Patent application title: Transgenic mice having a human major histocompatibility complex (MHC) phenotype, experimental uses and applications
Inventors:
Yu-Chun Lone (Paris, FR)
Anthony Pajot (Paris, FR)
Claude Auriault (Nomoin, FR)
Veronique Pancre (Orchies, FR)
François Lemonnier (Bourg La Reine, FR)
François Lemonnier (Bourg La Reine, FR)
IPC8 Class: AG01N3315FI
USPC Class:
800 3
Class name: Multicellular living organisms and unmodified parts thereof and related processes method of using a transgenic nonhuman animal in an in vivo test method (e.g., drug efficacy tests, etc.)
Publication date: 2011-03-17
Patent application number: 20110067121
Claims:
1. A transgenic mouse comprising:a) a disrupted H2 class I gene;b) a
disrupted H2 class II gene; andc) a functional HLA class I or class II
transgene.
2. A transgenic mouse comprising:a) a disrupted H2 class I gene;b) a disrupted H2 class II gene;c) a functional HLA class I transgene; andd) a functional HLA class II transgene.
3. The transgenic mouse according to claim 2, wherein the HLA class I transgene is an HLA-A2 transgene and the HLA class II transgene is an HLA-DR1 transgene.
4. The transgenic mouse according to claim 3, wherein the HLA-A2 transgene comprises the HLA-A2 sequence provided in the sequence listing and the HLA-DR1 transgene comprises the HLA-DR1 sequence provided in the sequence listing.
5. A transgenic mouse deficient for both H2 class I and class II molecules, wherein the transgenic mouse comprises a functional HLA class I transgene and a functional HLA class II transgene.
6. The transgenic mouse according to claim 5, having the genotype HLA-A2.sup.+HLA-DR1.sup.+β2m°IAβ°.
7. The transgenic mouse according to claim 6, wherein the HLA-A2 transgene comprises the HLA-A2 sequence provided in the sequence listing and the HLA-DR1 transgene comprises the HLA-DR1 sequence provided in the sequence listing.
8. A method of simultaneously identifying the presence of one or more epitopes in a candidate antigen or group of antigens, wherein the epitope elicits a specific humoral response, a TH HLA-DR1 restricted response, and/or a CTRL HLA-A2 restricted response, the method comprising:a) administering the candidate antigen or group of candidate antigens to the mouse of claim 3 or claim 6;b) assaying for a specific humoral response in the mouse to the antigen;c) assaying for a TH HLA-DR1 restricted response in the mouse to the antigen; andd) assaying for a CTRL HLA-A2 restricted response in the mouse to the antigen; wherein,observation of a specific humoral response in the mouse to the antigen identifies an epitope which elicits a humoral response in the antigen;observation of a TH HLA-DR1 restricted response in the mouse to the antigen identifies an epitope which elicits a TH HLA-DR1 restricted response in the antigen; andobservation of a CTRL HLA-A2 restricted response in the mouse to the antigen identifies an epitope which elicits a CTRL HLA-A2 restricted response in the antigen.
9. The method of claim 8, further comprising assaying for a Th1-specific response in the mouse to the antigen and assaying for a Th2-specific response in the mouse to the antigen; whereinobservation of a Th1-specific response in the mouse to the antigen identifies an epitope which elicits a Th1-specific response in the mouse to the antigen; andobservation of a Th2-specific response in the mouse to the antigen identifies an epitope which elicits a Th2-specific response in the mouse to the antigen.
10. A method of identifying the presence of an HLA DR1-restricted T helper epitope in a candidate antigen or group of candidate antigens, the method comprising:a) administering the candidate antigen or group of candidate antigens to the mouse of claim 3 or claim 6; andb) assaying for a TH HLA-DR1 restricted T helper epitope response in the mouse to the antigen; wherein,observation of a TH HLA-DR1 restricted T helper epitope response in the mouse to the antigen identifies an epitope which elicits a TH HLA-DR1 restricted T helper epitope response in the antigen.
11. An isolated antigen comprising an HLA DR1-restricted T helper epitope identified by the method of claim 10.
12. The isolated antigen of claim 11, wherein the antigen further comprises an epitope which elicits a humoral response and/or an epitope which elicits a CTRL HLA-A2 restricted response.
13. The isolated antigen of claim 11, wherein the antigen comprising an HLA DR1-restricted T helper epitope comprises a polypeptide.
14. The isolated antigen of claim 11, wherein the antigen comprising an HLA DR1-restricted T helper epitope comprises a polynucleotide.
15. The isolated antigen of claim 14, wherein the antigen comprising an HLA DR1-restricted T helper epitope comprises, DNA, RNA, or DNA and RNA.
16. A method of identifying the presence of an HLA-A2-restricted T cytotoxic (CTL) epitope in a candidate antigen or group of candidate antigens, the method comprising:a) administering the candidate antigen or group of candidate antigens to the mouse of claim 3 or claim 6; andb) assaying for an HLA-A2-restricted T cytotoxic (CTL) response in the mouse to the antigen or group of antigens; wherein,observation of an HLA-A2-restricted T cytotoxic (CTL) response in the mouse to the antigen or group of antigens identifies an epitope which elicits a an HLA-A2-restricted T cytotoxic (CTL) response in the antigen group of antigens.
17. An isolated antigen comprising an HLA-A2-restricted T cytotoxic (CTL) epitope identified by the method of claim 16.
18. The isolated antigen of claim 17, wherein the antigen further comprises an epitope which elicits a humoral response and/or an epitope which elicits a TH HLA-DR1 restricted T helper epitope response.
19. The isolated antigen of claim 17, wherein the antigen comprising an HLA-A2-restricted T cytotoxic (CTL) epitope comprises a polypeptide.
20. The isolated antigen of claim 17, wherein the antigen comprising an HLA-A2-restricted T cytotoxic (CTL) epitope comprises a polynucleotide.
21. The isolated antigen of claim 20, wherein the antigen comprising an HLA-A2-restricted T cytotoxic (CTL) epitope comprises, DNA, RNA, or DNA and RNA.
22. A method of comparing the efficiency of T-helper cell response induced by two or more vaccines, the method comprising:a) administering a first candidate vaccine to a mouse of claim 3 or claim 6 and measuring the T-helper cell response induced in the mouse by the first candidate vaccine;b) administering a second candidate vaccine to a mouse of claim 3 or claim 6 and measuring the T-helper cell response induced in the mouse by the second candidate vaccine;c) administering each additional candidate vaccine to be compared to a mouse of claim 3 or claim 6 and measuring the T-helper cell response induced in the mouse by each additional candidate vaccine to be compared; andd) determining the efficiency of each candidate vaccine to induce a T-helper cell response by comparing the T-helper cell responses to each of the vaccines to be compared with each other.
23. The method of claim 22, wherein the T-helper cell response is an HLA-DR1 restricted response.
24. A method of comparing the efficiency of T cytotoxic cell response induced by two or more vaccines, the method comprising:a) administering a first candidate vaccine to a mouse of claim 3 or claim 6 and measuring the T cytotoxic cell response induced in the mouse by the first candidate vaccine;b) administering a second candidate vaccine to a mouse of claim 3 or claim 6 and measuring the T cytotoxic cell response induced in the mouse by the second candidate vaccine;c) administering each additional candidate vaccine to be compared to a mouse of claim 3 or claim 6 and measuring the T cytotoxic cell response induced in the mouse by each additional candidate vaccine to be compared; andd) determining the efficiency of each candidate vaccine to induce a T cytotoxic cell response by comparing the T cytotoxic cell responses to each of the vaccines to be compared with each other.
25. The method of claim 24, wherein the T cytotoxic cell response is an HLA-A2 restricted response.
26. A method of simultaneously comparing the efficiency of T-helper cell response and T cytotoxic cell response induced by two or more vaccines, the method comprising:a) administering a first candidate vaccine to a mouse of claim 3 or claim 6 and measuring the T-helper cell response and T cytotoxic cell response induced in the mouse by the first candidate vaccine;b) administering a second candidate vaccine to a mouse of claim 3 or claim 6 and measuring the T-helper cell response and T cytotoxic cell response induced in the mouse by the second candidate vaccine;c) administering each additional candidate vaccine to be compared to a mouse of claim 3 or claim 6 and measuring the T-helper cell response and T cytotoxic cell response induced in the mouse by each additional candidate vaccine to be compared; andd) determining the efficiency of each candidate vaccine to induce a T-helper cell response and T cytotoxic cell response by comparing the T-helper cell response and T cytotoxic cell response to each of the vaccines to be compared with each other.
27. The method of claim 26, wherein the T-helper cell response is an HLA-DR1 restricted response, and wherein the T cytotoxic cell response is an HLA-A2 restricted response.
28. A method of simultaneously determining the humoral response, the T-helper cell response, and the T cytotoxic cell response of a mouse following its immunization with an antigen or a vaccine comprising one or more antigens, the method comprising:a) administering the antigen or the vaccine comprising one or more antigens to a mouse of claim 3 or claim 6;b) assaying for a specific humoral response in the mouse to the antigen or vaccine comprising one or more antigens;c) assaying for a T-helper cell response in the mouse to the antigen or vaccine comprising one or more antigens; andd) assaying for a T cytotoxic cell response in the mouse to the antigen or vaccine comprising one or more antigens.
29. The method of claim 28, wherein the T-helper cell response is a TH HLA-DR1 restricted response.
30. The method of claim 28, wherein the T cytotoxic cell response is a CTRL HLA-A2 restricted response.
31. A method of optimizing two or more candidate vaccine compositions for administration to a human, based on preselected criteria, the method comprising:simultaneously determining the humoral response, the T-helper cell response, and the T cytotoxic cell response of a mouse following its immunization with the two or more candidate vaccine compositions, according to claim 28; andselecting an optimized vaccine by applying preselected criteria to the results.
32. The method according to claim 31, wherein the two or more candidate vaccines differ only in the ratio of antigen to adjuvant present in the vaccine.
33. The method according to claim 31, wherein the two or more candidate vaccines differ only in the type of adjuvant present in the vaccine.
34. A method of determining whether a vaccine poses a risk of induction of an autoimmune disease when administered to a human, the method comprising:a) administering the vaccine to a mouse of claim 3 or claim 6; andb) assaying for an autoimmune response in the mouse; wherein, observation of an autoimmune response in the mouse indicates that the vaccine poses a risk of induction of an autoimmune disease when administered to a human.
35. An isolated transgenic mouse cell comprising:a) a disrupted H2 class I gene;b) a disrupted H2 class II gene; andc) a functional HLA class I or class II transgene.
36. An isolated transgenic mouse cell comprising:a) a disrupted H2 class I gene;b) a disrupted H2 class II gene;c) a functional HLA class I transgene; andd) a functional HLA class II transgene.
37. The transgenic mouse cell according to claim 36, wherein the HLA class I transgene is an HLA-A2 transgene and the HLA class II transgene is an HLA-DR1 transgene.
38. The transgenic mouse cell according to claim 37, wherein the HLA-A2 transgene comprises the HLA-A2 sequence provided in the sequence listing and the HLA-DR1 transgene comprises the HLA-DR1 sequence provided in the sequence listing.
39. An isolated transgenic mouse cell deficient for both H2 class I and class II molecules, wherein the transgenic mouse cell comprises a functional HLA class I transgene and a functional HLA class II transgene.
40. The transgenic mouse cell according to claim 39, having the genotype HLA-A2.sup.+HLA-DR1.sup.+β2m°IAβ°.
41. The transgenic mouse cell according to claim 40, wherein the HLA-A2 transgene comprises the HLA-A2 sequence provided in the sequence listing and the HLA-DR1 transgene comprises the HLA-DR1 sequence provided in the sequence listing.
Description:
CROSS-REFERENCE TO RELATED APPLICATION
[0001]This application is based on and claims the benefit of U.S. Provisional Application No. 60/490,945, filed Jul. 30, 2003 (Attorney Docket No. 03495.6093), the entire disclosure of which is relied upon and incorporated by reference herein for all purposes.
BACKGROUND OF THE INVENTION
[0002]Many vaccines are currently being developed for human cancer immunotherapy and for treatment of infectious diseases, such as malaria, AIDS, hepatitis C virus, and SARS. Given the rapidity with which new emerging pathogens can appear, it is important to improve animal models that could be used to evaluate vaccination strategies and the protective capacity of different epitopes quickly and reliably. Furthermore, in vivo studies are already required to assess crucial variables of vaccine behavior that are not easily evaluated or impossible to measure in vitro, such as vaccine immunogenicity, vaccine formulation, route of administration, tissue distribution, and involvement of primary and secondary lymphoid organs. Because of their simplicity and flexibility, small animals, such as mice represent an attractive alternative to more cumbersome and expensive model systems, such as nonhuman primates, at least for initial vaccine development studies.
[0003]The moderate efficacy observed in several clinical trials of vaccines, which were found to be protective in wild-type animal studies (McMichael, A. J. & Hanke, T. Nat Med 9, 874-880 (2003)), may be partly explained by the different influence that human and animal MHC have on the outcome of the immune response, since animal MHC and human HLA molecules do not present the same optimal epitopes (Rotzschke, O. et al. Nature 348, 252-254 (1990)). Thus, despite some limitations, transgenic mice expressing human HLA should represent a useful improvement over wild-type mice as a preclinical model for testing vaccine candidates, evaluating the potential risk that the vaccines could induce autoimmune disorders, and devising better therapeutic strategies based on the human restriction element.
Cytotoxic T Cells
[0004]Cytotoxic T cells (CTL) play a crucial role in the eradication of infectious diseases and in some cases, cancer (P. Aichele, H. Hengartner, R. M. Zinkemagel and M. Schulz, J Exp Med 171 (1990), p. 1815; L. BenMohamed, H. Gras-Masse, A. Tartar, P. Daubersies, K Brahimi, M. Bossus, A. Thomas and P. Druhile, Eur J Immunol 27 (1997), p. 1242; D. J. Diamond, J. York, J. Sun, C. L. Wright and S. J. Forman, Blood 90 (1997), p. 1751). Recombinant protein vaccines do not reliably induce CTL responses (Habeshaw J A, Dalgleish A G, Bountiff L, Newell A L, Wilks, D, Walker L C, Manca F. 1990 November; 11(11): 418-25; Miller S B, Tse H, Rosenspire A J, King S R. Virology. 1992 December; 191 (2):9 73-7). The use of otherwise immunogenic vaccines consisting of attenuated pathogens in humans is hampered, in several important diseases, by overriding safety concerns. In the last few years, epitope-based approaches have been proposed as a possible strategy to develop novel prophylactic and immunotherapeutic vaccines (Melief C J, Offringa R, Toes R E, Kast W M. Curr Opin Immunol. 1996 October, 8(5):651-7; Chesnut R W, Design testing of peptide based cytotoxic T-cell mediated immunotherapeutic to treat infection disease, cancer, in Powell, M F, Newman, M J (eds.): Vaccine Design: The Subunit, Adjuvant Approach, Plenum Press, New-York 1995, 847). This approach offers several advantages, including selection of naturally, processed epitopes, which forces the immune system to focus on highly conserved and immunodominant epitopes of a pathogen (R. G. van der Most, A. Sette, C. Oseroff, J. Alexander, K. Murali-Krishna, L. L. Lau, S, Southwood, J. Sidney, R. W. Chesnut, M. Matioubian and R. Ahmed, J Immunol 157 (1996), p. 5543) and induction of multiepitopic responses to prevent escape by mutation such observed in HIV, hepatitis B virus (HBV) and hepatitis C virus (HCV) infections. It also allows the elimination of suppressive T cell determinants, which might preferably elicit a TH2 response, in conditions where a TH1 responses is desirable, or vice-versa (Pfeiffer C, Murray J, Madri J, Bottomly K. Immunol Rev. 1991 October; 123:65-84; P Chaturvedi, Q Yu, S Southwood, A Sette, and B Singh Int Immunol 1996 8: 745-755). It finally provides the possibility to get rid of autoimmune T cell determinants in antigens, which might induce undesirable autoimmune diseases. Protective antiviral or anti-tumoral immunity using CTL epitope-peptides has been achieved in several experimental models (D. J. Diamond, J. York, J. Sun, C. L. Wright and S. J. Forman, Blood 90 1997, p. 1751; J. E. J. Blaney, E. Nobusawa, M. A. Brehm, R. H. Bonneau, L. M. Mylin, T. M. Fu, Y. Kawaoka and S. S. Tevethia, J Virol 72 (1998), p. 9567).
[0005]CTL epitope definition based on the usage of human lymphocytes might be misleading due to environmental and genetic heterogeneity that lead to incomplete results, and due to technical difficulties in isolating CTL clones. HLA class I or class II transgenic mice described to date have proved to be a valuable tool to overcome these limitations as illustrated by the identification with such animal models of novel CTL and T helper epitopes (Hill A V. Annu Rev Immunol. 1998; 16:593-617; Carmon L, El-Shami K M, Paz A., Pascolo S, Tzehoval E, Tirosb B, Koren R, Feldman M, Fridkin M, Lemonnier F A, Eisenbach L. Int J Cancer, 2000 Feb. 1; 85(3):391-7). These mice have also been used to demonstrate: i) good correlation between peptide HLA binding affinity and immunogenicity (Lustgarten J, Theobald M, Labadie C, LaFace Q, Peterson P, Disis M L, Cheaver M A, Sherman L A. Hum Immunol. 1997 February; 52(2):109-18; Bakker A B, van der Burg S H, Huijbens R J, DRijfhout J W, Melief C J, Adema G J, Figdor C G. Int J. Cancer. 1997 Jan. 27; 70(3):302-9), ii) significant overlap between the murine and human CTL system at the level of antigen processing (same epitopes generated), and iii) comparable mobilization against most antigens of the CTL repertoires in HLA transgenic mice and humans (Wentworth, P. A., A. Vifiello, J. Sidney, E. Keogh, P, W. Chesnut, H. Grey, A. Sette. 1996. Eur. J. Immunol. 26:97; Alexander, J., C. Oserof, J. Sidney, P. Wentworth, E. Keogh, G. Hermanson, F. V. Chisari R. T, Kubo, H. M, Grey, A, Sette, 1997. J. Immunol. 159:4753).
[0006]To date, synthetic peptide-based CTL epitope vaccines have been developed as immunotherapeutics against a number of human diseases [18-20]. However, only moderate efficacy was observed in several clinical trials (21). This may be partly explained by the failure of these vaccines to induce sufficiently strong CTL responses. Indeed, recent reports suggest the need for CD4+ T-cell help to obtain maximum CTL response (A. J. Zajac, K. Murali-Krishna, J. N. Blattman and R. Ahmed, Curr Opin Immunol 10 (1998), p. 444; Firat H, Garcia-Pons F, Tourdot S, Pascolo S, Scardino A, Garcia Z, Michel M L, Jack R W, Jung 0, Kosmatopoulos K, Mateo L, Suhrbier A, Lemonnier F A, Langlade-Demoyen P Eur J Immunol 29, 3112, 1999).
[0007]CTL are critical components of protective immunity against viral infections, but the requirements for in vivo priming of CTL are not completely understood. It is now accepted that Th cells are usually essential for CTL priming with synthetic peptides. With respect to synthetic CTL epitopic peptides, several studies point to a mandatory need for Th lymphocyte stimulation to induce optimal CTL responses (C. Fayolle, E. Deriaud and C. Leclerc, J Immunol 147 (1991), p, 4069; C. Widmann, P. Romero, J. L. Maryanski, G. Corradin and D. Valmori, J Immunol Meth 155 (1992), p. 95; M. Shirai, C. D. Pendkton, J. Ahlers, T. Takeshita, M. Newman and J. A. Berzofsky, J Immunol 152 (1994), p. 549; J. P. Sauet, H. Gras-Masse, J. G. Guillet and E. Gomard, Int Immunol 8 (1996). p. 457). Several of these studies showed that activation of a CD8+ T cell requires simultaneous interaction of a CD4+ T helper cell and a CD8+ T cell with the same antigen-presenting cell presenting their cognate epitopes (Ridge J P, Di Rosa F, Matzinger P. Nature. 1998 Jun. 4; 3 93 (6684):474-8). The relevance of this three-cell interaction for priming of CTLs is confirmed by studies with viral epitopes, and animal models, since in vivo induction of CTLs was most efficient when CTL and Th epitopes were physically linked rather than administered as an unlinked mixture (Shirai M, Pendleton C D, Ahlers J, Takeshita T, Newman M, Berzohky J A. J. Immunol. 1994 Jan. 15; 152(2): 549-56; Oseroff C, Sette A, Wentworth P, Celis E, Maewal A, Dahlberg C, Fikes J, Kubo R T, Chesnut R W, Grey B X Alexander J. Vaccine. 1998 May; 16(8): 823-33). The capacity of CTL and Th antigenic peptides to efficiently induce CTL responses has been demonstrated both in experimental models (C. Fayolle, E. Deriaud and C. Leclerc, J Immunol 147 (1991), p, 4069; C. Widmann, P. Romero, J. L. Maryanski, G. Corradin and D. Valmori, J, Immunol Meth 155 (1992), p. 95) and in humans (A. Vitiello, G. Ishioka, H. M. Grey, R. Rose, P. Framess, R. LaFond, L. Yuan, F. V. Chisari, J. Furze and R. Bartholomeuz, J Clin Invest 95 (1995), p. 341; B. Livingston, C. Crimi, H. Grey, G. Ishioka, F. V. Chisari, J. Fikes, H. M. Grey, R. Chesnut and A. Sette, J Immunol 159 (1997), p. 1383). Moreover, a potent Th response plays an important role not only for optimal induction of CTL responses, but also for maintenance of CTL memory (E. A. Walter, P. D. Greenberg, M. J. Gilbert, R. J. Finch, K-S. Watanabe, E. D. Tbomas and S. R. Riddell, N Engl J Med 333 (1995), p. 1038; Riddell S R, Greenberg P D, In Thomas E D, Blume K G, Forrrian S J (eds): Hematopoietic Cell Transplantation, 2nd edn. Malden, M A: Blackwell Science Inc., 1999). Finally, it has long been documented that CD4+ T "helper" cells are crucial in coordinating cellular and humoral immune responses against exogenous antigens.
[0008]Recently, a transgenic (Tg) mouse that expresses both HLA-A*0201 class I and HLA-DR1 class II molecules was established (BenMohamed L, Krishnan R, Longmate J, Auge C, Low L, Primus J, Diamond D J, Hum, Immunol. 2000 August; 61(8):764-79). The authors reported that both HLA-A*0201 and HLA-DR1 transgenes are functional in vivo, that both MHC class I and class II molecules were utilized as restriction elements, and that the product of the HLA-DR1 transgene enhances the HLA-A*0201-restricted antigen-specific CTL responses (BenMohamed L, Krishnan R, Longmate J, Auge C, Low L, Primus J, Diamond D J, Hum, Immunol. 2000 August; 61(8):764-79).
[0009]It is noteworthy that these HLA-A*0201/DR1 Tg mice expressed their own MHC H-2 class I and class II molecules. Because HLA class I transgenic mice expressing endogenous mouse MHC class I genes preferentially and often exclusively develop H-2 restricted CTL response (C Barra, H Gourrnier, Z Garcia, PN Marche, E Jouvin-Marche, P Briand, P Fillipi, and FA Lemonnier J Immunol 1993 150: 3681-3689; Epstein H, Hardy F., May J S, Johnson M H, Holmes N. Eur J. Immunol. 1989 September; 19(9):1575-83; Le A X; E J Bernhard, M J Holterman, S Strub, P Parham, E Lacy, and VH Engelhard J Immunol 1989 142: 13 66-1371; Vitiello A, Marchesini D, Furze J, Sherman L A, Chesnut R W., J Exp Med. 1991 Apr. 1; 173(4):100715), and HLA class II transgenic mice expressing endogenous mouse MHC class II genes fail to induce reliable HLA class II restricted antigen-specific responses (Nishimura Y, Iwanaga T, Inamitsu T, Yanagawa Y, Yasunami M, Kimura A, Hirokawa K, Sasazuki T., J Immunol 1990 Jul. 1; 145(I):353-60), these HLA-A*0201/DR1 Tg mice are of limited utility to assess human-specific responses to antigen.
[0010]However, in HLA class I transgenic H-2 class I knock-out mice, or HLA class II transgenic H-2 class II knock-out mice, only HLA-restricted CTL immune responses occur (Pascolo S, Bervas N, Ure J M, Smith A G, Lemonnier F A, Perarnau, B., J Exp Med. 1997 Jun. 16; 185(12). 2043-51; Madsen L, Labrecque N, Engberg J, Dierich A, Svejgaard A, Benoist C, Mathis D, Fugger L., Proc Natl Acad Sci USA-1999 Aug. 31; 96(18):10338-43). In fact, HLA-A2.1-transgenic H-2 class I-knock-out (KO) mice exhibit the ability to mount enhanced HLA-A2.1-restricted responses as compared to HLA-A2.1-transgenic mice that still express the endogenous murine H-2 class I molecules (Pascolo, S. et al. J Exp Med 185, 2043-2051 (1997); Ureta-Vidal, A., Firat, H., Perarnau, B. & Lemonnier, F. A. J Immunol 163, 2555-2560 (1999); Firat, H. et al., Int Immunol 14, 925-934 (2002); Rohrlich, P. S. et al., Int Immunol 15, 765-772 (2003)). The inventors have made similar observations with HLA-DR1-transgenic mice, depending on whether or not they are deficient in H-2 class II molecules (A. Pajot, unpublished results). Furthermore, in the absence of competition from murine MHC molecules, the HLA-A2.1-transgenic H-2 class I-KO or HLA-DRI-transgenic H-2 class II-Kb mice generate only HLA-restricted immune responses (Pascolo, S. et al. J Exp Med 185, 2043-2051 (1997)) (A. Pajot, unpublished results), facilitating the monitoring of HLA-restricted CD8+ and CD4+ T cell responses. However, protective immune responses against pathogens, which often require collaboration between T helper and cytotoxic CD8+ T cells, cannot be studied in the single HLA class I- or HLA class II-transgenic mice, which do not allow the simultaneous assessment of HLA class I and II human responses in the same mouse.
[0011]Accordingly, there exists a need in the art for a convenient animal model system to test the immunogenicity of human vaccine candidates comprising constructs containing human CTL epitopes and, in some cases, with the inclusion of high potency CD4+ Th (helper T lymphocyte) epitopes to sustain antiviral and antitumoral CD8+ T-cell activity (A. J. Zajac, K. Murali-Krishna, J. N. Blattman and R. Ahmed, Curr Opin Immunol 10 (1998), p. 444; Firat H, Garcia-Pons F, Tourdot S, Pascolo S, Scardino A, Garcia Z, Michel M L, Jack R W, Jung 0, Kosmatopoulos K, Mateo L, Suhrbier A, Lemonnier F A, Langlade-Demoyen P, Eur J Immunol 29, 3112, 1999). There is also a need for a system that allows the simultaneous assessment of the mutual coordination between a CTL response, a TH response (in particular s TH1 or TH2 response), and, optionally, a humoral response.
SUMMARY OF THE INVENTION
[0012]The inventors have met this need and more by providing mice transgenic for both HLA-A2.1 and HLA-DR1 molecules, in a background that is deficient for both H-2 class I and class II molecules. Specifically, the invention provides mice comprising (1) mutated H-2 class I and class II molecules; and (2) expressing HLA class I transgenic molecules, or HLA class II transgenic molecules, or HLA class I transgenic molecules and HLA class II transgenic molecules. These mice provide a model useful in the development and optimization of vaccine constructs with maximum in vivo immunogenicity for human use. Specifically, such mice enable a complete analysis of the three components of the immune adaptive response (antibody, helper and cytolytic) in a single animal, as well as an evaluation of the protection specifically conferred by vaccination against an antigenic challenge.
[0013]Mice of the invention, which comprise a knock-out for both H-2 class I and class II molecules, and express HLA class I transgenic molecules and HLA class II transgenic molecules represent a completely humanized experimental mouse that can be used to simultaneously detect the presence of antigen-specific antibodies, an antigen-specific HLA-DRI restricted T cell response, and an antigen-specific HLA-A2 restricted T cell response. These mice will be useful to study how mutual coordination operates between a CTL response, a TH response (in particular a TH1 or TH2 response), and, optionally, a humoral response. These mice represent an optimized tool for basic and applied vaccinology studies.
[0014]A first embodiment of the invention provides a transgenic mouse comprising a disrupted H2 class I gene, a disrupted H2 class II gene, and a functional HLA class I or class II transgene.
[0015]A second embodiment of the invention provides a transgenic mouse comprising a disrupted H2 class I gene, a disrupted H2 class II gene, a functional HLA class I transgene, and a functional HLA class II transgene.
[0016]In some embodiments, the HLA class I transgene is an HLA-A2 transgene and the HLA class II transgene is an HLA-DR1 transgene. In other embodiments, the HLA-A2 transgene comprises the HLA-A2 sequence provided in the sequence listing and the HLA-DR1 transgene comprises the HLA-DR1 sequence provided in the sequence listing.
[0017]A further embodiment of the invention provides a transgenic mouse deficient for both H2 class I and class II molecules, wherein the transgenic mouse comprises a functional HLA class I transgene and a functional HLA class II transgene. In an embodiment, the mouse has the genotype HLA-A2+HLA-DR1+β2 m°IAβ°. In some embodiments the HLA-A2 transgene comprises the HLA-A2 sequence provided in the sequence listing and the HLA-DR1 transgene comprises the HLA-DR1 sequence provided in the sequence listing.
[0018]Another embodiment of the invention provides a method of simultaneously identifying the presence of one or more epitopes in a candidate antigen or group of antigens, where the one or more epitopes elicits a specific humoral response, a TH HLA-DR1 restricted response, and/or a CTRL HLA-A2 restricted response. The method comprises administering the candidate antigen or group of candidate antigens to a transgenic mouse comprising a disrupted H2 class I gene, a disrupted H2 class II gene, a functional HLA-A2 transgene, and a functional HLA-DR1 transgene, or a transgenic mouse deficient for both H2 class I and class II molecules, wherein the transgenic mouse comprises a functional HLA class I transgene and a functional HLA class II transgene, and has the genotype HLA-A2+HLA-DR1+β2m°IAβ°; assaying for a specific humoral response in the mouse to the antigen; assaying for a TH HLA-DR1 restricted response in the mouse to the antigen; and assaying for a CTRL HLA-A2 restricted response in the mouse to the antigen. Observation of a specific humoral response in the mouse to the antigen identifies an epitope that elicits a humoral response in the antigen. Observation of a TH HLA-DR1 restricted response in the mouse to the antigen identifies an epitope that elicits a TH HLA-DR1 restricted response in the antigen. Observation of a CTRL HLA-A2 restricted response in the mouse to the antigen identifies an epitope which elicits a CTRL HLA-A2 restricted response in the antigen.
[0019]In some embodiments, the method includes assaying for a Th1-specific response in the mouse to the antigen and assaying for a Th2-specific response in the mouse to the antigen. In this case, observation of a Th1-specific response in the mouse to the antigen identifies an epitope that elicits a Th1-specific response in the mouse to the antigen, and observation of a Th2-specific response in the mouse to the antigen identifies an epitope that elicits a Th2-specific response in the mouse to the antigen.
[0020]This invention also provides a method of identifying the presence of an HLA DR1-restricted T helper epitope in a candidate antigen or group of candidate antigens, the method comprising administering the candidate antigen or group of candidate antigens to a transgenic mouse comprising a disrupted H2 class I gene, a disrupted H2 class II gene, a functional HLA-A2 transgene, and a functional HLA-DR1 transgene, or a transgenic mouse deficient for both H2 class I and class II molecules, wherein the transgenic mouse comprises a functional HLA class I transgene and a functional HLA class II transgene, and has the genotype HLA-A2+HLA-DR1+β2m°IAβ°; and assaying for a TH HLA-DR1 restricted T helper epitope response in the mouse to the antigen. Observation of a TH HLA-DR1 restricted T helper epitope response in the mouse to the antigen identifies an epitope that elicits a TH HLA-DR1 restricted T helper epitope response in the antigen.
[0021]In addition, this invention provides an isolated antigen comprising an HLA DR1-restricted T helper epitope identified by the method of the preceding paragraph. In some embodiments, the isolated antigen further includes an epitope that elicits a humoral response and/or an epitope that elicits a CTRL HLA-A2 restricted response. In some embodiments, the antigen comprising an HLA DR1-restricted T helper epitope comprises a polypeptide. In other embodiments, the antigen comprising an HLA DR1-restricted T helper epitope comprises a polynucleotide. In further embodiments, the antigen comprising an HLA DR1-restricted T helper epitope comprises DNA, RNA, or DNA and RNA.
[0022]Further, this invention provides a method of identifying the presence of an HLA-A2-restricted T cytotoxic (CTL) epitope in a candidate antigen or group of candidate antigens, the method comprising administering the candidate antigen or group of candidate antigens to a transgenic mouse comprising a disrupted H2 class I gene, a disrupted H2 class II gene, a functional HLA-A2 transgene, and a functional HLA-DR1 transgene, or a transgenic mouse deficient for both H2 class I and class II molecules, wherein the transgenic mouse comprises a functional HLA class I transgene and a functional HLA class II transgene, and has the genotype HLA-A2+HLA-DR1+β2m°IAβ°; and assaying for an HLA-A2-restricted T cytotoxic (CTL) response in the mouse to the antigen or group of antigens. Observation of an HLA-A2-restricted T cytotoxic (CTL) response in the mouse to the antigen or group of antigens identifies an epitope that elicits a an HLA-A2-restricted T cytotoxic (CTL) response in the antigen or group Of antigens.
[0023]This invention provides an isolated antigen comprising an HLA-A2-restricted T cytotoxic (CTL) epitope identified by the method of the preceding paragraph. In some embodiments, the antigen further comprises an epitope that elicits a humoral response and/or an epitope that elicits a TH HLA-DR1 restricted T helper epitope response. In some embodiments, the antigen comprising an HLA-A2-restricted T cytotoxic (CTL) epitope comprises a polypeptide. In other embodiments, the antigen comprising an HLA-A2-restricted T cytotoxic (CTL) epitope comprises a polynucleotide. In further embodiments, the antigen comprising an HLA-A2-restricted T cytotoxic (CTL) epitope comprises, DNA, RNA, or DNA and RNA.
[0024]This invention also provides a method of comparing the efficiency of the T-helper cell response induced by two or more vaccines. This method comprises administering a first candidate vaccine to a transgenic mouse comprising a disrupted H2 class I gene, a disrupted H2 class II gene, a functional HLA-A2 transgene, and a functional HLA-DR1 transgene, or a transgenic mouse deficient for both H2 class I and class II molecules, wherein the transgenic mouse comprises a functional HLA class I transgene and a functional HLA class II transgene, and has the genotype HLA-A2+HLA-DR1+β2m°IAβ°, and measuring the T-helper cell response induced in the mouse by the first candidate vaccine; administering a second candidate vaccine to a transgenic mouse comprising a disrupted H2 class I gene, a disrupted H2 class II gene, a functional HLA-A2 transgene, and a functional HLA-DR1 transgene, or a transgenic mouse deficient for both H2 class I and class II molecules, wherein the transgenic mouse comprises a functional HLA class I transgene and a functional HLA class II transgene, and has the genotype HLA-A2+HLA-DR1+β2m°IAβ°, and measuring the T-helper cell response induced in the mouse by the second candidate vaccine; administering each additional candidate vaccine to be compared to a transgenic mouse comprising a disrupted H2 class I gene, a disrupted H2 class II gene, a functional HLA-A2 transgene, and a functional HLA-DR1 transgene, or a transgenic mouse deficient for both H2 class I and class II molecules, wherein the transgenic mouse comprises a functional HLA class I transgene and a functional HLA class. II transgene, and has the genotype HLA-A2+HLA-DR1+β2m°IAβ°, and measuring the T-helper cell response induced in the mouse by the additional candidate vaccine, and determining the efficiency of each candidate vaccine to induce a T-helper cell response by comparing the T-helper cell responses to each of the vaccines to be compared with each other. In some embodiments the T-helper cell response is an HLA-DR1 restricted response.
[0025]In addition, this invention provides a method of comparing the efficiency of T cytotoxic cell responses induced by two or more vaccines. The method includes administering a first candidate vaccine to a transgenic mouse comprising a disrupted H2 class I gene, a disrupted H2 class II gene, a functional HLA-A2 transgene, and a functional HLA-DR1 transgene, or a transgenic mouse deficient for both H2 class I and class II molecules, wherein the transgenic mouse comprises a functional HLA class I transgene and a functional HLA class II transgene, and has the genotype HLA-A2+HLA-DR1+β2m°IAβ°, and measuring the T cytotoxic cell response induced in the mouse by the first candidate vaccine; administering a second candidate vaccine to a mouse of a transgenic mouse comprising a disrupted H2 class I gene, a disrupted H2 class II gene, a functional HLA-A2 transgene, and a functional HLA-DR1 transgene, or a transgenic mouse deficient for both H2 class I and class II molecules, wherein the transgenic mouse comprises a functional HLA class I transgene and a functional HLA class II transgene, and has the genotype HLA-A2+HLA-DR1+β2m°IAβ°, and measuring the T cytotoxic cell response induced in the mouse by the second candidate vaccine; administering each additional candidate vaccine to be compared to a transgenic mouse comprising a disrupted H2 class I gene, a disrupted H2 class II gene, a functional HLA-A2 transgene, and a functional HLA-DR1 transgene, or a transgenic mouse deficient for both H2 class I and class II molecules, wherein the transgenic mouse comprises a functional HLA class I transgene and a functional HLA class II transgene, and has the genotype HLA-A2+HLA-DR1+β2m°IAβ°, and measuring the T cytotoxic cell response induced in the mouse by the additional candidate vaccine; and determining the efficiency of each candidate vaccine to induce a T cytotoxic cell response by comparing the T cytotoxic cell responses to each of the vaccines to be compared with each other. In some embodiments the T cytotoxic cell response is an HLA-A2 restricted response.
[0026]Further, this invention provides a method of simultaneously comparing the efficiency of T-helper cell response and T cytotoxic cell response induced by two or more vaccines. The method comprises administering a first candidate vaccine to a transgenic mouse comprising a disrupted H2 class I gene, a disrupted H2 class II gene, a functional HLA-A2 transgene, and a functional HLA-DR1 transgene, or a transgenic mouse deficient for both H2 class I and class II molecules, wherein the transgenic mouse comprises a functional HLA class I transgene and a functional HLA class II transgene, and has the genotype HLA-A2+HLA-DR1+β2m°IAβ°, and measuring the T-helper cell response and T cytotoxic cell response induced in the mouse by the first candidate vaccine; administering a second candidate vaccine to a transgenic mouse comprising a disrupted H2 class I gene, a disrupted H2 class II gene, a functional HLA-A2 transgene, and a functional HLA-DR1 transgene, or a transgenic mouse deficient for both H2 class I and class II molecules, wherein the transgenic mouse comprises a functional HLA class I transgene and a functional HLA class II transgene, and has the genotype HLA-A2+HLA-DR1+β2m°IAβ°, and measuring the T-helper cell response and T cytotoxic cell response induced in the mouse by the second candidate vaccine; administering each additional candidate vaccine to be compared to a transgenic mouse comprising a disrupted H2 class I gene, a disrupted H2 class II gene, a functional HLA-A2 transgene, and a functional HLA-DR1 transgene, or a transgenic mouse deficient for both H2 class I and class II molecules, wherein the transgenic mouse comprises a functional HLA class I transgene and a functional HLA class II transgene, and has the genotype HLA-A2+HLA-DR1+β2m°IAβ°, and measuring the T-helper cell response and T cytotoxic cell response induced in the mouse by each additional candidate vaccine; and determining the efficiency of each candidate vaccine to induce a T-helper cell response and T cytotoxic cell response by comparing the T-helper cell response and T cytotoxic cell response to each of the vaccines to be compared with each other. In some embodiments the T-helper cell response is an HLA-DR1 restricted response, and the T cytotoxic cell response is an HLA-A2 restricted response.
[0027]This invention also provides a method of simultaneously determining the humoral response, the T-helper cell response, and the T cytotoxic cell response of a mouse following its immunization with an antigen or a vaccine comprising one or more antigens. The method comprises administering the antigen or the vaccine comprising one or more antigens to a transgenic mouse comprising a disrupted H2 class I gene, a disrupted H2 class II gene, a functional HLA-A2 transgene, and a functional HLA-DR1 transgene, or a transgenic mouse deficient for both H2 class I and class II molecules, wherein the transgenic mouse comprises a functional HLA class I transgene and a functional HLA class II transgene, and has the genotype HLA-A2+HLA-DR1+β2m°IAβ°, and assaying for a specific humoral response in the mouse to the antigen or vaccine comprising one or more antigens, assaying for a T-helper cell response in the mouse to the antigen or vaccine comprising one or more antigens, and assaying for a T cytotoxic cell response in the mouse to the antigen or vaccine comprising one or more antigens. In some embodiments the T-helper cell response is a TH HLA-DR1 restricted response. In some embodiments the T cytotoxic cell response is a CTRL HLA-A2 restricted response.
[0028]This invention also provides a method of optimizing two or more candidate vaccine compositions for administration to a human, based on preselected criteria. The method includes simultaneously determining the humoral response, the T-helper cell response, and the T cytotoxic cell response of a mouse following its immunization with the two or more candidate vaccine compositions, using a method comprising administering the antigen or the vaccine comprising one or more antigens to a transgenic mouse comprising a disrupted H2 class I gene, a disrupted H2 class II gene, a functional HLA-A2 transgene, and a functional HLA-DR1 transgene, or a transgenic mouse deficient for both H2 class I and class II molecules, wherein the transgenic mouse comprises a functional HLA class I transgene and a functional HLA class II transgene, and has the genotype HLA-A2+HLA-DR1+β2m°IAβ°, assaying for a specific humoral response in the mouse to the antigen or vaccine comprising one or more antigens, assaying for a T-helper cell response in the mouse to the antigen or vaccine comprising one or more antigens, assaying for a T cytotoxic cell response in the mouse to the antigen or vaccine comprising one or more antigens, and selecting an optimized vaccine by applying preselected criteria to the results. In some embodiments, the two or more vaccine candidates differ only in the ratio of antigen to adjuvant present in the vaccine. In some embodiments, the two or more vaccine candidates differ only in the type of adjuvant present in the vaccine.
[0029]In another aspect, the invention provides a method of determining whether a vaccine poses a risk of induction of an autoimmune disease when administered to a human. The method comprises administering the vaccine to a transgenic mouse comprising a disrupted H2 class I gene, a disrupted H2 class II gene, a functional HLA-A2 transgene, and a functional HLA-DR1 transgene, or a transgenic mouse deficient for both H2 class I and class II molecules, wherein the transgenic mouse comprises a functional HLA class I transgene and a functional HLA class II transgene, and has the genotype HLA-A2+HLA-DR1+β2m°IAβ°, and assaying for an autoimmune response in the mouse, where observation of an autoimmune response in the mouse indicates that the vaccine poses a risk of induction of an autoimmune disease when administered to a human.
[0030]This invention also provides an isolated transgenic mouse cell comprising a disrupted H2 class I gene, a disrupted H2 class II gene, and a functional HLA class I or class II transgene.
[0031]In addition, the invention provides an isolated transgenic mouse cell comprising a disrupted H2 class I gene, a disrupted H2 class II gene, a functional HLA class I transgene, and a functional HLA class II transgene.
[0032]In some embodiments, the HLA class I transgene is an HLA-A2 transgene and the HLA class II transgene is an HLA-DR1 transgene. In other embodiments, the HLA-A2 transgene comprises the HLA-A2 sequence provided in the sequence listing and the HLA-DR1 transgene comprises the HLA-DR1 sequence provided in the sequence listing.
[0033]Further, this invention provides an isolated transgenic mouse cell deficient for both H2 class I and class II molecules, wherein the transgenic mouse cell comprises a functional HLA class I transgene and a functional HLA class II transgene. In some embodiments, the transgenic mouse cell has the genotype HLA-A2+HLA-DR1+β2m°IAβ°. In other embodiments, the HLA-A2 transgene comprises the HLA-A2 sequence provided in the sequence listing and the HLA-DR1 transgene comprises the HLA-DR1 sequence provided in the sequence listing.
BRIEF DESCRIPTION OF THE DRAWINGS
[0034]The invention will be more fully described with reference to the drawings in which:
[0035]FIG. 1 shows a flow cytometric analysis of the cell-surface expression of the indicated transgenic molecules. (a) Splenocytes from HLA-DR1-transgenic H-2 class II-KO (DR1+ CII.sup.-, left panel), HLA-A2.1-/HLA-DR1-transgenic H-2 class I-/class II-KO (A2+ DR1+ CI.sup.- CII.sup.-, central panel), and HLA-A2.1-transgenic H-2 class I-KO (A2+ CI.sup.-, right panel) mice were stained with either FITC-labeled W6/32 (anti-HLA-ABC, in abcissas) or biotinylated 28-8-6S (anti-H-2Kb/Db, in ordinates) m.Ab, the latter revealed with PE-labeled anti-mouse IgG. (b) B220+ splenic B lymphocytes from the same strains of mice, were stained with FITC-labeled L243 (anti-HLA-DR1, upper panels) and PE-labeled AF6-120.1 (anti-H-2 IAβb, lower panels) m.Ab.
[0036]FIG. 2 shows CD8+ and CD4+ splenic T cell numbers and BV segment usage (based on an immunoscope analysis) in mice of the indicated genotypes. (a) Splenocytes from HLA-DR1-transgenic H-2 class II-KO (DR1+CII.sup.-, left panel), HLA-A2.1-/HLA-DR1-transgenic H-2 class I-/class II-KO (A2+ DR1+ CI.sup.- CII.sup.-, central panel), and HLA-A2.1-transgenic H-2 class I-KO (A2+ CI.sup.-, right panel) mice were stained with PE-labeled CT-CD4 (anti-mouse CD4, in ordinates) and FITC-labeled 53-6.7 (anti-mouse CD8, in abcissas) m.Ab. Numbers correspond to percentages of CD4+ (upper left square) or CD8+ (lower right square) T cells in total splenocytes. (b and c) Immunoscope RT-PCR analysis of purified splenic CD8+ (b) and CD4+ (c) T cells for BV segment family (1-20) usage using forward BV family (1-20) specific and reverse BC primers. A typical profile for a BV segment family productively rearranged includes a series of peaks with a Gaussian-like distribution differing in length by 3 nucleotides. The Figure illustrates the results obtained with a HLA-A2.1-/HLA-DR1-transgenic H-2 class I-/class II-KO representative mouse.
[0037]FIG. 3 shows HBs-specific antibody, cytolytic and proliferative responses. HLA-A2.1-/HLA-DR1-transgenic H-2 class I-/class II-KO mice were or not immunized by intramuscular injection of HBsAg-encoding plasmid-DNA and then individually tested. (a) Humoral (upper panel), cytolytic (middle panel) and proliferative (lower panel) responses and specificity controls of a representative HBsAg-DNA-immunized mouse. The antibody (IgG) titer against HBsAg particles containing both middle and small HBV envelope proteins and against the preS2109-134 peptide were determined in an ELISA assay. Cytolytic activity at different effector/target (E/T) ratios was assessed using RMAS-HHD target cells pulsed with either relevant (HBsAg348-357, HLA-A2.1-restricted .diamond-solid.) or control (HBsAg371-378, H-2 Kb-restricted Δ, and MAGE-3271-279, HLA-A2.1-restricted quadrature) peptide. Proliferative responses were detected using either relevant (HBsAg180-195, HLA-DR1-restricted) or control (HBsAg126-138, H-2 IAb-restricted and HIV 1 Gag263-278, HLA-DR1-restricted) peptide. (b) Similar evaluation of the antibody (IgG, upper panel), cytolytic (middle panel) and proliferative (lower panel) responses of 6 (1-6) HBsAg-DNA-immunized mice as compared to mean responses of 6 naive mice (0). Cytolytic activity at a 30/1 E/T ratio was assessed on RMAS-HHD target cells pulsed with either HBsAg348-357, immunodominant (filled bars) or HBsAg335-343, subdominant (grey bars) peptide.
[0038]FIG. 4 shows results of protection assays. HLA-A2.1-/HLA-DR1-transgenic H-2 class I-/class II-/KO mice were or not immunized twice with plasmid DNA encoding HBsAg. Fifteen days after the last immunization, they were challenged intraperitoneally with 107 PFU of rVV expressing either the HBsAg or the HBx protein. Four days later, animals were tested individually for viral titers in ovaries. The results (rVV PFU/ovary in log 10) are given for the HBsAg-DNA-immunized mice challenged with rVV-HBsAg (I, n=10), naive mice challenged with rVV-HBsAg (N, n=6), HBsAg-immune mice challenged with rVV-HBx (Ix, n=6) and naive mice challenged with rVV-HBx (Nx, n=6).
[0039]FIG. 5 shows the AC anti-Pre S2 response in HLA-A2+DR1-CI-CII-mice following a pcmv S2/S immunization.
[0040]FIG. 6 shows the T CD4 proliferative response to HLA-DR1 restricted epitopes following immunization of HLA-A2+DR1+CI-CII-mice with pcmv S2-S.
[0041]FIG. 7 shows the T CD8 cytotoxic response to the HLA-A2 restricted HBS (348-357) peptide following an immunization of HLA-A2+DR1+CI-CII-mice with pcmv S2/S.
SEQUENCES
[0042]SEQ ID NO:1 contains the following subparts: Nucleotides 1-1205 comprise the HLA-A2 promoter; nucleotides 1206-1265 the HLA-A2 leader sequence; nucleotides 1266-1565 the human β2 microgobulin cDNA; nucleotides 1566-1610 a (Gly4Ser)3 linker; nucleotides 1611-2440 a segment containing exon 2 and part of intron 3 of HLA-A2; and nucleotides 2441-4547 a segment containing part of intron 3, exons 4 to 8, and part of the 3' non-coding region of the H2Db gene.
[0043]SEQ ID NO:2 is the nucleotide sequence of the DRA*0101 gene. Nucleotides 1-15279 are the promoter located 5' to the HLA-DR alpha gene, nucleotides 15280-15425 are exon 1, nucleotides 15344-15346 are the ATG start codon, nucleotides 17838-18083 are exon 2, nucleotides 18575-18866 are exon 3, nucleotides 19146-19311 are exon 4, and nucleotides 20008-20340 are exon 5.
[0044]SEQ ID NO:3 is the nucleotide sequence of the DRB1*010101 gene. Nucleotides 7391-7552 are exon 1, nucleotides 7453-7455 are the ATG start codon, nucleotides 15809-16079 are exon 2, nucleotides 19536-19817 are exon 3, nucleotides 20515-20624 are exon 4, nucleotides 21097-21121 are exon 5, and nucleotides 21750-22085 are exon 6.
DETAILED DESCRIPTION OF THE INVENTION
[0045]The practice of the present invention will employ, unless otherwise indicated, conventional techniques of cell biology, cell culture, molecular biology, transgenic biology, microbiology, recombinant DNA, and immunology, which are within the skill of the art. Such techniques are explained fully in the literature. See, for example, Molecular Cloning A Laboratory Manual, 2nd Ed., ed. by Sambrook, Fritsch and Maniatis (Cold Spring Harbor Laboratory Press:1989); DNA Cloning, Volumes I and II (D. N. Glover ed., 1985); Oligonucleotide Synthesis (M. J. Gait ed., 1984); Mullis et al. U.S. Pat. No. 4,683,195; Nucleic Acid Hybridization (B. D. Hames & S. J. Higgins eds. 1984); Transcription And Translation (B. D. Hames & S. J. Higgins eds. 1984); Culture Of Animal Cells (R. I. Freshney, Alan R. Liss, Inc., 1987); Immobilized Cells And Enzymes (IRL Press, 1986); B. Perbal, A Practical Guide To Molecular Cloning (1984); the series, Methods In ENZYMOLOGY (J. Abelson and M. Simon, eds.-in-chief, Academic Press, Inc., New York), specifically, Vols. 154 and 155 (Wu et al. eds.) and Vol. 185, "Gene Expression Technology" (D. Goeddel, ed.); Gene Transfer Vectors For Mammalian Cells (J. H. Miller and M. P. Calos eds., 1987, Cold Spring Harbor Laboratory); Immunochemical Methods In Cell And Molecular Biology (Mayer and Walker, eds., Academic Press, London, 1987); Handbook Of Experimental Immunology, Volumes I-IV (D. M. Weir and C. C. Blackwell, eds., 1986); and Manipulating the Mouse Embryo, (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1986).
[0046]This invention provides mice comprising (1) mutated H-2 class I and class II molecules; and (2) expressing HLA class I transgenic molecules, or HLA class II transgenic molecules, or HLA class I transgenic molecules and HLA class II transgenic molecules. Mice of the invention, which comprise a knock-out for both H-2 class I and class II molecules, and express HLA class I transgenic molecules and HLA class II transgenic molecules represent a completely humanized experimental mouse that can be used to simultaneously detect the presence of antigen-specific antibodies, an antigen-specific HLA-DRI restricted T cell response, and an antigen-specific HLA-A2 restricted T cell response. These mice are useful to study how mutual coordination operates between a CTL response, a TH response (in particular a TH1 or TH2 response), and, optionally, a humoral response. These mice represent an optimized tool for basic and applied vaccinology studies.
[0047]The invention provides transgenic mouse comprising a disrupted H2 class I gene, a disrupted H2 class II gene, and a functional HLA class I or class II transgene. In some embodiments, the transgenic mouse comprises a disrupted H2 class I gene, a disrupted H2 class II gene, a functional HLA class I transgene, and a functional HLA class II transgene. Such a mouse can be said to be a completely humanized experimental mouse, because it can be used to simultaneously detect the presence of antigen-specific antibodies, an antigen-specific HLA-DRI restricted T cell response, and an antigen-specific HLA-A2 restricted T cell response.
[0048]As shown, in part, in the Examples provided herein, and as is generally clear to one of skill in the art from the disclosure, HLA-A2.1-/HLA-DR1-transgenic H-2 class I-/clasS II-KO mice have the capacity to develop HBsAg-specific antibody, CD4+ helper and CD8+ cytolytic T cell responses following DNA immunization. These responses, observed in every single mouse tested, were directed at the same immunodominant epitopes as human responses and conferred to the immunized animals specific protection against a HBsAg recombinant vaccinia virus.
[0049]T helper cells are essential for full maturation of antibody responses (Katz, D. H. & Benacerraf, B., Adv Immuno/15, 1-94 (1972)) CTL priming against many epitopes (von Boehmer, H. & Haas, W., J Exp Med 150, 1134-1142 (1979); Keene, J. A. & Forman, J., J Exp Med 155, 768-782 (1982)) and CTL long-term maintenance (Matloubian, M., Concepcion, R. J. & Ahmed, R., J Virol 68, 8056-8063 (1994)). Both antibodies (Lefrancois, L., J Virol 51, 208-214 (1984)) and CTL (Zinkernagel, R. M. & Welsh, R. M., J Immunol 117, 1495-1502 (1976)) are critical components of protective immunity against viral infections. Potent HBsAg-specific antibody and CTL responses were in fact observed in HLA-A2.1-/HLA-DR1-double transgenic, H-2 class I-/class II-KO mice, but not in HLA-A2.1-single transgenic, H-2 class I-/class II-KO mice. Thus, HBsAg-specific CD4+ T cell help is essential for generating efficient HBsAg-specific CTL and antibody responses. These results are consistent with studies on HBsAg-immunized mice (Milich, D. R., Semin Liver Dis 11, 93-112 (1991)) and HBsAg-vaccinated humans (Celis, E., Kung, P. C. & Chang, T. W., J Immunol 132, 1511-1516 (1984)), which suggest that production of an anti-HBs antibody response is dependent on CD4+ T cells.
[0050]Transgenic mice expressing both HLA-A2.1 class I and HLA-DR1 class II molecules have already been derived (BenMohamed, L. et al. Hum Immunol 61, 764-779 (2000)). The authors reported that both the HLA-A2.I and HLA-DR1 molecules are functional restriction elements in vivo and that the product of the HLA-DR1 transgene enhances the HLA-A2.1-restricted antigen-specific CTL responses. However, the human relevance of the immune responses in these mice is dwarfed by the fact that they still expressed their own H-2 class I and class II molecules, which are usually preferentially and often exclusively used as restricting elements in response to antigens (Ureta-Vidal, A., Firat, H., Perarnau, B. & Lemonnier, F. A., J Immunol 163, 2555-2560 (1999); Rohrlich, P. S. et al., Int Immunol 15, 765-772 (2003)) (A. Pajot, unpublished results). The invention described herein overcomes this limitation by providing HLA-A2.1-/HLA-DR1-transgenic, H-2 class I-/class II-KO mice.
[0051]In some embodiments the HLA-A2.1-/HLA-DR1-transgenic, H-2 class I-/class II-KO mice express, in a β2m-KO context, a HLA-A2.1 monochain in which the human β2m is covalently linked by a peptidic arm to the HLA-A2.1 heavy chain. They further lack cell surface expression of conventional H-2 IA and IE class II molecules as a result of the inactivation of the H-2 IAβb gene, since H-2 IEα is a pseudogene in the H-2b haplotype. The results provided herein demonstrate that such mice are deprived of cell surface expression of H-2 class I and class II molecules. However, it was reported in one case that a free class I heavy chain, in particular H-2 Db, may exist on the surface of a β2m-KO mouse, and could induce an alloreactivity response. Even if this is so, because such mice are empty of peptide, they should not interfere in antigen-specific immune response (Bix, M. & Raulet, D., J Exp Med 176, 829-834 (1992)). This is supported by the report of Allen et at (Allen, H., Fraser, J., Flyer, D., Calvin, S. & Flavell, R., Proc Natl Aced Sci USA 83, 7447-7451 (1986)), in which they confirmed that H-2 Db is expressed at the cell surface even when there is no β2m present within the cell, but that such Db antigen is recognized by neither Db-allospecific or Db-restricted cytotoxic T lymphocytes. Furthermore, Db antigens are not recognized by most monoclonal antibodies of the native Db.
[0052]Nonetheless, in HLA-DRα single transgenic mice, it was reported that unconventional HLA:DRα/H-2 IEβb hybrid complexes may be expressed to some extent on the cell surface, at least in the absence of the HLA-DRβ chain (Lawrance, S. K. et al., Cell 58, 583-594 (1989)). In spite of this observation, these unconventional molecules were not detected serologically on cell surfaces in HLA-A2.1-/HLA-DR1-transgenic, H-2 class I-/class II-KO mice, even with mAb (17-3-3S), which is known to react with such hybrid molecules (Ozato, K., Mayer, N. & Sachs, D. H., J Immunol 124, 533-540 (1980)) (FIG. 1a and data not shown). In addition, the results obtained on studying HBsAg-specific and HIV 1-Gag-specific T cell responses of these mice were all indicative of exclusive usage of the HLA-A2.1 and HLA-DR1 molecules as restricting elements. This argues that the unconventional HLA-DRα/H-2 IEβb hybrids were likely unstable compared to conventional HLA-DRα/HLA-Dβ molecules and that they may exist only in the absence of the HLA-DRβ chain. Mouse strains in which the entire (H-2 IAβb, IAαb, IEβb) H-2 class II region has been deleted (Madsen, L. et al., Proc Natl Aced Sci USA 96, 10338-10343 (1999)), as well as the H-2 Db gene, are being analyzed to completely exclude this possibility. Preliminary analysis of splenocytes obtained from the first animals revealed a CD4+ T cell pool restoration similar to that observed in HLA-DR1-transgenic H-2 class II-KO (Iaβb°) mice, suggesting that the HLA-DR1-restricted CD4+ T cell responses of these new mice should be equivalent to those of the HLA-A2.1-/HLA-DR1-transgenic, H-2 class I-/class II-KO mice.
[0053]The peripheral CD8+ T lymphocytes of HLA-A2.1-/HLA-DR1-transgenic, H-2 class I-/class II-KO mice, compared to parental HLA-A2.1-transgenic H-2 class I-KO mice, are quantitatively and qualitatively similar with full diversification, at least in terms of BV segment usage; of the TCR repertoire. Partial restoration compared to wild-type animals, especially of the CD8+ T cell pool, has been a constant observation in single HLA-transgenic mice expressing a chimeric (α3 domain of mouse origin) HLA-A2.1 molecule (Pascolo, S. et al., J Exp Med 185, 2043-2051 (1997)). Regardless of the α3 domain substitution, the interaction remains suboptimal between mouse CD8 and HLA-A2.1 molecules, since co-crystal analysis has documented that human CD8 also contacts the HLA-A2.1 heavy chain α2 domain (Gao, G. F. et al., Nature 387, 630-634 (1997)). Suboptimal cooperation might also occur in the endoplasmic reticulum where many molecules (TAP, tapasine, ERp 57) assist MHC class I molecule biosynthesis. However, at this stage, the only documented functional difference between these mice and human endoplasmic reticulum molecules, namely the efficient transport by human but not mouse TAP of COOH-terminus positively charged cytosolic peptides (Momburg, F., Neefjes, J. J. & Hammerling, G. J., Curr Opin Immunol 6, 32-37 (1994)), is not relevant for HLA-A2.1 molecules which bind peptides with a hydrophobic C-terminus, since these peptides are transported efficiently by mouse and human TAP. Even though the number of CD8+ T lymphocytes is lower in both single HLA-A2.1-transgenic, H-2 class I-KO mice and in HLA-A2.1-/HLA-DR1-transgenic H-2 class I-/class II-KO mice, they respond efficiently against HBsAg and, importantly, the latter mice develop antibody, helper and cytolytic cell responses similar to humans.
[0054]One of the difficulties hampering the design of T-epitope-based vaccines targeting T lymphocytes is HLA class I/class II molecule polymorphism. HLA-A2.1 and HLA-DR1 molecules are expressed by a significant proportion of individuals in human populations (30 to 50% for HLA-A2.1, 6 to 18% for HLA-DR1). Even though the functional clustering of HLA class I molecules in superfamilies is based on significant redundancy of the presented sets of peptides34, individual analysis of the responses elicited by each HLA class I isotypic or allelic variant remains desirable to identify the optimal epitopes they present. This is particularly important to devise a new reagent, such as tetramer (HLA-class I or HLA-class II) to monitor the immune response. For the same reason, it would be helpful to obtain strains of mice co-expressing HLA-A2.1 with other HLA class II molecules, even if the binding of peptides to HLA class II molecules is less restrictive than to class I molecules. Based on the disclosure herein, additional HLA class I-/class II-transgenic, H-2 class I-/class II-KO mice can be constructed for these and other purposes.
[0055]Whereas HLA-transgenic H-2-KO mice enable a detailed analysis and optimization of the immunogenicity of antigenic peptides with excellent transposability to humans (Rohrlich, P. S. et al., Int Immunol 15, 765-772 (2003); Loirat, D., Lemonnier, F. A. & Michel, M. L., J Immunol 165, 4748-4755 (2000); Scardino, A. et al., Eur J Immunol 31, 3261-3270 (2001)) this is less evident for vaccine adjuvant-formulation studies. This could be due to differences between the two species in the various effectors that are mobilized early in response to an antigenic challenge. Increasing fundamental knowledge of innate immunity might, in the future, lead to a more complete humanization of the mouse immune system.
[0056]In conclusion, the disclosure herein describes an optimized, humanized transgenic mouse model, whose H-2 class I (mouse (β2m) and class II (H-2 IAβb) genes have been deleted and replaced with equivalent human genes HHD (HLA-A*0201), HLA-DRA*0101 and HLA-DRB1*0101. Cellular immunity in the HLA-A2.1-/HLA-DR1-transgenic H-2 class I-/class II-KO mice is completely restricted by the human HLA molecules, with a complete absence of immune responses restricted by the murine MHC molecules. The absence of competition between murine MHC and human (transgenic) HLA immune responses allows for use of these mice to characterize epitopes in human vaccines that require collaboration between HLA-restricted CD4+ T helper and HLA-restricted CD8+ T cytolytic cells.
[0057]"HLA" is the human MHC complex, and "H-2" the mouse MHC complex. The human complex comprises three class I α-chain genes, HLA-A, HLA-B, and HLA-C, and three pairs of MHC class II α- and β-chain genes, HLA-DR, -DP, and -DQ. In many haplotypes, the HLA-DR cluster contains an extra β-chain gene whose product can pair with the DRα chain, and so the three sets of genes give rise to four types of MHC class II molecules. In the mouse, the three class I α-chain genes are H-2-L, H-2-D, and H-2-K. The mouse MHC class II genes are H-2-A and H-2-E.
[0058]It is known in the art that genetic diversity exists between the HLA genes of different individuals as a result of both polymorphic HLA antigens and distinct HLA alleles. Accordingly, embodiments of the invention disclosed herein may substitute one polymorphic HLA antigen for another or one HLA allele for another. Examples of HLA polymorphisms and alleles can be found, for example, at http://www.anthonynolan.org.uk/HIG/data.html and http://www.ebi.ac.uk/imgt/hla, and in Genetic diversity of Functional and Medical Implication, Dominique Charon (Ed.), EDK Medical and Scientific International Publisher, and The HLA FactsBook, Steven G. E. Marsh, Peter Parham and Linda Barber, AP Academic Press, 2000.
[0059]A "disrupted" gene is one that has been mutated using homologous recombination or other approaches known in the art. A disrupted gene can be either a hypomorphic allele of the gene or a null allele of the gene. One of skill in the art will recognize that the type of allele to be used can be selected for any particular context. In many embodiments of the invention, a null allele is preferred.
[0060]"Homologous recombination" is a general approach for targeting mutations to a preselected, desired gene sequence of, a cell in order to produce a transgenic animal (Mansour, S. L. et al., Nature 336:348-352 (1988); Capecchi, M. R., Trends Genet. 5:70-76 (1989); Capecchi, M. R., Science 244:1288-1292 (1989); Capecchi, M. R. et al., In: Current Communications in Molecular Biology, Capecchi, M. R. (ed.), Cold Spring Harbor Press, Cold Spring Harbor, N.Y. (1989), pp. 45-52; Frohman, M. A. et al., Cell 56:145-147 (1989)).
[0061]It is now be feasible to deliberately alter any gene in a mouse (Capecchi, M: R., Trends Genet. 5:70-76 (1989); Frohman, M. A. et al., Cell 56:145-147 (1989)). Gene targeting involves the use of standard recombinant DNA techniques to introduce a desired mutation into a cloned DNA sequence of a chosen locus. That mutation is then transferred through homologous recombination to the genome of a pluripotent, embryo-derived stem (ES) cell. The altered stem cells are microinjected into mouse blastocysts and are incorporated into the developing mouse embryo to ultimately develop into chimeric animals. In some cases, germ line cells of the chimeric animals will be derived from the genetically altered ES cells, and the mutant genotypes can be transmitted through breeding.
[0062]Gene targeting has been used to produce chimeric and transgenic mice in which an nptII gene has been inserted into the β2-microglobulin locus (Koller, B. H. et al., Proc. Natl. Acad. Sci. (U.S.A.) 86:8932-8935 (1989); Zijlstra, M. et al., Nature 342:435-438 (1989); Zijlstra, M. et al., Nature 344:742-746 (1989); DeChiaba et al., Nature 345:78-80 (1990)). Similar experiments have enabled the production of chimeric and transgenic animals having a c-abl gene which has been disrupted by the insertion of an nptII gene (Schwartzberg, P. L. et al., Science 246:799-803 (1989)). The technique has been used to produce chimeric mice in which the en-2 gene has been disrupted by the insertion of an nptII gene (Joyner, A. L. et al., Nature 338:153-155 (1989)).
[0063]In order to utilize the "gene targeting" method, the gene of interest must have been previously cloned, and the intron-exon boundaries determined. The method results in the insertion of a marker gene (e.g., an nptII gene) into a translated region of a particular gene of interest. Thus, use of the gene targeting method results in the gross destruction of the gene of interest.
[0064]Significantly, the use of gene targeting to alter a gene of a cell results in the formation of a gross alteration in the sequence of that gene. The efficiency of gene targeting depends upon a number of variables, and is different from construct to construct.
[0065]The chimeric or transgenic animal cells of the present invention are prepared by introducing one or more DNA molecules into a cell, which may be a precursor pluripotent cell, such as an ES cell, or equivalent (Robertson, E. J., In: Current Communications in Molecular Biology, Capecchi, M. R. (ed.), Cold Spring Harbor Press, Cold Spring Harbor, N.Y. (1989), pp. 39-44). The term "precursor" is intended to denote only that the pluripotent cell is a precursor to the desired ("transfected") pluripotent cell, which is prepared in accordance with the teachings of the present invention. The pluripotent (precursor or transfected) cell can be cultured in vivo in a manner known in the art (Evans, M. J. et al., Nature 292:154-156 (1981)) to form a chimeric or transgenic animal.
[0066]Any ES cell can be used in accordance with the present invention. It is, however, preferred to use primary isolates of ES cells. Such isolates can be obtained directly from embryos, such as the CCE cell line disclosed by Robertson, E. J., In: Current Communications in Molecular Biology, Capecchi, M. R. (ed.), Cold Spring Harbor Press, Cold Spring Harbor, N.Y. (1989), pp. 39-44), or from the clonal isolation of ES cells from the CCE cell line (Schwartzberg, P. A. et al., Science 246:799-803 (1989), which reference is incorporated herein by reference). Such clonal isolation can be accomplished according to the method of E. J. Robertson (In: Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, (E. J. Robertson, Ed.), IRL Press, Oxford, 1987), which reference and method are incorporated herein by reference. The purpose of such clonal propagation is to obtain ES cells, which have a greater efficiency for differentiating into an animal. Clonally selected ES cells are approximately 10-fold more effective in producing transgenic animals than the progenitor cell line CCE. For the purposes of the recombination methods of the present invention, clonal selection provides no advantage.
[0067]An example of ES cell lines, which have been clonally derived from embryos, are the ES cell lines, AB1 (hprt+) or AB2.1 (hprt.sup.-). The ES cells are preferably cultured on stromal cells (such as STO cells (especially SNC4 STO cells) and/or primary embryonic fibroblast cells) as described by E. J. Robertson (In: Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, (E. J. Robertson, Ed., IRL Press, Oxford, 1987, pp 71-112), which reference is incorporated herein by reference. Methods for the production and analysis of chimeric mice are disclosed by Bradley, A. (In: Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, (E. J. Robertson, Ed.), IRL Press, Oxford, 1987, pp 113-151), which reference is incorporated herein by reference. The stromal (and/or fibroblast) cells serve to eliminate the clonal overgrowth of abnormal ES cells. Most preferably, the cells are cultured in the presence of leukocyte inhibitory factor ("lif") (Gough, N. M. et al., Reprod. Fertil. Dev. 1:281-288 (1989); Yamamori, Y. et al., Science 246:1412-1416 (1989), both of which references are incorporated herein by reference). Since the gene encoding lif has been cloned (Gough, N. M. et al., Reprod. Fertil. Dev. 1:281-288 (1989)), it is especially preferred to transform stromal cells with this gene, by means known in the art, and to then culture the ES cells on transformed stromal cells that secrete lif into the culture medium.
[0068]As used herein, the term "transgene" refers to a nucleic acid sequence, which is partly or entirely heterologous, i.e., foreign, to the transgenic animal or cell into which it is introduced, or, is homologous to an endogenous gene of the transgenic animal or cell into which it is introduced, but which is designed to be inserted, or is inserted, into the animal's genome in such a way as to alter the genome of the cell into which it is inserted (e.g., it is inserted at a location which differs from that of the natural gene or its insertion results in a knockout). A transgene can be operably linked to one or more transcriptional regulatory sequences and any other nucleic acid, such as introns, that may be necessary for optimal expression of a selected nucleic acid. Exemplary transgenes of the present invention encode, for instance an H-2 polypeptide. Other exemplary transgenes are directed to disrupting one or more HLA genes by homologous recombination with genomic sequences of an HLA gene.
[0069]A "functional transgene" is one that produces an mRNA transcript, which in turn produces a properly processed protein in at least one cell of the mouse comprising the transgene. One of skill will realize that the diverse set of known transcriptional regulatory elements and sequences directing posttranscriptional processing provide a library of options from which to direct the expression of a transgene is a host mouse. In many embodiments of the invention, expression of an HLA transgene under the control of an H-2 gene regulatory element may be preferred.
[0070]In some embodiments, the HLA class I transgene is an HLA-A2 transgene and the HLA class II transgene is an HLA-DR1 transgene. An example of an HLA-A2 transgene is one that comprises the HLA-A2 sequence provided in the sequence listing. An example of an HLA-DR1 transgene is one that comprises the HLA-DR1 sequence provided in the sequence listing.
[0071]In an embodiment, the invention provides a transgenic mouse deficient for both H2 class I and class II molecules, wherein the transgenic mouse comprises a functional HLA class I transgene and a functional HLA class II transgene. In some embodiments, the mouse has the genotype HLA-A2+HLA-DR1+β2m°IAβ°. In other embodiments the HLA-A2 transgene comprises the HLA-A2 sequence provided in the sequence listing and the HLA-DR1 transgene comprises the HLA-DR1 sequence provided in the sequence listing.
[0072]The invention also provides isolated transgenic mouse cells. In some cases the cell comprises a disrupted H2 class I gene, a disrupted H2 class II gene, and a functional HLA class I or class II transgene. In others, the cell comprises a disrupted H2 class I gene, a disrupted H2 class II gene, a functional HLA class I transgene, and a functional HLA class II transgene. The HLA class I transgene can be an HLA-A2 transgene and the HLA class II transgene can be an HLA-DR1 transgene. In some cases, the HLA-A2 transgene comprises the HLA-A2 sequence provided in the sequence listing and the HLA-DR1 transgene comprises the HLA-DR1 sequence provided in the sequence listing.
[0073]In an embodiment, the invention provides an isolated transgenic mouse cell deficient for both H2 class I and class II molecules, wherein the transgenic mouse comprises a functional HLA class I transgene and a functional HLA class II transgene. The isolated transgenic mouse cells can have the genotype HLA-A2+HLA-DR1+β2m°IAβ°. The HLA-A2 transgene can comprise the HLA-A2 sequence provided in the sequence listing and the HLA-DR1 transgene can comprise the HLA-DR1 sequence provided in the sequence listing.
[0074]The isolated transgenic mouse cells of the invention can have the genotype of any mouse of the invention. However, the set of genotypes of the isolated transgenic mouse cells of the invention, and the set of genotypes of the mice of the invention are not necessarily entirely overlapping.
[0075]The isolated mouse cells of the invention can be obtained from a mouse or mouse embryo. In one, embodiment, the mouse or mouse embryo has the same genotype as the cell to be obtained. In another embodiment, the mouse or mouse embryo has a different genotype than the cell to be obtained. After the cell is obtained from the mouse or mouse embryo, a gene of the cell can be disrupted by, for example, homologous recombination. Additionally, a functional transgene can be introduced into the genome of the cell by, for example, transfection. One of skill in the art will recognize that any suitable method known in the art can be applied to modify the genome of the cell to thereby obtain an isolated mouse cell having the desired genotype.
[0076]An additional object of the invention is an isolated transgenic mouse cell deficient for both H2 class I and class II molecules, wherein the transgenic mouse cell comprises a functional HLA class I transgene and a functional HLA class II transgene. In some embodiments, the transgenic mouse cell has the genotype HLA-A2+HLA-DR1+β2m°IAβ°. In other embodiments, the HLA-A2 transgene comprises the HLA-A2 sequence provided in the sequence listing and the HLA-DR1 transgene comprises the HLA-DR1 sequence provided in the sequence listing.
[0077]T cells play a central role in many aspects of acquired immunity, carrying out a variety of regulatory and defensive functions. When some T cells encounter an infected or cancerous cell, they recognize it as foreign and respond by acting as killer cells, killing the host's own cells as part of the cell-mediated immune response. Other T cells, designated helper T cells, respond to perceived foreign antigens by stimulating B cells to produce antibodies, or by suppressing certain aspects of a humoral or cellular immune response.
[0078]T helper cells (Th) orchestrate much of the immune response via the production of cytokines. Although generally identifiable as bearing the CD4 cell surface marker, these cells are functionally divided into Th1 or Th2 subpopulations according to the profile of cytokines they produce and their effect on other cells of the immune system.
[0079]The Th1 cells detect invading pathogens or cancerous host cells through a recognition system referred to as the T cell antigen receptor. Termed cellular immunity, Th1-related processes generally involve the activation of non-B cells and are frequently characterized by the production of IFN-γ. Nevertheless, although the Th1 system is primarily independent from the production of humoral antibodies, Th1 cytokines do promote immunoglobulin class switching to the IgG2a isotype.
[0080]Upon detection of a foreign antigen, most mature Th1 cells direct the release of IL-2, IL-3, IFN-γ, TNF-β, GM-CSF, high levels of TNF-α, MIP-1α, MIP-1β, and RANTES. These cytokines promote delayed-type hypersensitivity and general cell-mediated immunity. IL-2, for instance, is a T cell growth factor that promotes the production of a clone of additional T cells sensitive to the particular antigen that was initially detected. The sensitized T cells attach to and attack cells or pathogens containing the antigen.
[0081]In contrast, mature Th2 cells tend to promote the secretion of IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-13, GM-CSF, and low levels of TNF-α. In addition, the Th2 response promotes humoral immunity by activating B cells, stimulating antibody production and secretion, and inducing class switching to IgA, IgG1 and IgE isotypes.
[0082]As used herein, an "antigen" comprises: 1) at least one HTL epitope, or 2) at least one CTL epitope or, 3) at least one B cell epitope, or 4) at least one HTL epitope and at least one CTL epitope, or 5) at least one HTL epitope and at least one B cell epitope, or 6) at least one CTL epitope and at least one B cell epitope, or 7) at least one HTL epitope and at least one CTL epitope and at least one B cell epitope. A "candidate antigen" a molecule that is under investigation to determine whether it functions as an antigen.
[0083]A "humoral immune response" is antibody-mediated specific immunity.
[0084]An "epitope" is a site on an antigen that is recognized by the immune system. An antibody epitope is a site on an antigen recognized by an antibody. A T-cell epitope is a site on an antigen that binds to an MHC molecule. A TH epitope is one that binds to an MHC class II molecule. A CTL epitope is one that binds to an MHC class I molecule.
[0085]The antigen can comprise a polypeptide sequence or a polynucleotide sequence, which can comprise RNA, DNA, or both. In one embodiment, the antigen comprises at least one polynucleotide sequence operationally encoding one or more antigenic polypeptides. Used in this context, the word "comprises" intends that at least one antigenic polypeptide is provided by the transcription and/or translation apparatus of a host cell acting upon an exogenous polynucleotide that encodes at least one antigenic polypeptide, as described, for example in U.S. Pat. Nos. 6,194,389 and 6,214,808.
[0086]Antigens of the invention can be any antigenic molecule. Antigenic molecules include: proteins, lipoproteins, and glycoproteins, including viral, bacterial, parasitic, animal, and fungal proteins such as albumins, tetanus toxoid, diphtheria toxoid, pertussis toxoid, bacterial outer membrane proteins (including meningococcal outer membrane protein), RSV-F protein, malarial derived peptide, B-lactoglobulin B, aprotinin, ovalbumin, lysozyme, and tumor associated antigens such as carcinoembryonic antigen (CEA), CA 15-3, CA 125, CA 19-9, prostrate specific antigen (PSA), and the TAA complexes of U.S. Pat. No. 5,478,556, which is incorporated herein by reference in its entirety; carbohydrates, including naturally-occurring and synthetic polysaccharides and other polymers such as ficoll, dextran, carboxymethyl cellulose, agarose, polyacrylamide and other acrylic resins, poly (lactide-co-glycolide), polyvinyl alcohol, partially hydrolyzed polyvinyl acetate, polyvinylpyrrolidine, Group B Streptococcal and Pneumococcal capsular polysaccharides (including type III), Pseudomonas aeruginosa mucoexopolysaccharide, and capsular polysaccharides (including fisher type I), and Haemophilus influenzae polysaccharides (including PRP); haptens, and other moieties comprising low molecular weight molecules, such as TNP, saccharides, oligosaccharides, polysaccharides, peptides, toxins, drugs, chemicals, and allergens; and haptens and antigens derived from bacteria, rickettsiae, fungi, viruses, parasites, including Diphtheria, Pertussis, Tetanus, H. influenzae, S. pneumoniae, E. Coli, Klebsiella, S. aureus, S. epidermidis, N. meningiditis, Polio, Mumps, measles, rubella, Respiratory Syncytial Virus, Rabies, Ebola, Anthrax, Listeria, Hepatitis A, B, C, Human Immunodeficiency Virus I and II, Herpes simplex types 1 and 2, CMV, EBV, Varicella Zoster, Malaria, Tuberculosis, Candida albicans, and other candida, Pneumocystis carinii, Mycoplasma, Influenzae virus A and B, Adenovirus, Group A streptococcus, Group B streptococcus, Pseudomonas aeryinosa, Rhinovirus, Leishmania, Parainfluenzae, types 1, 2 and 3, Coronaviruses, Salmonella, Shigella, Rotavirus, Toxoplasma, Enterovirusses, and Chlamydia trachomatis and pneumoniae.
[0087]As used herein, a pharmaceutical composition or vaccine comprises at least one immunological composition, which can be dissolved, suspended, or otherwise associated with a pharmaceutically acceptable carrier or vehicle. Any pharmaceutically acceptable carrier can be employed for administration of the composition. Suitable pharmaceutical carriers are described in Remington's Pharmaceutical Sciences, 18th Edition (A. Gennaro, ed., 1990) Mack Pub., Easton, Pa., which is incorporated herein by reference in its entirety. Carriers can be sterile liquids, such as water, polyethylene glycol, dimethyl sulfoxide (DMSO), oils, including petroleum oil, animal oil, vegetable oil, peanut oil, soybean oil, mineral oil, sesame oil, and the like. Carriers can be in the form of mists, sprays, powders, waxes, creams, suppositories, implants, salves, ointments, patches, poultices, films, or cosmetic preparations.
[0088]Proper formulation of the pharmaceutical composition or vaccine is dependent on the route of administration chosen. For example, with intravenous administration by bolus injection or continuous infusion, the compositions are preferably water soluble, and saline is a preferred carrier. For transcutaneous, intranasal, oral, gastric, intravaginal, intrarectal, or other transmucosal administration, penetrants appropriate to the barrier to be permeated can be included in the formulation and are known in the art. For oral administration, the active ingredient can be combined with carriers suitable for inclusion into tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions, and the like. Time-sensitive delivery systems are also applicable for the administration of the compositions of the invention. Representative systems include polymer base systems, such as poly(lactide-glycoside), copolyoxalates, polycaprolactones, polyesteramides, polyorthoesters, polyhydroxybutyric acid and polyanhydrides. These and like polymers can be formulated into microcapsules according to methods known in the art, for example, as taught in U.S. Pat. No. 5,075,109, which is incorporated herein by reference in its entirety. Alternative delivery systems appropriate for the administration of the disclosed immunostimulatory compounds of the invention include those disclosed in U.S. Pat. Nos. 6,194,389, 6,024,983 5,817,637, 6,228,621, 5,804,212, 5,709,879, 5,703,055, 5,643,605, 5,643,574, 5,580,563, 5,239,660, 5,204,253, 4,748,043, 4,667,014, 4,452,775, 3,854,480, and 3,832,252 (each of which is incorporated herein by reference in its entirety).
[0089]Aqueous dextrose and glycerol solutions can also be employed as liquid carriers, particularly for injectable or aerosol solutions. For administration by aerosol, as by pressurized spray or nebulizer, suitable propellants can be added as understood by those familiar with the art. The immunological composition can also be formulated with solubilizing agents; emulsifiers; stabilizers; dispersants; flavorants; adjuvants; carriers; topical anesthetics, such as lidocaine, xylocaine, and the like; antibiotics; and known or suspected anti-viral, anti-fungal, anti-parasitic, or anti-tumor compounds.
[0090]An "adjuvant" is a composition that promotes or enhances an immune response to a target antigen. One of skill in the art can select an appropriate adjuvant for use in practicing the present invention in view of the disclosure herein.
[0091]The present invention encompasses methods of treating a patient in need of immune stimulation by administering a composition comprising one or more antigens of the invention. As used herein, treatment encompasses corrective, restorative, ameliorative, and preventive methods relating to any disease, condition, abnormality, or symptom. Treatment further encompasses the elicitation or suppression of an immune response in an experimental animal or ex vivo.
[0092]Thus, treatment comprises administering an immunostimulatory amount of any of the immunostimulatory compositions of the invention by any method familiar to those of ordinary skill in the art, commonly including oral and intranasal routes, and intravenous, intramuscular, and subcutaneous injections, but also encompassing, intraperitoneal, intracorporeal, intra-articular, intraventricular, intrathecal, topical, tonsillar, mucosal, transdermal, intravaginal administration and by gavage.
[0093]As is recognized by the skilled practitioner, choosing an appropriate administration method may contribute to the efficacy of a treatment, and local administration may be preferred for some applications. Acceptable routes of local administration include subcutaneous, intradermal, intraperitoneal, intravitreal, inhalation or lavage, oral, intranasal, and directed injection into a predetermined tissue, organ, joint, tumor, or cell mass. For example, mucosal application or injection into mucosal lymph nodes or Peyer's patches may promote a humoral immune response with substantial IgA class switching. Alternatively, targeted injection into a lesion, focus, or affected body site may be applicable for the treatment of solid tumors, localized infections, or other situs requiring immune stimulation.
[0094]Alternatively, cells of the immune system (e.g., T cells, B cells, NK cells, or oligodendrocytes) can be removed from a host and treated in vitro. The treated cells can be further cultured or reintroduced to a patient (or to a heterologous host) to provide immune stimulation to the patient or host. For example, bone marrow cells can be aspirated from a patient and treated with an HDR to stimulate global or specific immunity. High-dose radiation, or comparable treatments, can then be used to destroy the remaining immune cells in the patient. Upon re-implantation, the autologous stimulated cells will restore normal immune function in the patient. Alternatively, NK and/or T cells isolated from a patient suffering from cancer may be exposed in vitro to one or more antigens specific to the patient's cancer. Upon re-implantation into the patient, the antigen-stimulated cells will deploy a vigorous cellular immune response against the cancerous cells.
[0095]An immunostimulatory (efficacious) amount refers to that amount of vaccine that is able to stimulate an immune response in a patient, which is sufficient to prevent, ameliorate, or otherwise treat a pathogenic challenge, allergy, or immunologic abnormality or condition. An immunostimulatory amount is that amount, which provides a measurable increase in a humoral or cellular immune response to at least one epitope of the antigen as compared to the response obtained if the antigen is administered to the patient without prior treatment with the vaccine. Thus, for example, an immunostimulatory amount refers to that amount of an antigen-containing composition that is able to promote the production of antibodies directed against an antigenic epitope of interest or stimulate a detectable protective effect against a pathogenic or allergenic challenge or to promote a protective CTL response against an antigenic epitope of interest.
[0096]Treatment with an immunostimulatory amount of an antigen-containing composition of the invention comprises effecting any directly, indirectly, or statistically observable or measurable increase or other desired change in the immune response in a host, specifically including an ex vivo tissue culture host, comprising at least one cell of the immune system or cell line derived therefrom. Host cells can be derived from human or animal peripheral blood, lymph nodes or the like. Preferred tissue culture hosts include freshly isolated T cells, B cells, macrophages, oligodendrocytes, NK cells, and monocytes, each of which can be isolated or purified using standard techniques. Observable or measurable responses include, B or T cell proliferation or activation; increased antibody secretion; isotype switching; increased cytokine release, particularly the increased release of one or more of IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12, IL-13, GM-CSF, IFN-γ, TNF-α, TNF-β, GM-CSF, MIP-1α, MIP-1β, or RANTES; increased antibody titer or avidity against a specific antigen; reduced morbidity or mortality rates associated with a pathogenic infection; promoting, inducing, maintaining, or reinforcing viral latency; suppressing or otherwise ameliorating the growth, metastasis, or effects, of malignant and non-malignant tumors; and providing prophylactic protection from a disease or the effects of a disease.
[0097]Where the suppression of an immunological response is desired, for example, in the treatment of autoimmune disease or allergy, an effective amount also encompasses that amount sufficient to effect a measurable or observable decrease in a response associated with the condition or pathology to be treated.
[0098]The amount of an antigen-containing composition to be administered and the frequency of administration can be determined empirically and will take into consideration the age and size of the patient being treated, and the condition or disease to be addressed. An appropriate dose is within the range of 0.01 μg to 100 μg per inoculum, but higher and lower amounts may also be indicated. Secondary booster immunizations can be given at intervals ranging from one week to many months later.
[0099]The following examples demonstrate certain embodiments of the invention. One of ordinary skill in the art will recognize the numerous modifications and variations that may be performed without altering the spirit or scope of the present invention. Such modifications and variations are believed to be encompassed within the scope of the invention. The examples do not in any way limit the invention.
EXAMPLES
[0100]The following experimental techniques and reagents were used to demonstrate certain nonlimiting embodiments of the invention.
[0101]Transgenic Mice
[0102]The HLA-DR1-transgenic H-2 class II-KO (IA βb°) mice were obtained at the Institut Pasteur of Lille by crossing HLA-DR1-transgenic mice (Altmann, D. M. et al., J Exp Med 181, 867-875 (1995)) with H-2 class II-KO (IA βb°) mice (Rohrlich, P. S. et al., Int Immunol 15, 765-772 (2003)). The HLA-A2.1-transgenic mice, expressing a chimeric monochain (HHD molecule: α1-α2 domains of HLA-A2.1, α3 to cytoplasmic domains of H-2 Db, linked at its N-terminus to the C terminus of human β2m by a 15 amino-acid peptide linker) were created (Pascolo, S. et al., J Exp Med 185, 2043-2051 (1997)). HLA-A2.1 (HHD)-transgenic H-2 class I-KO and HLA-DR1-transgenic H-2 class II-KO (IA βb°) mice were intercrossed and progenies screened until HLA-A2.1+/-/HLA-DR1+/- double transgenic H-2-class I)(β2m0)-/class II (IAβ0)-KO animals were obtained and used for the experiments described herein. HLA-A2.1+/- single transgenic H-2-class I (β2m0)-/class II (IAβ0)-KO mice were used as controls in the protection assays. Mice were bred in the animal facilities at the Institut Pasteur, Paris; all protocols were reviewed by the Institut Pasteur competent authority for compliance with the French and European regulations on Animal Welfare and with Public Health Service recommendations.
[0103]Genotypinq
[0104]The HLA-DRB1*0101, HLA-DRA*0101 and HLA-A*0201 transgenes were detected by PCR. Tail-DNA was extracted after overnight incubation at 56° C. in 100 mM NaCl, 50 mM Tris-HCl pH 7.2, 100 mM EDTA, 1% SDS and 0.5 mg/ml proteinase K, followed by the addition of 250 μl of saturated NaCl solution and isopropanol precipitation. The samples were washed (3×) in 70% ethanol and resuspended in 150 μl of 10 mM Tris-HCl, 1 mM EDTA pH 8. PCR conditions were: 1.5 mM MgCl2, 1.25 U Of Taq Polymerase, buffer supplied by the manufacturer (InVitrogen, Carlsbad, Calif.), 1 cycle (7 min, 94° C.), 40 cycles (30 sec, 94° C.; 30 sec, 60° C.; 1 min, 72° C.), 1 cycle (4 min, 72° C.), using as forward and reverse primers, for HHD: 5'CAT TGA GAC AGA GCG CTT GGC ACA GAA GCA G 3' and 5'GGA TGA CGT GAG TAA ACC TGA ATC TTT GGA GTA CGC 3', for HLA-DRB1*0101: 5' TTC TTC AAC GGG ACG GAG CGG GTG 3' and 5' CTG CAC TGT GAA GCT CTC ACC AAC 3', and for HLA-DRA*0101: 5' CTC CAA GCC CTC TCC CAG AG 3' and 5' ATG TGC CTT ACA GAG GCC CC 3'.
[0105]FACS Analysis
[0106]Cytofluorimetry studies were performed on red-blood cell-depleted, Lympholyte M-purified (Tebu-bio, Le Perray en Yvelines, France) splenocytes using FITC-conjugated W6/32 (anti-HLA-ABC, Sigma, St Louis, Mo.) and biotinilated anti-28-8-6S (anti-H-2 Kb/Db, BD Biosciences, San Diego, Calif.) m.Ab. CD4+ and CD8+ T lymphocytes were stained using PE-labeled CT-CD4 anti-mouse CD4 (CALTAG, South San Francisco, Calif.) and FITC-labeled 53-6.7 anti-mouse CD8 m.Ab (BD Biosciences). Analysis of MHC class II molecule expression was performed on B220+ B lymphocytes positively selected on MS columns (Miltenyi Biotec, Bergisch Gladbach, Germany). Following saturation of Fc receptors with 2.4G2 m.Ab, expression of HLA-DR1 and H-2 IAb was analyzed using FITC-labeled L243 (anti-HLA-DR) and PE-labeled AF6-120.1 (anti-H-2 IAβb) m.Ab (BD Biosciences). Paraformaldehyde fixed cells were analyzed with a FACSCalibur (Becton Dickinson, Bedford, Mass.).
[0107]Immunoscope Analyses
[0108]CD4+ and CD8+ T cells from naive mice were positively selected on Auto-Macs (Miltenyi Biotec), RNA prepared using RNA Easy Kit (Qiagen, Hilden, Germany) and used for cDNA synthesis. The cDNA was PCR-amplified using forward primers specific for each BV segment family and a reverse primer shared by the two BC segments. PCR-products were subjected to a run-off-elongation with internal BC FAM-tagged primer. The run-off products were loaded on a 6% acrylamide/8 M urea gel for separation (7 h, 35 W) with a 373A DNA sequencer (Perkin Elmer Applied Biosystem, Foster City, Calif.). Data were analyzed using immunoscope software (Pannetier, C. et al., Proc Natl Acad Sci USA 90, 4319-4323 (1993)).
[0109]Peptides
[0110]The HLA-A2 binding peptides HBsAg348-357 GLSPTVWLSV and HBsAg335-343 WLSLLVPFV, the H-2 Kb binding peptide HBsAg371-378 ILSPFLPL, the HLA-DR1 binding peptide HBsAg180-195 QAGFFLLTRILTIPQS, the H-2 IAb binding peptide HBsAg126-138 RGLYFPAGGSSSG and the preS2 peptide HBsAg109-134 MQWNSTTFHQTLQDPRVRGLYFPAGG were synthesized by Neosystem (Strasbourg, France) and dissolved in PBS-10% DMSO at a concentration of 1 mg/ml. The numbering of the amino acid sequence of peptides starts from the first methionine of the HBV ayw subtype preS1 domain.
[0111]Immunization with DNA Encoding the S2-S Proteins of HBV
[0112]The pCMV-S2.S plasmid vector (Michel, M. L. et al., Proc Natl Acad Sci USA 92, 5307-5311 (1995)) coding for the preS2 and the S HBV surface antigens expressed under the control of the human CMV immediate early gene promotor was purified on Plasmid Giga Kit columns under endotoxin free conditions (Qiagen). Anesthetized mice were injected (50 μg each side) into regenerating tibialis anterior muscles, as previously described (Davis, H. L., Michel, M. L. & Whalen, R. G., Hum Mol Genet 2, 1847-1851 (1993)).
T Cell Proliferation Assay
[0113]Twelve days after the last immunization, red-blood cell-depleted, Ficoll-purified splenocytes (5.106 cells/25 cm2 culture flask (Techno Plastic Products (TPP), Trasadingen, Switzerland)) were co-cultured with peptide-pulsed (20 μg/ml), γ-irradiated (180 Gy) LPS-blasts (5.106 cells/culture flask) in RPMI medium supplemented with 10% FCS, 10 mM HEPES, 1 mM sodium pyruvate, 5×10-5 M 2-mercaptoethanol, 100 I.U/ml penicillin and 100 μg streptomycin, as described (Loirat, D., Lemonnier, F. A. & Michel, M. L., J Immuno/165, 474&4755 (2000)). On day 7, for proliferation assays, cells were plated (5×105 cells/well of flat bottomed 96 well microplates, (TPP)) with peptide-pulsed irradiated LPS-Blasts (2×105 cells/well) for 72 h in complete RPMI medium supplemented with 3% FCS. Cells were pulsed for the final 16 h with 1 μCi of (3H)-thymidine per well before being harvested on filtermates with a TOMTEC collector (Perkin Elmer Applied Biosystem), and incorporated radioactivity was measured on a micro-β counter (Perkin Elmer Applied Biosystem). Results are given as stimulation index (SI)=cpm with specific peptide/cpm with irrelevant peptide.
[0114]Measurement of CTL Activity
[0115]Cytotoxicity assays were performed on the same immune splenocyte populations as the proliferation assays. Responder cells (5.106 cells/25 cm2 culture flask, TPP) and stimulating peptide-pulsed (20 μg/ml), γ-irradiated (180 Gy) LPS-blasts (5.106 cells/culture flask) were co-cultured for 7 days in the same supplemented RPMI medium as for proliferation assays. Cytolytic activity was tested in a standard 4 h 51Cr assay against RMA-S HHD target cells pulsed with 10 μg/ml of the experimental or control peptides. Specific lysis, in %, was calculated in duplicates, according to: [experimental-spontaneous release]/[maximal-spontaneous release]×100, substracting the non-specific lysis observed with the control peptide.
[0116]Measurement of In Vivo Antibody Production
[0117]At various times before and after DNA injection, blood was collected from mice by retrobulbar puncture with heparinized glass pipettes, and sera recovered by centrifugation were assayed for anti-HBs and anti-preS2 by specific ELISA. Purified recombinant particles containing HBV small S protein (1 μg/ml) or preS2 (120-145) synthetic peptide (1 μg/ml) were used as the solid phase. After blocking with PBST (PBS containing 0.1% Tween 20) supplemented with 10% FCS, serial dilutions were added. After extensive washing, the bound antibodies were detected with anti mouse Ig (total IgG) labeled with horseradish peroxidase (Amersham, Little Chalfont, UK). Antibody titers were determined by the serial end-point dilution method. Mouse sera were tested individually, and titers were the mean of at least three determinations. Serum dilutions below 1/100 were considered negative.
[0118]Antibody Titration
[0119]Sera from immunized mice were individually assayed by ELISA (Michel, M. L. et al., Proc Natl Acad Sci USA 92, 5307-5311 (1995)) on either purified HBV middle and small pro pins or preS2 synthetic HBs109-134. peptide, After blocking with PBS 1× supplemented with 0.1% Tween 20, 10% FCS and washings (×3), bound antibodies were detected with horseradish peroxidase-labeled anti-mouse IgG (Amersham, Little Chalfont, UK). Antibody titers (means of at least 3 determinations) were determined by the serial end-point dilution method. Titers below 1/100 were considered negative.
[0120]Vaccinia Challenge and Plaque Assay
[0121]DNA-injected mice were challenged intraperitoneally 12 days post last injection with 107 PFU of recombinant vaccinia virus (Western Reserve strain) expressing either the HbsAg (Smith, G. L., Mackett, M. & Moss, B., Nature 302, 490-495 (1983)) or the HBx protein (Schek, N., Bartenschlager, R., Kuhn, C. & Schaller, H., Oncogene 6, 1735-1744. (1991)) kindly provided, respectively, by Dr B. Moss and Dr H. Schaller. Four days later, ovaries were assayed for rVV titers by plaque assay on BHK 21 cells (Buller, R. M. & Wallace, G. D., Lab Anim Sci 35, 473-476 (1985).
Example 1
Cell Surface Expression of MHC Molecules
[0122]Cell surface expression of the HLA-A2.1, H-2 Kb/Db, HLA-DR1, and H-2 IAb molecules was evaluated on splenocytes by flow cytometry. As illustrated in FIG. 1a, a similar level of HLA-A2.1 expression was observed in HLA-A2.1-/HLA-DR1-transgenic, H-2 class I-/class II-KO mice and HLA-A2.1-transgenic, H-2 class I-KO mice, while HLA-A2.1 was absent and H-2 Kb/Db expressed exclusively in HLA-DR1-transgenic, H-2 class II-KO mice. Cell surface expression of HLA-DR1 and H-2 IAb was measured on B220+-enriched B cells. As shown in FIG. 1b, a similar level of HLA-DR1 expression was observed in HLA-A2.1-/HLA-DR1-transgenic, H-2 class I-/class II-KO mice and HLA-DR1-transgenic, H-2 class II-KO mice, whereas no expression was detected in HLA-A2.1-transgenic, H-2 class I-KO mice. Cell surface expression of the transgenic molecules (especially HLA-DR1) was, however, lower than the expression of endogenous H-2 class I and class II molecules.
Example 2
Peripheral CD4+ and CD8+ T Cells
[0123]CD4+ and CD8+ splenic T cell numbers were determined by immunostaining and flow cytometry analysis as illustrated in FIG. 2a.
[0124]CD4+ T cells represented 13-14% of the splenocyte population in both HLA-A2.1-/HLA-DR1-transgenic, H-2 class I-/class II-KO mice and HLA-DR1-transgenic, H-2 class II-KO mice. In contrast, only 2-3% of the cells were CD4+ in H-2 class II-KO mice (data not shown), in agreement with the initial report on mice lacking MHC class II molecules (Cosgrove, D. et al., Cell 66, 1051-1066 (1991)). As expected, expression of transgenic HLA-A2.1 molecules led to an increase in the size of the peripheral CD8+ T cell population, which reached 2-3% of the total splenocytes in both HLA-A2.1-/HLA-DR1-transgenic, H-2 class I-/class II-KO mice and HLA-A2.1-transgenic, H-2 class I-KO mice, compared to 0.6-1% in the β2 microglobulin (β2m)-KO MHC class I-deficient mice (Pascolo, S. et al., J Exp Med 185, 2043-2051 (1997)).
[0125]The results presented in Examples 1 and 2 show that: [0126](1) In the HLA-A2+HLA-DR1+β2m°IAβ° mouse, the expression of HLA-A2 molecules, the absence of expression of H2-Kb molecules, the number of CD8+ peripheral T-lymphocytes, and the diversity of the CD8+ T repertoire are generally comparable to the HLA-A2+ β2m° mouse; [0127](2) In the HLA-A2+HLA-DR1+ β2m°IAβ° mouse, the expression of HLA-DR1 molecules, the absence of expression of H2-IAb molecules, the number of CD4+ T-lymphocytes, and the diversity of the CD4+ repertoire are generally comparable to the HLA-DR1+IAβ° mouse; and [0128](3) The HLA-A2+HLA-DR1+ β2m°IAβ° mouse has all the characteristic advantages found in HLA-A2+ β2m° mice, and the HLA-DR1+IA β° mice.
Example 3
TCR BV Segment Usage
[0129]As the presence of a single MHC class I and single MHC class II molecule could diminish the size and diversity of the TCR repertoire, the expression of the various BV families and the CDR3 length diversity was studied as previously described (Cochet, M. et al., Eur J Immunol 22, 2639-2647 (1992)) by the RT-PCR-based immunoscope technique, on purified splenic CD4+ or CD8+ T cells. Peaks of significant magnitude with a Gaussian-like distribution were observed for most BV families (15 out of the 20 analyzed) in both CD8+ (FIG. 2b) and CD4+ (FIG. 2c) populations of T cells. Such profiles observed on peripheral T lymphocytes are typical of functionally rearranged BV segments with a 3 nucleotide length variation of the CDR3 subregions from one peak to the next (Cochet, M. et al., Eur J Immunol 22, 2639-2647 (1992)).
[0130]Absence of expansion (or profoundly altered profile) as observed for BV 5.3 and 17 were expected since these two BV segments are pseudogenes in C57BL/6 mice (Wade, T., Bill, J., Marrack, P. C., Palmer, E. & Kappler, J. W., J Immunol 141, 2165-2167 (1988)); Chou, H. S. et al., Proc Natl Acad Sci USA 84, 1992-1996 (1987). However, the altered profiles observed for BV 5.1, 5.2 and 11 segments were due to a small subpopulation of corresponding BV-expressing T cells (they represent lower than 5% in C57BL/6 mice, and around 2% in HLA-DR1-transgenic H-2 class II-KO mice) (data not shown). Other than these instances, both CD4+ and CD8+ T cells in HLA-A2.1-/HLA-DR1-transgenic, H-2 class I-/class II-KO mice display, respectively, a pattern of TCR BV chain usage and CDR3 diversity, which is similar to that of non-transgenic C57BL/6 mice.
Example 4
Functional Characterization
[0131]HLA-A2+HLA-DR1+ β2m°IAβ° mice immunized with Ag HBs (hepatitis B envelope protein) were analyzed. FIG. 5 shows the specific humoral response, as indicated by the production of HBs S2 antibodies. FIG. 6 shows the specific DR1-restricted CD4+ T proliferation response of HBs348-357. And FIG. 7 shows the specific HLA-A2-restricted CD8+ cytolytic T response of the HBs348-357 or HBs335-343.
[0132]These results show that the HLA-A2+HLA-DR1+ β2m°IAβ° mouse allows for simultaneous analysis of the specific humoral response, of the Ag-specific HLA-DR1-restricted response of CD4+ T helper cells, and of the cytolitic response of Ag-specific HLA-A2-restricted CD8+ T cells in an immunized individual.
[0133]Additional data obtained from these mice is provided in the following Tables 1-3.
TABLE-US-00001 TABLE 1 Proliferative responses of T CD4+ against HBV virus envelope HLA-DR1 epitopes from HLA-A2 + DR1 + H-2 CI-CII- transgenic mice injected with pcmv S2-S Responder/ Stimulation position Amino Acid sequence tested mice index 109-134 MQWNSTTFHQTLQDPRVRGLYFPAGG (12/12) 3-4 200-214 TSLNFLGGTTVCLGQ (6/12) 3-4 16/31 QAGFFLLTRILTIPQS (12/12) 3-6 337/357 SLLVPFVQWFVGLSPTVWLSV (5/12) 4-5
TABLE-US-00002 TABLE 2 Cytolytic response to HLA-A2 + DR1 + H-2 CI- CII-transgenic mice injected with pcmv S2-S Amino Acid Responder/ Maximal position sequence tested mice lysis 348-357 GLSPTVWLS (12/12) 20-70% 335-343 WLSLLVPVF (4/12) 30%
TABLE-US-00003 TABLE 3 Anti-PreS2 Antibody response anti of HLA- A2 + DR1 + H-2 CI-CII transgenic mice injected with pcmv S2-S Responder/ position Amino Acid sequence tested mice preS2 MQWNSTTFHQTLQDPRVRGLYFPAGG (9/12)
Example 5
Immune Response to HBsAg-DNA-Vaccine
[0134]To evaluate the immunological potential of HLA-A2.1-/HLA-DR1-transgenic, H-2 class I-/class II-KO mice, and to compare their humoral, CD4+ and CD8+ T cell responses to those of humans, mice were immunized with an HBsAg-DNA plasmid. This plasmid encodes two hepatitis B virus envelope proteins (preS2/S middle and S/small) that self-assemble in particles carrying hepatitis B surface antigen. The currently used vaccine against hepatitis B comprises these two proteins.
[0135]As illustrated in FIG. 3a for a representative mouse, HBsAg-specific antibodies were first detected at day 12 after injection of the HBsAg-DNA-vaccine (FIG. 3a, upper panel), and the titer of these antibodies increased up to day 24 (12 days after the second DNA immunization, data non shown). This early antibody response was specific for the preS2-B cell epitope (HBs109-134) carried by the middle HBV envelope protein and for HBsAg particles, in agreement with a similar response reported in HBsAg-DNA-immunized mice (Michel, M. L. et al., Proc Natl Acad Sci USA 92, 5307-5311 (1995)) and in HBsAg vaccinated humans (Moulia-Pelat, J. P. et al., Vaccine 12, 499-502 (1994)).
[0136]The CD8+ CTL response to HBsAg was examined to determine whether the CD8+ T cells in the periphery of the HLA-A2.1-/HLA-DR1-transgenic, H-2 class I-/class II-KO mouse were functionally restricted by the transgenic human class I molecules. In HBV-infected HLA-A2.1+ humans, the immunodominant HLA-A2.1-restricted HBsAg-specific CTL response is directed at the HBsAg348-357 (Maini, M. K. et al., Gastroenterology 117, 1386-1396 (1999)) and at the HBsAg335-343 (Nayersina, R. et al., J Immunol 150, 4659-4671 (1993)) peptide (i.e., a multi-epitopic response is observed). In C57BL/6 mice, the H-2 Kb-restricted HBsAg-specific CTL response is directed at the HBsAg371-378 peptide (Schirmbeck, R., Wild, J. & Reimann, J., Eur J Immunol 28, 4149-4161 (1998)). To evaluate whether the humanized mouse may respond as humans, splenic T cells were restimulated for 7 days, as described herein, with either relevant (HBsAg348-357, HLA-A2.1-restricted), or control (HBsAg371-378, H-2 Kb-restricted; MAGE3271-279, HLA-A2.1-restricted) peptide. FIG. 3a (middle panel) shows that HBsAg-DNA-immunization elicited a strong HBsAg348-357-specific CTL response, but no response to either HBsAg371-378 or the MAGE-3271-279 peptide.
[0137]To determine whether the CD4+ T cells in the periphery of this HLA-A2.1-/HLA-DR1-transgenic, H-2 class I-/class II-KO mouse may be functionally restricted by the transgenic human class II molecules, the CD4+ T cell response to the HBsAg protein was examined. In HBsAg-vaccinated or HBV-infected HLA-DR1+ humans, an immunodominant HLA-DR1-restricted HBsAg-specific CD4+ T cell response is directed at the HBsAg180-195 peptide (Mm, W. P. et al., Hum Immunol 46, 93-99 (1996)). In C57BL/6 mice, the H-2 IAb-restricted HBsAg-specific CD4+ T cell response is directed at the HBsAg126-138 peptide (Milich, D. R., Semin Liver Dis 11, 93-112 (1991)). To compare the humanized mouse with humans and wild-type mice, splenic T cells were restimulated in vitro with either relevant (HBsAg180-195, HLA-DR1-restricted) or control (HBsAg126-138, H-2 IAb-restricted; HIV 1 Gag263-278, HLA-DR1-restricted) peptides. FIG. 3a (lower panel) shows a strong proliferative response directed against the HLA-DR1-restricted HBsAg180-195 peptide, while the H-2 IA-restricted peptide was not efficient at stimulating a response, as expected. Similarly, no response was induced by the HIV 1 Gag263-278 peptide. Moreover, an additional in vitro recall with the HBsAg180-195 peptide increased several-fold the specific proliferative index (data not shown).
[0138]Having documented in a first HBsAg-DNA-immunized HLA-A2.1-/HLA-DR1-transgenic H-2 class I-/class II-KO mouse the development and the specificity of the HBsAg-specific antibody, proliferative and cytolytic T cell responses, 6 additional HBsAg-DNA-immunized and 6 naive control HLA-A2.1-/HLA-DR1-transgenic H-2 class I-/class II-KO mice were also tested individually for the same three responses. As illustrated in FIG. 3b, the three reponses were simultaneously documented in the 6 immunized animals tested and not in control naive mice. Interestingly, 2 immunized mice were able to develop CTL responses against both HBsAg348-357 and HBsAg335-343 HLA-A2.1 restricted peptides (FIG. 3b, middle panel).
Example 6
Protection Assays
[0139]The above examples document the induction of HBsAg-specific humoral, CD4+ and CD8+ T cell responses in HLA-A2.1-/HLA-DR1-transgenic, H-2 class I-/class II-KO mice, and show that they are directed at the same immunodominant epitopes as those of naturally-infected or HBsAg-vaccinated humans. This example tested whether these responses conferred protection to vaccinated animals. Since mice are not permissive to HBV, a HBsAg-recombinant vaccinia virus (rVV-HBsAg) was used for these experiments. Mice were immunized twice intramuscularly with 100 μg of HBsAg-DNA. Twelve days after the last immunization, mice were challenged intraperitoneally with 107 PFU of rVV-HBsAg. Four days later, virus titers were determined according to published methods and recorded as rVV PFU/ovary (Buller, R. M. & Wallace, G. D., Lab Anim Sci 35, 473-476 (1985)).
[0140]The results are illustrated in FIG. 4. Naive animals that had not been immunized with HBsAg-DNA showed evidence of rVV-HBsAg replication after challenge. In contrast, the virus titers in mice immunized with HBsAg-DNA were more than 4 orders of magnitude lower. These results strongly suggest that vaccination with HBsAg-DNA induced protective HBsAg-specific immune responses that controlled the infection with rVV-HBsAg.
[0141]The specificity of the protection conferred by HBsAg-DNA-vaccination was documented by challenging HBsAg-DNA-immunized mice with another HBx-recombinant VV (encoding hepatitis B×protein). No reduction of rVV-HBx replication was observed in HBsAg-DNA-immunized mice compared to unimmunized controls.
Example 7
HLA-DR1-Restricted CD4+ T Cells are Critical for Antibody and CTL Responses and Protection Against Viral Infection
[0142]To evaluate whether HLA-DR1-restricted T helper lymphocytes contribute to antibody and CTL responses in the humanized mice, the immune response and the efficiency of viral infection were compared in single (HLA-A2.1) and double (HLA-A2.1/HLA-DR1) transgenic, H-2 class I-/class II-KO mice. As shown in Table 4, a potent HBsAg348-357-specific CTL response was observed in HLA-A2.1-/HLA-DR1-double transgenic, H-2 class I-/class II-KO mice, but not in HLA-A2.1-single transgenic H-2 class I-/class II-KO mice. Furthermore, anti-HBs antibodies could not be detected in HBsAg-DNA-vaccinated HLA-A2.1-single transgenic H-2 class I-/class II-KO mice. As a consequence, HBsAg-DNA-immunized HLA-A2.1-single transgenic. H-2 class I-/class II-KO mice were not protected against rVV-HBsAg infection.
TABLE-US-00004 TABLE 4 Table 4 Antibody, cytolytic, and proliferative responses of HBsAg- DNA-immunized mice, and protection against rVV-HBsAg-challenge Prolifer- rVV-HBsAg Specific Lysis (%) ation (SI) Antibody PFU/ovary Mice 348-357 335-343 179-194 Titer (log10) A 1 0 0 0 2.5 108 2 0 0 0 2.5 108 3 0 0 0 108 4 0 0 0 2.5 108 5 0 0 0 108 6 0 0 0 1.5 108 B 1 30 15 4.7 2000 104 2 14 0 3.9 3000 3 103 3 30 11 4 7500 4 103 4 5 0 2.5 6500 7.5 103 5 50 30 6.3 13000 7.5 102 6 40 18 4 16000 5 102 7 6 7 2.9 1500 2 104 8 5 5 3 2500 1.5 104 9 24 36 4.5 3000 <102 10 23 14 5 15000 5 103 C 1 0 0 1 0 108 2 0 0 1 0 2 108 3 0 0 1 0 1.5 108 4 0 0 1 0 108 5 0 0 1 0 2.5 108 6 0 0 1 0 108
[0143]Naive HLA-A2.1-/HLA-DR1-double transgenic H-2 class I-/class II-KO mice (A 1-6), HBsAg-DNA-immunized HLA-A2.1-/HLA-DR1-double transgenic H-2 class I-/class II-KO mice (B1-10) and HBsAg-DNA-immunized HLA-A2.1-single transgenic H-2 class I-/class II-KO mice (C1-6) were challenged intraperitoneally with 107 PFU of rVV-HBsAg. Four days later, PFU per ovary, cytolytic and proliferative splenic T cell responses and serum antibody titers were assessed individually using either HBsAg348-357, (immunodominant) or HBsAg335-343 (subdominant), HLA-A2.1-restricted peptides-loaded RMAS-HHD target cells (E/T ratio 30/1).for cytolytic assays, HBsAg179-194 HLA-DR1-restricted peptide for proliferation assays and preS2109-134 peptide for the determination of antibody (IgG) titers.
[0144]The entire contents of all references, patents and published patent applications cited throughout this application are herein incorporated by reference in their entirety.
Sequence CWU
1
1814547DNAHomo sapienspromoter(1)..(1205)promoter HLA-A2 gene 1gaattcttag
gtttaaatac attgttttat ggattttaat acatccatct acagagccta 60gcagggtgtc
cttggcagtt gtcttttaat acctcatgtg ggtctgccta aaaactaatt 120ttttatgtta
atcaggttta aaaaatacta agtgttccta taaaatatac acaacactta 180gaagtggata
cttcctaaaa acaggcagtg catgagcact agtgaggggc attgtgagtg 240cattgaacag
ttgcaacttt gaggtgaata aagcctgtaa tcgcttctgg ttgcaacata 300taggaacaca
gtcgctactt tgtattgagg agatgtcctg gactcacaca gaaactcaga 360gctatggaat
gatggtaaat ttaaaatact acaaccagga gtcacagata cattgtctgg 420gaaactgcaa
cttagtagct ttgtgagtcc tgttgtaagg cttttggaca catttataca 480tcaaggggct
aaagtcacat tttttaccta ttagattcct gatcattcag gggttaccaa 540gattctgcta
cccactgtag ttaataaaca aagagcaaat tggtctctat tctgtctcat 600gcactcaggc
gcaactcttc ccgattaaaa acaaaaacaa caacaacaaa aatctacacc 660tccattccca
gagcaagctt actctctggc accaaactcc atgggatgat ttttcttcta 720gaagagtcca
ggtggacagg taaggagtgg gagtcaggga gtccagttca gggacagaga 780ttacgggata
aaaagtgaaa ggagagggac ggggcccatg ccgagggttt ctcccttgtt 840tctcagacag
ctcttgggcc aagactcagg gagacattga gacagagcgc ttggcacaga 900agcagagggg
tcagggcgaa gtcccagggc cccaggcgtg gctctcaggg tctcaggccc 960cgaaggcggt
gtatggattg gggagtccca gccttgggga ttccccaact ccgcagtttc 1020ttttctccct
ctcccaacct atgtagggtc cttcttcctg gatactcacg acgcggaccc 1080agttctcact
cccattgggt gtcgggtttc cagagaagcc aatcagtgtc gtcgcggtcg 1140cggttctaaa
gtccgcacgc acccaccggg actcagattc tccccagacg ccgaggatgg 1200ccgtcatggc
gccccgaacc ctcgtcctgc tactctcggg ggctctggcc ctgacccaga 1260cctgggcgat
ccagcgtact ccaaagattc aggtttactc acgtcatcca gcagagaatg 1320gaaagtcaaa
tttcctgaat tgctatgtgt ctgggtttca tccatccgac attgaagttg 1380acttactgaa
gaatggagag agaattgaaa aagtggagca ttcagacttg tctttcagca 1440aggactggtc
tttctatctc ttgtactaca ctgaattcac ccccactgaa aaagatgagt 1500atgcctgccg
tgtgaaccat gtgactttgt cacagcccaa gatagttaag tgggatcgag 1560acatgggagg
tggcggatcc ggcggaggcg gctcgggtgg cggcggctct ggatctcact 1620ccatgaggta
tttcttcaca tccgtgtccc ggcccggccg cggggagccc cgcttcatcg 1680cagtgggcta
cgtggacgac acgcagttcg tgcggttcga cagcgacgcc gcgagccaga 1740ggatggagcc
gcgggcgccg tggatagagc aggagggtcc ggagtattgg gacggggaga 1800cacggaaagt
gaaggcccac tcacagactc accgagtgga cctggggacc ctgcgcggct 1860actacaacca
gagcgaggcc ggtgagtgac cccggcccgg ggcgcaggtc acgacctctc 1920atcccccacg
gacgggccag gtcgcccaca gtctccgggt ccgagatccg ccccgaagcc 1980gcgggacccc
gagacccttg ccccgggaga ggcccaggcg cctttacccg gtttcatttt 2040cagtttaggc
caaaaatccc cccaggttgg tcggggcggg gcggggctcg ggggaccggg 2100ctgaccgcgg
ggtccgggcc aggttctcac accgtccaga ggatgtatgg ctgcgacgtg 2160gggtcggact
ggcgcttcct ccgcgggtac caccagtacg cctacgacgg caaggattac 2220atcgccctga
aagaggacct gcgctcttgg accgcggcgg acatggcagc tcagaccacc 2280aagcacaagt
gggaggcggc ccatgtggcg gagcagttga gagcctacct ggagggcacg 2340tgcgtggagt
ggctccgcag atacctggag aacgggaagg agacgctgca gcgcacgggt 2400accaggggcc
acggggcgcc tccctgatcg cctgtagatc ctgtgtgaca tacctgtacc 2460ttgtcctcca
gagtcagggg ctgggagtca ttttctctgg ctacagactt tgtgatggct 2520gttcactcgg
actgacagtt aacgttggtc agcaagatga ccacaatggt tgagtctcag 2580tggtgggacc
cttccagtag catatgcccc taattttgat atgaactcaa acagatatta 2640aattacttat
tttccattcc ctattccatt ctgtgactat ctctctcatg ctattgaaca 2700tcacataagg
atggccatgt tcacccactg gctcatgtgg attccctctt agcttctttg 2760tcccaaaaga
aaatgtgcag tcctgtgctg aggggaccag ctctgctttt ggtcactagt 2820gcaatgacag
tgtagtgtca aatagacaca tagttcactc tcatcattga tttaactgag 2880tcttgtgtag
atttcagttt gtcttgttaa ttgtggaatt tcttaaatct tccacacaga 2940ttccccaaag
gcacatgtga cccatcaccc cagatctaaa ggtgaagtca ccctgaggtg 3000ctgggccctg
ggcttctacc ctgctgacat caccctgacc tggcagttga atggggagga 3060gctgacccag
gacatggagc ttgtggagac caggcctgca ggggatggaa ccttccagaa 3120gtgggcatct
gtggtggtgc ctcttgggaa ggagcagaat tacacatgcc gtgtgtacca 3180tgaggggctg
cctgagcccc tcaccctgag atggggtaag gagggtgtgg gtgcagagct 3240ggggtcaggg
aaagctggag ccctctgcag accctgagct ggtcagggat gagagctggg 3300gtcataaccc
tcaccttcat ttcctgtacc tgtccttccc agagcctcct ccgtccactg 3360actcttacat
ggtgatcgtt gctgttctgg gtgtccttgg agctatggcc atcattggag 3420ctgtggtggc
ttttgtgatg aagagaagga gaaacacagg taagaaaggg cagggtctga 3480gttttctctc
agcctccttt agaagtgtgc tctgctcatt aatggggaac acagccacac 3540cccacattgc
tactgtctct aactgggtct gctgtcagtt ctgggaattt ccagtgtcaa 3600gatcttcctt
gaactctcac agcttttctt ttcacaggtg gaaaaggagg ggactatgct 3660ctggctccag
gttagtgtgg ggacaggatc gtctggggga cattggagtg aagttggaga 3720tgatgggagc
tctgggaatc cataatagct cctccagaga aatcttctag gggcctgagt 3780tgtgccatga
agtgaataca ttcatgtaca tatgcatata catttgtttt gttttaccct 3840aggctcccag
agctctgaaa tgtctctccg agattgtaaa ggtgacactc tagggtctga 3900ttggggaggg
gcaatgtgga catgattggg tttcagggac tcccagaatc tcctgagagt 3960gagtggtggg
ttgctggaat gttgtcttca cagtgatggt tcatgactct cattctctag 4020cgtgaagaca
gctgcctgga ctgtactgag tgacagacga tgtgttcagg tctctcctgt 4080gacatccaga
gccctcagtt ctctttacac aacattgtct gatgttccct gtgagcttgg 4140gttcagtgtg
aagaactgtg gagcccagcc tgccctgcac accaggaccc tatccctgca 4200ctgccctgtg
ttcccttcca tagccaacct tgctgctcca gccaaacact gggggacatc 4260tgcatcctgt
aagctccatg ctaccctgag ctgcagctcc tcacttccac actgagaata 4320ataatttgaa
tgtgggtggc tggagagatg gctcagcgct gactgctctt ccaaaggtcc 4380tgagttcaaa
tcccagcaac cacatggtgg ctcacaacca tctgtaatgg gatctaacac 4440cctcttctgc
agtgtctgaa gacagctaca gtgtacttac atataataat aaataagtct 4500ttaaaaaata
atttgaaagt gacccttgat tgttaacatc ttgatct
4547229133DNAHomo sapienspromoter(1)..(15279)promoter 5' from HLA-DR
alpha gene (HLA-DRA gene) 2aaaaaattaa gtatataaag tttaaaaagt
tagagtaagc taaggttaat tattgtagaa 60aaacattttt cataaattta atgttgtctt
agttacagta tttataaagt ctacagtaat 120gtatagtaat gccttaggcc ctcgcattca
ctcaccactc actcactgac tcatcagggc 180aacttccagt cctgcaagct ccattcatgg
taagtgtcct agaaagatct accatttaaa 240aatctttcat atggtatttt caccacacct
tttgtatgtt tagatacata aacagttagc 300attgtgttac aattaccaat agtattcaat
acagtcacat gctgtacagg tttgtcgcct 360aggggtaata gggtgtacca tatagcctaa
atgtatagta ggctataaca tctagtttgc 420gtaaggacac tctgtgatgt tcacacaaag
atgaaatcac ctaatgacac atttcttaga 480gcttgtccct ttagctaagt gatgcatgac
ttcagttttg ccccatttct agagcatagt 540cctcaatgac tttcaatgaa aaacccgata
gctttcatct tctcaatcct gaagagctga 600aggagattta ggctgaactt aaagaaattt
tcagcttagc tcattagtct tctactccat 660acatcttcaa catttaacaa gtgttttgaa
aaagacacct acaaagtgct tgaagtcatc 720aactctcaaa tcttgtcatt gcagcaccac
gtcaaatgac aaaacacttg ctattttctt 780agtccactgg aggagcctat tgtcagaggc
caaacctgga ttattagctc caaacaagca 840ctcagatcag taagtgtcct caggtgataa
gtggttgttg ctacttggca tcaattcacc 900agttcttctg aaacttacgt ctgttttgtt
ttagggccct tatcaatggt aggtctttgt 960ttcctcaaca ccactggaca gtgaaagatt
ttgcactgcc tttcagaagt tgacacttta 1020gttttttgtt ttaccttcta ccgtagcatc
agaagttaac caacgtgttt tgaagaaacc 1080agagtgtttg agatgcctca gttttctagt
tacatcacac tggccccata attgctgctg 1140atttctttct tacagcagaa aactgtagga
aaattgtagc agaaaacttt tctacagcag 1200aaaacggtag cagaaaaatg gcactaaaac
gcagcgtaca cttgcaaaca gcaaatgcta 1260ccaagagaaa cagtgatgtc caaacgtcag
cttacatttg catggttctt ctttggaatt 1320tttattcatc tagtcctatt tactttctta
gctaaacaat gctttttaaa aatatacctt 1380taaaatttta tcctattttt gtagttgttg
ccagtgggac aatttgtcct actgtgaccc 1440taatgcatct tatactgtgg tggaaaaaag
aataagattt taaattgtgc tttctgaaaa 1500actggatata gaaacagaca atggccagac
catatataaa aataggcctg gctgggcacg 1560gtggctcacg cctgtaatcc cagcactttg
ggaggccaag gcggatggat catgaggtca 1620agagatcgag accatcctgg ccaacatggt
gaaacccctg cctctactaa aaatacaaat 1680ttagctgggc atggtggcgc gcagctgtag
tcccagctac tcgggaggct gaggcaggaa 1740aatcacttga gcccaggagg tggaggttgc
agtgagctga gatcgtgcca ctgcactcca 1800gcctggcgac agagcaagac tccatctaag
aaaaaaaaaa aaaaaataga cctttgaccc 1860acagcctaca gcagcctgcc tggggaacca
attcccttat cttcaataaa caatccagca 1920aggtagtctg cttaagtccg acttgcagga
agtcagattg ctgtctctag taacaatcca 1980ggaggctaaa taataacttt tataacaatt
gttttaaaat ggccaggact tgattaataa 2040ctgacagttc ccccaatatt tgtgcctgct
tccaacttag gaccaaccag ggaaagctaa 2100atatgcatcc tacccaatta cataggatac
tccacttcta gttacccctt aagcattccc 2160catgccaaca gcctccaatc aggtcctttt
taaccactat aaagtttcct acttctttgc 2220ctgtctttga gtctctgcca aaatgcaaaa
gatggtggct gactcctttg ttatagcaat 2280ttgtgaataa tttttgctct tttcatttgg
ttgatcttca tgtattttca cattattaag 2340ctttatataa attaaaatcc aagaggctaa
catttaatta atgacattta agatcttcta 2400tatcggataa tgctatacat tatattaggt
ttaatatttc tattaaatat agatttagta 2460aattactaaa aatgctaaaa attcatcaaa
tatatatgta agtacaaata aggaaaatgc 2520aaagagagat attagaaagg ggtaatatat
tcaggaataa atattcaaga tattttaagt 2580tggagatatt gtctgttggt actaaatcaa
tttccccctg ttttgtgctt ttttccatat 2640cacttggggt tgaagcctgg acaccacttc
ttccagagtc cctttcttag gaaggcactc 2700acttgcgatt agaaggcagt ggaaaattgc
tgtcattctg cttctgacag caagtagcag 2760cagctgccag gagtgtgggt ttgtttagtg
ctgcagggcc aatagtagct tcctgcagtt 2820cctgaccttt ggaagcacaa ttttgctttt
tctgtcctta caaaactttt gcaatgcact 2880tcactgtatt acatctctct gggcttaaaa
taccttgagt gtgttttttc ccccttgtaa 2940atctgggcta gactgaataa tcttgtaagt
atgtaaatat aagcaactat tttaaaataa 3000cctgggtttt taaatgtaat acagatgctc
ttcaacttat gatggggtta actcccaata 3060aatccagtgt aaattgaaaa tattgtgagt
tgaaagtgta gagtataagt tgttcacctt 3120catgatcatg tggctgaggc tgcctggcat
tgtgaaagag tatcttactg agtatcgctg 3180gtctggaata agatcaaaat ttaaagtatg
gtttatacag aatggatatt gcttttacac 3240cattgaaaag tcaaaaattc ctaagtcaaa
ccatcttaag tcaggtgtgt ctgtagtttt 3300aaaaaaatta caaataaaga atatccagtg
ttgttgggag tgcagagaag atttacaagg 3360taaacattga tttgtttaaa gtttgagaga
aaaaattaga taatatgctt tatgattttt 3420aaatgttaat ttcaaagtaa ttatacattc
acaggagttg atgaaaatag tacagagagg 3480tcccttgtac ccttcaccca gtttccccca
atggttacat catacataac tatagcacaa 3540tatcgaaaca aggaaatcga cactgataca
atgtatttgc agttttctac tttatcacat 3600gtgtagattc atgtaaccac cactgtgatc
aaaatacaga actatattcc atcaccacaa 3660agatcttcct catgccactc gccctcctta
agagtcacac cattccccca cccccaccat 3720ccctacactg tgccaaccac taatttgatt
ttcatctgta taattttatc atttagaaaa 3780tgttatataa atggaattat actatatgtg
accttccgag actggcattt tgtactcaga 3840ataatgccct tgggatctgt attaggtgct
ccagagcggt tgtactaaca ggatatgtat 3900atatagaaag atatttcttt taaagaattt
gctcacatga ttgtggaagc ttactgagtc 3960caaattctga tggaagaggc cagcagtgga
ggagactggg acagagttgc agtttgagcc 4020caaaggtagt ctgctgtgga accaggaaga
gccaggattg cagatggagt ctgaggcaat 4080ctgttggaga gttccctctt atgctagtca
ggcattcaac tgattaaatg aggggaaccc 4140agttatggag ggcaatgtac tttacttaaa
atctactgac ttaaatatgt aactctcacc 4200ccaaaactgc cagattatgt gaaattccat
gtcctctact tggctccatt gacactcaga 4260tggagtagat taaacaacag acatttactg
aaagtcctca cttaacatca tcaataggtt 4320cttagaagct gtgactttaa gcaaaatgac
atataataaa actaatttga ccataggcta 4380attcagcgat ccccaacatt tttggcacca
gggactggtt ttgtggaaga aaattttgcc 4440atggatgggg gttggggact agcggtggca
gggagtggga tggcacaacc tagatccctc 4500gcatgggcag tccacaatac agttcacaaa
ggtttgcact cctgtgagaa tccaatgcct 4560ctgccgatct gacagcaggc cattagtggt
ctgtggccca ggggttggga acccctgggc 4620taattgatgc gaacaagatt taagttccta
tggcttattt ctggtcacaa acacatcacc 4680aaactcctaa ataaagactc agaacacttc
taatattaaa cattaaaata aatgggaact 4740atatatacat ttaaggtagg tttataataa
caagtaagat aattaattat ccagtttttg 4800gtgaattagt gagtgatggt ggtcacagtg
gtggtgggtt acattaagga acaaatgttt 4860gtaaaatgaa aatggtaagg agcacctcct
gccaccacac agctcaaacg caaagaagaa 4920caaatacgtt gaactcactg agtacttttg
taccccattg tttactattg tacagttgta 4980tgaatatcat gtactttaca aatttttatt
ttagaaacat ttctattcat tcgcttattc 5040attttccaac ctgcttattc cagttcaagg
tcatggatga ctggagccta tcccggcagc 5100tcaaggacaa gagaggaacc aaccttgtat
aggatgccat cccatccatt gtgggatgca 5160gacacacaca cacatacaca cacacacaca
cacacacaca aagtcactct gctgggacaa 5220tttagactca ccaattaacc taacatgcat
gtctttggga tgtgggataa aactcaaata 5280cacaaagaaa acccatgcgg acgtggggag
aacacacaaa ctcctcatgg ccagtggccc 5340tggccaggaa cctatttatt ttctcaccaa
cattgtaaca aaacgttgaa caaaacaatg 5400ctataggagg accctctgtg tttctcacag
tcctggaggc tgggaagtcc aagatcaaga 5460tgctgacagg ttcaattcct ggtgaactta
gaactgaagg ctctctggca ggggtgcctt 5520gtggctgcag gctgggtata gaaactcagg
ctccccacta ggcctccact tacagaatcc 5580tgactgggag ggagagggtc tcatcagcgc
tcccacatgg cctctactga caccaggaag 5640ggagaagtgc ctccttacac ctggacagtg
gtgaaagtcc cagctttcta cttggcctcc 5700tctgacaaca ccttggcaaa gtgggtgagg
agtgcttcct tgcaacaggg caggtggaag 5760tccaggctct tcacatgggc ttcactaaca
ccacagtgtg gaggtggctg attactgata 5820ggcaggggca aaagtcctag gtccccagtt
ggcttcctct gacataagcc tgatgggtct 5880aggtagtgtc tcattatcgc caggcaatgg
gataagacaa agctcctcac tcagtgtttg 5940ctgactgagg cgggatggaa gcccctgatt
tttctgtatt tgactggagt agtgcggtta 6000ctgtcagtta tctgcctggt aggctgctct
ttcttgttcc cttggataga gaaacatgct 6060ttccttagga tatttttgtc tgtgactact
gatgtttcct gttttccagt ttctccagca 6120ctcattcctg gatatattag gcagaaagaa
gacctatgaa actcaccact ctgtcattcc 6180ccaatcccat ggtctgaggc caacctgctt
ctcctctcca tcattcaagg gctttttatg 6240tctgtctgta gctgtactta gcaggaagaa
taggaagaat tgtacctact tcatcttgtc 6300ttagaaccag aaatctctca ccatattttt
taaaatatgt ttttgtcata tattaaaata 6360ttatacatct atccttagat ccttaaataa
acatataatc tatccttaga gttaagttaa 6420tttggtaaca aaaataaaac aagactaaaa
ctattaattg tgttaaagcc ataaaaaata 6480tgcaaatttt tgcccaaaat atgggaaatg
tgcgtgtgtg tgtgtgtatc tcctatgtat 6540acacataaaa aaagacataa aatgaaaatt
gctgatgtat caatacccgg gggcagggag 6600tattctcagg tttaactaag tactcatatt
caagttttta ccataggcca cacctggctc 6660tcagattcac ttagaaggat attagacagg
agtcaaagta tgccaaagtg ctgaatcagg 6720tctttttctt cagtgggaga agttcttgaa
acagttcata atttattcca ggtgctagtt 6780tcatcctctg cccccatccc ccaagtgaca
actcaggtac aaggagctga atttacacct 6840gtggaagttg tgtccaccgt agcttagaat
cctcatgtca tctacgagct agtacctctt 6900ataacaaacc catgggcaca gcttccagag
tccccgtaaa gggcatgctc agttacaagg 6960gtcactgcat ttggaaatac ccaaactatg
ggtccccgtc atttgttacg gttcatgaaa 7020tattcttccc agtaaagata caaaatgcca
accagaagcc atttgtgcca taagcaatgt 7080tgtctaaaaa tccagctgac attcttcctc
catcaggttt ccagaaaaca gctagaaaat 7140tagcctaaga ttaaatacat catggagaag
tagaaagggt gttataaagc atttatccac 7200aagattcaaa atgaaataca gttaattttg
tccgttttaa gacattattt caaccttcaa 7260attatttaaa agaagtacat cctatatttt
gtgtgcttat tcaaaaaagg catggtaata 7320cttataaaaa gactttaaat atttttataa
gttttaaata ttttataagt aattttataa 7380atgaaattac aaaccattta agtgacctaa
ttaaatcaaa cacactttga gtatgcacac 7440aagaaaaaaa ttagttgaag catcctgact
taagaaatcc ttgatctttc ataaggtgtc 7500tgaatactca atgtcaaaaa cacttatgaa
gaattaaaca ctgttgacca caagagggaa 7560acctagtccc agttatacta taaattagaa
aatcaaggga aaaatatgtg tcctgagaac 7620ttttgaaata gtcacatata aacatagtat
acaagaaaaa accaaccgtc atccctaccc 7680aaggatatgt ttgtggtatg agtggtttta
gtgttttgag tggactggtt cttggactcc 7740acatattatt ggctacagag atagagactt
gatttagaaa atcacagttg ccactttcta 7800agtaagccct tgaccaaaag actagatttc
tttaaaccca gttttctcag gtaaaatgga 7860aatacaacta ttatctaata aatataagta
agctttagtg tcatagtcat agcagtagta 7920ttttcaattg gtaaaaagaa actggacccc
aaaaaagaat ttcagtgaaa gcagtaacag 7980tcttctggca tatttctcac ctttctttct
accttaaagg ttcaaagttc ctaagtaatc 8040tcagaaacct aaaatagttt attctctatc
ctcactattg gtttttaaaa aacattttgc 8100agcatggacc actgctcatg tacagatgct
ctccaactta acaatagggt tatgtcccaa 8160taaacccatt ataacttgaa aatatcttaa
gctgaaaatg catttaatac accaataaac 8220ccatcataaa gttgaacaat cataagccaa
attataagtc agagaccatc tgtattagct 8280taagtcttgg aatggtttat tttttagatg
ccatttagcc acttatattc tcttctattt 8340tattgtgaga actaattccc ctcttacatt
ctgtgcttga cccatgctat acttagtgtg 8400aacaagagcc accttcttct catgacttct
atttttttgt gaaaatttcc ttcactcatt 8460cacgacattt ggatttgaaa tcttacctac
ttaagtactt taaaaaatca ttttctacca 8520tctttcttat caggagcctc tagtgattcc
ttctccacac ttctaacttc tcatcttcac 8580actccttgtc ttcctaactt cactacagta
agtgttttac atgtttagaa ctcagctcct 8640ttactatgat tgctaaccat gtaccttaaa
taaaccgtct tctagttttt tgtttcttac 8700tctcaattat accttttaga aaagaattaa
gagtagaaaa agactgctac atagacattc 8760ttatgatctt cagaaatgag cacagatcat
gcttaatgaa aaaagatttc caaataatgc 8820tgcatatgtc cagagaaaag gtggcagaaa
tgactgtcgt ttgggggcac tattgtctgg 8880acatggccag ttctcagaac tccagtccct
aaattccctt ctaactaaag gaaaagcctc 8940ttaagggtct tatagaaatc ctgccacttt
cacctgaaag aataatcttc agttatgtgg 9000cacatggcca agagtaaaag tctttagtca
cttggaagca gacagacact gtaatgctaa 9060ataattggac ataacatgga acttactgag
gcctcaaata tcaattttac tttgggaaaa 9120agagcagcaa ctttaaaagt gattgaaagt
aactcaagtt tattccttaa cagagtgatg 9180cttaatctaa caaaaaacat gttatatgca
cactcttctc cattaccttg taagaaaact 9240ggactaggaa acacagctga aatggccagt
tctgcctcca tttcctaaac cgtgttataa 9300ttatgtctat gtgaccagta acagacaatg
accatgattt atactttttc atatgtttgt 9360tgttttgttt tcaatgtttg tggtctttcc
tcagtatcag ctaagaggcc attaacacag 9420atatctattt atggacatgc gagactgttg
ttcacctctt ttgcagaatt cataaagaaa 9480tgatggggaa aacacatcaa agatagagtg
gataaagcaa atgtgccaca tatacaccat 9540ggaatactat gcagccatga aaaagaatga
gttcatgtcc tttgcaggga catggatgaa 9600gctggaaacc atcattctca gcaaaataac
acaggaacag aaaaccaaac actgaatttt 9660ctcactcata agtgggagtt gaacaatgag
aacacatgga cacaggggcc tgttgggggg 9720gtggggggca aggggaggag agcattagga
caaataccta gtgcttgagg agcttaaaac 9780ctagatgacg ggttgatggg agcagaaaac
caccacggca catgtatacc tatgtaacaa 9840acctgcatgt tctgcacatg tatcccagaa
cttaaagtag aataaaataa ataagtaaat 9900aaggaatgat gggacaaaca agtttctgtt
attgtctctc tactgaccaa agggtggtca 9960gagagtatag gatgaagcag atttgtgata
tccttgaata gatctgctct ttactatgaa 10020ttctatcatc tactcccagc gtatgtggga
aagggaccaa cttacttgcc tggaatttag 10080tgaaattgtt ttctaggggg accaagagtt
tcctctactt gatatgaagt tgggtggttg 10140aagatgatag gattggcttc tgcttccatc
agaatcctaa agggcagggt atatggacta 10200gttggtattg gatcttggaa actgtgatgc
attgggaatg gtcacactcc cagagtttgt 10260ggacacaaag aatgttttag tgttccctac
acaccagaca cgggccatga aggaatctga 10320agagcctacc aaaccttgca caagagaaaa
gctttacttg gaacatcatc caggctcaga 10380gaacacaaat atttcatttc cagtaagacg
tttctggtct ttttctcttc ctccccttcc 10440ctgaacctac cctagatgag ctatggcctc
aaagtgccag tagaacgtaa gaaggaagga 10500gaaccacact cattcctgcc ttcaacaatt
tacacaggga tagaaagaga tttatattaa 10560atcaagttgg gactttcaat tattatatag
taccaaacaa tctaattgct gaactaagat 10620atacttgtgc aatttaaggg aattgtagaa
tagcatatta attagaatca agaaaataat 10680tcatgaagta tgctataatt cctacccaag
cgcaggggaa tagcatctct aatgaaattc 10740tctaaagagg caagagcagg cacaatgagt
ttttgtttga ttaaagattc catttagtgc 10800ttatccaacc tagcaattac atttgtatgc
ttcagatgtt tttaaaaaaa taaacaaaag 10860aaagtacctt aaataaagaa taggatcaaa
tagtatttaa acaattgagt aaattaaaaa 10920attatatgaa ttagattgat tgaaattgat
actttcctaa ttctcctcct tcaacacaca 10980gacacacaca cacacacaca cacacacaca
cacgtatgca tacaaacaca tctgaattct 11040ataaaatcat tctgaccttg atgagattcc
atagtttact catgcaacag aacataatgt 11100ctaaatgaag tttctggtct ctgttttaca
tggatgattg agtaaaatca ttccctattc 11160ctggaagaat agctaagaaa ggattcacag
gtgaggacat gcgttttttc agaagatgag 11220aacaaagatg agaagatgag agcaacagaa
tgtcctatat cctaatgctc tgtgctgact 11280tcggagtggc caatatgata gagatggaag
gaactctgaa aacaaattgc cagaatttct 11340aaggaacagg agatgttgag tgagtgaatc
aagccatgga ctggctgtat gggggcagct 11400attagagaca actaccctta gacttctttg
gtgattggtc aagctaatct tttccttcag 11460agtctctcaa ttataagact tagcttgtgc
catttagaac agacaagaac acagagaatt 11520atagaacaat ctgactacag gttcttaagt
tatagcaatg aaacttgtag ttggccggca 11580ggaaaatatt ctgagatgtg gattcaaagt
ttctaagtgt gcacacgtac acacacacac 11640ccctacctgc atgcgttttc taatttacaa
agactactca agtaaagagg ggtaatttca 11700caccccagga ggtctgtata aagataactc
tggtctttaa agcatcgggt ttcaggtaga 11760ggtgaagaga gaatgaatca aactcaaact
gccatcctcc caggttaaag atgagtccag 11820tcattgtgga gccctctatt aacacaggac
atgctaggaa ggcccattaa cccactgccc 11880tagcacattt gttaacgtcc tagtgcattt
gttgatatca acagttcaca gtttttattc 11940tgatagggat ctattccagc agaccagctt
ctgtgacctc tcaggatgcg aaaaagtaac 12000acaagaaaag cttcttatgt agtgaattga
gaaggaaata cctagatcaa tattccctca 12060gcacctctgg taggaagtcc ttagtaggag
aaaaacacca tgaagaccct tagtgcagaa 12120ggaaaagggg gtagggggtg gtggaaggga
agctaaaaga aggggctgga ggttctcaga 12180attcaaacca cacaaacaaa tgaagtattg
aggtcccaga cttgatctgg gcccagtgtg 12240aaagccctaa cttatttctc cagaagaata
tgtcctctgg ttttagactt ggcactgtgg 12300ggagaaccag agtgatctat ggtggatata
cacacaaaca tagacacaca tatttgcatt 12360tagtaatttt tgtaaaattt ccatttgctt
ctctgatcct gtctgtatct ttgggaatag 12420atgtaagaat attacatctc tcaggcttgc
tctgccccag gtttctgaac gtggaataca 12480tttctccagg gaaactcagt attatgagat
ttgggaggtg gaagttaggc cacagccatc 12540tcagggacag gtttcacaga catgagtttt
ggcagcagcc ttgtgttcta aagacattta 12600ctcctagggg ctctagagga tctgcaacat
cagcagaggc ttcctgtggg ttcctgatct 12660tttaaaatta gggttctgca gtgacttctg
ctcctccaga ccccctaaca gttttaaggg 12720ctaattccct gtaatatatt cagttctgct
tagactgatt acagggattc ctatttcttg 12780actgaattct catggctata gtggctcgtc
accatttgac atcaccaaga agtcctcatt 12840caggtgcctt tggaaattcc ctcaaacaca
caggaaatta gagtttgaaa gaaaacggag 12900aaccatgagc actgtccaaa taggaacttc
tctcctatca cagagaaagg gaactgaaag 12960tcatttctca agtctcccaa atttagtaat
ctcacaagaa gaaccaatca gtgttctagg 13020actaaacagt gtcataagtt gctgagcaac
aacttggatt gaagatgcta ttataatata 13080tgaaatgtct ttgaatttac catgtttttc
tcaagcacca tttaagaaca aggcattatg 13140gcagccagca aagggcagac atagaaaatt
atacatggtt ttgcctctaa aagaggagat 13200gacaagctta aatcatagga tcagactctt
agcacagact gataccatag gctctcatct 13260ggcccattct cctgactctt tacctttcag
gaaaggtatt cctgaaaaat tgcaggagag 13320accatgctgt aggtctcttt ctagcgatct
aggagttaat gccacagtgt gttcaaagcc 13380ctttgatgcg atcagataat cagtaatgta
tggaatattt gtgttcataa cttgtgagaa 13440cggctgcatg gcaggacaag accccagcac
aacagtatgg aaaatccacc ctaagcagac 13500atgtcatgac tgatgttgaa caatggactc
accagccagg cacggtggct catgcctgta 13560atcccagcac tttgggaggc agaagcaggc
agatcacgag gtcaggagat caaaaccatc 13620ctggttaaca tggtgcaacc ccgtctctac
tgaaaataca aaaaaaaaaa aaaaaaaatt 13680ggccgggcat ggtggcgggt gcctgtagtc
ctagctactc gggaggctga ggcaggagaa 13740tggcgtgaac ccaggaggca gagctttcag
tgagccgaga tcgtgccact gcactccagc 13800ctgggcgaca gagcaagact tccgtctcga
aaacaaaaca acaacaaaaa aaacaatgga 13860ttcaccatcc gatgggctcc ctcactgcca
ggtcactctt catggaagta tttgtattcc 13920agtcctttct gtggaaagaa cttaacattc
tccttttcat aacactgtat cttcagaaac 13980aagagagtcg aagtctccta attttcagga
gtgtctatgt tgaacatcaa aatatattct 14040ttagagcaga tctttaataa tcatatgaca
agagaaaaac tttcataatc ttatgacatg 14100agggaaggaa tattaaagcc gttctgtggg
ttattatctc taacgttccc aatagaatag 14160gctttgccag ctgggtgcgg tggctcatgc
ctgtaatccc agcactttga gaggccaagg 14220cgggcaaatc acgaggtcag gagtctgaga
ccagcctgac caacatggtg aaaccccgtc 14280tctactaaaa atacaaaaat tagccgggca
tggtggtggg cgcctgtaat cccagctact 14340caggaggctg aggcaggaga atcgcttgaa
cccgggaggc ggagattaca atgagctgag 14400atcacgccac caactccagc ttgggcgaca
gagcaagact ctgtctaaaa aaaaaaaaaa 14460aaaaaaaaaa aaaaaaaaaa aaaaaaaaat
aggctttgcc cattatactc tctcatattc 14520attgacctga atcctcaaat gaggtgtgtc
cattagtcaa ctccaatctc ttgtcatata 14580taagatggta gagatgagaa gaaggtagct
cctttacagc ccactatttc cactaactac 14640tacctgtgtt tcaagataca gcctttcatc
cttctccagt gttgagagtg ttgaacctca 14700gagtttctcc tcttattttc tctaaatgag
atacaatgcc agccatccca agctcttggc 14760ctgagttgtt catcttgaag tctaggactc
caagaagcat gaaagagctt ctttagtgaa 14820gctatgtcct cagtactgcc aaaattcaga
caatctccat ggcctgacaa tttaccttct 14880atttgggtaa tttattgtcc cttacgcaaa
ctctccagct gtcatggcac agacatatga 14940tctgtattta gctctcactt taggtgtttc
cattgattct attctcacta atgtgcttca 15000ggtatatccc tgtctagaac tcagattggg
gttaaagagt ctgtccgtca ttgaccaaca 15060gtcttaaata cttgatttgt tgtcgttgtt
gtcctgtttg tttaagaact ttacttcttt 15120atccaatgaa cggagtatct tgtgtcctgg
accctttgca agaacccttc ccctagcaac 15180agatgcgtca tctcaaaata tttttctgat
tggccaaaga gtaattgatt tgcattttaa 15240tggtcagact ctattacacc ccacattctc
ttttctttta ttcttgtctg ttctgcctca 15300ctcccgagct ctactgactc ccaacagagc
gcccaagaag aaaatggcca taagtggagt 15360ccctgtgcta ggatttttca tcatagctgt
gctgatgagc gctcaggaat catgggctat 15420caaaggtagg tgctgaggga atgaaatctg
ggacgataga ctacgaagca ttggagaaaa 15480gacctatgga catttggaag ataatgtgtg
gagtgaaaga atagtgtgac aggtattatg 15540tggtctcgac agaaagtata acaaattgtg
gtttggtgga gttcttccct caccacaaac 15600tgaagtaagt caaatttggt ttagaggatc
aaaactgagt tgtgtattga tgaatagcaa 15660ggtcctgcta caagccaaac tgggggtggg
ggtgggggtg ggggaggaag aatattttct 15720ggcaagcatt aacaagttat atttctgggc
tttaattatt ctttctggaa aattagtaaa 15780attaaaaact aaaaaccaca catagttttg
ctagaattaa atgaaaaaaa aagttattag 15840ccctgttctt atctgaatac atgatacagt
agttattttt tggagtgtaa atcctgtcgg 15900tatatattga gcacatatat tgtgttgaag
attactagaa ggaaaagtca tcaaaaagca 15960acaatttacc ccaggaaaag gggagggaag
gcatgctgat atgagttgcc tcatgggaca 16020gtgatagcca ttccctgcct tcccatctcc
atggtacagc agatcttata tcatgttaac 16080ttagtaatat ttccaagaga gtagaaaaat
gagtaaggaa atggggaatc tgatattatt 16140ctctctcatc tccagagcaa cattggtgct
gttgtaaaga tgtactgtag aaaagtattc 16200ttcacccagc atgaccccca cagaaggtgt
caggtagact tgaaataagc aaagtaataa 16260cccagctccc atacccatag tggcaattgt
agatttctat tgccccaaaa gagccataca 16320tagggatact tacctagaaa gacagaggct
cttcccttgg tttgtgaaga ggcagctagt 16380atatttgtgt gtgtttgcat agatgcaaac
ggtaaataaa ttcctaggtt tatcaataca 16440cagtcaaaca ttaaagtctc tcatcttggc
tgggcacggt ggctcacgcc tgtaatccca 16500gcactttggg aggccgaggc aggcggatca
cgaggtcaag agatcgagac cgtcctgggc 16560aacatggtga aaccccgtct ctactaaaaa
tacaaaaaat tagctgggta tggtggcaca 16620cgcctgtagt cccagctact cgggaggctg
aggcaggagg attgcttgag cccaggaggc 16680ggaggttgca gtgagctgag atggtgccac
tgcactccag cctggcgata gagcaagact 16740ccgtctcaaa caaccaaacc aaaacaaaac
aaaatatctc accttatctt tgaagactaa 16800ggaaaaaaaa atctcccact catcgataca
ctccacagag gcagcatact ctccaagtgt 16860agctttctct tttcatgttc attattccct
tggtgttggt tattctcaat gtcaatcata 16920acagaacatc ttccataata acagtcccaa
tttaaggagc attaagataa aaggtggaat 16980tgccaaggtc aatccagacg agaaccttct
catagaggta accaccgtgt gggtttggat 17040gctgggaagc agggggacta tgacgctaca
aggtctcagt cttaattttt ggagtatttc 17100agtccccagg tatattttcc atagatttgg
cccttaaata aaaagaagct tctgactcta 17160aaatgtaaac agtgcttgtt acagtcttgt
tgatatatta agaaattact caccttatct 17220catttaatct taaaaacaaa cccctgacag
gatcaaaacc acagcagggc tacataatag 17280gaaaactata cataaatagg tagaataatc
tgctcaggat cactaggtaa gttgctgaat 17340aagaattcaa gatgtttttg atcccagagt
ttaaaaccca acctttcaaa cagcgtttct 17400ttcttcttag agtacaatgt tctgagaaag
agatcctctg gaattctggc ctaagtgtat 17460ttaatgcccg ggtaaagaaa gtgagagaac
atttctcttt aggggctgct gctggatttc 17520taaaaagaaa ataatttctc agctagtaac
atggagccaa acaacagctt cacaagactc 17580tgggttcttt agccctcatc tccttcaatc
caccctcttt ataaccagtc cttcttgttt 17640ttcccctccc agctttgttc agcagcatgc
ccttcaccca gaccttgtct tgtcactcat 17700ccctactcgc catcattctt tcattcctct
tggcccaatc tctctccacc acttcctgcc 17760tacatgtatg taggttattc atttccctct
cttgattccc cccacccaac tctctttctc 17820cacttctcgc ctttcagaag aacatgtgat
catccaggcc gagttctatc tgaatcctga 17880ccaatcaggc gagtttatgt ttgactttga
tggtgatgag attttccatg tggatatggc 17940aaagaaggag acggtctggc ggcttgaaga
atttggacga tttgccagct ttgaggctca 18000aggtgcattg gccaacatag ctgtggacaa
agccaacctg gaaatcatga caaagcgctc 18060caactatact ccgatcacca atggtacctc
cctctctgct gcactcctgg acatgggaat 18120ccatagtttg aaagtagttg cttcagctct
ttgtgttaga ttattgtaac tgattttccc 18180tccaagggcc taaccttgcc attaacaagc
cccaaattct catgccagag gtctgagaac 18240tttatgggtt tgatcctatc ttgttgtgct
caagtcttgt ctctgtcatc catggtctcc 18300tacaaagtca ttgccctaag ttcatgctgg
gggagccaga agggaagtcc ttggatatct 18360tatacctcaa tattggctca atttcttggg
gagggggtgc tgtcagagat tgttatctga 18420ggatgtgaca tagatttctc agggcacaat
ttcaactact ttttcagctt tagggttttt 18480agatacgttt gtaccacaat tgagcatggg
agggagaggg gtgagcctaa gcagtgatgg 18540ctgatttctg tcatgtctgt catgtgtccc
ccagtacctc cagaggtaac tgtgctcacg 18600aacagccctg tggaactgag agagcccaac
gtcctcatct gtttcataga caagttcacc 18660ccaccagtgg tcaatgtcac gtggcttcga
aatggaaaac ctgtcaccac aggagtgtca 18720gagacagtct tcctgcccag ggaagaccac
cttttccgca agttccacta tctccccttc 18780ctgccctcaa ctgaggacgt ttacgactgc
agggtggagc actggggctt ggatgagcct 18840cttctcaagc actggggtat ggaccaacac
tcaatctcct ttatttcaag gtttcctcct 18900atgatgcttg tgtgaaactt ggtgttctaa
ctgtttcata atatctgcta caattaatat 18960aactgtcttc tcctactatc cagcttccgc
ctttttttaa tctgtaattc tctcaataca 19020tcattctgtc ttcctcttct ttaatctatg
aataactttt ctctttatta agaaccctac 19080atttgattct gagtgttact tcttcccaca
ctcattacca tgtactctgc cttatttccc 19140cccagagttt gatgctccaa gccctctccc
agagactaca gagaacgtgg tgtgtgccct 19200gggcctgact gtgggtctgg tgggcatcat
tattgggacc atcttcatca tcaagggatt 19260gcgcaaaagc aatgcagcag aacgcagggg
gcctctgtaa ggcacatgga ggtgagttag 19320gtgtggtcag aggaagacat atatggagat
atctgaggga ggaaaacagg gtggggaaag 19380gaaatgtaat gcatttaaga gacaaggtag
gaacagatgt ggctcttgat ttctctttgc 19440tagaacgaat cagacattgg tatcatctgg
tatcccaaag cttcagggtc tgtcatccct 19500ttctatagac gggcaccttg atcacggctc
cagtcttaga aatcatctcc agtacctaaa 19560accattgttt cacattagaa tactgagtct
agggatctag aaaatactga gtctagggat 19620ctagaaaaat aagcctcaag atttgggcac
atcctagctt gtatttcctg gggcaggtca 19680tcagttcaga agcatttcca gatcctggct
cctttcaggt tagggtcaat tcattgcatg 19740aaatgggaat ctcttagagg ccaatgcctg
cttttgcttc tttagtctca aatgtagtat 19800gagaaactct aaaaaaaggt aaagcatggt
tgcttattat gttcagttgg agagtagggt 19860atacagttag ttcatgttgg aaaggttaga
tgaacattga aagaattttg caaagtcaaa 19920ggattaagag agaagaggaa ggaatctgaa
gcaaggagct caaaactgat cttaaactcc 19980ttggtaacta tgtgtgtctt gctataggtg
atggtgtttc ttagagagaa gatcactgaa 20040gaaacttctg ctttaatggc tttacaaagc
tggcaatatt acaatccttg acctcagtga 20100aagcagtcat cttcagcatt ttccagccct
atagccaccc caagagtggt tatgcctcct 20160cgattgctcc atactctaac atctagctgg
cttccctgtc tattgccttt tcctgtatct 20220attttcctct atttcctatc attttattat
caccatgcaa tgcctctgga ataaaacata 20280caggagtctg tctctgctat ggaatgcccc
atggggcatc tcttgtgtac ttattgttta 20340aggtttcctc aaactgtgat ttttctgaac
acaataaact attttgaaga tcttgggtgg 20400aatttttggt gtttaagcca gttctttggg
tggcggtggg gggtggggag tcggtcctgg 20460ggaatatatg tgatcctttc ccggtaaaat
atctgaatgt tgaatttatc ttataaattc 20520tagaattcat cagacatatc ccggttcatt
tgggcttggt ctcattttgt gcatctgcag 20580gcaaccctct tgttgtggtc tagtcctcat
caggaaaacc taaagtgggg ttggtttgtt 20640gggagatctc tactgagcaa tgatataact
ctatcttcag tagagtgaat ctgaaacccc 20700aaggtatgga tctcagaatg catgggatgg
aggggagcag atggggttag agtggggaga 20760aggaagacag aagaatccat aaacattgca
ggatttacat atcaacatcg ttcattccag 20820atttaatgag caaagagatt ggacactgaa
gactggcctt acccattctg ttagacatag 20880tctcagatgc ctattttatt accgagagag
tagtctgact gattcttgaa accaccttat 20940atttgaagat gtgtctttga gtggaaaagc
tgagtgaaat ttggggttgg ggagaaagat 21000atgacattaa gatgagagga aggaatattt
gaaacacgat gaactgttgc tcatttgtct 21060ataaaactat gacttgatat ttatctctaa
aatagtttct agaacctgcc ataaaccact 21120aagataaact attcatgata gtgtggtaga
ctgcaaataa atgctgttga aatgagttag 21180gcttgggttt catcttggct gtatcattta
ctagctatgt tttcactggt atcttactta 21240acttagcctc acattactca tgaaaatact
ggtgttaatt tttactacat tgaattaata 21300tcagaattaa aaggaaaacg caagcaaagt
aattagatac atgcttagtg ataataaaat 21360attgcaaaaa attatacatt ctgttgtttt
tctcaaaatt tctatagagt gatgataaaa 21420atctaagaga agctaaacaa aacaaggata
aaccaaagca tcatgacctt ctaagcctta 21480ctaataaata agaagtttct cggctgggca
cggtggctca cgcctgtaat ccagcacttt 21540gggaggccga ggtgggcgga tcacaaggtc
aggaaatcaa gaccatcctg gccaacatgg 21600tgaaacccca tctctactaa aaatacaaaa
attagccagg cgtggtgata ggcgcctgta 21660atcccagcta ctctggaggt tgaggcagga
gaatctcttg aatccgggag gcagaggttg 21720cagtgagccg agatcgcacc actgcgctcc
tgcctggcaa cagactgaga ctccgtctca 21780aaaaaaaaaa aaaaaaaaaa aaaaagtttc
tctactgttg gttcagagaa tcaaagcaga 21840atcttgagac tactgacggt agaataggta
tgaatgtctt tcttacatga ctacaaactt 21900tattataaaa taaatagctt aacacagaga
atacactaaa acttagacaa gcatggatta 21960agaaagcaaa aagtaaaccc atatactacc
atgtaagaaa accatttttg gccaggcgtg 22020gtggctcacg cctgtaatcc cagcactttg
ggaggccgag gcgggcggat cacgaggtca 22080ggagatcgag accatcctgg ctaacatggt
gaaaccccgt ctctactaaa aaaaaaaaaa 22140aaaattagcc gggtgtggtg gcgggtgcct
gtagtcccag ctactcgaga agttgaggca 22200ggaaaatggc gtgaacccaa gaggcagagc
ttgcagtaag ccgagatcgc accactgcac 22260tccagcctgg gcgacagagc gagactccat
ctcaaaaaaa agaaaaaaaa aaaaaaaaaa 22320aaaggaaaac cattttaata gacttttatt
tttagagctg ttttaagcta acagaaaaat 22380tgcagaaatt gtatacagag ctcccccacc
cccagtttct acaatgctta acatcctgta 22440ttaatgtggt acacttgtta caattgatga
accaatacta ataattatta ttaactaaaa 22500ttcatagtta tacgagggtt cactctgtat
tacacagtta tatgggttct gacaaataca 22560taatatcata tatccaccat tacaggatta
aacaaaatag cttcactgat ctaaaaatga 22620cccaggctcc atctactcat ccttccttcc
tccctctgaa ccattggcat tctctgagct 22680atttactagt gttttgcctt tttcagaatg
tcacatactt gtaatcatac agcatagagc 22740tttttcagat gagattcttt tgcttagcca
tatgcataca ggtttcctgc gtatattgtc 22800atagcttgat agcttatttt tctttaatgt
taaataatac tccattgtat aaatgtacta 22860tggtttattt acccattaat ctattgaagg
acatcttggt tgcttctaat ttttggcaat 22920tatgaataaa gctgctataa acatccatga
acagatgttt gtgcagacac aagttttcca 22980ctttggataa atacatagaa gggcagttgc
tggatcatat ggtaagagta tgtttagctt 23040tgtaagaaac aactagaata tcttccaaaa
tggctgtatc attttgcatt cctaccagca 23100acgaatgaga gtccctgttg ttctatatcc
ttgccagcat ttggtattct ggggtttggg 23160atttcagcaa gaaagccatt ttaatatttt
tttattttaa aataattata gattcagggg 23220aaattgcaaa gacagtatag agacattctg
catacgcctt cacccagttt ctccaaatgt 23280ttatatttta agtaattata gcacagtagc
aaaaccaaga aaataccttg atacaatgtg 23340tatgtatagt tttatgcatg tcttaccaca
tttgtagatt catgtaacca ccaccacaat 23400caagcacaga gctattccat atcacagaga
tcttcatcat gcttcccttt atagccaaat 23460tccccccaca caatcacctt aacaacttaa
aaccactaat ttctttgcta ttaatctcta 23520gaatagtgtc attttgaaaa tactagttaa
atggaatcat gcagtatgtg actggtgttt 23580ttcacttagc ataataccca tgagatccat
ccaagctgct gcatatatca acaatctttt 23640tttttttatt gctaagtagt attccatggt
ctaaatgcag cacagtttgc ttaactattt 23700gcctattgaa ggacattttg gctgtttcta
gtttggggtc actataaata aggctgtttt 23760gaacatgtgt ttaaggtttt tctatgagca
tgagttcatg agttttcatt tctctggtat 23820aaatgtctgg gatataattc atgggcatat
ggaaatatat gtttagtttt tcaagaaact 23880gccaaactta gccaagtatg atggcttata
cctgtaatcc cagcactttg ggaggccaag 23940gaggaaggat aaattgaggc caggaatttg
aggccagccc cagcgtctac actttttttt 24000ttttttgaga cagagtctcg ctctgttgcc
agactggagt gccatgatgc gatctcggct 24060cactgcaacc tccgcctccc aggttcaagc
aattcttctg cctcagcctc tcgagtagct 24120gagactacag gtgcacacca ccacgcccaa
ttaatttttg tatttttagt agagacaggg 24180tttcaccatg ttggccagga tggtcttgac
ctcatgacct cgtgatccgc ttgccttggc 24240ctcccaaagt gctgagatta caggcatgag
ccaccgtgcc cggccaaatg ttttgttttg 24300tttttgtttt ttgttttttt gtcaggtgga
tgaggtggca tgcccctata gtcacagcta 24360cttgggaggc tgaggtggga ggattgcttg
agcccaggaa ttcgaggctg cagtgagcca 24420ctgcacttca gcctatctga cagagcaaga
tcctgtctcc aaaaggaagg aagggaggga 24480agaagcaagg aaggaaggaa ggaaggaagg
aaggaaggaa ggaaggagaa aaaagaaggt 24540agggagggag gaaggaaggg agggagggag
gaaaaaagaa agaagaaagg aagttaaaaa 24600gaagggaggg agggaggaag gaagaaagga
aagatggaag aaaggaagga agggagggag 24660gagaaagaga aagaaaaaga aggaaggaag
aagggaagga gggagggaag ggaggaaggg 24720agggagggtg aaaggaagga aagaaggaag
gaaggagaaa gaaaaggaag agagaaagag 24780aaagaaaaaa gaaagaagaa agaaagaaga
aagaaagaga gagaaggaaa ggaaagaagg 24840aaggaaagga aagaaagaaa aagaaaaagg
aaggaaggaa agaaggaagg aagaaagaaa 24900aagaaagaaa gaaggaagga aagaaagaaa
gaaagagaaa gaaagaaacc gataaactat 24960tctctaattg ctttgtggga gtatggccac
tttcatcata ttgatttttc cttttttttt 25020tttttttttt ttttttgcga tagagtctgg
ctctgtcgcc caggctggag tgcaatggcg 25080tgatttcggc tcactgaaac ctctgcctcc
tgggttcagg tgattctcct gcctcagcct 25140ccctagtagc tgggattaca ggtgcacacc
atcacgcctg gataattttt ttgtattttt 25200actagagatg gggtttcacc atgttggcca
ggttggtctc aaattcctga cctcaggtga 25260ttcgcctgcc ttggcctccg gaagtgctag
gattacagat gtgagccacc gcgcccagac 25320aatattgatt cttccttttc catgaacatg
atattttttt ccatttattt gtgtcatctc 25380tgagttcttt gagcagtggt ttgtagtttt
ccttgtagag atctttctcc tccctagtta 25440gctgtattcc taggtatttc gtgtgtgtgt
ggcaatcgtg aatgggatta cgttcctgat 25500ttggctctca gcttgactgt tgtggtgtat
aggaatgtta gtaatttttc cacattaatt 25560ttgaatgcca agacttcgct gaagttgtta
attagcttaa agagcttttg ggctgagact 25620atggggtttt cttgatatag gatcatgcca
tctgcaaata ggcatagttc aatttcctct 25680cttcctgttt ggatgccttt aattcttttt
cttgcgtgtt gccctggcca agacttccaa 25740tactatgttg gataggagta gtgagagagg
gtatccttgt cttgcgctgg ttttcaaggg 25800gaatgcttct agctttttcc catttagtat
ggtattagct gtggggttgt cacagaaggc 25860tcttattatt ttaagttatg ttcacttact
actcagttta ttaagagttt ttaaatgaag 25920ggatattgaa ttttatcaaa aaccattcct
gcatctattg agctaatcat gtggcttctg 25980tctttagtac tgcttatgta atgaatcaaa
tttattgatt tgcatatgtt gaactaacct 26040tgcatcacca agataaagca tacttgatca
ttgtagatta gctttttaat gtactgctgg 26100attcagtttg ccagtatttt gtggaggatt
tttgcataaa tcttcatcaa taatatttgc 26160ctgaagtttt cttttgtgtg tgtgtctgcc
aggttttggt gctgatcctg atgatgctgg 26220cctcatagaa tgagttagag aggtatccct
cttcctcaat tttttggact aattataaca 26280ggaatggtac cagctcttct ttgtacatca
ggcagaattc agctgtgaat tattctagtc 26340ctaggggttt tttttgtttg gtagtctact
tattactgat ttaatttctg agatcattat 26400cagtctgttc agggattgaa tttcttcctg
gttctgtctt gggagggtgt acgtgtccag 26460aaatttatca atttcttcta gttttcctag
tttatgtgca tagaggtgtt tttaatattc 26520tctgatggtt atttgtgttt ctgtggggtc
agtggtaata tccccattgt aatttctgag 26580tgtgattatt tgaatcttct ctcttttctt
ctttattagt ctaactagag gtcttttttt 26640tttattaatt tttttttagg aaaccaattc
ctggactcat tgatcttttg agtgttgttt 26700ttttttctgt ctcaatctcc tttagttcag
ctctgatttt ggttatttct tgtcttctgc 26760tagccttgat attggtttgt acctggttga
ccagttcttt tagttgtgat gttaggttgt 26820taaattgagg tctttctttt tcatgtgggc
atttgatgca taaatttccc acttaacact 26880gccttagctg tgtcccagag attctggtat
gttgtatcgt tgttctcatc agttttaaag 26940aacttctcaa tttcttcctt aatttcatta
tttacacaaa agtcattcag gagcaggcgg 27000ttcaacttcc atgtaattgt agggttttga
atgaatttct tagtcttaat ttctaatttg 27060attgcactgt tgtctgaaag attgtttttt
atgatttcag ttcttgtgca tttgctgagg 27120agtatttgac ttccgattat gtgatcaatt
ttagagtaca tgccatgtgg tgatgagaag 27180aatgtgtata ctgttgtttt ggtgtggata
attctataga tgtctatcag gtccatttga 27240ttcagtgctg agttcaagtc ctgaatatct
ttgttaattt tttgtctcga tgatctgtct 27300aatattatca gtgagttgtt aacatctcca
agtattattg tgttggagtc taagtctctt 27360tgaaggtccc taagaacttg ctttatgaat
ctgggtgttc ctgtgttggg tgctgatctg 27420gtttggctgt gttcccattc aaatctcacc
ttgaattgta gctcccacaa ttctcacatg 27480ccacgggagg cacctggtgg gaggtaattg
aatcatgggt gcgggtcttt cccatgctat 27540tctcatcata gtgaataagt ctcatgagat
ctgatagttt tataaagagg agtttccctg 27600cacaagttct cttgtcttgt ctgccaccat
gtgagatgtg attttcacct tccatcatga 27660ttgtgaggca tccctagcca tgtggaactg
tcagtcaatt aaatttcttt cttttgtaaa 27720ttgcccagtc tcaggtacat ctttgtcagc
agcataacag actaatagag gagagtggag 27780cactgctgaa aagatatctg aaaatgtgga
agtgactttg gaactgggta acaggcagag 27840gttgaaacag tttggagggc tcagaagaag
ataggaaaat gtgggaaatt ttggaacttc 27900ctagagactt gttgaatgcc tttgcccaaa
atgctgatgg tgatgtggac aataatgtcc 27960aggctaaggt agtctcagat ggaaatgagg
aacttgttgg gaactggagc aaaggtgact 28020cattatgctt tagcaaagag actggtggca
ttttgtccct gtcctagaga cttgtggaac 28080tttgaacttg agagagatga tttagggtat
ctggcagaag atatttctaa gcagcaaagc 28140attcaagagg ttacttgcgt gctgttaaag
ccattcagtt ttataaggga agcagagcat 28200aaatgtttgg aaaatttgca gcctgacaat
gcaatagaaa agaaaatcca attttctgag 28260gataaattca agctggctgc agaaatttca
tgggtaacga ggagctgaat gttaattatt 28320aagacaatgg ggaaaatgtc tccaaggcat
gtcagaggtg tttttttttt ttttccagag 28380tctcgctctg tcgcccaggc tggagtgcag
tggtatgatc tcagctcact gcaagctctg 28440cctgccaggt tcatgccatt ctcctgcctc
agccttccaa gtagctggga ctacaggcat 28500ccgccaccac acctggctaa ttttttgtat
ttttagtaga gacggggttt caccatgtta 28560gccaggatag tctcgatctc ctgacctcat
gatccaccca cctcggcctc ccaaagtgct 28620gggattacag gtgtgagcca ccatgcctgg
ccatgtcaga ggtcttgatg gcagccctgc 28680ccatcacagg cctggaggcc taggaggaaa
gaatggtttc ttgggctggg cccagtgtcc 28740ccgtgctgta tgcggtcttt ggacttggtg
ccctgtgtct cagccgctcc agctgtgact 28800aaaaggggcc aacatagagc tcaggccacg
acttcagagg atgcaagccc caagccttgg 28860cagcttccat gtggtgttga gcctacgtgt
acacagaagt caagagttga ggtttgggaa 28920cctccaccta gatttcagag gatgtatgga
aatgcctgga tgtccaggca gaagtttgct 28980gcctgggcag ggcactcatg tggaacctct
gctagggcag tgcagaaagg aaatgtggag 29040tgggcaccct cacacagagt tctcaatggg
gcagtgccta gtggagtttt gaaaagagga 29100acaccatcct ccagactcca gagtgatgga
tcc 29133322485DNAHomo
sapiensgene(1)..(22485)HLA-DRB1*010101 gene 3cttgttaact actattgtat
tctctgcttc tatgagcttg agtattttag ttacctcata 60taagaggaat tctgcaatat
ttgtcttcct gtaactggct tatttcactc agcataagcg 120aaactaaaaa gcttttgcat
agcaaagaaa acaataaaca gaatgaaaag ataacctgca 180gaatggaaga aaatatttgc
aaaccatata tttgataagg ggttaatttc aaaaatgtat 240aaggaactca tacaactcaa
gagcaaaaca accaaccaaa caaacaagct gattaaaaaa 300tgggcaaagg acttgaacag
atatgtcttg gaaaaagatg ttatagacta aatgtttgtg 360ttccctccta atcatatgtt
aaatcctaag ccccaatatt ataggattag aaggtgggcc 420ctttggaagg aattaggtct
agagtctatc tagataaaca ctccaattaa ttgcccatat 480gggaacacaa attggtttct
gatggtgtaa agttattaag gaaaaataat aacaataaat 540ggataaacag gatcaatttc
ttcttaccat ggagggagga tatgtatcct caacagaaga 600ctgtgccatt taaaggccat
attagtattc atcagagttg ataggaccct ttcctgtaag 660atttcagcaa tgtcatccat
cgaggaactt tgggtggagc cagtctttgc accatggcac 720tatctaggtc atggctgtaa
gtctacaagt gaaaaaacca tggtcaatat taatgatatt 780gcaattagta tcagcaatac
cactgaagga aacgttgaca gttaaaataa tttaggaggc 840tgggcacagt ggctcacgcc
tgtaatccca gcactttggg aggccaaggt caagagatag 900agaccatcct agccaacatg
gtgaaacccc atctccacta aaaatacaaa aattagctgg 960gcatggtcgt gtgcacctgt
agtcccagct actcgggagg ctgaggcagg agaatagcct 1020gaacccagga ggcagaggtt
gcagttagtc aagatcacgg cactgcactc cagcctggca 1080acagagccag actctgtctc
aaaaaaaaaa aaaagaaaaa aagaaaaaaa aaagaattta 1140gtgtttaaat cctgttctgg
agagaaaata aacccatgcc tatgtatttt gcctcagtgg 1200cagaaccagt tgcttttaga
actgattctt gttatgcttt tttgtttttc atagctttag 1260aacttgtaat agcaataaag
attcctcact tctggaaaaa ctcaaaaatt tctaataatc 1320cttatattat cttctgctgt
ggttattata aagtattttc ctctggttaa taatatagct 1380atggcttaga ttatttttta
ctagctggta ccttttttct tattctaaca gttgactaga 1440catctcttta aggtcaaatc
caaaattgtg aactatggac actgacaggg ttttgtttgc 1500acccaaatca tctttagcat
ctctagatgg atacttaata gtaccaagtt ttacaccttt 1560atcttgctgg tgtaacccct
tgaatgacca catgaccaac acagggatgc tagcaatagt 1620tagtgtggtt cttatgcttc
atttttctca gaattgctgt atgatactga gagttgcttt 1680gtttgacagg cacacagggt
aggaagagat gtcatgacaa aaggattagc taattctttt 1740gcacacacat aagttgattt
tatttaggta aaatgttgtt aacataaata agtactagta 1800agtttacttt ttcaagataa
taaattgtct gcaaggatga gctattagaa aaataactgg 1860taaaagattt tattatttat
tttaaataaa ataagcaaca aaccaggcac acacttcaca 1920ggacagattg caaagaggtt
ggtacagctc aacaggttca tcaatgtctt cactgtccac 1980actgcagtca ctggggagtg
ggctagtgga gcaccaaaat gaaattttga aaaataacct 2040ggcctatttt ggactggata
gatagttgga tacttaccac agcacaatta acataagagc 2100tagaaagata aatcaaaaga
aaattctttg tacttacaat attagtagaa aggcctatgg 2160gaattctagt tgttttctct
atatgcaatg gcaagcattc tgttataaaa cagctaagtt 2220gagccaaaga atgacatttg
gaagttaaag aagtcctgtc aactgaccta gatagtgtca 2280tggtgtaatg attggcgcta
ccaaagtttc ttaatggagg acattgctga gattttactg 2340gaaagggtcc tatcaagtgt
gatgaatact aataaggcct ctaaatggca cagttttctg 2400ttcaggatac atatcttcca
tgctgagaag aaactggttc tgtttatcca tttattgtta 2460ttgtcatttt ttctttagat
ataaggatta gtaatctgct ttttacttta aattccagat 2520agcagtggtt gctttctgaa
aactcctgag aacattttgt gactgcttgg acaagtgaca 2580gacattctat gataaccagg
gcttgctgat agccaaaaaa gcctattttt ccaaaatgtg 2640ttgcaagctt tcagccttac
tgcaagtgag ccccattctg tgacaatcgg taggactcaa 2700gacattctgt aatcctacca
atgtcaacct gcctgttgtt cagcaaaagt ctgtgcttct 2760gattttacct gtttagtcct
gagaatgctg ggatttattt cctgtaaaac caagcctatg 2820gtttcattca tcaagaccag
agaccatgca acttccgtac ggaaaaccac tttcttccag 2880aaaccaattt aattgccatt
tcctcaggaa ataagctctc gtatttgaca cctctcacac 2940acagcagagt tgagaggatt
cttctcttgt tttcagtgca aaagttcagc ctagagatca 3000cctgtacgat tgatggtttg
gtgacagttg ctacattgtt tagcctgaac tatgcttata 3060ttgaatattg aaggaaagtg
tgagatatat aatttaaaga agcatatctg ttatagttta 3120agtgtgtcgc ctttaaaatt
caggtaggac tcctcactga tgaatgggat taaggccctt 3180gtaaaaaacg cttcacacag
tttttagcct cttgtctttc caccttctac catgtgagaa 3240cacagtattc atcccctctg
taggatgcaa ggtgccatct tggaagtgga gagcatgccc 3300tttgccagac attgaacctg
ctggtgcctt aatcttggac ttctcagcct ccatgtattc 3360tttataaatt acccagtcta
ccgtatttta tcacagcaca aataaactaa gacaacatct 3420ttgttactca taaatgtata
aaacatacag aatttagttc attgccattg gccatttttt 3480aaatataaat ttgtatgatt
tatgaatagc gtgtcaaatt tatataaaca aattttgaaa 3540atttctcttt aactatattt
tagtacattc ttgatgtaga attacttatt tttgcctctg 3600catttatcct gtaataataa
ggtgaacctt agcttccttt cctagattac cacaccacaa 3660ttagttaatt agtaaattac
gatttcctat tatcaaatga aatgtgatat tctcctggtt 3720gcaattgcac aattgtcaat
agtactgaat tatcactgta gtgtaggaac acagtttgtt 3780ctcaaatcca gggacttcta
cccaacctct ccaagaaatc ttcaactttc cacattaaca 3840gaaatatatt tttccaaagt
aaacgagaca ctatttttat tctattctga aatgatcaaa 3900cttgcactac ttcgtgctga
gaaattagaa atgatgattg agagtaataa accggagtta 3960ggaatgttga ggctgttgtt
atctttaata agaaggagat ttgtgcagga gctatgggtg 4020tccttatgta acataaacgc
aaactgtgtc atttccagag gagagtaacc atgatgatga 4080ggggaatctt ttgaaggaac
tagcattgct acacagtatc taccccaaag tctataaaat 4140gttgccattc actaaaagaa
gtagtcttac tgatttgcac agccatgaat taaagggata 4200aaaataattt tagtataagg
gacataattc tctttagaaa ttgaatgtga ggtagtataa 4260tacaacagta gagcctgagg
ggtttggaat cacatatata ataccttggt tcaatagagt 4320tgacagaaaa actctgcttt
aaaataatta atattttatg tgaagagtgt tcaatccctc 4380attcctggct cccattatga
tctcctcatt tgtttgaggc tatggccctt tactattcca 4440cttctcttgt tttatcataa
agggagatat aagaagactt tgctggccgg atgcactggc 4500tcatgcctgt aatcccagca
ctttgggagg ccgagttaca attctgagaa ttgctacaat 4560tctgagtaca aagcaaaatg
ctcaaaaatt gctgaagaaa ttttagtcat ttttattgca 4620gcatggtgag tatcccaacc
ctagaaacac taaggcacac aaggaaggag tgtgtatcag 4680aactgtggta gggtgtgaat
taatgcagaa ctttatctgt atagttgtac tttgaagtcc 4740attctgaatc ttagatgcta
catttatata aatataaagc ataataagta tctaaatgta 4800gaattatatg tttaaaatta
tatgattaca ttaactgatg taattcatag attttcccta 4860gggttctgtt tcctgaacat
tctgtaacgt attagttagc aaagtctttt ttttttttga 4920aactgagtct cactctatcg
accagactgg agtgcagtgg catgctcccg actcactgca 4980acctctgcct cctggaatca
agcaattctc gtgcttcagc ctcctgagta gctgggatta 5040caggcatgca ccaccacacc
cagctgattt ttgtattttt tctgttagta gagacaaggt 5100ttcaccatgt gggccaggct
ggtttcaaac tcctgacctc aagtggtcca cccacctcgg 5160cctcccaaag tgctgggatt
acaggcatga cccactgtgt cctgccagca aagtcttctt 5220atatattccc ttatgataaa
acaagagaag tggaacagta aagggccata gcctcaatca 5280aatgaggaaa tcctaatggg
aaccaggaat gagggattga acactcttca cataaaatat 5340taattatttt aaaactattg
ggggaaattc agccagatat caggcaaaat tcacccccga 5400tatttcacgt agtttctttt
ctatattccc taagtgtcgg ccggtctgag aaataaaggg 5460acagagtacc aaagagagaa
attttaaagc tgggtgtccc caggagacgt cacatgttgg 5520caggttctgt gatgccccac
aagccacaaa accagcaagt ttttattagt gattttcaaa 5580aggggagggg gagtgtatga
atagggtgtg ggtcacagag atcacatgct tcacaaggta 5640atagaatatc acaaggcaaa
tggaggcagg gcgagatcac aggaccacag gaccggggcg 5700aaattaaaat tgctaatgaa
gtttcgggca ccattgtcat tgataacatc ttatcaggag 5760acagggtttg agagcagaca
accggtctga tcaaaaattt attaggcggg aatttcctca 5820tcctaataag cctgggagcg
ctatgggaga ctggggttta tttcatccct aagcttgacc 5880acagaagacg gccaccccct
gaagcagcca tttcagaggc ctaacctcag ggaagtattc 5940tctttctcag ggatgttcct
tgctgagaaa aagaattcag cgatatttct cccatttgct 6000tttgaaagaa gagaaatatg
gctctgttcc acgtggctca ccagtggtca gagtttaagg 6060ttatctctct tgttccctga
acattgctgt tatcctgttc ttttttcaag gtgcccagat 6120ttcatattgt tcaaacacac
atgctctaca aacaatttgt gcagttaaca caatcatcac 6180agggtcctga ggtgacatac
atcctcctca gattacaaag atgacaggat taagagatta 6240aagtaaagac agggatagga
aatcacaagg gtattgattg gggaagtgaa gtgtccatga 6300aatcttcaca atttatgttg
agagattgca gtaaagacag gtgtaagaaa ttataaaagt 6360attaatttgg ggaactaata
aacgtccatg aaatcttcac aatctatgtt cttctgccat 6420ggcttcaggc ggtccctcca
ttcggggtcc ctgacttccc gcaacaaaaa cagagttgtt 6480ctgtcaacag ctgactttga
gtccttgatc ggtctctcag acccctgaat acttggattg 6540cacagttgac cttatcacat
tgttagggta agtgcataca aaggcaactt cagaccctcc 6600attgcacata ggtggcccct
gcaagccgct tgcctgtgtg tgttctggag ctgccactaa 6660acttggggac agcatcagga
gatacacttg aaaaaaccct ttttactcag attaaattat 6720taacaaactt tccatttcct
ttaacttact aaagaatctc tacctgtaaa taggtacaga 6780ttaaactcgc tagtcaacag
ctatcattct gtcatatcaa cagatactcg tggctgctgc 6840tccttgaggc atccacagaa
tcacagcatt ttccagtatt gaaagacctg aaagatcacg 6900gtgccttcat tttaactgtg
agacatgaag taattttccc aagtctacaa cagtaagata 6960tggtgcaata aggaccagat
taaaagtctc ctgatttgca accatgttcc ctccatctcc 7020tttactccta agcacactca
cacactcact cctgcaaaca attctcttgt caagtgggaa 7080atgaatgctc ttacaaggct
caaatttgtg aacacatcac tgaccagcac agagctggct 7140aacaataggg acacaattaa
ggtgttttac acgcaactgg ttcaaacctt tcaagtacta 7200aattaaaaca atcctttaaa
gaaggaaatt gtttcagaaa aggaccttca tacagcatct 7260ctgaccagcg actgatgatg
ctattgtact cagatgctga ttcgttctcc aacactagat 7320tacccaatcc acgagcaagg
aaatcagtaa cttcttccct ataatttgga atgtgggtgg 7380agaggggtca tagttctccc
tgagtgagac tcacctgctc ctctggcccc tggtcctgtc 7440ctgttctcca gcatggtgtg
tctgaagttc cctggaggct cctgcatggc agctctgaca 7500gtgacactga tggtgctgag
ctccccactg gctttggctg gggacacccg acgtaagtgc 7560acattgtggg tgctgaccta
ctatggggtg gggaaaaaag ggagttgtgt taacattgtg 7620cccaggccat gtcccttaag
aaagtgtgac attttcttca gggattgccc atctttatca 7680tatggatccc aaattatttc
caccacaaat ggaacttggc tacttgccct attcatgaga 7740ctgtgtaaag ggcctttgta
caggccatgt tttactttaa atctctacca ataaaacctt 7800tgcatcacat gtcctcaggg
tctttagagg atttagaaat aaggatgcta aaataaattc 7860ctcatacagc acttcccttt
atcatgttga cttatgtcag acgaaacaag gttttgtttt 7920gaaaattttg tgggagtcaa
aggaattcaa agggtctctc ctagacgatc ctgtgttgtc 7980ctccacagga cctgtggtgt
tggcccctct tcctcatatg tgaggatgta cccagtggcc 8040tccccattgt ttcctttctt
ttttttctga actccagtgt ttataaagcc tgtatccctg 8100tagcatatgt aggttctctg
acagaagtta tacttagtgc tctttctttc ttatggggaa 8160aaatccctgg atctgaaact
gacatcttta gtacttggag tcaccctaca ggtaaagacc 8220atttatgagg tattcattgg
tgcctcctct tgatcggtct ctcagacccc tgaatacttg 8280gatactcctc aagaacttaa
ggcatcctct gaaaaactgg cccagattag tgcttattat 8340taatctttta taacctttct
atacttgttt ctcctgcatg ctctaactag acatgacaga 8400agagattcaa ctaacatagg
ataaattata tgaaattcta tttttgtaag tcaaaaatag 8460tcaaatacca gaaaattaat
aatgttcaaa ctatatactc tgtgtggggt taccgagacg 8520acgtggacat tgttcacatc
taatagggct gaaagtcaat gaagaagtcc tggaaactcc 8580ttgtcttact ggggtcttgt
cctaaatttc ataggttcac ccatcatgcc ctcagctttc 8640cttaattagc catgtctgct
tatctctacc tccagtttct ctctattttt ccccagctat 8700gttgtcatca tttccagaaa
tctctaaaac ttgcaaagat ccttagcact atgagatcca 8760ttgaaagaga taattttttt
ctttttgaga cagggcttgg ttctgtcacc caggctgtag 8820tgcagtggtg tgatctaggc
tcactgcaac ctctgcttcc cacgctcaag tgatcctccc 8880tcctcagcct ccagagtagc
ggagactaca ggcaggcaaa catgtgcagc taattttcat 8940gattttgtta gagatgagat
tttgccatgt tgcccaggct gttcttaaac tcctggactc 9000aagcaatcct cctgccttag
cctcccaata tgctaggatt atagatgtga gccattgtgc 9060ccaggcaaaa agagatgaac
cttaatttaa aaatttcctt tttcttaaat cactgtttct 9120ctatctgtga attcttcttc
caactagaag gaggagaaag aagaagtttg cctgtatttc 9180tcaccaggag gaggagtcta
gtgtgatatc aaaatgaaag agtgctggag cttgatcccc 9240ttcttgcttt ccaggatccc
tgcagtgatc agttcccaca ccctggttta ttcatgtaaa 9300gcacacttat ttttttcagc
agctactctt tactgggctc cattctaagt tcaaatcatt 9360ctatttgagt aagatagaga
gggtcccgac tctcatggaa gttacacaag agtagaggag 9420acagacacta acccaataag
catttaacaa agaagaaaat gttagagaga catagtgcac 9480tgaagaaaag acatcaggtt
tgtgaaaaag agagacatgg attcacttac tttggttcat 9540atgcttaggc agctataact
gagaaagtga cattcagctg agacaacaaa ataaatagac 9600agtcgtgaag atctaaagga
cgaaagttcc agggagaatg aatggggggg aagctctggt 9660gtgggaaatt atgtggaagg
acagaaagaa ggctagaggg actgaactat agcaagcaag 9720gaaatggaga ggcagaagat
gaggtaggac acagagagga agtcaggagc ctcatcatat 9780tagactctga tggccatggt
aaaaaaattg aattttattt tatttttatt tattttttga 9840gacggagatt tgttcttgtt
gcccaggctg gagtgcaatg gcgcgatctc gactcactgc 9900aacctctgcc tcctgggttc
aagtgattct cctgcctcag cttcccaagt agctgggatt 9960acaggtgcct gcgaccatac
tcggcttatt tttttgtatt tttagtagag acagggtatc 10020accatgttgg ccaggctggt
ctcaaactcc tgacctcaga taatctgcct ggcttcccaa 10080agtgctgaga ttacaggcgt
gagccaccat gcccaacctg aattttattt gaatagatat 10140gagaagctac tgtatggtta
caaggacagt caatttatat tcgatttttt ttttttgaga 10200cagagtcttg ctctgttgcc
caggctagat tgcagtggta caatctcagc tcactgcaac 10260ctctgcctcc tgggttccag
caattctcct gcctcagcct cccaagtagc tgagaccaca 10320ggtacatgcc actacacctg
gctaattttt tgtattttta gtagagatgg ggtttcaccg 10380tgttagccag gatggtcttg
atctcctgac ctcgtgatcc actcccctcg gcctcccaaa 10440gtgctgggat tacaggtgtg
agccaccacg cccggcctat attcaattat taaaattaat 10500tctagctact ctgtggggat
tggattgttg ggtttcacaa gtggtcagga agactattta 10560ggatcacagc agggaattct
ccagggaaaa caggcttgtg gcttcataga gtgcattagt 10620gataaagaca gtgaaaacga
caaagtggac agactaggca tgtatttttg cttagcttgt 10680taatggatta ctctaaaggg
ggtagaaaaa tcaagcttat tcctaaggat tttgttttga 10740caaataagtg gatggtggtg
tttattgaga taggaaaaac tgtgggagga aatgatttga 10800agtgggtggt tggaaataaa
agttttgttt aaatttgaga tgatttattg acatttatgt 10860ggagcaatcc gaaggtcaat
ggcatttaag agactcatgg tgaggtgagg ccagggcttc 10920aggtatttat gttggcggca
tcagtacgtg taatgtgtta aattccaggg agtggaagag 10980gatacatagg gagatggatt
gtgtggagaa aaaagaagag ggtacaggcc agcaaagggg 11040gctgagacag agcccaggga
tgctggagaa aacccaagag aacataatgg gtgtaagtca 11100tggaaaatag attattttca
aggagaaggg agaggtcaat tgtggtgagt accactaaga 11160ggagggggaa gtgagaacgt
gacagagaag caagtgctgg gtttgctgga gttgatattt 11220gcagtcaatg gagtatccag
ggaggaaact ggattggacc atttgaagag caagtagaag 11280tgaggacgag gttaagggtg
actattttaa gtagagagct tcagggaagg actgtgctct 11340gggttcaggg agcctgctgg
atctaaagga aaagggctga agaggctgaa gagaaggagg 11400aggacctgtg aaccagagat
actgagttat tattagcaag gaaatactag agggtccctg 11460tgtgcagtgc tgactgctca
tgcaaaaggt cacacagaca atatttcaca cagccagtat 11520ttattagtga catagaatat
gccagttatt actctaggtc atgagaatag agtgataaat 11580aaaatgaatc tggtcgccat
cggtatatgc catgtaacat tttgcagtga ctgtgtacca 11640ggcctatgaa tttcagtatg
caatttcaat aacgatcctg ttgtatctgt ggtgtttaaa 11700aacatataca tctctggaat
ctaaaattga gaggatataa gtaaaaccca gtattagaaa 11760tttagtgctg gaaatcagac
tgcagtttaa atctgagcat atagaaagtc cctttcttct 11820atgtcagcag atgccttttg
tgtgaggttt aggtatacta cattattaga cataaaccag 11880tgattctgcc ctatgttttc
agaatgacaa ttctttatga aactaataga agaacagaag 11940acaattgcaa aatcatgatg
aagatgctag tggctttaga accaaggaat acaaaaaata 12000atgtgagctg cagttatagg
gattataaaa gttaaaatgg gaatgcattt gagtgtttat 12060tatgtgatca gtgctaataa
gagtcatcat ttaattttac acttaacaat aatcctgtga 12120ggattaagct attattaaat
gcatttgata gattacaaaa aggcttaccg ttggtaaaaa 12180ttgacccaag gggaagaggt
cacattttta ttcagatttt ctgattctag agtttgagag 12240tctgtccatc attagtgagt
agtgacaata ctgtgtctaa attatcgaca gaatttctga 12300tattcatatg tactatgttg
tttcttagag tgtgggcaga gattcagggc tgctagttcc 12360aatgtatagg agaaactttc
attcattgtg catttatcat tttaaaagtt ctaggctggg 12420tgcggtggct catgcctgta
atcccagcac tttgggaggc caaggcgggc agatcacgag 12480gtcaggagat gaagaccatc
ctggctaaca tggtgaaacc tcgtctctac taaaaataca 12540aaaaattagc tgggcgtggt
ggtgtgcacc tgtagtccca gctacttggg aggctgaggc 12600aggagaatgg catgaacctg
ggaggcggag cttgcagtga gctgagatcg tgccactgca 12660ctccagctcc accctgggca
aaagagcgaa actccgtctc aaaaaaaaaa aaaagttcta 12720tatgtctgtc atggcatatg
ttgaagaaca caaggaagta ttaaatcact ccttctgagg 12780tttgtctagc aagttgggct
aggattgcca aataaaatac aggtttctag ttaaatctga 12840atttcagata cacaactata
atttactgaa aatccaaatg taacttggca tcctctgatt 12900ttatttgcca aatctgtcaa
ccctacatga gacacatgag catggattac ggtgttaccc 12960atggaagcca cagccacagt
gacagcgact tcacacatgt ttatttttta actttctctc 13020tgtaaagaaa gtgcttagat
aatttaggga taaaaagata gacattgttt gatccaggat 13080gcactcctct ctgccatcgt
ttctaaaggg caaagagaga tttccacagg tcttactcac 13140agtctgactc acagtctggg
gacctgctca tgctttgaaa ctgtctgtat gagaatgtca 13200ttttcttggt ttctcccttt
ctgaggggac ttgactacaa aactgagagt tctacctctg 13260gccaaggctg gaaatttgat
gcctgctagt attgttggga atgggagact gaaataaatg 13320agttagttgg ggcattaaac
aggaataaaa tagctgtggt tgtgattcat tactacaatt 13380agtggactag tggcagagaa
attaagaaag aagatgatgt gagagataaa ttatatgatt 13440tggtaaggca agggaatcag
taaatcttgg ttctgaacaa gttcattttc tggaaagata 13500gcactgtact gggaccagaa
ttctacaaaa catccgtttt atgtaagacc aagattttca 13560acaaatattt ttcaatgcag
ttctcagctg ctccataact aatagtgact tattcaacac 13620agatattttc agatggttca
cacccatgtt tcttacccag ggacagttca ccacccctcc 13680ccttccctcc catcactctt
gaggaacatg tggcaatgtt agaataattt ttggttgtca 13740caacaggggt ttcttctgat
atttaatgag cagaagccag ggacactgct agagaaccca 13800caatgttcag aatagactcc
atcaccaacc aagatttatc tcgtccaaaa tgtcaatagt 13860gctgaggctg gaagcattgg
ttcacactgt gctctttctg aaaaatgtag actcgctttt 13920tttttttttt tttttgagat
ggggtcttgc tctgtcgccc agactggagt gcagtggctc 13980catctcagct cactacaacc
tctgcctccc aggttcaagc gattctcctg tctcagcctc 14040cccagtagct gggattacag
gtgcaccctg ccatgcccgg ctaatttttt gtattttagt 14100agagatgggg tttcaccatg
ttgcccaggc tggtctcgaa ctcctgagct caggcaatcc 14160acccgctttg gtctcccaaa
gtgctaggat tacacgcatg agccaccgcg cccggcctag 14220actcacatct tttatacact
tactgcccaa ttcagttctt tatggtttat ttttgcttgt 14280ttcattataa aaaactagac
agttgcataa attcaaccac ttacttgttg aatccattta 14340gtcaatgcaa gctcaacatt
ttcatattta ttttttgcct tatgcaatat tgttcaacat 14400tttcataagt tgttggtcag
cactatctct attaactttc aacagtttgc ccttctaagt 14460cacaaatagt gatgctgctg
caattatttt tcactaacat gcctcagatt tctgtagtga 14520ttctacattt gatattattc
acaatgtaaa atgcttctat ttattcattt cacttttacc 14580cacaggatta tttttaagtt
atttttgtca ttttcacact tcaaccaaac ataaagacaa 14640aaacatcaaa aatatgtaca
tagtgttata cataggtgta tatttacaca catatatgca 14700catatgttta tatgtattga
aactacagaa gcacatgtca ccaataagag ctctgagaca 14760cctttgacca cttaccctta
tcagatgaga tttgccaaat gagttttggg aacaaatttc 14820ttttaactga atttctgagc
tttgtggatt tagaaatgca actgaaagtt tgtggacatt 14880tacgaggatc atagttttat
tctccttaaa actcttcaat actttcccat tgtctttagt 14940aaatccaaaa tcctaacacc
actcacgagg cttttcaaca cctggcttct tgtgatttct 15000ccaatctaac cttttaccct
ccttcccctc agcctctctg ctttagtgaa ctttgttcta 15060gttttttgaa gttcatcatc
aattcaagct tttgtacatg ggatttccta aacctgaaat 15120gtgcctccgg ttttgtccaa
acagacacac aggctccact ctgccccctg gctcacacct 15180gcttaacttg ttaagtcaca
tctgtaactg tcactcttct ctggcaccct aaaggaattg 15240agatcatcct attattctct
gttctagaac tccacacttc tgaaatttct cattcctgtc 15300taagctcttg tgtgtttggt
ttttggccat cactttcact gctcttaaag ctcccccagc 15360ggagtggaga ggtctgtttt
cccgtgtttg gattcctaga ggcagcgcag gcctggcaca 15420aggtcatcac taaggaagtg
ttcacaggat gaaagcggtg cgtgctgttt aaggaaaggg 15480taaagccttt aaatggtaaa
gggttgagag aaggagcaaa gtgcctttgg ggtggaggct 15540cccaggagga ggcggcgcgg
gctgcggtgc tggacggatc ctcctccagc tcctgcctgg 15600aggtctccag aacaggctgg
aggcagggag ggggtcccaa aagccttggg atcagaggta 15660gtttttccac ctggtccccc
agacccccgt ccgcctcaga aagacagagg atgagcccct 15720gggctgcgtg ttgtcggggt
tgcgggtggg gccagatagt gtcttccccg gaggccgctt 15780ctgtaaccgg atcgttcttg
tccccccagc acgtttcttg gagcaggtta aacatgagtg 15840tcatttcttc aacgggacgg
agcgggtgcg gttcctggac agatacttct atcaccaaga 15900ggagtacgtg cgcttcgaca
gcgacgtggg ggagtaccgg gcggtgacgg agctggggcg 15960gcctgatgcc gagtactgga
acagccagaa ggacctcctg gagcagaagc gggccgcggt 16020ggacacctac tgcagacaca
actacggggt tggtgagagc ttcacagtgc agcggcgagg 16080tgagcgcggc gcggggcggg
gcctgagtcc ctgtgagcgg agaatctgag tgtgtgtgtg 16140tgtgtgtgtg tgtgtgtgtg
tgtgtgtgtg tgtgagagag agagagagag agagagagag 16200agagagcgcc atctgtgagc
atttagaatc ctctctatcc tgagcaagga gttctgcggg 16260cacaggtgtg tgtgtagagt
gtggatttgt ccgtgtctgt gaggctgttg tgggagggga 16320ggcaggaggg ggctgcttct
tattcttgga gacttctgtg gggaggtgac aagggaggtg 16380ggtgctgggg gctggagaga
gaggcgacct tgattgtctc gggtccttag agatgcaagg 16440aagggaaatg tatggggtgt
gtggttgggg tgaaggttta ggggaggaga gctgaggggt 16500aaggaaggtt tgggataatg
tgaagaggcc agtttcagac tgtccctggc acacaccctt 16560catgtaatct ctgaaataaa
agtgtgtgct gtttgtttgt aaaagcatta gattaacttc 16620taggggaatt gagtagacct
ctgaggcacc tctgaagctt ctttaggtat aaatttcttg 16680ctagtttttt gttttcttag
tgttatattt ttacatagtt gaaatgactg tgaaactaac 16740tttttgaatt aaagtttgaa
aacactgtta ctattttatt ataatgctaa taatttcata 16800gttacttttt aaatatataa
tagttgtgac acaaattacc tcactttctt tgtttttttt 16860tttcttacac tttaagtttt
agggtacatg tgcacaacgt gcaggtttgt tacatatgta 16920tacatgtgcc atgttggtgt
gctgcaccca ttaactcgtc atttaacatt aggtatatct 16980cctaatgcta tccctcccca
cccccccacc ccacaacagg ccccagtgtg tgatgttccc 17040cttcctgtgt ccatgtgttc
tcactgttca attcccacct atgagtgaga acatgcggtg 17100ttcggttttt tgtccttgcc
atagtttgct gagaatgatg gtttccagct tcatccatgt 17160ccctacaaag gacatgaact
cattcttttt tgtggctgca tagtattcca tagtgtatat 17220gtgccacatt ttcttaatcc
agtctatcat tgttggacat ttgggttggt tccaagtctt 17280tgctattgtg aatagtgccg
caataaacat acatgtgcat atgtctttat agcagcatga 17340tttataatcc ttgggttata
tacccagtaa tgggatggct gggtcaaatg gtatttctag 17400ttctagatcc ctgaggaatc
gccacactga cttccacaat ggttgaacta gtttagagtc 17460ccaccaacag ggtaaaagtg
ttcctatttc tccacatcct ctccagcacc tgttgcttcc 17520tgacttttta atgatcgcca
ttctaactgg tgtgagatgg tatctcattg tggttttgat 17580ttgcaattct ctgatggcca
gtgatgatga gcattttttc atgtgtcttt tggctgcata 17640aatgtcttct tttgagaagt
gtctgttcat gtcctttgcc cactttttga tggggtattt 17700tgtttttttc ttgtaaattt
gtttgagttc attgcagatt ctggatatta gccctttgtc 17760atatgagtag attgcaaaaa
ttttctccca ttctgtaggt tgcctcttca ctctgatggt 17820agtttctttt gctgtgcaga
agctctttag tttaattaga tcccatttgt ccattttggc 17880ttttgttgcc attgcttttg
gtgttttaga catgaagttc ttgcccatgc ctatgtcctg 17940aatggtattg cctaggtttt
cttctagggt ttttatggtt tcaggtctaa catttaagtc 18000tttaatccat cttgaattaa
tttttgtata agcaaattac gtcactttcc ccattgatga 18060cctttattat gacattcacc
aatagttgaa aatgtatgtt tctggttaat ttttgattta 18120tatttttttg atttgtaatt
attttgaatt attttgacct atttattggc cagttgtaat 18180tactgctctg ctctacgaat
tacctgttgt atttggtagg taatggacaa tgatctattg 18240tctcttatct ttagggctta
gtatttttct cagtgacttt gtgggtttgt tgtactgtaa 18300gattattaac actttattga
tatttgattc agtattttct ccagtttgtg gtatgtatat 18360tttgaaaatt cttttccatg
ttaagaattt gaacattttt atttaataaa atatattgca 18420aaatgttaat taatgattca
caaactagct caagtctacc attttgtggt attgatgtct 18480ccaggtttct ccttccttct
taaaaaaaaa tgtatttatt gagagtatgc tagtgtcagg 18540gatttcccta ggcataagca
ctccaagtaa tgagtcccag acactgcctt gatccaaatg 18600tcattctgga aagaaaaatc
attttacagt gataagccta ataatagtta tacttgtttt 18660gcctgggaga tgcattgatc
agctaaatgt aaatataaga actttcaaaa ctaaaatgac 18720gttccttaat ctttctctct
gctttaggaa tcatgctttc ttaggaactt aaagatttgg 18780agaatcattt ctgtctgtcc
caccttccca ggagcataac catttctgtg gtgttctaag 18840gtgtgagtgc atggcagtag
tattcctaaa aatccatatt cagtttcctc atgtgcccta 18900ctccgtccct ttctctatcc
acattgcttt aaatcatatt tttctctcaa ggtgtacaag 18960gatgataaat aggtgccaag
tggagaaccc aagtgtgacg agccctctca cagtagaatg 19020gagtgagaag ctttctgacc
tcataaattg aaggctatcg taattcattc ttttatatat 19080tttacttgca ttaatcctca
tataacctca agaggtaaat taatataatt atcctccatt 19140attggagaga aagttgagac
acaaaagaat caaaaactct tccaggatca accagtaaaa 19200ggcagacctt ggatttgaac
caggcaacct ggctcagaag tcagttttaa ttaccacact 19260ctgtactttc aaagatttgt
aaacgctttg acaatgcatg tcaatttcaa gctatgaaga 19320gccaaacata atttttcaca
atatctctca aatctaatgg gtccccacta taaagattaa 19380attccaggct gatgacactg
tgaggccaca tggccagctg tgctggaggc ctgctcaagg 19440ccagagccta ggtttacaga
gaagcagaca aaaagctaaa caaggagact tactctgtct 19500gcatgactta ttccctctac
cttgttttct cctagtctat cctgaggtga ctgtgtatcc 19560tgcaaagacc cagcccctgc
agcaccacaa cctcctggtc tgctctgtga atggtttcta 19620tccaggcagc attgaagtca
ggtggttccg gaacggccag gaagagaaga ctggggtggt 19680gtccacaggc ctgatccaga
atggagactg gaccttccag accctggtga tgctggaaac 19740agttcctcgg agtggagagg
tttacacctg ccaagtggag cacccaagcc tgacgagccc 19800tctcacagtg gaatggagtg
agcagctttc tgacttcata aatttctcac ccaccaagac 19860gcgaacttta ctaatccctg
agtatcaggc ttctcctatc ccacatccta ttttcatttg 19920ctccacgttc tcatctccat
cagcacaggt cactgggggg tagccctgta atactttcta 19980gaaacacctg taccccctgg
ggaagcagtc atgcctgcca ggcaggagag gctgtccctc 20040ttttgaacct ccccatgatg
tcacaagtcg gggtcacctg ctgtctgtgg gctccaggcc 20100ctgcctctgg gtctgagact
gagtttctgg tactgttgct ctgagtcgtt tgttgtaatc 20160tgagaagagg agaagtatag
ggaccttcct gacatgaggg gagtccaatc tcagctccgc 20220cttttattag atctgtcact
ctaggcaact acttaacctc attgggtctc aggctttctg 20280ttcatcagat gttgaagtcc
tgtcttacat caaggctgta atatttgaat gagtttgatg 20340actgaacctt gtaactgttc
agtgtgattt gaaaaccttt ctcaagaaat ggtcagttat 20400tttagttctt gcagagcagc
cttctttctc attttcaaag ctctgaatct caaggtgtca 20460attaaagagg ttccatttgg
gataaaaatc actaaacctg gcttcctctc tcaggagcac 20520ggtctgaatc tgcacagagc
aagatgctga gtggagtcgg gggcttcgtg ctgggcctgc 20580tcttccttgg ggccgggctg
ttcatctact tcaggaatca gaaaggtgag gagcctttgg 20640tagctggctg tctccatacg
cttttctgga ggaggaacta tggctttgct gaagttggtt 20700ctcagcatat gaatggccct
ggataaagcc tctctactcc caaatgacct ccaatgttct 20760gcaaatccag aaatcatcag
tgcatggttg ctatgtcaaa gcataatagc ttgtggccta 20820cagagataac agaaagatta
acaggtatag gtgctttggt tgagatcgtg gagcaaatta 20880aggaagagca actaaagcta
atacaattac actggatcct gtgacagaca cttcacactt 20940catgggtcac atggtctgtt
tctgctcctc tctgccctgg ctggtgtggg ttgtggtgtc 21000agagaactct caggtgggag
atctggagct gggacattgt gttggaggac agatttgctt 21060ccatatcctt taagtgtata
tcttctcttt ttcctaggac actctggact tcagccaaca 21120ggtaatacct tttcatcctc
tttaagaaac agatttggag gccaggcgca gtggctcacg 21180cctgtaatcc cagcactttg
ggaggccgag gcgggcgaat catgaggtca ggagttcgag 21240accagcctga ccaacgtggt
gaaaccccgt ctctactaaa aatacaaaaa aaaatcagtc 21300gggcgtggtg gtgtgcgcct
gtaatcccag ctactcagga ggccaaggca ggagaatcgc 21360tggaacccag gaggcagagg
ttgcagtgag ccgagattgg gccactgcac tccagcctag 21420gtgacagagt gagaccccat
ctcaaaaaaa caaaaaaaag aaagaaagaa acagatttcc 21480tttccctaga atgatggtag
aggtaataag gcatgagaca gaagtaatag caaagacatt 21540ggatccaaat ttctgatcag
gcaatttaca ccagaactcc tcctctccac ttagaaaagg 21600cctgtgctct gcaggagtat
tgactcatgg agacttcaga acttgttttt cttcttcctg 21660cagtgctctc atctgagtcc
ttgaaagagg gcaaaataaa ctgttagtag agccaggtct 21720gaaaacaaca ctttcttgcg
tctctgcagg attcctgagc tgaagtgaag atgaccacat 21780tcaaggaaga accttctgcc
ccagctttgc aggatgaaac acttccccgc ttggctctca 21840ttcttccaca agagagacct
ttctccggac ctggttgcta ctggttcagc agctctgcag 21900aaaatgtcct cccttgtggc
tgcctcagct cgtacctttg gcctgaagtc ccagcattaa 21960tggcagcccc tcatcttcca
agttttgtgc tcccctttac ctaatgcttc ctgcctccca 22020tgcatctgta ctcctgctgt
gccacaaaca cattacatta ttaaatgttt ctcaaacatg 22080gagttaaaaa tcgtctggtc
atttggcccc aaggacaaaa aataaaaaga aaagaaaaag 22140tgaagattat ttcccgatag
aataatggtt ttcatggata tgtcataagt atgtgagata 22200gtgcatatgt taaataggtt
gatttagaca ttttacacta caggcatata tcaaaacttc 22260atgctgtatg acataaatgc
acaattttta cttgtcaatt taaaaagtaa acctaacgtt 22320taaaaaggtg atgcataaaa
actgagaaca gactataaga actgaaacaa acttggcaaa 22380catgagatga taaaccagct
agcaagtcaa tcagaactct ttctcaaccc cgtctacaat 22440attgtgtgtc tataactgta
aattagtata tagtttttca ttcca 22485415PRTArtificial
SequenceDescription of Artificial Sequence Synthetic Gly-Ser Linker
4Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser1
5 10 15531DNAArtificial
SequenceDescription of Artificial Sequence Synthetic Primer
5cattgagaca gagcgcctgg cacagaagca g
31636DNAArtificial SequenceDescription of Artificial Sequence Synthetic
Primer 6ggatgacgtg agtaaacctg aatctttgga gtacgc
36724DNAArtificial SequenceDescription of Artificial Sequence
Synthetic Primer 7ttcttcaacg ggacggagcg ggtg
24824DNAArtificial SequenceDescription of Artificial
Sequence Synthetic Primer 8ctgcactgtg aagctctcac caac
24920DNAArtificial SequenceDescription of
Artificial Sequence Synthetic Primer 9ctccaagccc tctcccagag
201020DNAArtificial
SequenceDescription of Artificial Sequence Synthetic Primer
10atgtgcctta cagaggcccc
201110PRTArtificial SequenceDescription of Artificial Sequence Synthetic
Peptide 11Gly Leu Ser Pro Thr Val Trp Leu Ser Val1 5
10129PRTArtificial SequenceDescription of Artificial
Sequence Synthetic Peptide 12Trp Leu Ser Leu Leu Val Pro Phe Val1
5138PRTArtificial SequenceDescription of Artificial Sequence
Synthetic Peptide 13Ile Leu Ser Pro Phe Leu Pro Leu1
51416PRTArtificial SequenceDescription of Artificial Sequence Synthetic
Peptide 14Gln Ala Gly Phe Phe Leu Leu Thr Arg Ile Leu Thr Ile Pro Gln
Ser1 5 10
151513PRTArtificial SequenceDescription of Artificial Sequence Synthetic
Peptide 15Arg Gly Leu Tyr Phe Pro Ala Gly Gly Ser Ser Ser Gly1
5 101626PRTArtificial SequenceDescription of
Artificial Sequence Synthetic Peptide 16Met Gln Trp Asn Ser Thr Thr
Phe His Gln Thr Leu Gln Asp Pro Arg1 5 10
15Val Arg Gly Leu Tyr Phe Pro Ala Gly Gly 20
251715PRTArtificial SequenceDescription of Artificial
Sequence Synthetic Peptide 17Thr Ser Leu Asn Phe Leu Gly Gly Thr Thr
Val Cys Leu Gly Gln1 5 10
151821PRTArtificial SequenceDescription of Artificial Sequence Synthetic
Peptide 18Ser Leu Leu Val Pro Phe Val Gln Trp Phe Val Gly Leu Ser
Pro Thr1 5 10 15Val Trp
Leu Ser Val 20
User Contributions:
Comment about this patent or add new information about this topic:
People who visited this patent also read: | |
Patent application number | Title |
---|---|
20110065973 | DOUBLE TRANSITION JOINT FOR THE JOINING OF CERAMICS TO METALS |
20110065972 | Alkylaromatic Production Process |
20110065971 | Process for Cooling the Stream Leaving an Ethylbenzene Dehydrogenation Reactor |
20110065970 | DIMERIZATION PROCESS |
20110065969 | METHOD AND SYSTEM FOR OXIDATIVELY INCREASING CETANE NUMBER OF HYDROCARBON FUEL |