Patent application title: RECOMBINANT ANTIGEN FOR DIAGNOSIS AND PREVENTION OF MURINE TYPHUS
Inventors:
Wei-Mei Ching (Bethesda, MD, US)
Hua-Wei Chen (Germantown, MD, US)
IPC8 Class: AA61K3902FI
USPC Class:
4241901
Class name: Antigen, epitope, or other immunospecific immunoeffector (e.g., immunospecific vaccine, immunospecific stimulator of cell-mediated immunity, immunospecific tolerogen, immunospecific immunosuppressor, etc.) amino acid sequence disclosed in whole or in part; or conjugate, complex, or fusion protein or fusion polypeptide including the same disclosed amino acid sequence derived from bacterium (e.g., mycoplasma, anaplasma, etc.)
Publication date: 2011-07-14
Patent application number: 20110171245
Abstract:
The invention relates to a recombinant immunogenic composition from
Rickettsia typhi. The invention also relates to a method for the use of
the recombinant proteins in detection and diagnostic assays and as a
component in formulations for the induction of an anti-R. typhi immune
response.Claims:
1. An immunogenic composition comprising the recombinant Rickettsia typhi
OmpB polypeptide AN, or fragments thereof, with the amino acid sequence
of SEQ ID No. 1.
2. The immunogenic composition of claim 1, wherein said fragments is one or more AN polypeptides with a sequences containing predicted B cell epitopes selected from the group consisting of SEQ ID No. 9-29.
3. A method of detecting R. typhi infection comprising the steps: a. exposing the composition of claim 1 to patient sera; b. measuring antibody bound to said AN polypeptide.
4. The method of claim 2, wherein said composition is immobilized onto a solid surface.
5. The method of claim 2, wherein said method also includes the steps exposing patient sera to recombinant OmpB polypeptide and measuring antibody bound to said OmpB polypeptide.
6. A method for inducing an immune response to R. typhi comprising the steps: a. administering an immunogenic composition comprising the composition of claim 1 in a unit dose range of 50 μg to 2 mg; b. administration of boosting dose of said immunogenic composition at least 1 week after priming dose with unit dose range of 50 μg to 2 mg in a buffered aqueous solution, wherein an immune response is elicited.
7. The method of claim 6, wherein said fragments is one or more AN polypeptides with a sequence containing predicted B cell epitopes selected from the group consisting of SEQ ID No. 9-29.
Description:
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application is a continuation in part of application Ser. No. 11/789,122 filed Apr. 18, 2007 and is hereby incorporated by reference application Ser. No. 11/789,122 claims priority to U.S. Provisional application 60/793,583 filed Apr. 20, 2006.
SEQUENCE LISTING
[0002] I hereby state that the information recorded in computer readable form is identical to the written sequence listing.
BACKGROUND OF THE INVENTION
[0003] 1. Field of the Invention
[0004] This invention relates to a gene and protein which can be used for vaccination against and/or for the detection and identification of R. typhi infection. More particularly, the invention relates to a specific nucleotide sequence encoding a highly specific and immunogenic portion of the gene encoding the protective OmpB antigen of Rickettsia typhi and the polypeptide products of this gene. The polypeptide sequence can be utilized in diagnostic and detection assays for murine typhus and as an immunogen useful as a component in vaccine formulations against murine typhus.
[0005] 2. Description of the Prior Art
[0006] Murine (endemic or flea-borne) typhus, caused by infection with Rickettsia typhi, is a zoonosis that involves rats (Rattus rattus and R. norvegicus) as the main reservoir and the oriental rat flea (Xenopsylla cheopis) as the main vector [1,2]. The infection is primarily caused by scratching the flea bitted site and self-inoculating the R. typhi-laden feces, or directly by infected flea bite [3]. The symptoms of murine typhus include fever, headache, enlarged local lymph nodes and rashes on the trunk. These clinical manifestations are non-specific and resemble many other diseases such as viral infections, typhoid fever, leptospirosis, epidemic typhus and scrub typhus [3,10]. As a result, murine typhus is frequently misdiagnosed and its incidence is probably grossly underestimated.
[0007] Murine typhus is one of the most widely distributed arthropod-borne diseases of humans and occurs in a variety of environments from hot and humid lowlands to semi-arid highlands including Australia [6], Spain [7], Indonesia [8], and southwestern United States [9] in addition to previously reported countries including China, Thailand, Kuwait, Israel, and Vietnam [3,5]. It is often found in international port cities and costal regions where rodents are common [3-5].
[0008] The diagnosis of murine typhus relies mainly on serological methods [11]. The old serological assay, Weil-Felix test, is based on the detection of antibodies to Proteus vulgaris OX-19 that contains cross reactive epitopes of Rickettsia [12, 13]. However, determination of R. typhi infection by the Weil-Felix test requires a qualitative determination and therefore somewhat subjective. Additionally, because the Weil-Felix reaction requires specialized reagents, many facilities especially in rural areas or in developing countries often may not be capable of performing the laboratory diagnosis.
[0009] Other techniques include immuno-fluorescence assay (IFA) and complement fixation (CT) tests were adapted for the detection of antibodies specific for rickettsiae [14-16]. Current serodiagnostic assays such as the ELISA, Dip-S-Ticks (DS), indirect immunofluorescent antibody (IFA) and indirect peroxidase assays [17,18] require the propagation of rickettsiae in infected yolk sacs of embryonated chicken eggs or cell cultures to prepare the antigens used in these assays. However, only a few specialized laboratories have the ability to culture and purify rickettsiae, which requires Biosafety level three (BSL-3) containment facilities. Additionally, because the organism is required for the assay, in addition to potential biosafety hazards associated with the assay, these assay methods also suffer from refrigerated storage requirements, and the problem of reproducibility associated with frequent production of rickettsial antigens.
[0010] In addition to antibody-based assays, polymerase chain reaction (PCR) amplification of rickettsial protein antigen genes has been demonstrated as a reliable diagnostic method, and genotypes can be determined without isolation of the organism [19,20]. However, gene amplification requires sophisticated instrumentation and reagents generally not available in most medical facilities especially those far forward. Based on these considerations, production of recombinant antigens of R. typhi is a logic direction for the development of serological assays and vaccine candidates for murine typhus.
[0011] R. typhi has a monomolecular layer of protein arranged in a periodic tetragonal array on its surface [21]. This crystalline layer, representing 10 to 15% of the total protein mass of the rickettsia, was identified as the immunodominant species-specific surface protein antigen OmpB. It has been isolated, purified, and biochemically characterized [22-25]. The earliest and dominant immunological responses in mice, guinea pigs, rabbits, and humans, following infection with R. typhi, are directed against Omp B [17, 4, 25]. We have shown that purified native typhus OmpB induces strong humoral and cell mediated immune responses. Protective immunity was elicited by typhus OmpB in guinea pig and mouse protection models [26-29].
[0012] Based on these observations, therefore, OmpB is a particularly advantageous target for developing diagnostic reagents. R. prowazekii, the etiologic agent of epidemic typhus, also belongs to the typhus group of rickettsiae and its OmpB exhibits similar antigenic and chemical structures to those of R. typhi. Therefore, cross-reactivity of antibody to OmpB between these two species is inevitable. Cross absorption of test serum is needed to distinguish between them these to species [10].
[0013] The whole ORF of OmpB codes for a polypeptide of 1642 amino acids. The native matured protein does not contain the leader peptide at the N-terminus and the β-sheet peptide at the C-terminus. The expression of the intact OmpB protein (135 kDa) has been attempted. However, the full-length product was shown to be toxic to Escherichia coli and rapidly degraded. Moreover, due to its large size and high constant of β-sheet structure, refolding of the full-length gene product was not successful.
SUMMARY OF THE INVENTION
[0014] Accordingly, an object of this invention are methylated and unmethylated recombinant polypeptides encompassing immunologically active regions of OmpB of Rickettsia typhi.
[0015] Another object of the invention is a method of using the methylated or unmethylated recombinant OmpB fragments in antibody-based assays for the detection of exposure to Rickettsia typhi.
[0016] A still further object of the invention is the use of OmpB or the OmpB fragments as an immunogen.
BRIEF DESCRIPTION OF DRAWINGS
[0017] FIG. 1. Open reading frame of OmpB and location of Fragments A, K and AN.
[0018] FIG. 2. Western blot analysis of IgG and IgM reactivity to fragment AN.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0019] Evaluation of Rickettsia typhi proteins has led to the identification of OmpB is an exceptionally promising candidate as a reagent for use in diagnostic and detection assays as well as components in vaccine formulations. The species-specific surface protein antigen OmpB (SEQ ID No. 3, encoded by nucleotide sequence of SEQ ID No. 4) of R. typhi was identified as the immunodominant. The earliest and dominant immunological anti-protein responses of mice, guinea pigs, rabbits, and humans following infection with R. typhi are directed against this Omp B antigen. These observations suggested OmpB as an appropriate target for developing diagnostic reagents.
[0020] Central to the development of improved detection and diagnostic immunoassay methods and standardization is the development of more effective antigens for use in existing antibody-based methods. In order to improve the antigenicity and potential immunogenicity of the OmpB, specific regions of OmpB were evaluated for sera reactivity. Western blot analysis of partially digested OmpB revealed that all the reactive fragments were larger than 20 kDa [31]. One reactive fragment was located at the N-terminus and another located at the C-terminus. Along these lines, efforts have been made to identify immunodominant fragments of OmpB proteins. Accordingly, two highly sera-reactive protein fragments (Fragment A and Fragment K) have been identified. FIG. 1 illustrates the location of these fragments within the OmpB molecule. The location Fragment AN, which has the amino acid sequence of SEQ ID No. 1 and is encoded by nucleotide sequence SEQ ID No. 2, is also illustrated in FIG. 1.
[0021] Fragment AN was successfully cloned, expressed, purified, and refolded. The fragment has been shown to be recognized by different patient sera and can be used to replace whole cell antigens and/or native OmpB as a diagnostic marker and a potential vaccine candidate.
[0022] Construction of recombinant R. typhi protein AN Fragment was carried out by first producing a cDNA copy of the gene sequence by polymerase chain reaction. A primer pair (SEQ ID No. 5 and 6) was designed using the nucleotide sequence of the ORF of R. typhi OmpB.
[0023] The coding sequence was amplified by PCR using DNA from R. typhi Wilminton strain. Amplification was conducted in a mixture of 400 mM each of deoxynucleotide triphosphate, 1 μM of each primer, 1.5 U of Taq polymerase (Perkin Elmer-Cetus, Norwalk Conn.) in 10 mM Tris-HCl buffer, pH 8.3, 1.5 mM MgCl2, and 50 mM KCl. The PCR reaction was started with 5 min at 94 C, and followed by 30 cycle of 94 C for 50 second, 55 C for 1 min and 72 C for 2 min. the last cycle was extended for 10 min at 72 C. the amplified gene fragment was digested with Nde I (New England BioLabs, Beverly, Mass.) and BamHI (GIBCO-BRL Life Technology, Gaithersburg, Md.) and ligated with doubly digested expression vector pET28a.
[0024] Fragment AN was expressed as inclusion body in E. coli BL21. The inclusion bodies were extracted with 0.1×BUG BUSTER® (Novagene (EMD), San Diego, Calif.) three times. The final pellet was dissolved in 8 M urea and purified over a nickel column then refolded by sequential dialysis in decreasing concentrations of urea. The chemical methylation of fragment A was performed according to the procedures described by Taralp and Kaplan (J. Prot. Chem. 16, 183-193, 1997).
[0025] Fragment K coding sequence from amino acid 745 to 1353 was amplified by PCR from DNA isolated R. typhi Wilminton strain. The fragment K gene was amplified in a 50 ul mixture of 150 mM each of deoxynucleotide triphosephate, 0.8 μM of each primer, 2.5 U of Taq Gold polymerase (Perkin Elmer-Cetus, Norwalk Conn.) in 10 mM Tris-HCl buffer, pH 8.3, 1.5 mM MgCl2, and 50 mM KCl. The PCR reaction was started with 10 min at 94 C, and followed by 30 cycle of 94 C for 30 second, 55 C for 30 second and 72 C for 2 min. the last cycle was extended for 7 min at 72 C. The ligation of the amplified fragment K in to pET11a was the same as for fragment A.
[0026] Fragment K was over-expressed in BL21 cells by induction with 1 mM IPTG for 4 hr. The over-expressed K was primarily in the inclusion body and was extracted with 4 M urea. The solubilized K in 4 M urea was further purified with HPLC using two gel filtration columns in tandem (TSK-G3000-SW and TSK-G4000-SW) followed by an anion exchange column using a NaCl gradient (50-100 mM in 30 minutes). A greater than 95% purity as demonstrated by SDS-PAGE. The purified K was refolded by dialysis in 2 M urea at 4° C. with two changes of dialysis solution in the presence of reduced glutathione (1 mM), followed by dialysis in buffer without urea. Expression of Fragment AN was accomplished by inserting the encoding DNA into a suitable expression system, such as pET 28a. The R. typhi recombinant protein antigen can be utilized as an antigen either as an unpurified E. coli lysate or purified by any number of methods and subsequently used as antigen in detection or diagnostic assays.
[0027] Table 1 illustrates the immuno-reactivity of fragment AN from Richettsia typhi in enzyme-linked immunosorbent assay (ELISA). Serum from R. typhi exposed patients were reacted to either fragment AN or whole cell. As shown in Table 1, serum antibodies that did not exhibit sero-reactivity to whole cell antigen also did not react to fragment AN. However, sera positive to whole cell antigen was also reactive to fragment AN. In Table 1, "0" indicates negative titer and therefore negative serum reactivity.
TABLE-US-00001 TABLE 1 Antibody reacitivty against fragment AN or whole cell antigen in ELISA ELISA (ANt) ELISA (whole cell) Serum O.D. titer 65 0.481 + 1/100 107 0.313 + 1/100 113 0.456 + 1/100 163 0.255 - 0 186 0.227 - 0 219 0.161 - 0 224 0.411 + 1/400 243 0.368 + 1/100 245 0.458 + 1/100 250 0.206 - 0 255 0.386 + 1/100 256 0.333 + 1/100 278 0.195 - 0 319 0.071 - 0 376 0.922 + 1/400 453 0.14 - 0 459 0.221 - 0 527 0.08 - 0
[0028] FIG. 2 further illustrates the immunogenicity and immune reactivity of fragment AN. FIG. 2 shows western blot analysis of AN or OmpB against either negative or serum from patients previously exposed to R. typhi. In FIG. 2, OmpBt is the native antigen OmpB of R. typhi and serves as the positive control for the sero-reactivity of recombinant antigen AN. As illustrated in the figure, both IgG as well as IgM antibody isotypes were highly reactive to fragment AN.
[0029] Based on these results, protein fragment AN will be a valuable antigen in detection and diagnostic assays either alone or in assays incorporating other R. typhi recombinant proteins, for example Fragment K (SEQ ID. No. 8). Standardization of antigen will improve assay diagnostic performance and provide early and more accurate treatment regimens. Improved sensitivity can be achieved by combination of protein fragments containing a greater number of epitopes well represented in serum antibody repertoires.
[0030] Accordingly, an aspect of this invention is the recombinant expression of an immunodominant fragment, fragment AN, derived from the outer membrane protein OmpB. This recombinant protein fragment can be used as antigen in a method for the detection of R. typhi infection and murine typhus. Recombinant versese whole cell antigen will confer improved standardization and concomitant assay reproducibility and potentially sensitivity in assays for the detection and diagnostic assays.
[0031] The following examples are provided to further illustrate the use of the invention.
Example 1
Use of OmpB fragment AN as Diagnostic Reagent
[0032] Assays using the recombinantly produced proteins include antibody-based assays such as enzyme-linked immunosorbent assays. As previously mentioned, antigen for the assay can be in the form of unpurified E. coli lysate. However, for increased assay sensitivity and reduced background, purified recombinant R. typhi proteins can be used. The general method is to use the recombinant polypeptide as antigen in order to detect anti-R. typhi antibodies. As such, recombinant AN polypeptide, or AN fragments containing B cell epitopes, is exposed to patient antibody. Antibody binding is, therefore, detected by any number of means including enzyme-linked immunosorbant assay, indirect florescent assay (i.e., IFA), plasmon resonance or of a number of other means for detecting antigen-antibody interaction. Additionally, for increased accuracy of the assay, AN, or fragments thereof can be used in tandem with other recombinant proteins such as OmpB, Fragments A or K.
[0033] Either the entire AN fragment or one or more fragments containing the predicted B-cell epitopes, contained in fragment AN, can be utilized. Table 2 illustrates predicted B-cell epitopes contained in fragment AN and are represented by SEQ ID No.s 9-29.
TABLE-US-00002 TABLE 2 Predicted B-cell epitopes contained in fragment AN Amino Acid Amino Acid position Sequence 4 VMQYNRTTNAA 40 ITANSNNAITFNTPNGNLNS 82 TNVTKQGN 111 QQAATTKSAQNV 131 AINDNDLSG 157 INPTTQEAP 187 GFVKVSDKTF 231 INFNGRDGTGKLVLVSKNGNATE 305 SVDNGNAAT 345 GGKTNFKTADSKV 390 IGDAKNNGNTAG 410 TLVSGNTDPN 464 NGPVNQNPLVNNNALA 542 IQLTSTQNNIL 558 DVTTDQTGV 570 SSLTNNQTLT 590 NTKTLGRFNVGSSKT 619 ENDGSVHLTHNTY 638 NAANQGK 650 DPINTDT 698 NNITTTDANVGSL
[0034] As an illustration, the following procedure is provided, comprising the following steps: [0035] 1. Recombinant protein represented by SEQ ID No. 1, or one or more fragments thereof, is immobilized to a solid surface, such as in 96-well plates; [0036] 2. Unreacted/unbound antigen is washed off. A preferred embodiment of the inventive method is to wash at least 3 times with wash buffer containing 0.1% polysorbate surfactant such as polyoxyethylene (20) sorbitan monolaurate; [0037] 3. Block unreacted sites. In a preferred embodiment, blocking of unreacted sites is accomplished with 5% skim milk in wash buffer) X 45 minutes and then rinsed three times. [0038] 4. React test sera to the bound antigen. As a further control, intact OmpB (SEQ ID No. 3), can also be immobilized and exposed to patient sera; [0039] 5. Plates are washed three times with wash buffer; [0040] 6. After incubating the test sera, the bound antibody-antigen is exposed to a probe. In a preferred embodiment, the probe is enzyme-labeled (e.g. peroxidase) anti-human immunoglobulin; [0041] 7. detecting bound probe. Detection of bound probe can by any number of methods. In a preferred embodiment, detection is by measurement of enzymatic reaction of added substrate.
[0042] The above specific procedural outline is provided to illustrate the general method of using the fragments for the detection R. typhi infection. However, other iterations of the general antibody-based procedure is contemplated. Furthermore, a standard curve can be constructed by conducting the above ELISA procedures with the recombinant proteins but utilizing a range of concentrations of specific antibody to R. typhi. The extent of measured binding of patient serum antibody is compared to a graphic representation of the binding of the R. typhi-specific antibody concentrations.
Example 2
Prophetic Use of Recombinant R. typhi Proteins as a Vaccine Component
[0043] Because of its strong immunoreactivity with serum antibody from R. typhi exposed patients, the recombinantly produced polypeptides is an excellent candidate for use as a componented in R. typhi vaccine formulations. Accordingly, Fragment AN (SEQ ID No. 1), or one or more fragments of the R. typhi protein Fragment AN or their respective DNA sequences (SEQ ID No. 2) incorporated into a suitable expression vector system, can be utilized as vaccine components. Fragments of AN containing B-cell epitopes are represented by SEQ ID No.s 9-29 (see also Table 2). The method for induction of R. typhi immunity contains the following steps: [0044] a. administering an immunogenic composition containing the entire or immunogenic fragments of the recombinant polypeptides selected from the group consisting of SEQ ID No. 1 in a unit dose range of 50 μg to 2 mg; [0045] b. administration of boosting dose of said immunogenic composition at least 1 week after priming dose with unit dose range of 50 μg to 2 mg in a buffered aqueous solution, wherein an immune response is elicited.
[0046] An alternative method of immunizing is to administer DNA sequences encoding Fragment AN, or combinations thereof, inserted into a suitable expression system capable of expressing the fragments in vivo. Suitable expression systems can include viral expression vectors as well as a number of available DNA vector systems.
REFERENCES
[0047] 1. Ito, S., J. W. Vinson & T. J. McGuire, Jr. 1975. Murine typhus Rickettsiae in the oriental rat flea. Ann. N.Y. Acad. Sci. 266: 35-60 [0048] 2. Farhang-Azad, A., R. Traub & C. L. Wisseman, Jr. 1983. Rickettsia mooseri infection in the fleas Leptopsylla segnis and Xenopsylla cheopis. Am. J. Trop. Med. Hyg. 32: 1392-1400 [0049] 3. Azad A F. Epidemiology of murine typhus. Annu Rev Entomol 1990; 35:553-69. [0050] 4. Kelly D J, Richards A L, Temenak J J, Stickman D, Dasch G A. The past and present threat of rickettsial diseases to military medicine and international public health. Clin Infect Dis 2002; 34 (suppl 4):s145-s169. [0051] 5. Traub, R., C. L. Wisseman & A. Farhang-Azad. 1978. The ecology of murine typhus--a critical review. Trop. Dis. Bull. 75: 237-317 [0052] 6. Jones, S L, Athan E, OquadratureBrien D, Graves S R, Ngyuyen C, Stenos J. Murine typhus: the first reported case from Victoria. Med. J. Aust. 2004 May 3; 180(9):482. [0053] 7. Lledo L, Gegundez I, Ruiz E, Rodriguez L, Bacellar F, Saz J V. Rickettsia typhi infection in wild rodents from central Spain. Ann Trop Med. Parasitol. 2003 June; 97(4):411-4. [0054] 8. Richards A L, Rahardjo E, Rusjdi A F, Kelly D J, Dasch G A, Church C J, Bangs M J. Evidence of Rickettsia typhi and the potential for murine typhus in Jayapura, Irian Jaya, Indonesia. Am J Trop Med. Hyg. 2002 April; 66(4):431-4. [0055] 9. Walker, D. H., F. M. Parks, T. G. Betz, et al. 1989. Histopathology and immunohistologic demonstration of the distribution of Rickettsia typhi in fatal murine typhus. Am. J. Clin. Pathol. 91: 720-724 [0056] 10. La Scola B, Rydkina L, Ndihokubwayo J B, Vene S, Raoult D. Serological differentiation of murine typhus and epidemic typhus using cross-adsorption and Western blotting. Clin Diagn Lab Immunol. 2000 July; 7(4):612-6. [0057] 11. La Scola B, Raoult D. Laboratory diagnosis of rickettsioses: current approaches to diagnosis of old and new rickettsial diseases. J Clin Microbiol. 1997 November; 35(11):2715-27. Review. [0058] 12. Weil E., and A. Felix. 1916. Zur serologischen Diagnose des Fleckfiebers. Wien. Klin. Wochenschr. 29:33-35. [0059] 13. Ormsbee R, Peacock M, Philip R, Casper E, Plorde J, Gabre-Kidan T, Wright L. Serologic diagnosis of epidemic typhus fever. Am J. Epidemiol. 1977 March; 105(3):261-71. [0060] 14. Shepard C C, Redus M A, Tzianabos T, Warfield D T. Recent experience with the complement fixation test in the laboratory diagnosis of rickettsial diseases in the United States. J Clin Microbiol. 1976 September; 4(3):277-83. [0061] 15. Philip, R N, Casper E A, Ormsbee R A, Peacock M G, Burgdorfer W. Microimmunofluorescence test for the serological study of Rocky mountain spotted fever and typhus. J. Clin Microbiol. 3:51-61. [0062] 16. Shirai A, Dietel J W, Osterman J V. Indirect hemagglutination test for human antibody to typhus and spotted fever group rickettsiae. J Clin Microbiol. 1975 November; 2(5):430-7. [0063] 17. Eremeeva, M E., N M. Balayeva, D. Raoult. Serological response of patients suffering from primary and recrudescent typhus: comparison of complement fixation reaction, Weil-Felix test, microimmunofluorescence, and immunoblotting. Clin. Diagn. Lab. Immunol. 1994, 1:318-324. [0064] 18. Kelly D J, Chan C T, Paxton H, et al. Comparative evaluation of a commercial enzyme immunoassay for the detection of human antibody to Rickettsia typhi. Clin Diagn Lab Immunol 1995; 2:356-60. [0065] 19. Jiang J, Temenak J J, Richards A L. Real-time PCR duplex assay for Rickettsia prowazekii and Borrelia recurrentis. Ann N Y Acad. Sci. 2003 June; 990:302-10. [0066] 20. Kodama K, Senba T, Yamauchi H, Chikahira Y, Katayama T, Furuya Y, Fujita H, Yamamoto S. Fulminant Japanese spotted fever definitively diagnosed by the polymerase chain reaction method. J Infect Chemother. 2002 September; 8(3):266-8. [0067] 21. Palmer, E L., M L. Martin, and L. Mallavia. Ultrastructure of the surface of Rickettsia prowazekii and Rickettsia akari. Appl. Microbiol. 1974, 28:713-716. [0068] 22. Ching, W M., M. Carl, and G A. Dasch. Mapping of monoclonal antibody binding sites on CNBr fragments of the S-Layer protein antigens of Rickettsia typhi and R. Prowazekii. Mol. Immunol. 1992, 29:95-105. [0069] 23. Ching, W M., G A. Dasch, M. Carl and M E. Dobson. Structural analyses of the 120 Kda serotyupe protein antigens (SPAS) of typhus group rickettsiae: comparison with other S-layer proteins. Anna. N.Y. Acad. Sci. 1990, 590:334-351. [0070] 24. Dasch, G A. Isolation of species-specific protein antigens of Rickettsia typhi and Rickettsia prowazekii for immunodiagnosis and immnuoprophylzxis. J. Clin. Microbiol. 1981, 14:333-341. [0071] 25. Dasch. G A., J R. Samms, and J C. Williams. Partial purification and characterization of the major species-specific protein antigens of Rickettsia typhi and rickettsia prowazekii identified by rocket immunoelectrophoresis. Infect. Immun. 1981, 31:276-288. [0072] 26. Bourgeois, A L., and G A. Dasch. The species-specific surface protein antigens of Rickettsia typhi: immunogenicity and protective efficacy in guinea pigs. P. 71-80. In W. Burgdorfer and R L. Anacker (ed), Rickettsia and rickettsial diseases. Academic Press, New York. [0073] 27. Carl. M., and G A. Dasch. The importance of crystalline surface layer protein antigens of rickettsiae in T cell immunity. J. Autoimmun, 1989, 2:81-91. [0074] 28. Dasch, G A., and A L. Bourgeois. Antigens of the typhus group of rickettsiae: importance of the species-specific surface protein antigens in eliciting immunity, p 61-70. In W. Burgdorfer and R L. Anacker (ed), Rickettsia and rickettsial diseases. Academic Press, New York. [0075] 29. Dasch. G A., J P. Burans, M E. Dobson, F M. Rollwagen, and J. Misiti. Approaches to the subunit vaccines against the typhus rickettsiae, Rickettsia typhi and Rickettsia prowazekii, 251-256. In D. Schlessinger (ed), Microbiology-1984, American Society for Microbiology, Washington, D.C. [0076] 30. Ching, W M., H. Wang, J. Davis, and G A. Dasch. Amino acid analysis and multiple methylation of lysine residues in the surface protein antigen of Rickettsia prowazekii, p. 307-14. In R H. Angeletti (ed), Techniques in protein chemistry IV. Academic Press, San Diego. [0077] 31. Ching W M, Ni Y S, Kaplan H, Zhang Z, and Dasch G A (1997). Chemical methylation of E. coli expressed Rickettsia typhi protein increases its seroreactivity. Thirteenth Sesqui-Annual Meeting of American Society for Rickettsiology, Champion, Pa. abstract # 40. [0078] 32. Chao C C, Wu S L, and Ching W M. Using LC-MS with De novo Software to Fully Characterize the Multiple Methylations of Lysine Residues in a Recombinant Fragment of an Outer Membrane Protein from a Virulent Strain of Rickettsia prowazekii. Biochimica [0079] 33. Ching W M, Zhang Z, Dasch G A, and Olson J G. Improved diagnosis of typhus rickettsiae using a chemically methylated recombinant s-layer protein fragment. Amer. Soc. Biochem. & Mole. Biol./Amer. Soc. Pham. & Exper. Therap. 2000. Boston, Mass. abstract # 463.
Sequence CWU
1
291710PRTRickettsia typhi 1Met Gly Ala Val Met Gln Tyr Asn Arg Thr Thr Asn
Ala Ala Ala Thr1 5 10
15Thr Val Asp Gly Ala Gly Phe Asp Gln Thr Gly Ala Gly Val Asn Leu
20 25 30Pro Val Ala Thr Asn Ser Val
Ile Thr Ala Asn Ser Asn Asn Ala Ile 35 40
45Thr Phe Asn Thr Pro Asn Gly Asn Leu Asn Ser Leu Phe Leu Asp
Thr 50 55 60Ala Asn Thr Leu Ala Val
Thr Ile Asn Glu Asn Thr Thr Leu Gly Phe65 70
75 80Val Thr Asn Val Thr Lys Gln Gly Asn Phe Phe
Asn Phe Thr Ile Gly 85 90
95Ala Gly Lys Ser Leu Thr Ile Thr Gly His Gly Ile Thr Ala Gln Gln
100 105 110Ala Ala Thr Thr Lys Ser
Ala Gln Asn Val Val Ser Lys Val Asn Ala 115 120
125Gly Ala Ala Ile Asn Asp Asn Asp Leu Ser Gly Val Gly Ser
Ile Asp 130 135 140Phe Thr Ala Ala Pro
Ser Val Leu Glu Phe Asn Leu Ile Asn Pro Thr145 150
155 160Thr Gln Glu Ala Pro Leu Thr Leu Gly Asp
Asn Ala Lys Ile Val Asn 165 170
175Gly Ala Asn Gly Ile Leu Asn Ile Thr Asn Gly Phe Val Lys Val Ser
180 185 190Asp Lys Thr Phe Ala
Gly Ile Lys Thr Ile Asn Ile Gly Asp Asn Gln 195
200 205Gly Leu Met Phe Asn Thr Thr Pro Asp Ala Ala Asn
Ala Leu Asn Leu 210 215 220Gln Gly Gly
Gly Asn Thr Ile Asn Phe Asn Gly Arg Asp Gly Thr Gly225
230 235 240Lys Leu Val Leu Val Ser Lys
Asn Gly Asn Ala Thr Glu Phe Asn Val 245
250 255Thr Gly Ser Leu Gly Gly Asn Leu Lys Gly Val Ile
Glu Phe Asp Thr 260 265 270Thr
Ala Ala Ala Gly Lys Leu Ile Ala Asn Gly Gly Ala Ala Asn Ala 275
280 285Val Ile Gly Thr Asp Asn Gly Ala Gly
Arg Ala Ala Gly Phe Ile Val 290 295
300Ser Val Asp Asn Gly Asn Ala Ala Thr Ile Ser Gly Gln Val Tyr Ala305
310 315 320Lys Asp Ile Val
Ile Gln Ser Ala Asn Ala Gly Gly Gln Val Thr Phe 325
330 335Glu His Leu Val Asp Val Gly Leu Gly Gly
Lys Thr Asn Phe Lys Thr 340 345
350Ala Asp Ser Lys Val Ile Ile Thr Glu Asn Ala Ser Phe Gly Ser Thr
355 360 365Asp Phe Gly Asn Leu Ala Val
Gln Ile Val Val Pro Asn Asn Lys Ile 370 375
380Leu Thr Gly Asn Phe Ile Gly Asp Ala Lys Asn Asn Gly Asn Thr
Ala385 390 395 400Gly Val
Ile Thr Phe Asn Ala Asn Gly Thr Leu Val Ser Gly Asn Thr
405 410 415Asp Pro Asn Ile Val Val Thr
Asn Ile Lys Ala Ile Glu Val Glu Gly 420 425
430Ala Gly Ile Val Gln Leu Ser Gly Ile His Gly Ala Glu Leu
Arg Leu 435 440 445Gly Asn Ala Gly
Ser Ile Phe Lys Leu Ala Asp Gly Thr Val Ile Asn 450
455 460Gly Pro Val Asn Gln Asn Pro Leu Val Asn Asn Asn
Ala Leu Ala Ala465 470 475
480Gly Ser Ile Gln Leu Asp Gly Ser Ala Ile Ile Thr Gly Asp Ile Gly
485 490 495Asn Gly Ala Val Asn
Ala Ala Leu Gln Asp Ile Thr Leu Ala Asn Asp 500
505 510Ala Ser Lys Ile Leu Thr Leu Ser Gly Ala Asn Ile
Ile Gly Ala Asn 515 520 525Ala Gly
Gly Ala Ile His Phe Gln Ala Asn Gly Gly Thr Ile Gln Leu 530
535 540Thr Ser Thr Gln Asn Asn Ile Leu Val Asp Phe
Asp Leu Asp Val Thr545 550 555
560Thr Asp Gln Thr Gly Val Val Asp Ala Ser Ser Leu Thr Asn Asn Gln
565 570 575Thr Leu Thr Ile
Asn Gly Ser Ile Gly Thr Ile Gly Ala Asn Thr Lys 580
585 590Thr Leu Gly Arg Phe Asn Val Gly Ser Ser Lys
Thr Ile Leu Asn Ala 595 600 605Gly
Asp Val Ala Ile Asn Glu Leu Val Met Glu Asn Asp Gly Ser Val 610
615 620His Leu Thr His Asn Thr Tyr Leu Ile Thr
Lys Thr Ile Asn Ala Ala625 630 635
640Asn Gln Gly Lys Ile Ile Val Ala Ala Asp Pro Ile Asn Thr Asp
Thr 645 650 655Ala Leu Ala
Asp Gly Thr Asn Leu Gly Ser Ala Glu Ser Pro Leu Ser 660
665 670Asn Ile His Phe Ala Thr Lys Ala Ala Asn
Gly Asp Ser Ile Leu His 675 680
685Ile Gly Lys Gly Val Asn Leu Tyr Ala Asn Asn Ile Thr Thr Thr Asp 690
695 700Ala Asn Val Gly Ser Leu705
71022130DNARickettsia typhi 2atgggtgctg ttatgcaata taatagaaca
acaaatgcag cagctacaac tgttgatggt 60gcaggatttg atcaaactgg cgctggtgtt
aatcttcctg tcgctacaaa ttcggttatt 120actgctaatt ctaataatgc tattactttt
aatactccaa acggtaattt aaatagtttg 180tttttggata ctgcaaatac tttagcagta
acaattaatg aaaatactac cttagggttt 240gtaactaatg ttactaaaca gggtaacttc
tttaatttta ctattggtgc tggtaaaagt 300cttaccataa caggtcatgg tattactgct
caacaagctg ctactacaaa aagtgctcaa 360aatgttgttt caaaagttaa tgctggtgct
gctattaacg ataatgatct tagcggtgta 420ggatcaatag actttactgc tgcgccttct
gtattagaat ttaatttaat aaatcctaca 480actcaagaag ctcctcttac acttggtgat
aatgctaaaa tagttaatgg tgctaatggg 540atattaaata ttactaatgg gtttgttaag
gtttcagata aaacttttgc tggtattaag 600acaattaata tcggtgataa tcaaggttta
atgtttaata ctactcctga tgccgctaat 660gctttaaatt tgcaaggagg tggtaatact
attaatttta atggaagaga cggtactggt 720aaattagtat tggtcagtaa gaatggcaat
gctactgaat ttaatgttac aggaagttta 780ggcggtaatc taaaaggtgt tattgaattt
gatactacag cagcagctgg taagcttatc 840gctaatggag gtgctgctaa tgcagtaata
ggtacagata atggagcagg tagagctgca 900ggatttattg ttagtgttga taatggtaat
gcagcaacaa tttccggaca ggtttatgct 960aaagacatag ttatacaaag tgctaatgca
ggtggacaag tcacttttga acatttagtt 1020gatgttggtt taggcggtaa gaccaatttt
aaaaccgcag attctaaagt tataataaca 1080gaaaacgcaa gctttggttc tactgatttt
ggtaatcttg cagtacagat tgtagtgcct 1140aataataaga tacttacagg taatttcata
ggtgatgcaa aaaataacgg taatactgca 1200ggtgtgatca cttttaatgc taatggtact
ttagtaagtg gtaatactga tccaaatatt 1260gtagtaacaa atattaaggc aatcgaagta
gaaggtgccg ggattgtaca attatcagga 1320atacatggtg cagaattacg tttaggaaat
gctggctcta tctttaaact tgctgatggc 1380acagtgatta acggtccagt taaccaaaat
cctcttgtga ataataatgc gcttgcagct 1440ggttctattc agttagatgg aagtgctata
attaccggtg atataggtaa cggtgctgtt 1500aatgctgcgt tacaagacat tactttagct
aatgatgctt caaaaatatt aacacttagt 1560ggggcaaata ttatcggcgc taatgctggt
ggtgcaattc attttcaagc taacggtggt 1620actattcaat taacaagcac tcaaaataat
attttagttg attttgattt agatgtaact 1680actgatcaaa caggtgttgt tgatgcaagt
agtttaacaa ataatcaaac tttaactatt 1740aatggtagca tcggtactat tggcgctaat
actaaaacac ttggaagatt taatgttggg 1800tcaagtaaaa caatattaaa tgctggagat
gttgctatta acgagttagt tatggaaaat 1860gatggttcag tacaccttac tcacaatact
tacttaataa caaaaactat caatgctgca 1920aatcaaggta aaatcatagt tgccgctgat
cctattaata ctgatacagc tcttgctgat 1980ggtacgaatt taggtagtgc agaaagtcca
ctttctaata ttcattttgc tactaaagct 2040gctaatggtg actctatatt acatataggt
aaaggagtaa atttatatgc taataatatt 2100actactaccg atgctaatgt aggttcttaa
21303330PRTRickettsia typhi 3Met Ala Gln
Lys Pro Asn Phe Leu Lys Lys Ile Ile Ser Ala Gly Leu1 5
10 15Val Thr Ala Ser Thr Ala Thr Ile Val
Ala Gly Phe Ser Gly Val Ala 20 25
30Met Gly Ala Val Met Gln Tyr Asn Arg Thr Thr Asn Ala Ala Ala Thr
35 40 45Thr Val Asp Gly Ala Gly Phe
Asp Gln Thr Gly Ala Gly Val Asn Leu 50 55
60Pro Val Ala Thr Asn Ser Val Ile Thr Ala Asn Ser Asn Asn Ala Ile65
70 75 80Thr Phe Asn Thr
Pro Asn Gly Asn Leu Asn Ser Leu Phe Leu Asp Thr 85
90 95Ala Asn Thr Leu Ala Val Thr Ile Asn Glu
Asn Thr Thr Leu Gly Phe 100 105
110Val Thr Asn Val Thr Lys Gln Gly Asn Phe Phe Asn Phe Thr Ile Gly
115 120 125Ala Gly Lys Ser Leu Thr Ile
Thr Gly His Gly Ile Thr Ala Gln Gln 130 135
140Ala Ala Thr Thr Lys Ser Ala Gln Asn Val Val Ser Lys Val Asn
Ala145 150 155 160Gly Ala
Ala Ile Asn Asp Asn Asp Leu Ser Gly Val Gly Ser Ile Asp
165 170 175Phe Thr Ala Ala Pro Ser Val
Leu Glu Phe Asn Leu Ile Asn Pro Thr 180 185
190Thr Gln Glu Ala Pro Leu Thr Leu Gly Asp Asn Ala Lys Ile
Val Asn 195 200 205Gly Ala Asn Gly
Ile Leu Asn Ile Thr Asn Gly Phe Val Lys Val Ser 210
215 220Asp Lys Thr Phe Ala Gly Ile Lys Thr Ile Asn Ile
Gly Asp Asn Gln225 230 235
240Gly Leu Met Phe Asn Thr Thr Pro Asp Ala Ala Asn Ala Leu Asn Leu
245 250 255Gln Gly Gly Gly Asn
Thr Ile Asn Phe Asn Gly Arg Asp Gly Thr Gly 260
265 270Lys Leu Val Leu Val Ser Lys Asn Gly Asn Ala Thr
Glu Phe Asn Val 275 280 285Thr Gly
Ser Leu Gly Gly Asn Leu Lys Gly Val Ile Glu Phe Asp Thr 290
295 300Thr Ala Ala Ala Gly Lys Leu Ile Ala Asn Gly
Gly Ala Ala Asn Ala305 310 315
320Val Ile Gly Thr Asp Asn Gly Ala Gly Arg 325
33045258DNARickettsia typhi 4cgacaattag cccgtagttt agaaactatt
aaaacaaaat atttaggtta tttccttatc 60aaatgtggga tatcttgact catatttgat
taatttgttt taatactaga tactaaattt 120taacttaaat atgggaaaaa attatggctc
aaaaaccaaa ttttctaaaa aaaataattt 180ccgcaggatt ggtaactgct tccacggcta
ctatagttgc tggtttttct ggtgtagcaa 240tgggtgctgt tatgcaatat aatagaacaa
caaatgcagc agctacaact gttgatggtg 300caggatttga tcaaactggc gctggtgtta
atcttcctgt cgctacaaat tcggttatta 360ctgctaattc taataatgct attactttta
atactccaaa cggtaattta aatagtttgt 420ttttggatac tgcaaatact ttagcagtaa
caattaatga aaatactacc ttagggtttg 480taactaatgt tactaaacag ggtaacttct
ttaattttac tattggtgct ggtaaaagtc 540ttaccataac aggtcatggt attactgctc
aacaagctgc tactacaaaa agtgctcaaa 600atgttgtttc aaaagttaat gctggtgctg
ctattaacga taatgatctt agcggtgtag 660gatcaataga ctttactgct gcgccttctg
tattagaatt taatttaata aatcctacaa 720ctcaagaagc tcctcttaca cttggtgata
atgctaaaat agttaatggt gctaatggga 780tattaaatat tactaatggg tttgttaagg
tttcagataa aacttttgct ggtattaaga 840caattaatat cggtgataat caaggtttaa
tgtttaatac tactcctgat gccgctaatg 900ctttaaattt gcaaggaggt ggtaatacta
ttaattttaa tggaagagac ggtactggta 960aattagtatt ggtcagtaag aatggcaatg
ctactgaatt taatgttaca ggaagtttag 1020gcggtaatct aaaaggtgtt attgaatttg
atactacagc agcagctggt aagcttatcg 1080ctaatggagg tgctgctaat gcagtaatag
gtacagataa tggagcaggt agagctgcag 1140gatttattgt tagtgttgat aatggtaatg
cagcaacaat ttccggacag gtttatgcta 1200aagacatagt tatacaaagt gctaatgcag
gtggacaagt cacttttgaa catttagttg 1260atgttggttt aggcggtaag accaatttta
aaaccgcaga ttctaaagtt ataataacag 1320aaaacgcaag ctttggttct actgattttg
gtaatcttgc agtacagatt gtagtgccta 1380ataataagat acttacaggt aatttcatag
gtgatgcaaa aaataacggt aatactgcag 1440gtgtgatcac ttttaatgct aatggtactt
tagtaagtgg taatactgat ccaaatattg 1500tagtaacaaa tattaaggca atcgaagtag
aaggtgccgg gattgtacaa ttatcaggaa 1560tacatggtgc agaattacgt ttaggaaatg
ctggctctat ctttaaactt gctgatggca 1620cagtgattaa cggtccagtt aaccaaaatc
ctcttgtgaa taataatgcg cttgcagctg 1680gttctattca gttagatgga agtgctataa
ttaccggtga tataggtaac ggtgctgtta 1740atgctgcgtt acaagacatt actttagcta
atgatgcttc aaaaatatta acacttagtg 1800gggcaaatat tatcggcgct aatgctggtg
gtgcaattca ttttcaagct aacggtggta 1860ctattcaatt aacaagcact caaaataata
ttttagttga ttttgattta gatgtaacta 1920ctgatcaaac aggtgttgtt gatgcaagta
gtttaacaaa taatcaaact ttaactatta 1980atggtagcat cggtactatt ggcgctaata
ctaaaacact tggaagattt aatgttgggt 2040caagtaaaac aatattaaat gctggagatg
ttgctattaa cgagttagtt atggaaaatg 2100atggttcagt acaccttact cacaatactt
acttaataac aaaaactatc aatgctgcaa 2160atcaaggtaa aatcatagtt gccgctgatc
ctattaatac tgatacagct cttgctgatg 2220gtacgaattt aggtagtgca gaaagtccac
tttctaatat tcattttgct actaaagctg 2280ctaatggtga ctctatatta catataggta
aaggagtaaa tttatatgct aataatatta 2340ctactaccga tgctaatgta ggttctttac
actttaggtc tggtggaacc agtatagtaa 2400gtggtacagt tggtggacag caaggtctta
agcttaataa tttaatatta gataatggta 2460ctactgttaa gtttttaggt gatatcacat
ttaatggtgg tactaaaatt gaaggtaaat 2520ctatcttgca aattagcagc aattatatta
ctgatcatat tgaatctgct gataatactg 2580gtacattaga atttgttaat actgatccta
tcaccgtaac gttaaataaa caaggtgctt 2640attttggtgt tttaaaacaa gtaatggttt
ctggtccagg taacatagca tttaatgaga 2700taggtaatgg agttgcacat gctatagcag
ttgattccat ttcttttgaa aatgcaagtt 2760taggtgcatc tttattctta cttagtggca
ctccattaga tgtgctaaca attaaaagta 2820ccgtaggtaa tggtacagta gataatttta
atgctcctat tttagttgta tcaggtattg 2880atagtatgat caataacggt caagttatcg
gtgatcaaaa gaatattata gctctatcgc 2940ttggaagtga taacagtatt actgttaatt
ctaatacatt atatgcaggt atcagaacta 3000ctaaaactaa tcaaggtact gttacactta
gcggtggtat acctaataac cctggtacaa 3060tttatggttt aggtttagag aatggtgatc
caaagttaaa gcaagtaacg tttactacag 3120attataacaa cttaggtagt attattgcaa
ctaacgtaac aattaatgac gatgtaacac 3180ttactacagg aggtatagcc gggacagatt
ttgacggtaa aattactctt ggaagtatta 3240acggtaatgc taatgtaaag tttgttgaca
gaacattttc tcatcctaca agtatgattg 3300tttctactaa agctaatcag ggtactgtaa
cttatttagg taatgcatta gtcggtaata 3360ttggtagttc agatattcct gtagcttctg
ttagatttac tggtaatgat agtggtgtag 3420gattacaagg caatattcac tcacaaaata
tagactttgg tacttataac ttaactattt 3480taaattctga tgtaatttta ggcggtggta
ctactgctat taatggtgag attgatcttt 3540tgacaaataa tttaatattt gcaaatggta
cttcaacatg gggcaataat acctctctta 3600gtacaacatt aaacgtatca aacggtaatg
taggtcaaat agttattgct gaaggtgctc 3660aagttaatgc aacaactaca ggaactacaa
ccattaaaat acaagataat gctaatgcaa 3720atttcagtgg tacacaaact tatactttaa
tccaaggtgg tgccagattt aacggtactt 3780taggagctcc taactttgat gtaacaggaa
ataatatttt cgtaaaatat gaattaatac 3840gtgatgcgaa tcaggattat gtgttaacac
gtactaacga tgtattaaat gtagttacaa 3900cagctgtagg aaatagtgca attgcaaatg
cacctggtgt acatcaaaat attgctatat 3960gcttagaatc aactgataca gcagcttata
ataatatgct tttagctaaa gattcttctg 4020atgtcgcaac atttatagga gctattgcta
cagatacagg tgctgctgta gctacagtaa 4080acttaaatga tacacaaaaa actcaagatc
tacttggtaa taggctaggt gcacttagat 4140atctaagtaa ttctgaaact gctgatgttg
gtggatctga aacaggtgca gtatcttcag 4200gtgatgaagc gattgatcaa gtatcttatg
gtgtatgggc taaacctttc tataacatcg 4260cagaacaaga taaaaaaggt ggtctagctg
gttataaagc aaaaactgct ggtgttgtag 4320ttggtttaga tactctcgct aatgataacc
taatgattgg tgcagctatt ggtatcacta 4380aaactgacat aaaacaccaa gattataaaa
aaggtgataa aactgatatt aagggtttat 4440ccttctctct atatggtgcc cagcagcttg
ttaagaattt ctttgctcaa ggtagtgcaa 4500tatttacctt aaacaaagtc aaaagtaaaa
gtcagcgtta cttcttcgat gctaatggta 4560agatgaacaa gcaaattgct gccggtaatt
atgataacat aacattcggt ggtaatttaa 4620tgtttggtta tgattataat gcactgcaag
gtgtattagt gactccaatg gcagggctta 4680gctacttaaa atcttctaat gaaaactata
aagaaactgg tactacagtt gcaaataagc 4740gcattcacag caaatttagt gatagaatcg
atttaatagt aggtgctaaa gtaactggta 4800gtgctatgaa tataaatgat attgtgatat
atccagaaat tcattctttt gtagtgcaca 4860aagtaaatgg taagctatct aaggctcagt
ctatgttaga tggacaaact gctccattta 4920tcagtcagcc tgatagaact gctaaaacat
cttataatat aggcttaagt gcaaatataa 4980gatctgatgc taagatggag tatggtatcg
gttatgattt taatgctgca agtaaatata 5040ctgcacatca aggtacttta aaagtacgta
taaatttcta atcattattg atgagtttag 5100tgagtttata acttgatcaa gaaaaaagcc
catttttttt aaactgggct tttttctatt 5160tacttatgta atgaggtctt actgtatacg
tagtattgca atcattgata ctaaagtctc 5220tttcattgtc aaagtaatat tcgcaatcta
gagaataa 5258532DNARickettsia typhi 5ggtggtcata
tgggtgctgt tatgcaatat aa
32634DNARickettsia typhi 6cggaattctt ataaagaacc tacattagca tcgg
3471863DNARickettsia typhi 7atgtctggtg gaaccagtat
agtaagtggt acagttggtg gacagcaagg tcttaagctt 60aataatttaa tattagataa
tggtactact gttaagtttt taggtgatat cacatttaat 120ggtggtacta aaattgaagg
taaatctatc ttgcaaatta gcagcaatta tattactgat 180catattgaat ctgctgataa
tactggtaca ttagaatttg ttaatactga tcctatcacc 240gtaacgttaa ataaacaagg
tgcttatttt ggtgttttaa aacaagtaat ggtttctggt 300ccaggtaaca tagcatttaa
tgagataggt aatggagttg cacatgctat agcagttgat 360tccatttctt ttgaaaatgc
aagtttaggt gcatctttat tcttacttag tggcactcca 420ttagatgtgc taacaattaa
aagtaccgta ggtaatggta cagtagataa ttttaatgct 480cctattttag ttgtatcagg
tattgatagt atgatcaata acggtcaagt tatcggtgat 540caaaagaata ttatagctct
atcgcttgga agtgataaca gtattactgt taattctaat 600acattatatg caggtatcag
aactactaaa actaatcaag gtactgttac acttagcggt 660ggtataccta ataaccctgg
tacaatttat ggtttaggtt tagagaatgg tgatccaaag 720ttaaagcaag taacgtttac
tacagattat aacaacttag gtagtattat tgcaactaac 780gtaacaatta atgacgatgt
aacacttact acaggaggta tagccgggac agattttgac 840ggtaaaatta ctcttggaag
tattaacggt aatgctaatg taaagtttgt tgacagaaca 900ttttctcatc ctacaagtat
gattgtttct actaaagcta atcagggtac tgtaacttat 960ttaggtaatg cattagtcgg
taatattggt agttcagata ttcctgtagc ttctgttaga 1020tttactggta atgatagtgg
tgtaggatta caaggcaata ttcactcaca aaatatagac 1080tttggtactt ataacttaac
tattttaaat tctgatgtaa ttttaggcgg tggtactact 1140gctattaatg gtgagattga
tcttttgaca aataatttaa tatttgcaaa tggtacttca 1200acatggggca ataatacctc
tcttagtaca acattaaacg tatcaaacgg taatgtaggt 1260caaatagtta ttgctgaagg
tgctcaagtt aatgcaacaa ctacaggaac tacaaccatt 1320aaaatacaag ataatgctaa
tgcaaatttc agtggtacac aaacttatac tttaatccaa 1380ggtggtgcca gatttaacgg
tactttagga gctcctaact ttgatgtaac aggaaataat 1440attttcgtaa aatatgaatt
aatacgtgat gcgaatcagg attatgtgtt aacacgtact 1500aacgatgtat taaatgtagt
tacaacagct gtaggaaata gtgcaattgc aaatgcacct 1560ggtgtacatc aaaatattgc
tatatgctta gaatcaactg atacagcagc ttataataat 1620atgcttttag ctaaagattc
ttctgatgtc gcaacattta taggagctat tgctacagat 1680acaggtgctg ctgtagctac
agtaaactta aatgatacac aaaaaactca agatctactt 1740ggtaataggc taggtgcact
tagatatcta agtaattctg aaactgctga tgttggtgga 1800tctgaaacag gtgcagtatc
ttcaggtgat gaagcgattg atcaagtatc ttatggtgta 1860taa
18638607PRTRickettsia typhi
8Met Ser Gly Gly Thr Ser Ile Val Ser Gly Thr Val Gly Gly Gln Gln1
5 10 15Gly Leu Lys Leu Asn Asn
Leu Ile Leu Asp Asn Gly Thr Thr Val Lys 20 25
30Phe Leu Gly Asp Ile Thr Phe Asn Gly Gly Thr Lys Ile
Glu Gly Lys 35 40 45Ser Ile Leu
Gln Ile Ser Ser Asn Tyr Ile Thr Asp His Ile Glu Ser 50
55 60Ala Asp Asn Thr Gly Thr Leu Glu Phe Val Asn Thr
Asp Pro Ile Thr65 70 75
80Val Thr Leu Asn Lys Gln Gly Ala Tyr Phe Gly Val Leu Lys Gln Val
85 90 95Met Val Ser Gly Pro Gly
Asn Ile Ala Phe Asn Glu Ile Gly Asn Gly 100
105 110Val Ala His Ala Ile Ala Val Asp Ser Ile Ser Phe
Glu Asn Ala Ser 115 120 125Leu Gly
Ala Ser Leu Phe Leu Leu Ser Gly Thr Pro Leu Asp Val Leu 130
135 140Thr Ile Lys Ser Thr Val Gly Asn Gly Thr Val
Asp Asn Phe Asn Ala145 150 155
160Pro Ile Leu Val Val Ser Gly Ile Asp Ser Met Ile Asn Asn Gly Gln
165 170 175Val Ile Gly Asp
Gln Lys Asn Ile Ile Ala Leu Ser Leu Gly Ser Asp 180
185 190Asn Ser Ile Thr Val Asn Ser Asn Thr Leu Tyr
Ala Gly Ile Arg Thr 195 200 205Thr
Lys Thr Asn Gln Gly Thr Val Thr Leu Ser Gly Gly Ile Pro Asn 210
215 220Asn Pro Gly Thr Ile Tyr Gly Leu Gly Leu
Glu Asn Gly Asp Pro Lys225 230 235
240Leu Lys Gln Val Thr Phe Thr Thr Asp Tyr Asn Asn Leu Gly Ser
Ile 245 250 255Ile Ala Thr
Asn Val Thr Ile Asn Asp Asp Val Thr Leu Thr Thr Gly 260
265 270Gly Ile Ala Gly Thr Asp Phe Asp Gly Lys
Ile Thr Leu Gly Ser Ile 275 280
285Asn Gly Asn Ala Asn Val Lys Phe Val Asp Arg Thr Phe Ser His Pro 290
295 300Thr Ser Met Ile Val Ser Thr Lys
Ala Asn Gln Gly Thr Val Thr Tyr305 310
315 320Leu Gly Asn Ala Leu Val Gly Asn Ile Gly Ser Ser
Asp Ile Pro Val 325 330
335Ala Ser Val Arg Phe Thr Gly Asn Asp Ser Gly Val Gly Leu Gln Gly
340 345 350Asn Ile His Ser Gln Asn
Ile Asp Phe Gly Thr Tyr Asn Leu Thr Ile 355 360
365Leu Asn Ser Asp Val Ile Leu Gly Gly Gly Thr Thr Ala Ile
Asn Gly 370 375 380Glu Ile Asp Leu Leu
Thr Asn Asn Leu Ile Phe Ala Asn Gly Thr Ser385 390
395 400Thr Trp Gly Asn Asn Thr Ser Leu Ser Thr
Thr Leu Asn Val Ser Asn 405 410
415Gly Asn Val Gly Gln Ile Val Ile Ala Glu Gly Ala Gln Val Asn Ala
420 425 430Thr Thr Thr Gly Thr
Thr Thr Ile Lys Ile Gln Asp Asn Ala Asn Ala 435
440 445Asn Phe Ser Gly Thr Gln Thr Tyr Thr Leu Ile Gln
Gly Gly Ala Arg 450 455 460Phe Asn Gly
Thr Leu Gly Ala Pro Asn Phe Asp Val Thr Gly Asn Asn465
470 475 480Ile Phe Val Lys Tyr Glu Leu
Ile Arg Asp Ala Asn Gln Asp Tyr Val 485
490 495Leu Thr Arg Thr Asn Asp Val Leu Asn Val Val Thr
Thr Ala Val Gly 500 505 510Asn
Ser Ala Ile Ala Asn Ala Pro Gly Val His Gln Asn Ile Ala Ile 515
520 525Cys Leu Glu Ser Thr Asp Thr Ala Ala
Tyr Asn Asn Met Leu Leu Ala 530 535
540Lys Asp Ser Ser Asp Val Ala Thr Phe Ile Gly Ala Ile Ala Thr Asp545
550 555 560Thr Gly Ala Ala
Val Ala Thr Val Asn Leu Asn Asp Thr Gln Lys Thr 565
570 575Gln Asp Leu Leu Gly Asn Arg Leu Gly Ala
Leu Arg Tyr Leu Ser Asn 580 585
590Ser Glu Thr Ala Asp Val Gly Gly Ser Glu Thr Gly Ala Val Ser
595 600 605911PRTRickettsia typhi 9Val
Met Gln Tyr Asn Arg Thr Thr Asn Ala Ala1 5
101020PRTRickettsia typhi 10Ile Thr Ala Asn Ser Asn Asn Ala Ile Thr Phe
Asn Thr Pro Asn Gly1 5 10
15Asn Leu Asn Ser 20118PRTRickettsia typhi 11Thr Asn Val Thr
Lys Gln Gly Asn1 51212PRTRickettsia typhi 12Gln Gln Ala Ala
Thr Thr Lys Ser Ala Gln Asn Val1 5
10139PRTRickettsia typhi 13Ala Ile Asn Asp Asn Asp Leu Ser Gly1
5149PRTRickettsia typhi 14Ile Asn Pro Thr Thr Gln Glu Ala Pro1
51510PRTRickettsia typhi 15Gly Phe Val Lys Val Ser Asp Lys Thr
Phe1 5 101623PRTRickettsia typhi 16Ile
Asn Phe Asn Gly Arg Asp Gly Thr Gly Lys Leu Val Leu Val Ser1
5 10 15Lys Asn Gly Asn Ala Thr Glu
20179PRTRickettsia typhi 17Ser Val Asp Asn Gly Asn Ala Ala Thr1
51813PRTRickettsia typhi 18Gly Gly Lys Thr Asn Phe Lys Thr
Ala Asp Ser Lys Val1 5
101912PRTRickettsia typhi 19Ile Gly Asp Ala Lys Asn Asn Gly Asn Thr Ala
Gly1 5 102010PRTRickettsia typhi 20Thr
Leu Val Ser Gly Asn Thr Asp Pro Asn1 5
102116PRTRickettsia typhi 21Asn Gly Pro Val Asn Gln Asn Pro Leu Val Asn
Asn Asn Ala Leu Ala1 5 10
152211PRTRickettsia typhi 22Ile Gln Leu Thr Ser Thr Gln Asn Asn Ile Leu1
5 10239PRTRickettsia typhi 23Asp Val Thr
Thr Asp Gln Thr Gly Val1 52410PRTRickettsia typhi 24Ser Ser
Leu Thr Asn Asn Gln Thr Leu Thr1 5
102515PRTRickettsia typhi 25Asn Thr Lys Thr Leu Gly Arg Phe Asn Val Gly
Ser Ser Lys Thr1 5 10
152613PRTRickettsia typhi 26Glu Asn Asp Gly Ser Val His Leu Thr His Asn
Thr Tyr1 5 10277PRTRickettsia typhi 27Asn
Ala Ala Asn Gln Gly Lys1 5287PRTRickettsia typhi 28Asp Pro
Ile Asn Thr Asp Thr1 52913PRTRickettsia typhi 29Asn Asn Ile
Thr Thr Thr Asp Ala Asn Val Gly Ser Leu1 5
10
User Contributions:
Comment about this patent or add new information about this topic:
People who visited this patent also read: | |
Patent application number | Title |
---|---|
20110310281 | IMAGE CAPTURE UNIT AND METHODS |
20110310280 | Image pickup apparatus |
20110310279 | PROVIDING MULTIPLE VIDEO SIGNALS FROM SINGLE SENSOR |
20110310278 | SYSTEMS AND METHODS FOR ADAPTIVE CONTROL AND DYNAMIC RANGE EXTENSION OF IMAGE SENSORS |
20110310277 | SOLID-STATE IMAGING DEVICE, IMAGING MODULE, AND IMAGING SYSTEM |