentum 5Met Val Leu Thr Thr Thr Ser Ile
Arg Asp Ser Glu Glu Ser Leu His1 5 10
15Cys Thr Phe Ala Ser Arg Tyr Val Gln Glu Pro Leu Pro Lys
Phe Lys 20 25 30Met Pro Lys
Lys Ser Met Pro Lys Glu Ala Ala Tyr Gln Ile Val Asn 35
40 45Asp Glu Leu Met Leu Asp Gly Asn Pro Arg Leu
Asn Leu Ala Ser Phe 50 55 60Val Ser
Thr Trp Met Glu Pro Glu Cys Asp Lys Leu Ile Met Ser Ser65
70 75 80Ile Asn Lys Asn Tyr Val Asp
Met Asp Glu Tyr Pro Val Thr Thr Glu 85 90
95Leu Gln Asn Arg Cys Val Asn Met Leu Ala His Leu Phe
His Ala Pro 100 105 110Val Gly
Asp Asp Glu Thr Ala Val Gly Val Gly Thr Val Gly Ser Ser 115
120 125Glu Ala Ile Met Leu Ala Gly Leu Ala Phe
Lys Arg Lys Trp Gln Ser 130 135 140Lys
Arg Lys Ala Glu Gly Lys Pro Phe Asp Lys Pro Asn Ile Val Thr145
150 155 160Gly Ala Asn Val Gln Val
Cys Trp Glu Lys Phe Ala Arg Tyr Phe Glu 165
170 175Val Glu Leu Lys Glu Val Lys Leu Lys Glu Gly Tyr
Tyr Val Met Asp 180 185 190Pro
Ala Lys Ala Val Glu Ile Val Asp Glu Asn Thr Ile Cys Val Ala 195
200 205Ala Ile Leu Gly Ser Thr Leu Thr Gly
Glu Phe Glu Asp Val Lys Leu 210 215
220Leu Asn Glu Leu Leu Thr Lys Lys Asn Lys Glu Thr Gly Trp Glu Thr225
230 235 240Pro Ile His Val
Asp Ala Ala Ser Gly Gly Phe Ile Ala Pro Phe Leu 245
250 255Trp Pro Asp Leu Glu Trp Asp Phe Arg Leu
Pro Leu Val Lys Ser Ile 260 265
270Asn Val Ser Gly His Lys Tyr Gly Leu Val Tyr Ala Gly Val Gly Trp
275 280 285Val Ile Trp Arg Ser Lys Glu
Asp Leu Pro Asp Glu Leu Val Phe His 290 295
300Ile Asn Tyr Leu Gly Ser Asp Gln Pro Thr Phe Thr Leu Asn Phe
Ser305 310 315 320Lys Gly
Ser Tyr Gln Ile Ile Ala Gln Tyr Tyr Gln Leu Ile Arg Leu
325 330 335Gly Phe Glu Gly Tyr Lys Asn
Val Met Lys Asn Cys Leu Ser Asn Ala 340 345
350Lys Val Leu Thr Glu Gly Ile Thr Lys Met Gly Arg Phe Asp
Ile Val 355 360 365Ser Lys Asp Val
Gly Val Pro Val Val Ala Phe Ser Leu Arg Asp Ser 370
375 380Ser Lys Tyr Thr Val Phe Glu Val Ser Glu His Leu
Arg Arg Phe Gly385 390 395
400Trp Ile Val Pro Ala Tyr Thr Met Pro Pro Asp Ala Glu His Ile Ala
405 410 415Val Leu Arg Val Val
Ile Arg Glu Asp Phe Ser His Ser Leu Ala Glu 420
425 430Arg Leu Val Ser Asp Ile Glu Lys Ile Leu Ser Glu
Leu Asp Thr Gln 435 440 445Pro Pro
Arg Leu Pro Thr Lys Ala Val Arg Val Thr Ala Glu Glu Val 450
455 460Arg Asp Asp Lys Gly Asp Gly Leu His His Phe
His Met Asp Thr Val465 470 475
480Glu Thr Gln Lys Asp Ile Ile Lys His Trp Arg Lys Ile Ala Gly Lys
485 490 495Lys Thr Ser Gly
Val Cys 5006499PRTPopulus tremula x Populus alba 6Met Val Leu
Ser Lys Thr Ala Ser Glu Ser Asp Val Ser Val His Ser1 5
10 15Thr Phe Ala Ser Arg Tyr Val Arg Ala
Ser Leu Pro Arg Phe Lys Met 20 25
30Pro Glu Asn Ser Ile Pro Lys Glu Ala Ala Phe Gln Ile Ile Asn Asp
35 40 45Glu Leu Met Leu Asp Gly Asn
Pro Arg Leu Asn Leu Ala Ser Phe Val 50 55
60Thr Thr Trp Met Glu Pro Glu Cys Asp Lys Leu Ile Ile Ala Ser Ile65
70 75 80Asn Lys Asn Tyr
Val Asp Met Asp Glu Tyr Pro Val Thr Thr Glu Leu 85
90 95Gln Asn Arg Cys Val Asn Met Ile Ala His
Leu Phe Asn Ala Pro Leu 100 105
110Gly Asp Ser Glu Thr Ala Val Gly Val Gly Thr Val Gly Ser Ser Glu
115 120 125Ala Ile Met Leu Ala Gly Leu
Ala Phe Lys Arg Lys Trp Gln Asn Lys 130 135
140Arg Lys Ala Glu Gly Lys Pro Tyr Asp Lys Pro Asn Ile Val Thr
Gly145 150 155 160Ala Asn
Val Gln Val Cys Trp Glu Lys Phe Ala Arg Tyr Phe Glu Val
165 170 175Glu Leu Lys Glu Val Lys Leu
Ser Asp Gly Tyr Tyr Val Met Asp Pro 180 185
190Glu Lys Ala Val Gln Met Val Asp Glu Asn Thr Ile Cys Val
Ala Ala 195 200 205Ile Leu Gly Ser
Thr Leu Asn Gly Glu Phe Glu Asp Val Lys Leu Leu 210
215 220Asn Asp Leu Leu Val Glu Lys Asn Lys Ser Thr Gly
Trp Asp Thr Pro225 230 235
240Ile His Val Asp Ala Ala Ser Gly Gly Phe Ile Ala Pro Phe Ile Tyr
245 250 255Pro Glu Leu Glu Trp
Asp Phe Arg Leu Pro Leu Val Lys Ser Ile Asn 260
265 270Val Ser Gly His Lys Tyr Gly Leu Val Tyr Ala Gly
Ile Gly Trp Val 275 280 285Ile Trp
Arg Asn Lys Glu Asp Leu Pro Glu Glu Leu Ile Phe His Ile 290
295 300Asn Tyr Leu Gly Ala Asp Gln Pro Thr Phe Thr
Leu Asn Phe Ser Lys305 310 315
320Gly Ser Ser Gln Val Ile Ala Gln Tyr Tyr Gln Leu Ile Arg Leu Gly
325 330 335Tyr Glu Gly Tyr
Lys Asn Val Met Glu Asn Cys Arg Asp Asn Met Leu 340
345 350Val Leu Lys Gln Gly Leu Glu Lys Thr Gly Lys
Phe Asn Ile Val Ser 355 360 365Lys
Asp Lys Gly Val Pro Leu Val Ala Phe Ser Leu Lys Asp Asn Ser 370
375 380Leu His Asn Glu Phe Glu Val Ser Asp Met
Leu Arg Arg Phe Gly Trp385 390 395
400Ile Val Pro Ala Tyr Thr Met Pro Pro Asp Ala Gln His Val Thr
Val 405 410 415Leu Arg Val
Val Ile Arg Glu Asp Phe Ser Arg Thr Leu Ala Glu Arg 420
425 430Leu Val Ile Asp Ile Gly Lys Val Leu His
Glu Leu Glu Thr Leu Pro 435 440
445Ser Arg Ile Ser Ala Lys Ile Val Leu Ala Asn Glu Glu Lys Asp Ala 450
455 460Val Ala Ala Gly Lys Glu Lys Lys
Asp Val Gln Asn Glu Thr Arg Glu465 470
475 480Ile Ile Thr Ala Trp Arg Lys Leu Val Val Gln Arg
Lys Lys Leu Asn 485 490
495Gly Val Cys7492PRTOryza sativa subsp. indica 7Met Val Leu Ser Lys Ala
Val Ser Glu Ser Asp Met Ser Val His Ser1 5
10 15Thr Phe Ala Ser Arg Tyr Val Arg Ala Ser Leu Pro
Arg Tyr Arg Met 20 25 30Pro
Glu Asn Ser Ile Pro Lys Glu Ala Ala Tyr Gln Ile Ile Asn Asp 35
40 45Glu Leu Met Leu Asp Gly Asn Pro Arg
Leu Asn Leu Ala Ser Phe Val 50 55
60Thr Thr Trp Met Glu Pro Glu Cys Asp Lys Leu Ile Met Ala Ala Ile65
70 75 80Asn Lys Asn Tyr Val
Asp Met Asp Glu Tyr Pro Val Thr Thr Glu Leu 85
90 95Gln Asn Arg Cys Val Asn Met Ile Ala His Leu
Phe His Ala Pro Leu 100 105
110Gly Glu Asp Glu Thr Ala Val Gly Val Gly Thr Val Gly Ser Ser Glu
115 120 125Ala Ile Met Leu Ala Gly Leu
Ala Phe Lys Arg Arg Trp Gln Asn Lys 130 135
140Arg Lys Ala Glu Gly Lys Pro Phe Asp Lys Pro Asn Ile Ile Thr
Gly145 150 155 160Ala Asn
Val Gln Val Cys Trp Glu Lys Phe Ala Arg Tyr Phe Glu Val
165 170 175Glu Leu Lys Glu Val Lys Leu
Arg Asp Gly Tyr Tyr Val Met Asp Pro 180 185
190Glu Lys Ala Val Asp Met Val Asp Glu Asn Thr Ile Cys Val
Ala Ala 195 200 205Ile Leu Gly Ser
Thr Leu Asn Gly Glu Phe Glu Asp Val Lys Leu Leu 210
215 220Asn Asp Leu Leu Asp Lys Lys Asn Lys Glu Thr Gly
Trp Glu Thr Pro225 230 235
240Ile His Val Asp Ala Ala Ser Gly Gly Phe Ile Ala Pro Phe Leu Tyr
245 250 255Pro Glu Leu Glu Trp
Asp Phe Arg Leu Pro Trp Val Lys Ser Ile Asn 260
265 270Val Ser Gly His Lys Tyr Gly Leu Val Tyr Ala Gly
Ile Gly Trp Cys 275 280 285Ile Trp
Arg Asn Lys Glu Asp Leu Pro Glu Glu Leu Ile Phe His Ile 290
295 300Asn Tyr Leu Gly Ala Asp Gln Pro Thr Phe Thr
Leu Asn Phe Ser Lys305 310 315
320Gly Ser Ser Gln Val Ile Ala Gln Tyr Tyr Gln Leu Ile Arg His Gly
325 330 335Phe Glu Gly Tyr
Arg Asn Ile Met Glu Asn Cys His Glu Asn Ala Met 340
345 350Val Leu Lys Glu Gly Leu Val Lys Thr Gly Arg
Phe Asp Ile Val Ser 355 360 365Lys
Asp Glu Gly Val Pro Leu Val Ala Phe Ser Leu Lys Asp Arg Ser 370
375 380Arg His Asp Glu Phe Glu Ile Ser Asp Met
Leu Arg Arg Phe Gly Trp385 390 395
400Ile Val Pro Ala Tyr Thr Met Pro Pro Asp Ala Gln His Val Thr
Val 405 410 415Leu Arg Val
Val Ile Arg Glu Glu Phe Ser Arg Thr Leu Ala Glu Arg 420
425 430Leu Val Leu Asp Ile Glu Lys Val Met Tyr
Gln Leu Asp Ala Leu Pro 435 440
445Ser Arg Leu Met Pro Pro Val Pro Pro Ala Pro Leu Leu Val Val Ala 450
455 460Lys Lys Ser Glu Leu Glu Thr Gln
Arg Ser Val Thr Glu Ala Trp Lys465 470
475 480Lys Phe Val Leu Ala Lys Arg Thr Asn Gly Val Cys
485 4908461PRTOryza sativa subsp. japonica
8Met Pro Glu Gln Ser Ile Pro Lys Glu Ala Ala Tyr Gln Ile Ile Asn1
5 10 15Asp Glu Leu Met Leu Asp
Gly Asn Pro Arg Leu Asn Leu Ala Ser Phe 20 25
30Val Thr Thr Trp Met Glu Pro Glu Cys Asp Lys Leu Ile
Gln Ala Ser 35 40 45Val Asn Lys
Asn Tyr Val Asp Met Asp Glu Tyr Pro Val Thr Thr Glu 50
55 60Leu Gln Asn Arg Cys Val Asn Met Ile Ala His Leu
Phe Asn Ala Pro65 70 75
80Leu Gly Asp Ser Glu Thr Ala Val Gly Val Gly Thr Val Gly Ser Ser
85 90 95Glu Ala Ile Met Leu Ala
Gly Leu Ala Phe Lys Arg Arg Trp Gln Asn 100
105 110Lys Met Lys Ala Ala Gly Lys Pro Cys Asp Lys Pro
Asn Ile Val Thr 115 120 125Gly Ala
Asn Val Gln Val Cys Trp Glu Lys Phe Ala Arg Tyr Phe Glu 130
135 140Val Glu Leu Lys Glu Val Lys Leu Ser Asp Gly
Tyr Tyr Val Met Asp145 150 155
160Pro Ala Lys Ala Val Asp Met Val Asp Glu Asn Thr Ile Cys Val Ala
165 170 175Ala Ile Leu Gly
Ser Thr Leu Asn Gly Glu Phe Glu Asp Val Lys Leu 180
185 190Leu Asn Asp Leu Leu Thr Lys Lys Asn Ala Glu
Thr Gly Trp Asp Thr 195 200 205Pro
Ile His Val Asp Ala Ala Ser Gly Gly Phe Ile Ala Pro Phe Leu 210
215 220Tyr Pro Glu Leu Glu Trp Asp Phe Arg Leu
Pro Leu Val Lys Ser Ile225 230 235
240Asn Val Ser Gly His Lys Tyr Gly Leu Val Tyr Ala Gly Ile Gly
Trp 245 250 255Cys Ile Trp
Arg Ser Lys Glu Asp Leu Pro Glu Glu Leu Ile Phe His 260
265 270Ile Asn Tyr Leu Gly Ala Asp Gln Pro Thr
Phe Thr Leu Asn Phe Ser 275 280
285Lys Gly Ser Ser Gln Val Ile Ala Gln Tyr Tyr Gln Leu Ile Arg Leu 290
295 300Gly Phe Glu Gly Tyr Lys Asn Ile
Met Glu Asn Cys Gln Glu Asn Ala305 310
315 320Met Val Leu Lys Gln Gly Leu Glu Lys Thr Gly Arg
Phe Asn Ile Val 325 330
335Ser Lys Asp Asn Gly Val Pro Leu Val Ala Phe Ser Leu Lys Asp Ser
340 345 350Ala Arg His Asn Glu Phe
Glu Ile Ser Asp Phe Leu Arg Arg Phe Gly 355 360
365Trp Ile Val Pro Ala Tyr Thr Met Pro Pro Asp Ala Gln His
Val Thr 370 375 380Val Leu Arg Val Val
Ile Arg Glu Asp Phe Ser Arg Thr Leu Ala Glu385 390
395 400Arg Leu Val Leu Asp Val Glu Lys Val Leu
His Glu Leu Asp Ala Leu 405 410
415Pro Ala Arg Val Val Ala Asn Gly Asp Asn Pro Ala Ala Ala Ser Ala
420 425 430Ser Glu Arg Glu Met
Glu Lys Gln Arg Glu Val Ile Ser Leu Trp Lys 435
440 445Arg Ala Val Leu Ala Lys Lys Lys Thr Asn Gly Val
Cys 450 455 4609489PRTVitis
viniferamisc_feature(229)..(229)Xaa can be any naturally occurring amino
acid 9Met Val Leu Ser Lys Thr Ala Ser Glu Ser Asp Val Ser Val His Ser1
5 10 15Thr Phe Ala Ser Arg
Tyr Val Lys Ala Ser Leu Pro Arg Phe Lys Leu 20
25 30Pro Glu Asn Ser Ile Pro Lys Glu Ala Ala Tyr Gln
Ile Ile Asn Asp 35 40 45Glu Leu
Met Leu Asp Gly Asn Pro Arg Leu Asn Leu Ala Ser Phe Val 50
55 60Thr Thr Trp Met Glu Pro Glu Cys Asp Lys Leu
Met Met Ala Ala Ile65 70 75
80Asn Lys Asn Tyr Val Asp Met Asp Glu Tyr Pro Asn Arg Cys Val Asn
85 90 95Ile Ile Ala His Leu
Phe Asn Ala Pro Leu Glu Asp Ser Glu Ala Ala 100
105 110Val Gly Val Gly Thr Val Gly Ser Ser Glu Ala Ile
Met Leu Ala Gly 115 120 125Leu Ala
Phe Lys Arg Lys Trp Gln Asn Lys Arg Lys Ala Glu Gly Lys 130
135 140Pro Tyr Asp Lys Pro Asn Ile Val Thr Gly Ala
Asn Val Gln Val Cys145 150 155
160Trp Glu Lys Phe Ala Arg Tyr Phe Glu Val Glu Leu Lys Glu Val Lys
165 170 175Leu Arg Asp Gly
Tyr Tyr Val Met Asp Pro Glu Lys Ala Val Glu Met 180
185 190Val Asp Glu Asn Thr Ile Cys Val Ala Ala Ile
Leu Gly Ser Thr Leu 195 200 205Asn
Gly Glu Phe Glu Asp Val Lys Leu Leu Asn Asp Leu Leu Val Glu 210
215 220Lys Asn Lys Gln Xaa Gly Trp Asp Thr Pro
Ile His Val Asp Ala Ala225 230 235
240Ser Gly Gly Phe Ile Ala Pro Phe Leu Tyr Pro Glu Leu Glu Trp
Asp 245 250 255Phe Arg Leu
Pro Leu Val Lys Ser Ile Asn Val Ser Gly His Lys Tyr 260
265 270Gly Leu Val Tyr Ala Gly Ile Gly Trp Val
Val Trp Arg Ser Lys Glu 275 280
285Asp Leu Pro Glu Glu Leu Ile Phe His Ile Asn Tyr Leu Gly Ala Asp 290
295 300Gln Pro Thr Phe Thr Leu Asn Phe
Ser Lys Gly Ser Ser Gln Val Ile305 310
315 320Ala Gln Tyr Tyr Gln Leu Ile Arg Leu Gly Phe Glu
Gly Tyr Arg Asn 325 330
335Val Met Glu Asn Cys Gln Glu Asn Ala Met Ala Leu Lys Glu Gly Leu
340 345 350Glu Lys Thr Gly Arg Phe
Asn Ile Ile Ser Lys Asp Asn Gly Val Pro 355 360
365Leu Val Ala Phe Ser Leu Lys Asp Asn Ser Cys His Asp Glu
Phe Glu 370 375 380Val Ala Asp Met Leu
Arg Arg Phe Gly Trp Ile Val Pro Ala Tyr Thr385 390
395 400Met Pro Pro Asp Ala Gln His Val Thr Val
Leu Arg Val Val Val Arg 405 410
415Glu Asp Phe Ser Arg Thr Leu Ala Glu Arg Leu Val Phe Asp Ile Thr
420 425 430Lys Val Leu His Glu
Leu Asp Met Leu Pro Ala Lys Leu Ser Ala Lys 435
440 445Ile Ser Val Glu Glu Lys Lys Gln Asn Gly Thr Ile
Leu Lys Lys Ser 450 455 460Val Ile Glu
Thr Gln Arg Glu Ile Thr Asp Ala Trp Lys Lys Phe Val465
470 475 480Met Ala Lys Lys Thr Asn Gly
Val Cys 48510495PRTVitis vinifera 10Met Val Leu Ser Lys
Thr Ala Ser Glu Ser Asp Val Ser Val His Ser1 5
10 15Thr Phe Ala Ser Arg Tyr Val Lys Ala Ser Leu
Pro Arg Phe Lys Leu 20 25
30Pro Glu Asn Ser Ile Pro Lys Glu Ala Ala Tyr Gln Ile Ile Asn Asp
35 40 45Glu Leu Met Leu Asp Gly Asn Pro
Arg Leu Asn Leu Ala Ser Phe Val 50 55
60Thr Thr Trp Met Glu Pro Glu Cys Asp Lys Leu Met Met Ala Ala Ile65
70 75 80Asn Lys Asn Tyr Val
Asp Met Asp Glu Tyr Pro Val Thr Thr Glu Leu 85
90 95Gln Asn Arg Cys Val Asn Ile Ile Ala His Leu
Phe Asn Ala Pro Leu 100 105
110Glu Asp Ser Glu Ala Ala Val Gly Val Gly Thr Val Gly Ser Ser Glu
115 120 125Ala Ile Met Leu Ala Gly Leu
Ala Phe Lys Arg Lys Trp Gln Asn Lys 130 135
140Arg Lys Ala Glu Gly Lys Pro Tyr Asp Lys Pro Asn Ile Val Thr
Gly145 150 155 160Ala Asn
Val Gln Val Cys Trp Glu Lys Phe Ala Arg Tyr Phe Glu Val
165 170 175Glu Leu Lys Glu Val Lys Leu
Arg Asp Gly Tyr Tyr Val Met Asp Pro 180 185
190Glu Lys Ala Val Glu Met Val Asp Glu Asn Thr Ile Cys Val
Ala Ala 195 200 205Ile Leu Gly Ser
Thr Leu Asn Gly Glu Phe Glu Asp Val Lys Leu Leu 210
215 220Asn Asp Leu Leu Val Glu Lys Asn Lys Gln Thr Gly
Trp Asp Thr Pro225 230 235
240Ile His Val Asp Ala Ala Ser Gly Gly Phe Ile Ala Pro Phe Leu Tyr
245 250 255Pro Glu Leu Glu Trp
Asp Phe Arg Leu Pro Leu Val Lys Ser Ile Asn 260
265 270Val Ser Gly His Lys Tyr Gly Leu Val Tyr Ala Gly
Ile Gly Trp Val 275 280 285Val Trp
Arg Ser Lys Glu Asp Leu Pro Glu Glu Leu Ile Phe His Ile 290
295 300Asn Tyr Leu Gly Ala Asp Gln Pro Thr Phe Thr
Leu Asn Phe Ser Lys305 310 315
320Gly Ser Ser Gln Val Ile Ala Gln Tyr Tyr Gln Leu Ile Arg Leu Gly
325 330 335Phe Glu Gly Tyr
Arg Asn Val Met Glu Asn Cys Gln Glu Asn Ala Met 340
345 350Ala Leu Lys Glu Gly Leu Glu Lys Thr Gly Arg
Phe Asn Ile Ile Ser 355 360 365Lys
Asp Asn Gly Val Pro Leu Val Ala Phe Ser Leu Lys Asp Asn Ser 370
375 380Cys His Asp Glu Phe Glu Val Ala Asp Met
Leu Arg Arg Phe Gly Trp385 390 395
400Ile Val Pro Ala Tyr Thr Met Pro Pro Asp Ala Gln His Val Thr
Val 405 410 415Leu Arg Val
Val Val Arg Glu Asp Phe Ser Arg Thr Leu Ala Glu Arg 420
425 430Leu Val Phe Asp Ile Thr Lys Val Leu His
Glu Leu Asp Met Leu Pro 435 440
445Ala Lys Leu Ser Ala Lys Ile Ser Val Glu Glu Lys Lys Gln Asn Gly 450
455 460Thr Ile Leu Lys Lys Ser Val Ile
Glu Thr Gln Arg Glu Ile Thr Asp465 470
475 480Ala Trp Lys Lys Phe Val Met Ala Lys Lys Thr Asn
Gly Val Cys 485 490
49511476PRTVitis vinifera 11Met Pro Glu Lys Ser Ile Pro Lys Glu Ala Ala
Tyr Gln Ile Val His1 5 10
15Asp Glu Leu Leu Leu Asp Gly Leu Pro Arg Leu Asn Leu Ala Thr Phe
20 25 30Val Thr Thr Trp Met Glu Pro
Glu Cys Asp Lys Leu Met Ala Glu Ala 35 40
45Ile Asn Lys Asn Tyr Val Asp Met Asp Glu Tyr Pro Val Thr Thr
Glu 50 55 60Leu Gln Asn Arg Cys Val
Asn Met Ile Ala Lys Leu Phe Asn Ala Pro65 70
75 80Ser Ala Asp Gln Thr Lys Gln Ala Val Gly Val
Gly Thr Val Gly Ser 85 90
95Ser Glu Ala Met Met Leu Ala Gly Leu Ala Phe Lys Lys Lys Trp Gln
100 105 110Asn Lys Arg Lys Ala Gln
Lys Lys Pro Phe Asp Lys Pro Asn Ile Val 115 120
125Thr Gly Ala Asn Val Gln Val Cys Trp Glu Lys Phe Ala Arg
Tyr Phe 130 135 140Glu Val Glu Leu Lys
Glu Val Lys Leu Arg Glu Gly Tyr Tyr Val Met145 150
155 160Asp Pro Val Lys Ala Val Glu Met Val Asp
Glu Asn Thr Ile Cys Val 165 170
175Ala Ala Ile Leu Gly Ser Thr Phe Asn Gly Glu Phe Glu Asp Val Lys
180 185 190Leu Leu Asn Thr Leu
Leu Thr Gln Lys Asn Lys Arg Thr Gly Trp Asp 195
200 205Thr Pro Ile His Val Asp Ala Ala Ser Gly Gly Phe
Val Ala Pro Phe 210 215 220Leu Tyr Pro
Glu Leu Glu Trp Asp Phe Arg Leu Pro Leu Val Lys Ser225
230 235 240Ile Asn Val Ser Gly His Lys
Tyr Gly Leu Val Tyr Ala Gly Val Gly 245
250 255Trp Ala Ile Trp Arg Ser Lys Glu Glu Leu Pro Glu
Glu Leu Ile Phe 260 265 270His
Ile Asn Tyr Leu Gly Gly Asp Glu Pro Thr Phe Thr Leu Asn Phe 275
280 285Ser Lys Gly Asn Gln Val Ile Ala Gln
Tyr Tyr Gln Phe Leu Arg Met 290 295
300Gly Phe Glu Gly Tyr Lys Lys Val Met Ser Asn Cys Met Glu Ser Ala305
310 315 320Arg Ile Leu Arg
Glu Gly Leu Glu Lys Thr Gly Arg Phe Gln Ile Ile 325
330 335Ser Lys Glu Lys Gly Val Pro Val Val Ala
Phe Ala Phe Lys Gly Asn 340 345
350Asp Arg Lys Asn Leu Ala Phe Gly Leu Ser Lys Ala Leu Arg Asn Tyr
355 360 365Gly Trp Ile Val Pro Ala Tyr
Thr Met Pro Ala Asn Ala Glu Asn Val 370 375
380Thr Val Leu Arg Val Val Val Arg Glu Asp Phe Gly Arg Gln Leu
Val385 390 395 400Glu Lys
Leu Leu Phe His Ile Gly Val Ala Leu Lys Glu Val Thr Asp
405 410 415Ala Ala Ser Ser Val Pro Met
Ile Arg Leu Thr Val Glu Met Lys Ala 420 425
430Asp Glu Ser Glu Met Asn Ala Gly Glu Gly Thr Leu His Ile
Pro Ala 435 440 445Ala Ser Val His
Trp Lys His Asp Lys Pro Glu Thr Val Asp Thr Gln 450
455 460Val Pro Ile Met Asp Gly Lys Thr Lys Gly Val Cys465
470 47512496PRTNicotiana tabacum 12Met
Val Leu Ser Lys Thr Ala Ser Glu Ser Asp Val Ser Val His Ser1
5 10 15Thr Phe Ala Ser Arg Tyr Val
Arg Thr Ser Leu Pro Arg Phe Lys Met 20 25
30Pro Glu Asn Ser Ile Pro Lys Glu Ala Ala Tyr Gln Ile Ile
Asn Asp 35 40 45Glu Leu Met Leu
Asp Gly Asn Pro Arg Leu Asn Leu Ala Ser Phe Val 50 55
60Thr Thr Trp Met Glu Pro Glu Cys Asn Thr Leu Met Met
Asp Ser Ile65 70 75
80Asn Lys Asn Tyr Val Asp Met Asp Glu Tyr Pro Val Thr Thr Glu Leu
85 90 95Gln Asn Arg Cys Val Asn
Met Ile Ala His Leu Phe Asn Ala Pro Leu 100
105 110Gly Asp Gly Glu Thr Ala Val Gly Val Gly Thr Val
Gly Ser Ser Glu 115 120 125Ala Ile
Met Leu Ala Gly Leu Ala Phe Lys Arg Lys Trp Gln Asn Lys 130
135 140Met Lys Ala Gln Gly Lys Pro Phe Asp Lys Pro
Asn Ile Val Thr Gly145 150 155
160Ala Asn Val Gln Val Cys Trp Glu Lys Phe Ala Arg Tyr Phe Glu Val
165 170 175Glu Leu Lys Glu
Val Lys Leu Ser Asp Gly Tyr Tyr Val Met Asp Pro 180
185 190Glu Lys Ala Val Glu Met Val Asp Glu Asn Thr
Ile Cys Val Ala Ala 195 200 205Ile
Leu Gly Ser Thr Leu Asn Gly Glu Phe Glu Asp Val Lys Arg Leu 210
215 220Asn Asp Leu Leu Ile Glu Lys Asn Lys Glu
Thr Gly Trp Asp Thr Pro225 230 235
240Ile His Val Asp Ala Ala Ser Gly Gly Phe Ile Ala Pro Phe Leu
Tyr 245 250 255Pro Glu Leu
Glu Trp Asp Phe Arg Leu Pro Leu Glu Lys Ser Ile Asn 260
265 270Val Ser Gly His Lys Tyr Gly Leu Val Tyr
Ala Gly Ile Gly Trp Ala 275 280
285Ile Trp Arg Asn Lys Glu Asp Leu Pro Asp Glu Leu Ile Phe His Ile 290
295 300Asn Tyr Leu Gly Ala Asp Gln Pro
Thr Phe Thr Leu Asn Phe Ser Lys305 310
315 320Gly Ser Ser Gln Val Ile Ala Gln Tyr Tyr Gln Leu
Ile Arg Leu Gly 325 330
335Phe Glu Gly Tyr Lys Asn Val Met Glu Asn Cys Gln Glu Asn Ala Arg
340 345 350Val Leu Arg Glu Gly Ile
Glu Lys Ser Gly Arg Phe Asn Ile Ile Ser 355 360
365Lys Glu Ile Gly Val Pro Leu Val Ala Phe Ser Leu Lys Asp
Asn Ser 370 375 380Gln His Asn Glu Phe
Glu Ile Ser Glu Thr Leu Arg Arg Phe Gly Trp385 390
395 400Ile Val Leu Ala Tyr Thr Met Pro Pro Asn
Ala Gln His Val Thr Val 405 410
415Leu Arg Val Val Ile Arg Glu Asp Phe Ser Arg Thr Leu Ala Glu Arg
420 425 430Leu Val Ile Asp Ile
Glu Lys Val Phe His Gly Val Asp Thr Leu Pro 435
440 445Ala Arg Val Asn Ala Lys Leu Ala Val Ala Glu Ala
Asn Gly Ser Gly 450 455 460Val His Lys
Lys Thr Asp Arg Glu Val Gln Leu Glu Ile Thr Thr Ala465
470 475 480Trp Leu Lys Phe Val Ala Asp
Lys Lys Lys Lys Thr Asn Gly Val Cys 485
490 49513496PRTNicotiana tabacum 13Met Val Leu Ser Lys
Thr Ala Ser Glu Ser Asp Val Ser Ile His Ser1 5
10 15Thr Phe Ala Ser Arg Tyr Val Arg Thr Ser Leu
Pro Arg Phe Lys Met 20 25
30Pro Glu Asn Ser Ile Pro Lys Glu Ala Ala Tyr Gln Ile Ile Asn Asp
35 40 45Glu Leu Met Leu Asp Gly Asn Pro
Arg Leu Asn Leu Ala Ser Phe Val 50 55
60Thr Thr Trp Met Glu Pro Glu Cys Asn Lys Leu Met Met Asp Ser Ile65
70 75 80Asn Lys Asn Tyr Val
Asp Met Asp Glu Tyr Pro Val Thr Thr Glu Leu 85
90 95Gln Asn Arg Cys Val Asn Met Ile Ala His Leu
Phe Asn Ala Pro Leu 100 105
110Gly Asp Gly Glu Thr Ala Val Gly Val Gly Thr Val Gly Ser Ser Glu
115 120 125Ala Ile Met Leu Ala Gly Leu
Ala Phe Lys Arg Lys Trp Gln Asn Lys 130 135
140Met Lys Ala Gln Gly Lys Pro Cys Asp Lys Pro Asn Ile Val Thr
Gly145 150 155 160Ala Asn
Val Gln Val Cys Trp Glu Lys Phe Ala Arg Tyr Phe Glu Val
165 170 175Glu Leu Lys Glu Val Lys Leu
Ser Asp Gly Tyr Tyr Val Met Asp Pro 180 185
190Glu Lys Ala Val Glu Met Val Asp Glu Asn Thr Ile Cys Val
Ala Ala 195 200 205Ile Leu Gly Ser
Thr Leu Asn Gly Glu Phe Glu Asp Val Lys Arg Leu 210
215 220Asn Asp Leu Leu Ile Glu Lys Asn Lys Glu Thr Gly
Trp Asp Thr Pro225 230 235
240Ile His Val Asp Ala Ala Ser Gly Gly Phe Ile Ala Pro Phe Leu Tyr
245 250 255Pro Glu Leu Glu Trp
Asp Phe Arg Leu Pro Leu Val Lys Ser Ile Asn 260
265 270Val Ser Gly His Lys Tyr Gly Leu Val Tyr Ala Gly
Ile Gly Trp Ala 275 280 285Ile Trp
Arg Asn Lys Glu Asp Leu Pro Asp Glu Leu Ile Phe His Ile 290
295 300Asn Tyr Leu Gly Ala Asp Gln Pro Thr Phe Thr
Leu Asn Phe Ser Lys305 310 315
320Gly Ser Ser Gln Val Ile Ala Gln Tyr Tyr Gln Leu Ile Arg Leu Gly
325 330 335Phe Glu Gly Tyr
Lys Asn Val Met Glu Asn Cys Gln Glu Asn Ala Arg 340
345 350Val Leu Arg Glu Gly Leu Glu Lys Ser Gly Arg
Phe Asn Ile Ile Ser 355 360 365Lys
Glu Ile Gly Val Pro Leu Val Ala Phe Ser Leu Lys Asp Asn Ser 370
375 380Gln His Asn Glu Phe Glu Ile Ser Glu Thr
Leu Arg Arg Phe Gly Trp385 390 395
400Ile Ile Pro Ala Tyr Thr Met Pro Pro Asn Ala Gln His Val Thr
Val 405 410 415Leu Arg Val
Val Ile Arg Glu Asp Phe Ser Arg Thr Leu Ala Glu Arg 420
425 430Leu Val Ile Asp Ile Glu Lys Val Leu His
Glu Leu Asp Thr Leu Pro 435 440
445Ala Arg Val Asn Ala Lys Leu Ala Val Ala Glu Ala Asn Gly Ser Gly 450
455 460Val His Lys Lys Thr Asp Arg Glu
Val Gln Leu Glu Ile Thr Thr Ala465 470
475 480Trp Lys Lys Phe Val Ala Asp Lys Lys Lys Lys Thr
Asn Gly Val Cys 485 490
49514496PRTNicotiana tabacum 14Met Val Leu Ser Lys Thr Ala Ser Glu Ser
Asp Val Ser Ile His Ser1 5 10
15Thr Phe Ala Ser Arg Tyr Val Arg Thr Ser Leu Pro Arg Phe Lys Met
20 25 30Pro Glu Asn Ser Ile Pro
Lys Glu Ala Ala Tyr Gln Ile Ile Asn Asp 35 40
45Glu Leu Met Leu Asp Gly Asn Pro Arg Leu Asn Leu Ala Ser
Phe Val 50 55 60Thr Thr Trp Met Glu
Pro Glu Cys Asn Lys Leu Met Met Asp Ser Ile65 70
75 80Asn Lys Asn Tyr Val Asp Met Asp Glu Tyr
Pro Val Thr Thr Glu Leu 85 90
95Gln Asn Arg Cys Val Asn Met Ile Ala His Leu Phe Asn Ala Pro Leu
100 105 110Gly Asp Gly Glu Thr
Ala Val Gly Val Gly Thr Val Gly Ser Ser Glu 115
120 125Ala Ile Met Leu Ala Gly Leu Ala Phe Lys Arg Lys
Trp Gln Asn Lys 130 135 140Met Lys Ala
Gln Gly Lys Pro Cys Asp Lys Pro Asn Ile Val Thr Gly145
150 155 160Ala Asn Val Gln Val Cys Trp
Glu Lys Phe Ala Arg Tyr Phe Glu Val 165
170 175Glu Leu Lys Glu Val Lys Leu Ser Asp Gly Tyr Tyr
Val Met Asp Pro 180 185 190Glu
Lys Ala Val Glu Met Val Asp Glu Asn Thr Ile Cys Val Ala Ala 195
200 205Ile Leu Gly Ser Thr Leu Asn Gly Glu
Phe Glu Asp Val Lys Arg Leu 210 215
220Asn Asp Leu Leu Ile Glu Lys Asn Lys Glu Thr Gly Trp Asp Thr Pro225
230 235 240Ile His Val Asp
Ala Ala Ser Gly Glu Phe Ile Ala Pro Phe Leu Tyr 245
250 255Pro Glu Leu Glu Trp Asp Phe Arg Leu Pro
Leu Val Lys Ser Ile Asn 260 265
270Val Ser Gly His Lys Tyr Gly Leu Val Tyr Ala Gly Ile Gly Trp Ala
275 280 285Ile Trp Arg Asn Lys Glu Asp
Leu Pro Asp Glu Leu Ile Phe His Ile 290 295
300Asn Tyr Leu Gly Ala Asp Gln Pro Thr Phe Thr Leu Asn Phe Ser
Lys305 310 315 320Gly Ser
Ser Gln Val Ile Ala Gln Tyr Tyr Gln Leu Ile Arg Leu Gly
325 330 335Phe Glu Gly Tyr Lys Asn Val
Met Glu Asn Cys Gln Glu Asn Ala Arg 340 345
350Val Leu Arg Glu Gly Leu Glu Lys Ser Gly Arg Phe Asn Ile
Ile Ser 355 360 365Lys Glu Ile Gly
Val Pro Leu Val Ala Phe Ser Leu Lys Asp Asn Ser 370
375 380Gln His Asn Glu Phe Glu Ile Ser Glu Thr Leu Arg
Arg Phe Gly Trp385 390 395
400Ile Ile Pro Ala Tyr Thr Met Pro Pro Asn Ala Gln His Val Thr Val
405 410 415Leu Arg Val Val Ile
Arg Glu Asp Phe Ser Arg Thr Leu Ala Glu Arg 420
425 430Leu Val Ile Asp Ile Glu Lys Val Leu His Glu Leu
Asp Thr Leu Pro 435 440 445Ala Arg
Val Asn Ala Lys Leu Ala Val Ala Glu Ala Asn Gly Ser Gly 450
455 460Val His Lys Lys Thr Asp Arg Glu Val Gln Leu
Glu Ile Thr Thr Ala465 470 475
480Trp Lys Lys Phe Val Ala Asp Lys Lys Lys Lys Thr Asn Gly Val Cys
485 490 49515500PRTOryza
sativa 15Met Val Leu Thr His Val Glu Ala Val Glu Glu Gly Ser Glu Ala Ala1
5 10 15Ala Ala Val Phe
Ala Ser Arg Tyr Val Gln Asp Pro Val Pro Arg Tyr 20
25 30Glu Leu Gly Glu Arg Ser Ile Ser Lys Asp Ala
Ala Tyr Gln Ile Val 35 40 45His
Asp Glu Leu Leu Leu Asp Ser Ser Pro Arg Leu Asn Leu Ala Ser 50
55 60Phe Val Thr Thr Trp Met Glu Pro Glu Cys
Asp Arg Leu Ile Leu Glu65 70 75
80Ala Ile Asn Lys Asn Tyr Ala Asp Met Asp Glu Tyr Pro Val Thr
Thr 85 90 95Glu Leu Gln
Asn Arg Cys Val Asn Ile Ile Ala Arg Leu Phe Asn Ala 100
105 110Pro Val Gly Asp Gly Glu Lys Ala Val Gly
Val Gly Thr Val Gly Ser 115 120
125Ser Glu Ala Ile Met Leu Ala Gly Leu Ala Phe Lys Arg Arg Trp Gln 130
135 140Asn Arg Arg Lys Ala Ala Gly Lys
Pro His Asp Lys Pro Asn Ile Val145 150
155 160Thr Gly Ala Asn Val Gln Val Cys Trp Glu Lys Phe
Ala Arg Tyr Phe 165 170
175Glu Val Glu Leu Lys Glu Val Lys Leu Thr Glu Gly Cys Tyr Val Met
180 185 190Asp Pro Val Lys Ala Val
Asp Met Val Asp Glu Asn Thr Ile Cys Val 195 200
205Ala Ala Ile Leu Gly Ser Thr Leu Thr Gly Glu Phe Glu Asp
Val Arg 210 215 220Arg Leu Asn Asp Leu
Leu Ala Ala Lys Asn Lys Arg Thr Gly Trp Asp225 230
235 240Thr Pro Ile His Val Asp Ala Ala Ser Gly
Gly Phe Ile Ala Pro Phe 245 250
255Ile Tyr Pro Glu Leu Glu Trp Asp Phe Arg Leu Pro Leu Val Lys Ser
260 265 270Ile Asn Val Ser Gly
His Lys Tyr Gly Leu Val Tyr Ala Gly Val Gly 275
280 285Trp Val Ile Trp Arg Asn Lys Glu Asp Leu Pro Glu
Glu Leu Ile Phe 290 295 300His Ile Asn
Tyr Leu Gly Ala Asp Gln Pro Thr Phe Thr Leu Asn Phe305
310 315 320Ser Lys Gly Ser Ser Gln Ile
Ile Ala Gln Tyr Tyr Gln Phe Leu Arg 325
330 335Leu Gly Phe Glu Gly Tyr Lys Ser Val Met Lys Asn
Cys Met Glu Ser 340 345 350Ala
Arg Thr Leu Arg Glu Gly Leu Glu Lys Thr Gly Arg Phe Thr Ile 355
360 365Ile Ser Lys Glu Glu Gly Val Pro Leu
Val Ala Phe Thr Phe Lys Asp 370 375
380Gly Ala Gly Ala Gln Ala Phe Arg Leu Ser Ser Gly Leu Arg Arg Tyr385
390 395 400Gly Trp Ile Val
Pro Ala Tyr Thr Met Pro Ala Ala Leu Glu His Met 405
410 415Thr Val Leu Arg Val Val Val Arg Glu Asp
Phe Gly Arg Pro Leu Ala 420 425
430Glu Arg Phe Leu Ser His Val Arg Met Ala Leu Asp Glu Met Asp Leu
435 440 445Ala Ala Arg Ala Pro Val Pro
Arg Val Gln Leu Thr Ile Glu Leu Gly 450 455
460Pro Ala Arg Thr Ala Gly Glu Glu Ala Ser Ile Arg Val Val Lys
Ser465 470 475 480Glu Ala
Val Pro Val Arg Lys Ser Val Pro Leu Val Ala Gly Lys Thr
485 490 495Lys Gly Val Cys
50016494PRTCitrus sinensis 16Met Val Leu Ser Lys Thr Phe Ser Glu Ser Asp
Glu Ser Ile His Ser1 5 10
15Thr Phe Ala Ser Arg Tyr Val Arg Asn Ser Leu Pro Arg Phe Thr Met
20 25 30Pro Glu Asn Ser Ile Pro Lys
Glu Ala Ala Tyr Gln Ile Ile Asn Asp 35 40
45Glu Leu Met Leu Asp Gly Asn Pro Arg Leu Asn Leu Ala Ser Phe
Val 50 55 60Thr Thr Trp Met Glu Pro
Glu Cys Asp Lys Leu Met Met Ala Ala Ile65 70
75 80Asn Lys Asn Tyr Val Asp Met Asp Glu Tyr Pro
Val Thr Thr Glu Leu 85 90
95Gln Asn Arg Cys Val Asn Ile Ile Ala Arg Leu Phe Asn Ala Pro Leu
100 105 110Glu Asp Ser Glu Thr Ala
Val Gly Val Gly Thr Val Gly Ser Ser Glu 115 120
125Ala Ile Met Leu Ala Gly Leu Ala Phe Lys Arg Lys Trp Gln
Asn Lys 130 135 140Arg Lys Ala Glu Gly
Lys Pro Phe Asp Lys Pro Asn Ile Val Thr Gly145 150
155 160Ala Asn Val Gln Val Cys Trp Glu Lys Phe
Ala Arg Tyr Phe Glu Val 165 170
175Glu Leu Lys Glu Val Lys Leu Ser Glu Gly Tyr Tyr Val Met Asp Pro
180 185 190Ala Lys Ala Val Glu
Met Val Asp Glu Asn Thr Ile Cys Val Ala Ala 195
200 205Ile Leu Gly Ser Thr Leu Asn Gly Glu Phe Glu Asp
Val Lys Leu Leu 210 215 220Asn Asp Leu
Leu Thr Glu Lys Asn Lys Glu Thr Gly Trp Asp Thr Pro225
230 235 240Ile His Val Asp Ala Ala Ser
Gly Gly Phe Ile Ala Pro Phe Leu Tyr 245
250 255Pro Glu Leu Glu Trp Asp Phe Arg Leu Pro Leu Val
Lys Ser Ile Asn 260 265 270Val
Ser Gly His Lys Tyr Gly Leu Val Tyr Ala Gly Ile Gly Trp Val 275
280 285Val Trp Arg Asn Lys Glu Asp Leu Pro
Glu Glu Leu Ile Phe His Ile 290 295
300Asn Tyr Leu Gly Ala Asp Gln Pro Thr Phe Thr Leu Asn Phe Ser Lys305
310 315 320Gly Ser Ser Gln
Val Ile Ala Gln Tyr Tyr Gln Leu Ile Arg Leu Gly 325
330 335Phe Glu Gly Tyr Arg Asn Val Met Glu Asn
Cys His Glu Asn Ala Met 340 345
350Val Leu Lys Glu Gly Leu Glu Lys Thr Gly Arg Phe Asn Ile Val Ser
355 360 365Lys Asp Glu Gly Val Pro Leu
Val Ala Phe Ser Leu Lys Asp Asn Lys 370 375
380Arg His Asp Glu Phe Glu Val Ala Glu Leu Leu Arg Arg Phe Gly
Trp385 390 395 400Ile Val
Pro Ala Tyr Thr Met Pro Ala Asp Ala Gln His Ile Thr Val
405 410 415Leu Arg Val Val Ile Arg Glu
Asp Phe Ser Arg Thr Leu Ala Glu Arg 420 425
430Leu Val Leu Asp Ile Thr Lys Val Leu His Glu Leu Asp Ser
Leu Pro 435 440 445Ser Lys Val Leu
Val Pro Ala Ser Glu Gln Asn Gly Arg Asn Gly Lys 450
455 460Lys Thr Glu Ile Glu Thr Gln Arg Glu Val Thr Thr
Tyr Trp Arg Lys465 470 475
480Phe Val Ser Glu Arg Lys Ala Asn Asn Lys Asn Lys Ile Cys
485 49017492PRTOryza sativa subsp. japonica 17Met Val
Leu Ser His Gly Val Ser Gly Ser Asp Glu Ser Val His Ser1 5
10 15Thr Phe Ala Ser Arg Tyr Val Arg
Thr Ser Leu Pro Arg Phe Arg Met 20 25
30Pro Glu Gln Ser Ile Pro Lys Glu Ala Ala Tyr Gln Ile Ile Asn
Asp 35 40 45Glu Leu Met Leu Asp
Gly Asn Pro Arg Leu Asn Leu Ala Ser Phe Val 50 55
60Thr Thr Trp Met Glu Pro Glu Cys Asp Lys Leu Ile Gln Ala
Ser Val65 70 75 80Asn
Lys Asn Tyr Val Asp Met Asp Glu Tyr Pro Val Thr Thr Glu Leu
85 90 95Gln Asn Arg Cys Val Asn Met
Ile Ala His Leu Phe Asn Ala Pro Leu 100 105
110Gly Asp Ser Glu Thr Ala Val Gly Val Gly Thr Val Gly Ser
Ser Glu 115 120 125Ala Ile Met Leu
Ala Gly Leu Ala Phe Lys Arg Arg Trp Gln Asn Lys 130
135 140Met Lys Ala Ala Gly Lys Pro Cys Asp Lys Pro Asn
Ile Val Thr Gly145 150 155
160Ala Asn Val Gln Val Cys Trp Glu Lys Phe Ala Arg Tyr Phe Glu Val
165 170 175Glu Leu Lys Glu Val
Lys Leu Ser Asp Gly Tyr Tyr Val Met Asp Pro 180
185 190Ala Lys Ala Val Asp Met Val Asp Glu Asn Thr Ile
Cys Val Ala Ala 195 200 205Ile Leu
Gly Ser Thr Leu Asn Gly Glu Phe Glu Asp Val Lys Leu Leu 210
215 220Asn Asp Leu Leu Thr Lys Lys Asn Ala Glu Thr
Gly Trp Asp Thr Pro225 230 235
240Ile His Val Asp Ala Ala Ser Gly Gly Phe Ile Ala Pro Phe Leu Tyr
245 250 255Pro Glu Leu Glu
Trp Asp Phe Arg Leu Pro Leu Val Lys Ser Ile Asn 260
265 270Val Ser Gly His Lys Tyr Gly Leu Val Tyr Ala
Gly Ile Gly Trp Cys 275 280 285Ile
Trp Arg Ser Lys Glu Asp Leu Pro Glu Glu Leu Ile Phe His Ile 290
295 300Asn Tyr Leu Gly Ala Asp Gln Pro Thr Phe
Thr Leu Asn Phe Ser Lys305 310 315
320Gly Ser Ser Gln Val Ile Ala Gln Tyr Tyr Gln Leu Ile Arg Leu
Gly 325 330 335Phe Glu Gly
Tyr Lys Asn Ile Met Glu Asn Cys Gln Glu Asn Ala Met 340
345 350Val Leu Lys Gln Gly Leu Glu Lys Thr Gly
Arg Phe Asn Ile Val Ser 355 360
365Lys Asp Asn Gly Val Pro Leu Val Ala Phe Ser Leu Lys Asp Ser Ala 370
375 380Arg His Asn Glu Phe Glu Ile Ser
Asp Phe Leu Arg Arg Phe Gly Trp385 390
395 400Ile Val Pro Ala Tyr Thr Met Pro Pro Asp Ala Gln
His Val Thr Val 405 410
415Leu Arg Val Val Ile Arg Glu Asp Phe Ser Arg Thr Leu Ala Glu Arg
420 425 430Leu Val Leu Asp Val Glu
Lys Val Leu His Glu Leu Asp Ala Leu Pro 435 440
445Ala Arg Val Val Ala Asn Gly Gly Asp Ala Ala Ala Ala Ser
Ala Ser 450 455 460Glu Arg Glu Met Glu
Lys Gln Arg Glu Val Ile Ser Leu Trp Lys Arg465 470
475 480Ala Val Leu Ala Lys Lys Lys Thr Asn Gly
Val Cys 485 49018493PRTBrassica juncea
18Met Val Leu Ser Lys Thr Ala Ser Gly Thr Asp Val Ser Val His Ser1
5 10 15Thr Phe Ala Ser Arg Tyr
Val Arg Asn Ser Leu Pro Arg Phe Glu Met 20 25
30Pro Glu Asn Ser Ile Pro Lys Glu Ala Ala Tyr Gln Ile
Ile Asn Asp 35 40 45Glu Leu Met
Leu Asp Gly Asn Pro Arg Leu Asn Leu Ala Ser Phe Val 50
55 60Thr Thr Trp Met Glu Pro Glu Cys Asp Lys Leu Met
Met Glu Ser Ile65 70 75
80Asn Lys Asn Tyr Val Asp Met Asp Glu Tyr Pro Val Thr Thr Glu Leu
85 90 95Gln Asn Arg Cys Val Asn
Met Ile Ala Arg Leu Phe Asn Ala Pro Leu 100
105 110Gly Asp Gly Glu Ala Ala Val Gly Val Gly Thr Val
Gly Ser Ser Glu 115 120 125Ala Ile
Met Leu Ala Gly Leu Ala Phe Lys Arg Gln Trp Gln Asn Lys 130
135 140Arg Lys Ala Gln Gly Leu Pro Tyr Asp Lys Pro
Asn Ile Val Thr Gly145 150 155
160Ala Asn Val Gln Val Cys Trp Glu Lys Phe Ala Arg Tyr Phe Glu Val
165 170 175Glu Leu Lys Glu
Val Lys Leu Arg Glu Gly Tyr Tyr Val Met Asp Pro 180
185 190Glu Lys Ala Val Glu Met Val Asp Glu Asn Thr
Ile Cys Val Ala Ala 195 200 205Ile
Leu Gly Ser Thr Leu Thr Gly Glu Phe Glu Asp Val Lys Leu Leu 210
215 220Asn Asp Leu Leu Val Glu Lys Asn Lys Gln
Thr Gly Trp Asp Thr Gly225 230 235
240Asn His Val Asp Ala Ala Ser Gly Gly Phe Ile Ala Pro Phe Leu
Tyr 245 250 255Pro Glu Leu
Glu Trp Asp Phe Arg Leu Pro Leu Val Lys Ser Ile Asn 260
265 270Val Ser Gly His Lys Tyr Gly Leu Val Tyr
Ala Gly Ile Gly Trp Val 275 280
285Val Trp Arg Thr Lys Ser Asp Leu Pro Asp Glu Leu Ile Phe His Ile 290
295 300Asn Tyr Leu Gly Ala Asp Gln Pro
Thr Phe Thr Leu Asn Phe Ser Lys305 310
315 320Gly Ser Ser Gln Val Ile Ala Gln Tyr Tyr Gln Leu
Ile Arg Leu Gly 325 330
335Phe Glu Gly Tyr Arg Asn Val Met Asp Asn Cys Arg Glu Asn Met Met
340 345 350Val Leu Arg Glu Gly Leu
Glu Lys Thr Gly Arg Phe Asn Ile Val Ser 355 360
365Lys Glu Asn Gly Val Pro Leu Val Ala Phe Ser Leu Lys Asp
Ser Ser 370 375 380Arg His Asn Glu Phe
Glu Val Ala Glu Thr Leu Arg Arg Phe Gly Trp385 390
395 400Ile Val Pro Ala Tyr Thr Val Pro Ala Asp
Ala Glu His Val Thr Val 405 410
415Leu Arg Val Val Ile Arg Glu Asp Phe Ser Arg Thr Leu Ala Glu Arg
420 425 430Leu Val Ala Asp Phe
Glu Lys Val Leu His Glu Leu Asp Thr Leu Pro 435
440 445Ala Arg Val Arg Ala Lys Met Ala Asn Gly Lys Ala
Lys Val Val Lys 450 455 460Gln Thr Glu
Glu Glu Thr Thr Arg Glu Val Thr Ala Tyr Trp Lys Lys465
470 475 480Phe Val Glu Thr Lys Lys Thr
Asn Gln Asn Lys Ile Cys 485
49019493PRTBrassica juncea 19Met Val Leu Ser Lys Thr Ala Ser Glu Ser Asp
Val Ser Ile His Ser1 5 10
15Thr Phe Ala Ser Arg Tyr Val Arg Thr Ser Leu Pro Arg Phe Glu Met
20 25 30Pro Glu Asn Ser Ile Pro Lys
Glu Ala Ala Tyr Gln Ile Ile Asn Asp 35 40
45Glu Leu Met Leu Asp Gly Asn Pro Arg Leu Asn Leu Ala Ser Phe
Val 50 55 60Thr Thr Trp Met Glu Pro
Glu Cys Asp Lys Leu Met Met Glu Ser Ile65 70
75 80Asn Lys Asn Tyr Val Asp Met Asp Glu Tyr Pro
Val Thr Thr Glu Leu 85 90
95Gln Asn Arg Cys Val Asn Met Ile Ala Arg Leu Phe Asn Ala Pro Leu
100 105 110Gly Asp Gly Glu Ala Ala
Val Gly Val Gly Thr Val Gly Ser Ser Glu 115 120
125Ala Ile Met Leu Ala Gly Leu Ala Phe Lys Arg Gln Trp Gln
Asn Lys 130 135 140Arg Lys Ala Gln Gly
Leu Pro Tyr Asp Lys Pro Asn Ile Val Thr Gly145 150
155 160Ala Asn Val Gln Val Cys Trp Glu Lys Phe
Ala Arg Tyr Phe Glu Val 165 170
175Glu Leu Lys Glu Val Lys Leu Arg Glu Gly Tyr Tyr Val Met Asp Pro
180 185 190Glu Lys Ala Val Glu
Met Val Asp Glu Asn Thr Ile Cys Val Ala Ala 195
200 205Ile Leu Gly Ser Thr Leu Thr Gly Glu Phe Glu Asp
Val Lys Leu Leu 210 215 220Asn Asp Leu
Leu Val Glu Lys Asn Lys Gln Thr Gly Trp Asp Thr Gly225
230 235 240Ile His Val Asp Ala Ala Ser
Gly Gly Phe Ile Ala Pro Phe Leu Tyr 245
250 255Pro Glu Leu Glu Trp Asp Phe Arg Leu Pro Leu Val
Lys Ser Ile Asn 260 265 270Val
Ser Gly His Lys Tyr Gly Leu Val Tyr Ala Gly Ile Gly Trp Val 275
280 285Val Trp Arg Thr Lys Ser Asp Leu Pro
Asp Glu Leu Ile Phe His Ile 290 295
300Asn Tyr Leu Gly Ala Asp Gln Pro Thr Phe Thr Leu Asn Phe Ser Lys305
310 315 320Gly Ser Ser Gln
Val Ile Ala Gln Tyr Tyr Gln Leu Ile Arg Leu Gly 325
330 335Phe Glu Gly Tyr Arg Asn Val Met Asp Asn
Cys Arg Glu Asn Met Met 340 345
350Val Leu Arg Glu Gly Leu Glu Lys Thr Gly Arg Phe Asn Ile Val Ser
355 360 365Lys Glu Asn Gly Val Pro Leu
Val Ala Phe Ser Leu Lys Asp Ser Ser 370 375
380Arg His Asp Glu Phe Glu Val Ala Glu Thr Leu Arg Arg Phe Gly
Trp385 390 395 400Ile Val
Pro Ala Tyr Thr Met Pro Ala Asp Ala Gln His Val Thr Val
405 410 415Leu Arg Val Val Ile Arg Glu
Asp Phe Ser Arg Thr Leu Ala Glu Arg 420 425
430Leu Val Ala Asp Phe Glu Lys Val Leu His Glu Leu Asp Thr
Leu Pro 435 440 445Ala Arg Val Gln
Ala Lys Met Ala Asn Gly Asn Ala Asn Gly Val Lys 450
455 460Lys Thr Glu Glu Glu Thr Thr Arg Glu Val Thr Ala
Tyr Trp Lys Lys465 470 475
480Phe Val Glu Ala Lys Lys Ser Asn Lys Asn Arg Ile Cys
485 49020494PRTBrassica juncea 20Met Val Leu Ser Arg Ala
Ala Thr Glu Ser Gly Glu Asn Val Cys Ser1 5
10 15Thr Phe Gly Ser Arg Tyr Val Arg Thr Ala Leu Pro
Lys His Lys Ile 20 25 30Gly
Glu Ser Ser Ile Pro Lys Glu Ala Ala Tyr Gln Ile Ile Lys Asp 35
40 45Glu Leu Met Leu Asp Gly Asn Pro Arg
Leu Asn Leu Ala Ser Phe Val 50 55
60Thr Thr Trp Met Glu Pro Glu Cys Asp Lys Leu Ile Met Glu Ser Ile65
70 75 80Asn Lys Asn Tyr Val
Asp Met Asp Glu Tyr Pro Val Thr Thr Glu Leu 85
90 95Gln Asn Arg Cys Val Asn Met Ile Ala Arg Leu
Phe Asn Ala Pro Leu 100 105
110Glu Glu Thr Glu Thr Ala Met Gly Val Gly Thr Val Gly Ser Ser Glu
115 120 125Ala Ile Met Leu Ala Gly Leu
Ala Phe Lys Arg Asn Trp Gln Asn Lys 130 135
140Arg Lys Ala Glu Gly Lys Pro Tyr Asp Lys Pro Asn Ile Val Thr
Gly145 150 155 160Ala Asn
Val Gln Val Cys Trp Glu Lys Phe Ala Arg Tyr Phe Glu Val
165 170 175Glu Leu Lys Glu Val Lys Leu
Ser Glu Gly Tyr Tyr Val Met Asp Pro 180 185
190Asp Lys Ala Ala Glu Met Val Asp Glu Asn Thr Ile Cys Val
Ala Ala 195 200 205Ile Leu Gly Ser
Thr Leu Asn Gly Glu Phe Glu Asp Val Lys Arg Leu 210
215 220Asn Asp Leu Leu Val Lys Lys Asn Glu Glu Thr Gly
Trp Asn Thr Pro225 230 235
240Ile His Val Asp Ala Ala Ser Gly Gly Phe Ile Ala Pro Phe Ile Tyr
245 250 255Pro Glu Leu Glu Trp
Asp Phe Arg Leu Pro Leu Val Lys Ser Ile Asn 260
265 270Val Ser Gly His Lys Tyr Gly Leu Val Tyr Ala Gly
Ile Gly Trp Val 275 280 285Val Trp
Arg Thr Gln Gln Asp Leu Pro Asp Glu Leu Ile Phe His Ile 290
295 300Asn Tyr Leu Gly Ala Asp Gln Pro Thr Phe Thr
Leu Asn Phe Ser Lys305 310 315
320Gly Ser Ser Gln Ile Ile Ala Gln Tyr Tyr Gln Leu Ile Arg Leu Gly
325 330 335Phe Glu Gly Tyr
Lys Asn Val Met Glu Asn Cys Arg Glu Asn Met Val 340
345 350Val Leu Arg Glu Gly Ile Glu Lys Thr Glu Arg
Phe Asn Ile Val Ser 355 360 365Lys
Glu Val Gly Val Pro Leu Val Ala Phe Ser Leu Lys Asp His Ser 370
375 380Phe His Asn Glu Phe Glu Ile Ser Glu Met
Leu Arg Arg Phe Gly Trp385 390 395
400Ile Val Pro Ala Tyr Thr Met Pro Ala Asp Ala Gln His Ile Thr
Val 405 410 415Leu Arg Val
Val Ile Arg Glu Asp Phe Ser Arg Thr Leu Ala Glu Arg 420
425 430Leu Val Ala Asp Ile Val Lys Val Leu His
Glu Leu Asp Thr Leu Pro 435 440
445Ser Lys Ile Ser Lys Lys Met Gly Ala Glu Asp Phe Gly Asn Val Lys 450
455 460Gly Lys Lys Val Asp Arg Asp Val
Leu Met Glu Val Ile Val Gly Trp465 470
475 480Arg Lys Phe Val Lys Asp Arg Lys Lys Met Asn Gly
Val Cys 485 49021497PRTOryza sativa subsp.
japonica 21Met Val Leu Ser His Ala Ser Ser Gly Arg Asp Asp Ala Val Arg
Cys1 5 10 15Thr Phe Ala
Thr Arg Tyr Ala Cys Glu Thr Leu Pro Arg Phe Arg Met 20
25 30Pro Glu Gln Ser Ile Pro Arg Glu Ala Ala
Tyr Gln Ile Ile Asn Asp 35 40
45Glu Leu Met Leu Asp Gly Asn Pro Arg Leu Asn Leu Ala Ser Phe Val 50
55 60Thr Thr Trp Met Glu Pro Glu Cys Asp
Lys Leu Ile Met Asp Ser Val65 70 75
80Asn Lys Asn Tyr Val Asp Met Asp Glu Tyr Pro Val Thr Thr
Glu Leu 85 90 95Gln Asn
Arg Cys Val Asn Met Ile Ala His Leu Phe Asn Ala Pro Ile 100
105 110Lys Glu Asp Glu Thr Ala Ile Gly Val
Gly Thr Val Gly Ser Ser Glu 115 120
125Ala Ile Met Leu Ala Gly Leu Ala Phe Lys Arg Lys Trp Gln Asn Lys
130 135 140Arg Lys Glu Gln Gly Lys Pro
Cys Asp Lys Pro Asn Ile Val Thr Gly145 150
155 160Ala Asn Val Gln Val Cys Trp Glu Lys Phe Ala Arg
Tyr Phe Glu Val 165 170
175Glu Leu Lys Glu Val Lys Leu Ser Glu Gly Tyr Tyr Val Met Asp Pro
180 185 190Val Lys Ala Val Glu Met
Val Asp Glu Asn Thr Ile Cys Val Ala Ala 195 200
205Ile Leu Gly Ser Thr Leu Thr Gly Glu Phe Glu Asp Val Lys
Leu Leu 210 215 220Asn Asn Leu Leu Thr
Glu Lys Asn Lys Glu Thr Gly Trp Asp Val Pro225 230
235 240Ile His Val Asp Ala Ala Ser Gly Gly Phe
Ile Ala Pro Phe Leu Tyr 245 250
255Pro Glu Leu Glu Trp Asp Phe Arg Leu Pro Leu Val Lys Ser Ile Asn
260 265 270Val Ser Gly His Lys
Tyr Gly Leu Val Tyr Pro Gly Val Gly Trp Val 275
280 285Ile Trp Arg Ser Lys Glu Asp Leu Pro Glu Glu Leu
Ile Phe His Ile 290 295 300Asn Tyr Leu
Gly Thr Asp Gln Pro Thr Phe Thr Leu Asn Phe Ser Lys305
310 315 320Gly Ser Ser Gln Ile Ile Ala
Gln Tyr Tyr Gln Leu Ile Arg Leu Gly 325
330 335Phe Glu Gly Tyr Lys Asn Ile Met Gln Asn Cys Met
Glu Asn Thr Ala 340 345 350Ile
Leu Arg Glu Gly Ile Glu Ala Thr Gly Arg Phe Glu Ile Leu Ser 355
360 365Lys Glu Ala Gly Val Pro Leu Val Ala
Phe Ser Leu Lys Asp Ser Gly 370 375
380Arg Tyr Thr Val Phe Asp Ile Ser Glu His Leu Arg Arg Phe Gly Trp385
390 395 400Ile Val Pro Ala
Tyr Thr Met Pro Ala Asn Ala Glu His Val Ala Val 405
410 415Leu Arg Val Val Ile Arg Glu Asp Phe Ser
Arg Ser Leu Ala Glu Arg 420 425
430Leu Val Ser Asp Ile Val Lys Ile Leu His Glu Leu Asp Ala His Ser
435 440 445Ala Gln Val Leu Lys Ile Ser
Ser Ala Ile Ala Lys Gln Gln Ser Gly 450 455
460Asp Asp Gly Val Val Thr Lys Lys Ser Val Leu Glu Thr Glu Arg
Glu465 470 475 480Ile Phe
Ala Tyr Trp Arg Asp Gln Val Lys Lys Lys Gln Thr Gly Ile
485 490 495Cys22490PRTHordeum vulgare
22Met Val Val Thr Val Ala Ala Thr Gly Pro Asp Thr Ala Glu Thr Leu1
5 10 15His Ser Thr Thr Phe Ala
Ser Arg Tyr Val Arg Asp Gln Leu Pro Arg 20 25
30Tyr Arg Met Pro Glu Asn Ser Ile Pro Lys Glu Ala Ala
Tyr Gln Ile 35 40 45Ile Ser Asp
Glu Leu Met Leu Asp Gly Asn Pro Arg Leu Asn Leu Ala 50
55 60Ser Phe Val Thr Thr Trp Met Glu Pro Glu Cys Gly
Lys Leu Ile Met65 70 75
80Asp Ser Val Asn Lys Asn Tyr Val Asp Met Asp Glu Tyr Pro Val Thr
85 90 95Thr Glu Leu Gln Asp Arg
Cys Val Asn Met Ile Ala His Leu Phe Asn 100
105 110Ala Pro Ile Gly Glu Asp Glu Thr Ala Ile Gly Val
Ser Thr Val Gly 115 120 125Ser Ser
Glu Ala Ile Met Leu Ala Gly Leu Ala Phe Lys Arg Lys Trp 130
135 140Ala Asn Lys Met Lys Glu Gln Gly Lys Pro Cys
Asp Lys Pro Asn Ile145 150 155
160Val Thr Gly Ala Asn Val Gln Val Cys Trp Glu Lys Phe Ala Arg Tyr
165 170 175Phe Glu Val Glu
Leu Lys Glu Val Lys Leu Thr Glu Gly Tyr Tyr Val 180
185 190Met Asp Pro Lys Lys Ala Val Glu Met Val Asp
Glu Asn Thr Ile Cys 195 200 205Val
Ala Ala Ile Leu Gly Ser Thr Leu Thr Gly Glu Tyr Glu Asp Val 210
215 220Lys Leu Leu Asn Asp Leu Leu Val Glu Lys
Asn Lys Glu Thr Gly Trp225 230 235
240Asn Val Pro Ile His Val Asp Ala Ala Ser Gly Gly Phe Ile Ala
Pro 245 250 255Phe Leu Gln
Pro Glu Leu Glu Trp Asp Phe Arg Leu Pro Leu Val Lys 260
265 270Ser Ile Asn Val Ser Gly His Lys Tyr Gly
Leu Val Tyr Pro Gly Val 275 280
285Gly Trp Val Ile Trp Arg Ser Lys Asp Asp Leu Pro Glu Glu Leu Ile 290
295 300Phe His Ile Asn Tyr Leu Gly Ala
Asp Gln Pro Thr Phe Thr Leu Asn305 310
315 320Phe Ser Lys Gly Gln Gln Ile Ile Ala Gln Tyr Tyr
Gln Leu Ile Arg 325 330
335Leu Gly Phe Glu Gly Tyr Lys His Ile Met Glu Asn Cys Lys Leu Asn
340 345 350Ala Ala Val Leu Lys Glu
Gly Ile Asp Ala Thr Gly Arg Phe Asp Val 355 360
365Leu Ser Lys Ala Asp Gly Val Pro Leu Val Ala Ile Arg Leu
Lys Asp 370 375 380Ser Thr Asn Phe Ser
Val Phe Asp Ile Ser Glu Asn Leu Arg Arg Phe385 390
395 400Gly Trp Ile Val Pro Ala Tyr Thr Met Pro
Ala Asp Ala Glu His Val 405 410
415Ala Val Leu Arg Ile Val Ile Arg Glu Asp Phe Asn Arg Ser Leu Ala
420 425 430Gln Arg Leu Leu Ala
Asp Ile Asn Lys Ile Ile Gly Glu Leu Asp Ala 435
440 445His Ala Val His Ala Ile Lys Leu Ser Thr Ala Ala
Ala Gly Gly Asp 450 455 460Gly Ala Ser
Lys Ser Ala Val Asp Ala Ala Thr Glu Ala Phe Lys Asp465
470 475 480Leu Ala Gly Lys Lys Lys Ala
Gly Val Cys 485 49023492PRTOryza sativa
subsp. japonica 23Met Val Leu Ser Lys Ala Val Ser Glu Ser Asp Met Ser Val
His Ser1 5 10 15Thr Phe
Ala Ser Arg Tyr Val Arg Ala Ser Leu Pro Arg Tyr Arg Met 20
25 30Pro Glu Asn Ser Ile Pro Lys Glu Ala
Ala Tyr Gln Ile Ile Asn Asp 35 40
45Glu Leu Met Leu Asp Gly Asn Pro Arg Leu Asn Leu Ala Ser Phe Val 50
55 60Thr Thr Trp Met Glu Pro Glu Cys Asp
Lys Leu Ile Met Ala Ala Ile65 70 75
80Asn Lys Asn Tyr Val Asp Met Asp Glu Tyr Pro Val Thr Thr
Glu Leu 85 90 95Gln Asn
Arg Cys Val Asn Met Ile Ala His Leu Phe His Ala Pro Leu 100
105 110Gly Glu Asp Glu Thr Ala Val Gly Val
Gly Thr Val Gly Ser Ser Glu 115 120
125Ala Ile Met Leu Ala Gly Leu Ala Phe Lys Arg Arg Trp Gln Asn Lys
130 135 140Arg Lys Ala Glu Gly Lys Pro
Phe Asp Lys Pro Asn Ile Ile Thr Gly145 150
155 160Ala Asn Val Gln Val Cys Trp Glu Lys Phe Ala Arg
Tyr Phe Glu Val 165 170
175Glu Leu Lys Glu Val Lys Leu Arg Asp Gly Tyr Tyr Val Met Asp Pro
180 185 190Glu Lys Ala Val Asp Met
Val Asn Glu Asn Thr Ile Cys Val Ala Ala 195 200
205Ile Leu Gly Ser Thr Leu Asn Gly Glu Phe Glu Asp Val Lys
Leu Leu 210 215 220Asn Asp Leu Leu Asp
Lys Lys Asn Lys Glu Thr Gly Trp Glu Thr Pro225 230
235 240Ile His Val Asp Ala Ala Ser Gly Gly Phe
Ile Ala Pro Phe Leu Tyr 245 250
255Pro Glu Leu Glu Trp Asp Phe Arg Leu Pro Trp Val Lys Ser Ile Asn
260 265 270Val Ser Gly His Lys
Tyr Gly Leu Val Tyr Ala Gly Ile Gly Trp Cys 275
280 285Ile Trp Arg Asn Lys Glu Asp Leu Pro Glu Glu Leu
Ile Phe His Ile 290 295 300Asn Tyr Leu
Gly Thr Asp Gln Pro Thr Phe Thr Leu Asn Phe Ser Lys305
310 315 320Gly Ser Ser Gln Val Ile Ala
Gln Tyr Tyr Gln Leu Ile Arg His Gly 325
330 335Phe Glu Gly Tyr Arg Asn Ile Met Glu Asn Cys His
Glu Asn Ala Met 340 345 350Val
Leu Lys Glu Gly Leu Val Lys Thr Gly Arg Phe Asp Ile Val Ser 355
360 365Lys Asp Glu Gly Val Pro Leu Val Ala
Phe Ser Leu Lys Asp Arg Ser 370 375
380Arg His Asp Glu Phe Glu Ile Ser Asp Met Leu Arg Arg Phe Gly Trp385
390 395 400Ile Val Pro Ala
Tyr Thr Met Pro Pro Asp Ala Gln His Val Thr Val 405
410 415Leu Arg Val Val Ile Arg Glu Glu Phe Ser
Arg Thr Leu Ala Glu Arg 420 425
430Leu Val Leu Asp Ile Glu Lys Val Met Tyr Gln Leu Asp Ala Leu Pro
435 440 445Ser Arg Leu Met Pro Pro Val
Pro Pro Ala Pro Leu Leu Val Val Ala 450 455
460Lys Lys Ser Glu Leu Glu Thr Gln Arg Ser Val Thr Glu Ala Trp
Lys465 470 475 480Lys Phe
Val Leu Ala Lys Arg Thr Asn Gly Val Cys485
49024494PRTArabidopsis thaliana 24Met Val Leu Ala Thr Asn Ser Asp Ser Asp
Glu His Leu His Ser Thr1 5 10
15Phe Ala Ser Arg Tyr Val Arg Ala Val Val Pro Arg Phe Lys Met Pro
20 25 30Asp His Cys Met Pro Lys
Asp Ala Ala Tyr Gln Val Ile Asn Asp Glu 35 40
45Leu Met Leu Asp Gly Asn Pro Arg Leu Asn Leu Ala Ser Phe
Val Thr 50 55 60Thr Trp Met Glu Pro
Glu Cys Asp Lys Leu Ile Met Asp Ser Val Asn65 70
75 80Lys Asn Tyr Val Asp Met Asp Glu Tyr Pro
Val Thr Thr Glu Leu Gln 85 90
95Asn Arg Cys Val Asn Met Ile Ala Asn Phe Phe His Ala Pro Val Gly
100 105 110Glu Asp Glu Ala Ala
Ile Gly Cys Gly Thr Val Gly Ser Ser Glu Ala 115
120 125Ile Met Leu Ala Gly Leu Ala Phe Lys Arg Lys Trp
Gln His Arg Arg 130 135 140Lys Ala Gln
Gly Leu Pro Ile Asp Lys Pro Asn Ile Val Thr Gly Ala145
150 155 160Asn Val Gln Val Cys Trp Glu
Lys Phe Ala Arg Tyr Phe Glu Val Glu 165
170 175Leu Lys Glu Val Lys Leu Ser Glu Asp Tyr Tyr Val
Met Asp Pro Ala 180 185 190Lys
Ala Val Glu Met Val Asp Glu Asn Thr Ile Cys Val Ala Ala Ile 195
200 205Leu Gly Ser Thr Leu Thr Gly Glu Phe
Glu Asp Val Lys Gln Leu Asn 210 215
220Asp Leu Leu Ala Glu Lys Asn Ala Glu Thr Gly Trp Glu Thr Pro Ile225
230 235 240His Val Asp Ala
Ala Ser Gly Gly Phe Ile Ala Pro Phe Leu Tyr Pro 245
250 255Asp Leu Glu Trp Asp Phe Arg Leu Pro Trp
Val Lys Ser Ile Asn Val 260 265
270Ser Gly His Lys Tyr Gly Leu Val Tyr Ala Gly Val Gly Trp Val Val
275 280 285Trp Arg Thr Lys Asp Asp Leu
Pro Glu Glu Leu Val Phe His Ile Asn 290 295
300Tyr Leu Gly Ala Asp Gln Pro Thr Phe Thr Leu Asn Phe Ser Lys
Gly305 310 315 320Ser Ser
Gln Ile Ile Ala Gln Tyr Tyr Gln Phe Ile Arg Leu Gly Phe
325 330 335Glu Gly Tyr Lys Asn Ile Met
Glu Asn Cys Met Asp Asn Ala Arg Arg 340 345
350Leu Arg Glu Gly Ile Glu Met Thr Gly Lys Phe Asn Ile Val
Ser Lys 355 360 365Asp Ile Gly Val
Pro Leu Val Ala Phe Ser Leu Lys Asp Ser Ser Lys 370
375 380His Thr Val Phe Glu Ile Ala Glu Ser Leu Arg Lys
Phe Gly Trp Ile385 390 395
400Ile Pro Ala Tyr Thr Met Pro Ala Asp Ala Gln His Ile Ala Val Leu
405 410 415Arg Val Val Ile Arg
Glu Asp Phe Ser Arg Gly Leu Ala Asp Arg Leu 420
425 430Ile Thr His Ile Ile Gln Val Leu Lys Glu Ile Glu
Gly Leu Pro Ser 435 440 445Arg Ile
Ala His Leu Ala Ala Ala Ala Ala Val Ser Gly Asp Asp Glu 450
455 460Glu Val Lys Val Lys Thr Ala Lys Met Ser Leu
Glu Asp Ile Thr Lys465 470 475
480Tyr Trp Lys Arg Leu Val Glu His Lys Arg Asn Ile Val Cys
485 49025496PRTNicotiana tabacum 25Met Val Leu Ser
Lys Thr Ala Ser Glu Ser Asp Val Ser Ile His Ser1 5
10 15Thr Phe Ala Ser Arg Tyr Val Arg Thr Ser
Leu Pro Arg Phe Lys Met 20 25
30Pro Glu Asn Ser Ile Pro Lys Glu Ala Ala Tyr Gln Ile Ile Asn Asp
35 40 45Glu Leu Met Leu Asp Gly Asn Pro
Arg Leu Asn Leu Ala Ser Phe Val 50 55
60Thr Thr Trp Met Glu Pro Glu Cys Asn Thr Leu Met Met Asp Ser Ile65
70 75 80Asn Lys Asn Tyr Val
Asp Met Asp Glu Tyr Pro Val Thr Thr Glu Leu 85
90 95Gln Asn Arg Cys Val Asn Met Ile Ala His Leu
Phe Asn Ala Pro Leu 100 105
110Gly Asp Gly Glu Thr Ala Val Gly Val Gly Thr Val Gly Ser Ser Glu
115 120 125Ala Ile Met Leu Ala Gly Leu
Ala Phe Lys Arg Lys Trp Gln Asn Lys 130 135
140Met Lys Ala Gln Gly Lys Pro Phe Asp Lys Pro Asn Ile Val Thr
Gly145 150 155 160Ala Asn
Val Gln Val Cys Trp Glu Lys Phe Ala Arg Tyr Phe Glu Val
165 170 175Glu Leu Lys Glu Val Lys Leu
Ser Asp Gly Tyr Tyr Val Met Asp Pro 180 185
190Glu Lys Ala Val Glu Met Val Asp Glu Asn Thr Ile Cys Val
Ala Ala 195 200 205Ile Leu Gly Ser
Thr Leu Asn Gly Glu Phe Glu Asp Val Lys Arg Leu 210
215 220Asn Asp Leu Leu Ile Glu Lys Asn Lys Glu Thr Gly
Trp Asp Thr Pro225 230 235
240Ile His Val Asp Ala Ala Ser Gly Gly Phe Ile Ala Pro Phe Leu Tyr
245 250 255Pro Glu Leu Glu Trp
Asp Phe Arg Leu Pro Leu Val Lys Ser Ile Asn 260
265 270Val Ser Gly His Lys Tyr Gly Leu Val Tyr Ala Gly
Ile Gly Trp Ala 275 280 285Ile Trp
Arg Asn Lys Glu Asp Leu Pro Asp Glu Leu Ile Phe His Ile 290
295 300Asn Tyr Leu Gly Ala Asp Gln Pro Thr Phe Thr
Leu Asn Phe Ser Lys305 310 315
320Gly Ser Ser Gln Val Ile Ala Gln Tyr Tyr Gln Leu Ile Arg Leu Gly
325 330 335Phe Glu Gly Tyr
Lys Asn Val Met Glu Asn Cys Gln Glu Asn Ala Arg 340
345 350Val Leu Arg Glu Gly Ile Glu Lys Ser Gly Arg
Phe Asn Ile Ile Ser 355 360 365Lys
Glu Ile Gly Val Pro Leu Val Ala Phe Ser Leu Lys Asp Asn Ser 370
375 380Gln His Asn Glu Phe Glu Ile Ser Glu Thr
Leu Arg Arg Phe Gly Trp385 390 395
400Ile Val Pro Ala Tyr Thr Met Pro Pro Asn Ala Gln His Val Thr
Val 405 410 415Leu Arg Val
Val Ile Arg Glu Asp Phe Ser Arg Thr Leu Ala Glu Arg 420
425 430Leu Val Ile Asp Ile Glu Lys Val Leu His
Glu Leu Asp Thr Leu Pro 435 440
445Ala Arg Val Asn Ala Lys Leu Ala Val Ala Glu Ala Asn Gly Ser Gly 450
455 460Val His Lys Lys Thr Asp Arg Glu
Val Gln Leu Glu Ile Thr Thr Ala465 470
475 480Trp Lys Lys Phe Val Ala Asp Lys Lys Lys Lys Thr
Asn Gly Val Cys 485 490
49526494PRTArabidopsis thaliana 26Met Val Leu Thr Lys Thr Ala Thr Asn Asp
Glu Ser Val Cys Thr Met1 5 10
15Phe Gly Ser Arg Tyr Val Arg Thr Thr Leu Pro Lys Tyr Glu Ile Gly
20 25 30Glu Asn Ser Ile Pro Lys
Asp Ala Ala Tyr Gln Ile Ile Lys Asp Glu 35 40
45Leu Met Leu Asp Gly Asn Pro Arg Leu Asn Leu Ala Ser Phe
Val Thr 50 55 60Thr Trp Met Glu Pro
Glu Cys Asp Lys Leu Ile Met Asp Ser Ile Asn65 70
75 80Lys Asn Tyr Val Asp Met Asp Glu Tyr Pro
Val Thr Thr Glu Leu Gln 85 90
95Asn Arg Cys Val Asn Ile Ile Ala Arg Leu Phe Asn Ala Pro Leu Glu
100 105 110Glu Ser Glu Thr Ala
Val Gly Val Gly Thr Val Gly Ser Ser Glu Ala 115
120 125Ile Met Leu Ala Gly Leu Ala Phe Lys Arg Lys Trp
Gln Asn Lys Arg 130 135 140Lys Ala Glu
Gly Lys Pro Tyr Asp Lys Pro Asn Ile Val Thr Gly Ala145
150 155 160Asn Val Gln Val Cys Trp Glu
Lys Phe Ala Arg Tyr Phe Glu Val Glu 165
170 175Leu Lys Glu Val Asn Leu Ser Glu Gly Tyr Tyr Val
Met Asp Pro Asp 180 185 190Lys
Ala Ala Glu Met Val Asp Glu Asn Thr Ile Cys Val Ala Ala Ile 195
200 205Leu Gly Ser Thr Leu Asn Gly Glu Phe
Glu Asp Val Lys Arg Leu Asn 210 215
220Asp Leu Leu Val Lys Lys Asn Glu Glu Thr Gly Trp Asn Thr Pro Ile225
230 235 240His Val Asp Ala
Ala Ser Gly Gly Phe Ile Ala Pro Phe Ile Tyr Pro 245
250 255Glu Leu Glu Trp Asp Phe Arg Leu Pro Leu
Val Lys Ser Ile Asn Val 260 265
270Ser Gly His Lys Tyr Gly Leu Val Tyr Ala Gly Ile Gly Trp Val Val
275 280 285Trp Arg Ala Ala Glu Asp Leu
Pro Glu Glu Leu Ile Phe His Ile Asn 290 295
300Tyr Leu Gly Ala Asp Gln Pro Thr Phe Thr Leu Asn Phe Ser Lys
Gly305 310 315 320Ser Ser
Gln Ile Ile Ala Gln Tyr Tyr Gln Leu Ile Arg Leu Gly Phe
325 330 335Glu Gly Tyr Lys Asn Val Met
Glu Asn Cys Ile Glu Asn Met Val Val 340 345
350Leu Lys Glu Gly Ile Glu Lys Thr Glu Arg Phe Asn Ile Val
Ser Lys 355 360 365Asp Gln Gly Val
Pro Val Val Ala Phe Ser Leu Lys Asp His Ser Phe 370
375 380His Asn Glu Phe Glu Ile Ser Glu Met Leu Arg Arg
Phe Gly Trp Ile385 390 395
400Val Pro Ala Tyr Thr Met Pro Ala Asp Val Gln His Ile Thr Val Leu
405 410 415Arg Val Val Ile Arg
Glu Asp Phe Ser Arg Thr Leu Ala Glu Arg Leu 420
425 430Val Ala Asp Ile Ser Lys Val Leu His Glu Leu Asp
Thr Leu Pro Ser 435 440 445Lys Ile
Ser Lys Lys Met Gly Ile Glu Gly Ile Ala Glu Asn Val Lys 450
455 460Glu Lys Lys Met Glu Lys Glu Ile Leu Met Glu
Val Ile Val Gly Trp465 470 475
480Arg Lys Phe Val Lys Glu Arg Lys Lys Met Asn Gly Val Cys
485 49027491PRTNicotiana tabacum 27Met Val Leu Ser
Lys Thr Ser Ser Glu Ser Asp Val Ser Val His Ser1 5
10 15Thr Phe Ala Ser Arg Tyr Val Arg Thr Ser
Leu Pro Arg Phe Glu Met 20 25
30Ala Glu Asn Ser Ile Pro Lys Glu Ala Ala Phe Gln Ile Ile Asn Asp
35 40 45Glu Leu Met Leu Asp Gly Asn Pro
Arg Leu Asn Leu Ala Ser Phe Val 50 55
60Thr Thr Trp Met Glu Pro Glu Cys Asp Lys Leu Met Met Asp Ser Ile65
70 75 80Asn Lys Asn Tyr Val
Asp Met Asp Glu Tyr Pro Val Thr Thr Glu Leu 85
90 95Gln Asn Arg Cys Val Asn Met Ile Ala Arg Leu
Phe Asn Ala Pro Leu 100 105
110Glu Glu Lys Glu Thr Ala Val Gly Val Gly Thr Val Gly Ser Ser Glu
115 120 125Ala Ile Met Leu Ala Gly Leu
Ala Phe Lys Arg Asn Trp Gln Asn Lys 130 135
140Arg Lys Ala Glu Gly Lys Pro Tyr Asn Lys Pro Asn Ile Val Thr
Gly145 150 155 160Ala Asn
Val Gln Val Cys Trp Glu Lys Phe Ala Asn Tyr Phe Glu Val
165 170 175Glu Leu Lys Glu Val Lys Leu
Arg Glu Gly Tyr Tyr Val Met Asp Pro 180 185
190Val Gln Ala Val Glu Met Val Asp Glu Asn Thr Ile Cys Val
Ala Ala 195 200 205Ile Leu Gly Ser
Thr Leu Asn Gly Glu Phe Glu Asp Val Lys Leu Leu 210
215 220Asn Asp Leu Leu Ile Glu Lys Asn Lys Gln Thr Gly
Trp Asn Thr Pro225 230 235
240Ile His Val Asp Ala Ala Ser Gly Gly Phe Ile Ala Pro Phe Leu Tyr
245 250 255Pro Glu Leu Glu Trp
Asp Phe Arg Leu Pro Leu Val Lys Ser Ile Asn 260
265 270Val Ser Gly His Lys Tyr Gly Leu Val Tyr Ala Gly
Ile Gly Trp Val 275 280 285Ile Trp
Arg Thr Lys Gln Asp Leu Pro Glu Glu Leu Ile Phe His Ile 290
295 300Asn Tyr Leu Gly Ala Asp Gln Pro Thr Phe Thr
Leu Asn Phe Ser Lys305 310 315
320Gly Ser Ser Gln Val Ile Ala Gln Tyr Tyr Gln Leu Ile Arg Leu Gly
325 330 335Tyr Glu Gly Tyr
Arg Asn Val Met Glu Asn Cys Arg Glu Asn Ala Ile 340
345 350Val Leu Arg Glu Gly Leu Glu Lys Thr Gly Arg
Phe Asn Ile Val Ser 355 360 365Lys
Asp Glu Gly Val Pro Leu Val Ala Phe Ser Leu Lys Asp Asn Ser 370
375 380Arg His Asn Glu Phe Glu Val Ser Glu Thr
Leu Arg Arg Phe Gly Trp385 390 395
400Ile Val Pro Ala Tyr Thr Met Pro Ala Asp Ala Gln His Val Thr
Val 405 410 415Leu Arg Val
Val Ile Arg Glu Asp Phe Ser Arg Thr Leu Ala Glu Arg 420
425 430Leu Val Leu Asp Ile Val Lys Val Leu His
Glu Leu Asp Thr Leu Pro 435 440
445Ala Arg Leu Ser Ala Lys Leu Glu Glu Val Lys Leu Val Lys Asn Gly 450
455 460Lys Lys Phe Glu Leu Glu Val Gln
Arg Glu Val Thr Asn Tyr Trp Lys465 470
475 480Lys Phe Val Leu Ala Arg Lys Ala Pro Val Cys
485 49028501PRTOryza sativa subsp. japonica 28Met
Val Val Ser Val Ala Ala Thr Asp Ser Asp Thr Ala Gln Pro Val1
5 10 15Gln Tyr Ser Thr Phe Phe Ala
Ser Arg Tyr Val Arg Asp Pro Leu Pro 20 25
30Arg Phe Arg Met Pro Glu Gln Ser Ile Pro Arg Glu Ala Ala
Tyr Gln 35 40 45Ile Ile Asn Asp
Glu Leu Met Leu Asp Gly Asn Pro Arg Leu Asn Leu 50 55
60Ala Ser Phe Val Thr Thr Trp Met Glu Pro Glu Cys Asp
Lys Leu Ile65 70 75
80Met Asp Ser Val Asn Lys Asn Tyr Val Asp Met Asp Glu Tyr Pro Val
85 90 95Thr Thr Glu Leu Gln Asn
Arg Cys Val Asn Met Ile Ala His Leu Phe 100
105 110Asn Ala Pro Ile Lys Glu Asp Glu Thr Ala Ile Gly
Val Gly Thr Val 115 120 125Gly Ser
Ser Glu Ala Ile Met Leu Ala Gly Leu Ala Phe Lys Arg Lys 130
135 140Trp Gln Asn Lys Arg Lys Glu Gln Gly Lys Pro
Cys Asp Lys Pro Asn145 150 155
160Ile Val Thr Gly Ala Asn Val Gln Val Cys Trp Glu Lys Phe Ala Arg
165 170 175Tyr Phe Glu Val
Glu Leu Lys Glu Val Lys Leu Ser Glu Gly Tyr Tyr 180
185 190Val Met Asp Pro Val Lys Ala Val Glu Met Val
Asp Glu Asn Thr Ile 195 200 205Cys
Val Ala Ala Ile Leu Gly Ser Thr Leu Thr Gly Glu Phe Glu Asp 210
215 220Val Lys Leu Leu Asn Asn Leu Leu Thr Glu
Lys Asn Lys Glu Thr Gly225 230 235
240Trp Asp Val Pro Ile His Val Asp Ala Ala Ser Gly Gly Phe Ile
Ala 245 250 255Pro Phe Leu
Tyr Pro Glu Leu Glu Trp Asp Phe Arg Leu Pro Leu Val 260
265 270Lys Ser Ile Asn Val Ser Gly His Lys Tyr
Gly Leu Val Tyr Pro Gly 275 280
285Val Gly Trp Val Ile Trp Arg Ser Lys Glu Asp Leu Pro Glu Glu Leu 290
295 300Ile Phe His Ile Asn Tyr Leu Gly
Thr Asp Gln Pro Thr Phe Thr Leu305 310
315 320Asn Phe Ser Lys Gly Ser Ser Gln Ile Ile Ala Gln
Tyr Tyr Gln Leu 325 330
335Ile Arg Leu Gly Phe Glu Gly Tyr Lys Asn Ile Met Gln Asn Cys Met
340 345 350Glu Asn Thr Ala Ile Leu
Arg Glu Gly Ile Glu Ala Thr Gly Arg Phe 355 360
365Glu Ile Leu Ser Lys Glu Ala Gly Val Pro Leu Val Ala Phe
Ser Leu 370 375 380Lys Asp Ser Gly Arg
Tyr Thr Val Phe Asp Ile Ser Glu His Leu Arg385 390
395 400Arg Phe Gly Trp Ile Val Pro Ala Tyr Thr
Met Pro Ala Asn Ala Glu 405 410
415His Val Ala Val Leu Arg Val Val Ile Arg Glu Asp Phe Ser Arg Ser
420 425 430Leu Ala Glu Arg Leu
Val Ser Asp Ile Val Lys Ile Leu His Glu Leu 435
440 445Asp Ala His Ser Ala Gln Val Leu Lys Ile Ser Ser
Ala Ile Ala Lys 450 455 460Gln Gln Ser
Gly Asp Asp Gly Val Val Thr Lys Lys Ser Val Leu Glu465
470 475 480Thr Glu Arg Glu Ile Phe Ala
Tyr Trp Arg Asp Gln Val Lys Lys Lys 485
490 495Gln Thr Gly Ile Cys 50029500PRTOryza
sativa subsp. japonica 29Met Val Leu Thr His Val Glu Ala Val Glu Glu Gly
Ser Glu Ala Ala1 5 10
15Ala Ala Val Phe Ala Ser Arg Tyr Val Gln Asp Pro Val Pro Arg Tyr
20 25 30Glu Leu Gly Glu Arg Ser Ile
Ser Lys Asp Ala Ala Tyr Gln Ile Val 35 40
45His Asp Glu Leu Leu Leu Asp Ser Ser Pro Arg Leu Asn Leu Ala
Ser 50 55 60Phe Val Thr Thr Trp Met
Glu Pro Glu Cys Asp Arg Leu Ile Leu Glu65 70
75 80Ala Ile Asn Lys Asn Tyr Ala Asp Met Asp Glu
Tyr Pro Val Thr Thr 85 90
95Glu Leu Gln Asn Arg Cys Val Asn Ile Ile Ala Arg Leu Phe Asn Ala
100 105 110Pro Val Gly Asp Gly Glu
Lys Ala Val Gly Val Gly Thr Val Gly Ser 115 120
125Ser Glu Ala Ile Met Leu Ala Gly Leu Ala Phe Lys Arg Arg
Trp Gln 130 135 140Asn Arg Arg Lys Ala
Ala Gly Lys Pro His Asp Lys Pro Asn Ile Val145 150
155 160Thr Gly Ala Asn Val Gln Val Cys Trp Glu
Lys Phe Ala Arg Tyr Phe 165 170
175Glu Val Glu Leu Lys Glu Val Lys Leu Thr Glu Gly Cys Tyr Val Met
180 185 190Asp Pro Val Lys Ala
Val Asp Met Val Asp Glu Asn Thr Ile Cys Val 195
200 205Ala Ala Ile Leu Gly Ser Thr Leu Thr Gly Glu Phe
Glu Asp Val Arg 210 215 220Arg Leu Asn
Asp Leu Leu Ala Ala Lys Asn Lys Arg Thr Gly Trp Asp225
230 235 240Thr Pro Ile His Val Asp Ala
Ala Ser Gly Gly Phe Ile Ala Pro Phe 245
250 255Ile Tyr Pro Glu Leu Glu Trp Asp Phe Arg Leu Pro
Leu Val Lys Ser 260 265 270Ile
Asn Val Ser Gly His Lys Tyr Gly Leu Val Tyr Ala Gly Val Gly 275
280 285Trp Val Ile Trp Arg Asn Lys Glu Asp
Leu Pro Glu Glu Leu Ile Phe 290 295
300His Ile Asn Tyr Leu Gly Ala Asp Gln Pro Thr Phe Thr Leu Asn Phe305
310 315 320Ser Lys Gly Ser
Ser Gln Ile Ile Ala Gln Tyr Tyr Gln Phe Leu Arg 325
330 335Leu Gly Phe Glu Gly Tyr Lys Ser Val Met
Lys Asn Cys Met Glu Ser 340 345
350Ala Arg Thr Leu Arg Glu Gly Leu Glu Lys Thr Gly Arg Phe Thr Ile
355 360 365Ile Ser Lys Glu Glu Gly Val
Pro Leu Val Ala Phe Thr Phe Lys Asp 370 375
380Gly Ala Gly Ala Gln Ala Phe Arg Leu Ser Ser Gly Leu Arg Arg
Tyr385 390 395 400Gly Trp
Ile Val Pro Ala Tyr Thr Met Pro Ala Ala Leu Glu His Met
405 410 415Thr Val Val Arg Val Val Val
Arg Glu Asp Phe Gly Arg Pro Leu Ala 420 425
430Glu Arg Phe Leu Ser His Val Arg Met Ala Leu Asp Glu Met
Asp Leu 435 440 445Ala Ala Arg Ala
Pro Val Pro Arg Val Gln Leu Thr Ile Glu Leu Gly 450
455 460Pro Ala Arg Thr Ala Gly Glu Glu Ala Ser Ile Arg
Val Val Lys Ser465 470 475
480Glu Ala Val Pro Val Arg Lys Ser Val Pro Leu Val Ala Gly Lys Thr
485 490 495Lys Gly Val Cys
50030496PRTNicotiana tabacum 30Met Val Leu Ser Lys Thr Ala Ser Glu
Ser Asp Val Ser Ile His Ser1 5 10
15Thr Phe Ala Ser Arg Tyr Val Arg Thr Ser Leu Pro Arg Phe Lys
Met 20 25 30Pro Glu Asn Ser
Ile Pro Lys Glu Ala Ala Tyr Gln Ile Ile Asn Asp 35
40 45Glu Leu Met Leu Asp Gly Asn Pro Arg Leu Asn Leu
Ala Ser Phe Val 50 55 60Thr Thr Trp
Met Glu Pro Glu Cys Asn Lys Leu Met Met Asp Ser Ile65 70
75 80Asn Lys Asn Tyr Val Asp Met Gly
Glu Tyr Pro Val Thr Thr Glu Leu 85 90
95Gln Asn Arg Cys Val Asn Met Ile Ala His Leu Phe Asn Ala
Pro Leu 100 105 110Gly Asp Gly
Glu Thr Ala Val Gly Val Gly Thr Val Gly Ser Ser Glu 115
120 125Ala Ile Met Leu Ala Gly Leu Ala Phe Lys Arg
Lys Trp Gln Asn Lys 130 135 140Met Lys
Ala Gln Gly Lys Pro Cys Asp Lys Pro Asn Ile Val Thr Gly145
150 155 160Ala Asn Val Gln Val Cys Trp
Glu Lys Phe Ala Arg Tyr Phe Glu Val 165
170 175Glu Leu Lys Glu Val Lys Leu Ser Asp Gly Tyr Tyr
Val Met Asp Pro 180 185 190Glu
Lys Ala Val Glu Met Val Asp Glu Asn Thr Ile Cys Val Ala Ala 195
200 205Ile Leu Gly Ser Thr Leu Asn Gly Glu
Phe Glu Asp Val Lys Arg Leu 210 215
220Asn Asp Leu Leu Ile Glu Lys Asn Lys Glu Thr Gly Trp Asp Thr Pro225
230 235 240Ile His Val Asp
Ala Ala Ser Gly Gly Phe Ile Ala Pro Phe Leu Tyr 245
250 255Pro Glu Leu Glu Trp Asp Phe Arg Leu Pro
Leu Val Lys Ser Ile Asn 260 265
270Val Ser Gly His Lys Tyr Gly Leu Val Tyr Ala Gly Ile Gly Trp Ala
275 280 285Ile Trp Arg Asn Lys Glu Asp
Leu Pro Asp Glu Leu Ile Phe His Ile 290 295
300Asn Tyr Leu Gly Ala Asp Gln Pro Thr Phe Thr Leu Asn Phe Ser
Lys305 310 315 320Gly Ser
Ser Gln Val Ile Ala Gln Tyr Tyr Gln Leu Ile Arg Leu Gly
325 330 335Phe Glu Gly Tyr Lys Asn Val
Met Glu Asn Cys Gln Glu Asn Ala Arg 340 345
350Val Leu Arg Glu Gly Leu Glu Lys Ser Gly Arg Phe Asn Ile
Ile Ser 355 360 365Lys Glu Ile Gly
Val Pro Leu Val Ala Phe Ser Leu Lys Asp Asn Ser 370
375 380Gln His Asn Glu Phe Glu Ile Ser Glu Thr Leu Arg
Arg Phe Gly Trp385 390 395
400Ile Ile Pro Ala Tyr Thr Met Pro Pro Asn Ala Gln His Val Thr Val
405 410 415Leu Arg Val Val Ile
Arg Glu Asp Phe Ser Arg Thr Leu Ala Glu Arg 420
425 430Leu Val Ile Asp Ile Glu Lys Val Leu His Glu Leu
Asp Thr Leu Pro 435 440 445Ala Arg
Val Asn Ala Lys Leu Ala Val Ala Glu Ala Asn Gly Ser Gly 450
455 460Val His Lys Lys Thr Asp Arg Glu Val Gln Leu
Glu Ile Thr Ala Ala465 470 475
480Trp Lys Lys Phe Val Ala Asp Lys Lys Lys Lys Thr Asn Gly Val Cys
485 490
49531494PRTArabidopsis thaliana 31Met Val Leu Ala Thr Asn Ser Asp Ser Asp
Glu His Leu His Ser Thr1 5 10
15Phe Ala Ser Arg Tyr Val Arg Ala Val Val Pro Arg Phe Lys Met Pro
20 25 30Asp His Cys Met Pro Lys
Asp Ala Ala Tyr Gln Val Ile Asn Asp Glu 35 40
45Leu Met Leu Asp Gly Asn Pro Arg Leu Asn Leu Ala Ser Phe
Val Thr 50 55 60Thr Trp Met Glu Pro
Glu Cys Asp Lys Leu Ile Met Asp Ser Val Asn65 70
75 80Lys Asn Tyr Val Asp Met Asp Glu Tyr Pro
Val Thr Thr Glu Leu Gln 85 90
95Asn Arg Cys Val Asn Met Ile Ala Asn Leu Phe His Ala Pro Val Gly
100 105 110Glu Asp Glu Ala Ala
Ile Gly Cys Gly Thr Val Gly Ser Ser Glu Ala 115
120 125Ile Met Leu Ala Gly Leu Ala Phe Lys Arg Lys Trp
Gln His Arg Arg 130 135 140Lys Ala Gln
Gly Leu Pro Ile Asp Lys Pro Asn Ile Val Thr Gly Ala145
150 155 160Asn Val Gln Val Cys Trp Glu
Lys Phe Ala Arg Tyr Phe Glu Val Glu 165
170 175Leu Lys Glu Val Lys Leu Ser Glu Asp Tyr Tyr Val
Met Asp Pro Ala 180 185 190Lys
Ala Val Glu Met Val Asp Glu Asn Thr Ile Cys Val Ala Ala Ile 195
200 205Leu Gly Ser Thr Leu Thr Gly Glu Phe
Glu Asp Val Lys Gln Leu Asn 210 215
220Asp Leu Leu Ala Glu Lys Asn Ala Glu Thr Gly Trp Glu Thr Pro Ile225
230 235 240His Val Asp Ala
Ala Ser Gly Gly Phe Ile Ala Pro Phe Leu Tyr Pro 245
250 255Asp Leu Glu Trp Asp Phe Arg Leu Pro Trp
Val Lys Ser Ile Asn Val 260 265
270Ser Gly His Lys Tyr Gly Leu Val Tyr Ala Gly Val Gly Trp Val Val
275 280 285Trp Arg Thr Lys Asp Asp Leu
Pro Glu Glu Leu Val Phe His Ile Asn 290 295
300Tyr Leu Gly Ala Asp Gln Pro Thr Phe Thr Leu Asn Phe Ser Lys
Gly305 310 315 320Ser Ser
Gln Ile Ile Ala Gln Tyr Tyr Gln Phe Ile Arg Leu Gly Phe
325 330 335Glu Gly Tyr Lys Asn Ile Met
Glu Asn Cys Met Asp Asn Ala Arg Arg 340 345
350Leu Arg Glu Gly Ile Glu Met Thr Gly Lys Phe Asn Ile Val
Ser Lys 355 360 365Asp Ile Gly Val
Pro Leu Val Ala Phe Ser Leu Lys Asp Ser Ser Lys 370
375 380His Thr Val Phe Glu Ile Ala Glu Ser Leu Arg Lys
Phe Gly Trp Ile385 390 395
400Ile Pro Ala Tyr Thr Met Pro Ala Asp Ala Gln His Ile Ala Val Leu
405 410 415Arg Val Val Ile Arg
Glu Asp Phe Ser Arg Gly Leu Ala Asp Arg Leu 420
425 430Ile Thr His Ile Ile Gln Val Leu Lys Glu Ile Glu
Gly Leu Pro Ser 435 440 445Arg Ile
Ala His Leu Ala Ala Ala Ala Ala Val Ser Gly Asp Asp Glu 450
455 460Glu Val Lys Val Lys Thr Ala Lys Met Ser Leu
Glu Asp Ile Thr Lys465 470 475
480Tyr Trp Lys Arg Leu Val Glu His Lys Arg Asn Ile Val Cys
485 4903214PRTArtificial sequenceSynthetic peptide
32Lys Ser Ile Asn Val Ser Gly His Lys Tyr Gly Leu Val Tyr1
5 103315PRTArtificial sequenceSynthetic peptide 33Val
Lys Ser Ile Asn Val Ser Gly His Lys Tyr Gly Leu Val Tyr1 5
10 15341704DNALolium perenne
34catctccacg gcaccacctt tcctcgagct cgcggccgat tcccttcgct gcgcgcggcc
60gacctgccgt cactgtctcc gtgcaagccg cgaccgcgac cgccagcaac catggttctc
120actgtggcag cgaccgccgc ggacacggcc gagccgctca actccacctt cttcgccacc
180cgctacgtcc gcgaccagct cccccggtac cggatgccgg agaactcgat ccccaaggag
240gcggcgtacc agatcatcag cgacgagctc atgctcgacg gcaacccgcg cctcaacctc
300gcatccttcg tcaccacccg gatggagccc gaggtcggca agctcatcat ggactccgtc
360aacaagaact acgtcgacat ggacgagtac cccgtcacca ccgagctcca gaaccgttgt
420gtaaatatga tagcccacct gttcaatgca ccgatcaagg aggaggagac agcaattgga
480gttgcgacag tgggatcctc agaagcaata atgcttgcag gcctggcctt caagaggaag
540tgggcaaata aaagaaagga ggaggggaag ccatatgaca aacctaacat tgttactggt
600gcaaatgttc aggtttgctg ggaaaaattt gctagatatt ttgaagtaga attgaaggag
660gtcaagttaa ctgaaggata ctatgtcatg gatcctttga aagctgttga aatggtggat
720gagaacacta tatgtgttgc agccatcttg ggatctactc tcactggaga gtatgaagat
780gttaaactat tgaatgacct gcttgtggaa aagaacaaga aaacagggtt taatgtgccg
840atccatgttg atgctgcaag tggaggattt atagcccctt ttcttcaccc tgagcttgag
900tgggacttca ggctaccatt ggtgaagagc atcaatgtta gtgggcacaa gtatggcctc
960gtctaccctg gtgttggatg ggtcatctgg cggagcaaag acgatttgcc tggagaactc
1020attttccata taaactacct gggaacagat cagcccacat tcacattgaa cttctccaaa
1080ggtgctagcc agatcattgc gcaatactat caactgatac gcctaggctt cgagggatat
1140aagcacatca tggagaattg ccaggccaat gcaaccgcgc tgagggaggg cttagaggca
1200accgggcgat tcgacatcct gtccaaagag gacggtgtgc ccctagtggc catccggctc
1260aaggacagct ccaaattcag cgtgttcgac atctccgaga acctgaggag gtttggctgg
1320attgtgcctg cctacaccat gcctgcggac gcagagcacg tggctgtcct ccgcgtcgtc
1380atcagggagg acttcaaccg cagcctctcc cagcggctcc tcgccgacat caacagggtc
1440gtgcaggagc tagatgccca cgcggtccat gccattaaga tgaccactgc tatcgcgaca
1500caaaccggcg agggtgctga ggatggcgtg gtgaccaaga agggcgttct ggacatcgag
1560aaggagttcg ccgcggcctg caaggacctg gtaaagaaca agaagactgg accctgctga
1620agggcatgcc ggcacagtac gcacgtacgt actatatgta tctatttttc ctggagtata
1680tctgaaccgt gaatacctgg ctcc
1704351455DNAOryza sativa 35atggcgctgt cgacggcgca gacaggggag tcgatgcact
cctcgacgtt cgcgtcgcgg 60tacgtgcgca cggcgctgcc gaggttcagg atgccggaga
agtcgatccc caaggacgcg 120gcgtaccaga tcatcaacga cgagctgatg ctcgacggca
acccgcgcct gaacctggcg 180tccttcgtca ccacgtggat ggagcccgag tgcgacaagc
tcatgatggc cgccatcaac 240aagaactacg tcgacatgga tgagtacccc gtcaccaccg
agctccagaa ccggtgcgtg 300aacatgatcg cgcatctgtt caacgcgccg atcggggacg
acgagacggc ggtcggggtg 360ggcacggtgg ggtcgtcgga ggccatcatg ctggcggggc
tggcgttcaa gaggaagtgg 420cagaacagga tgaaggccga ggggaagccc cacgacaagc
ccaacatcgt gacgggggcc 480aacgtgcagg tgtgctggga gaagttcgcg cgctacttcg
aggtggagct caaggaggtg 540aagctgaccc aagggtacta cgtgatgaac ccggagaagg
ccgtggagat ggtcgacgag 600aacaccatct gcgtcgccgc catcctcggc tccaccctca
acggcgagtt cgaggacgtc 660aagatgctca acgacctcct caccgccaag aacgccgaga
cagggtggaa cacgccgatc 720catgtggacg cggcgagcgg cgggttcatc gcgccgttca
tctacccgga gctggagtgg 780gacttccggc tgccgctggt gaagagcatc aacgtcagcg
gccacaagta cgggctcgtc 840tacgccggcg tcgggtgggt catctggcgc aacaaggagg
acctccccga tgagctcatc 900ttccacatca actacctcgg cgccgaccag ccaaccttca
cgctcaactt ctccaaagga 960tcgaaccaga taattgcgca gtattaccag ctcattcgtc
tcggattcga ggggtacaag 1020gacatcatgc agaactgccg ggacaacgcg acggtgctcc
gggaggggat cgagaagacg 1080ggccacttcg acgtggtgtc caaggactcc ggcgtgccgc
tggtggcctt ctccctcaag 1140gactcgtcgc ggtacacggt gttcgaggtg gccgagagcc
tccgccgctt cggctggatc 1200gtgccggcgt acaccatgcc cgccgacgct gagcacgtcg
ccgtgatgcg cgtcgtcatc 1260cgcgaggact tcagccgcgg cctcgccgag cgcctcatca
ccgacctcac caagacggtg 1320gccgatatgg acgcccacgc cgtcaagaag gccgccgccg
agccggccaa gaagaccgtg 1380cgggagatag agaaggaggt gaccacctac tggcggagtt
tcgtcgccag gaagaagagc 1440agcctcgtct gctga
1455361509DNAArabidopsis thaliana 36atggtgctct
cccacgccgt atcggagtcg gacgtctccg tccactccac attcgcatca 60cgttacgtcc
gtacttcact tcctaggttc aagatgccgg aaaactcgat tcctaaggaa 120gcggcgtatc
agatcatcaa cgacgagctg atgcttgacg ggaatccacg gttgaactta 180gcctcctttg
tgacgacatg gatggagcct gagtgtgata aactcatcat gtcctccatc 240aacaagaact
atgttgacat ggacgagtac cccgtcacca ccgaacttca gaaccgatgt 300gtgaacatga
ttgcacatct attcaatgca ccgttagaag aggcggagac cgccgtcgga 360gtaggaaccg
ttggatcatc ggaggccata atgttggccg gtttggcctt caagcgtaaa 420tggcagaaca
agcgcaaagc tgaaggcaaa cccgtcgata aacccaacat tgtcaccgga 480gccaatgttc
aagtgtgttg ggagaaattc gctaggtact ttgaggttga acttaaggaa 540gtgaaattga
gtgaaggata ctatgtgatg gaccctcaac aagctgttga tatggttgat 600gagaacacca
tttgtgttgc ggccattctt ggttccactc ttaatggaga attcgaagat 660gttaaactct
tgaacgatct cttggtcgaa aagaacaaag aaaccggatg ggatacacca 720atccacgtgg
atgcggcaag tggaggattc attgcaccgt ttttgtatcc ggaattggaa 780tgggacttta
gacttccctt ggtgaagagt atcaatgtga gtggtcacaa gtatggactt 840gtgtacgcag
ggattggttg ggtgatctgg agaaacaaag aggatttgcc tgaggaactc 900atcttccata
tcaattatct tggtgctgac caacccacct ttactctcaa tttctccaaa 960ggttcaagtc
aagtcattgc tcaatactac caacttatcc gattgggcca cgagggttac 1020agaaatgtga
tggagaattg cagagagaat atgatcgtcc taagggaagg acttgagaag 1080acagaaaggt
tcaacatcgt ctcaaaggac gagggagtgc cacttgtcgc tttctccttg 1140aaagatagca
gctgtcacac tgagttcgaa atctccgaca tgcttcgcag gtatggatgg 1200atagtgccgg
cctacacaat gcctccaaat gcacaacaca tcactgttct tcgtgtggtt 1260atcagagaag
atttctcgag aacactcgct gagagacttg tgatcgatat agagaaagtg 1320atgcgtgagc
tcgatgagct tccttcgaga gtgattcaca aaatatcact tggacaagag 1380aagagtgaat
ctaacagcga taacttgatg gtcacggtga agaagagcga tatcgacaag 1440cagagagata
tcatcactgg ctggaagaag tttgtcgccg acaggaagaa gacgagtggt 1500atctgctaa
1509371732DNAOryza
sativa 37acttcgattg gttccaccgc gcctaccgag tttcccttgc taggcagtag
agagagtctg 60tgatcgagag agaagaggat cgagcagcta gcaagccggc gggcgccatg
gtgctctcgc 120acgcgagctc cggccgggac gacgccgtgc gctgcacctt cgcgacgcgc
tacgcctgcg 180agacgctgcc gcggttcagg atgccggagc agtcgatccc gagggaggcg
gcgtaccaga 240tcatcaacga cgagctgatg ctggacggga acccgcggct gaacctggcg
tccttcgtca 300ccacgtggat ggagcccgag tgcgacaagc tcatcatgga ctccgttaac
aagaactacg 360tcgacatgga cgagtaccct gtcaccacgg agctccagaa ccgttgtgtg
aatatgatag 420ctcacctgtt caatgcacca atcaaggagg atgaaacagc tattggagtt
gggacggtgg 480gatcctcaga agcaattatg cttgcaggac tggcattcaa gaggaagtgg
caaaacaaac 540ggaaggaaca ggggaagcca tgtgacaaac ccaacattgt tactggtgct
aatgttcagg 600tttgctggga gaaatttgcc agatattttg aagtagaact gaaggaggtt
aagctcagtg 660aaggatacta tgtcatggat cctgtaaagg ctgttgaaat ggtggatgag
aacactatat 720gcgttgcggc catcttgggc tctactctca ctggagagtt tgaggatgtt
aagttattga 780ataatctcct aacagaaaag aataaggaaa ctgggtggga tgtgccaatt
catgttgatg 840cagcaagtgg aggatttata gcaccttttc tataccctga gcttgaatgg
gacttcaggc 900taccactggt gaagagcatc aatgtcagtg ggcacaagta tggccttgtg
tatccaggtg 960ttggttgggt catttggcga agcaaagagg atttgcctga agaactcatt
ttccatataa 1020actatctggg gacagaccag ccgacgttca ctctgaactt ctccaaaggt
tccagccaga 1080taatcgcaca gtactatcaa ctaatacgcc tgggattcga gggatacaag
aacatcatgc 1140agaattgcat ggagaacaca gcaatactaa gggaaggcat agaggcgact
ggtcgattcg 1200aaatcctctc caaggaggcc ggtgtgccct tggtggcgtt ctcgctcaag
gacagcggca 1260ggtacaccgt gttcgacatc tccgagcacc tgaggaggtt cggctggatc
gtgccggcgt 1320acaccatgcc ggccaacgcc gagcacgtcg ccgtcctccg cgtcgtcatc
agggaggact 1380tcagccggag cctcgccgag cggctcgtct cggacatcgt caagatcctg
cacgagctgg 1440acgcccattc ggcccaggtg ctgaagatct ccagcgccat cgcgaagcag
caatcgggcg 1500acgatggcgt ggtcaccaag aagagcgtcc tggagaccga gagggagatc
ttcgcgtact 1560ggagggacca ggtgaagaag aagcagaccg gaatctgcta gtgtggctct
gtgagaaatg 1620cttgaataac gtggcatgct cgatttgtgc atgggatggc cggatcggat
gggactgact 1680ggcggtgtac ggacatggct gcccttgttc ttatgttgaa ctgttgatgt
ag 1732381730DNABrassica juncea 38gacacattct ttaactacaa
acaaaaacat tacaaaccta taattcaaag ttcttataaa 60cttcgagtga attgaaagac
gatggttttg tctaagacag cttctggaac tgatgtttcc 120gtccattcaa cttttgcttc
tcgttatgtc cgcaactcgc tccctcgatt cgagatgcct 180gagaactcca tcccgaagga
agcagcgtac cagatcatca acgatgagct aatgctcgac 240ggtaacccta ggctaaatct
agcctccttc gtgactacgt ggatggagcc agagtgtgac 300aagctcatga tggaatctat
caacaagaac tacgttgaca tggacgagta ccctgtcacc 360accgagcttc agaaccgatg
tgtcaacatg attgcgcgtc tctttaacgc gccgctaggt 420gacggtgagg ctgcggttgg
tgtcggcacc gtgggatcgt ctgaggcgat tatgttggcc 480gggttggctt ttaagagaca
gtggcagaac aagcgtaagg cccaagggct tccttatgat 540aagcctaata tcgtaaccgg
agctaatgtt caggtttgct gggagaaatt cgcaaggtat 600ttcgaggtgg aacttaagga
agtgaagctg agagaaggat actacgtgat ggaccctgaa 660aaggcagtcg aaatggtaga
cgagaacacc atttgtgtcg cagccatcct cggttcgacg 720ctaaccggag aattcgaaga
cgttaagctc ctcaatgacc tcctagtcga gaaaaacaag 780caaaccggat gggatactgg
gaatcacgtg gacgcagcaa gtggtgggtt tattgcaccg 840ttcttgtatc cggagctgga
gtgggatttc cggttaccat tggttaagag cataaatgtt 900agtggccaca aatacggtct
ggtttatgct ggaatcggtt gggttgtgtg gagaaccaaa 960tctgatttgc ctgatgaact
tatcttccac atcaattatc ttggcgctga tcaacccacc 1020ttcactctca acttctccaa
gggttcgagt caagtgattg ctcagtacta ccaactgatt 1080cgtcttggat tcgagggata
tcgtaacgtg atggataatt gtcgtgaaaa catgatggtc 1140ctaagagaag gactagagaa
aacgggacgt ttcaacattg tctccaaaga aaacggtgtt 1200ccgttagtgg cgttttctct
aaaagacagt agccgccaca atgagttcga agtggcggaa 1260actctccgcc gctttggatg
gatcgttccg gcctacacgg tgccagcgga tgcagaacat 1320gtcaccgtcc tccgagtggt
gattcgagaa gatttctctc gaaccttagc tgagagattg 1380gttgcagact ttgagaaggt
tcttcacgag ctcgatacac ttccggccag ggttcgcgcc 1440aagatggcta atggaaaagc
taaagttgtt aaacagacgg aggaggagac gacgagggaa 1500gttacggcat attggaagaa
gtttgtggag acaaagaaga ctaaccagaa caagatttgc 1560taataaagaa aaattaatga
gttgatattt tgttgttttg tctctaatta agctactttt 1620aaatcctttt cttccatcct
agtcggatca tttctggttt caaattatcc tttttttatg 1680atccgatgtt gatttttggt
atttggaata aatttaaaca tatacgttta 1730391701DNABrassica
juncea 39gaaattcttc aacaacaaac aataacatta catataatcc ctctctactc
tttcttttgt 60tcattcaaag aagatggttt tgtctaagac agcttcggaa tctgatgttt
caatccattc 120aacttttgct tctcgttacg tccgcacctc tctcccacga tttgagatgc
ctgagaactc 180gatcccaaag gaagcagcgt accaaatcat caacgacgag ctaatgctcg
acggtaaccc 240aaggctaaat ctagcctcct tcgtgaccac gtggatggag ccagagtgcg
acaagctcat 300gatggaatcc atcaacaaga actacgtcga catggacgag taccctgtca
ccaccgagct 360tcagaaccga tgcgtcaaca tgatcgcgcg tctcttcaac gcgccgctag
gtgacggcga 420ggctgcggtt ggcgtcggca ccgtgggatc gtcggaggcg attatgttgg
ctggattggc 480ctttaagaga cagtggcaga ataagcgtaa ggctcaaggg cttccttatg
ataagcccaa 540tatcgttacc ggagccaatg ttcaggtttg ctgggagaag tttgcaaggt
atttcgaggt 600ggagcttaaa gaagttaagc taagagaagg atactacgtg atggacccag
agaaggcggt 660cgaaatggta gacgagaaca caatctgtgt tgcagccatc ctcggttcca
ctctaacagg 720agaattcgaa gacgttaagc tccttaacga cctcctagtc gagaaaaaca
agcaaaccgg 780atgggatacg gggatccatg tggacgcagc gagtggtggg tttattgctc
ctttcttgta 840tccagagctg gagtgggatt tccggttacc attggttaag agcataaatg
tgagtggtca 900caaatacggt ttggtttacg ctggaatcgg ttgggttgta tggagaacca
aatccgattt 960gcctgatgaa cttatcttcc atatcaacta tcttggcgct gaccaaccga
ccttcactct 1020caacttctcc aaaggttcaa gtcaagtgat tgctcagtac taccagctga
ttcgtcttgg 1080attcgaggga tatcgcaacg tgatggataa ttgccgtgaa aatatgatgg
tcctaagaga 1140aggattagag aagacaggac gtttcaacat agtctcaaaa gaaaacggtg
ttccgttagt 1200ggcattttct ttaaaagaca gtagtcgcca cgacgagttc gaagtggccg
agactctccg 1260tcgctttggg tggattgttc cggcctacac gatgcccgcg gatgctcaac
atgtcaccgt 1320cctccgagtg gtgattcgag aagatttctc tcgaactttg gctgagagat
tggtcgcaga 1380cttcgagaag gttctccacg agctcgatac gcttccggcg agggttcagg
ccaagatggc 1440taacggaaac gctaacggtg ttaagaagac ggaagaggaa acgacgaggg
aagttactgc 1500gtattggaag aagtttgtgg aagcaaagaa gagtaacaag aacaggattt
gctaatgaaa 1560tttaatgaac taatgttctg ctgttttatc cctaataatg ctccatttga
aacccttttc 1620ttccatgcta gctgctcgga ttactttggt ttcaaatttt ttttcatgat
ttgatgttga 1680tgagttataa ttttcatgta c
1701401707DNABrassica juncea 40gatattcttc ttcctcctcc
cactaccaaa aaagaaagaa agatggttct aagtcgagcg 60gccaccgaaa gtggcgaaaa
tgtttgctcg acgttcggat ctcgctatgt ccgcaccgca 120ctgcccaagc ataagattgg
tgagagctcg atcccgaagg aggctgcgta tcagatcata 180aaagatgagc tgatgcttga
tggtaacccg aggctgaacc tggcttcgtt tgtgacgaca 240tggatggagc cagagtgtga
caaactcatc atggaatcta tcaacaagaa ctacgtcgac 300atggacgagt accctgtcac
taccgaactc cagaaccgat gtgtaaacat gatagctcgg 360ctgttcaatg cgccgcttga
ggaaactgag accgccatgg gagtaggcac tgttgggtct 420tcggaagcca tcatgttagc
cggattggcc ttcaaaagga attggcagaa caaacgcaaa 480gctgagggta aaccctatga
caaacccaac attgtcaccg gagccaatgt tcaagtgtgc 540tgggagaaat tcgctaggta
cttcgaggtg gagctaaaag aagtgaagct tagtgaaggt 600tactacgtga tggatccgga
taaagcagct gaaatggtag acgagaatac aatctgtgtt 660gctgccatac ttggttctac
actcaacggt gagttcgaag acgtcaagcg ccttaatgac 720ttgctggtca agaaaaacga
agagactggc tggaacactc caatccacgt tgacgcagca 780agtggaggct tcatagctcc
gtttatctac cctgagttgg aatgggactt taggcttcct 840ttggtgaaga gtatcaatgt
gagtggtcat aagtatgggc tggtctatgc tggtattggc 900tgggtcgtgt ggaggacaca
acaggatttg cctgatgagc tcatctttca tattaactat 960cttggtgctg atcaacccac
atttactctc aatttctcca agggatcgag ccaaattatt 1020gctcaatatt atcagctcat
tcgtcttggc ttcgagggct acaagaacgt gatggagaac 1080tgcagagaga acatggtggt
tctgagagaa gggatcgaga aaacagagcg tttcaacata 1140gtctcaaagg aggtaggagt
tccactcgta gccttctccc tcaaggacca cagtttccac 1200aacgagttcg aaatctcaga
gatgctacgc cgtttcggct ggattgtccc ggcttacaca 1260atgcctgcgg atgcgcaaca
catcacagtt ctgcgtgttg tcatcaggga agatttctca 1320agaacacttg cggagagact
tgtggctgat attgtgaagg tgcttcacga gctcgacacc 1380ttgccttcca agatatctaa
gaagatggga gcagaggatt tcggaaacgt gaaagggaag 1440aaggtggata gggatgttct
gatggaagtc attgttggat ggaggaagtt tgtgaaggac 1500aggaagaaga tgaatggtgt
gtgttgatct gaagtgtctt gtggtttgtg tttgaatgta 1560tcgtcgtcta ataaataaaa
tgaagtatgt gtgtgaggac ttgtggtttg atgaaagagt 1620tgtgtctggt atctatttga
gacgataatt aattttggat tctgttgtat gcttgaagag 1680tcttttaaat aatattatca
tattact 1707411485DNAArabidopsis
thaliana 41atggtactcg caaccaactc tgactccgac gagcatttgc attccacttt
tgcttctaga 60tatgtccgtg ctgttgttcc caggttcaag atgcctgacc attgcatgcc
caaagatgct 120gcttatcaag tgatcaatga tgagttgatg cttgatggta atcccaggct
taacctagcc 180tcctttgtca ccacttggat ggaacctgag tgtgacaaac tcatcatgga
ttctgtcaat 240aagaactatg ttgatatgga tgaatatcct gtcaccactg agctccagaa
ccggtgtgta 300aatatgatag caaacttgtt ccatgctccc gttggagaag acgaggctgc
tattgggtgt 360ggaactgttg gttcatctga ggctataatg cttgctggtt tggctttcaa
aaggaaatgg 420caacatagga gaaaagctca gggtctacct attgataagc ctaacattgt
cactggagcc 480aatgttcagg tgtgctggga gaagtttgca aggtactttg aggtagagct
caaagaggtg 540aaactaagtg aagactacta tgttatggat ccagctaaag ctgtagagat
ggtggatgag 600aataccatct gtgttgcagc aattctagga tccacactta ctggagagtt
tgaggacgtt 660aagcaattga acgatctctt agctgagaaa aacgcagaga caggatggga
aactcctatt 720catgttgatg cagccagtgg aggattcatt gctcctttcc tctaccctga
tcttgaatgg 780gactttaggc ttccatgggt gaagagtatt aacgtcagtg gtcacaagta
tggacttgtg 840tatgcaggag ttggttgggt tgtctggaga acaaaagatg atttgccaga
ggaacttgtc 900ttccacatca actacttggg agctgatcaa cccactttca ctctcaactt
ctcaaaaggg 960tcgagccaaa tcattgctca gtactatcag tttatccgac taggctttga
gggatacaag 1020aacataatgg aaaactgcat ggataacgca aggaggctaa gagaaggaat
agagatgaca 1080gggaagttca acattgtgtc caaagatatt ggcgtgccac tagtggcatt
ctctctcaaa 1140gacagtagca agcacacggt gtttgagatc gcagagtctt tgagaaaatt
cgggtggatc 1200ataccggctt acactatgcc tgcagatgca cagcacattg ctgtgctcag
agttgtgata 1260agagaagact ttagccgagg ccttgcagat agactcatca cacatatcat
tcaggtgctg 1320aaagagattg aagggcttcc tagcaggatt gcacatcttg ctgcggctgc
agcggttagt 1380ggtgatgatg aagaagttaa agtgaagact gccaagatgt ccttggagga
tatcactaag 1440tattggaaac gccttgtgga acacaagaga aatattgtct gctaa
1485421482DNAArabidopsis thaliana 42atggttttgt ctaagacagt
ttccgaatct gatgtctcaa tccattcaac ttttgcttct 60cgttacgtcc gcaactctct
tccacgattc gaaatgcctg agaactcaat cccaaaagaa 120gcagcttacc aaatcatcaa
cgacgagcta atgctcgatg gtaacccaag gctgaaccta 180gcttccttcg tgaccacatg
gatggagcca gaatgtgaca agctcatgat ggagtccatc 240aacaagaact acgtcgacat
ggacgagtac cctgtcacca ctgagcttca gaaccgatgt 300gttaacatga tagcacgtct
cttcaacgcg ccgcttggtg acggtgaagc tgccgttggt 360gttggcaccg tcggatcgtc
ggaggcgatt atgttggccg gtttggcttt taagagacaa 420tggcagaata agcgtaaggc
ccaagggctt ccttatgata agcccaatat cgtaaccggt 480gctaatgtcc aggtttgctg
ggagaaattc gcaaggtatt tcgaagtgga gcttaaggaa 540gtgaacctaa gagaagacta
ttacgtgatg gaccctgtaa aggcggtcga aatggtagac 600gaaaacacaa tttgtgtcgc
tgccatcctc ggttcaacgt taaccggtga attcgaagac 660gttaagctcc tcaacgacct
ccttgtcgag aaaaacaagc aaaccggatg ggacacgcca 720atacacgtgg acgcagcgag
tggtgggttt attgctccgt tcttgtatcc ggagctggag 780tgggatttcc ggctaccgtt
ggttaagagt attaatgtga gtggtcacaa atacggtttg 840gtttacgccg gtattggttg
ggttgtatgg agaaccaaaa ccgatttgcc tgatgaactt 900atcttccata tcaattatct
tggcgctgat caaccaacct ttacactcaa cttctccaaa 960ggttcaagtc aagtgattgc
tcagtactac cagctgattc gtcttggatt cgagggttat 1020cgcaatgtga tggataattg
tcgggaaaac atgatggtac taagacaagg attagagaaa 1080acgggacgtt ttaaaatcgt
ctccaaagaa aacggtgttc cgttagtggc gttttctctc 1140aaagatagta gccgccacaa
cgagttcgag gtggcccata cactccgtcg cttcggctgg 1200atcgttccgg cctacacgat
gcctgcggat gcgcagcatg tcactgtcct tcgagttgtt 1260atccgagaag atttctctcg
aaccttagcc gagagattgg tagctgattt cgagaaggtt 1320ctacacgagc tcgatacgct
tccggcgagg gttcacgcca agatggctaa tggaaaagtt 1380aacggtgtta agaagacgcc
agaggagacg cagagagaag tcacggccta ctggaagaag 1440ttgttggaga ctaagaagac
caacaagaac acaatttgct aa 1482431712DNAArabidopsis
thaliana 43acatattatt caactacaaa acaaaaacat tgcacatttt tccctttact
tttctttagc 60tcatttcaag aagatggttt tatctaagac agcttccaaa tccgatgatt
caatccattc 120aacttttgct tcccgttatg tccgcaactc tatctcacga ttcgaaatac
ctaagaactc 180gatccctaag gaagcagcat accaaatcat caacgacgag ctcaagtttg
acggtaaccc 240gaggctaaac ctggcctcct ttgtgaccac ttggatggag ccagaatgtg
acaagctcat 300gatggaatcc atcaacaaga acaacgttga gatggaccaa taccctgtta
ccaccgacct 360tcagaatcga tgcgttaaca tgattgcgcg tctcttcaac gcgcctttag
gtgacggtga 420agccgccatt ggtgttggca cggtggggtc atcggaggca gtgatgttgg
ccggactggc 480ctttaagaga cagtggcaga acaagcgtaa ggccctaggg ctgccttatg
atagacctaa 540tattgtaacc ggagccaata ttcaggtttg cttggagaaa tttgcaaggt
attttgaagt 600ggagcttaag gaagtgaagc tgagagaagg atattacgtg atggaccctg
acaaagcggt 660tgaaatggta gacgaaaaca ctatatgcgt cgtggccatc ctcggttcga
cactaaccgg 720agaattcgaa gacgttaagc tcctcaacga ccttttagtc gagaaaaaca
agaaaaccgg 780atgggatacg ccgattcacg tggacgcagc gagtggtggg tttattgctc
ccttcttgta 840tccggacttg gagtgggatt tccggttacc gttggttaag agcataaatg
tgagtggtca 900caaatacggt ttggtttacg ccggtatcgg ttgggtcgta tggagaacca
aaaccgattt 960gcctgatgaa cttatcttcc atatcaatta tcttggagct gatcaaccca
catttaccct 1020caacttctct aaagggtcaa gtcaagtgat tgctcagtac taccagttga
ttcgtcttgg 1080attcgaggga tatcgcaacg tgatggataa ttgccgcgag aacatgatgg
tactaagaca 1140aggattagag aaaacgggac gttttaacat cgtctccaaa gaaaacggtg
ttccgttagt 1200ggcgttttct ctcaaagata gtagccgcca caacgagttc gaggtggccg
aaatgcttcg 1260tcgcttcggc tggatcgttc cggcctacac gatgcctgcg gatgcgcaac
atgtcacggt 1320ccttcgagtt gttatccgag aagatttctc tcgaacctta gctgagagat
tggtagccga 1380tttcgagaag gttctacacg agctcgatac gcttcccgcg agggttcacg
ccaagatggc 1440tagtggaaaa gttaacggtg ttaagaagac gccagaggag acgcaaagag
aagtcacggc 1500ctactggaag aagtttgtgg acactaagac tgacaagaac ggcgttccgt
tagtagcaag 1560tattaccaat caatgatggg ccaaatgtat attcaaatta ttgggtgcag
acaaattttt 1620ttttagctaa aggcccaact acaccatagc aaatcagcac cattcgatct
cagaccattc 1680aaacactgta ataaaaacat ttttagtttt ac
1712441776DNANicotiana tabacummisc_feature(1616)..(1616)n is
a, c, g, or t 44aaaattaatt ctcctccttt ttctctgatc ttttgtacca aggtttaacc
tcattctttc 60tagttttcct tgttcatttt ttcccaaaat ggttctctcg aaaacctcct
ctgagtcgga 120cgtttcggta cactccactt ttgcctctcg ctatgttcga acttcccttc
caaggtttga 180gatggcggag aattcgatac caaaagaggc ggcatttcaa ataattaacg
acgagttgat 240gcttgacggg aatccaaggc tgaacttggc ttcatttgtg acaacatgga
tggagccaga 300gtgtgataag cttatgatgg actccattaa caagaactat gttgacatgg
atgaataccc 360tgttaccact gagcttcaga atcgctgcgt gaacatgata gcacgtttat
tcaacgcgcc 420actagaagag aaggagacag cagttggagt gggtacagtt ggttcatcgg
aggccataat 480gctagcgggg cttgcattca agagaaattg gcaaaacaaa cgcaaagctg
agggcaaacc 540ttacaataag cccaacattg tcactggcgc caatgttcag gtgtgctggg
agaaatttgc 600caactatttt gaagtggaat tgaaagaagt aaagctaagg gaagggtact
atgtgatgga 660cccagtccag gctgtggaga tggttgatga gaacaccatt tgtgttgctg
caatcttggg 720ttcaaccctt aatggagaat ttgaagatgt caagctcttg aatgatcttt
tgattgaaaa 780gaacaagcaa actggatgga acacaccaat tcatgtggat gcagcaagtg
gtggattcat 840tgcaccattc ctgtacccag agctggagtg ggactttagg cttcccttag
tgaagagcat 900aaatgtgagt gggcacaaat atgggcttgt ctatgctggt attggttggg
ttatttggag 960gaccaaacaa gatttgcctg aagaactcat tttccacatc aactatcttg
gagctgatca 1020gcccaccttt actctcaatt tctccaaagg ttcaagtcaa gtcattgctc
aatattatca 1080gctaatccgt ttgggctatg aggggtaccg aaatgtaatg gagaactgtc
gcgaaaatgc 1140cattgtgcta agagaaggac tcgaaaaaac aggacgtttt aacatagtct
ccaaagatga 1200aggtgtccct ttggtggcct tttccctcaa ggacaatagc cgtcacaatg
agttcgaggt 1260gtccgagacg ctccgtaggt tcgggtggat cgtcccggcc tacacgatgc
ccgctgacgc 1320ccaacacgtc acggtgcttc gtgtggtgat ccgggaggac ttctcgcgaa
ccctagcaga 1380gcgtctcgtc ctcgacattg tcaaggtcct ccacgagctg gacacacttc
cagctaggct 1440gagcgccaaa ttagaggagg tgaagctggt caagaatgga aagaaatttg
aacttgaagt 1500tcaaagggaa gttaccaatt attggaagaa gtttgtttta gctaggaaag
cacctgtttg 1560ctagagaagg atttttgaag gaattagtaa caaaactagg attttccttt
tctttnattt 1620tttgggggtt atctttcctc ctaaattttg tngaaaaaca aacgaaattt
tcataagaat 1680gatgacggta tcaaaatttg aatgtaatgg aactttttnt tggaagttng
tctttttgta 1740aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaa
1776451672DNANicotiana tabacummisc_feature(1550)..(1550)n is
a, c, g, or t 45gccatggttc tgtccaagac agcgtcggaa agtgacgtct ccatccactc
cactttcgct 60tcccgatatg ttcgaacttc tcttcccagg tttaagatgc cagagaattc
tataccaaaa 120gaagcagcat atcaaatcat aaatgatgag cttatgttag atggaaatcc
aaggctaaat 180ttagcatctt ttgtgacaac atggatggaa ccagagtgta ataagttaat
gatggattcc 240attaacaaga actacgttga catgggtgaa taccctgtaa ccactgagct
tcagaatcga 300tgtgtaaata tgatagctca tttgtttaac gcaccacttg gagatggaga
gactgcagtt 360ggagttggaa ctgttggatc ctctgaggct attatgcttg ctggattagc
cttcaagaga 420aaatggcaaa ataaaatgaa agcccaaggg aagccctgcg acaagcccaa
tattgtcact 480ggtgccaatg tccaggtgtg ttgggagaaa tttgcaaggt attttgaagt
ggagttgaaa 540gaagtaaaat tgagtgatgg atactatgtg atggaccctg agaaagctgt
ggaaatggtg 600gatgagaata caatttgtgt agctgctatc ttgggttcca ctctcaatgg
tgaatttgaa 660gatgttaagc gcttgaatga cctcttgatt gagaagaaca aagaaaccgg
gtgggacact 720ccaattcatg tggatgcagc aagtggtgga ttcattgcac cattccttta
tcctgagctt 780gaatgggatt ttagattacc attggtgaag agtattaatg tgagtggtca
caaatatggt 840cttgtctatg ctggtattgg ttgggccatt tggaggaata aggaagactt
gcctgatgaa 900cttattttcc acattaatta tcttggtgct gatcaaccta ctttcactct
caacttctct 960aaaggttcta gccaagtaat tgctcaatat taccaactta ttcgcttggg
ttttgagggt 1020tacaagaatg ttatggagaa ttgtcaagaa aatgcaaggg tactaagaga
aggacttgaa 1080aaaagtggaa gattcaatat aatctccaaa gaaattggag ttccattagt
agctttctct 1140cttaaagaca acagtcaaca caatgagttc gaaatttctg aaactcttag
aagatttgga 1200tggattattc ctgcatatac tatgccacca aatgctcaac atgtcacagt
tctcagagtt 1260gttattagag aagatttctc ccgtacactc gcggagcgac tggtgataga
cattgaaaaa 1320gtcctccacg agctagacac acttccggcg agggtcaacg ctaagctcgc
cgtggccgag 1380gcgaatggca gcggcgtgca taagaaaaca gatagagaag tgcagctgga
gattactgct 1440gcatggaaga aatttgttgc tgataagaag aagaagacta atggagtttg
ttaatttaat 1500ttacaaaata tgttataata tgatgattta tgactactag caatattggn
attgctgttt 1560aaatttgaat tgttgggnct ttgggtanac ttgaggagct anctatttat
tgcaaggcaa 1620aactgggtga ttttgggcaa aataatgggn tnataaaccc aattttcttg
tg 1672461597DNAGlycine max 46tgggaaccca aggttgaatt tggcatcatt
tgtgacgact tggatggagc cagagtgtga 60taaactcatc atggctgcca ttaataagaa
ctatgttgac atggacgagt accctgtcac 120cactgagcta cagaatcgat gtgttaacat
gatagctcat cttttcaatg caccactaga 180agagactgag gcagcagttg gtgttggcac
ggttggctca tcagaggcca ttatgttggc 240tggattggca ttcaaaagaa agtggcaaaa
cagaaggaaa caagagggaa agccttatga 300caaacccaac attgtcactg gagccaacgt
tcaggtttgc tgggagaaat ttgcaaggta 360ctttgaggtg gagttaaagg aggtgaagct
ccgtgatgat tattatgtaa tggaccctga 420aaaggccgtg gaattggtgg atgagaacac
tatttgtgtt gctgctatcc ttggttccac 480actaaatgga gagtttgaag atgtcaaacg
cttaaatgat ctcctaattg aaaagaacaa 540aataactggg tgggacactc ctattcatgt
tgatgcagcc agcggtgggt tcatagcccc 600atttatttac ccagagcttg agtgggactt
ccggttacaa ctagtgaaga gcatcaatgt 660tagtgggcac aagtatggtt tggtctatgc
tggaatcggt tgggttatct ggagaagcaa 720gcaggacttg cctgaggaac tcatctttca
catcaactat cttggggctg atcaacccac 780cttcaccctt aacttctcca aaggttctag
ccaagtcatt gctcaatact accaactgat 840tcgccttggt tttgagggat atagaaacgt
gatggaaaac tgcagggaca acatgctggt 900gctgaaagag ggactcgaga aaacagggcg
attttcaatt gtgtccaaag acaatggtgt 960gcctttggtg gctttcacac tgaaagacca
cacccacttt gacgaattcc aaatctcaga 1020ctttttaagg cgctttgggt ggatagtgcc
agcatacacc atgcccccag atgctcaaca 1080tgtcacagtg cttcgtgttg tcatcaggga
ggacttctca aggaccctcg cggagcgtct 1140cgtgtccgat gtggagaagg tgctgcatga
gcttgattca cttcctgcaa gggtcatcag 1200cagcaccact gtgacactca gtgcagaaga
aaatggcaag gtagtggttg ctaagaagaa 1260tcctatggag actcagaggg aaatcactgc
catttggaag aagtttgtgt tggagaggaa 1320gaagaacaat gacaagatga atggtgtttg
ttagtgttag cttcaagggg gtgttgtgcc 1380tatgcctctg ccttattgta cttctttatt
atatatataa tttgggcagt aagtactttt 1440gattgagtca agctatttat ctgtttcagt
tgtttattga tgagaggcaa atattaaatt 1500gtgttttcgt ttgtacaagt agtgattcac
tgtattttga ctattttctc tgaatcatga 1560attatattta tctcccctaa aaaaaaaaaa
aaaaaaa 1597471745DNANicotiana tabacum
47tctagatcgt actaccacca ctacgccgcc atggttctgt ccaagacagc gtcggaaagt
60gacgtctcca tccactccac tttcgcttcc cgatatgttc gaacttctct tcccaggttt
120aagatgccag agaattcaat accaaaggaa gcagcatatc agattataaa tgatgagctt
180atgttagatg gaaatccaag gctaaattta gcatctttcg ttacaacatg gatggagcca
240gaatgtaata cgttaatgat ggattccatt aacaagaact acgttgacat ggatgaatac
300cctgtaacca ctgagcttca gaatcgatgt gtaaatatga tagctcattt gtttaatgca
360ccacttggag atggagagac tgcagttgga gttggaactg ttggatcctc tgaagctatt
420atgcttgctg gattagcctt taaaagaaaa tggcaaaata aaatgaaagc ccaaggcaag
480ccctttgata agcccaatat cgtcaccggt gctaatgtcc aggtgtgttg ggagaaattt
540gcaaggtatt ttgaagtgga gttgaaagaa gtaaaattga gtgatggata ctatgtgatg
600gaccctgaga aagctgtgga aatggtggat gagaatacca tttgtgttgc tgctatctta
660ggttcaacac tcaatggtga atttgaagat gttaagcgtt tgaatgacct tttgattgag
720aagaacaaag aaaccgggtg ggacactcca attcatgtgg atgcagcaag tggtggattt
780attgcaccat tcctttatcc agagcttgaa tgggacttta gattgccatt ggtgaagagt
840attaatgtga gtggtcacaa atatggtctt gtctatgctg gtattggttg ggccatttgg
900aggaataagg aagacttgcc tgatgaactt attttccaca tcaattacct tggtgctgat
960caacctactt tcactctcaa cttctctaaa ggttctagcc aagtaattgc tcaatattac
1020caacttattc gcttgggttt tgagggttac aagaatgtta tggagaattg tcaagaaaat
1080gcaagggtat taagagaagg aattgaaaaa agtggaagat tcaacataat ctccaaagaa
1140attggagttc ccttagtagc attttctctt aaagacaaca gtcaacacaa tgagttcgaa
1200atttctgaaa ctcttagaag atttggatgg attgttcctg catatactat gccaccaaat
1260gctcaacatg ttacagttct cagagttgtc attagagaag atttctcccg cacactagcg
1320gagcgactgg taatagacat tgaaaaagtc ctccacgagc tagacacact tccggcgagg
1380gtcaacgcta agctagccgt ggccgaggcg aatggcagcg gcgtgcataa gaaaacagat
1440agagaagtgc agctagagat tactactgca tggaagaaat ttgttgctga taagaagaag
1500aagactaatg gagtttgtta atttaattta acaaaaaaaa agtttataat atggtgattt
1560atgtaactac tagcagtcgt actgcttgtt ttttatattt gagttgatgt gttttttgag
1620cacttgagga gctagctagt tattgctagt gaaaaattgg atgatatatt ttggactact
1680ttgtaagttt gtattattaa tccaaattaa acgatattta tcatgcaaaa aaaaaaaaaa
1740aaaaa
1745481605DNAArabidopsis thaliana 48atatttttat gttcaacaat tcagcataac
tcaaacacaa tggtactcgc aaccaactct 60gactccgacg agcatttgca ttccactttt
gcttctagat atgtccgtgc tgttgttccc 120aggttcaaga tgcctgacca ttgcatgccc
aaagatgctg cttatcaagt gatcaatgat 180gagttgatgc ttgatggtaa tcccaggctt
aacctagcct cctttgtcac cacttggatg 240gaacctgagt gtgacaaact catcatggat
tctgtcaata agaactatgt tgatatggat 300gaatatcctg tcaccactga gctccagaac
cggtgtgtaa atatgatagc aaactttttc 360catgctcccg ttggagaaga cgaggctgct
attgggtgtg gaactgttgg ttcatctgag 420gctataatgc ttgctggttt ggctttcaaa
aggaaatggc aacataggag aaaagctcag 480ggtctaccta ttgataagcc taacattgtc
actggagcca atgttcaggt gtgctgggag 540aagtttgcaa ggtactttga ggtagagctc
aaagaggtga aactaagtga agactactat 600gttatggatc cagctaaagc tgtagagatg
gtggatgaga ataccatctg tgttgcagca 660attctaggat ctacacttac tggagagttt
gaggacgtta agcaattgaa cgatctctta 720gctgagaaaa acgcagagac aggatgggaa
actcctattc atgttgatgc agccagtgga 780ggattcattg ctcctttcct ctaccctgat
cttgaatggg actttaggct tccatgggtg 840aagagtatta acgtcagtgg tcacaagtat
ggacttgtgt atgcaggagt tggttgggtt 900gtctggagaa caaaagatga tttgccagag
gaacttgtct tccacatcaa ctacttggga 960gctgatcaac ccactttcac tctcaacttc
tcaaaagggt cgagccaaat cattgctcag 1020tactatcagt ttatccgact aggctttgag
ggatacaaga acataatgga aaactgcatg 1080gataacgcaa ggaggctaag agaaggaata
gagatgacag ggaagttcaa cattgtgtcc 1140aaagatattg gcgtgccact agtggcattc
tctctcaaag acagtagcaa gcacacggtg 1200tttgagatcg cagagtcttt gagaaaattc
gggtggatca taccggctta cactatgcct 1260gcagatgcac agcacattgc tgtgctcaga
gttgtgataa gagaagactt tagccgaggc 1320cttgcagata gactcatcac acatatcatt
caggtgctga aagagattga agggcttcct 1380agcaggattg cacatcttgc tgcggctgca
gcggttagtg gtgatgatga agaagttaaa 1440gtgaagactg ccaagatgtc cttggaggat
atcactaagt attggaaacg ccttgtggaa 1500cacaagagaa atattgtctg ctaagcgcaa
gtcttattct ttgcacttat atggtaataa 1560ggttttgatt tagaccattt ggcggtaata
aggttttaat ttttt 1605492441DNAOryza sativa 49tgatagctcg
gcaggcaaga tggtgctctc caaggccgtc tccgagagtg acatgtccgt 60gcactccacc
ttcgcctccc gctacgtccg cgcctccctc ccaaggtacg tgctctcgat 120ctgctctctc
tctgttcttg ctgttcttgg cccaatgcag agcttcttcc aatatttcat 180ggctgactcg
atgggattga tcgattggtg ttattaggta ccggatgccg gagaactcga 240tcccgaagga
ggcggcgtac cagatcatca acgacgagct gatgctggac ggcaacccgc 300ggctgaacct
ggcgtcgttc gtcaccacgt ggatggagcc cgagtgcgac aagctcatca 360tggccgccat
caacaagaac tacgtcgaca tggacgagta ccccgtcacc accgagctcc 420aggtacagca
ccctgcaggc atctctgctt cgttgaattt tctcctatca cctcgcgttt 480tctcgccgcc
gcgcgcggct cgaatgcaca ctggaaatcc ccggattttt ggtcgataaa 540accggcttgg
ccagttggcc tggcctggca gattggtgat aagaatctca ggctagaaac 600tttatttccg
agtttatcat ttgcgtcatt cacgggaggc agaatggggg aagaacatgg 660cacagtttcc
gagatgatca ccaattcgca ttagaaaaaa tatataggaa gtccaataaa 720taaagtaagg
ggatgggaag aatgatcacc atatctcttc atttttcgca ttaaaatatg 780gaaggtgcat
gaatgaaggg aaatgggaaa gaataatgcc tggtttggtc aaaacagggc 840aagagaccaa
agttccatct actgaaacgg cgtggacaac agtcaaaacc tggaacacag 900aagacaccac
tgcaactttc ccctttttgc gaatgagaca cattattagt ccttttttca 960gccagacatg
ctttgggcca gatgatgtcc tagcatgaac tgtacaacat tttttttggg 1020ccgggccgtt
ctacagctaa ttaacgaacg ctttggatgt gtgacgctgt gcagaaccgg 1080tgcgtgaaca
tgatcgcgca cctgttccac gcgccgctcg gggaggacga gacggcggtg 1140ggcgtgggca
cggtgggttc gtcggaggcc atcatgctgg ccgggctggc cttcaagcgg 1200cggtggcaga
acaagcgcaa ggccgagggg aagccgttcg acaagcccaa catcatcacc 1260ggcgccaacg
tgcaggtgtg ctgggagaag ttcgcccgct acttcgaggt ggagctcaag 1320gaggtgaagc
tccgcgacgg ctactacgtc atggaccccg agaaggccgt cgacatggtc 1380aacgagaaca
ccatctgcgt cgccgccatc ctcggctcca ccctcaacgg cgagttcgag 1440gacgtcaagc
tactcaacga cctcctcgac aagaagaaca aggagactgg gtaactaaaa 1500ttactatttc
tactacacta aattatctat ctatgaaagt gagattaatc gatgtcattg 1560cggccgtggt
gtgcaggtgg gagacgccga tccacgtgga cgcggcgagc ggcgggttca 1620tcgcgccgtt
cctgtacccg gagctggagt gggacttccg gctgccgtgg gtgaagagca 1680tcaacgtgag
cggtcacaag tacgggctcg tctacgccgg catcggctgg tgcatctggc 1740gcaacaagga
ggacctgccc gaggagctca tcttccacat caactacctc ggcaccgacc 1800agccaacctt
caccctcaac ttctccaagg gctccagcca ggtcatcgcc cagtactacc 1860agctcatccg
ccacggcttc gaggtataat caatggaaca caattaactc tcttgatcag 1920atgaattttt
tttagctgat ctgacacacc catcgatccg atgttatttg caggggtaca 1980ggaacatcat
ggagaactgc cacgagaacg cgatggtgct gaaggaaggg ctggtgaaga 2040cggggaggtt
cgacatcgtg tccaaggacg aaggggtgcc gctggtggcg ttctcgctca 2100aggaccggag
ccggcacgac gagttcgaga tctccgacat gctgcgccgc ttcggctgga 2160tcgtgccggc
gtacaccatg ccgcccgacg cccagcacgt cacggtgctc cgcgtggtca 2220tccgggagga
gttcagccgc accctcgccg agcgcctcgt cctcgacatc gagaaggtga 2280tgtaccagct
cgacgcgctc ccctccaggc tcatgccccc cgtgccgccg gcgccgctgc 2340tggtggtcgc
caagaagtcg gagctcgaga cgcagcggtc ggtgacggag gcgtggaaga 2400agttcgtgct
cgccaagagg accaacggcg tctgctagtc t
2441501650DNAArabidopsis thaliana 50ctcagattct ctttcactaa acagaaacaa
agatggtttt gacaaaaacc gcaacgaatg 60atgaatctgt ctgcaccatg ttcggatctc
gctatgttcg cactacactt cccaagtatg 120agattggtga gaattcgata ccgaaagacg
ctgcgtatca gatcataaaa gatgagctga 180tgcttgatgg taacccaagg cttaacctag
cttcttttgt gactacatgg atggaaccta 240gtgtgacaaa ctcatcatgg actctatcaa
taagaactac gttgatatgg atgagtaccc 300tgtcacaact gagctccaga accgatgtgt
aaacattata gctcgactgt tcaatgcgcc 360actcgaggaa tctgagacgg cggtgggagt
agggacagtt ggttcttcag aagccatcat 420gttagccgga ttggccttca aaagaaaatg
gcagaacaaa cgcaaggctg agggtaaacc 480ctatgacaaa cccaacattg tcaccggagc
caatgttcaa gtttgctggg agaaattcgc 540tcggtacttc gaggtggagc taaaggaagt
aaacctaagt gaaggttact acgtgatgga 600tccagacaaa gcagcagaaa tggtagacga
gaacacaatc tgtgtcgcag ccatattggg 660atccacactc aacggtgagt tcgaagacgt
gaaacgtctc aatgacttgc tagtcaagaa 720aaacgaggag actggttgga acacaccgat
ccacgtggat gcagcaagtg gagggttcat 780agctccgttt atctatcctg aattagaatg
ggactttagg cttcctttgg ttaagagcat 840caacgtgagt ggtcacaagt atggactagt
ctatgctggt attggttggg tcgtgtggag 900ggcagcagag gatttacctg aagagcttat
ctttcatatt aattatcttg gtgctgatca 960acccactttc actctcaatt tctccaaggg
atcgagccaa attattgctc aatactacca 1020gctcattcgt cttggattcg aggggtacaa
aaatgtgatg gagaattgca tagagaacat 1080ggtggttctc aaagaaggta tagagaaaac
agagcgtttc aacatagtct caaaggacca 1140aggagtgcca gtcgtcgcct tctctctcaa
ggaccatagt ttccacaacg agttcgagat 1200ctctgagatg ctacgtcgtt ttggctggat
cgtcccagct tacactatgc ctgccgatgc 1260acagcacatc acggttctgc gtgttgtcat
cagggaagat ttctcaagaa cactcgcgga 1320gagacttgtt gctgatattt cgaaggtgct
tcatgagcta gataccttgc cttccaagat 1380atctaagaag atgggaatag aagggatcgc
gaaaaatgta aaggagaaga agatggagaa 1440ggagattctg atggaagtta ttgttggatg
gaggaagttt gtgaaggaga ggaagaagat 1500gaatggtgtg tgctaagcaa gtgtgttgcc
tttgtgtgga aatgaagagg tacttgcgag 1560gactttgcgt ttatcagttt atgtgtttgt
atatctattt gatccagtta ttatggatta 1620tatacgcttg aaactcattt taagccattg
1650511506DNAOryza sativa 51atggtggtga
gcgtggccgc gaccgactcg gacacggccc agccggtgca gtactccacc 60ttcttcgcct
cccgctacgt ccgcgacccg ctcccgcggt tcaggatgcc ggagcagtcg 120atcccgaggg
aggcggcgta ccagatcatc aacgacgagc tgatgctgga cgggaacccg 180cggctgaacc
tggcgtcctt cgtcaccacg tggatggagc ccgagtgcga caagctcatc 240atggactccg
ttaacaagaa ctacgtcgac atggacgagt accctgtcac cacggagctc 300cagaaccgtt
gtgtgaatat gatagctcac ctgttcaatg caccaatcaa ggaggatgaa 360acagctattg
gagttgggac ggtgggatcc tcagaagcaa ttatgcttgc aggactggca 420ttcaagagga
agtggcaaaa caaacggaag gaacagggga agccatgtga caaacccaac 480attgttactg
gtgctaatgt tcaggtttgc tgggagaaat ttgccagata ttttgaagta 540gaactgaagg
aggttaagct cagtgaagga tactatgtca tggatcctgt aaaggctgtt 600gaaatggtgg
atgagaacac tatatgcgtt gcggccatct tgggctctac tctcactgga 660gagtttgagg
atgttaagtt attgaataat ctcctaacag aaaagaataa ggaaactggg 720tgggatgtgc
caattcatgt tgatgcagca agtggaggat ttatagcacc ttttctatac 780cctgagcttg
aatgggactt caggctacca ctggtgaaga gcatcaatgt cagtgggcac 840aagtatggcc
ttgtgtatcc aggtgttggt tgggtcattt ggcgaagcaa agaggatttg 900cctgaagaac
tcattttcca tataaactat ctggggacag accagccgac gttcactctg 960aacttctcca
aaggttccag ccagataatc gcacagtact atcaactaat acgcctggga 1020ttcgagggat
acaagaacat catgcagaat tgcatggaga acacagcaat actaagggaa 1080ggcatagagg
cgactggtcg attcgaaatc ctctccaagg aggccggtgt gcccttggtg 1140gcgttctcgc
tcaaggacag cggcaggtac accgtgttcg acatctccga gcacctgagg 1200aggttcggct
ggatcgtgcc ggcgtacacc atgccggcca acgccgagca cgtcgccgtc 1260ctccgcgtcg
tcatcaggga ggacttcagc cggagcctcg ccgagcggct cgtctcggac 1320atcgtcaaga
tcctgcacga gctggacgcc cattcggccc aggtgctgaa gatctccagc 1380gccatcgcga
agcagcaatc gggcgacgat ggcgtggtca ccaagaagag cgtcctggag 1440accgagaggg
agatcttcgc gtactggagg gaccaggtga agaagaagca gaccggaatc 1500tgctag
1506521685DNAArabidopsis thaliana 52agattctctt tcactaaaca gaaacaaaga
tggttttgac aaaaaccgca acgaatgatg 60aatctgtctg caccatgttc ggatctcgct
atgttcgcac tacacttccc aagtatgaga 120ttggtgagaa ttcgataccg aaagacgctg
cgtatcagat cataaaagat gagctgatgc 180ttgatggtaa cccaaggctt aacctagctt
cttttgtgac tacatggatg gaaccagagt 240gtgacaaact catcatggac tctatcaata
agaactacgt tgatatggat gagtaccctg 300tcacaactga gctccagaac cgatgtgtaa
acattatagc tcgactgttc aatgcgccac 360tcgaggaatc tgagacggcg gtgggagtag
ggacagttgg ttcttcagaa gccatcatgt 420tagccggatt ggccttcaaa agaaaatggc
agaacaaacg caaggctgag ggtaaaccct 480atgacaaacc caacattgtc accggagcca
atgttcaagt ttgctgggag aaattcgctc 540ggtacttcga ggtggagcta aaggaagtaa
acctaagtga aggttactac gtgatggatc 600cagacaaagc agcagaaatg gtagacgaga
acacaatctg tgtcgcagcc atattgggat 660ccacactcaa cggtgagttc gaagacgtga
aacgtctcaa tgacttgcta gtcaagaaaa 720acgaggagac tggttggaac acaccgatcc
acgtggatgc agcaagtgga gggttcatag 780ctccgtttat ctatcctgaa ttagaatggg
actttaggct tcctttggtt aagagcatca 840acgtgagtgg tcacaagtat ggactagtct
atgctggtat tggttgggtc gtgtggaggg 900cagcagagga tttacctgaa gagcttatct
ttcatattaa ttatcttggt gctgatcaac 960ccactttcac tctcaatttc tccaagggat
cgagccaaat tattgctcaa tactaccagc 1020tcattcgtct tggattcgag gggtacaaaa
atgtgatgga gaattgcata gagaacatgg 1080tggttctcaa agaaggtata gagaaaacag
agcgtttcaa catagtctca aaggaccaag 1140gagtgccagt cgtcgccttc tctctcaagg
accatagttt ccacaacgag ttcgagatct 1200ctgagatgct acgtcgtttt ggctggatcg
tcccagctta cactatgcct gccgatgtac 1260agcacatcac ggttctgcgt gttgtcatca
gggaagattt ctcaagaaca ctcgcggaga 1320gacttgttgc tgatatttcg aaggtgcttc
atgagctaga taccttgcct tccaagatat 1380ctaagaagat gggaatagaa gggatcgcgg
aaaatgtaaa ggagaagaag atggagaagg 1440agattctgat ggaagttatt gttggatgga
ggaagtttgt gaaggagagg aagaagatga 1500atggtgtgtg ctaagcaagt gtgttgcctt
tgtgtggaaa tgaagaggta cttgcgagga 1560ctttgcgttt atcagtttat gtgtttgtat
atctatttga tccagttatt atggattata 1620tacgcttgaa actcatttta agccattgtt
attgaacgtt tatcaaatac tttattatgc 1680caaat
1685531771DNANicotiana tabacum
53tattttcatt ttctctcctg ttttaatttc tgatcttctc cgtcgtacta ccaccactac
60gccgccatgg ttctgtccaa gacagcgtcg gaaagtgacg tctccgttca ctccactttc
120gcctcccgat atgttcgaac ttctcttccc aggtttaaaa tgccagagaa ttcaatacca
180aaggaagcag catatcagat tataaatgat gagcttatgt tagatggaaa tccaaggcta
240aatttagcat ctttcgttac aacatggatg gagccagaat gtaatacgtt aatgatggat
300tccattaaca agaactacgt tgacatggat gaataccctg taaccactga gcttcagaat
360cgatgtgtaa atatgatagc tcatttgttt aatgcaccac ttggagatgg agagactgca
420gttggagttg gaactgttgg atcctctgaa gctattatgc ttgctggatt agcctttaag
480agaaaatggc aaaataaaat gaaagcccaa ggcaagccct ttgataagcc caatattgtc
540accggtgcta atgtccaggt gtgttgggag aaatttgcaa ggtattttga agtggagttg
600aaagaagtaa aattgagtga tggatactat gtgatggacc ctgagaaagc tgtggaaatg
660gtggatgaga ataccatttg tgttgctgct atcttaggtt caacactcaa tggtgaattt
720gaagatgtta agcgtttgaa tgaccttttg attgagaaga acaaagaaac cgggtgggac
780actccaattc atgtggatgc agcaagtggt ggatttattg caccattcct ttatccagag
840cttgaatggg actttagatt gccattggag aagagtatta atgtgagtgg tcacaaatat
900ggtcttgtct atgctggtat tggttgggcc atttggagga ataaggaaga cttgcctgat
960gaacttattt tccacatcaa ttaccttggt gctgatcaac ctactttcac tctcaacttc
1020tctaaaggtt ctagccaagt aattgctcaa tattaccaac ttattcgctt gggttttgag
1080ggttacaaga atgttatgga gaattgtcaa gaaaatgcaa gggtattaag agaaggaatt
1140gaaaaaagtg gaagattcaa cataatctcc aaagaaattg gagttccctt agtagcattt
1200tctcttaaag acaacagtca acacaatgag ttcgaaattt ctgaaactct tagaagattt
1260ggatggattg ttctggcata tactatgcca ccaaatgctc aacatgtcac agttctcaga
1320gttgtcatta gagaagattt ctcccgcaca ctagcggagc gactggtaat agacattgaa
1380aaagtcttcc acggagtaga cacacttccg gcgagggtca acgctaagct agccgtggcc
1440gaggcgaatg gcagcggcgt gcataagaaa acagatagag aagtgcagct agagattact
1500actgcatggt tgaaatttgt tgctgataag aagaagaaga ctaatggagt ttgttaattt
1560aatttaacaa aaaaaaagtt tataatatgg tgatttatgt aactactagc agtcgtactg
1620cttgtttttt atatttgagt tgatgtgttt tttgagcact tgaggagcta gctagttatt
1680gctagtgaaa aattggatga tatattttgg actactttgt aagtttgtat tattaatcca
1740aattaaacga tatttatcat aaaaaaaaaa a
1771541485DNAArabidopsis thaliana 54atggttttga caaaaaccgc aacgaatgat
gaatctgtct gcaccatgtt cggatctcgc 60tatgttcgca ctacacttcc caagtatgag
attggtgaga attcgatacc gaaagacgct 120gcgtatcaga tcataaaaga tgagctgatg
cttgatggta acccaaggct taacctagct 180tcttttgtga ctacatggat ggaaccagag
tgtgacaaac tcatcatgga ctctatcaat 240aagaactacg ttgatatgga tgagtaccct
gtcacaactg agctccagaa ccgatgtgta 300aacattatag ctcgactgtt caatgcgcca
ctcgaggaat ctgagacggc ggtgggagta 360gggacagttg gttcttcaga agccatcatg
ttagccggat tggccttcaa aagaaaatgg 420cagaacaaac gcaaggctga gggtaaaccc
tatgacaaac ccaacattgt caccggagcc 480aatgttcaag tttgctggga gaaattcgct
cggtacttcg aggtggagct aaaggaagta 540aacctaagtg aaggttacta cgtgatggat
ccagacaaag cagcagaaat ggtagacgag 600aacacaatct gtgtcgcagc catattggga
tccacactca acggtgagtt cgaagacgtg 660aaacgtctca atgacttgct agtcaagaaa
aacgaggaga ctggttggaa cacaccgatc 720cacgtggatg cagcaagtgg agggttcata
gctccgttta tctatcctga attagaatgg 780gactttaggc ttcctttggt taagagcatc
aacgtgagtg gtcacaagta tggactagtc 840tatgctggta ttggttgggt cgtgtggagg
gcagcagagg atttacctga agagcttatc 900tttcatatta attatcttgg tgctgatcaa
cccactttca ctctcaattt ctccaaggga 960tcgagccaaa ttattgctca atactaccag
ctcattcgtc ttggattcga ggggtacaaa 1020aatgtgatgg agaattgcat agagaacatg
gtggttctca aagaaggtat agagaaaaca 1080gagcgtttca acatagtctc aaaggaccaa
ggagtgccag tcgtcgcctt ctctctcaag 1140gaccatagtt tccacaacga gttcgagatc
tctgagatgc tacgtcgttt tggctggatc 1200gtcccagctt acactatgcc tgccgatgca
cagcacatca cggttctgcg tgttgtcatc 1260agggaagatt tctcaagaac actcgcggag
agacttgttg ctgatatttc gaaggtgctt 1320catgagctag ataccttgcc ttccaagata
tctaagaaga tgggaataga agggatcgcg 1380gaaaatgtaa aggagaagaa gatggagaag
gagattctga tggaagttat tgttggatgg 1440aggaagtttg tgaaggagag gaagaagatg
aatggtgtgt gctaa 1485551705DNANicotiana tabacum
55aaaatatctc cattttctcc cttgttttag tctctgatct tctccgtcgt actaccacca
60ctacgccgcc atggttctgt ccaagacagc gtcggaaagt gacgtctcca tccactccac
120tttcgcttcc cgatatgttc gtacttctct tccgaggttt aagatgccag agaattcgat
180accaaaggaa gcagcatatc aaatcataaa tgatgagctt atgttagatg gaaatccaag
240actaaattta gcatcttttg tgacaacatg gatggaacca gagtgtaaca aactgatgat
300ggattccatt aacaagaatt acgttgacat ggatgaatac cctgtaacca ctgaacttca
360gaatcgatgt gtaaacatga tagctcattt gtttaacgca ccacttggag atggagagac
420tgcagttgga gttggaactg ttggatcctc tgaggctatt atgcttgctg gattagcttt
480caagagaaaa tggcaaaata aaatgaaagc ccaaggcaag ccctgtgaca agcccaatat
540tgtcactggt gccaatgtcc aggtgtgttg ggagaaattt gcaaggtatt ttgaagtgga
600gctaaaggaa gtaaagttga gtgatggata ctatgtgatg gaccctgaga aagctgtgga
660aatggtggat gagaacacaa tttgtgtagc tgctatcttg ggttccacac tcaatggtga
720atttgaagat gttaagcgct tgaatgacct cttgattgag aagaacaaag aaaccgggtg
780ggacactcca attcatgtgg atgcagcaag tggtggattt attgcaccat tcctttatcc
840agagcttgaa tgggacttta gattgccatt ggtgaagagt ataaacgtga gtggtcacaa
900atatggtctt gtttatgctg gtattggttg ggccatttgg aggaataagg aagacttacc
960tgacgaactt atcttccaca ttaattatct tggtgctgat caacctactt tcactctcaa
1020cttctctaaa ggttctagcc aagtaattgc tcaatattac caacttattc gcttgggttt
1080tgagggttac aagaatgtta tggagaattg tcaagaaaat gcaagggtac taagagaagg
1140acttgaaaaa agtggaagat tcaacataat atccaaagaa attggagttc cattagtagc
1200tttctctctt aaagacaaca gtcaacacaa tgagttcgaa atttctgaaa ctcttagaag
1260atttggatgg attattcctg catatactat gccaccaaat gctcaacatg tcacagttct
1320cagagttgtc attagagaag atttctcccg tacactcgcc gagcgactgg taatagacat
1380tgaaaaagtc ctccacgagc tagacacact tccggcgagg gtcaacgcta agctagccgt
1440ggccgaggcg aatggcagcg gcgtgcataa gaaaacagat agagaagtgc agcttgagat
1500tactactgca tggaagaaat ttgttgctga taagaagaag aagactaacg gagtttgtta
1560atttaattta acaaaatatg tttataatta atatgatgat ttataactac tagcagtggt
1620actgcttgtt tttatatttg aattgttggg ttttttgagt atgaggagct agctatttat
1680tgctagtgaa atattggttg aaaaa
1705561929DNANicotiana tabacum 56atctccattt tctcccttgt tttagtctct
gatcttctcc gtcgtactac caccactacg 60ccgccatggt tctgtccaag acagcgtcgg
aaagtgacgt ctccatccac tccactttcg 120cttcccgata tgttcgtact tctcttccga
ggtttaagat gccagagaat tcgataccaa 180aggaagcagc atatcaaatc ataaatgatg
agcttatgtt agatggaaat ccaagactaa 240atttagcatc ttttgtgaca acatggatgg
aaccagagtg taacaaactg atgatggatt 300ccattaacaa gaattacgtt gacatggatg
aataccctgt aaccactgaa cttcagaatc 360gatgtgtaaa catgatagct catttgttta
acgcaccact tggagatgga gagactgcag 420ttggagttgg aactgttgga tcctctgagg
ctattatgct tgctggatta gctttcaaga 480gaaaatggca aaataaaatg aaagcccaag
gcaagccctg tgacaagccc aatattgtca 540ctggtgccaa tgtccaggtg tgttgggaga
aatttgcaag gtattttgaa gtggagctaa 600aggaagtaaa gttgagtgat ggatactatg
tgatggaccc tgagaaagct gtggaaatgg 660tggatgagaa cacaatttgt gtagctgcta
tcttgggttc cacactcaat ggtgaatttg 720aagatgttaa gcgcttgaat gacctcttga
ttgagaagaa caaagaaacc gggtgggaca 780ctccaattca tgtggatgca gcaagtggtg
aatttattgc accattcctt tatccagagc 840ttgaatggga ctttagattg ccattggtga
agagtattaa cgtgagtggt cacaaatatg 900gtcttgttta tgctggtatt ggttgggcca
tttggaggaa taaggaagac ttacctgacg 960aacttatctt ccacattaat tatcttggtg
ctgatcaacc tactttcact ctcaacttct 1020ctaaaggttc tagccaagta attgctcaat
attaccaact tattcgcttg ggttttgagg 1080gttacaagaa tgttatggag aattgtcaag
aaaatgcaag ggtactaaga gaaggacttg 1140aaaaaagtgg aagattcaac ataatatcca
aagaaattgg agttccatta gtagctttct 1200ctcttaaaga caacagtcaa cacaatgagt
tcgaaatttc tgaaactctt agaagatttg 1260gatggattat tcctgcatat actatgccac
caaatgctca acatgtcaca gttctcagag 1320ttgtcattag agaagatttc tcccgtacac
tcgccgagcg actggtaata gacattgaaa 1380aagtcctcca cgagctagac acacttccgg
cgagggtcaa cgctaagcta gccgtggccg 1440aggcgaatgg cagcggcgtg cataagaaaa
cagatagaga agtgcagctt gagattacta 1500ctgcatggaa gaaatttgtt gctgataaga
agaagaagac taacggagtt tgttaattta 1560atttaacaaa atatgtttat aattaatatg
atgatttata actactagca gtggtactgc 1620ttgtttttat atttgaattg ttgggttttt
tgagtatgag gagctagcta tttattgcta 1680gtgaaatatt ggttgatttt ggactacttt
gtattattaa tgttaatttt cttaagtact 1740taatatgagg atatttatca tgcatgtgat
atagaaaaaa gttgtgagtg cctgaggtct 1800agtttaatcc tttatattcc aatataaaaa
acatatacat gggcggaggt agaaaaacca 1860atatatttgt attaagaata ttattatatt
aaattttaaa ttcaattatt agatcccaaa 1920aaaaaaaaa
1929571509DNAArabidopsis thaliana
57atggtgctct cccacgccgt atcggagtcg gacgtctccg tccactccac attcgcatca
60cgttacgtcc gtacttcact tcctaggttc aagatgccgg aaaactcgat tcctaaggaa
120gcggcgtatc agatcatcaa cgacgagctg atgcttgacg ggaatccacg gttgaactta
180gcctcctttg tgacgacatg gatggagcct gagtgtgata aactcatcat gtcctccatc
240aacaagaact atgttgacat ggacgagtac cccgtcacca ccgaacttca gaaccgatgt
300gtgaacatga ttgcacatct attcaatgca ccgttagaag aggcggagac cgccgtcgga
360gtaggaaccg ttggatcatc ggaggccata atgttggccg gtttggcctt caagcgtaaa
420tggcagaaca agcgcaaagc tgaaggcaaa cccgtcgata aacccaacat tgtcaccgga
480gccaatgttc aagtgtgttg ggagaaattc gctaggtact ttgaggttga acttaaggaa
540gtgaaattga gtgaaggata ctatgtgatg gaccctcaac aagctgttga tatggttgat
600gagaacacca tttgtgttgc ggacattctt ggttccactc ttaatggaga attcgaagat
660gttaaactct tgaacgatct cttggtcgaa aagaacaaag aaaccggatg ggatacacca
720atccacgtgg atgcggcaag tggaggattc attgcaccgt ttttgtatcc ggaattggaa
780tgggacttta gacttccctt ggtgaagagt atcaatgtga gtggtcacaa gtatggactt
840gtgtacgcag ggattggttg ggtgatctgg agaaacaaag aggatttgcc tgaggaactc
900atcttccata tcaattatct tggtgctgac caacccacct ttactctcaa tttctccaaa
960ggttcaagtc aagtcattgc tcaatactac caacttatcc gattgggcca cgagggttac
1020agaaatgtga tggagaattg cagagagaat atgatcgtcc taagggaagg acttgagaag
1080acagaaaggt tcaacatcgt ctcaaaggac gagggagtgc cacttgtcgc tttctccttg
1140aaagatagca gctgtcacac tgagttcgaa atctccgaca tgcttcgcag gtatggatgg
1200atagtgccgg cctacacaat gcctccaaat gcacaacaca tcactgttct tcgtgtggtt
1260atcagagaag atttctcgag aacactcgct gagagacttg tgatcgatat agagaaagtg
1320atgcgtgagc tcgatgagct tccttcgaga gtgattcaca aaatatcact tggacaagag
1380aagagtgaat ctaacagcga taacttgatg gtcacggtga agaagagcga tatcgacaag
1440cagagagata tcatcactgg ctggaagaag tttgtcgccg acaggaagaa gacgagtggt
1500atctgctaa
1509581785DNAPetunia hybrida 58aaagagtaca aactaatatc cacttaaatt
gtatttctcc attttctctc tttatttagt 60ctgtcataac aatggttcta tcaaagacag
tgtcgcagag cgatgtgtcc attcactcca 120cgtttgcttc tcgatatgtt cgaacttctc
ttcccaggtt taaaatgcca gataattcga 180taccaaaaga agcagcatat cagatcataa
atgatgaact gatgttagat ggaaacccaa 240ggctgaactt ggcttctttt gttacaacat
ggatggaacc agagtgtgat aagttgatga 300tggactctat taacaagaac tatgttgata
tggatgaata tcctgttacc actgagcttc 360agaatcgatg tgtaaacatg atagctcatt
tgtttaatgc accacttgaa gatggagaaa 420ctgcagttgg agttggaact gttggatcct
ctgaagccat tatgcttgct ggattagctt 480tcaagagaaa atggcagaac aaaatgaaag
cccaaggcaa accctgtgac aagcccaaca 540ttgttactgg tgcaaatgtc caggtgtgct
gggagaaatt tgcaaggtat tttgaagtgg 600agctaaagga agtaaagctt agtgaaggat
actatgtgat ggaccctgag aaagctgtgg 660agatggtgga tgaaaacacc atttgtgtag
ctgctatctt aggttccacc ctcaatggag 720aatttgaaga cgttaagcgc ttgaatgatc
tcttggtcga gaagaacaaa gaaaccgggt 780gggacactcc aattcatgtg gatgcagcaa
gtggtggatt tattgcaccg ttcatttacc 840cagagcttga gtgggacttt agattgccat
tagtgaagag cattaatgta agtggtcaca 900aatatggtct tgtctatgct ggtattggtt
gggtcgtttg gaggaacaag gatgatttgc 960ctgatgaact tatcttccac attaattatc
ttggtgctga tcaacctact ttcactctca 1020acttttctaa aggttctagc caagtaattg
ctcaatatta ccaacttatt cgcttgggtt 1080atgagggtta caagaatgtg atggagaatt
gtcaagaaaa tgcatcggta ctaagagaag 1140ggctagaaaa gacaggaaga ttcaacataa
tctccaaaga aattggagta cctttagtag 1200cattctctct taaagacaac aggcaacaca
acgagttcga gatttctgaa actttaagga 1260gatttggttg gattgttcct gcatatacta
tgccaccaaa cgcacaacac attacagttc 1320tcagagttgt gatcagagaa gatttctccc
gtacgcttgc agaacgactg gtaagagaca 1380tcgaaaaagt ccttcatgaa cttgacacac
tccctgcacg tgtcaatgct aagctcgctg 1440tggccgagga gcaggcggct gcgaatggca
gcgaggtgca taagaaaaca gatagcgaag 1500tgcagttgga gatgataact gcatggaaga
agtttgttga agaaaagaag aagaagacta 1560atcgagtttg ttaattaatt atattagtgt
ttataatatg atgaatatgg ctattatcat 1620tggtgactgc ttgttagtat attagctgtg
attatcacca atatgagttt ggttttcttg 1680atttggttct tttcagtact tgaaaagttg
ttattgatat tgtaaaattg tactttttaa 1740ctatttggat tattaatgcc aattttctag
tgtacttaat aaaaa 178559906DNAOryza sativa 59ggagagtttg
aggatgttaa gttattgaat aatctcctaa cagaaaagaa taaggaaact 60gggtgggatg
tgccaattca tgttgatgca gcaagtggag gatttatagc accttttcta 120taccctgagc
ttgaatggga cttcaggcta ccactggtga agagcatcaa tgtcagtggg 180cacaagtatg
gccttgtgta tccaggtgtt ggttgggtca tttggcgaag caaagaggat 240ttgcctgaag
aactcatttt ccatataaac tatctgggga cagaccagcc gacgttcact 300ctgaacttct
ccaaaggttc cagccagata atcgcacagt actatcaact aatacgcctg 360ggattcgagg
gatacaagaa catcatgcag aattgcatgg agaccccagc aatattaagg 420gaaggcatag
aggcgactgg tcgattcgaa atcctctcca aggaggccgg tgtgcccttg 480gtggcgttct
cgctcaaggc cagcggcagg tacaccgtgt tcgacatctc cgagcacctg 540aggaggttcg
gctggatcgt gccggcgtac accatgccgg ccaacgccga gcacgtcgcc 600atcctccgcg
tcgtcatcag ggaggacttc agccggagcc tcgccgagcg gctcgtctcg 660gacatcgtca
agatcctgca cgagctggac gcccattcgg cccaggtgct gaagatctcc 720agcgccatcg
cgaagcagca atcgggcgac gatggcgcgg tcaccaagaa gagcgtcctg 780gagaccgaga
gggagatctt cgcgtactgg agggaccagg tgaagaagaa gcagaccgga 840atctgctagt
gtggctctgt gagaaatgct tgaataacgt ggcatgctcg atttgtgcat 900gggatg
906601783DNALycopersicon esculentum 60aaaaaatggt gttaacaacg acgtcgataa
gagattcaga agagagcttg cactgtacat 60ttgcatcaag atatgtacag gaacctttac
ctaagttcaa aatgcctaaa aaatccatgc 120cgaaagaagc agcttatcag attgtaaacg
acgagcttat gttggatggt aaccccaggt 180tgaatttagc ttcctttgtt agcacatgga
tggagcccga gtgcgataag ctcatcatgt 240catccattaa taaaaactat gtcgacatgg
atgagtatcc tgtcaccact gaacttcaaa 300atagatgtgt taacatgtta gcacatcttt
tccatgcccc ggttggtgat gatgagactg 360cagttggagt tggtacagtg ggttcatcag
aggcaataat gcttgctggc cttgctttca 420aacgcaaatg gcaatcgaaa agaaaagcag
aaggcaaacc tttcgataag cctaatatag 480tcactggagc taatgtgcag gtctgctggg
aaaaatttgc aaggtatttt gaggttgagt 540tgaaggaggt gaaactaaaa gaaggatact
atgtaatgga ccctgccaaa gcagtagaga 600tagtggatga gaatacaata tgtgttgctg
caatccttgg ttctactctg actggggagt 660ttgaggatgt gaagctccta aacgagctcc
ttacaaaaaa gaacaaggaa accggatggg 720agacaccgat tcatgtcgat gctgcgagtg
gaggatttat tgctcctttc ctctggccag 780atcttgaatg ggatttccgt ttgcctcttg
tgaaaagtat aaatgtcagc ggtcacaagt 840atggccttgt atatgctggt gtcggttggg
tgatatggcg gagcaaggaa gacttgcccg 900atgaactcgt ctttcatata aactaccttg
ggtctgatca gcctactttt actctcaact 960tctctaaagg ttcctatcaa ataattgcac
agtattatca gttaataaga cttggctttg 1020agggttataa gaacgtcatg aagaattgct
tatcaaacgc aaaagtacta acagagggaa 1080tcacaaaaat ggggcggttc gatattgtct
ctaaggatgt gggtgttcct gttgtagcat 1140tttctctcag ggacagcagc aaatatacgg
tatttgaagt atctgagcat ctcagaagat 1200ttggatggat cgtccctgca tacacaatgc
caccggatgc tgaacacatt gctgtactgc 1260gggttgtcat tagagaggat ttcagccaca
gcctagctga gagacttgtt tctgacattg 1320agaaaattct gtcagagttg gacacacagc
ctcctcgttt gcccaccaaa gctgtccgtg 1380tcactgctga ggaagtgcgt gatgacaagg
gtgatgggct tcatcatttt cacatggata 1440ctgtagagac tcagaaagac attatcaaac
attggaggaa aatcgcaggg aagaagacca 1500gcggagtctg ctaggtctgg ccacacttgt
tatctgggct ccgcttccat cgccatcctg 1560tagtatgtat tacgtgtgtt gtttccatct
tatgtagtag ttggtactgt aatctgtgta 1620aatgctttca tgatcttggc tctgtatatg
ctaaataagc actgcatttc aagttcctgg 1680aagtatttat gtatgaatca atccgggcat
aattggtaga atgccctctc tgcgtcatct 1740ttgaatttca cgtgcaataa tatttgaaat
ctacacctat tat 1783611503DNAOryza sativa 61atggttctga
cgcacgtcga ggcggtggag gagggcagcg aggcggcggc cgccgtgttc 60gcgtcgaggt
acgtgcagga cccggtgccg aggtacgagc tcggcgagag gtcgatatcc 120aaggacgccg
cgtaccagat cgtccacgac gagctcctcc tggacagcag cccgcgcctg 180aacctggcgt
ccttcgtcac cacctggatg gagcccgagt gcgacaggct catcctcgag 240gccatcaaca
agaactacgc cgacatggac gagtaccccg tcaccaccga gctccagaac 300cggtgcgtga
acatcatagc gaggctgttc aatgcgccgg tgggcgacgg cgagaaggcg 360gtcggggtgg
gcacggtggg gtcgtcggag gccataatgc tggccgggct ggcgttcaag 420cggcggtggc
agaaccggcg gaaggcggcg gggaagcccc acgacaagcc caacatcgtg 480acgggggcca
acgtgcaggt gtgctgggag aagttcgcgc gctacttcga ggtggagctc 540aaggaggtga
agctgaccga aggctgctac gtgatggacc ccgtcaaggc cgtggacatg 600gtcgacgaga
acaccatctg cgtcgccgcc atcctcggct ccaccctcac cggcgagttc 660gaggacgtca
ggcgcctcaa cgacctcctc gccgccaaga acaagcggac gggttgggac 720acgccgatcc
acgtcgacgc ggcgagcggc gggttcatcg cgccgttcat ctacccggag 780ctggagtggg
acttccggct gccgctggtg aagagcatca acgtcagcgg ccacaagtac 840gggctcgtct
acgccggcgt cgggtgggtc atctggcgca acaaggagga cctccccgag 900gagctcatct
tccacatcaa ctacctcggc gccgaccagc caaccttcac gctcaacttc 960tccaaagggt
ccagtcagat tattgcgcaa tattaccagt ttcttcgact cggatttgag 1020gggtacaaga
gcgtgatgaa gaactgcatg gagagcgcga ggacgctccg ggagggcctg 1080gagaagacgg
ggcggttcac catcatctcc aaggaggagg gcgtgccgct ggtggccttc 1140acgttcaagg
acggcgccgg cgcgcaggcc ttcaggctgt cgtcgggcct gcgccggtac 1200gggtggatcg
tgccggcgta cacgatgccg gcggcgctgg agcacatgac ggtgctccgc 1260gtcgtcgtcc
gggaagactt cggccggccg ctcgccgagc ggttcctgtc ccacgtcagg 1320atggccctgg
acgagatgga cctcgccgcc agggcccccg tgcccagggt gcagctcacc 1380atcgagctcg
gccccgcccg gaccgccggc gaggaggcct cgatcagggt ggtcaagagc 1440gaggccgtgc
ccgtgcgcaa gagcgtcccg ctcgtcgccg gcaaaaccaa gggcgtttgc 1500tag
1503621542DNAOryza
sativa 62atggtgctct cccacggcgt gtcgggctcc gatgagtccg tccactccac
gttcgcctcc 60cgctacgtcc gcacctccct ccccaggcac gcacgctcgc ctctgtctcg
agcgccattg 120gcgccgatcg attcggtgat tgattgggag ttccggatgc cggagcagtc
gatccccaag 180gaggcggcgt accagatcat caacgacgag ctgatgctgg acggcaaccc
gcggctgaac 240ctcgcgtcgt tcgtcaccac gtggatggag cccgagtgcg acaagctcat
ccaggcctcc 300gtcaacaaga actacgtcga catggacgag taccccgtca ccaccgaact
ccagaaccga 360tgtgtgaaca tgattgcaca cctcttcaat gctcctctag gggactctga
aacggccgtc 420ggagtcggca ctgtcggctc gtctgaggcc atcatgctcg ccggtttggc
cttcaagagg 480aggtggcaga acaagatgaa ggcagccggc aagccatgcg acaagcctaa
cattgtcacc 540ggcgccaatg tccaagtttg ctgggagaag ttcgcgcgat acttcgaggt
tgagctcaag 600gaagtgaagc tgagtgacgg ctactacgtc atggacccag ctaaggccgt
ggatatggtc 660gacgagaaca ccatctgcgt cgcggcgatc ctcgggtcga cgctgaacgg
ggagttcgag 720gacgtgaagc tgctcaacga tctgctcacc aagaagaacg ctgaaacagg
ctgggacacg 780ccgatccacg tggacgcggc gagcggcggg ttcatcgcgc cgttcctgta
cccggagctg 840gagtgggact tccggctgcc gctggtgaag agcatcaacg tgagcgggca
caagtacggc 900ctcgtctacg ccgggatcgg gtggtgcatc tggaggagca aggaggatct
gcctgaggag 960ctcatcttcc acatcaacta cctcggcgcc gaccagccca ccttcaccct
caacttctcc 1020aagggttcca gccaggtcat tgcacagtat taccaactaa tccgcctagg
ctttgagggg 1080tacaagaaca tcatggagaa ctgccaggag aacgcgatgg tgctgaagca
ggggctggag 1140aagacggggc ggttcaacat cgtgtccaag gacaacggcg tgccgctggt
ggccttctcc 1200ctcaaggaca gcgcccggca caacgagttc gagatctccg acttcctccg
ccgcttcggc 1260tggatcgtgc cggcctacac catgcccccc gacgcgcagc acgtcaccgt
gctccgcgtc 1320gtcatccgcg aggacttcag ccgcacgctc gccgagcgcc tcgtgctcga
cgtcgagaag 1380gtgctgcacg agctcgacgc gctccccgcc cgcgtcgtcg ccaacggcgg
cgacgccgcc 1440gccgcgtcgg cgagcgagag ggagatggag aagcagcgcg aggtgatctc
cctctggaag 1500agggccgtgc tggccaagaa gaagaccaac ggcgtctgct aa
1542633983DNAOryza sativa 63ctcgatcatt aactgtgagt taagtgagtt
atttgtacac ttattaacta gttccgcgag 60catatcttaa atacatgaca tgtcatgtag
aattgaaaag ttacatataa aattaaaaaa 120aacatgtatt tttttccttt cccatggtac
tacaattggc aatgcaaaaa attagtaaaa 180ccaaatcatt ttagtttcat gttttgaaga
gtgtagttct cggcttgcca tcaaacatga 240gcacctttta ttttcgatct ccatgttctt
ttccacccaa ttacatctgc acatttttag 300aagtattttt tttcaatcct agatgacatg
ccacgtgtac aaggtatgct cacttggata 360tgtagtttga tggacgtaca tatgacttac
ttaactcaga ctagtgatcc aattgtgtat 420tttgaaagta gagtgcacat atatgataca
tataaacaag ttgaatggca cttcatgcat 480tttactctta cgtctatcat aaaaaaacaa
aaagaagcaa tcctcaactc atatacccag 540gtaaaaacac acctttgcaa acttaaacgg
tgtgagccaa tatccatact atcaagattt 600gaaatgtatc caattaggcc aacctacacc
aaaacttttt ttttaataat ggaacagaat 660cccaccaaaa actaaatatg ctcaatgttt
ctatttgtga agttatctgg gggagagcag 720tttataattt gagtgcatat gctttaatat
tttatatgtc attcaaatgg ttgttttttt 780aaaagaaaat atagtgccac gttatatatc
agtccatcaa cacacaaatc taaataaact 840tgtactaagt tgtaaaaatc caactagagt
actatccaac ctacatgggg atgtgatacg 900tatcatctag cgcaacaaat ctaaagaggg
aattatctaa atttattgca tgtccatatt 960cactgtccta aatggtgtta ctcccatcta
gatcgggttt gtttggaatg gaaggagtat 1020gtccagatac atacaaaatg aatgtaccaa
aaaagtcaaa gtgatttata atgtagaacg 1080gagggagtat catactacaa tccttttgaa
aacgatatca tttctttatt atccttttgg 1140aaactatatc ggtaccgtcg aggatttttc
ataattttga aatttagcca cttcgatagg 1200atgcaaatat aaattgaaaa aaactaaatt
ccataataaa aaacaatata attttctatt 1260atttaacggt atcggtactg tcgaaaattt
ttcatactgt tttcatccct attcaggatg 1320aatgagacgc aacaacacga gacgtcgaga
cccctcacgg aggcacgaaa aatccatttc 1380ttgatgcggg ggaaggagtg ttagctcaac
cgggggggct aatcactatc gaataattta 1440acaagccacg caacgaagca gcaggaggaa
gcaaccaaag gctagcaagc aaagcagcac 1500ctcagcatta cgcaataatt caggccgaag
cagagtcacc cagcagcaag aacatgggac 1560aagcaaagca caagccacat tctaaggtag
tgtacaagct agctgacctg ggagtccagt 1620atataagtgc gtgtagccgc atgtacacag
ggtggccaaa acgagacgtg cagagagaga 1680caccaatctc gtacgtagca tatctacatc
gcaggaacac ccaaatcact cgtgcgtagg 1740tatggttctg acgcacgtcg aggcggtgga
ggagggcagc gaggcggcgg ccgccgtgtt 1800cgcgtcgagg tacgtgcagg acccggtgcc
gaggtacgag ctcggcgaga ggtcgatatc 1860caaggacgcc gcgtaccaga tcgtccacga
cgagctcctc ctggacagca gcccgcgcct 1920gaacctggcg tccttcgtca ccacctggat
ggagcccgag tgcgacaggc tcatcctcga 1980ggccatcaac aagaactacg ccgacatgga
cgagtacccc gtcaccaccg agctccaggc 2040aagcaatcaa acaaaccaaa ccatataccc
tcgtctcctc catatccttt cgttgcattg 2100cgttgtggtt gacgtacgac gacgatggcc
ctggcgttgc agaaccggtg cgtgaacatc 2160atagcgaggc tgttcaatgc gccggtgggc
gacggcgaga aggcggtcgg ggtgggcacg 2220gtggggtcgt cggaggccat aatgctggcc
gggctggcgt tcaagcggcg gtggcagaac 2280cggcggaagg cggcggggaa gccccacgac
aagcccaaca tcgtgacggg ggccaacgtg 2340caggtgtgct gggagaagtt cgcgcgctac
ttcgaggtgg agctcaagga ggtgaagctg 2400accgaaggct gctacgtgat ggaccccgtc
aaggccgtgg acatggtcga cgagaacacc 2460atctgcgtcg ccgccatcct cggctccacc
ctcaccggcg agttcgagga cgtcaggcgc 2520ctcaacgacc tcctcgccgc caagaacaag
cggacgggtt gggacacgcc gatccacgtc 2580gacgcggcga gcggcgggtt catcgcgccg
ttcatctacc cggagctgga gtgggacttc 2640cggctgccgc tggtgaagag catcaacgtc
agcggccaca agtacgggct cgtctacgcc 2700ggcgtcgggt gggtcatctg gcgcaacaag
gaggacctcc ccgaggagct catcttccac 2760atcaactacc tcggcgccga ccagccaacc
ttcacgctca acttctccaa aggcacgaaa 2820ttatttttcc agaattaaat gatccgtaca
tatatagagt ggagtagtac attttgtgac 2880ttggcaagtt catttttgtg cagggtccag
tcagattatt gcgcaatatt accagtttct 2940tcgactcgga tttgaggtat actgagacta
attgccccaa aatttcgaat ttaaaatttt 3000gaaaatttta tgtcaaactc ctataatttc
gatttttttt ttggccggat gcacatccta 3060ccggaacaca ccggcataac tgaaatttcg
caaaattctt tctgaaattg tgcacattta 3120tttcagtttg attgaaccgt tgggttgttt
gattgttgca ggggtacaag agcgtgatga 3180agaactgcat ggagagcgcg aggacgctcc
gggagggcct ggagaagacg gggcggttca 3240ccatcatctc caaggaggag ggcgtgccgc
tggtggcctt cacgttcaag gacggcgccg 3300gcgcgcaggc cttcaggctg tcgtcgggcc
tgcgccggta cgggtggatc gtgccggcgt 3360acacgatgcc ggcggcgctg gagcacatga
cggtcgtccg cgtcgtcgtc cgggaagact 3420tcggccggcc gctcgccgag cggttcctgt
cccacgtcag gatggccctg gacgagatgg 3480acctcgccgc cagggccccc gtgcccaggg
tgcagctcac catcgagctc ggccccgccc 3540ggaccgccgg cgaggaggcc tcgatcaggg
tggtcaagag cgaggccgtg cccgtgcgca 3600agagcgtccc gctcgtcgcc ggcaaaacca
agggcgtttg ctagaccggg ttaaattttt 3660ttttaaaata ctggtgggaa cacgaccaaa
ataaaatttc aaaatgggag cgtactaaac 3720cttctttatg ctacagtaac tatgtagtac
aagcatgccg aaagttaatc atcgtgtgta 3780atcgtattag agtttgcaac agcatattat
aatgtggaga agaacacgca agcgacatca 3840accaggactc tgcacttctg atgaagttct
gaaacccata aggattcaga taaacatgag 3900cagacactga aatatgtatg tacataaaaa
atttgtgcga ggcatgcaca tcatgcttga 3960gcacgttatt gttgcagaaa aca
3983642064DNAOryza sativa 64aaggagagag
ccttcccgtc tccttttttt ccttccatcc aaaaaattcc aaatggagta 60gtagttcaca
tttttacacc gtcgtcttcg caaatttaat actactatac gaaggaggag 120gaagctctcg
cgccgcggtc gctttccttc ccctaaatta aatcccgtgc gacgcgtaga 180gacctcctcc
tccgctttct cctccaaagc ccaagctaat ccccctcctc ttcctcgtcg 240ccggcgagag
ctcttcgtct tctccaactc gaccggaagc aagcgcgctt ccgatccgcc 300atggtgctct
cccacggcgt gtcgggctcc gatgagtccg tccactccac gttcgcctcc 360cgctacgtcc
gcacctccct ccccaggttc cggatgccgg agcagtcgat ccccaaggag 420gcggcgtacc
agatcatcaa cgacgagctg atgctggacg gcaacccgcg gctgaacctc 480gcgtcgttcg
tcaccacgtg gatggagccc gagtgcgaca agctcatcca ggcctccgtc 540aacaagaact
acgtcgacat ggacgagtac cccgtcacca ccgaactcca gaaccgatgt 600gtgaacatga
ttgcacacct cttcaatgct cctctagggg actctgaaac ggccgtcgga 660gtcggcactg
tcggctcgtc tgaggccatc atgctcgccg gtttggcctt caagaggagg 720tggcagaaca
agatgaaggc agccggcaag ccatgcgaca agcctaacat tgtcaccggc 780gccaatgtcc
aagtttgctg ggagaagttc gcgcgatact tcgaggttga gctcaaggaa 840gtgaagctga
gtgacggcta ctacgtcatg gacccagcta aggccgtgga tatggtcgac 900gagaacacca
tctgcgtcgc ggcgatcctc gggtcgacgc tgaacgggga gttcgaggac 960gtgaagctgc
tcaacgatct gctcaccaag aagaacgctg aaacaggctg ggacacgccg 1020atccacgtgg
acgcggcgag cggcgggttc atcgcgccgt tcctgtaccc ggagctggag 1080tgggacttcc
ggctgccgct ggtgaagagc atcaacgtga gcgggcacaa gtacggcctc 1140gtctacgccg
ggatcgggtg gtgcatctgg aggagcaagg aggatctgcc tgaggagctc 1200atcttccaca
tcaactacct cggcgccgac cagcccacct tcaccctcaa cttctccaag 1260ggttccagcc
aggtcattgc acagtattac caactaatcc gcctaggctt tgaggggtac 1320aagaacatca
tggagaactg ccaggagaac gcgatggtgc tgaagcaggg gctggagaag 1380acggggcggt
tcaacatcgt gtccaaggac aacggcgtgc cgctggtggc cttctccctc 1440aaggacagcg
cccggcacaa cgagttcgag atctccgact tcctccgccg cttcggctgg 1500atcgtgccgg
cctacaccat gccccccgac gcgcagcacg tcaccgtgct ccgcgtcgtc 1560atccgcgagg
acttcagccg cacgctcgcc gagcgcctcg tgctcgacgt cgagaaggtg 1620ctgcacgagc
tcgacgcgct ccccgcccgc gtcgtcgcca acggcggcga cgccgccgcc 1680gcgtcggcga
gcgagaggga gatggagaag cagcgcgagg tgatctccct ctggaagagg 1740gccgtgctgg
ccaagaagaa gaccaacggc gtctgctaaa gcaagtcagc tgcgcagcgg 1800ggatcgtata
ctattattat ggtccacttc gtaattgcga cttcttaatt tttaccgtgt 1860cgatcggttt
accgtctcaa gtctgctctc atccgatttt cggattgatg ctgcttaatt 1920atgtaccaag
ttaattaatt cttagaggac ggaatagttc cgactcaata cgaagcattg 1980cctgtataag
tcgaacacgg gatcatgcat tttacgttgg gtgtgtagca gtgaattgat 2040cagtgatgct
ccatctctac tctg
2064651473DNAHordeum vulgare 65atggtggtga ccgtggcagc gacggggccg
gacacggccg agacgctgca ctccaccacc 60ttcgcctccc gctacgtccg cgaccagctc
ccccggtacc ggatgccgga gaactcgatc 120cccaaggagg cggcgtacca gatcatcagc
gacgagctga tgctggacgg caacccgcgg 180ctgaacctgg cgtccttcgt caccacctgg
atggagcccg agtgcggcaa gctcatcatg 240gactccgtca acaagaacta cgtcgacatg
gacgagtacc ccgtcaccac cgagctccag 300gaccgttgcg taaacatgat agctcacttg
ttcaatgcac cgatcggcga ggacgagaca 360gctatcggag tctcgacggt ggggtcttcg
gaagcaatca tgcttgcagg cctggcgttc 420aagaggaagt gggcgaacaa aatgaaggag
caggggaagc catgcgacaa acctaacatt 480gttactggtg caaatgttca ggtttgctgg
gagaaatttg ctaggtattt tgaagtggaa 540ttgaaggagg tcaagttgac tgaagggtac
tatgtcatgg atcctaagaa ggctgttgaa 600atggtggatg agaacactat atgtgtcgcc
gccatcctgg gatctactct cactggagag 660tacgaagatg tcaaactgtt gaatgacctt
cttgtggaga agaacaagga aacagggtgg 720aacgtgccga tccatgttga tgctgccagc
ggaggattta tcgctccgtt tcttcagcct 780gagcttgaat gggacttcag gctaccattg
gtgaagagca tcaacgttag tgggcacaag 840tatggccttg tgtaccctgg tgttggatgg
gtcatctggc ggagcaagga cgatttgccc 900gaagaactca ttttccacat aaactatcta
ggagcagatc agcccacatt cacgctcaac 960ttctccaagg gtcagcagat catcgcgcaa
tactatcagc tcatccgcct cggcttcgag 1020gggtacaagc acatcatgga gaactgcaag
ctgaacgcgg cggtgctgaa ggagggcatc 1080gacgcgacgg ggcggttcga cgtgctgtcc
aaggcggacg gcgtgccgct ggtggccatc 1140cggctcaagg acagcaccaa cttcagcgtg
ttcgacatct cggagaacct gaggcggttc 1200gggtggatcg tgccggcgta caccatgccc
gccgacgcgg agcatgtggc cgtgctccgc 1260atagtcatcc gggaggactt caaccggagc
ctcgcgcagc ggctcctcgc cgacatcaac 1320aagatcatcg gcgagctgga cgcgcacgcc
gtccacgcca tcaagctctc caccgccgcc 1380gctggtgggg acggcgcgag taagagcgcg
gtcgacgccg ccaccgaggc cttcaaggac 1440ctggcgggga agaagaaggc cggagtatgc
tga 14736611688DNAArtificialvector
66ggaattcgat atcaagcttg gcactggccg tcgttttaca acgtcgtgac tgggaaaacc
60ctggcgttac ccaacttaat cgccttgcag cacatccccc tttcgccagc tggcgtaata
120gcgaagaggc ccgcaccgat cgcccttccc aacagttgcg cagcctgaat ggcgaatgct
180agagcagctt gagcttggat cagattgtcg tttcccgcct tcagtttaaa ctatcagtgt
240ttgacaggat atattggcgg gtaaacctaa gagaaaagag cgtttattag aataacggat
300atttaaaagg gcgtgaaaag gtttatccgt tcgtccattt gtatgtgcat gccaaccaca
360gggttcccct cgggatcaaa gtactttgat ccaacccctc cgctgctata gtgcagtcgg
420cttctgacgt tcagtgcagc cgtcttctga aaacgacatg tcgcacaagt cctaagttac
480gcgacaggct gccgccctgc ccttttcctg gcgttttctt gtcgcgtgtt ttagtcgcat
540aaagtagaat acttgcgact agaaccggag acattacgcc atgaacaaga gcgccgccgc
600tggcctgctg ggctatgccc gcgtcagcac cgacgaccag gacttgacca accaacgggc
660cgaactgcac gcggccggct gcaccaagct gttttccgag aagatcaccg gcaccaggcg
720cgaccgcccg gagctggcca ggatgcttga ccacctacgc cctggcgacg ttgtgacagt
780gaccaggcta gaccgcctgg cccgcagcac ccgcgaccta ctggacattg ccgagcgcat
840ccaggaggcc ggcgcgggcc tgcgtagcct ggcagagccg tgggccgaca ccaccacgcc
900ggccggccgc atggtgttga ccgtgttcgc cggcattgcc gagttcgagc gttccctaat
960catcgaccgc acccggagcg ggcgcgaggc cgccaaggcc cgaggcgtga agtttggccc
1020ccgccctacc ctcaccccgg cacagatcgc gcacgcccgc gagctgatcg accaggaagg
1080ccgcaccgtg aaagaggcgg ctgcactgct tggcgtgcat cgctcgaccc tgtaccgcgc
1140acttgagcgc agcgaggaag tgacgcccac cgaggccagg cggcgcggtg ccttccgtga
1200ggacgcattg accgaggccg acgccctggc ggccgccgag aatgaacgcc aagaggaaca
1260agcatgaaac cgcaccagga cggccaggac gaaccgtttt tcattaccga agagatcgag
1320gcggagatga tcgcggccgg gtacgtgttc gagccgcccg cgcacgtctc aaccgtgcgg
1380ctgcatgaaa tcctggccgg tttgtctgat gccaagctgg cggcctggcc ggccagcttg
1440gccgctgaag aaaccgagcg ccgccgtcta aaaaggtgat gtgtatttga gtaaaacagc
1500ttgcgtcatg cggtcgctgc gtatatgatg cgatgagtaa ataaacaaat acgcaagggg
1560aacgcatgaa ggttatcgct gtacttaacc agaaaggcgg gtcaggcaag acgaccatcg
1620caacccatct agcccgcgcc ctgcaactcg ccggggccga tgttctgtta gtcgattccg
1680atccccaggg cagtgcccgc gattgggcgg ccgtgcggga agatcaaccg ctaaccgttg
1740tcggcatcga ccgcccgacg attgaccgcg acgtgaaggc catcggccgg cgcgacttcg
1800tagtgatcga cggagcgccc caggcggcgg acttggctgt gtccgcgatc aaggcagccg
1860acttcgtgct gattccggtg cagccaagcc cttacgacat atgggccacc gccgacctgg
1920tggagctggt taagcagcgc attgaggtca cggatggaag gctacaagcg gcctttgtcg
1980tgtcgcgggc gatcaaaggc acgcgcatcg gcggtgaggt tgccgaggcg ctggccgggt
2040acgagctgcc cattcttgag tcccgtatca cgcagcgcgt gagctaccca ggcactgccg
2100ccgccggcac aaccgttctt gaatcagaac ccgagggcga cgctgcccgc gaggtccagg
2160cgctggccgc tgaaattaaa tcaaaactca tttgagttaa tgaggtaaag agaaaatgag
2220caaaagcaca aacacgctaa gtgccggccg tccgagcgca cgcagcagca aggctgcaac
2280gttggccagc ctggcagaca cgccagccat gaagcgggtc aactttcagt tgccggcgga
2340ggatcacacc aagctgaaga tgtacgcggt acgccaaggc aagaccatta ccgagctgct
2400atctgaatac atcgcgcagc taccagagta aatgagcaaa tgaataaatg agtagatgaa
2460ttttagcggc taaaggaggc ggcatggaaa atcaagaaca accaggcacc gacgccgtgg
2520aatgccccat gtgtggagga acgggcggtt ggccaggcgt aagcggctgg gttgtctgcc
2580ggccctgcaa tggcactgga acccccaagc ccgaggaatc ggcgtgacgg tcgcaaacca
2640tccggcccgg tacaaatcgg cgcggcgctg ggtgatgacc tggtggagaa gttgaaggcc
2700gcgcaggccg cccagcggca acgcatcgag gcagaagcac gccccggtga atcgtggcaa
2760gcggccgctg atcgaatccg caaagaatcc cggcaaccgc cggcagccgg tgcgccgtcg
2820attaggaagc cgcccaaggg cgacgagcaa ccagattttt tcgttccgat gctctatgac
2880gtgggcaccc gcgatagtcg cagcatcatg gacgtggccg ttttccgtct gtcgaagcgt
2940gaccgacgag ctggcgaggt gatccgctac gagcttccag acgggcacgt agaggtttcc
3000gcagggccgg ccggcatggc cagtgtgtgg gattacgacc tggtactgat ggcggtttcc
3060catctaaccg aatccatgaa ccgataccgg gaagggaagg gagacaagcc cggccgcgtg
3120ttccgtccac acgttgcgga cgtactcaag ttctgccggc gagccgatgg cggaaagcag
3180aaagacgacc tggtagaaac ctgcattcgg ttaaacacca cgcacgttgc catgcagcgt
3240acgaagaagg ccaagaacgg ccgcctggtg acggtatccg agggtgaagc cttgattagc
3300cgctacaaga tcgtaaagag cgaaaccggg cggccggagt acatcgagat cgagctagct
3360gattggatgt accgcgagat cacagaaggc aagaacccgg acgtgctgac ggttcacccc
3420gattactttt tgatcgatcc cggcatcggc cgttttctct accgcctggc acgccgcgcc
3480gcaggcaagg cagaagccag atggttgttc aagacgatct acgaacgcag tggcagcgcc
3540ggagagttca agaagttctg tttcaccgtg cgcaagctga tcgggtcaaa tgacctgccg
3600gagtacgatt tgaaggagga ggcggggcag gctggcccga tcctagtcat gcgctaccgc
3660aacctgatcg agggcgaagc atccgccggt tcctaatgta cggagcagat gctagggcaa
3720attgccctag caggggaaaa aggtcgaaaa ggtctctttc ctgtggatag cacgtacatt
3780gggaacccaa agccgtacat tgggaaccgg aacccgtaca ttgggaaccc aaagccgtac
3840attgggaacc ggtcacacat gtaagtgact gatataaaag agaaaaaagg cgatttttcc
3900gcctaaaact ctttaaaact tattaaaact cttaaaaccc gcctggcctg tgcataactg
3960tctggccagc gcacagccga agagctgcaa aaagcgccta cccttcggtc gctgcgctcc
4020ctacgccccg ccgcttcgcg tcggcctatc gcggccgctg gccgctcaaa aatggctggc
4080ctacggccag gcaatctacc agggcgcgga caagccgcgc cgtcgccact cgaccgccgg
4140cgcccacatc aaggcaccct gcctcgcgcg tttcggtgat gacggtgaaa acctctgaca
4200catgcagctc ccggagacgg tcacagcttg tctgtaagcg gatgccggga gcagacaagc
4260ccgtcagggc gcgtcagcgg gtgttggcgg gtgtcggggc gcagccatga cccagtcacg
4320tagcgatagc ggagtgtata ctggcttaac tatgcggcat cagagcagat tgtactgaga
4380gtgcaccata tgcggtgtga aataccgcac agatgcgtaa ggagaaaata ccgcatcagg
4440cgctcttccg cttcctcgct cactgactcg ctgcgctcgg tcgttcggct gcggcgagcg
4500gtatcagctc actcaaaggc ggtaatacgg ttatccacag aatcagggga taacgcagga
4560aagaacatgt gagcaaaagg ccagcaaaag gccaggaacc gtaaaaaggc cgcgttgctg
4620gcgtttttcc ataggctccg cccccctgac gagcatcaca aaaatcgacg ctcaagtcag
4680aggtggcgaa acccgacagg actataaaga taccaggcgt ttccccctgg aagctccctc
4740gtgcgctctc ctgttccgac cctgccgctt accggatacc tgtccgcctt tctcccttcg
4800ggaagcgtgg cgctttctca tagctcacgc tgtaggtatc tcagttcggt gtaggtcgtt
4860cgctccaagc tgggctgtgt gcacgaaccc cccgttcagc ccgaccgctg cgccttatcc
4920ggtaactatc gtcttgagtc caacccggta agacacgact tatcgccact ggcagcagcc
4980actggtaaca ggattagcag agcgaggtat gtaggcggtg ctacagagtt cttgaagtgg
5040tggcctaact acggctacac tagaaggaca gtatttggta tctgcgctct gctgaagcca
5100gttaccttcg gaaaaagagt tggtagctct tgatccggca aacaaaccac cgctggtagc
5160ggtggttttt ttgtttgcaa gcagcagatt acgcgcagaa aaaaaggatc tcaagaagat
5220cctttgatct tttctacggg gtctgacgct cagtggaacg aaaactcacg ttaagggatt
5280ttggtcatgc attctaggta ctaaaacaat tcatccagta aaatataata ttttattttc
5340tcccaatcag gcttgatccc cagtaagtca aaaaatagct cgacatactg ttcttccccg
5400atatcctccc tgatcgaccg gacgcagaag gcaatgtcat accacttgtc cgccctgccg
5460cttctcccaa gatcaataaa gccacttact ttgccatctt tcacaaagat gttgctgtct
5520cccaggtcgc cgtgggaaaa gacaagttcc tcttcgggct tttccgtctt taaaaaatca
5580tacagctcgc gcggatcttt aaatggagtg tcttcttccc agttttcgca atccacatcg
5640gccagatcgt tattcagtaa gtaatccaat tcggctaagc ggctgtctaa gctattcgta
5700tagggacaat ccgatatgtc gatggagtga aagagcctga tgcactccgc atacagctcg
5760ataatctttt cagggctttg ttcatcttca tactcttccg agcaaaggac gccatcggcc
5820tcactcatga gcagattgct ccagccatca tgccgttcaa agtgcaggac ctttggaaca
5880ggcagctttc cttccagcca tagcatcatg tccttttccc gttccacatc ataggtggtc
5940cctttatacc ggctgtccgt catttttaaa tataggtttt cattttctcc caccagctta
6000tataccttag caggagacat tccttccgta tcttttacgc agcggtattt ttcgatcagt
6060tttttcaatt ccggtgatat tctcatttta gccatttatt atttccttcc tcttttctac
6120agtatttaaa gataccccaa gaagctaatt ataacaagac gaactccaat tcactgttcc
6180ttgcattcta aaaccttaaa taccagaaaa cagctttttc aaagttgttt tcaaagttgg
6240cgtataacat agtatcgacg gagccgattt tgaaaccgcg gtgatcacag gcagcaacgc
6300tctgtcatcg ttacaatcaa catgctaccc tccgcgagat catccgtgtt tcaaacccgg
6360cagcttagtt gccgttcttc cgaatagcat cggtaacatg agcaaagtct gccgccttac
6420aacggctctc ccgctgacgc cgtcccggac tgatgggctg cctgtatcga gtggtgattt
6480tgtgccgagc tgccggtcgg ggagctgttg gctggctggt ggcaggatat attgtggtgt
6540aaacaaattg acgcttagac aacttaataa cacattgcgg acgtttttaa tgtactgaat
6600taacgccgaa ttaattcggg ggatctggat tttagtactg gattttggtt ttaggaatta
6660gaaattttat tgatagaagt attttacaaa tacaaataca tactaagggt ttcttatatg
6720ctcaacacat gagcgaaacc ctataggaac cctaattccc ttatctggga actactcaca
6780cattattatg gagaaactcg agcttgtcga tcgacagatc cggtcggcat ctactctatt
6840tctttgccct cggacgagtg ctggggcgtc ggtttccact atcggcgagt acttctacac
6900agccatcggt ccagacggcc gcgcttctgc gggcgatttg tgtacgcccg acagtcccgg
6960ctccggatcg gacgattgcg tcgcatcgac cctgcgccca agctgcatca tcgaaattgc
7020cgtcaaccaa gctctgatag agttggtcaa gaccaatgcg gagcatatac gcccggagtc
7080gtggcgatcc tgcaagctcc ggatgcctcc gctcgaagta gcgcgtctgc tgctccatac
7140aagccaacca cggcctccag aagaagatgt tggcgacctc gtattgggaa tccccgaaca
7200tcgcctcgct ccagtcaatg accgctgtta tgcggccatt gtccgtcagg acattgttgg
7260agccgaaatc cgcgtgcacg aggtgccgga cttcggggca gtcctcggcc caaagcatca
7320gctcatcgag agcctgcgcg acggacgcac tgacggtgtc gtccatcaca gtttgccagt
7380gatacacatg gggatcagca atcgcgcata tgaaatcacg ccatgtagtg tattgaccga
7440ttccttgcgg tccgaatggg ccgaacccgc tcgtctggct aagatcggcc gcagcgatcg
7500catccatagc ctccgcgacc ggttgtagaa cagcgggcag ttcggtttca ggcaggtctt
7560gcaacgtgac accctgtgca cggcgggaga tgcaataggt caggctctcg ctaaactccc
7620caatgtcaag cacttccgga atcgggagcg cggccgatgc aaagtgccga taaacataac
7680gatctttgta gaaaccatcg gcgcagctat ttacccgcag gacatatcca cgccctccta
7740catcgaagct gaaagcacga gattcttcgc cctccgagag ctgcatcagg tcggagacgc
7800tgtcgaactt ttcgatcaga aacttctcga cagacgtcgc ggtgagttca ggctttttca
7860tatctcattg cccccccgga tctgcgaaag ctcgagagag atagatttgt agagagagac
7920tggtgatttc agcgtgtcct ctccaaatga aatgaacttc cttatataga ggaaggtctt
7980gcgaaggata gtgggattgt gcgtcatccc ttacgtcagt ggagatatca catcaatcca
8040cttgctttga agacgtggtt ggaacgtctt ctttttccac gatgctcctc gtgggtgggg
8100gtccatcttt gggaccactg tcggcagagg catcttgaac gatagccttt cctttatcgc
8160aatgatggca tttgtaggtg ccaccttcct tttctactgt ccttttgatg aagtgacaga
8220tagctgggca atggaatccg aggaggtttc ccgatattac cctttgttga aaagtctcaa
8280tagccctttg gtcttctgag actgtatctt tgatattctt ggagtagacg agagtgtcgt
8340gctccaccat gttatcacat caatccactt gctttgaaga cgtggttgga acgtcttctt
8400tttccacgat gctcctcgtg ggtgggggtc catctttggg accactgtcg gcagaggcat
8460cttgaacgat agcctttcct ttatcgcaat gatggcattt gtaggtgcca ccttcctttt
8520ctactgtcct tttgatgaag tgacagatag ctgggcaatg gaatccgagg aggtttcccg
8580atattaccct ttgttgaaaa gtctcaatag ccctttggtc ttctgagact gtatctttga
8640tattcttgga gtagacgaga gtgtcgtgct ccaccatgtt ggcaagctgc tctagccaat
8700acgcaaaccg cctctccccg cgcgttggcc gattcattaa tgcagctggc acgacaggtt
8760tcccgactgg aaagcgggca gtgagcgcaa cgcaattaat gtgagttagc tcactcatta
8820ggcaccccag gctttacact ttatgcttcc ggctcgtatg ttgtgtggaa ttgtgagcgg
8880ataacaattt cacacaggaa acagctatga ccatgattac gaattccctt aattaaggcg
8940cgccgatact gaattaacgc cgaattaatt cgggggatct ggattttagt actggatttt
9000ggttttagga attagaaatt ttattgatag aagtatttta caaatacaaa tacatactaa
9060gggtttctta tatgctcaac acatgagcga aaccctatag gaaccctaat tcccttatct
9120gggaactact cacacattat tatggagaaa ccaggccgga gccaggtatt cacggttcag
9180atatactcca ggaaaaatag atacatatag tacgtacgtg cgtactgtgc cggcatgccc
9240ttcagcaggg tccagtcttc ttgttcttta ccaggtcctt gcaggccgcg gcgaactcct
9300tctcgatgtc cagaacgccc ttcttggtca ccacgccatc ctcagcaccc tcgccggttt
9360gtgtcgcgat agcagtggtc atcttaatgg catggaccgc gtgggcatct agctcctgca
9420cgaccctgtt gatgtcggcg aggagccgct gggagaggct gcggttgaag tcctccctga
9480tgacgacgcg gaggacagcc acgtgctctg cgtccgcagg catggtgtag gcaggcacaa
9540tccagccaaa cctcctcagg ttctcggaga tgtcgaacac gctgaatttg gagctgtcct
9600tgagccggat ggccactagg ggcacaccgt cctctttgga caggatgtcg aatcgcccgg
9660ttgcctctaa gccctccctc agcgcggttg cattggcctg gcaattctcc atgatgtgct
9720tatatccctc gaagcctagg cgtatcagtt gatagtattg cgcaatgatc tggctagcac
9780ctttggagaa gttcaatgtg aatgtgggct gatctgttcc caggtagttt atatggaaaa
9840tgagttctcc aggcaaatcg tctttgctcc gccagatgac ccatccaaca ccagggtaga
9900cgaggccata cttgtgccca ctaacattga tgctcttcac caatggtagc ctgaagtccc
9960actcaagctc agggtgaaga aaaggggcta taaatcctcc acttgcagca tcaacatgga
10020tcggcacatt aaaccctgtt ttcttgttct tttccacaag caggtcattc aatagtttaa
10080catcttcata ctctccagtg agagtagatc ccaagatggc tgcaacacat atagtgttct
10140catccaccat ttcaacagct ttcaaaggat ccatgacata gtatccttca gttaacttga
10200cctccttcaa ttctacttca aaatatctag caaatttttc ccagcaaacc tgaacatttg
10260caccagtaac aatgttaggt ttgtcatatg gcttcccctc ctcctttctt ttatttgccc
10320acttcctctt gaaggccagg cctgcaagca ttattgcttc tgaggatccc actgtcgcaa
10380ctccaattgc tgtctcctcc tccttgatcg gtgcattgaa caggtgggct atcatattta
10440cacaacggtt ctggagctcg gtggtgacgg ggtactcgtc catgtcgacg tagttcttgt
10500tgacggagtc catgatgagc ttgccgacct cgggctccat ccgggtggtg acgaaggatg
10560cgaggttgag gcgcgggttg ccgtcgagca tgagctcgtc gctgatgatc tggtacgccg
10620cctccttggg gatcgagttc tccggcatcc ggtaccgggg gagctggtcg cggacgtagc
10680gggtggcgaa gaaggtggag ttgagcggct cggccgtgtc cgcggcggtc gctgccacag
10740tgagaaccat ggttgctggc ggtcgcggtc gcggcttgca cggagacagt gacggcaggt
10800cggccgcgcg cagcgaaggg aatcggccgc gagctcgagg aaaggtggtg ccgtggagat
10860gctaatggag agagatagat ttgtagagag agactggtga tttcagcgtg tcctctccaa
10920atgaaatgaa cttccttata tagaggaagg gtcttgcgaa ggatagtggg attgtgcgtc
10980atcccttacg tcagtggaga tatcacatca atccacttgc tttgaagacg tggttggaac
11040gtcttctttt tccacgatgc tcctcgtggg tgggggtcca tctttgggac cactgtcggc
11100agagcatctt gaacgatagc ctttccttta tcgcaatgat ggcatttgta ggtgccacct
11160tccttttcta ctgtcctttt gatgaagtga cagatagctg ggcaatggaa tccgaggagg
11220tttcccgata ttaccctttg ttgaaaagtc tcaatagccc tttggccttc tgagactgta
11280tctttgatat tcttggagta gacgagagtg tcgtgctcca ccatgttcac atcaatccac
11340ttgctttgaa gacgtggttg gaacgtcttc tttttccacg atgctcctcg tgggtggggg
11400tccatctttg ggaccactgt cggcagaggc atcttgaacg atagcctttc ctttatcgca
11460atgatggcat ttgtaggtgc caccttcctt ttctactgtc cttttgatga agtgacagat
11520agctgggcaa tggaatccga ggaggtttcc cgatattacc ctttgttgaa aagtctcaat
11580agccctttgg tcttctgaga ctgtatcttt gatattcttg gagtagacga gagtgtcgtg
11640ctccaccatg ttggcaagct gctcttatta attaaggcgc gccctgca
11688671509DNAArabidopsis thaliana 67atggtgctct cccacgccgt atcggagtcg
gacgtctccg tccactccac attcgcatca 60cgttacgtcc gtacttcact tcctaggttc
aagatgccgg aaaactcgat tcctaaggaa 120gcggcgtatc agatcatcaa cgacgagctg
atgcttgacg ggaatccacg gttgaactta 180gcctcctttg tgacgacatg gatggagcct
gagtgtgata aactcatcat gtcctccatc 240aacaagaact atgttgacat ggacgagtac
cccgtcacca ccgaacttca gaaccgatgt 300gtgaacatga ttgcacatct attcaatgca
ccgttagaag aggcggagac cgccgtcgga 360gtaggaaccg ttggatcatc ggaggccata
atgttggccg gtttggcctt caagcgtaaa 420tggcagaaca agcgcaaagc tgaaggcaaa
cccgtcgata aacccaacat tgtcaccgga 480gccaatgttc aagtgtgttg ggagaaattc
gctaggtact ttgaggttga acttaaggaa 540gtgaaattga gtgaaggata ctatgtgatg
gaccctcaac aagctgttga tatggttgat 600gagaacacca tttgtgttgc ggacattctt
ggttccactc ttaatggaga attcgaagat 660gttaaactct tgaacgatct cttggtcgaa
aagaacaaag aaaccggatg ggatacacca 720atccacgtgg atgcggcaag tggaggattc
attgcaccgt ttttgtatcc ggaattggaa 780tgggacttta gacttccctt ggtgaagagt
atcaatgtga gtggtcacaa gtatggactt 840gtgtacgcag ggattggttg ggtgatctgg
agaaacaaag aggatttgcc tgaggaactc 900atcttccata tcaattatct tggtgctgac
caacccacct ttactctcaa tttctccaaa 960ggttcaagtc aagtcattgc tcaatactac
caacttatcc gattgggcca cgagggttac 1020agaaatgtga tggagaattg cagagagaat
atgatcgtcc taagggaagg acttgagaag 1080acagaaaggt tcaacatcgt ctcaaaggac
gagggagtgc cacttgtcgc tttctccttg 1140aaagatagca gctgtcacac tgagttcgaa
atctccgaca tgcttcgcag gtatggatgg 1200atagtgccgg cctacacaat gcctccaaat
gcacaacaca tcactgttct tcgtgtggtt 1260atcagagaag atttctcgag aacactcgct
gagagacttg tgatcgatat agagaaagtg 1320atgcgtgagc tcgatgagct tccttcgaga
gtgattcaca aaatatcact tggacaagag 1380aagagtgaat ctaacagcga taacttgatg
gtcacggtga agaagagcga tatcgacaag 1440cagagagata tcatcactgg ctggaagaag
tttgtcgccg acaggaagaa gacgagtggt 1500atctgctaa
1509681485DNAArabidopsis thaliana
68atggttttga caaaaaccgc aacgaatgat gaatctgtct gcaccatgtt cggatctcgc
60tatgttcgca ctacacttcc caagtatgag attggtgaga attcgatacc gaaagacgct
120gcatatcaga tcataaaaga tgagctgatg cttgatggta acccgaggct taacctagct
180tcgtttgtga ctacatggat ggaaccagag tgtgacaaac tcatcatgga ctctatcaac
240aagaactacg ttgatatgga tgagtaccct gtcacaactg agctccagaa ccgatgtgta
300aacattatag ctcgactgtt caatgcgcca ctcgaggaat ctgagacggc ggtgggagta
360gggacagttg gttcttcaga agccatcatg ttagccggat tggccttcaa aagaaaatgg
420cagaacaaac gcaaggctga gggtaaaccc tatgacaaac ccaacattgt cactggagcc
480aatgttcaag tttgctggga gaaattcgct cggtacttcg aggtggagct aaaggaagta
540aacctaagtg aaggttacta cgtgatggat ccagacaaag cagcagaaat ggtagacgag
600aacacaatct gtgtcgcagc catattggga tccacactca acggtgagtt cgaagacgtg
660aaacgtctca atgacttgct agtcaagaaa aacgaggaga ctggttggaa cacaccgatc
720cacgtggatg cagcaagtgg agggttcata gctccgttta tctatcctga attagaatgg
780gactttagac ttcctttggt taagagtatc aacgtgagtg gtcacaagta tggactggtc
840tatgctggta ttggttgggt cgtgtggagg gcagcagagg atttgcctga agagcttatc
900tttcatatta attatcttgg tgctgatcaa cccactttca ctctcaattt ctccaaggga
960tcgagccaaa ttattgctca atactaccag ctcattcgtc ttggattcga ggggtacaaa
1020aatgtgatgg agaattgcat agagaacatg gtggttctca aagaagggat agagaaaaca
1080gagcgtttca acatagtctc aaaggaccaa ggagtgccag tcgtagcctt ctctctcaag
1140gaccatagtt tccacaacga gttcgagatc tctgagatgc tacgtcgttt tggctggatc
1200gtcccagctt acactatgcc tgccgatgca cagcacatca cggttctgcg tgttgtcatc
1260agggaagatt tctcaagaac actcgcggag agacttgttg ctgatatttc gaaggtgctt
1320catgagctag ataccttgcc ttccaagata tctaagaaga tgggaataga agggatcgcg
1380gaaaatgtaa aggagaagaa gatggagaag gagattctga tggaagttat tgttggatgg
1440aggaagtttg tgaaggagag gaagaagatg aatggtgtgt gctaa
1485691503DNAPetunia x hybrid 69atggttctat caaagacagt gtcgcagagc
gatgtgtcca ttcactccac gtttgcttct 60cgatatgttc gaacttctct tcccaggttt
aaaatgccag ataattcgat accaaaagaa 120gcagcatatc agatcataaa tgatgaactg
atgttagatg gaaacccaag gctgaacttg 180gcttcttttg ttacaacatg gatggaacca
gagtgtgata agttgatgat ggactctatt 240aacaagaact atgttgatat ggatgaatat
cctgttacca ctgagcttca gaatcgatgt 300gtaaacatga tagctcattt gtttaatgca
ccacttgaag atggagaaac tgcagttgga 360gttggaactg ttggatcctc tgaagccatt
atgcttgctg gattagcttt caagagaaaa 420tggcagaaca aaatgaaagc ccaaggcaaa
ccctgtgaca agcccaacat tgttactggt 480gcaaatgtcc aggtgtgctg ggagaaattt
gcaaggtatt ttgaagtgga gctaaaggaa 540gtaaagctta gtgaaggata ctatgtgatg
gaccctgaga aagctgtgga gatggtggat 600gaaaacacca tttgtgtagc tgctatctta
ggttccaccc tcaatggaga atttgaagac 660gttaagcgct tgaatgatct cttggtcgag
aagaacaaag aaaccgggtg ggacactcca 720attcatgtgg atgcagcaag tggtggattt
attgcaccgt tcatttaccc agagcttgag 780tgggacttta gattgccatt agtgaagagc
attaatgtaa gtggtcacaa atatggtctt 840gtctatgctg gtattggttg ggtcgtttgg
aggaacaagg atgatttgcc tgatgaactt 900atcttccaca ttaattatct tggtgctgat
caacctactt tcactctcaa cttttctaaa 960ggttctagcc aagtaattgc tcaatattac
caacttattc gcttgggtta tgagggttac 1020aagaatgtga tggagaattg tcaagaaaat
gcatcggtac taagagaagg gctagaaaag 1080acaggaagat tcaacataat ctccaaagaa
attggagtac ctttagtagc attctctctt 1140aaagacaaca ggcaacacaa cgagttcgag
atttctgaaa ctttaaggag atttggttgg 1200attgttcctg catatactat gccaccaaac
gcacaacaca ttacagttct cagagttgtg 1260atcagagaag atttctcccg tacgcttgca
gaacgactgg taagagacat cgaaaaagtc 1320cttcatgaac ttgacacact ccctgcacgt
gtcaatgcta agctcgctgt ggccgaggag 1380caggcggctg cgaatggcag cgaggtgcat
aagaaaacag atagcgaagt gcagttggag 1440atgataactg catggaagaa gtttgttgaa
gaaaagaaga agaagactaa tcgagtttgt 1500taa
1503701509DNASolanum lyopersicum
70atggtgttaa caacgacgtc gataagagat tcagaagaga gcttgcactg tacatttgca
60tcaagatatg tacaggaacc tttacctaag ttcaaaatgc ctaaaaaatc catgccgaaa
120gaagcagctt atcagattgt aaacgacgag cttatgttgg atggtaaccc caggttgaat
180ttagcttcct ttgttagcac atggatggag cccgagtgcg ataagctcat catgtcatcc
240attaataaaa actatgtcga catggatgag tatcctgtca ccactgaact tcaaaataga
300tgtgttaaca tgttagcaca tcttttccat gccccggttg gtgatgatga gactgcagtt
360ggagttggta cagtgggttc atcagaggca ataatgcttg ctggccttgc tttcaaacgc
420aaatggcaat cgaaaagaaa agcagaaggc aaacctttcg ataagcctaa tatagtcact
480ggagctaatg tgcaggtctg ctgggaaaaa tttgcaaggt attttgaggt tgagttgaag
540gaggtgaaac taaaagaagg atactatgta atggaccctg ccaaagcagt agagatagtg
600gatgagaata caatatgtgt tgctgcaatc cttggttcta ctctgactgg ggagtttgag
660gatgtgaagc tcctaaacga gctccttaca aaaaagaaca aggaaaccgg atgggagaca
720ccgattcatg tcgatgctgc gagtggagga tttattgctc ctttcctctg gccagatctt
780gaatgggatt tccgtttgcc tcttgtgaaa agtataaatg tcagcggtca caagtatggc
840cttgtatatg ctggtgtcgg ttgggtgata tggcggagca aggaagactt gcccgatgaa
900ctcgtctttc atataaacta ccttgggtct gatcagccta cttttactct caacttctct
960aaaggttcct atcaaataat tgcacagtat tatcagttaa taagacttgg ctttgagggt
1020tataagaacg tcatgaagaa ttgcttatca aacgcaaaag tactaacaga gggaatcaca
1080aaaatggggc ggttcgatat tgtctctaag gatgtgggtg ttcctgttgt agcattttct
1140ctcagggaca gcagcaaata tacggtattt gaagtatctg agcatctcag aagatttgga
1200tggatcgtcc ctgcatacac aatgccaccg gatgctgaac acattgctgt actgcgggtt
1260gtcattagag aggatttcag ccacagccta gctgagagac ttgtttctga cattgagaaa
1320attctgtcag agttggacac acagcctcct cgtttgccca ccaaagctgt ccgtgtcact
1380gctgaggaag tgcgtgatga caagggtgat gggcttcatc attttcacat ggatactgta
1440gagactcaga aagacattat caaacattgg aggaaaatcg cagggaagaa gaccagcgga
1500gtctgctag
1509711500DNAPopulus tremula x Populus alba 71atggttctct ccaagacagc
ttcagaatct gatgtctccg ttcactcgac ttttgcctcc 60agatatgttc gagcttcact
tcccaggttc aagatgccgg agaactcgat cccgaaggag 120gcggcctttc agatcataaa
cgatgagctc atgctggatg gaaaccctag gctgaacctc 180gcatcgtttg tgacgacatg
gatggagcct gaatgtgaca agcttatcat cgcttctatc 240aacaaaaact acgtcgacat
ggatgaatac ccggtcacca ccgagcttca gaatcgatgc 300gttaacatga tagcccatct
cttcaatgct ccacttggag actcggagac agcggttgga 360gtaggaactg ttggatcttc
tgaggctata atgttggctg gtctggcctt caagaggaag 420tggcaaaaca agagaaaagc
tgagggaaag ccttacgata aacctaacat tgtcactgga 480gccaatgttc aggtatgctg
ggagaaattt gcaaggtact ttgaggtgga gttgaaggag 540gtgaagctta gtgatggcta
ttatgtgatg gatcctgaga aagcagtgca aatggtggat 600gagaacacaa tctgtgttgc
agctattctt ggttccactc ttaatggaga atttgaagat 660gtcaagctct tgaatgatct
cctggtggag aagaacaaat caacaggttg ggatactccg 720atccatgtcg atgcggccag
cggcggcttc attgcacctt ttatataccc ggagctcgag 780tgggatttcc ggttgccatt
ggtgaagagt atcaatgtca gtgggcacaa atatggactc 840gtctatgctg gtattggatg
ggtcatttgg aggaacaagg aggacttgcc tgaagaactc 900atcttccata tcaattatct
tggagctgat caaccaacct tcacccttaa cttctccaaa 960ggatctagtc aagttattgc
tcaatattac caactcattc ggttgggtta cgagggatac 1020aaaaatgtta tggaaaattg
tagagacaac atgctggtgc tgaaacaagg tctagagaag 1080acaggcaagt tcaacattgt
ttcgaaagac aagggggtgc cactggtggc cttttctttg 1140aaggacaata gcctccacaa
cgaatttgag gtgtccgaca tgttaaggcg ttttggttgg 1200attgtgcctg cctacaccat
gcctcccgat gctcaacatg ttactgtgct gcgcgtcgta 1260atccgagaag atttttctcg
gacactcgct gagcgtcttg tcattgacat tggcaaggtt 1320cttcatgagc ttgagacgtt
gccgtccagg atcagtgcca agattgtgtt ggctaatgaa 1380gagaaggatg ccgtggccgc
cggtaaagag aagaaggacg tccagaacga aacaagagag 1440attattacag cttggaggaa
gcttgtcgtg caaaggaaga agttgaatgg tgtttgctag 1500721479DNAOryza sativa
Indica 72atggtgctct ccaaggccgt ctccgagagt gacatgtccg tgcactccac
cttcgcctcc 60cgctacgtcc gcgcctccct cccaaggtac cggatgccgg agaactcgat
cccgaaggag 120gcggcgtacc agatcatcaa cgacgagctg atgctggacg gcaacccgcg
gctgaacctg 180gcgtcgttcg tcaccacgtg gatggagccc gagtgcgaca agctcatcat
ggccgccatc 240aacaagaact acgtcgacat ggacgagtac cccgtcacca ccgagctcca
gaaccggtgc 300gtgaacatga tcgcgcacct gttccacgcg ccgctcgggg aggacgagac
ggcggtgggc 360gtgggcacgg tgggttcgtc ggaggccatc atgctggccg ggctggcctt
caagcggcgg 420tggcagaaca agcgcaaggc cgaggggaag ccgttcgaca agcccaacat
catcaccggc 480gccaacgtgc aggtgtgctg ggagaagttc gcccgctact tcgaggtgga
gctcaaggag 540gtgaagctcc gcgacggcta ctacgtcatg gaccccgaga aggccgtcga
catggtcgac 600gagaacacca tctgcgtcgc cgccatcctc ggctccaccc tcaacggcga
gttcgaggac 660gtcaagctac tcaacgacct cctcgacaag aagaacaagg agactgggtg
ggagacgccg 720atccacgtgg acgcggcgag cggcgggttc atcgcgccgt tcctgtaccc
ggagctggag 780tgggacttcc ggctgccgtg ggtgaagagc atcaacgtga gcggtcacaa
gtacgggctc 840gtctacgccg gcatcggctg gtgcatctgg cgcaacaagg aggacctgcc
cgaggagctc 900atcttccaca tcaactacct cggcgccgac cagccaacct tcaccctcaa
cttctccaag 960ggctccagcc aggtcatcgc ccagtactac cagctcatcc gccacggctt
cgaggggtac 1020aggaacatca tggagaactg ccacgagaac gcgatggtgc tgaaggaagg
gctggtgaag 1080acggggaggt tcgacatcgt gtccaaggac gaaggcgtgc cgctggtggc
gttctcgctc 1140aaggaccgga gccggcacga cgagttcgag atctccgaca tgctgcgccg
cttcggctgg 1200atcgtgccgg cgtacaccat gccgcccgac gcccagcacg tcacggtgct
ccgcgtggtc 1260atccgggagg agttcagccg caccctcgcc gagcgcctcg tcctcgacat
cgagaaggtg 1320atgtaccagc tcgacgcgct cccctccagg ctcatgcccc ccgtgccgcc
ggcgccgctg 1380cttgtggtcg ccaagaagtc ggagctcgag acgcagcggt cggtgacgga
ggcgtggaag 1440aagttcgtgc tcgccaagag gaccaacggc gtctgctag
1479731386DNAOryza sativa Japonica 73atgccggagc agtcgatccc
caaggaggcg gcgtaccaga tcatcaacga cgagctgatg 60ctggacggca acccgcggct
gaacctcgcg tcgttcgtca ccacgtggat ggagcccgag 120tgcgacaagc tcatccaggc
ctccgtcaac aagaactacg tcgacatgga cgagtacccc 180gtcaccaccg aactccagaa
ccgatgtgtg aacatgattg cacacctctt caatgctcct 240ctaggggact ctgaaacggc
cgtcggagtc ggcactgtcg gctcgtctga ggccatcatg 300ctcgccggtt tggccttcaa
gaggaggtgg cagaacaaga tgaaggcagc cggcaagcca 360tgcgacaagc ctaacattgt
caccggcgcc aatgtccaag tttgctggga gaagttcgcg 420cgatacttcg aggttgagct
caaggaagtg aagctgagtg acggctacta cgtcatggac 480ccagctaagg ccgtggatat
ggtcgacgag aacaccatct gcgtcgcggc gatcctcggg 540tcgacgctga acggggagtt
cgaggacgtg aagctgctca acgatctgct caccaagaag 600aacgctgaaa caggctggga
cacgccgatc cacgtggacg cggcgagcgg cgggttcatc 660gcgccgttcc tgtacccgga
gctggagtgg gacttccggc tgccgctggt gaagagcatc 720aacgtgagcg ggcacaagta
cggcctcgtc tacgccggga tcgggtggtg catctggagg 780agcaaggagg atctgcctga
ggagctcatc ttccacatca actacctcgg cgccgaccag 840cccaccttca ccctcaactt
ctccaagggt tccagccagg tcattgcaca gtattaccaa 900ctaatccgcc taggctttga
ggggtacaag aacatcatgg agaactgcca ggagaacgcg 960atggtgctga agcaggggct
ggagaagacg gggcggttca acatcgtgtc caaggacaac 1020ggcgtgccgc tggtggcctt
ctccctcaag gacagcgccc ggcacaacga gttcgagatc 1080tccgacttcc tccgccgctt
cggctggatc gtgccggcct acaccatgcc ccccgacgcg 1140cagcacgtca ccgtgctccg
cgtcgtcatc cgcgaggact tcagccgcac gctcgccgag 1200cgcctcgtgc tcgacgtcga
gaaggtgctg cacgagctcg acgcgctccc cgcccgcgtc 1260gtcgccaacg gcgacaaccc
ggccgccgcg tcggcgagcg agagggagat ggagaagcag 1320cgcgaggtga tctccctctg
gaagagggcc gtgctggcca agaagaagac caacggcgtc 1380tgctaa
1386741470DNAVitis vinifera
74atggttctct caaaaactgc ttctgagtcg gatgtctccg tgcactccac ctttgcctct
60cgctacgtga aagcttcgct tccgaggttc aagttgccgg agaactcgat cccgaaggag
120gcggcgtacc agatcataaa cgacgagctg atgcttgatg gcaatcctag gctaaacctg
180gcttcgtttg tgactacttg gatggagcct gaatgtgata agcttatgat ggctgccata
240aacaagaact atgtggacat ggatgaatac ccgaaccgat gcgtgaacat catagcccat
300ctattcaatg ctccattgga agactcagag gctgccgtgg gagtggggac ggtggggtcc
360tccgaggcga taatgctagc agggcttgct ttcaagagga agtggcagaa caagagaaag
420gctgagggga agccttatga caagcccaac atcgtcactg gtgctaatgt tcaggtgtgc
480tgggagaagt tcgcaaggta ctttgaggta gaactgaagg aagtgaaatt gagggacggc
540tactatgtaa tggacccaga gaaagctgtg gaaatggtgg atgaaaacac catctgtgtt
600gcggcaatct tgggctcaac tctcaatgga gaatttgaag atgttaagct cttgaacgat
660ctcttggtcg aaaagaacaa gcaaayagga tgggataccc caattcatgt tgatgcagct
720agtggtggat tcattgcacc attcctttat ccggaactgg agtgggactt ccgccttcca
780ttggtaaaga gcattaatgt tagtggccac aagtatggcc tcgtatatgc tggaattggg
840tgggttgttt ggaggagcaa agaggacttg cccgaagaac ttatcttcca cataaactac
900cttggagccg atcaaccaac cttcactctc aatttctcca aaggttctag tcaagtcatc
960gcccagtatt atcaactaat tcgcttgggt ttcgagggat accgaaatgt gatggagaat
1020tgccaggaaa atgctatggc gctgaaagaa ggactggaga agactgggcg ctttaacatc
1080atctccaagg acaatggggt ccctctggtg gccttctctc tcaaggacaa ttcatgccat
1140gatgagtttg aggttgcaga catgcttcgc cgctttggct ggattgtgcc tgcctacacc
1200atgccaccag atgctcagca tgttacagtg ctccgagttg tggttaggga agacttttca
1260cgcacccttg ctgagcgcct tgtatttgac atcaccaagg tgctccatga acttgatatg
1320ctcccagcaa agctcagtgc caagatttct gtcgaagaga aaaagcaaaa tggcacaatt
1380ctgaagaaat ccgtgatcga gacacagagg gaaatcaccg atgcttggaa gaaatttgtc
1440atggccaaga aaacgaacgg cgtttgttag
1470751488DNAVitis vinifera 75atggttctct caaaaactgc ttctgagtcg gatgtctccg
tgcactccac ctttgcctct 60cgctacgtga aagcttcgct tccgaggttc aagttgccgg
agaactcgat cccgaaggag 120gcggcgtacc agatcataaa cgacgaactg atgcttgatg
gcaatcctag gctaaacctg 180gcttcgtttg tgactacttg gatggagcct gaatgtgata
agcttatgat ggctgccata 240aacaagaact atgtggacat ggatgaatac ccggttacca
ctgagcttca gaaccgatgc 300gtgaacatca tagcccatct attcaatgct ccattggaag
actcagaggc tgccgtggga 360gtggggacgg tggggtcctc cgaggcgata atgctagcag
ggcttgcttt caagaggaag 420tggcagaaca agagaaaggc tgaggggaag ccttatgaca
agcccaacat cgtcactggt 480gctaatgttc aggtgtgctg ggagaagttc gcaaggtact
ttgaggtaga actgaaggaa 540gtgaaattga gggacggcta ctatgtaatg gacccagaga
aagctgtgga aatggtggat 600gaaaacacca tctgtgttgc ggcaatcttg ggctcaactc
tcaatggaga atttgaagat 660gttaagctct tgaacgatct cttggtcgaa aagaacaagc
aaacaggatg ggatacccca 720attcatgttg atgcagctag tggtggattc attgcaccat
tcctttatcc ggaactggag 780tgggacttcc gccttccatt ggtgaagagc attaatgtta
gtggccacaa gtatggcctc 840gtatatgctg gaattgggtg ggttgtttgg aggagcaaag
aggacttgcc cgaagaactt 900atctttcaca taaactacct tggagccgat caaccaacct
tcactctcaa tttctccaaa 960ggttctagtc aagtcatcgc ccagtattat caactaattc
gcttgggttt cgagggatac 1020cgaaatgtga tggagaattg ccaggaaaat gctatggcgc
tgaaagaagg actggagaag 1080actgggcgct ttaacatcat ctccaaggac aatggggtcc
ctctggtggc cttctctctc 1140aaggacaatt catgccatga tgagtttgag gttgcagaca
tgcttcgccg cttcggctgg 1200attgtgcctg cctacaccat gccaccagat gctcagcatg
ttacagtgct ccgagttgtg 1260gttagggaag acttttcacg cacccttgct gagcgccttg
tatttgacat caccaaggtg 1320ctccatgaac ttgatatgct cccagcaaag ctcagtgcca
agatttctgt cgaagagaaa 1380aagcaaaatg gcacaattct gaagaaatcc gtgatcgaga
cacagaggga aatcaccgat 1440gcttggaaga aatttgtcat ggccaagaaa acgaacggcg
tttgttag 1488761431DNAVitis vinifera 76atgccggaga
aatcgattcc aaaagaagca gcataccaga tagtacacga tgaattacta 60ttagatggtc
ttcccaggct taacttggct acattcgtca ccacatggat ggaacctgag 120tgtgataagc
tgatggcaga agccatcaac aagaattatg tagacatgga tgaataccca 180gtcacaactg
agcttcagaa tcggtgcgtg aacatgattg caaaactttt caacgctcca 240tcagctgatc
agacaaaaca agcagttgga gttgggacag tgggatcctc agaggcaatg 300atgttggccg
gattggcatt caagaagaag tggcaaaaca agagaaaggc gcaaaagaaa 360ccttttgaca
agcctaatat tgttactggt gccaatgttc aggtttgttg ggagaaattt 420gcaagatact
ttgaagtgga gttgaaggaa gtgaaactaa gagaagggta ctatgtgatg 480gacccggtga
aagcggtgga gatggtggat gagaacacca tctgtgttgc agctatcctg 540ggttctacct
tcaatggtga atttgaagat gtcaagctct tgaacactct ccttactcaa 600aagaacaaga
gaactgggtg ggacacccca attcatgtgg atgcagccag tggaggattt 660gtggctcctt
ttttataccc agaactggaa tgggatttcc ggctaccttt ggtgaagagc 720atcaatgtca
gcggccacaa atacggcctt gtctacgctg gagttgggtg ggccatttgg 780aggagcaaag
aggaattgcc tgaagaactc atcttccaca taaactacct tggtggtgat 840gaacccacct
tcaccctcaa cttctccaag ggcaatcagg ttattgcaca atactaccag 900ttcttgcgca
tgggctttga gggatacaag aaagtgatga gcaactgcat ggaaagtgcg 960aggatacttc
gagagggatt ggagaaaaca gggcgtttcc aaataatttc aaaggagaaa 1020ggagtacccg
tcgtggcctt tgcattcaag ggtaacgatc gtaaaaactt ggcattcgga 1080ttatcaaaag
ccttgaggaa ctacgggtgg attgttccag cttacacgat gccagccaat 1140gcggagaatg
tcacggtcct tcgggtggtt gttcgtgagg actttgggcg gcagctggtt 1200gagaagttgc
ttttccacat tggagttgcg ttgaaggagg tcacggatgc agcaagtagt 1260gttccaatga
taagacttac agtggaaatg aaggcagatg agagtgaaat gaatgcaggt 1320gagggaactc
tacacatacc ggcggcttca gtgcactgga agcatgataa acccgaaact 1380gttgacactc
aagtgcccat aatggatggt aaaactaaag gggtttgctg a
1431771491DNANicotiana tabacum 77atggttctgt ccaagacagc gtcggaaagt
gacgtctccg ttcactccac tttcgcctcc 60cgatatgttc gaacttctct tcccaggttt
aaaatgccag agaattcaat accaaaggaa 120gcagcatatc agattataaa tgatgagctt
atgttagatg gaaatccaag gctaaattta 180gcatctttcg ttacaacatg gatggagcca
gaatgtaata cgttaatgat ggattccatt 240aacaagaact acgttgacat ggatgaatac
cctgtaacca ctgagcttca gaatcgatgt 300gtaaatatga tagctcattt gtttaatgca
ccacttggag atggagagac tgcagttgga 360gttggaactg ttggatcctc tgaagctatt
atgcttgctg gattagcctt taagagaaaa 420tggcaaaata aaatgaaagc ccaaggcaag
ccctttgata agcccaatat tgtcaccggt 480gctaatgtcc aggtgtgttg ggagaaattt
gcaaggtatt ttgaagtgga gttgaaagaa 540gtaaaattga gtgatggata ctatgtgatg
gaccctgaga aagctgtgga aatggtggat 600gagaatacca tttgtgttgc tgctatctta
ggttcaacac tcaatggtga atttgaagat 660gttaagcgtt tgaatgacct tttgattgag
aagaacaaag aaaccgggtg ggacactcca 720attcatgtgg atgcagcaag tggtggattt
attgcaccat tcctttatcc agagcttgaa 780tgggacttta gattgccatt ggagaagagt
attaatgtga gtggtcacaa atatggtctt 840gtctatgctg gtattggttg ggccatttgg
aggaataagg aagacttgcc tgatgaactt 900attttccaca tcaattacct tggtgctgat
caacctactt tcactctcaa cttctctaaa 960ggttctagcc aagtaattgc tcaatattac
caacttattc gcttgggttt tgagggttac 1020aagaatgtta tggagaattg tcaagaaaat
gcaagggtat taagagaagg aattgaaaaa 1080agtggaagat tcaacataat ctccaaagaa
attggagttc ccttagtagc attttctctt 1140aaagacaaca gtcaacacaa tgagttcgaa
atttctgaaa ctcttagaag atttggatgg 1200attgttctgg catatactat gccaccaaat
gctcaacatg tcacagttct cagagttgtc 1260attagagaag atttctcccg cacactagcg
gagcgactgg taatagacat tgaaaaagtc 1320ttccacggag tagacacact tccggcgagg
gtcaacgcta agctagccgt ggccgaggcg 1380aatggcagcg gcgtgcataa gaaaacagat
agagaagtgc agctagagat tactactgca 1440tggttgaaat ttgttgctga taagaagaag
aagactaatg gagtttgtta a 1491781491DNANicotiana tabacum
78atggttctgt ccaagacagc gtcggaaagt gacgtctcca tccactccac tttcgcttcc
60cgatatgttc gtacttctct tccgaggttt aagatgccag agaattcgat accaaaggaa
120gcagcatatc aaatcataaa tgatgagctt atgttagatg gaaatccaag actaaattta
180gcatcttttg tgacaacatg gatggaacca gagtgtaaca aactgatgat ggattccatt
240aacaagaatt acgttgacat ggatgaatac cctgtaacca ctgaacttca gaatcgatgt
300gtaaacatga tagctcattt gtttaacgca ccacttggag atggagagac tgcagttgga
360gttggaactg ttggatcctc tgaggctatt atgcttgctg gattagcttt caagagaaaa
420tggcaaaata aaatgaaagc ccaaggcaag ccctgtgaca agcccaatat tgtcactggt
480gccaatgtcc aggtgtgttg ggagaaattt gcaaggtatt ttgaagtgga gctaaaggaa
540gtaaagttga gtgatggata ctatgtgatg gaccctgaga aagctgtgga aatggtggat
600gagaacacaa tttgtgtagc tgctatcttg ggttccacac tcaatggtga atttgaagat
660gttaagcgct tgaatgacct cttgattgag aagaacaaag aaaccgggtg ggacactcca
720attcatgtgg atgcagcaag tggtggattt attgcaccat tcctttatcc agagcttgaa
780tgggacttta gattgccatt ggtgaagagt ataaacgtga gtggtcacaa atatggtctt
840gtttatgctg gtattggttg ggccatttgg aggaataagg aagacttacc tgacgaactt
900atcttccaca ttaattatct tggtgctgat caacctactt tcactctcaa cttctctaaa
960ggttctagcc aagtaattgc tcaatattac caacttattc gcttgggttt tgagggttac
1020aagaatgtta tggagaattg tcaagaaaat gcaagggtac taagagaagg acttgaaaaa
1080agtggaagat tcaacataat atccaaagaa attggagttc cattagtagc tttctctctt
1140aaagacaaca gtcaacacaa tgagttcgaa atttctgaaa ctcttagaag atttggatgg
1200attattcctg catatactat gccaccaaat gctcaacatg tcacagttct cagagttgtc
1260attagagaag atttctcccg tacactcgcc gagcgactgg taatagacat tgaaaaagtc
1320ctccacgagc tagacacact tccggcgagg gtcaacgcta agctagccgt ggccgaggcg
1380aatggcagcg gcgtgcataa gaaaacagat agagaagtgc agcttgagat tactactgca
1440tggaagaaat ttgttgctga taagaagaag aagactaacg gagtttgtta a
1491791491DNANicotiana tabacum 79atggttctgt ccaagacagc gtcggaaagt
gacgtctcca tccactccac tttcgcttcc 60cgatatgttc gtacttctct tccgaggttt
aagatgccag agaattcgat accaaaggaa 120gcagcatatc aaatcataaa tgatgagctt
atgttagatg gaaatccaag actaaattta 180gcatcttttg tgacaacatg gatggaacca
gagtgtaaca aactgatgat ggattccatt 240aacaagaatt acgttgacat ggatgaatac
cctgtaacca ctgaacttca gaatcgatgt 300gtaaacatga tagctcattt gtttaacgca
ccacttggag atggagagac tgcagttgga 360gttggaactg ttggatcctc tgaggctatt
atgcttgctg gattagcttt caagagaaaa 420tggcaaaata aaatgaaagc ccaaggcaag
ccctgtgaca agcccaatat tgtcactggt 480gccaatgtcc aggtgtgttg ggagaaattt
gcaaggtatt ttgaagtgga gctaaaggaa 540gtaaagttga gtgatggata ctatgtgatg
gaccctgaga aagctgtgga aatggtggat 600gagaacacaa tttgtgtagc tgctatcttg
ggttccacac tcaatggtga atttgaagat 660gttaagcgct tgaatgacct cttgattgag
aagaacaaag aaaccgggtg ggacactcca 720attcatgtgg atgcagcaag tggtgaattt
attgcaccat tcctttatcc agagcttgaa 780tgggacttta gattgccatt ggtgaagagt
attaacgtga gtggtcacaa atatggtctt 840gtttatgctg gtattggttg ggccatttgg
aggaataagg aagacttacc tgacgaactt 900atcttccaca ttaattatct tggtgctgat
caacctactt tcactctcaa cttctctaaa 960ggttctagcc aagtaattgc tcaatattac
caacttattc gcttgggttt tgagggttac 1020aagaatgtta tggagaattg tcaagaaaat
gcaagggtac taagagaagg acttgaaaaa 1080agtggaagat tcaacataat atccaaagaa
attggagttc cattagtagc tttctctctt 1140aaagacaaca gtcaacacaa tgagttcgaa
atttctgaaa ctcttagaag atttggatgg 1200attattcctg catatactat gccaccaaat
gctcaacatg tcacagttct cagagttgtc 1260attagagaag atttctcccg tacactcgcc
gagcgactgg taatagacat tgaaaaagtc 1320ctccacgagc tagacacact tccggcgagg
gtcaacgcta agctagccgt ggccgaggcg 1380aatggcagcg gcgtgcataa gaaaacagat
agagaagtgc agcttgagat tactactgca 1440tggaagaaat ttgttgctga taagaagaag
aagactaacg gagtttgtta a 1491801503DNAOryza sativa 80atggttctga
cgcacgtcga ggcggtggag gagggcagcg aggcggcggc cgccgtgttc 60gcgtcgaggt
acgtgcagga cccggtgccg aggtacgagc tcggcgagag gtcgatatcc 120aaggacgccg
cgtaccagat cgtccacgac gagctcctcc tggacagcag cccgcgcctg 180aacctggcgt
ccttcgtcac cacctggatg gagcccgagt gcgacaggct catcctcgag 240gccatcaaca
agaactacgc cgacatggac gagtaccccg tcaccaccga gctccagaac 300cggtgcgtga
acatcatagc gaggctgttc aatgcgccgg tgggcgacgg cgagaaggcg 360gtcggggtgg
gcacggtggg gtcgtcggag gccataatgc tggccgggct ggcgttcaag 420cggcggtggc
agaaccggcg gaaggcggcg gggaagcccc acgacaagcc caacatcgtg 480acgggggcca
acgtgcaggt gtgctgggag aagttcgcgc gctacttcga ggtggagctc 540aaggaggtga
agctgaccga aggctgctac gtgatggacc ccgtcaaggc cgtggacatg 600gtcgacgaga
acaccatctg cgtcgccgcc atcctcggct ccaccctcac cggcgagttc 660gaggacgtca
ggcgcctcaa cgacctcctc gccgccaaga acaagcggac gggttgggac 720acgccgatcc
acgtcgacgc ggcgagcggc gggttcatcg cgccgttcat ctacccggag 780ctggagtggg
acttccggct gccgctggtg aagagcatca acgtcagcgg ccacaagtac 840gggctcgtct
acgccggcgt cgggtgggtc atctggcgca acaaggagga cctccccgag 900gagctcatct
tccacatcaa ctacctcggc gccgaccagc caaccttcac gctcaacttc 960tccaaagggt
ccagtcagat tattgcgcaa tattaccagt ttcttcgact cggatttgag 1020gggtacaaga
gcgtgatgaa gaactgcatg gagagcgcga ggacgctccg ggagggcctg 1080gagaagacgg
ggcggttcac catcatctcc aaggaggagg gcgtgccgct ggtggccttc 1140acgttcaagg
acggcgccgg cgcgcaggcc ttcaggctgt cgtcgggcct gcgccggtac 1200gggtggatcg
tgccggcgta cacgatgccg gcggcgctgg agcacatgac ggtgctccgc 1260gtcgtcgtcc
gggaagactt cggccggccg ctcgccgagc ggttcctgtc ccacgtcagg 1320atggccctgg
acgagatgga cctcgccgcc agggcccccg tgcccagggt gcagctcacc 1380atcgagctcg
gccccgcccg gaccgccggc gaggaggcct cgatcagggt ggtcaagagc 1440gaggccgtgc
ccgtgcgcaa gagcgtcccg ctcgtcgccg gcaaaaccaa gggcgtttgc 1500tag
1503811485DNACitrus sinensis 81atggttcttt caaagacatt ttccgaatcc
gatgagtcaa ttcactccac ctttgcctct 60cgctacgtcc gaaactctct tcctcggttc
acgatgccgg agaactcgat accgaaggag 120gcggcgtacc agatcataaa cgacgagctg
atgctcgacg ggaatccaag attgaacttg 180gcttccttcg tcacaacgtg gatggagcct
gaatgtgaca agcttatgat ggctgccatt 240aacaagaact acgttgacat ggatgagtat
cctgtcacca ccgagcttca gaatcgatgt 300gtgaacatta tagcccgact gttcaatgct
ccactggagg actccgagac ggctgtcgga 360gttggaaccg taggatcatc ggaagccata
atgttggccg gccttgcatt caaaagaaag 420tggcagaaca agcgcaaggc tgaaggaaag
ccctttgaca aacccaacat tgtcactgga 480gcgaacgttc aggtctgctg ggagaaattt
gcaaggtatt ttgaggtgga gttgaaggaa 540gtgaagctgt cggaaggcta ctacgtgatg
gacccagcca aagctgtaga aatggtggat 600gaaaacacta tctgtgttgc tgctattctg
ggttctactc tcaatggaga atttgaagat 660gtcaagctct tgaacgacct tttgacagag
aagaacaagg aaacaggatg ggatactcca 720attcatgttg atgctgctag tggtggcttc
attgcaccat ttttgtaccc agagcttgaa 780tgggacttcc gcttgccgct ggtgaagagt
attaatgtta gtggccacaa gtacgggctt 840gtgtatgctg gtattggttg ggttgtttgg
agaaacaaag aagacttgcc tgaagaactc 900atcttccaca tcaattacct aggagctgat
caacccacct tcaccctcaa tttttctaaa 960ggttctagcc aagtaattgc tcagtactac
caactaatcc gcttaggttt tgagggatac 1020cgcaatgtga tggagaattg tcacgaaaat
gcaatggtgc tgaaagaagg actagagaaa 1080accggccgct tcaacattgt gtcaaaggac
gaaggggttc cgttggtggc attttctctc 1140aaggacaaca aacgccacga tgaattcgaa
gtggccgaat tgctgcgccg ttttggttgg 1200attgtgccag cgtacaccat gcccgctgac
gctcagcaca tcaccgtgtt acgtgtcgtc 1260atcagggaag acttctctcg cacacttgcc
gagcgccttg tgctcgacat cacaaaagtg 1320cttcatgagc ttgattcgct tccttcaaaa
gtgcttgtac ctgcttctga acagaatgga 1380aggaatggaa agaagactga aattgagact
cagagggaag tcactactta ctggaggaaa 1440ttcgtctccg aaaggaaagc taataacaag
aataaaattt gttaa 1485821479DNAOryza sativa Japonica
82atggtgctct cccacggcgt gtcgggctcc gatgagtccg tccactccac gttcgcctcc
60cgctacgtcc gcacctccct ccccaggttc cggatgccgg agcagtcgat ccccaaggag
120gcggcgtacc agatcatcaa cgacgagctg atgctggacg gcaacccgcg gctgaacctc
180gcgtcgttcg tcaccacgtg gatggagccc gagtgcgaca agctcatcca ggcctccgtc
240aacaagaact acgtcgacat ggacgagtac cccgtcacca ccgaactcca gaaccgatgt
300gtgaacatga ttgcacacct cttcaatgct cctctagggg actctgaaac ggccgtcgga
360gtcggcactg tcggctcgtc tgaggccatc atgctcgccg gtttggcctt caagaggagg
420tggcagaaca agatgaaggc agccggcaag ccatgcgaca agcctaacat tgtcaccggc
480gccaatgtcc aagtttgctg ggagaagttc gcgcgatact tcgaggttga gctcaaggaa
540gtgaagctga gtgacggcta ctacgtcatg gacccagcta aggccgtgga tatggtcgac
600gagaacacca tctgcgtcgc ggcgatcctc gggtcgacgc tgaacgggga gttcgaggac
660gtgaagctgc tcaacgatct gctcaccaag aagaacgctg aaacaggctg ggacacgccg
720atccacgtgg acgcggcgag cggcgggttc atcgcgccgt tcctgtaccc ggagctggag
780tgggacttcc ggctgccgct ggtgaagagc atcaacgtga gcgggcacaa gtacggcctc
840gtctacgccg ggatcgggtg gtgcatctgg aggagcaagg aggatctgcc tgaggagctc
900atcttccaca tcaactacct cggcgccgac cagcccacct tcaccctcaa cttctccaag
960ggttccagcc aggtcattgc acagtattac caactaatcc gcctaggctt tgaggggtac
1020aagaacatca tggagaactg ccaggagaac gcgatggtgc tgaagcaggg gctggagaag
1080acggggcggt tcaacatcgt gtccaaggac aacggcgtgc cgctggtggc cttctccctc
1140aaggacagcg cccggcacaa cgagttcgag atctccgact tcctccgccg cttcggctgg
1200atcgtgccgg cctacaccat gccccccgac gcgcagcacg tcaccgtgct ccgcgtcgtc
1260atccgcgagg acttcagccg cacgctcgcc gagcgcctcg tgctcgacgt cgagaaggtg
1320ctgcacgagc tcgacgcgct ccccgcccgc gtcgtcgcca acggcggcga cgccgccgcc
1380gcgtcggcga gcgagaggga gatggagaag cagcgcgagg tgatctccct ctggaagagg
1440gccgtgctgg ccaagaagaa gaccaacggc gtctgctaa
1479831482DNABrassica juncea 83atggttttgt ctaagacagc ttctggaact
gatgtttccg tccattcaac ttttgcttct 60cgttatgtcc gcaactcgct ccctcgattc
gagatgcctg agaactccat cccgaaggaa 120gcagcgtacc agatcatcaa cgatgagcta
atgctcgacg gtaaccctag gctaaatcta 180gcctccttcg tgactacgtg gatggagcca
gagtgtgaca agctcatgat ggaatctatc 240aacaagaact acgttgacat ggacgagtac
cctgtcacca ccgagcttca gaaccgatgt 300gtcaacatga ttgcgcgtct ctttaacgcg
ccgctaggtg acggtgaggc tgcggttggt 360gtcggcaccg tgggatcgtc tgaggcgatt
atgttggccg ggttggcttt taagagacag 420tggcagaaca agcgtaaggc ccaagggctt
ccttatgata agcctaatat cgtaaccgga 480gctaatgttc aggtttgctg ggagaaattc
gcaaggtatt tcgaggtgga acttaaggaa 540gtgaagctga gagaaggata ctacgtgatg
gaccctgaaa aggcagtcga aatggtagac 600gagaacacca tttgtgtcgc agccatcctc
ggttcgacgc taaccggaga attcgaagac 660gttaagctcc tcaatgacct cctagtcgag
aaaaacaagc aaaccggatg ggatactggg 720aatcacgtgg acgcagcaag tggtgggttt
attgcaccgt tcttgtatcc ggagctggag 780tgggatttcc ggttaccatt ggttaagagc
ataaatgtta gtggccacaa atacggtctg 840gtttatgctg gaatcggttg ggttgtgtgg
agaaccaaat ctgatttgcc tgatgaactt 900atcttccaca tcaattatct tggcgctgat
caacccacct tcactctcaa cttctccaag 960ggttcgagtc aagtgattgc tcagtactac
caactgattc gtcttggatt cgagggatat 1020cgtaacgtga tggataattg tcgtgaaaac
atgatggtcc taagagaagg actagagaaa 1080acgggacgtt tcaacattgt ctccaaagaa
aacggtgttc cgttagtggc gttttctcta 1140aaagacagta gccgccacaa tgagttcgaa
gtggcggaaa ctctccgccg ctttggatgg 1200atcgttccgg cctacacggt gccagcggat
gcagaacatg tcaccgtcct ccgagtggtg 1260attcgagaag atttctctcg aaccttagct
gagagattgg ttgcagactt tgagaaggtt 1320cttcacgagc tcgatacact tccggccagg
gttcgcgcca agatggctaa tggaaaagct 1380aaagttgtta aacagacgga ggaggagacg
acgagggaag ttacggcata ttggaagaag 1440tttgtggaga caaagaagac taaccagaac
aagatttgct aa 1482841482DNABrassica juncea
84atggttttgt ctaagacagc ttcggaatct gatgtttcaa tccattcaac ttttgcttct
60cgttacgtcc gcacctctct cccacgattt gagatgcctg agaactcgat cccaaaggaa
120gcagcgtacc aaatcatcaa cgacgagcta atgctcgacg gtaacccaag gctaaatcta
180gcctccttcg tgaccacgtg gatggagcca gagtgcgaca agctcatgat ggaatccatc
240aacaagaact acgtcgacat ggacgagtac cctgtcacca ccgagcttca gaaccgatgc
300gtcaacatga tcgcgcgtct cttcaacgcg ccgctaggtg acggcgaggc tgcggttggc
360gtcggcaccg tgggatcgtc ggaggcgatt atgttggctg gattggcctt taagagacag
420tggcagaata agcgtaaggc tcaagggctt ccttatgata agcccaatat cgttaccgga
480gccaatgttc aggtttgctg ggagaagttt gcaaggtatt tcgaggtgga gcttaaagaa
540gttaagctaa gagaaggata ctacgtgatg gacccagaga aggcggtcga aatggtagac
600gagaacacaa tctgtgttgc agccatcctc ggttccactc taacaggaga attcgaagac
660gttaagctcc ttaacgacct cctagtcgag aaaaacaagc aaaccggatg ggatacgggg
720atccatgtgg acgcagcgag tggtgggttt attgctcctt tcttgtatcc agagctggag
780tgggatttcc ggttaccatt ggttaagagc ataaatgtga gtggtcacaa atacggtttg
840gtttacgctg gaatcggttg ggttgtatgg agaaccaaat ccgatttgcc tgatgaactt
900atcttccata tcaactatct tggcgctgac caaccgacct tcactctcaa cttctccaaa
960ggttcaagtc aagtgattgc tcagtactac cagctgattc gtcttggatt cgagggatat
1020cgcaacgtga tggataattg ccgtgaaaat atgatggtcc taagagaagg attagagaag
1080acaggacgtt tcaacatagt ctcaaaagaa aacggtgttc cgttagtggc attttcttta
1140aaagacagta gtcgccacga cgagttcgaa gtggccgaga ctctccgtcg ctttgggtgg
1200attgttccgg cctacacgat gcccgcggat gctcaacatg tcaccgtcct ccgagtggtg
1260attcgagaag atttctctcg aactttggct gagagattgg tcgcagactt cgagaaggtt
1320ctccacgagc tcgatacgct tccggcgagg gttcaggcca agatggctaa cggaaacgct
1380aacggtgtta agaagacgga agaggaaacg acgagggaag ttactgcgta ttggaagaag
1440tttgtggaag caaagaagag taacaagaac aggatttgct aa
1482851485DNABrassica juncea 85atggttctaa gtcgagcggc caccgaaagt
ggcgaaaatg tttgctcgac gttcggatct 60cgctatgtcc gcaccgcact gcccaagcat
aagattggtg agagctcgat cccgaaggag 120gctgcgtatc agatcataaa agatgagctg
atgcttgatg gtaacccgag gctgaacctg 180gcttcgtttg tgacgacatg gatggagcca
gagtgtgaca aactcatcat ggaatctatc 240aacaagaact acgtcgacat ggacgagtac
cctgtcacta ccgaactcca gaaccgatgt 300gtaaacatga tagctcggct gttcaatgcg
ccgcttgagg aaactgagac cgccatggga 360gtaggcactg ttgggtcttc ggaagccatc
atgttagccg gattggcctt caaaaggaat 420tggcagaaca aacgcaaagc tgagggtaaa
ccctatgaca aacccaacat tgtcaccgga 480gccaatgttc aagtgtgctg ggagaaattc
gctaggtact tcgaggtgga gctaaaagaa 540gtgaagctta gtgaaggtta ctacgtgatg
gatccggata aagcagctga aatggtagac 600gagaatacaa tctgtgttgc tgccatactt
ggttctacac tcaacggtga gttcgaagac 660gtcaagcgcc ttaatgactt gctggtcaag
aaaaacgaag agactggctg gaacactcca 720atccacgttg acgcagcaag tggaggcttc
atagctccgt ttatctaccc tgagttggaa 780tgggacttta ggcttccttt ggtgaagagt
atcaatgtga gtggtcataa gtatgggctg 840gtctatgctg gtattggctg ggtcgtgtgg
aggacacaac aggatttgcc tgatgagctc 900atctttcata ttaactatct tggtgctgat
caacccacat ttactctcaa tttctccaag 960ggatcgagcc aaattattgc tcaatattat
cagctcattc gtcttggctt cgagggctac 1020aagaacgtga tggagaactg cagagagaac
atggtggttc tgagagaagg gatcgagaaa 1080acagagcgtt tcaacatagt ctcaaaggag
gtaggagttc cactcgtagc cttctccctc 1140aaggaccaca gtttccacaa cgagttcgaa
atctcagaga tgctacgccg tttcggctgg 1200attgtcccgg cttacacaat gcctgcggat
gcgcaacaca tcacagttct gcgtgttgtc 1260atcagggaag atttctcaag aacacttgcg
gagagacttg tggctgatat tgtgaaggtg 1320cttcacgagc tcgacacctt gccttccaag
atatctaaga agatgggagc agaggatttc 1380ggaaacgtga aagggaagaa ggtggatagg
gatgttctga tggaagtcat tgttggatgg 1440aggaagtttg tgaaggacag gaagaagatg
aatggtgtgt gttga 1485861494DNAOryza sativa Japonica
86atggtgctct cgcacgcgag ctccggccgg gacgacgccg tgcgctgcac cttcgcgacg
60cgctacgcct gcgagacgct gccgcggttc aggatgccgg agcagtcgat cccgagggag
120gcggcgtacc agatcatcaa cgacgagctg atgctggacg ggaacccgcg gctgaacctg
180gcgtccttcg tcaccacgtg gatggagccc gagtgcgaca agctcatcat ggactccgtt
240aacaagaact acgtcgacat ggacgagtac cctgtcacca cggagctcca gaaccgttgt
300gtgaatatga tagctcacct gttcaatgca ccaatcaagg aggatgaaac agctattgga
360gttgggacgg tgggatcctc agaagcaatt atgcttgcag gactggcatt caagaggaag
420tggcaaaaca aacggaagga acaggggaag ccatgtgaca aacccaacat tgttactggt
480gctaatgttc aggtttgctg ggagaaattt gccagatatt ttgaagtaga actgaaggag
540gttaagctca gtgaaggata ctatgtcatg gatcctgtaa aggctgttga aatggtggat
600gagaacacta tatgcgttgc ggccatcttg ggctctactc tcactggaga gtttgaggat
660gttaagttat tgaataatct cctaacagaa aagaataagg aaactgggtg ggatgtgcca
720attcatgttg atgcagcaag tggaggattt atagcacctt ttctataccc tgagcttgaa
780tgggacttca ggctaccact ggtgaagagc atcaatgtca gtgggcacaa gtatggcctt
840gtgtatccag gtgttggttg ggtcatttgg cgaagcaaag aggatttgcc tgaagaactc
900attttccata taaactatct ggggacagac cagccgacgt tcactctgaa cttctccaaa
960ggttccagcc agataatcgc acagtactat caactaatac gcctgggatt cgagggatac
1020aagaacatca tgcagaattg catggagaac acagcaatac taagggaagg catagaggcg
1080actggtcgat tcgaaatcct ctccaaggag gccggtgtgc ccttggtggc gttctcgctc
1140aaggacagcg gcaggtacac cgtgttcgac atctccgagc acctgaggag gttcggctgg
1200atcgtgccgg cgtacaccat gccggccaac gccgagcacg tcgccgtcct ccgcgtcgtc
1260atcagggagg acttcagccg gagcctcgcc gagcggctcg tctcggacat cgtcaagatc
1320ctgcacgagc tggacgccca ttcggcccag gtgctgaaga tctccagcgc catcgcgaag
1380cagcaatcgg gcgacgatgg cgtggtcacc aagaagagcg tcctggagac cgagagggag
1440atcttcgcgt actggaggga ccaggtgaag aagaagcaga ccggaatctg ctag
1494871473DNAHordeum vulgare 87atggtggtga ccgtggcagc gacggggccg
gacacggccg agacgctgca ctccaccacc 60ttcgcctccc gctacgtccg cgaccagctc
ccccggtacc ggatgccgga gaactcgatc 120cccaaggagg cggcgtacca gatcatcagc
gacgagctga tgctggacgg caacccgcgg 180ctgaacctgg cgtccttcgt caccacctgg
atggagcccg agtgcggcaa gctcatcatg 240gactccgtca acaagaacta cgtcgacatg
gacgagtacc ccgtcaccac cgagctccag 300gaccgttgcg taaacatgat agctcacttg
ttcaatgcac cgatcggcga ggacgagaca 360gctatcggag tctcgacggt ggggtcttcg
gaagcaatca tgcttgcagg cctggcgttc 420aagaggaagt gggcgaacaa aatgaaggag
caggggaagc catgcgacaa acctaacatt 480gttactggtg caaatgttca ggtttgctgg
gagaaatttg ctaggtattt tgaagtggaa 540ttgaaggagg tcaagttgac tgaagggtac
tatgtcatgg atcctaagaa ggctgttgaa 600atggtggatg agaacactat atgtgtcgcc
gccatcctgg gatctactct cactggagag 660tacgaagatg tcaaactgtt gaatgacctt
cttgtggaga agaacaagga aacagggtgg 720aacgtgccga tccatgttga tgctgccagc
ggaggattta tcgctccgtt tcttcagcct 780gagcttgaat gggacttcag gctaccattg
gtgaagagca tcaacgttag tgggcacaag 840tatggccttg tgtaccctgg tgttggatgg
gtcatctggc ggagcaagga cgatttgccc 900gaagaactca ttttccacat aaactatcta
ggagcagatc agcccacatt cacgctcaac 960ttctccaagg gtcagcagat catcgcgcaa
tactatcagc tcatccgcct cggcttcgag 1020gggtacaagc acatcatgga gaactgcaag
ctgaacgcgg cggtgctgaa ggagggcatc 1080gacgcgacgg ggcggttcga cgtgctgtcc
aaggcggacg gcgtgccgct ggtggccatc 1140cggctcaagg acagcaccaa cttcagcgtg
ttcgacatct cggagaacct gaggcggttc 1200gggtggatcg tgccggcgta caccatgccc
gccgacgcgg agcatgtggc cgtgctccgc 1260atagtcatcc gggaggactt caaccggagc
ctcgcgcagc ggctcctcgc cgacatcaac 1320aagatcatcg gcgagctgga cgcgcacgcc
gtccacgcca tcaagctctc caccgccgcc 1380gctggtgggg acggcgcgag taagagcgcg
gtcgacgccg ccaccgaggc cttcaaggac 1440ctggcgggga agaagaaggc cggagtatgc
tga 1473881479DNAOryza sativa Japonica
88atggtgctct ccaaggccgt ctccgagagt gacatgtccg tgcactccac cttcgcctcc
60cgctacgtcc gcgcctccct cccaaggtac cggatgccgg agaactcgat cccgaaggag
120gcggcgtacc agatcatcaa cgacgagctg atgctggacg gcaacccgcg gctgaacctg
180gcgtcgttcg tcaccacgtg gatggagccc gagtgcgaca agctcatcat ggccgccatc
240aacaagaact acgtcgacat ggacgagtac cccgtcacca ccgagctcca gaaccggtgc
300gtgaacatga tcgcgcacct gttccacgcg ccgctcgggg aggacgagac ggcggtgggc
360gtgggcacgg tgggttcgtc ggaggccatc atgctggccg ggctggcctt caagcggcgg
420tggcagaaca agcgcaaggc cgaggggaag ccgttcgaca agcccaacat catcaccggc
480gccaacgtgc aggtgtgctg ggagaagttc gcccgctact tcgaggtgga gctcaaggag
540gtgaagctcc gcgacggcta ctacgtcatg gaccccgaga aggccgtcga catggtcaac
600gagaacacca tctgcgtcgc cgccatcctc ggctccaccc tcaacggcga gttcgaggac
660gtcaagctac tcaacgacct cctcgacaag aagaacaagg agactgggtg ggagacgccg
720atccacgtgg acgcggcgag cggcgggttc atcgcgccgt tcctgtaccc ggagctggag
780tgggacttcc ggctgccgtg ggtgaagagc atcaacgtga gcggtcacaa gtacgggctc
840gtctacgccg gcatcggctg gtgcatctgg cgcaacaagg aggacctgcc cgaggagctc
900atcttccaca tcaactacct cggcaccgac cagccaacct tcaccctcaa cttctccaag
960ggctccagcc aggtcatcgc ccagtactac cagctcatcc gccacggctt cgaggggtac
1020aggaacatca tggagaactg ccacgagaac gcgatggtgc tgaaggaagg gctggtgaag
1080acggggaggt tcgacatcgt gtccaaggac gaaggggtgc cgctggtggc gttctcgctc
1140aaggaccgga gccggcacga cgagttcgag atctccgaca tgctgcgccg cttcggctgg
1200atcgtgccgg cgtacaccat gccgcccgac gcccagcacg tcacggtgct ccgcgtggtc
1260atccgggagg agttcagccg caccctcgcc gagcgcctcg tcctcgacat cgagaaggtg
1320atgtaccagc tcgacgcgct cccctccagg ctcatgcccc ccgtgccgcc ggcgccgctg
1380ctggtggtcg ccaagaagtc ggagctcgag acgcagcggt cggtgacgga ggcgtggaag
1440aagttcgtgc tcgccaagag gaccaacggc gtctgctag
1479891485DNAArabidopsis thaliana 89atggtactcg caaccaactc tgactccgac
gagcatttgc attccacttt tgcttctaga 60tatgtccgtg ctgttgttcc caggttcaag
atgcctgacc attgcatgcc caaagatgct 120gcttatcaag tgatcaatga tgagttgatg
cttgatggta atcccaggct taacctagcc 180tcctttgtca ccacttggat ggaacctgag
tgtgacaaac tcatcatgga ttctgtcaat 240aagaactatg ttgatatgga tgaatatcct
gtcaccactg agctccagaa ccggtgtgta 300aatatgatag caaacttttt ccatgctccc
gttggagaag acgaggctgc tattgggtgt 360ggaactgttg gttcatctga ggctataatg
cttgctggtt tggctttcaa aaggaaatgg 420caacatagga gaaaagctca gggtctacct
attgataagc ctaacattgt cactggagcc 480aatgttcagg tgtgctggga gaagtttgca
aggtactttg aggtagagct caaagaggtg 540aaactaagtg aagactacta tgttatggat
ccagctaaag ctgtagagat ggtggatgag 600aataccatct gtgttgcagc aattctagga
tctacactta ctggagagtt tgaggacgtt 660aagcaattga acgatctctt agctgagaaa
aacgcagaga caggatggga aactcctatt 720catgttgatg cagccagtgg aggattcatt
gctcctttcc tctaccctga tcttgaatgg 780gactttaggc ttccatgggt gaagagtatt
aacgtcagtg gtcacaagta tggacttgtg 840tatgcaggag ttggttgggt tgtctggaga
acaaaagatg atttgccaga ggaacttgtc 900ttccacatca actacttggg agctgatcaa
cccactttca ctctcaactt ctcaaaaggg 960tcgagccaaa tcattgctca gtactatcag
tttatccgac taggctttga gggatacaag 1020aacataatgg aaaactgcat ggataacgca
aggaggctaa gagaaggaat agagatgaca 1080gggaagttca acattgtgtc caaagatatt
ggcgtgccac tagtggcatt ctctctcaaa 1140gacagtagca agcacacggt gtttgagatc
gcagagtctt tgagaaaatt cgggtggatc 1200ataccggctt acactatgcc tgcagatgca
cagcacattg ctgtgctcag agttgtgata 1260agagaagact ttagccgagg ccttgcagat
agactcatca cacatatcat tcaggtgctg 1320aaagagattg aagggcttcc tagcaggatt
gcacatcttg ctgcggctgc agcggttagt 1380ggtgatgatg aagaagttaa agtgaagact
gccaagatgt ccttggagga tatcactaag 1440tattggaaac gccttgtgga acacaagaga
aatattgtct gctaa 1485901491DNANicotiana tabacum
90atggttctgt ccaagacagc gtcggaaagt gacgtctcca tccactccac tttcgcttcc
60cgatatgttc gaacttctct tcccaggttt aagatgccag agaattcaat accaaaggaa
120gcagcatatc agattataaa tgatgagctt atgttagatg gaaatccaag gctaaattta
180gcatctttcg ttacaacatg gatggagcca gaatgtaata cgttaatgat ggattccatt
240aacaagaact acgttgacat ggatgaatac cctgtaacca ctgagcttca gaatcgatgt
300gtaaatatga tagctcattt gtttaatgca ccacttggag atggagagac tgcagttgga
360gttggaactg ttggatcctc tgaagctatt atgcttgctg gattagcctt taaaagaaaa
420tggcaaaata aaatgaaagc ccaaggcaag ccctttgata agcccaatat cgtcaccggt
480gctaatgtcc aggtgtgttg ggagaaattt gcaaggtatt ttgaagtgga gttgaaagaa
540gtaaaattga gtgatggata ctatgtgatg gaccctgaga aagctgtgga aatggtggat
600gagaatacca tttgtgttgc tgctatctta ggttcaacac tcaatggtga atttgaagat
660gttaagcgtt tgaatgacct tttgattgag aagaacaaag aaaccgggtg ggacactcca
720attcatgtgg atgcagcaag tggtggattt attgcaccat tcctttatcc agagcttgaa
780tgggacttta gattgccatt ggtgaagagt attaatgtga gtggtcacaa atatggtctt
840gtctatgctg gtattggttg ggccatttgg aggaataagg aagacttgcc tgatgaactt
900attttccaca tcaattacct tggtgctgat caacctactt tcactctcaa cttctctaaa
960ggttctagcc aagtaattgc tcaatattac caacttattc gcttgggttt tgagggttac
1020aagaatgtta tggagaattg tcaagaaaat gcaagggtat taagagaagg aattgaaaaa
1080agtggaagat tcaacataat ctccaaagaa attggagttc ccttagtagc attttctctt
1140aaagacaaca gtcaacacaa tgagttcgaa atttctgaaa ctcttagaag atttggatgg
1200attgttcctg catatactat gccaccaaat gctcaacatg ttacagttct cagagttgtc
1260attagagaag atttctcccg cacactagcg gagcgactgg taatagacat tgaaaaagtc
1320ctccacgagc tagacacact tccggcgagg gtcaacgcta agctagccgt ggccgaggcg
1380aatggcagcg gcgtgcataa gaaaacagat agagaagtgc agctagagat tactactgca
1440tggaagaaat ttgttgctga taagaagaag aagactaatg gagtttgtta a
1491911485DNAArabidopsis thaliana 91atggttttga caaaaaccgc aacgaatgat
gaatctgtct gcaccatgtt cggatctcgc 60tatgttcgca ctacacttcc caagtatgag
attggtgaga attcgatacc gaaagacgct 120gcgtatcaga tcataaaaga tgagctgatg
cttgatggta acccaaggct taacctagct 180tcttttgtga ctacatggat ggaaccagag
tgtgacaaac tcatcatgga ctctatcaat 240aagaactacg ttgatatgga tgagtaccct
gtcacaactg agctccagaa ccgatgtgta 300aacattatag ctcgactgtt caatgcgcca
ctcgaggaat ctgagacggc ggtgggagta 360gggacagttg gttcttcaga agccatcatg
ttagccggat tggccttcaa aagaaaatgg 420cagaacaaac gcaaggctga gggtaaaccc
tatgacaaac ccaacattgt caccggagcc 480aatgttcaag tttgctggga gaaattcgct
cggtacttcg aggtggagct aaaggaagta 540aacctaagtg aaggttacta cgtgatggat
ccagacaaag cagcagaaat ggtagacgag 600aacacaatct gtgtcgcagc catattggga
tccacactca acggtgagtt cgaagacgtg 660aaacgtctca atgacttgct agtcaagaaa
aacgaggaga ctggttggaa cacaccgatc 720cacgtggatg cagcaagtgg agggttcata
gctccgttta tctatcctga attagaatgg 780gactttaggc ttcctttggt taagagcatc
aacgtgagtg gtcacaagta tggactagtc 840tatgctggta ttggttgggt cgtgtggagg
gcagcagagg atttacctga agagcttatc 900tttcatatta attatcttgg tgctgatcaa
cccactttca ctctcaattt ctccaaggga 960tcgagccaaa ttattgctca atactaccag
ctcattcgtc ttggattcga ggggtacaaa 1020aatgtgatgg agaattgcat agagaacatg
gtggttctca aagaaggtat agagaaaaca 1080gagcgtttca acatagtctc aaaggaccaa
ggagtgccag tcgtcgcctt ctctctcaag 1140gaccatagtt tccacaacga gttcgagatc
tctgagatgc tacgtcgttt tggctggatc 1200gtcccagctt acactatgcc tgccgatgta
cagcacatca cggttctgcg tgttgtcatc 1260agggaagatt tctcaagaac actcgcggag
agacttgttg ctgatatttc gaaggtgctt 1320catgagctag ataccttgcc ttccaagata
tctaagaaga tgggaataga agggatcgcg 1380gaaaatgtaa aggagaagaa gatggagaag
gagattctga tggaagttat tgttggatgg 1440aggaagtttg tgaaggagag gaagaagatg
aatggtgtgt gctaa 1485921476DNANicotiana tabacum
92atggttctct cgaaaacctc ctctgagtcg gacgtttcgg tacactccac ttttgcctct
60cgctatgttc gaacttccct tccaaggttt gagatggcgg agaattcgat accaaaagag
120gcggcatttc aaataattaa cgacgagttg atgcttgacg ggaatccaag gctgaacttg
180gcttcatttg tgacaacatg gatggagcca gagtgtgata agcttatgat ggactccatt
240aacaagaact atgttgacat ggatgaatac cctgttacca ctgagcttca gaatcgctgc
300gtgaacatga tagcacgttt attcaacgcg ccactagaag agaaggagac agcagttgga
360gtgggtacag ttggttcatc ggaggccata atgctagcgg ggcttgcatt caagagaaat
420tggcaaaaca aacgcaaagc tgagggcaaa ccttacaata agcccaacat tgtcactggc
480gccaatgttc aggtgtgctg ggagaaattt gccaactatt ttgaagtgga attgaaagaa
540gtaaagctaa gggaagggta ctatgtgatg gacccagtcc aggctgtgga gatggttgat
600gagaacacca tttgtgttgc tgcaatcttg ggttcaaccc ttaatggaga atttgaagat
660gtcaagctct tgaatgatct tttgattgaa aagaacaagc aaactggatg gaacacacca
720attcatgtgg atgcagcaag tggtggattc attgcaccat tcctgtaccc agagctggag
780tgggacttta ggcttccctt agtgaagagc ataaatgtga gtgggcacaa atatgggctt
840gtctatgctg gtattggttg ggttatttgg aggaccaaac aagatttgcc tgaagaactc
900attttccaca tcaactatct tggagctgat cagcccacct ttactctcaa tttctccaaa
960ggttcaagtc aagtcattgc tcaatattat cagctaatcc gtttgggcta tgaggggtac
1020cgaaatgtaa tggagaactg tcgcgaaaat gccattgtgc taagagaagg actcgaaaaa
1080acaggacgtt ttaacatagt ctccaaagat gaaggtgtcc ctttggtggc cttttccctc
1140aaggacaata gccgtcacaa tgagttcgag gtgtccgaga cgctccgtag gttcgggtgg
1200atcgtcccgg cctacacgat gcccgctgac gcccaacacg tcacggtgct tcgtgtggtg
1260atccgggagg acttctcgcg aaccctagca gagcgtctcg tcctcgacat tgtcaaggtc
1320ctccacgagc tggacacact tccagctagg ctgagcgcca aattagagga ggtgaagctg
1380gtcaagaatg gaaagaaatt tgaacttgaa gttcaaaggg aagttaccaa ttattggaag
1440aagtttgttt tagctaggaa agcacctgtt tgctag
1476931503DNAOryza sativa Japonica 93atggttctga cgcacgtcga ggcggtggag
gagggcagcg aggcggcggc cgccgtgttc 60gcgtcgaggt acgtgcagga cccggtgccg
aggtacgagc tcggcgagag gtcgatatcc 120aaggacgccg cgtaccagat cgtccacgac
gagctcctcc tggacagcag cccgcgcctg 180aacctggcgt ccttcgtcac cacctggatg
gagcccgagt gcgacaggct catcctcgag 240gccatcaaca agaactacgc cgacatggac
gagtaccccg tcaccaccga gctccagaac 300cggtgcgtga acatcatagc gaggctgttc
aatgcgccgg tgggcgacgg cgagaaggcg 360gtcggggtgg gcacggtggg gtcgtcggag
gccataatgc tggccgggct ggcgttcaag 420cggcggtggc agaaccggcg gaaggcggcg
gggaagcccc acgacaagcc caacatcgtg 480acgggggcca acgtgcaggt gtgctgggag
aagttcgcgc gctacttcga ggtggagctc 540aaggaggtga agctgaccga aggctgctac
gtgatggacc ccgtcaaggc cgtggacatg 600gtcgacgaga acaccatctg cgtcgccgcc
atcctcggct ccaccctcac cggcgagttc 660gaggacgtca ggcgcctcaa cgacctcctc
gccgccaaga acaagcggac gggttgggac 720acgccgatcc acgtcgacgc ggcgagcggc
gggttcatcg cgccgttcat ctacccggag 780ctggagtggg acttccggct gccgctggtg
aagagcatca acgtcagcgg ccacaagtac 840gggctcgtct acgccggcgt cgggtgggtc
atctggcgca acaaggagga cctccccgag 900gagctcatct tccacatcaa ctacctcggc
gccgaccagc caaccttcac gctcaacttc 960tccaaagggt ccagtcagat tattgcgcaa
tattaccagt ttcttcgact cggatttgag 1020gggtacaaga gcgtgatgaa gaactgcatg
gagagcgcga ggacgctccg ggagggcctg 1080gagaagacgg ggcggttcac catcatctcc
aaggaggagg gcgtgccgct ggtggccttc 1140acgttcaagg acggcgccgg cgcgcaggcc
ttcaggctgt cgtcgggcct gcgccggtac 1200gggtggatcg tgccggcgta cacgatgccg
gcggcgctgg agcacatgac ggtcgtccgc 1260gtcgtcgtcc gggaagactt cggccggccg
ctcgccgagc ggttcctgtc ccacgtcagg 1320atggccctgg acgagatgga cctcgccgcc
agggcccccg tgcccagggt gcagctcacc 1380atcgagctcg gccccgcccg gaccgccggc
gaggaggcct cgatcagggt ggtcaagagc 1440gaggccgtgc ccgtgcgcaa gagcgtcccg
ctcgtcgccg gcaaaaccaa gggcgtttgc 1500tag
1503941503DNAOryza sativa Japonica
94atggttctga cgcacgtcga ggcggtggag gagggcagcg aggcggcggc cgccgtgttc
60gcgtcgaggt acgtgcagga cccggtgccg aggtacgagc tcggcgagag gtcgatatcc
120aaggacgccg cgtaccagat cgtccacgac gagctcctcc tggacagcag cccgcgcctg
180aacctggcgt ccttcgtcac cacctggatg gagcccgagt gcgacaggct catcctcgag
240gccatcaaca agaactacgc cgacatggac gagtaccccg tcaccaccga gctccagaac
300cggtgcgtga acatcatagc gaggctgttc aatgcgccgg tgggcgacgg cgagaaggcg
360gtcggggtgg gcacggtggg gtcgtcggag gccataatgc tggccgggct ggcgttcaag
420cggcggtggc agaaccggcg gaaggcggcg gggaagcccc acgacaagcc caacatcgtg
480acgggggcca acgtgcaggt gtgctgggag aagttcgcgc gctacttcga ggtggagctc
540aaggaggtga agctgaccga aggctgctac gtgatggacc ccgtcaaggc cgtggacatg
600gtcgacgaga acaccatctg cgtcgccgcc atcctcggct ccaccctcac cggcgagttc
660gaggacgtca ggcgcctcaa cgacctcctc gccgccaaga acaagcggac gggttgggac
720acgccgatcc acgtcgacgc ggcgagcggc gggttcatcg cgccgttcat ctacccggag
780ctggagtggg acttccggct gccgctggtg aagagcatca acgtcagcgg ccacaagtac
840gggctcgtct acgccggcgt cgggtgggtc atctggcgca acaaggagga cctccccgag
900gagctcatct tccacatcaa ctacctcggc gccgaccagc caaccttcac gctcaacttc
960tccaaagggt ccagtcagat tattgcgcaa tattaccagt ttcttcgact cggatttgag
1020gggtacaaga gcgtgatgaa gaactgcatg gagagcgcga ggacgctccg ggagggcctg
1080gagaagacgg ggcggttcac catcatctcc aaggaggagg gcgtgccgct ggtggccttc
1140acgttcaagg acggcgccgg cgcgcaggcc ttcaggctgt cgtcgggcct gcgccggtac
1200gggtggatcg tgccggcgta cacgatgccg gcggcgctgg agcacatgac ggtcgtccgc
1260gtcgtcgtcc gggaagactt cggccggccg ctcgccgagc ggttcctgtc ccacgtcagg
1320atggccctgg acgagatgga cctcgccgcc agggcccccg tgcccagggt gcagctcacc
1380atcgagctcg gccccgcccg gaccgccggc gaggaggcct cgatcagggt ggtcaagagc
1440gaggccgtgc ccgtgcgcaa gagcgtcccg ctcgtcgccg gcaaaaccaa gggcgtttgc
1500tag
1503951491DNANicotiana tabacum 95atggttctgt ccaagacagc gtcggaaagt
gacgtctcca tccactccac tttcgcttcc 60cgatatgttc gaacttctct tcccaggttt
aagatgccag agaattctat accaaaagaa 120gcagcatatc aaatcataaa tgatgagctt
atgttagatg gaaatccaag gctaaattta 180gcatcttttg tgacaacatg gatggaacca
gagtgtaata agttaatgat ggattccatt 240aacaagaact acgttgacat gggtgaatac
cctgtaacca ctgagcttca gaatcgatgt 300gtaaatatga tagctcattt gtttaacgca
ccacttggag atggagagac tgcagttgga 360gttggaactg ttggatcctc tgaggctatt
atgcttgctg gattagcctt caagagaaaa 420tggcaaaata aaatgaaagc ccaagggaag
ccctgcgaca agcccaatat tgtcactggt 480gccaatgtcc aggtgtgttg ggagaaattt
gcaaggtatt ttgaagtgga gttgaaagaa 540gtaaaattga gtgatggata ctatgtgatg
gaccctgaga aagctgtgga aatggtggat 600gagaatacaa tttgtgtagc tgctatcttg
ggttccactc tcaatggtga atttgaagat 660gttaagcgct tgaatgacct cttgattgag
aagaacaaag aaaccgggtg ggacactcca 720attcatgtgg atgcagcaag tggtggattc
attgcaccat tcctttatcc tgagcttgaa 780tgggatttta gattaccatt ggtgaagagt
attaatgtga gtggtcacaa atatggtctt 840gtctatgctg gtattggttg ggccatttgg
aggaataagg aagacttgcc tgatgaactt 900attttccaca ttaattatct tggtgctgat
caacctactt tcactctcaa cttctctaaa 960ggttctagcc aagtaattgc tcaatattac
caacttattc gcttgggttt tgagggttac 1020aagaatgtta tggagaattg tcaagaaaat
gcaagggtac taagagaagg acttgaaaaa 1080agtggaagat tcaatataat ctccaaagaa
attggagttc cattagtagc tttctctctt 1140aaagacaaca gtcaacacaa tgagttcgaa
atttctgaaa ctcttagaag atttggatgg 1200attattcctg catatactat gccaccaaat
gctcaacatg tcacagttct cagagttgtt 1260attagagaag atttctcccg tacactcgcg
gagcgactgg tgatagacat tgaaaaagtc 1320ctccacgagc tagacacact tccggcgagg
gtcaacgcta agctcgccgt ggccgaggcg 1380aatggcagcg gcgtgcataa gaaaacagat
agagaagtgc agctggagat tactgctgca 1440tggaagaaat ttgttgctga taagaagaag
aagactaatg gagtttgtta a 1491961485DNAArabidopsis thaliana
96atggtactcg caaccaactc tgactccgac gagcatttgc attccacttt tgcttctaga
60tatgtccgtg ctgttgttcc caggttcaag atgcctgacc attgcatgcc caaagatgct
120gcttatcaag tgatcaatga tgagttgatg cttgatggta atcccaggct taacctagcc
180tcctttgtca ccacttggat ggaacctgag tgtgacaaac tcatcatgga ttctgtcaat
240aagaactatg ttgatatgga tgaatatcct gtcaccactg agctccagaa ccggtgtgta
300aatatgatag caaacttgtt ccatgctccc gttggagaag acgaggctgc tattgggtgt
360ggaactgttg gttcatctga ggctataatg cttgctggtt tggctttcaa aaggaaatgg
420caacatagga gaaaagctca gggtctacct attgataagc ctaacattgt cactggagcc
480aatgttcagg tgtgctggga gaagtttgca aggtactttg aggtagagct caaagaggtg
540aaactaagtg aagactacta tgttatggat ccagctaaag ctgtagagat ggtggatgag
600aataccatct gtgttgcagc aattctagga tccacactta ctggagagtt tgaggacgtt
660aagcaattga acgatctctt agctgagaaa aacgcagaga caggatggga aactcctatt
720catgttgatg cagccagtgg aggattcatt gctcctttcc tctaccctga tcttgaatgg
780gactttaggc ttccatgggt gaagagtatt aacgtcagtg gtcacaagta tggacttgtg
840tatgcaggag ttggttgggt tgtctggaga acaaaagatg atttgccaga ggaacttgtc
900ttccacatca actacttggg agctgatcaa cccactttca ctctcaactt ctcaaaaggg
960tcgagccaaa tcattgctca gtactatcag tttatccgac taggctttga gggatacaag
1020aacataatgg aaaactgcat ggataacgca aggaggctaa gagaaggaat agagatgaca
1080gggaagttca acattgtgtc caaagatatt ggcgtgccac tagtggcatt ctctctcaaa
1140gacagtagca agcacacggt gtttgagatc gcagagtctt tgagaaaatt cgggtggatc
1200ataccggctt acactatgcc tgcagatgca cagcacattg ctgtgctcag agttgtgata
1260agagaagact ttagccgagg ccttgcagat agactcatca cacatatcat tcaggtgctg
1320aaagagattg aagggcttcc tagcaggatt gcacatcttg ctgcggctgc agcggttagt
1380ggtgatgatg aagaagttaa agtgaagact gccaagatgt ccttggagga tatcactaag
1440tattggaaac gccttgtgga acacaagaga aatattgtct gctaa
148597484PRTOryza sativa 97Met Ala Leu Ser Thr Ala Gln Thr Gly Glu Ser
Met His Ser Ser Thr1 5 10
15Phe Ala Ser Arg Tyr Val Arg Thr Ala Leu Pro Arg Phe Arg Met Pro
20 25 30Glu Lys Ser Ile Pro Lys Asp
Ala Ala Tyr Gln Ile Ile Asn Asp Glu 35 40
45Leu Met Leu Asp Gly Asn Pro Arg Leu Asn Leu Ala Ser Phe Val
Thr 50 55 60Thr Trp Met Glu Pro Glu
Cys Asp Lys Leu Met Met Ala Ala Ile Asn65 70
75 80Lys Asn Tyr Val Asp Met Asp Glu Tyr Pro Val
Thr Thr Glu Leu Gln 85 90
95Asn Arg Cys Val Asn Met Ile Ala His Leu Phe Asn Ala Pro Ile Gly
100 105 110Asp Asp Glu Thr Ala Val
Gly Val Gly Thr Val Gly Ser Ser Glu Ala 115 120
125Ile Met Leu Ala Gly Leu Ala Phe Lys Arg Lys Trp Gln Asn
Arg Met 130 135 140Lys Ala Glu Gly Lys
Pro His Asp Lys Pro Asn Ile Val Thr Gly Ala145 150
155 160Asn Val Gln Val Cys Trp Glu Lys Phe Ala
Arg Tyr Phe Glu Val Glu 165 170
175Leu Lys Glu Val Lys Leu Thr Gln Gly Tyr Tyr Val Met Asn Pro Glu
180 185 190Lys Ala Val Glu Met
Val Asp Glu Asn Thr Ile Cys Val Ala Ala Ile 195
200 205Leu Gly Ser Thr Leu Asn Gly Glu Phe Glu Asp Val
Lys Met Leu Asn 210 215 220Asp Leu Leu
Thr Ala Lys Asn Ala Glu Thr Gly Trp Asn Thr Pro Ile225
230 235 240His Val Asp Ala Ala Ser Gly
Gly Phe Ile Ala Pro Phe Ile Tyr Pro 245
250 255Glu Leu Glu Trp Asp Phe Arg Leu Pro Leu Val Lys
Ser Ile Asn Val 260 265 270Ser
Gly His Lys Tyr Gly Leu Val Tyr Ala Gly Val Gly Trp Val Ile 275
280 285Trp Arg Asn Lys Glu Asp Leu Pro Asp
Glu Leu Ile Phe His Ile Asn 290 295
300Tyr Leu Gly Ala Asp Gln Pro Thr Phe Thr Leu Asn Phe Ser Lys Gly305
310 315 320Ser Asn Gln Ile
Ile Ala Gln Tyr Tyr Gln Leu Ile Arg Leu Gly Phe 325
330 335Glu Gly Tyr Lys Asp Ile Met Gln Asn Cys
Arg Asp Asn Ala Thr Val 340 345
350Leu Arg Glu Gly Ile Glu Lys Thr Gly His Phe Asp Val Val Ser Lys
355 360 365Asp Ser Gly Val Pro Leu Val
Ala Phe Ser Leu Lys Asp Ser Ser Arg 370 375
380Tyr Thr Val Phe Glu Val Ala Glu Ser Leu Arg Arg Phe Gly Trp
Ile385 390 395 400Val Pro
Ala Tyr Thr Met Pro Ala Asp Ala Glu His Val Ala Val Met
405 410 415Arg Val Val Ile Arg Glu Asp
Phe Ser Arg Gly Leu Ala Glu Arg Leu 420 425
430Ile Thr Asp Leu Thr Lys Thr Val Ala Asp Met Asp Ala His
Ala Val 435 440 445Lys Lys Ala Ala
Ala Glu Pro Ala Lys Lys Thr Val Arg Glu Ile Glu 450
455 460Lys Glu Val Thr Thr Tyr Trp Arg Ser Phe Val Ala
Arg Lys Lys Ser465 470 475
480Ser Leu Val Cys98502PRTArabidopsis thaliana 98Met Val Leu Ser His Ala
Val Ser Glu Ser Asp Val Ser Val His Ser1 5
10 15Thr Phe Ala Ser Arg Tyr Val Arg Thr Ser Leu Pro
Arg Phe Lys Met 20 25 30Pro
Glu Asn Ser Ile Pro Lys Glu Ala Ala Tyr Gln Ile Ile Asn Asp 35
40 45Glu Leu Met Leu Asp Gly Asn Pro Arg
Leu Asn Leu Ala Ser Phe Val 50 55
60Thr Thr Trp Met Glu Pro Glu Cys Asp Lys Leu Ile Met Ser Ser Ile65
70 75 80Asn Lys Asn Tyr Val
Asp Met Asp Glu Tyr Pro Val Thr Thr Glu Leu 85
90 95Gln Asn Arg Cys Val Asn Met Ile Ala His Leu
Phe Asn Ala Pro Leu 100 105
110Glu Glu Ala Glu Thr Ala Val Gly Val Gly Thr Val Gly Ser Ser Glu
115 120 125Ala Ile Met Leu Ala Gly Leu
Ala Phe Lys Arg Lys Trp Gln Asn Lys 130 135
140Arg Lys Ala Glu Gly Lys Pro Val Asp Lys Pro Asn Ile Val Thr
Gly145 150 155 160Ala Asn
Val Gln Val Cys Trp Glu Lys Phe Ala Arg Tyr Phe Glu Val
165 170 175Glu Leu Lys Glu Val Lys Leu
Ser Glu Gly Tyr Tyr Val Met Asp Pro 180 185
190Gln Gln Ala Val Asp Met Val Asp Glu Asn Thr Ile Cys Val
Ala Ala 195 200 205Ile Leu Gly Ser
Thr Leu Asn Gly Glu Phe Glu Asp Val Lys Leu Leu 210
215 220Asn Asp Leu Leu Val Glu Lys Asn Lys Glu Thr Gly
Trp Asp Thr Pro225 230 235
240Ile His Val Asp Ala Ala Ser Gly Gly Phe Ile Ala Pro Phe Leu Tyr
245 250 255Pro Glu Leu Glu Trp
Asp Phe Arg Leu Pro Leu Val Lys Ser Ile Asn 260
265 270Val Ser Gly His Lys Tyr Gly Leu Val Tyr Ala Gly
Ile Gly Trp Val 275 280 285Ile Trp
Arg Asn Lys Glu Asp Leu Pro Glu Glu Leu Ile Phe His Ile 290
295 300Asn Tyr Leu Gly Ala Asp Gln Pro Thr Phe Thr
Leu Asn Phe Ser Lys305 310 315
320Gly Ser Ser Gln Val Ile Ala Gln Tyr Tyr Gln Leu Ile Arg Leu Gly
325 330 335His Glu Gly Tyr
Arg Asn Val Met Glu Asn Cys Arg Glu Asn Met Ile 340
345 350Val Leu Arg Glu Gly Leu Glu Lys Thr Glu Arg
Phe Asn Ile Val Ser 355 360 365Lys
Asp Glu Gly Val Pro Leu Val Ala Phe Ser Leu Lys Asp Ser Ser 370
375 380Cys His Thr Glu Phe Glu Ile Ser Asp Met
Leu Arg Arg Tyr Gly Trp385 390 395
400Ile Val Pro Ala Tyr Thr Met Pro Pro Asn Ala Gln His Ile Thr
Val 405 410 415Leu Arg Val
Val Ile Arg Glu Asp Phe Ser Arg Thr Leu Ala Glu Arg 420
425 430Leu Val Ile Asp Ile Glu Lys Val Met Arg
Glu Leu Asp Glu Leu Pro 435 440
445Ser Arg Val Ile His Lys Ile Ser Leu Gly Gln Glu Lys Ser Glu Ser 450
455 460Asn Ser Asp Asn Leu Met Val Thr
Val Lys Lys Ser Asp Ile Asp Lys465 470
475 480Gln Arg Asp Ile Ile Thr Gly Trp Lys Lys Phe Val
Ala Asp Arg Lys 485 490
495Lys Thr Ser Gly Ile Cys 50099497PRTOryza sativa 99Met Val
Leu Ser His Ala Ser Ser Gly Arg Asp Asp Ala Val Arg Cys1 5
10 15Thr Phe Ala Thr Arg Tyr Ala Cys
Glu Thr Leu Pro Arg Phe Arg Met 20 25
30Pro Glu Gln Ser Ile Pro Arg Glu Ala Ala Tyr Gln Ile Ile Asn
Asp 35 40 45Glu Leu Met Leu Asp
Gly Asn Pro Arg Leu Asn Leu Ala Ser Phe Val 50 55
60Thr Thr Trp Met Glu Pro Glu Cys Asp Lys Leu Ile Met Asp
Ser Val65 70 75 80Asn
Lys Asn Tyr Val Asp Met Asp Glu Tyr Pro Val Thr Thr Glu Leu
85 90 95Gln Asn Arg Cys Val Asn Met
Ile Ala His Leu Phe Asn Ala Pro Ile 100 105
110Lys Glu Asp Glu Thr Ala Ile Gly Val Gly Thr Val Gly Ser
Ser Glu 115 120 125Ala Ile Met Leu
Ala Gly Leu Ala Phe Lys Arg Lys Trp Gln Asn Lys 130
135 140Arg Lys Glu Gln Gly Lys Pro Cys Asp Lys Pro Asn
Ile Val Thr Gly145 150 155
160Ala Asn Val Gln Val Cys Trp Glu Lys Phe Ala Arg Tyr Phe Glu Val
165 170 175Glu Leu Lys Glu Val
Lys Leu Ser Glu Gly Tyr Tyr Val Met Asp Pro 180
185 190Val Lys Ala Val Glu Met Val Asp Glu Asn Thr Ile
Cys Val Ala Ala 195 200 205Ile Leu
Gly Ser Thr Leu Thr Gly Glu Phe Glu Asp Val Lys Leu Leu 210
215 220Asn Asn Leu Leu Thr Glu Lys Asn Lys Glu Thr
Gly Trp Asp Val Pro225 230 235
240Ile His Val Asp Ala Ala Ser Gly Gly Phe Ile Ala Pro Phe Leu Tyr
245 250 255Pro Glu Leu Glu
Trp Asp Phe Arg Leu Pro Leu Val Lys Ser Ile Asn 260
265 270Val Ser Gly His Lys Tyr Gly Leu Val Tyr Pro
Gly Val Gly Trp Val 275 280 285Ile
Trp Arg Ser Lys Glu Asp Leu Pro Glu Glu Leu Ile Phe His Ile 290
295 300Asn Tyr Leu Gly Thr Asp Gln Pro Thr Phe
Thr Leu Asn Phe Ser Lys305 310 315
320Gly Ser Ser Gln Ile Ile Ala Gln Tyr Tyr Gln Leu Ile Arg Leu
Gly 325 330 335Phe Glu Gly
Tyr Lys Asn Ile Met Gln Asn Cys Met Glu Asn Thr Ala 340
345 350Ile Leu Arg Glu Gly Ile Glu Ala Thr Gly
Arg Phe Glu Ile Leu Ser 355 360
365Lys Glu Ala Gly Val Pro Leu Val Ala Phe Ser Leu Lys Asp Ser Gly 370
375 380Arg Tyr Thr Val Phe Asp Ile Ser
Glu His Leu Arg Arg Phe Gly Trp385 390
395 400Ile Val Pro Ala Tyr Thr Met Pro Ala Asn Ala Glu
His Val Ala Val 405 410
415Leu Arg Val Val Ile Arg Glu Asp Phe Ser Arg Ser Leu Ala Glu Arg
420 425 430Leu Val Ser Asp Ile Val
Lys Ile Leu His Glu Leu Asp Ala His Ser 435 440
445Ala Gln Val Leu Lys Ile Ser Ser Ala Ile Ala Lys Gln Gln
Ser Gly 450 455 460Asp Asp Gly Val Val
Thr Lys Lys Ser Val Leu Glu Thr Glu Arg Glu465 470
475 480Ile Phe Ala Tyr Trp Arg Asp Gln Val Lys
Lys Lys Gln Thr Gly Ile 485 490
495Cys100493PRTBrassica juncea 100Met Val Leu Ser Lys Thr Ala Ser
Gly Thr Asp Val Ser Val His Ser1 5 10
15Thr Phe Ala Ser Arg Tyr Val Arg Asn Ser Leu Pro Arg Phe
Glu Met 20 25 30Pro Glu Asn
Ser Ile Pro Lys Glu Ala Ala Tyr Gln Ile Ile Asn Asp 35
40 45Glu Leu Met Leu Asp Gly Asn Pro Arg Leu Asn
Leu Ala Ser Phe Val 50 55 60Thr Thr
Trp Met Glu Pro Glu Cys Asp Lys Leu Met Met Glu Ser Ile65
70 75 80Asn Lys Asn Tyr Val Asp Met
Asp Glu Tyr Pro Val Thr Thr Glu Leu 85 90
95Gln Asn Arg Cys Val Asn Met Ile Ala Arg Leu Phe Asn
Ala Pro Leu 100 105 110Gly Asp
Gly Glu Ala Ala Val Gly Val Gly Thr Val Gly Ser Ser Glu 115
120 125Ala Ile Met Leu Ala Gly Leu Ala Phe Lys
Arg Gln Trp Gln Asn Lys 130 135 140Arg
Lys Ala Gln Gly Leu Pro Tyr Asp Lys Pro Asn Ile Val Thr Gly145
150 155 160Ala Asn Val Gln Val Cys
Trp Glu Lys Phe Ala Arg Tyr Phe Glu Val 165
170 175Glu Leu Lys Glu Val Lys Leu Arg Glu Gly Tyr Tyr
Val Met Asp Pro 180 185 190Glu
Lys Ala Val Glu Met Val Asp Glu Asn Thr Ile Cys Val Ala Ala 195
200 205Ile Leu Gly Ser Thr Leu Thr Gly Glu
Phe Glu Asp Val Lys Leu Leu 210 215
220Asn Asp Leu Leu Val Glu Lys Asn Lys Gln Thr Gly Trp Asp Thr Gly225
230 235 240Asn His Val Asp
Ala Ala Ser Gly Gly Phe Ile Ala Pro Phe Leu Tyr 245
250 255Pro Glu Leu Glu Trp Asp Phe Arg Leu Pro
Leu Val Lys Ser Ile Asn 260 265
270Val Ser Gly His Lys Tyr Gly Leu Val Tyr Ala Gly Ile Gly Trp Val
275 280 285Val Trp Arg Thr Lys Ser Asp
Leu Pro Asp Glu Leu Ile Phe His Ile 290 295
300Asn Tyr Leu Gly Ala Asp Gln Pro Thr Phe Thr Leu Asn Phe Ser
Lys305 310 315 320Gly Ser
Ser Gln Val Ile Ala Gln Tyr Tyr Gln Leu Ile Arg Leu Gly
325 330 335Phe Glu Gly Tyr Arg Asn Val
Met Asp Asn Cys Arg Glu Asn Met Met 340 345
350Val Leu Arg Glu Gly Leu Glu Lys Thr Gly Arg Phe Asn Ile
Val Ser 355 360 365Lys Glu Asn Gly
Val Pro Leu Val Ala Phe Ser Leu Lys Asp Ser Ser 370
375 380Arg His Asn Glu Phe Glu Val Ala Glu Thr Leu Arg
Arg Phe Gly Trp385 390 395
400Ile Val Pro Ala Tyr Thr Val Pro Ala Asp Ala Glu His Val Thr Val
405 410 415Leu Arg Val Val Ile
Arg Glu Asp Phe Ser Arg Thr Leu Ala Glu Arg 420
425 430Leu Val Ala Asp Phe Glu Lys Val Leu His Glu Leu
Asp Thr Leu Pro 435 440 445Ala Arg
Val Arg Ala Lys Met Ala Asn Gly Lys Ala Lys Val Val Lys 450
455 460Gln Thr Glu Glu Glu Thr Thr Arg Glu Val Thr
Ala Tyr Trp Lys Lys465 470 475
480Phe Val Glu Thr Lys Lys Thr Asn Gln Asn Lys Ile Cys
485 490101493PRTBrassica juncea 101Met Val Leu Ser Lys
Thr Ala Ser Glu Ser Asp Val Ser Ile His Ser1 5
10 15Thr Phe Ala Ser Arg Tyr Val Arg Thr Ser Leu
Pro Arg Phe Glu Met 20 25
30Pro Glu Asn Ser Ile Pro Lys Glu Ala Ala Tyr Gln Ile Ile Asn Asp
35 40 45Glu Leu Met Leu Asp Gly Asn Pro
Arg Leu Asn Leu Ala Ser Phe Val 50 55
60Thr Thr Trp Met Glu Pro Glu Cys Asp Lys Leu Met Met Glu Ser Ile65
70 75 80Asn Lys Asn Tyr Val
Asp Met Asp Glu Tyr Pro Val Thr Thr Glu Leu 85
90 95Gln Asn Arg Cys Val Asn Met Ile Ala Arg Leu
Phe Asn Ala Pro Leu 100 105
110Gly Asp Gly Glu Ala Ala Val Gly Val Gly Thr Val Gly Ser Ser Glu
115 120 125Ala Ile Met Leu Ala Gly Leu
Ala Phe Lys Arg Gln Trp Gln Asn Lys 130 135
140Arg Lys Ala Gln Gly Leu Pro Tyr Asp Lys Pro Asn Ile Val Thr
Gly145 150 155 160Ala Asn
Val Gln Val Cys Trp Glu Lys Phe Ala Arg Tyr Phe Glu Val
165 170 175Glu Leu Lys Glu Val Lys Leu
Arg Glu Gly Tyr Tyr Val Met Asp Pro 180 185
190Glu Lys Ala Val Glu Met Val Asp Glu Asn Thr Ile Cys Val
Ala Ala 195 200 205Ile Leu Gly Ser
Thr Leu Thr Gly Glu Phe Glu Asp Val Lys Leu Leu 210
215 220Asn Asp Leu Leu Val Glu Lys Asn Lys Gln Thr Gly
Trp Asp Thr Gly225 230 235
240Ile His Val Asp Ala Ala Ser Gly Gly Phe Ile Ala Pro Phe Leu Tyr
245 250 255Pro Glu Leu Glu Trp
Asp Phe Arg Leu Pro Leu Val Lys Ser Ile Asn 260
265 270Val Ser Gly His Lys Tyr Gly Leu Val Tyr Ala Gly
Ile Gly Trp Val 275 280 285Val Trp
Arg Thr Lys Ser Asp Leu Pro Asp Glu Leu Ile Phe His Ile 290
295 300Asn Tyr Leu Gly Ala Asp Gln Pro Thr Phe Thr
Leu Asn Phe Ser Lys305 310 315
320Gly Ser Ser Gln Val Ile Ala Gln Tyr Tyr Gln Leu Ile Arg Leu Gly
325 330 335Phe Glu Gly Tyr
Arg Asn Val Met Asp Asn Cys Arg Glu Asn Met Met 340
345 350Val Leu Arg Glu Gly Leu Glu Lys Thr Gly Arg
Phe Asn Ile Val Ser 355 360 365Lys
Glu Asn Gly Val Pro Leu Val Ala Phe Ser Leu Lys Asp Ser Ser 370
375 380Arg His Asp Glu Phe Glu Val Ala Glu Thr
Leu Arg Arg Phe Gly Trp385 390 395
400Ile Val Pro Ala Tyr Thr Met Pro Ala Asp Ala Gln His Val Thr
Val 405 410 415Leu Arg Val
Val Ile Arg Glu Asp Phe Ser Arg Thr Leu Ala Glu Arg 420
425 430Leu Val Ala Asp Phe Glu Lys Val Leu His
Glu Leu Asp Thr Leu Pro 435 440
445Ala Arg Val Gln Ala Lys Met Ala Asn Gly Asn Ala Asn Gly Val Lys 450
455 460Lys Thr Glu Glu Glu Thr Thr Arg
Glu Val Thr Ala Tyr Trp Lys Lys465 470
475 480Phe Val Glu Ala Lys Lys Ser Asn Lys Asn Arg Ile
Cys 485 490102494PRTBrassica juncea 102Met
Val Leu Ser Arg Ala Ala Thr Glu Ser Gly Glu Asn Val Cys Ser1
5 10 15Thr Phe Gly Ser Arg Tyr Val
Arg Thr Ala Leu Pro Lys His Lys Ile 20 25
30Gly Glu Ser Ser Ile Pro Lys Glu Ala Ala Tyr Gln Ile Ile
Lys Asp 35 40 45Glu Leu Met Leu
Asp Gly Asn Pro Arg Leu Asn Leu Ala Ser Phe Val 50 55
60Thr Thr Trp Met Glu Pro Glu Cys Asp Lys Leu Ile Met
Glu Ser Ile65 70 75
80Asn Lys Asn Tyr Val Asp Met Asp Glu Tyr Pro Val Thr Thr Glu Leu
85 90 95Gln Asn Arg Cys Val Asn
Met Ile Ala Arg Leu Phe Asn Ala Pro Leu 100
105 110Glu Glu Thr Glu Thr Ala Met Gly Val Gly Thr Val
Gly Ser Ser Glu 115 120 125Ala Ile
Met Leu Ala Gly Leu Ala Phe Lys Arg Asn Trp Gln Asn Lys 130
135 140Arg Lys Ala Glu Gly Lys Pro Tyr Asp Lys Pro
Asn Ile Val Thr Gly145 150 155
160Ala Asn Val Gln Val Cys Trp Glu Lys Phe Ala Arg Tyr Phe Glu Val
165 170 175Glu Leu Lys Glu
Val Lys Leu Ser Glu Gly Tyr Tyr Val Met Asp Pro 180
185 190Asp Lys Ala Ala Glu Met Val Asp Glu Asn Thr
Ile Cys Val Ala Ala 195 200 205Ile
Leu Gly Ser Thr Leu Asn Gly Glu Phe Glu Asp Val Lys Arg Leu 210
215 220Asn Asp Leu Leu Val Lys Lys Asn Glu Glu
Thr Gly Trp Asn Thr Pro225 230 235
240Ile His Val Asp Ala Ala Ser Gly Gly Phe Ile Ala Pro Phe Ile
Tyr 245 250 255Pro Glu Leu
Glu Trp Asp Phe Arg Leu Pro Leu Val Lys Ser Ile Asn 260
265 270Val Ser Gly His Lys Tyr Gly Leu Val Tyr
Ala Gly Ile Gly Trp Val 275 280
285Val Trp Arg Thr Gln Gln Asp Leu Pro Asp Glu Leu Ile Phe His Ile 290
295 300Asn Tyr Leu Gly Ala Asp Gln Pro
Thr Phe Thr Leu Asn Phe Ser Lys305 310
315 320Gly Ser Ser Gln Ile Ile Ala Gln Tyr Tyr Gln Leu
Ile Arg Leu Gly 325 330
335Phe Glu Gly Tyr Lys Asn Val Met Glu Asn Cys Arg Glu Asn Met Val
340 345 350Val Leu Arg Glu Gly Ile
Glu Lys Thr Glu Arg Phe Asn Ile Val Ser 355 360
365Lys Glu Val Gly Val Pro Leu Val Ala Phe Ser Leu Lys Asp
His Ser 370 375 380Phe His Asn Glu Phe
Glu Ile Ser Glu Met Leu Arg Arg Phe Gly Trp385 390
395 400Ile Val Pro Ala Tyr Thr Met Pro Ala Asp
Ala Gln His Ile Thr Val 405 410
415Leu Arg Val Val Ile Arg Glu Asp Phe Ser Arg Thr Leu Ala Glu Arg
420 425 430Leu Val Ala Asp Ile
Val Lys Val Leu His Glu Leu Asp Thr Leu Pro 435
440 445Ser Lys Ile Ser Lys Lys Met Gly Ala Glu Asp Phe
Gly Asn Val Lys 450 455 460Gly Lys Lys
Val Asp Arg Asp Val Leu Met Glu Val Ile Val Gly Trp465
470 475 480Arg Lys Phe Val Lys Asp Arg
Lys Lys Met Asn Gly Val Cys 485
490103494PRTArabidopsis thaliana 103Met Val Leu Ala Thr Asn Ser Asp Ser
Asp Glu His Leu His Ser Thr1 5 10
15Phe Ala Ser Arg Tyr Val Arg Ala Val Val Pro Arg Phe Lys Met
Pro 20 25 30Asp His Cys Met
Pro Lys Asp Ala Ala Tyr Gln Val Ile Asn Asp Glu 35
40 45Leu Met Leu Asp Gly Asn Pro Arg Leu Asn Leu Ala
Ser Phe Val Thr 50 55 60Thr Trp Met
Glu Pro Glu Cys Asp Lys Leu Ile Met Asp Ser Val Asn65 70
75 80Lys Asn Tyr Val Asp Met Asp Glu
Tyr Pro Val Thr Thr Glu Leu Gln 85 90
95Asn Arg Cys Val Asn Met Ile Ala Asn Leu Phe His Ala Pro
Val Gly 100 105 110Glu Asp Glu
Ala Ala Ile Gly Cys Gly Thr Val Gly Ser Ser Glu Ala 115
120 125Ile Met Leu Ala Gly Leu Ala Phe Lys Arg Lys
Trp Gln His Arg Arg 130 135 140Lys Ala
Gln Gly Leu Pro Ile Asp Lys Pro Asn Ile Val Thr Gly Ala145
150 155 160Asn Val Gln Val Cys Trp Glu
Lys Phe Ala Arg Tyr Phe Glu Val Glu 165
170 175Leu Lys Glu Val Lys Leu Ser Glu Asp Tyr Tyr Val
Met Asp Pro Ala 180 185 190Lys
Ala Val Glu Met Val Asp Glu Asn Thr Ile Cys Val Ala Ala Ile 195
200 205Leu Gly Ser Thr Leu Thr Gly Glu Phe
Glu Asp Val Lys Gln Leu Asn 210 215
220Asp Leu Leu Ala Glu Lys Asn Ala Glu Thr Gly Trp Glu Thr Pro Ile225
230 235 240His Val Asp Ala
Ala Ser Gly Gly Phe Ile Ala Pro Phe Leu Tyr Pro 245
250 255Asp Leu Glu Trp Asp Phe Arg Leu Pro Trp
Val Lys Ser Ile Asn Val 260 265
270Ser Gly His Lys Tyr Gly Leu Val Tyr Ala Gly Val Gly Trp Val Val
275 280 285Trp Arg Thr Lys Asp Asp Leu
Pro Glu Glu Leu Val Phe His Ile Asn 290 295
300Tyr Leu Gly Ala Asp Gln Pro Thr Phe Thr Leu Asn Phe Ser Lys
Gly305 310 315 320Ser Ser
Gln Ile Ile Ala Gln Tyr Tyr Gln Phe Ile Arg Leu Gly Phe
325 330 335Glu Gly Tyr Lys Asn Ile Met
Glu Asn Cys Met Asp Asn Ala Arg Arg 340 345
350Leu Arg Glu Gly Ile Glu Met Thr Gly Lys Phe Asn Ile Val
Ser Lys 355 360 365Asp Ile Gly Val
Pro Leu Val Ala Phe Ser Leu Lys Asp Ser Ser Lys 370
375 380His Thr Val Phe Glu Ile Ala Glu Ser Leu Arg Lys
Phe Gly Trp Ile385 390 395
400Ile Pro Ala Tyr Thr Met Pro Ala Asp Ala Gln His Ile Ala Val Leu
405 410 415Arg Val Val Ile Arg
Glu Asp Phe Ser Arg Gly Leu Ala Asp Arg Leu 420
425 430Ile Thr His Ile Ile Gln Val Leu Lys Glu Ile Glu
Gly Leu Pro Ser 435 440 445Arg Ile
Ala His Leu Ala Ala Ala Ala Ala Val Ser Gly Asp Asp Glu 450
455 460Glu Val Lys Val Lys Thr Ala Lys Met Ser Leu
Glu Asp Ile Thr Lys465 470 475
480Tyr Trp Lys Arg Leu Val Glu His Lys Arg Asn Ile Val Cys
485 490104493PRTArabidopsis thaliana 104Met Val Leu
Ser Lys Thr Val Ser Glu Ser Asp Val Ser Ile His Ser1 5
10 15Thr Phe Ala Ser Arg Tyr Val Arg Asn
Ser Leu Pro Arg Phe Glu Met 20 25
30Pro Glu Asn Ser Ile Pro Lys Glu Ala Ala Tyr Gln Ile Ile Asn Asp
35 40 45Glu Leu Met Leu Asp Gly Asn
Pro Arg Leu Asn Leu Ala Ser Phe Val 50 55
60Thr Thr Trp Met Glu Pro Glu Cys Asp Lys Leu Met Met Glu Ser Ile65
70 75 80Asn Lys Asn Tyr
Val Asp Met Asp Glu Tyr Pro Val Thr Thr Glu Leu 85
90 95Gln Asn Arg Cys Val Asn Met Ile Ala Arg
Leu Phe Asn Ala Pro Leu 100 105
110Gly Asp Gly Glu Ala Ala Val Gly Val Gly Thr Val Gly Ser Ser Glu
115 120 125Ala Ile Met Leu Ala Gly Leu
Ala Phe Lys Arg Gln Trp Gln Asn Lys 130 135
140Arg Lys Ala Gln Gly Leu Pro Tyr Asp Lys Pro Asn Ile Val Thr
Gly145 150 155 160Ala Asn
Val Gln Val Cys Trp Glu Lys Phe Ala Arg Tyr Phe Glu Val
165 170 175Glu Leu Lys Glu Val Asn Leu
Arg Glu Asp Tyr Tyr Val Met Asp Pro 180 185
190Val Lys Ala Val Glu Met Val Asp Glu Asn Thr Ile Cys Val
Ala Ala 195 200 205Ile Leu Gly Ser
Thr Leu Thr Gly Glu Phe Glu Asp Val Lys Leu Leu 210
215 220Asn Asp Leu Leu Val Glu Lys Asn Lys Gln Thr Gly
Trp Asp Thr Pro225 230 235
240Ile His Val Asp Ala Ala Ser Gly Gly Phe Ile Ala Pro Phe Leu Tyr
245 250 255Pro Glu Leu Glu Trp
Asp Phe Arg Leu Pro Leu Val Lys Ser Ile Asn 260
265 270Val Ser Gly His Lys Tyr Gly Leu Val Tyr Ala Gly
Ile Gly Trp Val 275 280 285Val Trp
Arg Thr Lys Thr Asp Leu Pro Asp Glu Leu Ile Phe His Ile 290
295 300Asn Tyr Leu Gly Ala Asp Gln Pro Thr Phe Thr
Leu Asn Phe Ser Lys305 310 315
320Gly Ser Ser Gln Val Ile Ala Gln Tyr Tyr Gln Leu Ile Arg Leu Gly
325 330 335Phe Glu Gly Tyr
Arg Asn Val Met Asp Asn Cys Arg Glu Asn Met Met 340
345 350Val Leu Arg Gln Gly Leu Glu Lys Thr Gly Arg
Phe Lys Ile Val Ser 355 360 365Lys
Glu Asn Gly Val Pro Leu Val Ala Phe Ser Leu Lys Asp Ser Ser 370
375 380Arg His Asn Glu Phe Glu Val Ala His Thr
Leu Arg Arg Phe Gly Trp385 390 395
400Ile Val Pro Ala Tyr Thr Met Pro Ala Asp Ala Gln His Val Thr
Val 405 410 415Leu Arg Val
Val Ile Arg Glu Asp Phe Ser Arg Thr Leu Ala Glu Arg 420
425 430Leu Val Ala Asp Phe Glu Lys Val Leu His
Glu Leu Asp Thr Leu Pro 435 440
445Ala Arg Val His Ala Lys Met Ala Asn Gly Lys Val Asn Gly Val Lys 450
455 460Lys Thr Pro Glu Glu Thr Gln Arg
Glu Val Thr Ala Tyr Trp Lys Lys465 470
475 480Leu Leu Glu Thr Lys Lys Thr Asn Lys Asn Thr Ile
Cys 485 490105500PRTArabidopsis thaliana
105Met Val Leu Ser Lys Thr Ala Ser Lys Ser Asp Asp Ser Ile His Ser1
5 10 15Thr Phe Ala Ser Arg Tyr
Val Arg Asn Ser Ile Ser Arg Phe Glu Ile 20 25
30Pro Lys Asn Ser Ile Pro Lys Glu Ala Ala Tyr Gln Ile
Ile Asn Asp 35 40 45Glu Leu Lys
Phe Asp Gly Asn Pro Arg Leu Asn Leu Ala Ser Phe Val 50
55 60Thr Thr Trp Met Glu Pro Glu Cys Asp Lys Leu Met
Met Glu Ser Ile65 70 75
80Asn Lys Asn Asn Val Glu Met Asp Gln Tyr Pro Val Thr Thr Asp Leu
85 90 95Gln Asn Arg Cys Val Asn
Met Ile Ala Arg Leu Phe Asn Ala Pro Leu 100
105 110Gly Asp Gly Glu Ala Ala Ile Gly Val Gly Thr Val
Gly Ser Ser Glu 115 120 125Ala Val
Met Leu Ala Gly Leu Ala Phe Lys Arg Gln Trp Gln Asn Lys 130
135 140Arg Lys Ala Leu Gly Leu Pro Tyr Asp Arg Pro
Asn Ile Val Thr Gly145 150 155
160Ala Asn Ile Gln Val Cys Leu Glu Lys Phe Ala Arg Tyr Phe Glu Val
165 170 175Glu Leu Lys Glu
Val Lys Leu Arg Glu Gly Tyr Tyr Val Met Asp Pro 180
185 190Asp Lys Ala Val Glu Met Val Asp Glu Asn Thr
Ile Cys Val Val Ala 195 200 205Ile
Leu Gly Ser Thr Leu Thr Gly Glu Phe Glu Asp Val Lys Leu Leu 210
215 220Asn Asp Leu Leu Val Glu Lys Asn Lys Lys
Thr Gly Trp Asp Thr Pro225 230 235
240Ile His Val Asp Ala Ala Ser Gly Gly Phe Ile Ala Pro Phe Leu
Tyr 245 250 255Pro Asp Leu
Glu Trp Asp Phe Arg Leu Pro Leu Val Lys Ser Ile Asn 260
265 270Val Ser Gly His Lys Tyr Gly Leu Val Tyr
Ala Gly Ile Gly Trp Val 275 280
285Val Trp Arg Thr Lys Thr Asp Leu Pro Asp Glu Leu Ile Phe His Ile 290
295 300Asn Tyr Leu Gly Ala Asp Gln Pro
Thr Phe Thr Leu Asn Phe Ser Lys305 310
315 320Gly Ser Ser Gln Val Ile Ala Gln Tyr Tyr Gln Leu
Ile Arg Leu Gly 325 330
335Phe Glu Gly Tyr Arg Asn Val Met Asp Asn Cys Arg Glu Asn Met Met
340 345 350Val Leu Arg Gln Gly Leu
Glu Lys Thr Gly Arg Phe Asn Ile Val Ser 355 360
365Lys Glu Asn Gly Val Pro Leu Val Ala Phe Ser Leu Lys Asp
Ser Ser 370 375 380Arg His Asn Glu Phe
Glu Val Ala Glu Met Leu Arg Arg Phe Gly Trp385 390
395 400Ile Val Pro Ala Tyr Thr Met Pro Ala Asp
Ala Gln His Val Thr Val 405 410
415Leu Arg Val Val Ile Arg Glu Asp Phe Ser Arg Thr Leu Ala Glu Arg
420 425 430Leu Val Ala Asp Phe
Glu Lys Val Leu His Glu Leu Asp Thr Leu Pro 435
440 445Ala Arg Val His Ala Lys Met Ala Ser Gly Lys Val
Asn Gly Val Lys 450 455 460Lys Thr Pro
Glu Glu Thr Gln Arg Glu Val Thr Ala Tyr Trp Lys Lys465
470 475 480Phe Val Asp Thr Lys Thr Asp
Lys Asn Gly Val Pro Leu Val Ala Ser 485
490 495Ile Thr Asn Gln 500106491PRTNicotiana
tabacum 106Met Val Leu Ser Lys Thr Ser Ser Glu Ser Asp Val Ser Val His
Ser1 5 10 15Thr Phe Ala
Ser Arg Tyr Val Arg Thr Ser Leu Pro Arg Phe Glu Met 20
25 30Ala Glu Asn Ser Ile Pro Lys Glu Ala Ala
Phe Gln Ile Ile Asn Asp 35 40
45Glu Leu Met Leu Asp Gly Asn Pro Arg Leu Asn Leu Ala Ser Phe Val 50
55 60Thr Thr Trp Met Glu Pro Glu Cys Asp
Lys Leu Met Met Asp Ser Ile65 70 75
80Asn Lys Asn Tyr Val Asp Met Asp Glu Tyr Pro Val Thr Thr
Glu Leu 85 90 95Gln Asn
Arg Cys Val Asn Met Ile Ala Arg Leu Phe Asn Ala Pro Leu 100
105 110Glu Glu Lys Glu Thr Ala Val Gly Val
Gly Thr Val Gly Ser Ser Glu 115 120
125Ala Ile Met Leu Ala Gly Leu Ala Phe Lys Arg Asn Trp Gln Asn Lys
130 135 140Arg Lys Ala Glu Gly Lys Pro
Tyr Asn Lys Pro Asn Ile Val Thr Gly145 150
155 160Ala Asn Val Gln Val Cys Trp Glu Lys Phe Ala Asn
Tyr Phe Glu Val 165 170
175Glu Leu Lys Glu Val Lys Leu Arg Glu Gly Tyr Tyr Val Met Asp Pro
180 185 190Val Gln Ala Val Glu Met
Val Asp Glu Asn Thr Ile Cys Val Ala Ala 195 200
205Ile Leu Gly Ser Thr Leu Asn Gly Glu Phe Glu Asp Val Lys
Leu Leu 210 215 220Asn Asp Leu Leu Ile
Glu Lys Asn Lys Gln Thr Gly Trp Asn Thr Pro225 230
235 240Ile His Val Asp Ala Ala Ser Gly Gly Phe
Ile Ala Pro Phe Leu Tyr 245 250
255Pro Glu Leu Glu Trp Asp Phe Arg Leu Pro Leu Val Lys Ser Ile Asn
260 265 270Val Ser Gly His Lys
Tyr Gly Leu Val Tyr Ala Gly Ile Gly Trp Val 275
280 285Ile Trp Arg Thr Lys Gln Asp Leu Pro Glu Glu Leu
Ile Phe His Ile 290 295 300Asn Tyr Leu
Gly Ala Asp Gln Pro Thr Phe Thr Leu Asn Phe Ser Lys305
310 315 320Gly Ser Ser Gln Val Ile Ala
Gln Tyr Tyr Gln Leu Ile Arg Leu Gly 325
330 335Tyr Glu Gly Tyr Arg Asn Val Met Glu Asn Cys Arg
Glu Asn Ala Ile 340 345 350Val
Leu Arg Glu Gly Leu Glu Lys Thr Gly Arg Phe Asn Ile Val Ser 355
360 365Lys Asp Glu Gly Val Pro Leu Val Ala
Phe Ser Leu Lys Asp Asn Ser 370 375
380Arg His Asn Glu Phe Glu Val Ser Glu Thr Leu Arg Arg Phe Gly Trp385
390 395 400Ile Val Pro Ala
Tyr Thr Met Pro Ala Asp Ala Gln His Val Thr Val 405
410 415Leu Arg Val Val Ile Arg Glu Asp Phe Ser
Arg Thr Leu Ala Glu Arg 420 425
430Leu Val Leu Asp Ile Val Lys Val Leu His Glu Leu Asp Thr Leu Pro
435 440 445Ala Arg Leu Ser Ala Lys Leu
Glu Glu Val Lys Leu Val Lys Asn Gly 450 455
460Lys Lys Phe Glu Leu Glu Val Gln Arg Glu Val Thr Asn Tyr Trp
Lys465 470 475 480Lys Phe
Val Leu Ala Arg Lys Ala Pro Val Cys 485
490107496PRTNicotiana tabacum 107Met Val Leu Ser Lys Thr Ala Ser Glu Ser
Asp Val Ser Ile His Ser1 5 10
15Thr Phe Ala Ser Arg Tyr Val Arg Thr Ser Leu Pro Arg Phe Lys Met
20 25 30Pro Glu Asn Ser Ile Pro
Lys Glu Ala Ala Tyr Gln Ile Ile Asn Asp 35 40
45Glu Leu Met Leu Asp Gly Asn Pro Arg Leu Asn Leu Ala Ser
Phe Val 50 55 60Thr Thr Trp Met Glu
Pro Glu Cys Asn Lys Leu Met Met Asp Ser Ile65 70
75 80Asn Lys Asn Tyr Val Asp Met Gly Glu Tyr
Pro Val Thr Thr Glu Leu 85 90
95Gln Asn Arg Cys Val Asn Met Ile Ala His Leu Phe Asn Ala Pro Leu
100 105 110Gly Asp Gly Glu Thr
Ala Val Gly Val Gly Thr Val Gly Ser Ser Glu 115
120 125Ala Ile Met Leu Ala Gly Leu Ala Phe Lys Arg Lys
Trp Gln Asn Lys 130 135 140Met Lys Ala
Gln Gly Lys Pro Cys Asp Lys Pro Asn Ile Val Thr Gly145
150 155 160Ala Asn Val Gln Val Cys Trp
Glu Lys Phe Ala Arg Tyr Phe Glu Val 165
170 175Glu Leu Lys Glu Val Lys Leu Ser Asp Gly Tyr Tyr
Val Met Asp Pro 180 185 190Glu
Lys Ala Val Glu Met Val Asp Glu Asn Thr Ile Cys Val Ala Ala 195
200 205Ile Leu Gly Ser Thr Leu Asn Gly Glu
Phe Glu Asp Val Lys Arg Leu 210 215
220Asn Asp Leu Leu Ile Glu Lys Asn Lys Glu Thr Gly Trp Asp Thr Pro225
230 235 240Ile His Val Asp
Ala Ala Ser Gly Gly Phe Ile Ala Pro Phe Leu Tyr 245
250 255Pro Glu Leu Glu Trp Asp Phe Arg Leu Pro
Leu Val Lys Ser Ile Asn 260 265
270Val Ser Gly His Lys Tyr Gly Leu Val Tyr Ala Gly Ile Gly Trp Ala
275 280 285Ile Trp Arg Asn Lys Glu Asp
Leu Pro Asp Glu Leu Ile Phe His Ile 290 295
300Asn Tyr Leu Gly Ala Asp Gln Pro Thr Phe Thr Leu Asn Phe Ser
Lys305 310 315 320Gly Ser
Ser Gln Val Ile Ala Gln Tyr Tyr Gln Leu Ile Arg Leu Gly
325 330 335Phe Glu Gly Tyr Lys Asn Val
Met Glu Asn Cys Gln Glu Asn Ala Arg 340 345
350Val Leu Arg Glu Gly Leu Glu Lys Ser Gly Arg Phe Asn Ile
Ile Ser 355 360 365Lys Glu Ile Gly
Val Pro Leu Val Ala Phe Ser Leu Lys Asp Asn Ser 370
375 380Gln His Asn Glu Phe Glu Ile Ser Glu Thr Leu Arg
Arg Phe Gly Trp385 390 395
400Ile Ile Pro Ala Tyr Thr Met Pro Pro Asn Ala Gln His Val Thr Val
405 410 415Leu Arg Val Val Ile
Arg Glu Asp Phe Ser Arg Thr Leu Ala Glu Arg 420
425 430Leu Val Ile Asp Ile Glu Lys Val Leu His Glu Leu
Asp Thr Leu Pro 435 440 445Ala Arg
Val Asn Ala Lys Leu Ala Val Ala Glu Ala Asn Gly Ser Gly 450
455 460Val His Lys Lys Thr Asp Arg Glu Val Gln Leu
Glu Ile Thr Ala Ala465 470 475
480Trp Lys Lys Phe Val Ala Asp Lys Lys Lys Lys Thr Asn Gly Val Cys
485 490 495108450PRTGlycine
max 108Gly Asn Pro Arg Leu Asn Leu Ala Ser Phe Val Thr Thr Trp Met Glu1
5 10 15Pro Glu Cys Asp Lys
Leu Ile Met Ala Ala Ile Asn Lys Asn Tyr Val 20
25 30Asp Met Asp Glu Tyr Pro Val Thr Thr Glu Leu Gln
Asn Arg Cys Val 35 40 45Asn Met
Ile Ala His Leu Phe Asn Ala Pro Leu Glu Glu Thr Glu Ala 50
55 60Ala Val Gly Val Gly Thr Val Gly Ser Ser Glu
Ala Ile Met Leu Ala65 70 75
80Gly Leu Ala Phe Lys Arg Lys Trp Gln Asn Arg Arg Lys Gln Glu Gly
85 90 95Lys Pro Tyr Asp Lys
Pro Asn Ile Val Thr Gly Ala Asn Val Gln Val 100
105 110Cys Trp Glu Lys Phe Ala Arg Tyr Phe Glu Val Glu
Leu Lys Glu Val 115 120 125Lys Leu
Arg Asp Asp Tyr Tyr Val Met Asp Pro Glu Lys Ala Val Glu 130
135 140Leu Val Asp Glu Asn Thr Ile Cys Val Ala Ala
Ile Leu Gly Ser Thr145 150 155
160Leu Asn Gly Glu Phe Glu Asp Val Lys Arg Leu Asn Asp Leu Leu Ile
165 170 175Glu Lys Asn Lys
Ile Thr Gly Trp Asp Thr Pro Ile His Val Asp Ala 180
185 190Ala Ser Gly Gly Phe Ile Ala Pro Phe Ile Tyr
Pro Glu Leu Glu Trp 195 200 205Asp
Phe Arg Leu Gln Leu Val Lys Ser Ile Asn Val Ser Gly His Lys 210
215 220Tyr Gly Leu Val Tyr Ala Gly Ile Gly Trp
Val Ile Trp Arg Ser Lys225 230 235
240Gln Asp Leu Pro Glu Glu Leu Ile Phe His Ile Asn Tyr Leu Gly
Ala 245 250 255Asp Gln Pro
Thr Phe Thr Leu Asn Phe Ser Lys Gly Ser Ser Gln Val 260
265 270Ile Ala Gln Tyr Tyr Gln Leu Ile Arg Leu
Gly Phe Glu Gly Tyr Arg 275 280
285Asn Val Met Glu Asn Cys Arg Asp Asn Met Leu Val Leu Lys Glu Gly 290
295 300Leu Glu Lys Thr Gly Arg Phe Ser
Ile Val Ser Lys Asp Asn Gly Val305 310
315 320Pro Leu Val Ala Phe Thr Leu Lys Asp His Thr His
Phe Asp Glu Phe 325 330
335Gln Ile Ser Asp Phe Leu Arg Arg Phe Gly Trp Ile Val Pro Ala Tyr
340 345 350Thr Met Pro Pro Asp Ala
Gln His Val Thr Val Leu Arg Val Val Ile 355 360
365Arg Glu Asp Phe Ser Arg Thr Leu Ala Glu Arg Leu Val Ser
Asp Val 370 375 380Glu Lys Val Leu His
Glu Leu Asp Ser Leu Pro Ala Arg Val Ile Ser385 390
395 400Ser Thr Thr Val Thr Leu Ser Ala Glu Glu
Asn Gly Lys Val Val Val 405 410
415Ala Lys Lys Asn Pro Met Glu Thr Gln Arg Glu Ile Thr Ala Ile Trp
420 425 430Lys Lys Phe Val Leu
Glu Arg Lys Lys Asn Asn Asp Lys Met Asn Gly 435
440 445Val Cys 450109496PRTNicotiana tabacum 109Met
Val Leu Ser Lys Thr Ala Ser Glu Ser Asp Val Ser Ile His Ser1
5 10 15Thr Phe Ala Ser Arg Tyr Val
Arg Thr Ser Leu Pro Arg Phe Lys Met 20 25
30Pro Glu Asn Ser Ile Pro Lys Glu Ala Ala Tyr Gln Ile Ile
Asn Asp 35 40 45Glu Leu Met Leu
Asp Gly Asn Pro Arg Leu Asn Leu Ala Ser Phe Val 50 55
60Thr Thr Trp Met Glu Pro Glu Cys Asn Thr Leu Met Met
Asp Ser Ile65 70 75
80Asn Lys Asn Tyr Val Asp Met Asp Glu Tyr Pro Val Thr Thr Glu Leu
85 90 95Gln Asn Arg Cys Val Asn
Met Ile Ala His Leu Phe Asn Ala Pro Leu 100
105 110Gly Asp Gly Glu Thr Ala Val Gly Val Gly Thr Val
Gly Ser Ser Glu 115 120 125Ala Ile
Met Leu Ala Gly Leu Ala Phe Lys Arg Lys Trp Gln Asn Lys 130
135 140Met Lys Ala Gln Gly Lys Pro Phe Asp Lys Pro
Asn Ile Val Thr Gly145 150 155
160Ala Asn Val Gln Val Cys Trp Glu Lys Phe Ala Arg Tyr Phe Glu Val
165 170 175Glu Leu Lys Glu
Val Lys Leu Ser Asp Gly Tyr Tyr Val Met Asp Pro 180
185 190Glu Lys Ala Val Glu Met Val Asp Glu Asn Thr
Ile Cys Val Ala Ala 195 200 205Ile
Leu Gly Ser Thr Leu Asn Gly Glu Phe Glu Asp Val Lys Arg Leu 210
215 220Asn Asp Leu Leu Ile Glu Lys Asn Lys Glu
Thr Gly Trp Asp Thr Pro225 230 235
240Ile His Val Asp Ala Ala Ser Gly Gly Phe Ile Ala Pro Phe Leu
Tyr 245 250 255Pro Glu Leu
Glu Trp Asp Phe Arg Leu Pro Leu Val Lys Ser Ile Asn 260
265 270Val Ser Gly His Lys Tyr Gly Leu Val Tyr
Ala Gly Ile Gly Trp Ala 275 280
285Ile Trp Arg Asn Lys Glu Asp Leu Pro Asp Glu Leu Ile Phe His Ile 290
295 300Asn Tyr Leu Gly Ala Asp Gln Pro
Thr Phe Thr Leu Asn Phe Ser Lys305 310
315 320Gly Ser Ser Gln Val Ile Ala Gln Tyr Tyr Gln Leu
Ile Arg Leu Gly 325 330
335Phe Glu Gly Tyr Lys Asn Val Met Glu Asn Cys Gln Glu Asn Ala Arg
340 345 350Val Leu Arg Glu Gly Ile
Glu Lys Ser Gly Arg Phe Asn Ile Ile Ser 355 360
365Lys Glu Ile Gly Val Pro Leu Val Ala Phe Ser Leu Lys Asp
Asn Ser 370 375 380Gln His Asn Glu Phe
Glu Ile Ser Glu Thr Leu Arg Arg Phe Gly Trp385 390
395 400Ile Val Pro Ala Tyr Thr Met Pro Pro Asn
Ala Gln His Val Thr Val 405 410
415Leu Arg Val Val Ile Arg Glu Asp Phe Ser Arg Thr Leu Ala Glu Arg
420 425 430Leu Val Ile Asp Ile
Glu Lys Val Leu His Glu Leu Asp Thr Leu Pro 435
440 445Ala Arg Val Asn Ala Lys Leu Ala Val Ala Glu Ala
Asn Gly Ser Gly 450 455 460Val His Lys
Lys Thr Asp Arg Glu Val Gln Leu Glu Ile Thr Thr Ala465
470 475 480Trp Lys Lys Phe Val Ala Asp
Lys Lys Lys Lys Thr Asn Gly Val Cys 485
490 495110494PRTArabidopsis thaliana 110Met Val Leu Ala
Thr Asn Ser Asp Ser Asp Glu His Leu His Ser Thr1 5
10 15Phe Ala Ser Arg Tyr Val Arg Ala Val Val
Pro Arg Phe Lys Met Pro 20 25
30Asp His Cys Met Pro Lys Asp Ala Ala Tyr Gln Val Ile Asn Asp Glu
35 40 45Leu Met Leu Asp Gly Asn Pro Arg
Leu Asn Leu Ala Ser Phe Val Thr 50 55
60Thr Trp Met Glu Pro Glu Cys Asp Lys Leu Ile Met Asp Ser Val Asn65
70 75 80Lys Asn Tyr Val Asp
Met Asp Glu Tyr Pro Val Thr Thr Glu Leu Gln 85
90 95Asn Arg Cys Val Asn Met Ile Ala Asn Phe Phe
His Ala Pro Val Gly 100 105
110Glu Asp Glu Ala Ala Ile Gly Cys Gly Thr Val Gly Ser Ser Glu Ala
115 120 125Ile Met Leu Ala Gly Leu Ala
Phe Lys Arg Lys Trp Gln His Arg Arg 130 135
140Lys Ala Gln Gly Leu Pro Ile Asp Lys Pro Asn Ile Val Thr Gly
Ala145 150 155 160Asn Val
Gln Val Cys Trp Glu Lys Phe Ala Arg Tyr Phe Glu Val Glu
165 170 175Leu Lys Glu Val Lys Leu Ser
Glu Asp Tyr Tyr Val Met Asp Pro Ala 180 185
190Lys Ala Val Glu Met Val Asp Glu Asn Thr Ile Cys Val Ala
Ala Ile 195 200 205Leu Gly Ser Thr
Leu Thr Gly Glu Phe Glu Asp Val Lys Gln Leu Asn 210
215 220Asp Leu Leu Ala Glu Lys Asn Ala Glu Thr Gly Trp
Glu Thr Pro Ile225 230 235
240His Val Asp Ala Ala Ser Gly Gly Phe Ile Ala Pro Phe Leu Tyr Pro
245 250 255Asp Leu Glu Trp Asp
Phe Arg Leu Pro Trp Val Lys Ser Ile Asn Val 260
265 270Ser Gly His Lys Tyr Gly Leu Val Tyr Ala Gly Val
Gly Trp Val Val 275 280 285Trp Arg
Thr Lys Asp Asp Leu Pro Glu Glu Leu Val Phe His Ile Asn 290
295 300Tyr Leu Gly Ala Asp Gln Pro Thr Phe Thr Leu
Asn Phe Ser Lys Gly305 310 315
320Ser Ser Gln Ile Ile Ala Gln Tyr Tyr Gln Phe Ile Arg Leu Gly Phe
325 330 335Glu Gly Tyr Lys
Asn Ile Met Glu Asn Cys Met Asp Asn Ala Arg Arg 340
345 350Leu Arg Glu Gly Ile Glu Met Thr Gly Lys Phe
Asn Ile Val Ser Lys 355 360 365Asp
Ile Gly Val Pro Leu Val Ala Phe Ser Leu Lys Asp Ser Ser Lys 370
375 380His Thr Val Phe Glu Ile Ala Glu Ser Leu
Arg Lys Phe Gly Trp Ile385 390 395
400Ile Pro Ala Tyr Thr Met Pro Ala Asp Ala Gln His Ile Ala Val
Leu 405 410 415Arg Val Val
Ile Arg Glu Asp Phe Ser Arg Gly Leu Ala Asp Arg Leu 420
425 430Ile Thr His Ile Ile Gln Val Leu Lys Glu
Ile Glu Gly Leu Pro Ser 435 440
445Arg Ile Ala His Leu Ala Ala Ala Ala Ala Val Ser Gly Asp Asp Glu 450
455 460Glu Val Lys Val Lys Thr Ala Lys
Met Ser Leu Glu Asp Ile Thr Lys465 470
475 480Tyr Trp Lys Arg Leu Val Glu His Lys Arg Asn Ile
Val Cys 485 490111492PRTOryza sativa
111Met Val Leu Ser Lys Ala Val Ser Glu Ser Asp Met Ser Val His Ser1
5 10 15Thr Phe Ala Ser Arg Tyr
Val Arg Ala Ser Leu Pro Arg Tyr Arg Met 20 25
30Pro Glu Asn Ser Ile Pro Lys Glu Ala Ala Tyr Gln Ile
Ile Asn Asp 35 40 45Glu Leu Met
Leu Asp Gly Asn Pro Arg Leu Asn Leu Ala Ser Phe Val 50
55 60Thr Thr Trp Met Glu Pro Glu Cys Asp Lys Leu Ile
Met Ala Ala Ile65 70 75
80Asn Lys Asn Tyr Val Asp Met Asp Glu Tyr Pro Val Thr Thr Glu Leu
85 90 95Gln Asn Arg Cys Val Asn
Met Ile Ala His Leu Phe His Ala Pro Leu 100
105 110Gly Glu Asp Glu Thr Ala Val Gly Val Gly Thr Val
Gly Ser Ser Glu 115 120 125Ala Ile
Met Leu Ala Gly Leu Ala Phe Lys Arg Arg Trp Gln Asn Lys 130
135 140Arg Lys Ala Glu Gly Lys Pro Phe Asp Lys Pro
Asn Ile Ile Thr Gly145 150 155
160Ala Asn Val Gln Val Cys Trp Glu Lys Phe Ala Arg Tyr Phe Glu Val
165 170 175Glu Leu Lys Glu
Val Lys Leu Arg Asp Gly Tyr Tyr Val Met Asp Pro 180
185 190Glu Lys Ala Val Asp Met Val Asn Glu Asn Thr
Ile Cys Val Ala Ala 195 200 205Ile
Leu Gly Ser Thr Leu Asn Gly Glu Phe Glu Asp Val Lys Leu Leu 210
215 220Asn Asp Leu Leu Asp Lys Lys Asn Lys Glu
Thr Gly Trp Glu Thr Pro225 230 235
240Ile His Val Asp Ala Ala Ser Gly Gly Phe Ile Ala Pro Phe Leu
Tyr 245 250 255Pro Glu Leu
Glu Trp Asp Phe Arg Leu Pro Trp Val Lys Ser Ile Asn 260
265 270Val Ser Gly His Lys Tyr Gly Leu Val Tyr
Ala Gly Ile Gly Trp Cys 275 280
285Ile Trp Arg Asn Lys Glu Asp Leu Pro Glu Glu Leu Ile Phe His Ile 290
295 300Asn Tyr Leu Gly Thr Asp Gln Pro
Thr Phe Thr Leu Asn Phe Ser Lys305 310
315 320Gly Ser Ser Gln Val Ile Ala Gln Tyr Tyr Gln Leu
Ile Arg His Gly 325 330
335Phe Glu Gly Tyr Arg Asn Ile Met Glu Asn Cys His Glu Asn Ala Met
340 345 350Val Leu Lys Glu Gly Leu
Val Lys Thr Gly Arg Phe Asp Ile Val Ser 355 360
365Lys Asp Glu Gly Val Pro Leu Val Ala Phe Ser Leu Lys Asp
Arg Ser 370 375 380Arg His Asp Glu Phe
Glu Ile Ser Asp Met Leu Arg Arg Phe Gly Trp385 390
395 400Ile Val Pro Ala Tyr Thr Met Pro Pro Asp
Ala Gln His Val Thr Val 405 410
415Leu Arg Val Val Ile Arg Glu Glu Phe Ser Arg Thr Leu Ala Glu Arg
420 425 430Leu Val Leu Asp Ile
Glu Lys Val Met Tyr Gln Leu Asp Ala Leu Pro 435
440 445Ser Arg Leu Met Pro Pro Val Pro Pro Ala Pro Leu
Leu Val Val Ala 450 455 460Lys Lys Ser
Glu Leu Glu Thr Gln Arg Ser Val Thr Glu Ala Trp Lys465
470 475 480Lys Phe Val Leu Ala Lys Arg
Thr Asn Gly Val Cys 485
490112419PRTArabidopsis thaliana 112Met Asp Ser Ile Asn Lys Asn Tyr Val
Asp Met Asp Glu Tyr Pro Val1 5 10
15Thr Thr Glu Leu Gln Asn Arg Cys Val Asn Ile Ile Ala Arg Leu
Phe 20 25 30Asn Ala Pro Leu
Glu Glu Ser Glu Thr Ala Val Gly Val Gly Thr Val 35
40 45Gly Ser Ser Glu Ala Ile Met Leu Ala Gly Leu Ala
Phe Lys Arg Lys 50 55 60Trp Gln Asn
Lys Arg Lys Ala Glu Gly Lys Pro Tyr Asp Lys Pro Asn65 70
75 80Ile Val Thr Gly Ala Asn Val Gln
Val Cys Trp Glu Lys Phe Ala Arg 85 90
95Tyr Phe Glu Val Glu Leu Lys Glu Val Asn Leu Ser Glu Gly
Tyr Tyr 100 105 110Val Met Asp
Pro Asp Lys Ala Ala Glu Met Val Asp Glu Asn Thr Ile 115
120 125Cys Val Ala Ala Ile Leu Gly Ser Thr Leu Asn
Gly Glu Phe Glu Asp 130 135 140Val Lys
Arg Leu Asn Asp Leu Leu Val Lys Lys Asn Glu Glu Thr Gly145
150 155 160Trp Asn Thr Pro Ile His Val
Asp Ala Ala Ser Gly Gly Phe Ile Ala 165
170 175Pro Phe Ile Tyr Pro Glu Leu Glu Trp Asp Phe Arg
Leu Pro Leu Val 180 185 190Lys
Ser Ile Asn Val Ser Gly His Lys Tyr Gly Leu Val Tyr Ala Gly 195
200 205Ile Gly Trp Val Val Trp Arg Ala Ala
Glu Asp Leu Pro Glu Glu Leu 210 215
220Ile Phe His Ile Asn Tyr Leu Gly Ala Asp Gln Pro Thr Phe Thr Leu225
230 235 240Asn Phe Ser Lys
Gly Ser Ser Gln Ile Ile Ala Gln Tyr Tyr Gln Leu 245
250 255Ile Arg Leu Gly Phe Glu Gly Tyr Lys Asn
Val Met Glu Asn Cys Ile 260 265
270Glu Asn Met Val Val Leu Lys Glu Gly Ile Glu Lys Thr Glu Arg Phe
275 280 285Asn Ile Val Ser Lys Asp Gln
Gly Val Pro Val Val Ala Phe Ser Leu 290 295
300Lys Asp His Ser Phe His Asn Glu Phe Glu Ile Ser Glu Met Leu
Arg305 310 315 320Arg Phe
Gly Trp Ile Val Pro Ala Tyr Thr Met Pro Ala Asp Ala Gln
325 330 335His Ile Thr Val Leu Arg Val
Val Ile Arg Glu Asp Phe Ser Arg Thr 340 345
350Leu Ala Glu Arg Leu Val Ala Asp Ile Ser Lys Val Leu His
Glu Leu 355 360 365Asp Thr Leu Pro
Ser Lys Ile Ser Lys Lys Met Gly Ile Glu Gly Ile 370
375 380Ala Lys Asn Val Lys Glu Lys Lys Met Glu Lys Glu
Ile Leu Met Glu385 390 395
400Val Ile Val Gly Trp Arg Lys Phe Val Lys Glu Arg Lys Lys Met Asn
405 410 415Gly Val
Cys113501PRTOryza sativa 113Met Val Val Ser Val Ala Ala Thr Asp Ser Asp
Thr Ala Gln Pro Val1 5 10
15Gln Tyr Ser Thr Phe Phe Ala Ser Arg Tyr Val Arg Asp Pro Leu Pro
20 25 30Arg Phe Arg Met Pro Glu Gln
Ser Ile Pro Arg Glu Ala Ala Tyr Gln 35 40
45Ile Ile Asn Asp Glu Leu Met Leu Asp Gly Asn Pro Arg Leu Asn
Leu 50 55 60Ala Ser Phe Val Thr Thr
Trp Met Glu Pro Glu Cys Asp Lys Leu Ile65 70
75 80Met Asp Ser Val Asn Lys Asn Tyr Val Asp Met
Asp Glu Tyr Pro Val 85 90
95Thr Thr Glu Leu Gln Asn Arg Cys Val Asn Met Ile Ala His Leu Phe
100 105 110Asn Ala Pro Ile Lys Glu
Asp Glu Thr Ala Ile Gly Val Gly Thr Val 115 120
125Gly Ser Ser Glu Ala Ile Met Leu Ala Gly Leu Ala Phe Lys
Arg Lys 130 135 140Trp Gln Asn Lys Arg
Lys Glu Gln Gly Lys Pro Cys Asp Lys Pro Asn145 150
155 160Ile Val Thr Gly Ala Asn Val Gln Val Cys
Trp Glu Lys Phe Ala Arg 165 170
175Tyr Phe Glu Val Glu Leu Lys Glu Val Lys Leu Ser Glu Gly Tyr Tyr
180 185 190Val Met Asp Pro Val
Lys Ala Val Glu Met Val Asp Glu Asn Thr Ile 195
200 205Cys Val Ala Ala Ile Leu Gly Ser Thr Leu Thr Gly
Glu Phe Glu Asp 210 215 220Val Lys Leu
Leu Asn Asn Leu Leu Thr Glu Lys Asn Lys Glu Thr Gly225
230 235 240Trp Asp Val Pro Ile His Val
Asp Ala Ala Ser Gly Gly Phe Ile Ala 245
250 255Pro Phe Leu Tyr Pro Glu Leu Glu Trp Asp Phe Arg
Leu Pro Leu Val 260 265 270Lys
Ser Ile Asn Val Ser Gly His Lys Tyr Gly Leu Val Tyr Pro Gly 275
280 285Val Gly Trp Val Ile Trp Arg Ser Lys
Glu Asp Leu Pro Glu Glu Leu 290 295
300Ile Phe His Ile Asn Tyr Leu Gly Thr Asp Gln Pro Thr Phe Thr Leu305
310 315 320Asn Phe Ser Lys
Gly Ser Ser Gln Ile Ile Ala Gln Tyr Tyr Gln Leu 325
330 335Ile Arg Leu Gly Phe Glu Gly Tyr Lys Asn
Ile Met Gln Asn Cys Met 340 345
350Glu Asn Thr Ala Ile Leu Arg Glu Gly Ile Glu Ala Thr Gly Arg Phe
355 360 365Glu Ile Leu Ser Lys Glu Ala
Gly Val Pro Leu Val Ala Phe Ser Leu 370 375
380Lys Asp Ser Gly Arg Tyr Thr Val Phe Asp Ile Ser Glu His Leu
Arg385 390 395 400Arg Phe
Gly Trp Ile Val Pro Ala Tyr Thr Met Pro Ala Asn Ala Glu
405 410 415His Val Ala Val Leu Arg Val
Val Ile Arg Glu Asp Phe Ser Arg Ser 420 425
430Leu Ala Glu Arg Leu Val Ser Asp Ile Val Lys Ile Leu His
Glu Leu 435 440 445Asp Ala His Ser
Ala Gln Val Leu Lys Ile Ser Ser Ala Ile Ala Lys 450
455 460Gln Gln Ser Gly Asp Asp Gly Val Val Thr Lys Lys
Ser Val Leu Glu465 470 475
480Thr Glu Arg Glu Ile Phe Ala Tyr Trp Arg Asp Gln Val Lys Lys Lys
485 490 495Gln Thr Gly Ile Cys
500114494PRTArabidopsis thaliana 114Met Val Leu Thr Lys Thr Ala
Thr Asn Asp Glu Ser Val Cys Thr Met1 5 10
15Phe Gly Ser Arg Tyr Val Arg Thr Thr Leu Pro Lys Tyr
Glu Ile Gly 20 25 30Glu Asn
Ser Ile Pro Lys Asp Ala Ala Tyr Gln Ile Ile Lys Asp Glu 35
40 45Leu Met Leu Asp Gly Asn Pro Arg Leu Asn
Leu Ala Ser Phe Val Thr 50 55 60Thr
Trp Met Glu Pro Glu Cys Asp Lys Leu Ile Met Asp Ser Ile Asn65
70 75 80Lys Asn Tyr Val Asp Met
Asp Glu Tyr Pro Val Thr Thr Glu Leu Gln 85
90 95Asn Arg Cys Val Asn Ile Ile Ala Arg Leu Phe Asn
Ala Pro Leu Glu 100 105 110Glu
Ser Glu Thr Ala Val Gly Val Gly Thr Val Gly Ser Ser Glu Ala 115
120 125Ile Met Leu Ala Gly Leu Ala Phe Lys
Arg Lys Trp Gln Asn Lys Arg 130 135
140Lys Ala Glu Gly Lys Pro Tyr Asp Lys Pro Asn Ile Val Thr Gly Ala145
150 155 160Asn Val Gln Val
Cys Trp Glu Lys Phe Ala Arg Tyr Phe Glu Val Glu 165
170 175Leu Lys Glu Val Asn Leu Ser Glu Gly Tyr
Tyr Val Met Asp Pro Asp 180 185
190Lys Ala Ala Glu Met Val Asp Glu Asn Thr Ile Cys Val Ala Ala Ile
195 200 205Leu Gly Ser Thr Leu Asn Gly
Glu Phe Glu Asp Val Lys Arg Leu Asn 210 215
220Asp Leu Leu Val Lys Lys Asn Glu Glu Thr Gly Trp Asn Thr Pro
Ile225 230 235 240His Val
Asp Ala Ala Ser Gly Gly Phe Ile Ala Pro Phe Ile Tyr Pro
245 250 255Glu Leu Glu Trp Asp Phe Arg
Leu Pro Leu Val Lys Ser Ile Asn Val 260 265
270Ser Gly His Lys Tyr Gly Leu Val Tyr Ala Gly Ile Gly Trp
Val Val 275 280 285Trp Arg Ala Ala
Glu Asp Leu Pro Glu Glu Leu Ile Phe His Ile Asn 290
295 300Tyr Leu Gly Ala Asp Gln Pro Thr Phe Thr Leu Asn
Phe Ser Lys Gly305 310 315
320Ser Ser Gln Ile Ile Ala Gln Tyr Tyr Gln Leu Ile Arg Leu Gly Phe
325 330 335Glu Gly Tyr Lys Asn
Val Met Glu Asn Cys Ile Glu Asn Met Val Val 340
345 350Leu Lys Glu Gly Ile Glu Lys Thr Glu Arg Phe Asn
Ile Val Ser Lys 355 360 365Asp Gln
Gly Val Pro Val Val Ala Phe Ser Leu Lys Asp His Ser Phe 370
375 380His Asn Glu Phe Glu Ile Ser Glu Met Leu Arg
Arg Phe Gly Trp Ile385 390 395
400Val Pro Ala Tyr Thr Met Pro Ala Asp Val Gln His Ile Thr Val Leu
405 410 415Arg Val Val Ile
Arg Glu Asp Phe Ser Arg Thr Leu Ala Glu Arg Leu 420
425 430Val Ala Asp Ile Ser Lys Val Leu His Glu Leu
Asp Thr Leu Pro Ser 435 440 445Lys
Ile Ser Lys Lys Met Gly Ile Glu Gly Ile Ala Glu Asn Val Lys 450
455 460Glu Lys Lys Met Glu Lys Glu Ile Leu Met
Glu Val Ile Val Gly Trp465 470 475
480Arg Lys Phe Val Lys Glu Arg Lys Lys Met Asn Gly Val Cys
485 490115496PRTNicotiana tabacum 115Met Val Leu
Ser Lys Thr Ala Ser Glu Ser Asp Val Ser Val His Ser1 5
10 15Thr Phe Ala Ser Arg Tyr Val Arg Thr
Ser Leu Pro Arg Phe Lys Met 20 25
30Pro Glu Asn Ser Ile Pro Lys Glu Ala Ala Tyr Gln Ile Ile Asn Asp
35 40 45Glu Leu Met Leu Asp Gly Asn
Pro Arg Leu Asn Leu Ala Ser Phe Val 50 55
60Thr Thr Trp Met Glu Pro Glu Cys Asn Thr Leu Met Met Asp Ser Ile65
70 75 80Asn Lys Asn Tyr
Val Asp Met Asp Glu Tyr Pro Val Thr Thr Glu Leu 85
90 95Gln Asn Arg Cys Val Asn Met Ile Ala His
Leu Phe Asn Ala Pro Leu 100 105
110Gly Asp Gly Glu Thr Ala Val Gly Val Gly Thr Val Gly Ser Ser Glu
115 120 125Ala Ile Met Leu Ala Gly Leu
Ala Phe Lys Arg Lys Trp Gln Asn Lys 130 135
140Met Lys Ala Gln Gly Lys Pro Phe Asp Lys Pro Asn Ile Val Thr
Gly145 150 155 160Ala Asn
Val Gln Val Cys Trp Glu Lys Phe Ala Arg Tyr Phe Glu Val
165 170 175Glu Leu Lys Glu Val Lys Leu
Ser Asp Gly Tyr Tyr Val Met Asp Pro 180 185
190Glu Lys Ala Val Glu Met Val Asp Glu Asn Thr Ile Cys Val
Ala Ala 195 200 205Ile Leu Gly Ser
Thr Leu Asn Gly Glu Phe Glu Asp Val Lys Arg Leu 210
215 220Asn Asp Leu Leu Ile Glu Lys Asn Lys Glu Thr Gly
Trp Asp Thr Pro225 230 235
240Ile His Val Asp Ala Ala Ser Gly Gly Phe Ile Ala Pro Phe Leu Tyr
245 250 255Pro Glu Leu Glu Trp
Asp Phe Arg Leu Pro Leu Glu Lys Ser Ile Asn 260
265 270Val Ser Gly His Lys Tyr Gly Leu Val Tyr Ala Gly
Ile Gly Trp Ala 275 280 285Ile Trp
Arg Asn Lys Glu Asp Leu Pro Asp Glu Leu Ile Phe His Ile 290
295 300Asn Tyr Leu Gly Ala Asp Gln Pro Thr Phe Thr
Leu Asn Phe Ser Lys305 310 315
320Gly Ser Ser Gln Val Ile Ala Gln Tyr Tyr Gln Leu Ile Arg Leu Gly
325 330 335Phe Glu Gly Tyr
Lys Asn Val Met Glu Asn Cys Gln Glu Asn Ala Arg 340
345 350Val Leu Arg Glu Gly Ile Glu Lys Ser Gly Arg
Phe Asn Ile Ile Ser 355 360 365Lys
Glu Ile Gly Val Pro Leu Val Ala Phe Ser Leu Lys Asp Asn Ser 370
375 380Gln His Asn Glu Phe Glu Ile Ser Glu Thr
Leu Arg Arg Phe Gly Trp385 390 395
400Ile Val Leu Ala Tyr Thr Met Pro Pro Asn Ala Gln His Val Thr
Val 405 410 415Leu Arg Val
Val Ile Arg Glu Asp Phe Ser Arg Thr Leu Ala Glu Arg 420
425 430Leu Val Ile Asp Ile Glu Lys Val Phe His
Gly Val Asp Thr Leu Pro 435 440
445Ala Arg Val Asn Ala Lys Leu Ala Val Ala Glu Ala Asn Gly Ser Gly 450
455 460Val His Lys Lys Thr Asp Arg Glu
Val Gln Leu Glu Ile Thr Thr Ala465 470
475 480Trp Leu Lys Phe Val Ala Asp Lys Lys Lys Lys Thr
Asn Gly Val Cys 485 490
495116494PRTArabidopsis thaliana 116Met Val Leu Thr Lys Thr Ala Thr Asn
Asp Glu Ser Val Cys Thr Met1 5 10
15Phe Gly Ser Arg Tyr Val Arg Thr Thr Leu Pro Lys Tyr Glu Ile
Gly 20 25 30Glu Asn Ser Ile
Pro Lys Asp Ala Ala Tyr Gln Ile Ile Lys Asp Glu 35
40 45Leu Met Leu Asp Gly Asn Pro Arg Leu Asn Leu Ala
Ser Phe Val Thr 50 55 60Thr Trp Met
Glu Pro Glu Cys Asp Lys Leu Ile Met Asp Ser Ile Asn65 70
75 80Lys Asn Tyr Val Asp Met Asp Glu
Tyr Pro Val Thr Thr Glu Leu Gln 85 90
95Asn Arg Cys Val Asn Ile Ile Ala Arg Leu Phe Asn Ala Pro
Leu Glu 100 105 110Glu Ser Glu
Thr Ala Val Gly Val Gly Thr Val Gly Ser Ser Glu Ala 115
120 125Ile Met Leu Ala Gly Leu Ala Phe Lys Arg Lys
Trp Gln Asn Lys Arg 130 135 140Lys Ala
Glu Gly Lys Pro Tyr Asp Lys Pro Asn Ile Val Thr Gly Ala145
150 155 160Asn Val Gln Val Cys Trp Glu
Lys Phe Ala Arg Tyr Phe Glu Val Glu 165
170 175Leu Lys Glu Val Asn Leu Ser Glu Gly Tyr Tyr Val
Met Asp Pro Asp 180 185 190Lys
Ala Ala Glu Met Val Asp Glu Asn Thr Ile Cys Val Ala Ala Ile 195
200 205Leu Gly Ser Thr Leu Asn Gly Glu Phe
Glu Asp Val Lys Arg Leu Asn 210 215
220Asp Leu Leu Val Lys Lys Asn Glu Glu Thr Gly Trp Asn Thr Pro Ile225
230 235 240His Val Asp Ala
Ala Ser Gly Gly Phe Ile Ala Pro Phe Ile Tyr Pro 245
250 255Glu Leu Glu Trp Asp Phe Arg Leu Pro Leu
Val Lys Ser Ile Asn Val 260 265
270Ser Gly His Lys Tyr Gly Leu Val Tyr Ala Gly Ile Gly Trp Val Val
275 280 285Trp Arg Ala Ala Glu Asp Leu
Pro Glu Glu Leu Ile Phe His Ile Asn 290 295
300Tyr Leu Gly Ala Asp Gln Pro Thr Phe Thr Leu Asn Phe Ser Lys
Gly305 310 315 320Ser Ser
Gln Ile Ile Ala Gln Tyr Tyr Gln Leu Ile Arg Leu Gly Phe
325 330 335Glu Gly Tyr Lys Asn Val Met
Glu Asn Cys Ile Glu Asn Met Val Val 340 345
350Leu Lys Glu Gly Ile Glu Lys Thr Glu Arg Phe Asn Ile Val
Ser Lys 355 360 365Asp Gln Gly Val
Pro Val Val Ala Phe Ser Leu Lys Asp His Ser Phe 370
375 380His Asn Glu Phe Glu Ile Ser Glu Met Leu Arg Arg
Phe Gly Trp Ile385 390 395
400Val Pro Ala Tyr Thr Met Pro Ala Asp Ala Gln His Ile Thr Val Leu
405 410 415Arg Val Val Ile Arg
Glu Asp Phe Ser Arg Thr Leu Ala Glu Arg Leu 420
425 430Val Ala Asp Ile Ser Lys Val Leu His Glu Leu Asp
Thr Leu Pro Ser 435 440 445Lys Ile
Ser Lys Lys Met Gly Ile Glu Gly Ile Ala Glu Asn Val Lys 450
455 460Glu Lys Lys Met Glu Lys Glu Ile Leu Met Glu
Val Ile Val Gly Trp465 470 475
480Arg Lys Phe Val Lys Glu Arg Lys Lys Met Asn Gly Val Cys
485 490117496PRTNicotiana tabacum 117Met Val Leu Ser
Lys Thr Ala Ser Glu Ser Asp Val Ser Ile His Ser1 5
10 15Thr Phe Ala Ser Arg Tyr Val Arg Thr Ser
Leu Pro Arg Phe Lys Met 20 25
30Pro Glu Asn Ser Ile Pro Lys Glu Ala Ala Tyr Gln Ile Ile Asn Asp
35 40 45Glu Leu Met Leu Asp Gly Asn Pro
Arg Leu Asn Leu Ala Ser Phe Val 50 55
60Thr Thr Trp Met Glu Pro Glu Cys Asn Lys Leu Met Met Asp Ser Ile65
70 75 80Asn Lys Asn Tyr Val
Asp Met Asp Glu Tyr Pro Val Thr Thr Glu Leu 85
90 95Gln Asn Arg Cys Val Asn Met Ile Ala His Leu
Phe Asn Ala Pro Leu 100 105
110Gly Asp Gly Glu Thr Ala Val Gly Val Gly Thr Val Gly Ser Ser Glu
115 120 125Ala Ile Met Leu Ala Gly Leu
Ala Phe Lys Arg Lys Trp Gln Asn Lys 130 135
140Met Lys Ala Gln Gly Lys Pro Cys Asp Lys Pro Asn Ile Val Thr
Gly145 150 155 160Ala Asn
Val Gln Val Cys Trp Glu Lys Phe Ala Arg Tyr Phe Glu Val
165 170 175Glu Leu Lys Glu Val Lys Leu
Ser Asp Gly Tyr Tyr Val Met Asp Pro 180 185
190Glu Lys Ala Val Glu Met Val Asp Glu Asn Thr Ile Cys Val
Ala Ala 195 200 205Ile Leu Gly Ser
Thr Leu Asn Gly Glu Phe Glu Asp Val Lys Arg Leu 210
215 220Asn Asp Leu Leu Ile Glu Lys Asn Lys Glu Thr Gly
Trp Asp Thr Pro225 230 235
240Ile His Val Asp Ala Ala Ser Gly Gly Phe Ile Ala Pro Phe Leu Tyr
245 250 255Pro Glu Leu Glu Trp
Asp Phe Arg Leu Pro Leu Val Lys Ser Ile Asn 260
265 270Val Ser Gly His Lys Tyr Gly Leu Val Tyr Ala Gly
Ile Gly Trp Ala 275 280 285Ile Trp
Arg Asn Lys Glu Asp Leu Pro Asp Glu Leu Ile Phe His Ile 290
295 300Asn Tyr Leu Gly Ala Asp Gln Pro Thr Phe Thr
Leu Asn Phe Ser Lys305 310 315
320Gly Ser Ser Gln Val Ile Ala Gln Tyr Tyr Gln Leu Ile Arg Leu Gly
325 330 335Phe Glu Gly Tyr
Lys Asn Val Met Glu Asn Cys Gln Glu Asn Ala Arg 340
345 350Val Leu Arg Glu Gly Leu Glu Lys Ser Gly Arg
Phe Asn Ile Ile Ser 355 360 365Lys
Glu Ile Gly Val Pro Leu Val Ala Phe Ser Leu Lys Asp Asn Ser 370
375 380Gln His Asn Glu Phe Glu Ile Ser Glu Thr
Leu Arg Arg Phe Gly Trp385 390 395
400Ile Ile Pro Ala Tyr Thr Met Pro Pro Asn Ala Gln His Val Thr
Val 405 410 415Leu Arg Val
Val Ile Arg Glu Asp Phe Ser Arg Thr Leu Ala Glu Arg 420
425 430Leu Val Ile Asp Ile Glu Lys Val Leu His
Glu Leu Asp Thr Leu Pro 435 440
445Ala Arg Val Asn Ala Lys Leu Ala Val Ala Glu Ala Asn Gly Ser Gly 450
455 460Val His Lys Lys Thr Asp Arg Glu
Val Gln Leu Glu Ile Thr Thr Ala465 470
475 480Trp Lys Lys Phe Val Ala Asp Lys Lys Lys Lys Thr
Asn Gly Val Cys 485 490
495118496PRTNicotiana tabacum 118Met Val Leu Ser Lys Thr Ala Ser Glu Ser
Asp Val Ser Ile His Ser1 5 10
15Thr Phe Ala Ser Arg Tyr Val Arg Thr Ser Leu Pro Arg Phe Lys Met
20 25 30Pro Glu Asn Ser Ile Pro
Lys Glu Ala Ala Tyr Gln Ile Ile Asn Asp 35 40
45Glu Leu Met Leu Asp Gly Asn Pro Arg Leu Asn Leu Ala Ser
Phe Val 50 55 60Thr Thr Trp Met Glu
Pro Glu Cys Asn Lys Leu Met Met Asp Ser Ile65 70
75 80Asn Lys Asn Tyr Val Asp Met Asp Glu Tyr
Pro Val Thr Thr Glu Leu 85 90
95Gln Asn Arg Cys Val Asn Met Ile Ala His Leu Phe Asn Ala Pro Leu
100 105 110Gly Asp Gly Glu Thr
Ala Val Gly Val Gly Thr Val Gly Ser Ser Glu 115
120 125Ala Ile Met Leu Ala Gly Leu Ala Phe Lys Arg Lys
Trp Gln Asn Lys 130 135 140Met Lys Ala
Gln Gly Lys Pro Cys Asp Lys Pro Asn Ile Val Thr Gly145
150 155 160Ala Asn Val Gln Val Cys Trp
Glu Lys Phe Ala Arg Tyr Phe Glu Val 165
170 175Glu Leu Lys Glu Val Lys Leu Ser Asp Gly Tyr Tyr
Val Met Asp Pro 180 185 190Glu
Lys Ala Val Glu Met Val Asp Glu Asn Thr Ile Cys Val Ala Ala 195
200 205Ile Leu Gly Ser Thr Leu Asn Gly Glu
Phe Glu Asp Val Lys Arg Leu 210 215
220Asn Asp Leu Leu Ile Glu Lys Asn Lys Glu Thr Gly Trp Asp Thr Pro225
230 235 240Ile His Val Asp
Ala Ala Ser Gly Glu Phe Ile Ala Pro Phe Leu Tyr 245
250 255Pro Glu Leu Glu Trp Asp Phe Arg Leu Pro
Leu Val Lys Ser Ile Asn 260 265
270Val Ser Gly His Lys Tyr Gly Leu Val Tyr Ala Gly Ile Gly Trp Ala
275 280 285Ile Trp Arg Asn Lys Glu Asp
Leu Pro Asp Glu Leu Ile Phe His Ile 290 295
300Asn Tyr Leu Gly Ala Asp Gln Pro Thr Phe Thr Leu Asn Phe Ser
Lys305 310 315 320Gly Ser
Ser Gln Val Ile Ala Gln Tyr Tyr Gln Leu Ile Arg Leu Gly
325 330 335Phe Glu Gly Tyr Lys Asn Val
Met Glu Asn Cys Gln Glu Asn Ala Arg 340 345
350Val Leu Arg Glu Gly Leu Glu Lys Ser Gly Arg Phe Asn Ile
Ile Ser 355 360 365Lys Glu Ile Gly
Val Pro Leu Val Ala Phe Ser Leu Lys Asp Asn Ser 370
375 380Gln His Asn Glu Phe Glu Ile Ser Glu Thr Leu Arg
Arg Phe Gly Trp385 390 395
400Ile Ile Pro Ala Tyr Thr Met Pro Pro Asn Ala Gln His Val Thr Val
405 410 415Leu Arg Val Val Ile
Arg Glu Asp Phe Ser Arg Thr Leu Ala Glu Arg 420
425 430Leu Val Ile Asp Ile Glu Lys Val Leu His Glu Leu
Asp Thr Leu Pro 435 440 445Ala Arg
Val Asn Ala Lys Leu Ala Val Ala Glu Ala Asn Gly Ser Gly 450
455 460Val His Lys Lys Thr Asp Arg Glu Val Gln Leu
Glu Ile Thr Thr Ala465 470 475
480Trp Lys Lys Phe Val Ala Asp Lys Lys Lys Lys Thr Asn Gly Val Cys
485 490
495119502PRTArabidopsis thaliana 119Met Val Leu Ser His Ala Val Ser Glu
Ser Asp Val Ser Val His Ser1 5 10
15Thr Phe Ala Ser Arg Tyr Val Arg Thr Ser Leu Pro Arg Phe Lys
Met 20 25 30Pro Glu Asn Ser
Ile Pro Lys Glu Ala Ala Tyr Gln Ile Ile Asn Asp 35
40 45Glu Leu Met Leu Asp Gly Asn Pro Arg Leu Asn Leu
Ala Ser Phe Val 50 55 60Thr Thr Trp
Met Glu Pro Glu Cys Asp Lys Leu Ile Met Ser Ser Ile65 70
75 80Asn Lys Asn Tyr Val Asp Met Asp
Glu Tyr Pro Val Thr Thr Glu Leu 85 90
95Gln Asn Arg Cys Val Asn Met Ile Ala His Leu Phe Asn Ala
Pro Leu 100 105 110Glu Glu Ala
Glu Thr Ala Val Gly Val Gly Thr Val Gly Ser Ser Glu 115
120 125Ala Ile Met Leu Ala Gly Leu Ala Phe Lys Arg
Lys Trp Gln Asn Lys 130 135 140Arg Lys
Ala Glu Gly Lys Pro Val Asp Lys Pro Asn Ile Val Thr Gly145
150 155 160Ala Asn Val Gln Val Cys Trp
Glu Lys Phe Ala Arg Tyr Phe Glu Val 165
170 175Glu Leu Lys Glu Val Lys Leu Ser Glu Gly Tyr Tyr
Val Met Asp Pro 180 185 190Gln
Gln Ala Val Asp Met Val Asp Glu Asn Thr Ile Cys Val Ala Asp 195
200 205Ile Leu Gly Ser Thr Leu Asn Gly Glu
Phe Glu Asp Val Lys Leu Leu 210 215
220Asn Asp Leu Leu Val Glu Lys Asn Lys Glu Thr Gly Trp Asp Thr Pro225
230 235 240Ile His Val Asp
Ala Ala Ser Gly Gly Phe Ile Ala Pro Phe Leu Tyr 245
250 255Pro Glu Leu Glu Trp Asp Phe Arg Leu Pro
Leu Val Lys Ser Ile Asn 260 265
270Val Ser Gly His Lys Tyr Gly Leu Val Tyr Ala Gly Ile Gly Trp Val
275 280 285Ile Trp Arg Asn Lys Glu Asp
Leu Pro Glu Glu Leu Ile Phe His Ile 290 295
300Asn Tyr Leu Gly Ala Asp Gln Pro Thr Phe Thr Leu Asn Phe Ser
Lys305 310 315 320Gly Ser
Ser Gln Val Ile Ala Gln Tyr Tyr Gln Leu Ile Arg Leu Gly
325 330 335His Glu Gly Tyr Arg Asn Val
Met Glu Asn Cys Arg Glu Asn Met Ile 340 345
350Val Leu Arg Glu Gly Leu Glu Lys Thr Glu Arg Phe Asn Ile
Val Ser 355 360 365Lys Asp Glu Gly
Val Pro Leu Val Ala Phe Ser Leu Lys Asp Ser Ser 370
375 380Cys His Thr Glu Phe Glu Ile Ser Asp Met Leu Arg
Arg Tyr Gly Trp385 390 395
400Ile Val Pro Ala Tyr Thr Met Pro Pro Asn Ala Gln His Ile Thr Val
405 410 415Leu Arg Val Val Ile
Arg Glu Asp Phe Ser Arg Thr Leu Ala Glu Arg 420
425 430Leu Val Ile Asp Ile Glu Lys Val Met Arg Glu Leu
Asp Glu Leu Pro 435 440 445Ser Arg
Val Ile His Lys Ile Ser Leu Gly Gln Glu Lys Ser Glu Ser 450
455 460Asn Ser Asp Asn Leu Met Val Thr Val Lys Lys
Ser Asp Ile Asp Lys465 470 475
480Gln Arg Asp Ile Ile Thr Gly Trp Lys Lys Phe Val Ala Asp Arg Lys
485 490 495Lys Thr Ser Gly
Ile Cys 500120500PRTPetunia x hybrida 120Met Val Leu Ser Lys
Thr Val Ser Gln Ser Asp Val Ser Ile His Ser1 5
10 15Thr Phe Ala Ser Arg Tyr Val Arg Thr Ser Leu
Pro Arg Phe Lys Met 20 25
30Pro Asp Asn Ser Ile Pro Lys Glu Ala Ala Tyr Gln Ile Ile Asn Asp
35 40 45Glu Leu Met Leu Asp Gly Asn Pro
Arg Leu Asn Leu Ala Ser Phe Val 50 55
60Thr Thr Trp Met Glu Pro Glu Cys Asp Lys Leu Met Met Asp Ser Ile65
70 75 80Asn Lys Asn Tyr Val
Asp Met Asp Glu Tyr Pro Val Thr Thr Glu Leu 85
90 95Gln Asn Arg Cys Val Asn Met Ile Ala His Leu
Phe Asn Ala Pro Leu 100 105
110Glu Asp Gly Glu Thr Ala Val Gly Val Gly Thr Val Gly Ser Ser Glu
115 120 125Ala Ile Met Leu Ala Gly Leu
Ala Phe Lys Arg Lys Trp Gln Asn Lys 130 135
140Met Lys Ala Gln Gly Lys Pro Cys Asp Lys Pro Asn Ile Val Thr
Gly145 150 155 160Ala Asn
Val Gln Val Cys Trp Glu Lys Phe Ala Arg Tyr Phe Glu Val
165 170 175Glu Leu Lys Glu Val Lys Leu
Ser Glu Gly Tyr Tyr Val Met Asp Pro 180 185
190Glu Lys Ala Val Glu Met Val Asp Glu Asn Thr Ile Cys Val
Ala Ala 195 200 205Ile Leu Gly Ser
Thr Leu Asn Gly Glu Phe Glu Asp Val Lys Arg Leu 210
215 220Asn Asp Leu Leu Val Glu Lys Asn Lys Glu Thr Gly
Trp Asp Thr Pro225 230 235
240Ile His Val Asp Ala Ala Ser Gly Gly Phe Ile Ala Pro Phe Ile Tyr
245 250 255Pro Glu Leu Glu Trp
Asp Phe Arg Leu Pro Leu Val Lys Ser Ile Asn 260
265 270Val Ser Gly His Lys Tyr Gly Leu Val Tyr Ala Gly
Ile Gly Trp Val 275 280 285Val Trp
Arg Asn Lys Asp Asp Leu Pro Asp Glu Leu Ile Phe His Ile 290
295 300Asn Tyr Leu Gly Ala Asp Gln Pro Thr Phe Thr
Leu Asn Phe Ser Lys305 310 315
320Gly Ser Ser Gln Val Ile Ala Gln Tyr Tyr Gln Leu Ile Arg Leu Gly
325 330 335Tyr Glu Gly Tyr
Lys Asn Val Met Glu Asn Cys Gln Glu Asn Ala Ser 340
345 350Val Leu Arg Glu Gly Leu Glu Lys Thr Gly Arg
Phe Asn Ile Ile Ser 355 360 365Lys
Glu Ile Gly Val Pro Leu Val Ala Phe Ser Leu Lys Asp Asn Arg 370
375 380Gln His Asn Glu Phe Glu Ile Ser Glu Thr
Leu Arg Arg Phe Gly Trp385 390 395
400Ile Val Pro Ala Tyr Thr Met Pro Pro Asn Ala Gln His Ile Thr
Val 405 410 415Leu Arg Val
Val Ile Arg Glu Asp Phe Ser Arg Thr Leu Ala Glu Arg 420
425 430Leu Val Arg Asp Ile Glu Lys Val Leu His
Glu Leu Asp Thr Leu Pro 435 440
445Ala Arg Val Asn Ala Lys Leu Ala Val Ala Glu Glu Gln Ala Ala Ala 450
455 460Asn Gly Ser Glu Val His Lys Lys
Thr Asp Ser Glu Val Gln Leu Glu465 470
475 480Met Ile Thr Ala Trp Lys Lys Phe Val Glu Glu Lys
Lys Lys Lys Thr 485 490
495Asn Arg Val Cys 500121282PRTOryza sativa 121Gly Glu Phe Glu
Asp Val Lys Leu Leu Asn Asn Leu Leu Thr Glu Lys1 5
10 15Asn Lys Glu Thr Gly Trp Asp Val Pro Ile
His Val Asp Ala Ala Ser 20 25
30Gly Gly Phe Ile Ala Pro Phe Leu Tyr Pro Glu Leu Glu Trp Asp Phe
35 40 45Arg Leu Pro Leu Val Lys Ser Ile
Asn Val Ser Gly His Lys Tyr Gly 50 55
60Leu Val Tyr Pro Gly Val Gly Trp Val Ile Trp Arg Ser Lys Glu Asp65
70 75 80Leu Pro Glu Glu Leu
Ile Phe His Ile Asn Tyr Leu Gly Thr Asp Gln 85
90 95Pro Thr Phe Thr Leu Asn Phe Ser Lys Gly Ser
Ser Gln Ile Ile Ala 100 105
110Gln Tyr Tyr Gln Leu Ile Arg Leu Gly Phe Glu Gly Tyr Lys Asn Ile
115 120 125Met Gln Asn Cys Met Glu Thr
Pro Ala Ile Leu Arg Glu Gly Ile Glu 130 135
140Ala Thr Gly Arg Phe Glu Ile Leu Ser Lys Glu Ala Gly Val Pro
Leu145 150 155 160Val Ala
Phe Ser Leu Lys Ala Ser Gly Arg Tyr Thr Val Phe Asp Ile
165 170 175Ser Glu His Leu Arg Arg Phe
Gly Trp Ile Val Pro Ala Tyr Thr Met 180 185
190Pro Ala Asn Ala Glu His Val Ala Ile Leu Arg Val Val Ile
Arg Glu 195 200 205Asp Phe Ser Arg
Ser Leu Ala Glu Arg Leu Val Ser Asp Ile Val Lys 210
215 220Ile Leu His Glu Leu Asp Ala His Ser Ala Gln Val
Leu Lys Ile Ser225 230 235
240Ser Ala Ile Ala Lys Gln Gln Ser Gly Asp Asp Gly Ala Val Thr Lys
245 250 255Lys Ser Val Leu Glu
Thr Glu Arg Glu Ile Phe Ala Tyr Trp Arg Asp 260
265 270Gln Val Lys Lys Lys Gln Thr Gly Ile Cys
275 280122502PRTLycopersicon esculentum 122Met Val Leu
Thr Thr Thr Ser Ile Arg Asp Ser Glu Glu Ser Leu His1 5
10 15Cys Thr Phe Ala Ser Arg Tyr Val Gln
Glu Pro Leu Pro Lys Phe Lys 20 25
30Met Pro Lys Lys Ser Met Pro Lys Glu Ala Ala Tyr Gln Ile Val Asn
35 40 45Asp Glu Leu Met Leu Asp Gly
Asn Pro Arg Leu Asn Leu Ala Ser Phe 50 55
60Val Ser Thr Trp Met Glu Pro Glu Cys Asp Lys Leu Ile Met Ser Ser65
70 75 80Ile Asn Lys Asn
Tyr Val Asp Met Asp Glu Tyr Pro Val Thr Thr Glu 85
90 95Leu Gln Asn Arg Cys Val Asn Met Leu Ala
His Leu Phe His Ala Pro 100 105
110Val Gly Asp Asp Glu Thr Ala Val Gly Val Gly Thr Val Gly Ser Ser
115 120 125Glu Ala Ile Met Leu Ala Gly
Leu Ala Phe Lys Arg Lys Trp Gln Ser 130 135
140Lys Arg Lys Ala Glu Gly Lys Pro Phe Asp Lys Pro Asn Ile Val
Thr145 150 155 160Gly Ala
Asn Val Gln Val Cys Trp Glu Lys Phe Ala Arg Tyr Phe Glu
165 170 175Val Glu Leu Lys Glu Val Lys
Leu Lys Glu Gly Tyr Tyr Val Met Asp 180 185
190Pro Ala Lys Ala Val Glu Ile Val Asp Glu Asn Thr Ile Cys
Val Ala 195 200 205Ala Ile Leu Gly
Ser Thr Leu Thr Gly Glu Phe Glu Asp Val Lys Leu 210
215 220Leu Asn Glu Leu Leu Thr Lys Lys Asn Lys Glu Thr
Gly Trp Glu Thr225 230 235
240Pro Ile His Val Asp Ala Ala Ser Gly Gly Phe Ile Ala Pro Phe Leu
245 250 255Trp Pro Asp Leu Glu
Trp Asp Phe Arg Leu Pro Leu Val Lys Ser Ile 260
265 270Asn Val Ser Gly His Lys Tyr Gly Leu Val Tyr Ala
Gly Val Gly Trp 275 280 285Val Ile
Trp Arg Ser Lys Glu Asp Leu Pro Asp Glu Leu Val Phe His 290
295 300Ile Asn Tyr Leu Gly Ser Asp Gln Pro Thr Phe
Thr Leu Asn Phe Ser305 310 315
320Lys Gly Ser Tyr Gln Ile Ile Ala Gln Tyr Tyr Gln Leu Ile Arg Leu
325 330 335Gly Phe Glu Gly
Tyr Lys Asn Val Met Lys Asn Cys Leu Ser Asn Ala 340
345 350Lys Val Leu Thr Glu Gly Ile Thr Lys Met Gly
Arg Phe Asp Ile Val 355 360 365Ser
Lys Asp Val Gly Val Pro Val Val Ala Phe Ser Leu Arg Asp Ser 370
375 380Ser Lys Tyr Thr Val Phe Glu Val Ser Glu
His Leu Arg Arg Phe Gly385 390 395
400Trp Ile Val Pro Ala Tyr Thr Met Pro Pro Asp Ala Glu His Ile
Ala 405 410 415Val Leu Arg
Val Val Ile Arg Glu Asp Phe Ser His Ser Leu Ala Glu 420
425 430Arg Leu Val Ser Asp Ile Glu Lys Ile Leu
Ser Glu Leu Asp Thr Gln 435 440
445Pro Pro Arg Leu Pro Thr Lys Ala Val Arg Val Thr Ala Glu Glu Val 450
455 460Arg Asp Asp Lys Gly Asp Gly Leu
His His Phe His Met Asp Thr Val465 470
475 480Glu Thr Gln Lys Asp Ile Ile Lys His Trp Arg Lys
Ile Ala Gly Lys 485 490
495Lys Thr Ser Gly Val Cys 500123500PRTOryza sativa 123Met Val
Leu Thr His Val Glu Ala Val Glu Glu Gly Ser Glu Ala Ala1 5
10 15Ala Ala Val Phe Ala Ser Arg Tyr
Val Gln Asp Pro Val Pro Arg Tyr 20 25
30Glu Leu Gly Glu Arg Ser Ile Ser Lys Asp Ala Ala Tyr Gln Ile
Val 35 40 45His Asp Glu Leu Leu
Leu Asp Ser Ser Pro Arg Leu Asn Leu Ala Ser 50 55
60Phe Val Thr Thr Trp Met Glu Pro Glu Cys Asp Arg Leu Ile
Leu Glu65 70 75 80Ala
Ile Asn Lys Asn Tyr Ala Asp Met Asp Glu Tyr Pro Val Thr Thr
85 90 95Glu Leu Gln Asn Arg Cys Val
Asn Ile Ile Ala Arg Leu Phe Asn Ala 100 105
110Pro Val Gly Asp Gly Glu Lys Ala Val Gly Val Gly Thr Val
Gly Ser 115 120 125Ser Glu Ala Ile
Met Leu Ala Gly Leu Ala Phe Lys Arg Arg Trp Gln 130
135 140Asn Arg Arg Lys Ala Ala Gly Lys Pro His Asp Lys
Pro Asn Ile Val145 150 155
160Thr Gly Ala Asn Val Gln Val Cys Trp Glu Lys Phe Ala Arg Tyr Phe
165 170 175Glu Val Glu Leu Lys
Glu Val Lys Leu Thr Glu Gly Cys Tyr Val Met 180
185 190Asp Pro Val Lys Ala Val Asp Met Val Asp Glu Asn
Thr Ile Cys Val 195 200 205Ala Ala
Ile Leu Gly Ser Thr Leu Thr Gly Glu Phe Glu Asp Val Arg 210
215 220Arg Leu Asn Asp Leu Leu Ala Ala Lys Asn Lys
Arg Thr Gly Trp Asp225 230 235
240Thr Pro Ile His Val Asp Ala Ala Ser Gly Gly Phe Ile Ala Pro Phe
245 250 255Ile Tyr Pro Glu
Leu Glu Trp Asp Phe Arg Leu Pro Leu Val Lys Ser 260
265 270Ile Asn Val Ser Gly His Lys Tyr Gly Leu Val
Tyr Ala Gly Val Gly 275 280 285Trp
Val Ile Trp Arg Asn Lys Glu Asp Leu Pro Glu Glu Leu Ile Phe 290
295 300His Ile Asn Tyr Leu Gly Ala Asp Gln Pro
Thr Phe Thr Leu Asn Phe305 310 315
320Ser Lys Gly Ser Ser Gln Ile Ile Ala Gln Tyr Tyr Gln Phe Leu
Arg 325 330 335Leu Gly Phe
Glu Gly Tyr Lys Ser Val Met Lys Asn Cys Met Glu Ser 340
345 350Ala Arg Thr Leu Arg Glu Gly Leu Glu Lys
Thr Gly Arg Phe Thr Ile 355 360
365Ile Ser Lys Glu Glu Gly Val Pro Leu Val Ala Phe Thr Phe Lys Asp 370
375 380Gly Ala Gly Ala Gln Ala Phe Arg
Leu Ser Ser Gly Leu Arg Arg Tyr385 390
395 400Gly Trp Ile Val Pro Ala Tyr Thr Met Pro Ala Ala
Leu Glu His Met 405 410
415Thr Val Leu Arg Val Val Val Arg Glu Asp Phe Gly Arg Pro Leu Ala
420 425 430Glu Arg Phe Leu Ser His
Val Arg Met Ala Leu Asp Glu Met Asp Leu 435 440
445Ala Ala Arg Ala Pro Val Pro Arg Val Gln Leu Thr Ile Glu
Leu Gly 450 455 460Pro Ala Arg Thr Ala
Gly Glu Glu Ala Ser Ile Arg Val Val Lys Ser465 470
475 480Glu Ala Val Pro Val Arg Lys Ser Val Pro
Leu Val Ala Gly Lys Thr 485 490
495Lys Gly Val Cys 500124513PRTOryza sativa 124Met Val
Leu Ser His Gly Val Ser Gly Ser Asp Glu Ser Val His Ser1 5
10 15Thr Phe Ala Ser Arg Tyr Val Arg
Thr Ser Leu Pro Arg His Ala Arg 20 25
30Ser Pro Leu Ser Arg Ala Pro Leu Ala Pro Ile Asp Ser Val Ile
Asp 35 40 45Trp Glu Phe Arg Met
Pro Glu Gln Ser Ile Pro Lys Glu Ala Ala Tyr 50 55
60Gln Ile Ile Asn Asp Glu Leu Met Leu Asp Gly Asn Pro Arg
Leu Asn65 70 75 80Leu
Ala Ser Phe Val Thr Thr Trp Met Glu Pro Glu Cys Asp Lys Leu
85 90 95Ile Gln Ala Ser Val Asn Lys
Asn Tyr Val Asp Met Asp Glu Tyr Pro 100 105
110Val Thr Thr Glu Leu Gln Asn Arg Cys Val Asn Met Ile Ala
His Leu 115 120 125Phe Asn Ala Pro
Leu Gly Asp Ser Glu Thr Ala Val Gly Val Gly Thr 130
135 140Val Gly Ser Ser Glu Ala Ile Met Leu Ala Gly Leu
Ala Phe Lys Arg145 150 155
160Arg Trp Gln Asn Lys Met Lys Ala Ala Gly Lys Pro Cys Asp Lys Pro
165 170 175Asn Ile Val Thr Gly
Ala Asn Val Gln Val Cys Trp Glu Lys Phe Ala 180
185 190Arg Tyr Phe Glu Val Glu Leu Lys Glu Val Lys Leu
Ser Asp Gly Tyr 195 200 205Tyr Val
Met Asp Pro Ala Lys Ala Val Asp Met Val Asp Glu Asn Thr 210
215 220Ile Cys Val Ala Ala Ile Leu Gly Ser Thr Leu
Asn Gly Glu Phe Glu225 230 235
240Asp Val Lys Leu Leu Asn Asp Leu Leu Thr Lys Lys Asn Ala Glu Thr
245 250 255Gly Trp Asp Thr
Pro Ile His Val Asp Ala Ala Ser Gly Gly Phe Ile 260
265 270Ala Pro Phe Leu Tyr Pro Glu Leu Glu Trp Asp
Phe Arg Leu Pro Leu 275 280 285Val
Lys Ser Ile Asn Val Ser Gly His Lys Tyr Gly Leu Val Tyr Ala 290
295 300Gly Ile Gly Trp Cys Ile Trp Arg Ser Lys
Glu Asp Leu Pro Glu Glu305 310 315
320Leu Ile Phe His Ile Asn Tyr Leu Gly Ala Asp Gln Pro Thr Phe
Thr 325 330 335Leu Asn Phe
Ser Lys Gly Ser Ser Gln Val Ile Ala Gln Tyr Tyr Gln 340
345 350Leu Ile Arg Leu Gly Phe Glu Gly Tyr Lys
Asn Ile Met Glu Asn Cys 355 360
365Gln Glu Asn Ala Met Val Leu Lys Gln Gly Leu Glu Lys Thr Gly Arg 370
375 380Phe Asn Ile Val Ser Lys Asp Asn
Gly Val Pro Leu Val Ala Phe Ser385 390
395 400Leu Lys Asp Ser Ala Arg His Asn Glu Phe Glu Ile
Ser Asp Phe Leu 405 410
415Arg Arg Phe Gly Trp Ile Val Pro Ala Tyr Thr Met Pro Pro Asp Ala
420 425 430Gln His Val Thr Val Leu
Arg Val Val Ile Arg Glu Asp Phe Ser Arg 435 440
445Thr Leu Ala Glu Arg Leu Val Leu Asp Val Glu Lys Val Leu
His Glu 450 455 460Leu Asp Ala Leu Pro
Ala Arg Val Val Ala Asn Gly Gly Asp Ala Ala465 470
475 480Ala Ala Ser Ala Ser Glu Arg Glu Met Glu
Lys Gln Arg Glu Val Ile 485 490
495Ser Leu Trp Lys Arg Ala Val Leu Ala Lys Lys Lys Thr Asn Gly Val
500 505 510Cys125500PRTOryza
sativa 125Met Val Leu Thr His Val Glu Ala Val Glu Glu Gly Ser Glu Ala
Ala1 5 10 15Ala Ala Val
Phe Ala Ser Arg Tyr Val Gln Asp Pro Val Pro Arg Tyr 20
25 30Glu Leu Gly Glu Arg Ser Ile Ser Lys Asp
Ala Ala Tyr Gln Ile Val 35 40
45His Asp Glu Leu Leu Leu Asp Ser Ser Pro Arg Leu Asn Leu Ala Ser 50
55 60Phe Val Thr Thr Trp Met Glu Pro Glu
Cys Asp Arg Leu Ile Leu Glu65 70 75
80Ala Ile Asn Lys Asn Tyr Ala Asp Met Asp Glu Tyr Pro Val
Thr Thr 85 90 95Glu Leu
Gln Asn Arg Cys Val Asn Ile Ile Ala Arg Leu Phe Asn Ala 100
105 110Pro Val Gly Asp Gly Glu Lys Ala Val
Gly Val Gly Thr Val Gly Ser 115 120
125Ser Glu Ala Ile Met Leu Ala Gly Leu Ala Phe Lys Arg Arg Trp Gln
130 135 140Asn Arg Arg Lys Ala Ala Gly
Lys Pro His Asp Lys Pro Asn Ile Val145 150
155 160Thr Gly Ala Asn Val Gln Val Cys Trp Glu Lys Phe
Ala Arg Tyr Phe 165 170
175Glu Val Glu Leu Lys Glu Val Lys Leu Thr Glu Gly Cys Tyr Val Met
180 185 190Asp Pro Val Lys Ala Val
Asp Met Val Asp Glu Asn Thr Ile Cys Val 195 200
205Ala Ala Ile Leu Gly Ser Thr Leu Thr Gly Glu Phe Glu Asp
Val Arg 210 215 220Arg Leu Asn Asp Leu
Leu Ala Ala Lys Asn Lys Arg Thr Gly Trp Asp225 230
235 240Thr Pro Ile His Val Asp Ala Ala Ser Gly
Gly Phe Ile Ala Pro Phe 245 250
255Ile Tyr Pro Glu Leu Glu Trp Asp Phe Arg Leu Pro Leu Val Lys Ser
260 265 270Ile Asn Val Ser Gly
His Lys Tyr Gly Leu Val Tyr Ala Gly Val Gly 275
280 285Trp Val Ile Trp Arg Asn Lys Glu Asp Leu Pro Glu
Glu Leu Ile Phe 290 295 300His Ile Asn
Tyr Leu Gly Ala Asp Gln Pro Thr Phe Thr Leu Asn Phe305
310 315 320Ser Lys Gly Ser Ser Gln Ile
Ile Ala Gln Tyr Tyr Gln Phe Leu Arg 325
330 335Leu Gly Phe Glu Gly Tyr Lys Ser Val Met Lys Asn
Cys Met Glu Ser 340 345 350Ala
Arg Thr Leu Arg Glu Gly Leu Glu Lys Thr Gly Arg Phe Thr Ile 355
360 365Ile Ser Lys Glu Glu Gly Val Pro Leu
Val Ala Phe Thr Phe Lys Asp 370 375
380Gly Ala Gly Ala Gln Ala Phe Arg Leu Ser Ser Gly Leu Arg Arg Tyr385
390 395 400Gly Trp Ile Val
Pro Ala Tyr Thr Met Pro Ala Ala Leu Glu His Met 405
410 415Thr Val Val Arg Val Val Val Arg Glu Asp
Phe Gly Arg Pro Leu Ala 420 425
430Glu Arg Phe Leu Ser His Val Arg Met Ala Leu Asp Glu Met Asp Leu
435 440 445Ala Ala Arg Ala Pro Val Pro
Arg Val Gln Leu Thr Ile Glu Leu Gly 450 455
460Pro Ala Arg Thr Ala Gly Glu Glu Ala Ser Ile Arg Val Val Lys
Ser465 470 475 480Glu Ala
Val Pro Val Arg Lys Ser Val Pro Leu Val Ala Gly Lys Thr
485 490 495Lys Gly Val Cys
500126492PRTOryza sativa 126Met Val Leu Ser His Gly Val Ser Gly Ser Asp
Glu Ser Val His Ser1 5 10
15Thr Phe Ala Ser Arg Tyr Val Arg Thr Ser Leu Pro Arg Phe Arg Met
20 25 30Pro Glu Gln Ser Ile Pro Lys
Glu Ala Ala Tyr Gln Ile Ile Asn Asp 35 40
45Glu Leu Met Leu Asp Gly Asn Pro Arg Leu Asn Leu Ala Ser Phe
Val 50 55 60Thr Thr Trp Met Glu Pro
Glu Cys Asp Lys Leu Ile Gln Ala Ser Val65 70
75 80Asn Lys Asn Tyr Val Asp Met Asp Glu Tyr Pro
Val Thr Thr Glu Leu 85 90
95Gln Asn Arg Cys Val Asn Met Ile Ala His Leu Phe Asn Ala Pro Leu
100 105 110Gly Asp Ser Glu Thr Ala
Val Gly Val Gly Thr Val Gly Ser Ser Glu 115 120
125Ala Ile Met Leu Ala Gly Leu Ala Phe Lys Arg Arg Trp Gln
Asn Lys 130 135 140Met Lys Ala Ala Gly
Lys Pro Cys Asp Lys Pro Asn Ile Val Thr Gly145 150
155 160Ala Asn Val Gln Val Cys Trp Glu Lys Phe
Ala Arg Tyr Phe Glu Val 165 170
175Glu Leu Lys Glu Val Lys Leu Ser Asp Gly Tyr Tyr Val Met Asp Pro
180 185 190Ala Lys Ala Val Asp
Met Val Asp Glu Asn Thr Ile Cys Val Ala Ala 195
200 205Ile Leu Gly Ser Thr Leu Asn Gly Glu Phe Glu Asp
Val Lys Leu Leu 210 215 220Asn Asp Leu
Leu Thr Lys Lys Asn Ala Glu Thr Gly Trp Asp Thr Pro225
230 235 240Ile His Val Asp Ala Ala Ser
Gly Gly Phe Ile Ala Pro Phe Leu Tyr 245
250 255Pro Glu Leu Glu Trp Asp Phe Arg Leu Pro Leu Val
Lys Ser Ile Asn 260 265 270Val
Ser Gly His Lys Tyr Gly Leu Val Tyr Ala Gly Ile Gly Trp Cys 275
280 285Ile Trp Arg Ser Lys Glu Asp Leu Pro
Glu Glu Leu Ile Phe His Ile 290 295
300Asn Tyr Leu Gly Ala Asp Gln Pro Thr Phe Thr Leu Asn Phe Ser Lys305
310 315 320Gly Ser Ser Gln
Val Ile Ala Gln Tyr Tyr Gln Leu Ile Arg Leu Gly 325
330 335Phe Glu Gly Tyr Lys Asn Ile Met Glu Asn
Cys Gln Glu Asn Ala Met 340 345
350Val Leu Lys Gln Gly Leu Glu Lys Thr Gly Arg Phe Asn Ile Val Ser
355 360 365Lys Asp Asn Gly Val Pro Leu
Val Ala Phe Ser Leu Lys Asp Ser Ala 370 375
380Arg His Asn Glu Phe Glu Ile Ser Asp Phe Leu Arg Arg Phe Gly
Trp385 390 395 400Ile Val
Pro Ala Tyr Thr Met Pro Pro Asp Ala Gln His Val Thr Val
405 410 415Leu Arg Val Val Ile Arg Glu
Asp Phe Ser Arg Thr Leu Ala Glu Arg 420 425
430Leu Val Leu Asp Val Glu Lys Val Leu His Glu Leu Asp Ala
Leu Pro 435 440 445Ala Arg Val Val
Ala Asn Gly Gly Asp Ala Ala Ala Ala Ser Ala Ser 450
455 460Glu Arg Glu Met Glu Lys Gln Arg Glu Val Ile Ser
Leu Trp Lys Arg465 470 475
480Ala Val Leu Ala Lys Lys Lys Thr Asn Gly Val Cys 485
490127490PRTHordeum vulgare 127Met Val Val Thr Val Ala Ala
Thr Gly Pro Asp Thr Ala Glu Thr Leu1 5 10
15His Ser Thr Thr Phe Ala Ser Arg Tyr Val Arg Asp Gln
Leu Pro Arg 20 25 30Tyr Arg
Met Pro Glu Asn Ser Ile Pro Lys Glu Ala Ala Tyr Gln Ile 35
40 45Ile Ser Asp Glu Leu Met Leu Asp Gly Asn
Pro Arg Leu Asn Leu Ala 50 55 60Ser
Phe Val Thr Thr Trp Met Glu Pro Glu Cys Gly Lys Leu Ile Met65
70 75 80Asp Ser Val Asn Lys Asn
Tyr Val Asp Met Asp Glu Tyr Pro Val Thr 85
90 95Thr Glu Leu Gln Asp Arg Cys Val Asn Met Ile Ala
His Leu Phe Asn 100 105 110Ala
Pro Ile Gly Glu Asp Glu Thr Ala Ile Gly Val Ser Thr Val Gly 115
120 125Ser Ser Glu Ala Ile Met Leu Ala Gly
Leu Ala Phe Lys Arg Lys Trp 130 135
140Ala Asn Lys Met Lys Glu Gln Gly Lys Pro Cys Asp Lys Pro Asn Ile145
150 155 160Val Thr Gly Ala
Asn Val Gln Val Cys Trp Glu Lys Phe Ala Arg Tyr 165
170 175Phe Glu Val Glu Leu Lys Glu Val Lys Leu
Thr Glu Gly Tyr Tyr Val 180 185
190Met Asp Pro Lys Lys Ala Val Glu Met Val Asp Glu Asn Thr Ile Cys
195 200 205Val Ala Ala Ile Leu Gly Ser
Thr Leu Thr Gly Glu Tyr Glu Asp Val 210 215
220Lys Leu Leu Asn Asp Leu Leu Val Glu Lys Asn Lys Glu Thr Gly
Trp225 230 235 240Asn Val
Pro Ile His Val Asp Ala Ala Ser Gly Gly Phe Ile Ala Pro
245 250 255Phe Leu Gln Pro Glu Leu Glu
Trp Asp Phe Arg Leu Pro Leu Val Lys 260 265
270Ser Ile Asn Val Ser Gly His Lys Tyr Gly Leu Val Tyr Pro
Gly Val 275 280 285Gly Trp Val Ile
Trp Arg Ser Lys Asp Asp Leu Pro Glu Glu Leu Ile 290
295 300Phe His Ile Asn Tyr Leu Gly Ala Asp Gln Pro Thr
Phe Thr Leu Asn305 310 315
320Phe Ser Lys Gly Gln Gln Ile Ile Ala Gln Tyr Tyr Gln Leu Ile Arg
325 330 335Leu Gly Phe Glu Gly
Tyr Lys His Ile Met Glu Asn Cys Lys Leu Asn 340
345 350Ala Ala Val Leu Lys Glu Gly Ile Asp Ala Thr Gly
Arg Phe Asp Val 355 360 365Leu Ser
Lys Ala Asp Gly Val Pro Leu Val Ala Ile Arg Leu Lys Asp 370
375 380Ser Thr Asn Phe Ser Val Phe Asp Ile Ser Glu
Asn Leu Arg Arg Phe385 390 395
400Gly Trp Ile Val Pro Ala Tyr Thr Met Pro Ala Asp Ala Glu His Val
405 410 415Ala Val Leu Arg
Ile Val Ile Arg Glu Asp Phe Asn Arg Ser Leu Ala 420
425 430Gln Arg Leu Leu Ala Asp Ile Asn Lys Ile Ile
Gly Glu Leu Asp Ala 435 440 445His
Ala Val His Ala Ile Lys Leu Ser Thr Ala Ala Ala Gly Gly Asp 450
455 460Gly Ala Ser Lys Ser Ala Val Asp Ala Ala
Thr Glu Ala Phe Lys Asp465 470 475
480Leu Ala Gly Lys Lys Lys Ala Gly Val Cys 485
490
User Contributions:
Comment about this patent or add new information about this topic: