Patent application title: MICROGININ PRODUCING PROTEINS AND NUCLEIC ACIDS ENCODING A MICROGININ GENE CLUSTER AS WELL AS METHODS FOR CREATING NOVEL MICROGININS
Inventors:
Dan Kramer (Berlin, DE)
Dan Kramer (Berlin, DE)
Assignees:
CYANO BIOTECH GMBH
HUMBOLDT-UNIVERSITAET ZU BERLIN
IPC8 Class: AC07H2100FI
USPC Class:
536 231
Class name: Nitrogen containing n-glycosides, polymers thereof, metal derivatives (e.g., nucleic acids, oligonucleotides, etc.) dna or rna fragments or modified forms thereof (e.g., genes, etc.)
Publication date: 2011-02-10
Patent application number: 20110034680
Claims:
1-19. (canceled)
20. A nucleic acid encoding a peptide spacer sequence (SP), whereina. the peptide sequence comprises at least 4 glycine amino acids per single repeat unit (SRU), orb. at least five proline and/or leucine amino acids per single repeat unit (SRU),c. a SRU within the SP is between 7 and 15 amino acids in length, andd. the SP comprises between 2 and 10 SRUs.
21. The nucleic acid according to claim 20, encoding a peptide SRU with a sequence as shown in SEQ ID NO. 20 or SEQ ID NO. 21.
22. The nucleic acid according to claim 21, with a sequence as shown in SEQ ID NO. 43 or SEQ ID NO. 44.
Description:
TECHNICAL FIELD
[0001]The present invention relates to the fields of chemistry, biology, biochemistry, molecular biology. The invention provides for novel nucleic acid molecules enabling the synthesis of microginin and microginin analogues. Microginin finds an application in therapeutics. The invention thus extends into the field of mammalian therapeutics and drug development.
INTRODUCTION
Cyanobacteria and Microginin
[0002]Cyanbacteria are gram-negative bacteria. Due to their ability to perform photosynthesis they were long thought to belong to the plant kingdom and were formerly classified as blue-green algae. Cyanbacteria have adapted to almost all ecological niches. Most of strains known up to date are found in fresh water lakes and oceans. In the last few years cyanobacteria have been recognised as a source for biologically active natural compounds.
[0003]Cyanobacteria are a group of microscopic organisms somewhere "in between" algae and bacteria and they are found in freshwater and marine areas throughout the world. Scientifically, they are considered to be bacteria, but because they can perform photosynthesis, they also used to be classified as "blue-green algae".
[0004]Cyanobacterial peptides (cyanopeptides) are among the most ubiquitously found potentially hazardous natural products in surface waters used by humans. Though these substances are natural in origin, eutrophication (i.e. excessive loading with fertilising nutrients) has caused massive cyanobacterial proliferation throughout Europe. Thus, cyanopeptides now occur with unnatural frequency and concentration.
[0005]A large group among the diverse cyanopeptides are the oligopeptides (peptides with a molecular weight of <2KD). But while specific cyanopeptides--e.g. microcystins and nodularins--are well studied and recognised as being causative for many animal poisonings and human illness, a substantial and increasing body of evidence points toward a decisive role of other potentially toxic cyanopeptides in the causation of both acute and chronic human illnesses.
[0006]Freshwater and marine cyanobacteria are known to produce a variety of bioactive compounds, among them potent hepatotoxins and neurotoxins. Many of the toxic species of cyanobacteria tend to massive proliferation in eutrophicated water bodies and thus have been the cause for considerable hazards for animal and human health. One of the most widespread bloom-forming cyanobacteria is the genus Microcystis, a well-known producer of the hepatotoxic peptide microcystin. Microcystins are a group of closely related cyclic heptapeptides sharing the common structure. So far, more than 80 derivatives of microcystins have been identified, varying largely by the degree of methylation, peptide sequence, and toxicity.
[0007]The traditional botanical code describes the genus Microcystis as a coccal, unicellular cyanobacterium that grows as mucilaginous colonies of irregularly arranged cells (under natural conditions, while strain cultures usually grow as single cells). According to this tradition, morphological criteria such as size of the individual cells, colony morphology, and mucilage characteristics are used for species delimitation within Microcystis (i.e., morphospecies). Microcystin-producing strains as well as strains that do not synthesize microcystin have been reported for all species within the genus Microcystis. However, whereas most field samples and strains of Microcystis aeruginosa and Microcystis viridis studied to date were found to contain microcystins, strains of M. wesenbergii, M. novaceckii, and M. ichthyoblabe have only sporadically been reported to contain microcystins.
[0008]Beside microcystins, various other linear and cyclic oligopeptides such as anabaenopeptins, aeruginosins, microginins and cyanopeptolins are found within the genus Microcystis (Namikoshi, M., and K. L. Rinehart. 1996. Bioactive compounds produced by cyanobacteria. J. Ind. Microbiol. 17:373-384.).
[0009]Similar to microcystins, these peptides possess unusual amino acids like 3-amino-6-hydroxy-2-piperidone (Ahp) in cyanopeptolins, 2-carboxy-6-hydroxyoctahydroindol (Choi) in aeruginosin-type molecules or 3-amino-2 hydroxy-decanoic acid (Ahda) in microginins and numerous structural variants also exist within these groups. These peptides show diverse bioactivities, frequently protease inhibition (Namikoshi, M., and K. L. Rinehart. 1996. Bioactive compounds produced by cyanobacteria. J. Ind. Microbiol. 17:373-384).
[0010]The occurrence of both microcystins and other oligopeptides such as anabaenopeptins, microginins and cyanopeptolins in natural Microcystis populations was recently demonstrated. It is well known that the species and genotype composition in natural Microcystis populations is heterogeneous, and both microcystin- and non-microcystin-containing strains have been isolated from the same sample. Just as strains producing microginin and strains not producing microginin have been found. These results suggest a considerable diversity of genotypes with different oligopeptide patterns in natural Microcystis populations.
[0011]By typing single Microcystis colonies, it was possible in 1999 to show for the first time that the actual peptide diversity in a natural population of this genus is extremely high. Many of the substances detected belong to well-known groups of cyanobacterial peptides like microcystins, anabaenopeptins, microginins, cyanopeptolins, and aeruginosins, of which many have been discovered in Microcystis spp. In addition, numerous unknown components have been detected in such colonies. However, the origin of these unknown components has yet to be investigated, since besides the observed epiphytic cyanobacteria and algae, heterotrophic bacteria are also known to be present in Microcystis colonies. Chemical screening of cyanobacterial samples (both from field samples and from culture strains) has demonstrated a wide variety of substances: e.g. an almost monospecific bloom of Planktothrix agardhii contained as many as 255 different substances, most of which were oligopeptides.
[0012]Thus, it may be concluded, that the situation with respect to the assignment of the capability of microginin production to certain species and strains, i.e. also a true understanding of the genotypes and species involved as well as their evolution has to date, not been possible. In fact PEPCY a research project supported by the European Commission concluded that present information shows that one species or "morphotype" (i.e. individuals with the same morphological characteristics) may comprise a range of genotypes that encode for different "chemotypes" (i.e. morphologically indistinguishable individuals containing different cyanopeptides).
Ace Inhibitors and Microginin
[0013]ACE catalyses the conversion of angiotensin I into angiotensin II within the mammalian renin-angiotensin system, leading to arterial stenosis, which in turn causes an increase of blood pressure. ACE inhibitors counteract this process and therefore play a role in human medicine as blood pressure lowering agents. Microginin is an important drug candidate for ACE inhibition. So far only 30 structural variants of microginin are known, making clinical development difficult.
[0014]Microginins are characterized by a decanoic acid derivate, 3-amino-2-hydroxy-decanoic acid (Ahda) at the N-terminus and a predominance of two tyrosine units at the C-terminus. They vary in length from 4 to 6 amino acids with the variability occurring at the C-terminal end (Microginins, zinc metalloprotease inhibitors from the cyanobacterium Microcystis aeruginosa, 2000, Tetrahedron 56:8643-8656). In the past it has only been possible by means of synthesis of 3-amino-2-hydroxy-decanoic acid to chemically generate microginin variants (J Org. Chem. 1999 Apr. 16; 64(8):2852-2859. Acylnitrene Route to Vicinal Amino Alcohols. Application to the Synthesis of (-)-Bestatin and Analogues. Bergmeier S C, Stanchina D M.) Alternatively cyanobacterial strains were screened for microginin activity, which was tedious and time consuming. It has so far not been possible to screen for strains efficiently due to the lack of species understanding and a methodology of efficiently distinguishing microginin producers from non-producers (see above). Further it was not possible to easily and efficiently alter and thus develop microginins in order to provide for a variety of lead compounds from which better ACE-inhibitors may be developed.
BRIEF DESCRIPTION OF THE INVENTION
[0015]From Microcystis aeruginosa a cluster of genes, spanning about 30 kbps has been isolated encoding a hybrid synthetase composed of non-ribosomal peptide synthetases (NRPS), polyketide synthases (PKS) and tailoring enzyme which as the inventors show is responsible for the biosynthesis of microginin. The strain from which this nucleic acid was first isolated by G. C. Kurzinger from Lake Pehlitz 1977].
[0016]The inventors provide for a biological system enabling not only the production of micoginins, the heterologous expression of microginin, but also a system for modifying microginin and thus developing so far unknown variants of microginin. The invention further provides for nucleic acids and methods for identifying strains which have the ability to produce microginin.
[0017]In particular the invention relates to one or more nucleic acids encoding a microginin synthetase enzyme complex with the following activities: an adenylation domain (A*) wherein, the adenylation domain comprises a peptide sequence according to SEQ ID NO. 1, an acyl carrier protein (ACP), an elongation module (EM) of polyketide synthases (PKS) comprising the following activities: (i) ketoacylsynthase (KS), (ii) acyl transferase (AT) (iii) acyl carrier protein (ACP2), an aminotransferase (AMT), three to five elongation modules (EM) of non-ribosomal peptide synthetases (NRPS) comprising the following activities: (i) condensation domain (C), (ii) adenylation domain (A), (iii) thiolation domain (T) and a thioesterase (TE).
DETAILED DESCRIPTION OF THE INVENTION
[0018]As outlined above the invention in particular relates to one or more nucleic acids encoding a microginin synthetase enzyme complex with the following activities: an adenylation domain (A*) wherein, the adenylation domain comprises a peptide sequence according to SEQ ID NO. 1, an acyl carrier protein (ACP), an elongation module (EM) of polyketide synthases (PKS) comprising the following activities: (i) ketoacylsynthase (KS), (ii) acyl transferase (AT) (iii) acyl carrier protein (ACP 2), an aminotransferase (AMT), three to five elongation modules (EM) of non-ribosomal peptide synthetases (NRPS) comprising the following activities: (i) condensation domain (C), (ii) adenylation domain (A), (iii) thiolation domain (T) and a thioesterase (TE).
[0019]The inventors have found that microginin is the product of non-ribosomal synthesis. It is important to understand that microginin as previously identified in nature may also in part have been the product of ribosomal synthesis and further processed via various enzymatic reactions.
[0020]It is important to note that the nucleic acid claimed herein, i.e. a microginin synthetase enzyme complex may also be present in organisms other organisms than Microcystis sp., such as Nostoc, Anabaena, Plankthotrix or Oscillatoria. The term microginin shall thus not limit the invention to such nucleic acids producing synthetase enzyme complexes resulting in peptides officially termed "microginin".
[0021]Herein, an adenylation domain (A*) is understood to activate octanoic acid as an acyl adenylate and an acyl carrier protein (ACP) is understood to bind the octanoic acid adenylate as a thioester.
[0022]An elongation module (EM) of polyketide synthases (PKS) is also known e.g. from the Jamaicamide synthetase gene cluster isolated from Lyngbya majuscula (Chem. Biol. Vol. 11, 2004 pp 817-833. Structure and Biosynthesis of the Jamaicamides, new mixed polyketide-peptide neurotoxin from the marine cyanobacterium Lyngbya majuscula) herein comprises at least the following activities: (i) ketoacylsynthase (KS), (ii) acyl transferase (AT) and (iii) acyl carrier protein (ACP2). The AT is responsible for the recognition of malonyl-CoA, the KS is responsible for the Claisen-type-condensation of the activated octanoic acid adenylate with malonyl-CoA and the ACP2 is responsible for binding of the resulting decanoic acid.
[0023]An aminotransferase (AMT) performs the β-amination of the decanoic acid.
[0024]The nucleic acid according to the invention may have three to five elongation modules (EM) of non-ribosomal peptide synthetases (NRPS) comprising at least the following activities: (i) condensation domain (C), (ii) adenylation domain (A), (iii) thiolation domain (T). The A is responsible for the activation of carboxyl groups of amino acids, the T is responsible for the binding and the transport of the activated intermediate, the C is responsible for the condensation of the activated amino acids with the growing peptide chain.
[0025]Finally the nucleic acid according to the invention shall contain a thioesterase (TE) activity which performs the cleavage of the final product from the synthetase complex.
[0026]One may envision that the nucleic acid according to the invention is present in a vector or a bacterial chromosome, in which case one may envision that the portions designated above while being in one cell need not all, be in, or on, one molecule. It is essential to the invention however, that a cell meant to produce microginin synthetase enzyme complex contains the activities designated above in order to produce an enzyme complex according to the invention which in turn may produce a microginin. Thus, the invention also encompasses derivatives of the nucleic acid molecule as outlined above having the function of a microginin synthetase enzyme complex.
[0027]The molecule is characterized by a special adenylation domain (A*) which is unusual in that it is not similar to known adenlyation domains found in other molecules encoding non-ribosomal enzyme complexes such as the microcystin synthetase gene cluster (Chem. Biol. Vol. 7 2000, pp 753-764: Structural organisation of microcystin synthesis in Microcystis aeruginosa PCC 7806: In integrated peptide-polyketide-synthetase system) Molecules encompassed herein are those which carry this adenylation domain (A*) as depicted in SEQ ID NO. 1 and at least an ACP whereby this ACP may stem from another known non-ribosomal enzyme complex, at least one EM of PKS whereby this EM may stem from another known non-ribosomal enzyme complex comprising at least the following activities: (i) KS, (ii) AT (iii) ACP, an AMT whereby this AMT may stem from another known non-ribosomal enzyme complex three to five EMs comprising at least the following activities: (i) C, (ii) A, (iii) T whereby these EMs may stem from another known non-ribosomal enzyme complex and a TE whereby this TE may stem from another known non-ribosomal enzyme complex. Chimeras whereby parts of the above are on one or more vectors and or integrated in chromosomes are equally encompassed by the invention as long as all the components are in one cell.
[0028]The invention also pertains to isolated nucleic acid molecules encoding a microginin synthetase enzyme complex comprising an adenylation domain which is 85% identical to SEQ ID NO. 1, more preferred 90% identical to SEQ ID NO. 1 most preferred 95% identical to SEQ ID NO. 1. Sequence identity herein is in percent of total sequence of the adenylation domains when aligned with conventional nucleotide alignment software, such as the best fit and or pileup programs of the GCG package
[0029]The invention also pertains to a microginin synthetase enzyme protein complex with the following activities: an adenylation domain (A*) wherein, the adenylation domain comprises a peptide sequence according to SEQ ID NO. 1, an acyl carrier protein (ACP), an elongation module (EM) of polyketide synthases (PKS) comprising the following activities: (i) ketoacylsynthase (KS), (ii) acyl transferase (AT) (iii) acyl carrier protein (ACP 2), an aminotransferase (AMT), three to five elongation modules (EM) of non-ribosomal peptide synthetases (NRPS) comprising the following activities: (i) condensation domain (C), (ii) adenylation domain (A), (iii) thiolation domain (T) and a thioesterase (TE).
[0030]The invention in particular also relates to a nucleic acid molecule encoding an adenylation domain (A*) wherein, the adenylation domain comprises a peptide sequence according to SEQ ID NO. 1.
[0031]The invention in particular also relates to a peptide molecule, an adenylation domain (A*) wherein, the molecule comprises a peptide sequence according to SEQ ID NO. 1.
[0032]The invention in particular also relates to a nucleic acid molecule encoding an adenylation domain (A*) wherein, the molecule comprises a nucleic acid sequence according to SEQ ID NO. 25.
[0033]In a preferred embodiment of the invention the nucleic acid additionally and optionally comprises sequences encoding the following activities or domains: a monooxygenase (MO), an integrated N-methyltransferase domain (MT) within one or more elongation modules (EM) of NRPS, a non-integrated N-methyltrasferase (MT), a modifying activity (MA) wherein, said MA is selected from the group comprising the following activities: halogenase, sulfatase, glycosylase, racemase, O-methyltransferase and C-methyltransferase, two or more peptide repeat spacer sequences (SP) consisting of one or more repeats of being either glycine rich or proline and leucine rich, located adjacently upstream and downstream of the MO and/or another MA.
[0034]Herein MO is an enzyme catalyzing the hydroxylation of the decanoic acid, an integrated N-methyltransferase domain (MT) within one or more elongation modules (EM) of NRPS catalyses the methylation of the amide bond by the respective module and a non-integrated N-methyltrasferase (MT) catalyzes the methylation of an amino group of the microginin.
[0035]The term modifying enzyme stands for numerous enzymes such enzymes may add groups or create bonds, in a preferred embodiment MA is selected from the group comprising the following activities: halogenase, sulfatase, glycosylase, racemase, O-methyltransferase and C-methyltransferase.
[0036]Nucleic acids encoding two or more peptide repeat spacer sequences (SP) consisting of one or more repeats being either glycine rich or proline and leucine rich have astonishingly been found by the inventors to aid in integration of novel MAs into existing microginin synthetase enzyme complexes. By means of placing such SPs adjacently to MAs the inventors are able to create microginin synthetase enzyme complexes (MSEC) comprising activities previously not found in MSECs. This in turn allows for the creation of novel microginins with potentially novel therapeutic properties. Thus the invention relates to nucleic acids encoding two or more peptide repeat spacer sequences (SP) consisting of one or more repeats being either glycine rich or proline and leucine rich may be positioned adjacently to a MA such as but not limited to a halogenase, a sulfatase, a glycosylase, a racemase, an O-methyltransferase or a C-methyltransferase. These SPs aid in ensuring that the "foreign" activity "works" in the enzyme complex. The inventors have found, that this is due to the lack of secondary structures in the SP peptide chains.
[0037]The nucleic acid according to the invention in a preferred embodiment optionally comprises the following sequences, nucleic acid sequences encoding protein sequences as follows:
[0038]An adenylation domain (A*) according to SEQ ID NO. 1, an acyl carrier protein (ACP) according to SEQ ID NO. 2, an elongation module of polyketide synthases responsible for the activation and the condensation of malonyl-Co A: (i) ketoacylsynthase domain (KS) according to SEQ ID NO. 3, (ii) acyl transferase domain (AT) according to SEQ ID NO. 4, an acyl carrier protein domain (ACP 2) according to SEQ ID NO. 5, an aminotransferase (AMT) according to SEQ ID NO. 6, an elongation modules of non-ribosomal peptide synthetases responsible for the activation and condensation of alanin: (i) condensation domain (C) according to SEQ ID NO. 7, (ii) adenylation domain (A) according to SEQ ID NO. 8, (iii) thiolation domains (T) according to SEQ ID NO. 9, an elongation modules of non-ribosomal peptide synthetases responsible for the activation and condensation of leucin: (i) condensation domain (C 2) according to SEQ ID NO. 10, (ii) adenylation domain (A 2) according to SEQ ID NO. 11, (iii) thiolation domain (T 2) according to SEQ ID NO. 12, an elongation modules of non-ribosomal peptide synthetases responsible for the activation and condensation of tyrosine 1: (i) condensation domain (C 3) according to SEQ ID NO. 13, (ii) adenylation domain (A 3) according to SEQ ID NO. 14 (iii) thiolation domain (T 3) according to SEQ ID NO. 15, an elongation modules of non-ribosomal peptide synthetases responsible for the activation and condensation of tyrosine 2: (i) condensation domain (C 4) according to SEQ ID NO. 16, (ii) adenylation domain (A 4) according to SEQ ID NO. 17, (iii) thiolation domain (T 4) according to SEQ ID NO. 18, a thioesterase (TE) according to SEQ ID NO. 19, a monooxygenase (MO) according to SEQ ID NO. 20, two or more peptide repeat spacer sequences (SP1/SP2) according to SEQ ID NO. 21 and 22, an integrated N-methyltransferase domain (MT) within the elongation module (EM) of the NRPS responsible for the activation and condensation of leucin according to SEQ ID 23 and a non-integrated N-methyltrasferase (MT 2) according to SEQ ID NO. 24.
[0039]As outlined above, the minimal requirement according to the invention is a nucleic acid encoding a microginin synthetase enzyme complex with the following activities: an adenylation domain (A*) wherein, the adenylation domain comprises a peptide sequence according to SEQ ID NO. 1, an ACP according to SEQ ID NO. 2, an elongation module (EM) of polyketide synthases (PKS) comprising the following activities: (i) ketoacylsynthase (KS) according to SEQ ID NO. 3, (ii) acyl transferase (AT) according to SEQ ID NO 4, (iii) acyl carrier protein (ACP 2) according to SEQ ID NO. 5, an aminotransferase (AMT) according to SEQ ID NO. 6, three to five elongation modules (EM) of non-ribosomal peptide synthetases (NRPS) comprising the following activities: (i) condensation domain (C) according to SEQ ID NO. 7, (ii) adenylation domain (A) according to SEQ ID NO. 8, (iii) thiolation domain (T) according to SEQ ID NO. 9 and a thioesterase (TE) according to SEQ ID NO. 10. A molecule comprising the above sequences is preferred herein.
[0040]The invention explicitly also relates to analogs hereto, additionally comprising, e.g. other activities and/or spacer regions both transcribed and non-transcribed.
[0041]It is apparent to those skilled in the art, that amino acids may be exchanged maintaining the enzymatic activity required. Thus, the invention also relates to molecules with sequences which are not identical to those outlined above however, altered only in so far as the enzymatic activity desired is retained.
[0042]The nucleic acid according to the invention may contain nucleic acids selected from the group comprising: an adenylation domain (A*) according to SEQ ID NO. 25, an acyl carrier protein (ACP) according to SEQ ID NO. 26, an elongation module of polyketide synthases encoding for the activation and the condensation of malonyl-Co A: (i) ketoacylsynthase domain (KS) according to SEQ ID NO. 27, (ii) acyl transferase domain (AT) according to SEQ ID NO. 28, (iii) acyl carrier protein domain (ACP 2) according to SEQ ID NO. 29, an aminotransferase (AMT) according to SEQ ID NO. 30, an elongation modules of non-ribosomal peptide synthetases encoding for the activation and condensation of alanin: (i) condensation domain (c) according to SEQ ID NO. 31, (ii) adenylation domain (A) according to SEQ ID NO. 32, (iii) thiolation domain (T) according to SEQ ID NO. 33, an elongation modules of non-ribosomal peptide synthetases encoding for the activation and condensation of leucin: (i) condensation domain (C 2) according to SEQ ID NO. 34, (ii) adenylation domain (A 2) according to SEQ ID NO. 35, (iii) thiolation domain (T 2) according to SEQ ID NO. 36, elongation modules of non-ribosomal peptide synthetases encoding for the activation and condensation of tyrosine 1: (i) condensation domains (C 3) according to SEQ ID NO. 37, (ii) adenylation domains (A 3) according to SEQ ID NO. 38, (iii) thiolation domains (T 3) according to SEQ ID NO. 39, elongation modules of non-ribosomal peptide synthetases encoding for the activation and condensation of tyrosine 2: (i) condensation domains (C 4) according to SEQ ID NO. 40, (ii) adenylation domains (A 4) according to SEQ ID NO. 41, (iii) thiolation domains (T 4) according to SEQ ID NO. 42, a thioesterase (TE) according to SEQ ID NO. 43, a monooxygenase (MO) according to SEQ ID NO. 44, two or more peptide repeat spacer sequences (SP1/2) according to SEQ ID NO. 45 and 46, an integrated N-methyltransferase domain (MT) within the elongation module (EM) of the NRPS encoding for the activation and condensation of leucin according to SEQ ID 47 and a non-integrated N-methyltrasferase (MT 2) according to SEQ ID NO. 48.
[0043]As outlined above, the minimal requirement according to the invention is a nucleic acid encoding a microginin synthetase enzyme complex with the following activities: an adenylation domain (A*) wherein, the adenylation domain is a nucleic acid sequence according to SEQ ID NO. 25, an ACP with a nucleic acid sequence according to SEQ ID NO. 26, an elongation module (EM) of polyketide synthases (PKS) comprising the following activities: (i) ketoacylsynthase (KS) with a nucleic acid sequence according to SEQ ID NO. 27, (ii) acyl transferase (AT) with a nucleic acid sequence according to SEQ ID NO 28, (iii) acyl carrier protein (ACP 2) with a nucleic acid sequence according to SEQ ID NO. 29, an aminotransferase (AMT) with a nucleic acid sequence according to SEQ ID NO. 30, three to five elongation modules (EM) of non-ribosomal peptide synthetases (NRPS) comprising the following activities: (i) condensation domain (C) with a nucleic acid sequence according to SEQ ID NO. 31, (ii) adenylation domain (A) with a nucleic acid sequence according to SEQ ID NO. 32, (iii) thiolation domain (T) with a nucleic acid sequence according to SEQ ID NO. 33 and a thioesterase (TE) with a nucleic acid sequence according to SEQ ID NO. 43. A molecule comprising the above sequences is preferred herein.
[0044]The invention also relates to nucleic acid molecules with sequences which are not identical to those outlined above however, altered only in so far as the enzymatic activity desired is retained. I particular one skilled in the art will know that positions in nucleic acid triplets may "wobble" and these positions may thus be altered with no influence on the peptide sequence. Further multiple amino acids are encoded by more than one DNA triplet. One skilled in the art will know that one may alter such triplets maintaining the amino acid sequence. Thus said sequences are equally encompassed by the invention.
[0045]The invention also pertains to isolated nucleic acid molecules encoding a microginin synthetase enzyme complex comprising an adenylation domain which is 85% identical to SEQ ID NO. 25, more preferred 90% identical to SEQ ID NO. 1 most preferred 95% identical to SEQ ID NO. 1. Sequence identity herein is in percent of total sequence of the adenylation domains when aligned with a conventional amino acid alignment software such as the best fit and or pileup programs of the GCG package.
[0046]In a preferred embodiment the one or more nucleic acids according to the invention are organized in sequence parts encoding the microginin synthetase enzyme complex in an upstream to downstream manner as depicted in FIG. 1. In a particularly preferred embodiment the activities and domains are arranged as shown and on one molecule.
[0047]The nucleic acid molecule may be part of a vector. Such vectors are in particular, bacterial artificial chromosomes (BAC), Cosmids or Fosmids, and Lambda vectors, Preferred plasmid vectors which are able to replicate autonomously in cyanobacteria are derived from the pVZ vectors. Preferred fosmid vectors which are able to replicate autonomously in cyanobacteria are derived from the pCC1FOS® and pCC2FOS® vectors (Epicentre Biotechnologies). The integration of the nucleic acid according to the invention into the vector is a procedure known to those skilled in the art (Molecular Cloning: A Laboratory manual, 1989, Cold Spring Harbour Laboratory Press) or in the manuals of manufactures of kits for creation of genomic libraries (e.g. Epicenter Biotechnologies).
[0048]In a preferred embodiment the invention concerns a microorganism transformed with a nucleic acid according to the invention. The nucleic acid according to the invention may integrated into the chromosome of the host organism or may present on a separate vector (see also examples). It is preferred that the phototrophic cyanobacterial host organism is selected for the group comprising: Synechocystis sp., Synechococcus sp., Anabaena sp., Nostoc sp., Spirulina sp., Microcystis sp. . . . Cells are cultured as follows:
Media: Bg 11 (for cultivation of cyanobacteria)Aeration: air containing 0.3-3.0% carbon dioxideLight intensity: 40-100 μE/m2*s (diameter of illuminated culture vessels of photobioreactor d=4-12 cm)Cell density at harvest: OD.sub.750nm 1-2And if the host is Microcystis aeruginosa: Light quality: Additional red light illumination with 25 μE/m2*s for 24-48 hours before harvesting.
[0049]It is preferred that the heterotrophic host organism is selected for the group comprising: E. coli and Bacillus sp. due to a more suitable GC content and codon usage than other heterotrophic bacteria.
[0050]In case of using E. coli for the heterologues expression of the microginin synthetase a phosphopanthetein transferase (Ppt) has to be co-expressed in order to enable the synthesis of microginin. The co-expression of the Ppt from a microginin producing strain would be preferred. Other Ppt's with a broad specificity even from heterotophic organisms like Bacillus sp. are also suitable.
[0051]In one embodiment of the invention the invention relates to a method of producing a microginin, comprising culturing a cell under conditions under which the cell will produce microginin, wherein said cell comprises a nucleic acid encoding a recombinant microginin, according to the invention, and wherein said cell does not produce the microginin in the absence of said nucleic acid.
[0052]The inventors have identified nucleic acid sequences which for the first time make it possible to detect nucleic acids encoding a microginin synthetase enzyme complex. This has been extremely difficult, due to the fact that other gene clusters which encode non-ribosomal protein producing complexes share sequence similarity with the present cluster claimed herein. Such primers or probes according to the invention are selected from the group of, a) nucleic acid according to SEQ ID NO. 49 (Primer A), b) nucleic acid according to SEQ ID NO. 50 (Primer B), c) nucleic acid according to SEQ ID NO. 51 (Primer C), d) nucleic acid according to SEQ ID NO. 52 (Primer D), e) nucleic acid according to SEQ ID NO. 53 (Primer E), f) nucleic acid according to SEQ ID NO. 54 (Primer F), g) nucleic acid according to SEQ ID NO. 55 (Primer G), h) nucleic acid according to SEQ ID NO. 56 (Primer H), i) nucleic acid according to SEQ ID NO. 57 (Primer I) and j) nucleic acid according to SEQ ID NO. 58 (Primer J). It is known to one skilled in the art that such primers or probes may be altered slightly and still accomplishes the task of specifically detecting the desired target sequence. Such alterations in sequence are equally encompassed by the invention. The primers or probes according to the invention may be applied in hybridization reactions and/or amplification reactions. Such reactions are known to one skilled in the art.
[0053]The invention also concerns a method for detecting a microginin synthetase gene cluster in a sample wherein, one or more of the nucleic acids according to the invention are, applied in an amplification and/or a hybridization reaction.
[0054]In a preferred embodiment of the method according to the invention primers D and F or H and J or E and I or E and A are added to a PCR reaction mixture comprising a sample and wherein, presence of an amplification product represents presence of microginin synthetase gene cluster and absence of an amplification product represents absence of a microginin synthetase gene cluster. As can be seen from the examples (example 3 below), certain combinations are preferred. Samples may be isolated DNA, prokaryotic cells stemming from plates or liquid cultures.
[0055]When performing an amplification reaction with primers D and F the most preferred amplification conditions are as follows: a) denaturing, b) 48° C. annealing and c) elongation (product size: 675 bp). These temperatures may vary a bit in the range of 2-8 degrees C.
[0056]When performing an amplification reaction with primers H and J the most preferred amplification conditions are as follows: a) denaturing, b) 54° C. annealing and c) elongation (product size: 1174 bp). These temperatures may vary a bit in the range of 2-8 degrees C.
[0057]When performing an amplification reaction with primers E and I the most preferred amplification conditions are as follows: a) denaturing, b) 56° C. annealing and c) elongation (product size: 1279 bp). These temperatures may vary a bit in the range of 2-8 degrees C.
[0058]When performing an amplification reaction with primers E and A the most preferred amplification conditions are as follows: a) denaturing, b) 57° C. annealing and c) elongation (product size: 621 bp). These temperatures may vary a bit in the range of 2-8 degrees C. Molarity is most commonly 0.2-1.0 μM for the primers. Buffers and other reagents depending on polymerase used.
[0059]When performing hybridisation reactions the above nucleic acids are usually labeled. Such labels may be radioactive or non-radioactive, such as fluorescent. The nucleic acid primers or probes may be applied, e.g. for the screening of libraries.
[0060]The invention also relates to antibodies against a peptide according to SEQ ID NO. 1 (A*). The creation of such antibodies is known to one skilled in the art. The antibodies may be polyclonal or monoclonal. Such antibodies may be labeled or non-labeled, they may also be altered in other form, such as humanized.
[0061]The inventors have astonishingly found that newly identified peptide repeat spacer sequences (SP) may be placed adjacently to MAs I in order to create novel hybrid gene clusters. These SPs act by spacing the novel activity or domain so that it is functionally active in the microginin synthetase enzyme complex.
[0062]The invention thus, further relates to nucleic acids encoding a peptide repeat spacer sequence (SP) wherein, the peptide sequence comprises at least 4 glycin amino acids per single repeat unit (SRU) or, at least 5 proline and/or leucin amino acids per SRU, A SRU within the SP is between 7 and 15 amino acids in length and, the SP comprises between 2 and 10 SRUs.
[0063]The invention further relates to peptides of a peptide repeat spacer sequence (SP) wherein, the peptide sequence comprises at least 4 glycin amino acids or, at least 5 proline and/or leucin amino acids, the single repeat unit (SRU) within the SP is between 7 and 15 amino acids in length and, the SP comprises between 2 and 10 SRU. In a preferred embodiment of the invention the SRU is between 9 and 13 amino acids in length in a particularly preferred embodiment the SRU is eleven amino acids in length. In a preferred embodiment the SP comprises between 3 and 9 SRU.
[0064]In a preferred embodiment the nucleic acid encoding the peptide repeat spacer sequence (SP) according to the invention, encodes a peptide SRU as shown in SEQ ID NO. 20 or SEQ ID NO. 21. In a further embodiment the peptide repeat spacer sequence (SP) according to the invention, comprises or contains a sequence as shown in SEQ ID NO. 20 or SEQ ID NO. 21. In a further embodiment the nucleic acid according to the invention has a sequence as laid down in SEQ ID NO. 43 or SEQ ID NO. 44.
[0065]Not only by means of the above mentioned SPs but in particular because of these the inventors are able to create enzyme complexes resulting in microginin variants which may not be found in nature. This is an essential aspect of the present invention. The invention provides for, for the first time a simple method of producing recombinant microginin variants comprising, modifying the nucleic acid according to the invention in vitro or in vivo, growing a recombinant cell comprising said recombinantly modified nucleic acid encoding a microginin synthetase under conditions which lead to synthesis of a microginin and, recovering the synthesized microginin.
[0066]In a preferred embodiment of said method according to the invention, said modifying of said nucleic acid may be an action selected from the group of one or more of the following actions: a) inactivation of one or more of the MTs present, b) substitution of one or more of the MTs present with a halogenase, a sulfatase, a glycosylase, a racemase, an O-methyltransferase or a C-methyltransferase, c) inactivation of the MO, d) substitution of the MO with a halogenase, a sulfatase, a glycosylase, a racemase, an O-methyltransferase or a C-methyltransferase, e) inactivation of the AMT, f) substitution of the AMT with a halogenase, a sulfatase, a glycosylase, a racemase, an O-methyltransferase or a C-methyltransferase, g) inactivation of the PKS module, h) substitution of the entire PKS module with an alternative PKS module and/or substitution of one or more of the domains (KS, AT, ACP) therein, i) inactivation of the A* domain, j) substitution of the A* domain with alternative A domains, k) inactivation of one or more of the NRPS modules and 1) substitution of one or more of the NRPS modules with alternative NRPS modules and/or substitution of one or more of the domains (C, A, T) therein.
[0067]Halogenases, sulfatases, glycosylases, racemases, O-methyltransferases or C-methyltransferases are known from prokaryotes. These enzymes are encoded by genes of the secondary metabolism in particular NRPS/PKS systems.
[0068]Alternative PKS-systems, entire modules as well as single domains (KS, AT, ACP) are found in cyanobacteria as well as Actinomycetes, Myxobacteria, Bacillus among the bacteria.
[0069]Alternative NRPS-systems, entire modules as well as single domains (C, A, T) are found in cyanobacteria as well as Actinomycetes, Myxobacteria, Bacillus among the bacteria.
[0070]In a preferred embodiment the above are from cyanobacteria.
[0071]It is important to note, that said inactivation and/or substitution may done in many ways, e.g. inactivation may imply deleting the complete activity or domain, or may imply inactivation by means of a single nucleotide exchange.
[0072]The methods are known to those skilled in the art and comprise basic molecular biological methods such as DNA isolation, restriction digestion, ligation, transformation, amplification etc.
[0073]In a preferred embodiment said alternative modules or domains which are used for substitution of the original module or domain, additionally may comprise one or more SP nucleic acids according to the invention located adjacently upstream of the module or domain used for substitution and one or more SP nucleic acids according the invention located adjacently downstream of the module or domain used for substitution. Thus, in this embodiment of the invention a construct is made comprising the domain which is to be entered into the original nucleic acid according to the invention, further comprising one or more SPs located adjacently in an upstream and downstream manner. This construct is then ligated into the original microginin synthetase encoding nucleic acid. The resultant construct is then brought into a host by means of transformation for either a) integration into the host chromosome or b) with a self-replicating vector.
[0074]The polypeptides, i.e. proteins can be any of those described above but with not more than 10 (e.g., not more than: 10, nine, eight, seven, six, five, four, three, two, or one) conservative substitutions. Conservative substitutions are known in the art and typically include substitution of, e.g. one polar amino acid with another polar amino acid and one acidic amino acid with another acidic amino acid. Accordingly, conservative substitutions preferably include substitutions within the following groups of amino acids: glycine, alanine, valine, proline, isoleucine, and leucine (non polar, aliphatic side chain); aspartic acid and glutamic acid (negatively charged side chain); asparagine, glutamine, methionine, cysteine, serine and threonine (polar uncharged side chain); lysine, histidine and arginine; and phenylalanine, tryptophane and tyrosine (aromatic side chain); and lysine, arginine an histidine (positively charged side chain). It is well known in the art how to determine the effect of a given substitution, e.g. on pK1 etc. All that is required of a polypeptide having one or more conservative substitutions is that it has at least 50% (e.g., at least: 55%; 60%; 65%, 70%; 75%; 80%; 85%; 90%; 95%; 98%; 99%; 99.5%; or 100% or more) of the ability of the unaltered protein according to the invention.
[0075]In preferred embodiments the polynucleotides, i.e. nucleic acids of the present invention also comprise nucleic acid molecules which are at least 85%, preferably 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to those claimed herein.
[0076]The determination of percent identity between two sequences is accomplished using the mathematical algorithm of Karlin and Altschul (1993) Proc. Natl. Acad. Sci. USA 90: 5873-5877. Such an algorithm is incorporated into the BLASTN and BLASTP programs of Altschul et al. (1990) J. Mol. Biol. 215: 403-410. BLAST nucleotide searches are performed with the BLASTN program, score=100, word length=12, to obtain nucleotide sequences homologous to the nucleic acids according to the invention. BLAST protein searches are performed with the BLASTP program, score=50, wordlength=3, to obtain amino acid sequences homologous to the EPO variant polypeptide, respectively. To obtain gapped alignments for comparative purposes, Gapped BLAST is utilized as described in Altschul et al. (1997) Nucleic Acids Res. 25: 3389-3402. When utilizing BLAST and Gapped BLAST programs, the default parameters of the respective programs are used.
FIGURES
[0077]FIG. 1 depicts the structure of microginin.
[0078]FIG. 2 depicts the microginin synthetase gene cluster and the biosynthetic pathway of microginin.
EXAMPLES
Example 1
Method for Detecting Gene Clusters According to the Invention
[0079]Strains carrying a gene cluster encoding a microginin synthetase complex can be distinguished from strains not carrying such a gene cluster performing a PCR reaction using RedTaq ReadyMix PCR Reaction Mix with MgCl2 (Sigma) and primer pairs and the corresponding annealing temperatures as described in Claims 11-12. In particular the PCR conditions are as follows: an initial denaturation for 1 minutes at 95° C., followed by 30 cycles of denaturation at 95° C. for 30 seconds, elongation at said annealing temperatures for 30 seconds and extension at 72° C. for 1 kb of product size.
Example 2
Method for Optimised Cultivation of Microginin Producing Microcystis spp.
[0080]Strains. Media: Bg 11 (for cultivation of cyanobacteria)Aeration: air containing 0.3-3.0% carbon dioxideLight intensity: 40-100 μE/m2*s (diameter of illuminated culture vessels of photobioreactor d=4-12 cm)Light quality: Additional red light illumination with 25 μE/m2*s for 24-48 hours before harvesting.Cell density at harvest: OD.sub.750nm 1-2
Tables
TABLE-US-00001 [0081]TABLE 1 SEQ ID MTINYGDLQEPFNKFSTLVELLRYRASSQPERLAYIFLRDGEIEEARLTYGELDQKARAI NO. 1 A* AAYLQSLEAEGERGLLLYPPGLDFISAFFGCLYAGVVAIPAYPPRRNQNLLRLQAIIADS QARFTFTNAALFPSLKNQWAKDPELGAMEWIVTDEIDHHLREDWLEPTLEKNSLAFLQYT SGSTGTPKGVMVSHHNLLINSADLDRGWGHDQDSVMVTWLPTFHDMGLIYGVIQPLYKGF LCYMMSPASFMERPLRWLQALSDKKATHSAAPNFAYDLCVRKIPPEKRATLDLSHWCMAL NGAEPVRAEVLKKFAEAFQVSGFKATALCPGYGLAEATLKVTAVSYDSPPYFYPVQANAL EKNKIVGATETDTNVQTLVGCGWTTIDTQIVIVNPETLKPCSPEIVGEIWVSGSTIAQGY WGKPQETQETFQAYLADTGAGPFLRTGDLGFIKDGELFITGRLKEIILIRGRNNYPQDIE LTVQNSHPALRPSCGAAFTVENKGEEKLVVVQEVERTWLRKVDIDEVKRAIRKAVVQEYD LQVYAIALIRTGSLPKTSSGKIQRRSCRAKFLEGSLEILG SEQ ID MSTEIPNDKKQPTLTKIQNWLVAYMTEMMEVDEDEIDLSVPFDEYGLDSSMAVALIADLE NO. 2 DWLRRDLHRTLIYDYPTLEKLAKQVSEP ACP SEQ ID MEPIAIIGLACRFPGADNPEAFWQLMRNGVDAIADIPPERWDIERFYDPTPATAKKMYSR NO. 3 QGGFLKNVDQFDPQFFRISPLEATYLDPQQRLLLEVTWEALENAAIVPETLAGSQSGVFI KS GISDVDYHRLAYQSPTNLTAYVGTGNSTSIAANRLSYLFDLRGPSLAVDTACSSSLVAVH LACQSLQSQESNLCLVGGVNLILSPETTVVFSQARMIAPDSRCKTFDARADGYVRSEGCG VVVLKRLRDAIQDGDRILAVIEGSAVNQDGLSNGLTAPNGPAQQAVIRQALANAQVKPAQ ISYVEAHGTGTELGDPIEVKSLKAVLGEKRSLDQTCWLGSVKTNIGHLEAAAGMAGLIKV VLCLQHQEIPPNLHFQTLNPYISLADTAFAIPTQAQPWRTKPPKSGENGVERRLAGLSSF GFGGTNSHVIL SEQ ID VFLFAGQGSQYVGMGRQLYETQPIFRQTLDRCAEILRPHLDQPLLEILYPADPEAETASF NO. 4 AT YLEQTAYTQPTLFAFEYALAQLWRSWGIEPAAVIGHSVGEYVAATVAGALSLEEGLTLIA KRAKLMQSLPKNGTMIAVFAAEERVKAVIEPYRTDVAIAAVNGPENFVISGKAPIIAEII IHLTAAGIEVRPLKVSHAFHSHLLEPILDSLEQEAAAISYQPLQIPLVANLTGEVLPEGA TIEARYWRNHARNPVQFYGSIQTLIEQKFSLFLEVSPKPTLSRLGQQCCPERSTTWLFSL APPQEEEQSLLNSLAILYDSQGAE SEQ ID ITLQTLVGNLLQLSPADVNVHTPFLEMGADSIVMVEAVRRIENTYNVKIAMRQLFEELST NO. 5 LDALATYL ACP 2 SEQ ID KEMLYPIVAQRSQGSRIWDVDGNEYIDMTMGQGVTLFGHQPDFIMSALQSQLTEGIHLNP NO. 6 RSPIVGEVAALICELTGAERACFCNSGTEAVMAAIRIARATTGRSKIALFEGSYHGHADG AMT TLFRNQIIDNQLHSFPLALGVPPSLSSDVVVLDYGSAEALNYLQTQGQDLAAVLVEPIQS GNPLLQPQQFLQSLRQITSQMGIALIFDEMITGFRSHPGGAQALFGVQADIATYGKVVAG GMPIGVIAGKAHYLDSIDGGMWRYGDKSYPGVDRTFFGGTFNQHPLAMVAARAVLTHLKE QGPGLQQQLTERTAALADTLNHYFQAEEVPIKIEQFSSFFRFALSGNLDLLFYHMVEKGI YVWEWRKHFLSTAHTEADLAQFVQAVKDSITELR SEQ ID GGDQVPLTEAQRQLWILAQLGDNGSVAYNQSVTLQLSGPLNPVAMNQAIQQISDRHEALR NO. 7 C TKINAQGDSQEILPQVEINCPILDFSLDQASAQQQAEQWLKEESEKPFDLSQGSLVRWHL LKLEPELHLLVLTAHHIISDGWSMGVILRELGELYSAKCQGVTANLKTPKQFRELIEWQS QPSQGEELKKQQAYWLATLADPPVLNLPTDKPRPALPSYQANRRSLTLDSQFTEKLKQFS RKQGCTLLMTLLSVYNILVHRLTGQDDILVGLPASGRGLLDSEGMVGYCTHFLPIRSQLA SEQ ID TYSELNCRANQLAHYLQKLGVGPEVLVGILVERSLEMIVGLLGILKAGGAYVPLDPDYPP NO. 8 A ERLQFMLEDSQFFLLLTQQHLLESFAQSSETATPKIICLDSDYQIISQAKNINPENSVTT SNLAYVIYTSGSTGKPKGVMNNHVAISNKLLWVQDTYPLTTEDCILQKTPFSFDVSVWEL FWPLLNGARLVFAKPNGHKDASYLVNLIQEQQVTTLHFVSSMLQLFLTEKDVEKCNSLKR VICSGEALSLELQERFFARLVCELHNLYGPTEAAIHVTFWQCQSDSNLKTVPIGRPIANI QIYILDSHLQPVPIGVIGELHIGGVGLARGYLNRPELTAEKFIANPFASLDPPLTPLDKG GDESYKTFKKGGEQPSRLYKTGDLARYLPDGKIEYLGRIDNQVKIRGFRIELGEIEAVLL SHPQVREAVV SEQ ID EAIAAIFGQVLKLEKVGIYDNFFEIGGNSLQATQVISRLRESFALELPLRRLFEQPTVAD NO. 9 T LALAV SEQ ID PRDGQLPLSFAQSRLWFLYQLEGATGTYNMTGALSLSGPLQVEALKQALRTIIQRHEPLR NO. 10 C 2 TSFQSVDGVPVQVINPYPVWELAMVDLTGKETEAEKLAYQESQTPFDLTNSPLLRVTLLK LQPEKHILLINMHHIISDGWSIGVFVRELSHLYRAFVAGKEPTLPILPIQYADFAVWQRE WLQGKVLAAQLEYWKRQLADAPPLLELPTDRPRPAIQTFQGKTERFELDRKLTQELKALS QQSGCTLFMTLLAAFGVVLSRYSGQTDIVIGSAIANRNRQDIEGLIGFFVNTLALRLDLS SEQ ID TYGELNHRANQLAHYLQSLGVTKEQIVGVYLERSLEMAIGFLGILKAGAAYLPIDPEYPS NO. 11 A 2 VRTQFILEDTQLSLLLTQAELAEKLPQTQNKIICLDRDWPEITSQPQTNLDLKIEPNNLA YCIYTSGSTGQPKGVLISHQALLNLIFWHQQAFEIGPLHKATQVAGIAFDATVWELWPYL TTGACINLVPQNILLSPTDLRDWLLNREITMSFVPTPLAEKLLSLDWPNHSCLKTLLLGG DKLHFYPAASLPFQVINNYGPTENTVVATSGLVKSSSSHHFGTPTIGRPIANVQIYLLDQ NLQPVPIGVPGELHLGGAGLAQGYLNRPELTAEKFIANPFDPPLTPLDKGGEEPSKLYKT GDLARYLPDGNVEFLGRIDNQVKIRGFRIETGEIEAVLSQYFLLAESVV SEQ ID AQLTQIWSEVLGLERIGVKDNFFELGGHSLLATQVLSRINSAFGLDLSVQIMFESPTIAG NO. 12 T 2 IAGYI SEQ ID ARDGHLPLSFAQQRLWFLHYLSPDSRSYNTLEILQIDGNLNLTVLEQSLGELINRHEIFR NO. 13 C 3 TTFPTVSGEPIQKIALPSRFQLKVDNYQDLDENEQSAKIQQVAELEAGQAFDLTVGPLIQ FKLLQLSPQKSVLLLKMHHIIYDGWSFGILIRELSALYEAFLKNLANPLPALSIQYADFA VWQRQYLSGEVLDKQLNYWQEQLATVSPVLTLPTDRPRPAIQTFQGGVERFQLDQNVTQG LKKLGQDQVATLFMTLLAGFGVLLSRYSGQSDLMVGSPIANRNQAAIEPLIGFFANTLAL RINLS SEQ ID TYTELNHRANQLAHYLQTLGVGAEVLVGISLERSLEMIIGLLGILKVGGAYLPLDPDYPT NO. 14 A 3 ERLQLMLEDSQVPFLITHSSLLAKLPPSQATLICLDHIQEQISQYSPDNLQCQLTPANLA NVIYTSGSTGKPKGVMVEHKGLVNLALAQIQSFAVNHNSRVLQFASFSFDACISEILMTF GSGATLYLAQKDALLPGQPLIERLVKNGITHVTLPPSALVVLPQEPLRNLETLIVAGEAC SLDLVKQWSIDRNFFNAYGPTEASVCATIGQCYQDDLKVTIGKAIANVQIYILDAFLQPV PVGVSGELYIGGVGVARGYLNRPELTQEKFIANPFSNDPDSRLYKTGDLARYLPDGNIEY LGRIDNQVKIRGFRIELGEIEAVLSQCPDVQNTAV SEQ ID EILAQIWGQVLKIERVSREDNFFELGGHSLLATQVMSRLRETFQVELPLRSLFTAPTIAE NO. 15 T 3 LALTI SEQ ID NDSANLPLSFAQQRLWFLDQLEPNSAFYHVGGAVRLEGTLNITALEQSLKEIINRHEALR NO. 16 C 4 TNFITIDGQATQIIHPTINWRLSVVDCQNLTDTQSLEIAEAEKPFNLAQDCLFRATLFVR SPLEYHLLVTMHHIVSDGWSIGVFFQELTHLYAVYNQGLPSSLTPIKIQYADFAVWQRNW LQGEILSNQLNYWREQLANAPAFLPLPTDRPRPAIQTFIGSHQEFKLSQPLSQKLNQLSQ KHGVTLFMTLLAAFATLLYRYTGQADILVGSPIANRNRKEIEGLIGFFVNTLVLRLSLD SEQ ID TYAELNHQANQLVHYLQTLGIGPEVLVAISVERSLEMIIGLLAILKACGAYLPLAPDYPT NO. 17 A 4 ERLQFMLEDSQASFLITHSSLLEKLPSSQATLICLDHIQEQISQYSPDNLQSELTPSNLA NVIYTSGSTGKPKGVMVEHRGLVNLASSQIQSFAVKNNSRVLQFASFSFDACISEILMTF GSGATLYLAQKNDLLPGQPLMERLEKNKITHVTLPPSALAVLPKKPLPNLQTLIVAGEAC PLDLVKQWSVGRNFFNAYGPTETSVCATIGQCYQDDLKVTIGKAIANVQIYILDAFLQPV PIGVPGELYIGGVGVARGYLNRPELTAERFIPNPFDPPLTPLKKGGDKSYETFKKGEEQP SKLYKTGDLARYLPDGNIEYLGRIDNQVKIRGFRIELGEIEAVLSQCPDVQNTAV SEQ ID LQLAQIWSEILGINNIGIQENFFELGGHSLLAVSLINRIEQKLDKRLPLTSLFQNGTIAS NO. 18 T 4 LAQLL SEQ ID TPFFAVHPIGGNVLCYADLARNLGTKQPFYGLQSLGLSELEKTVASIEEMAMIYIEAIQT NO. 19 VQASGPYYLGGWSMGGVIAFEIAQQLLTQGQEVALLALIDSYSPSLLNSVNREKNSANSL TE TEEFNEDINIAYSFIRDLASIFNQEISFSGSELAHFTSDELLDKFITWSQETNLLPSDFG KQQVKTWFKVFQINHQALSSYSPKTYLGRSVFLGAEDSSIKNPGWHQ SEQ ID FSLYYFGSYEAEFNPNKYNLLFEGAKFGDRAGFTALWIPERHFHAFGGFSPNPSVLAAAL NO. 20 ARETKQIQLRSGSVVLPLHNSIRVAEEWAVVDNLSQGRVGIAFASGWHPQDFVLAPQSFG MO QHRELMFQEIETVQKLWRGEAITVPDGKGQRVEVKTYPQPMQSQLPSWITIVNNPDTYIR AGAIGANILTNLMGQSVEDLARNIALYRQSLAEHGYDPASGTVTVLLHTFVGKDLEQVRE QARQPFGQYLTSSVGLLQNMVKSQGMKVDFEQLRDEDRDFLLASAYKRYTETSALIGTPE SCRQIIDHLQSIGVDEVACFIDFGVDEQTVLANLPYLQSLKDLYQ SEQ ID IDPPLTPLDKGIDPPLTPLDKGIDPPLTPLDKG NO. 21 SP 1 SEQ ID PYQGGLGGDQSPYQGGLGGDQSPYQGGLGGDQSPYQGGLGGDQSPYQGGLGGDQSPYQGE NO. 22 LGGDQSPYQGGLGGDQV SP 2 SEQ ID PASEMREWVENTVSRILAFQPERGLEIGCGTGLLLSRVAKHCLEYWATDYSQGAIQYVER NO. 23 VCNAVEGLEQVKLRCQMADNFEGIALHQFDTVVLNSIIQYFPSVDYLLQVLEGAINVIGE MT RGQIFVGDVRSLPLLEPYHAAVQLAQASDSKTVEQWQQQVRQSVAGEEELVIDPTLFLAL KQHFPQISWVEIQPKRGVAHNELTQFRYDVTLHLETINNQALLSGNPTVITWLNWQLDQL SLTQIKDKLLTDKPELWGIRGIPNQRVEEALKIWEWVENAPDVETVEQLKKLLKQQVDTG INPEQVWQLAESLGYTAHLSWWESSQDGSFDVIFQRNSEAEDSKKLTLSKLAFWDEKPFK IKPWSDYTNNPLRGKLVQKLIP SEQ ID MTNYGKSMSHYYDLVVGHKGYNKDYATEVEFIHNLVETYTTEAKSILYLGCGTGYHAALL NO. 24 AQKGYSVHGVDLSAEMLEQAKTRIEDETIASNLSFSQGNICEIRLNRQFNVVLALFHVVN MT 2 YQTTNQNLLATFATVKNHLKAGGIFICDVSYGSYVLGEFKSRPTASILRLEDNSNGNEVT YISELNFLTHENIVEVTHNLWVTNQENQLLENSRETHLQRYLFKPEVELLADACELTVLD AMPWLEQRPLTNIPCPSVCFVIGHKTTHSA SEQ ID ATGACTATTAACTATGGTGATCTGCAAGAACCCTTTAATAAATTCTCAACCCTAGTTGAA NO. 25 TTACTCCGTTATCGGGCAAGCAGTCAACCGGAACGCCTCGCCTATATTTTTCTGCGAGAC A* nucl GGAGAAATCGAAGAAGCTCGTTTAACCTATGGGGAACTGGATCAAAAGGCTAGGGCGATC acid GCCGCTTATCTACAATCCTTAGAAGCCGAGGGCGAAAGGGGTTTACTGCTCTATCCCCCA GGACTAGATTTTATTTCAGCTTTTTTTGGTTGTTTATATGCGGGAGTCGTTGCCATTCCC GCCTATCCACCCCGACGGAATCAAAACCTTTTGCGTTTACAGGCGATTATTGCCGATTCT CAAGCCCGATTTACCTTCACCAATGCCGCTCTATTTCCCAGTTTAAAAAACCAATGGGCT AAAGACCCTGAATTAGGAGCAATGGAATGGATTGTTACCGATGAAATTGACCATCACCTC AGGGAGGATTGGCTAGAACCAACCCTCGAAAAAAACAGTCTCGCTTTTCTACAATACACC TCTGGTTCAACGGGAACTCCAAAGGGAGTAATGGTCAGTCACCATAATTTGTTGATTAAT TCAGCCGATTTAGATCGTGGTTGGGGCCATGATCAAGATAGCGTAATGGTCACTTGGCTA CCGACCTTCCATGATATGGGTCTGATTTATGGGGTTATTCAGCCTTTGTACAAAGGATTT CTTTGTTACATGATGTCCCCTGCCAGCTTTATGGAACGACCGTTACGTTGGTTACAGGCC CTTTCTGATAAAAAAGCAACCCATAGTGCGGCCCCCAACTTTGCCTACGATCTTTGTGTG CGGAAAATTCCCCCTGAAAAACGGGCTACGTTAGACTTAAGCCATTGGTGCATGGCCTTA AATGGGGCCGAACCCGTCAGAGCGGAGGTACTTAAAAAGTTTGCGGAGGCCTTTTCAAGTT TCTGGTTTCAAAGCCACAGCCCTTTGTCCTGGCTACGGTTTAGCAGAAGCCACCCTGAAA GTTACGGCGGTTAGTTATGACAGTCCCCCTTACTTTTATCCCGTTCAGGCTAATGCTTTA GAAAAAAATAAGATTGTGGGAGCCACTGAAACCGATACCAATGTGCAGACCCTCGTGGGC TGCGGCTGGACAACGATTGATACTCAAATCGTCATTGTCAATCCTGAAACCCTGAAACCT TGCTCCCCTGAAATTGTCGGCGAAATTTGGGTATCAGGTTCAACAATCGCCCAAGGCTAT TGGGGAAAACCTCAAGAGACTCAGGAAACCTTTCAAGCTTATTTGGCAGATACAGGAGCC GGGCCTTTTCTGCGAACAGGAGACTTGGGCTTCATTAAAGATGGTGAATTGTTTATCACA GGTCGGCTCAAGGAAATTATTCTGATTCGAGGACGCAATAATTATCCCCAGGATATTGAA TTAACCGTCCAAAATAGTCATCCCGCTCTGCGTCCCAGTTGTGGGGCTGCTTTTACCGTT GAAAATAAGGGCGAAGAAAAGCTCGTGGTCGTTCAGGAAGTGGAGCGCACCTGGCTCCGT AAGGTAGATATAGATGAGGTAAAAAGAGCCATTCGTAAAGCTGTTGTCCAGGAATATGAT TTACAGGTTTATGCGATCGCGCTGATCAGGACTGGCAGTTTACCAAAAACCTCTAGCGGT AAAATTCAGCGTCGTAGCTGTCGGGCCAAATTTTTAGAGGGAAGCCTGGAAATTTTGGGC TAA SEQ ID ATGTCCACAGAAATCCCAAACGACAAAAAACAACCGACCCTAACGAAAATTCAAAACTGG NO. 26 TTAGTGGCTTACATGACAGAGATGATGGAAGTGGACGAAGATGAGATTGATCTGAGCGTT ACP nucl CCCTTTGATGAATATGGTCTCGATTCTTCTATGGCAGTTGCTTTGATCGCTGATCTAGAG acid GATTGGTTACGACGAGATTTACATCGCACCCTGATCTACGATTATCCAACTCTAGAAAAG TTGGCTAAACAGGTTAGTGAACCCTGA SEQ ID ATGGAACCCATCGCAATTATTGGTCTTGCTTGCCGCTTTCCAGGGGCTGACAATCCAGAA NO. 27 GCTTTCTGGCAACTCATGCGAAATGGGGTGGATGCGATCGCCGATATTCCTCCTGAACGT KS nucl TGGGATATTGAGCGTTTCTACGATCCCACACCTGCCACTGCCAAGAAGATGTATAGTCGC acid CAGGGCGGTTTTCTAAAAAATGTCGATCAATTTGACCCTCAATTTTTCCGAATTTCTCCC CTAGAAGCCACCTATCTAGATCCTCAACAAAGACTGCTACTGGAAGTCACCTGGGAAGCC TTAGAAAATGCTGCCATTGTGCCTGAAACCTTAGCTGGTAGCCAATCAGGGGTTTTTATT GGTATCAGTGATGTGGATTATCATCGTTTGGCTTATCAAAGTCCTACTAACTTGACCGCC TATGTGGGTACAGGCAACAGCACCAGTATTGCGGCTAACCGTTTATCATATCTGTTTGAT TTGCGTGGCCCCAGTTTGGCCGTAGATACCGCTTGCTCTTCTTCCCTCGTCGCCGTTCAC TTGGCCTGTCAGAGTTTGCAAAGTCAAGAATCGAACCTCTGCTTAGTGGGGGGAGTTAAT CTCATTTTGTCGCCAGAGACAACCGTTGTTTTTTCCCAAGCGAGAATGATCGCCCCCGAC AGTCGTTGTAAAACCTTTGACGCGAGGGCCGATGGTTATGTGCGCTCGGAAGGCTGTGGA GTAGTCGTACTTAAACGTCTTAGGGATGCCATTCAGGACGGCGATCGCATTTTAGCAGTG ATTGAAGGTTCCGCGGTGAATCAGGATGGTTTAAGTAATGGACTCACGGCCCCTAATGGC CCTGCTCAACAGGCGGTGATTCGTCAGGCCCTGGCAAATGCCCAGGTAAAACCGGCCCAG ATTAGCTATGTCGAAGCCCATGGCACGGGGACAGAATTGGGGGATCCGATCGAAGTTAAA TCTCTGAAAGCGGTTTTGGGTGAAAAGCGATCGCTCGATCAAACCTGTTGGCTCGGTTCT GTGAAAACCAACATTGGTCATTTAGAAGCGGCGGCGGGAATGGCGGGTCTGATTAAAGTC GTTCTCTGCCTACAACACCAAGAAATTCCCCCTAATCTCCACTTTCAAACCCTTAATCCC TATATTTCCCTAGCTGACACAGCTTTTGCGATTCCCACTCAGGCTCAACCCTGGCGGACC AAACCCCCTAAGTCTGGTGAAAACGGTGTCGAACGACGTTTAGCAGGACTCAGTTCCTTT GGGTTTGGGGGGACAAATTCCCATGTGATTCTC SEQ ID GTTTTTCTATTTGCCGGTCAAGGTTCTCAATATGTAGGTATGGGTCGTCAACTGTACGAA NO. 28 ACCCAACCCATCTTTCGCCAAACCTTGGATCGCTGTGCTGAAATCCTGCGACCCCATTTA AT nucl GATCAACCCCTCTTAGAAATTCTTTATCCTGCTGACCCAGAAGCCGAAACAGCGAGTTTT acid TACCTAGAGCAGACTGCCTATACCCAACCCACTTTATTCGCATTCGAGTATGCCCTAGCA CAGTTATGGCGTTCCTGGGGAATAGAACCGGCGGCAGTAATTGGTCACAGTGTCGGTGAA TATGTGGCGGCCACCGTTGCCGGAGCCTTAAGTCTAGAAGAAGGATTAACGCTAATTGCC AAACGGGCAAAACTGATGCAGTCTCTCCCCAAGAATGGGACAATGATCGCCGTTTTTGCC GCAGAAGAGCGGGTTAAAGCTGTTATTGAGCCTTATAGGACTGATGTAGCGATCGCTGCT GTTAATGGACCAGAAAATTTTGTTATTTCAGGAAAAGCGCCGATTATTGCTGAGATTATC ATTCATTTAACGGCAGCAGGAATAGAAGTTCGTCCTCTCAAAGTTTCCCATGCTTTTCAC TCGCACCTGTTGGAGCCAATTTTAGATTCCTTAGAACAGGAAGCTGCTGCTATTTCCTAC CAACCCCTGCAAATTCCCTTAGTTGCTAATTTAACGGGGGAAGTTCTACCAGAAGGAGCA ACGATTGAGGCTCGTTACTGGCGAAATCATGCACGCAACCCTGTACAATTTTATGGGAGT ATCCAAACGCTGATCGAGCAGAAATTCAGTCTTTTTTTAGAAGTTAGCCCTAAACCGACT TTATCTCGATTGGGTCAACAATGTTGTCCAGAAAGATCGACCACTTGGCTATTTTCCCTC GCCCCTCCTCAAGAAGAAGAACAAAGCCTACTAAATAGTTTGGCGATTCTCTATGATTCC CAAGGAGCCGAA SEQ ID ATCACATTGCAAACCCTAGTGGGAAATTTACTGCAATTGTCCCCTGCTGATGTCAATGTT NO. 29 CATACACCTTTCCTGGAGATGGGGGCAGATTCCATTGTCATGGTTGAGGCGGTCAGACGG ACP 2 ATTGAGAATACCTATAACGTTAAAATTGCTATGCGTCAGTTATTTGAGGAGTTATCTACT nucl acid TTAGATGCTTTAGCTACTTATTTA SEQ ID AAAGAGATGCTTTATCCCATTGTGGCCCAACGTTCTCAAGGATCAAGAATTTGGGATGTG NO. 30 GACGGTAATGAATATATTGATATGACGATGGGGCAAGGGGTAACGCTGTTTGGGCATCAA AMT CCAGACTTCATTATGTCGGCCCTACAAAGCCAACTCACTGAAGGCATTCATCTCAATCCG nucl acid CGATCGCCAATTGTGGGAGAAGTGGCCGCCTTAATTTGTGAACTAACAGGAGCCGAACGA GCTTGTTTTTGCAACTCTGGAACCGAAGCCGTAATGGCCGCTATTCGTATCGCCAGGGCA ACAACAGGTCGGAGTAAAATTGCCCTCTTTGAAGGCTCCTATCATGGACATGCGGACGGA ACCCTTTTTAGGAACCAAATTATTGATAACCAACTCCACTCTTTTCCCCTAGCTCTAGGC GTTCCCCCCAGCCTTAGTTCCGATGTGGTGGTATTGGACTATGGCAGTGCGGAAGCTCTG AACTATTTACAAACCCAGGGGCAGGATTTAGCGGCGGTCTTAGTAGAACCAATTCAAAGT GGCAATCCTCTACTCCAACCCCAACAATTTCTCCAAAGTCTGCGACAAATTACCAGTCAA ATGGGCATTGCCCTGATTTTTGATGAAATGATTACGGGTTTTCGATCGCACCCAGGGGGA GCGCAAGCTTTATTTGGAGTACAGGCGGATATTGCCACCTATGGCAAAGTAGTTGCGGGA GGAATGCCCATTGGAGTTATTGCAGGTAAGGCCCATTATCTGGACAGCATTGACGGGGGA ATGTGGCGTTATGGCGATAAATCCTATCCTGGGGTGGACAGAACCTTTTTTGGGGGAACC TTTAATCAGCATCCGTTAGCAATGGTAGCGGCTAGGGCTGTCCTGACCCATTTAAAGGAG CAGGGGCCAGGTCTGCAACAACAATTAACTGAACGCACTGCGGCCTTAGCCGATACACTG AATCATTATTTTCAAGCCGAAGAAGTTCCTATTAAAATCGAACAGTTTAGTTCTTTCTTC CGGTTTGCCCTCTCTGGCAATTTGGATTTACTTTTCTATCACATGGTAGAAAAAGGTATT
TATGTCTGGGAATGGCGTAAACATTTTCTTTCAACCGCCCATACGGAAGCCGATCTTGCC CAATTTGTCCAAGCGGTTAAGGATAGCATCACAGAATTGCGT SEQ ID GGGGGGGATCAAGTCCCTCTCACCGAAGCCCAACGACAACTGTGGATTTTGGCTCAATTA NO. 31 C GGAGACAACGGCTCTGTGGCCTATAACCAATCAGTGACATTGCAATTAAGTGGCCCATTA nucl acid AATCCCGTCGCAATGAATCAAGCTATTCAACAAATCAGCGATCGCCATGAAGCGTTACGA ACCAAAATTAATGCCCAGGGAGATAGTCAAGAAATCCTGCCCCAGGTCGAAATTAACTGC CCTATCTTAGACTTCAGTCTTGACCAAGCTTCGGCCCAACAGCAAGCAGAACAATGGTTA AAGGAAGAAAGTGAAAAACCCTTTGATTTGAGCCAGGGTTCTCTCGTGCGTTGGCATCTA CTCAAATTAGAACCAGAATTACATTTGTTAGTATTAACGGCCCATCACATTATCAGTGAC GGTTGGTCAATGGGGGTAATCCTTCGGGAATTAGGAGAGTTATATTCAGCCAAATGTCAG GGTGTTACGGCTAATCTTAAAACCCCAAAACAGTTTCGAGAATTGATTGAATGGCAAGC CAGCCAAGCCAAGGGGAAGAACTGAAAAAACAGCAAGCCTATTGGTTAGCAACCCTTGCC GATCCCCCTGTTTTGAATTTACCCACTGACAAACCTCGTCCAGCTTTACCCAGTTACCAA GCTAATCGTCGAAGTCTAACTTTAGATAGCCAATTTACAGAAAAACTAAAGCAATTTAGT CGTAAACAGGGCTGTACCTTGCTGATGACCCTGTTATCGGTTTATAACATTCTCGTTCAT CGTTTGACGGGACAGGATGATATTCTGGTGGGTCTGCCAGCCTCTGGACGGGGGCTTTTA GATAGTGAAGGTATGGTGGGTTATTGCACCCATTTTTTACCAATTCGCAGTCAATTAGCA SEQ ID ACTTACAGTGAATTAAATTGTCGAGCCAATCAGTTAGCACATTATTTACAAAAATTAGGA NO. 32 A GTTGGGCCAGAGGTCTTAGTCGGTATTTTGGTCGAACGTTCTTTAGAAATGATTGTCGGA nucl acid TTGTTAGGGATTCTCAAGGCTGGGGGAGCCTATGTACCTCTTGATCCTGACTATCCCCCT GAACGTCTTCAATTTATGTTAGAAGATAGTCAATTTTTTCTCCTCTTAACCCAACAGCAT TTACTGGAATCTTTTGCTCAGTCTTCAGAAACGGCTACTCCCAAGATTATTTGTTTGGAT AGCGACTACCAAATTATTTCCCAGGCAAAGAATATTAATCCCGAAAATTCAGTCACAACG AGTAATCTTGCCTATGTAATTTATACCTCTGGTTCGACAGGTAAACCGAAGGGCGTGATG AATAATCATGTTGCTATTAGTAATAAATTGTTATGGGTACAAGACACTTATCCTCTAACC ACAGAAGACTGTATTTTACAAAAAACTCCCTTTAGTTTTGATGTTTCAGTGTGGGAATTA TTCTGGCCCCTACTAAACGGAGCGCGTTTGGTTTTTGCCAAGCCGAATGGCCATAAAGAT GCCAGTTACTTAGTCAATCTGATTCAAGAGCAACAAGTAACAACGCTACATTTTGTGTCT TCTATGCTACAGCTTTTTCTGACAGAAAAAGACGTAGAAAAATGTAATAGTCTTAAACGA GTCATTTGTAGTGGTGAAGCCCTTTCTTTAGAGCTTCAAGAACGTTTTTTTGCTCGTTTA GTCTGTGAATTACACAATCTTTATGGACCGACAGAAGCCGCTATTCATGTCACATTTTGG CAATGTCAATCAGATAGCAATTTGAAAACAGTACCCATTGGTCGGCCGATCGCTAATATC CAAATTTACATTTTAGACTCTCATCTTCAGCCAGTACCTATTGGAGTAATCGGAGAATTG CACATTGGTGGGGTTGGTTTGGCGCGGGGTTATTTAAACAGGCCTGAGTTAACGGCGGAG AAATTTATTGCAAATCCGTTTGCTTCCCTTGATCCCCCCCTAACCCCCCTTGATAAGGGG GGAGATGAGAGCTATAAAACTTTTAAAAAGGGGGGAGAGCAACCATCAAGATTGTATAAA ACGGGAGATTTAGCTCGTTATTTACCCGATGGCAAGATTGAGTATCTAGGGCGCATTGAT AATCAGGTAAAAATTCGCGGTTTCCGGATTGAATTGGGGGAAATTGAAGCGGTTTTGCTA TCCCATCCCCAGGTACGAGAAGCGGTCGTT SEQ ID GAGGCGATCGCCGCTATTTTTGGTCAAGTTTTAAAACTGGAAAAAGTGGGAATTTATGAT NO. 33 T AACTTTTTTGAGATCGGCGGTAATTCTTTGCAAGCCACTCAAGTTATTTCACGCTTACGA nucl acid GAAAGTTTTGCCCTAGAGTTGCCCTTGCGTCGCCTGTTTGAACAACCGACTGTGGCGGAT TTGGCTTTAGCCGTA SEQ ID CCTCGTGATGGCCAATTACCCCTCTCCTTTGCCCAGTCGCGACTCTGGTTCTTGTATCAA NO. 34 C TTAGAAGGAGCCACGGGAACCTATAACATGACAGGGGCCTTGAGTTTAAGCGGGCCTCTT 2 nucl CAGGTCGAAGCCCTCAAACAAGCCCTAAGAACTATCATTCAACGCCATGAGCCATTGCGT acid ACCAGTTTCCAATCGGTTGACGGGGTTCCAGTGCAGGTGATTAATCCCTATCCTGTTTGG GAATTAGCGATGGTTGATTTGACAGGAAAGGAGACAGAAGCAGAAAAATTGGCCTATCAG GAATCCCAAACCCCGTTTGATTTGACCAATAGTCCTTTGTTGAGGGTAACGCTCCTCAAA TTACAGCCAGAAAAGCATATTTTATTAATTAATATGCACCATATTATTTCCGATGGCTGG TCAATCGGTGTTTTTGTTCGTGAATTGTCCCATCTCTATAGGGCTTTTGTGGCGGGTAAA GAACCAACTTTACCGATTTTACCAATTCAGTATGCGGATTTTGCCGTTTGGCAGCGAGAG TGGTTACAGGGTAAGGTTTTAGCGGCTCAATTGGAATATTGGAAGCGACAATTGGCAGAT GCTCCTCCTCTGCTGGAACTGCCCACTGATCGCCCTCGTCCCGCAATCCAAACCTTTCAA GGCAAGACAGAAAGATTTGAGCTAGATAGGAAACTGACCCAAGAATTAAAGGCATTAAGT CAACAGTCGGGTTGTACTTTATTTATGACTTTGTTGGCCGCTTTTGGGGTGGTTTTATCC CGTTATAGTGGCCAGACTGATATCGTCATTGGTTCGGCGATCGCCAACCGTAATCGCCAA GACATTGAGGGGTTAATTGGCTTTTTTGTTAACACTTTGGCGTTGAGGTTAGATTTATCA SEQ ID ACCTATGGAGAATTAAACCATCGCGCCAATCAATTAGCTCACTATCTTCAGTCGTTAGGA NO. 35 A GTCACCAAAGAACAAATCGTCGGGGTTTATCTGGAACGTTCCCTTGAAATGGCGATCGGA 2 nucl TTTTTAGGTATTCTCAAAGCAGGAGCCGCCTATCTCCCCATTGATCCTGAATATCCCTCA acid GTACGCACCCAATTTATTCTCGAAGATACCCAACTTTCGCTTCTCTTAACTCAGGCAGAA CTGGCAGAAAAACTGCCCCAGACTCAAAACAAAATTATCTGTCTAGATCGGGACTGGCCA GAAATTACCTCCCAACCCCAGACAAACCTAGACCTAAAGATAGAACCTAATAACCTAGCC TATTGCATCTATACTTCTGGTTCCACAGGACAACCCAAAGGAGTACTGATTTCCCATCAA GCCCTACTCAACTTAATTTTCTGGCATCAACAAGCGTTTGAGATTGGCCCCTTACATAAA GCGACCCAAGTGGCAGGCATTGCTTTCGATGCAACGGTTTGGGAATTGTGGCCCTATCTG ACCACAGGAGCCTGTATTAATCTGGTTCCCCAAAATATTCTGCTCTCACCGACGGATTTA CGGGATTGGTTGCTTAACCGAGAAATTACCATGAGTTTTGTGCCAACTCCTTTAGCTGAA AAATTATTATCCTTGGATTGGCCTAACCATTCTTGTCTAAAAACCCTGTTACTGGGAGGT GACAAACTTCATTTTTATCCTGCTGCGTCCCTTCCCTTTCAGGTCATTAACAACTATGGC CCAACGGAAAATACAGTGGTTGCGACCTCTGGACTGGTCAAATCATCTTCATCTCATCAC TTTGGAACTCCGACTATTGGTCGTCCCATTGCCAACGTCCAAATCTATTTATTAGACCAA AACCTACAACCTGTCCCCATTGGTGTACCAGGAGAATTACATTTAGGTGGGGCGGGTTTA GCGCAGGGCTATCTCAATCGTCCTGAGTTAACGGCTGAAAAATTTATTGCCAATCCCTTT GATCCCCCCCTAACCCCCCTTGATAAGGGGGGAGAAGAACCCTCAAAACTCTATAAAACG GGAGACTTAGCCCGTTATTTACCCGATGGCAATGTAGAATTTTTGGGACGTATTGACAAT CAGGTAAAAATTCGGGGTTTTCGCATCGAAACTGGGGAAATCGAAGCCGTTTTAAGTCAA TATTTCCTATTAGCTGAAAGTGTAGTC SEQ ID GCTCAACTGACTCAAATTTGGAGTGAAGTTTTGGGACTGGAACGCATTGGCGTTAAGGAC NO. 36 T AACTTTTTTGAATTGGGAGGACATTCTCTTTTGGCTACCCAGGTTTTATCAAGAATTAAT 2 nucl TCAGCCTTTGGACTTGATCTTTCTGTGCAAATTATGTTTGAATCACCAACGATCGCGGGC acid ATTGCGGGTTATATT SEQ ID GCTAGAGACGGTCATTTACCCCTGTCTTTTGCTCAACAACGTTTATGGTTTTTACATTAT NO. 37 C CTTTCCCCTGATAGTCGTTCCTACAATACCCTGGAAATATTGCAAATTGATGGGAATCTC 3 nucl AATCTGACTGTGCTAGAGCAGAGTTTGGGGGAATTAATTAACCGCCATGAAATTTTTAGA acid ACAACATTCCCCACTGTTTCAGGGGAACCGATTCAGAAAATTGCACTTCCTAGTCGTTTT CAGTTAAAAGTTGATAATTATCAAGATTTAGACGAAAATGAACAATCAGCTAAAATTCAA CAAGTAGCAGAATTGGAAGCAGGACAAGCTTTTGATTTAACGGTGGGGCCACTGATTCAG TTTAAGCTATTGCAATTGAGTCCCCAGAAGTCGGTGCTGCTGTTGAAAATGCACCATATT ATCTATGATGGCTGGTCTTTTGGGATTCTGATTCGGGAATTATCGGCTCTATACGAAGCA TTTTTAAAGAACTTAGCCAATCCTCTCCCTGCGTTGTCTATTCAGTATGCAGATTTTGCG GTTTGGCAACGTCAATATCTCTCAGGTGAGGTCTTAGATAAACAACTCAATTATTGGCAA GAACAGTTAGCAACAGTCTCTCCTGTTCTTACTTTACCAACGGATAGACCCCGTCCGGCG ATACAAACTTTTCAGGGAGGAGTTGAGCGTTTTCAACTGGATCAAAATGTCACTCAAGGT CTTAAAAAGTTAGGTCAAGATCAGGTTGCAACCCTGTTTATGACGTTGTTGGCCGGTTTC GGCGTTTTGCTATCTCGTTATAGTGGTCAATCTGATCTGATGGTGGGTTCTCCGATCGCT AATCGTAATCAAGCAGCGATCGAACCTTTAATTGGCTTTTTTGCTAACACTTTGGCTTTA AGAATTAATTTATCA SEQ ID ACATACACTGAATTAAACCATCGCGCTAATCAGTTAGCCCATTATTTACAAACTTTAGGC NO. 38 A GTGGGAGCAGAAGTCTTAGTCGGTATTTCCCTAGAACGTTCTTTAGAGATGATTATCGGC 3 nucl TTATTAGGGATTCTCAAGGTAGGTGGTGCTTATCTTCCTCTTGATCCAGACTATCCCACT acid GAGCGTCTTCAGTTGATGTTAGAAGACAGTCAAGTTCCTTTTTTGATTACCCACAGTTCT TTATTAGCAAAATTGCCTCCCTCTCAAGCAACTCTGATTTGTTTAGATCATATCCAAGAG CAGATTTCTCAATATTCTCCAGATAATCTTCAATGTCAGTTAACTCCTGCCAATTTAGCT AACGTTATTTATACCTCTGGCTCTACGGGTAAGCCTAAAGGGGTGATGGTTGAACATAAA GGTTTAGTTAACTTAGCTCTTGCTCAAATTCAATCTTTTGCAGTCAACCATAACAGTCGT GTGCTGCAATTTGCTTCTTTTAGTTTTGATGCTTGTATTTCAGAAATTTTGATGACCTTT GGTTCTGGAGCGACGCTTTATCTTGCACAAAAAGATGCTTTATTGCCAGGTCAGCCATTA ATTGAACGGTTAGTAAAGAATGGAATTACTCATGTGACTTTGCCGCCTTCAGCTTTAGTG GTTTTACCCCAGGAACCGTTACGCAACTTAGAAACCTTAATTGTGGCGGGTGAGGCTTGT TCTCTTGATTTAGTGAAACAATGGTCAATCGATAGAAACTTTTTCAATGCCTATGGGCCA ACGGAAGCGAGTGTTTGTGCCACTATTGGACAATGTTATCAAGATGATTTAAAGGTGACG ATTGGTAAGGCGATCGCCAATGTCCAAATTTATATTTTAGATGCCTTTTTACAGCCGGTG CCGGTGGGAGTGTCAGGAGAGTTATACATTGGTGGAGTTGGGGTGGCAAGGGGCTATTTA AATCGTCCTGAATTAACCCAAGAAAAATTTATTGCTAATCCTTTTAGTAACGACCCAGAT TCTCGGCTCTATAAAACTGGCGACTTAGCGCGTTATTTACCCGATGGTAATATTGAATAT TTAGGACGCATTGACAATCAGGTAAAAATTCGCGGTTTTCGCATTGAGTTAGGAGAAATT GAAGCGGTTCTGAGTCAATGTCCCGATGTGCAAAATACGGCGGTG SEQ ID GAAATTCTGGCTCAAATATGGGGGCAAGTTCTCAAGATAGAAAGAGTCAGCAGAGAAGAT NO. 39 T AATTTCTTTGAATTGGGGGGGCATTCCCTTTTAGCTACCCAGGTAATGTCCCGTCTGCGT 3 nucl GAAACTTTTCAAGTCGAATTACCTTTGCGTAGTCTCTTTACCGCTCCCACTATTGCTGAA acid TTGGCCCTAACAATT SEQ ID AACGACAGTGCTAACCTCCCGTTATCTTTTGCTCAACAACGTTTATGGTTTCTGGATCAA NO. 40 C TTAGAACCTAACAGCGCCTTTTATCATGTAGGGGGAGCCGTAAGACTAGAAGGAACATTA 4 nucl AATATTACTGCCTTAGAGCAAAGCTTAAAAGAAATTATTAATCGTCATGAAGCTTTACGC acid ACAAATTTTATAACGATTGATGGTCAAGCCACTCAAATTATTCACCCTACTATTAATTGG CGATTGTCTGTTGTTGATTGTCAAAATTTAACCGACACTCAATCTCTGGAAATTGCGGAA GCTGAAAAGCCCTTTAATCTTGCTCAAGATTGCTTATTTCGTGCTACTTTATTCGTGCGA TCACCGCTAGAATATCATCTACTCGTGACCATGCACCATATTGTTAGCGATGGCTGGTCA ATTGGAGTATTTTTTCAAGAACTAACTCATCTTTACGCTGTCTATAATCAGGGTTTACCC TCATCTTTAACGCCTATTAAAATACAATATGCTGATTTTGCGGTCTGGCAACGGAATTGG TTACAAGGTGAAATTTTAAGTAATCAATTGAATTATTGGCGCGAACAATTAGCAAATGCT CCTGCTTTTTTACCTTTACCGACAGATAGACCTAGGCCCGCAATCCAAACTTTTATTGGT TCTCATCAAGAATTTAAACTTTCTCAGCCATTAAGCCAAAAATTGAATCAACTAAGTCAG AAGCATGGAGTGACTTTATTTATGACTCTCCTGGCTGCTTTTGCTACCTTACTTTACCGT TATACAGGACAAGCAGATATTTTAGTTGGTTCTCCTATTGCTAACCGTAATCGTAAGGAA ATTGAGGGATTAATCGGCTTTTTTGTTAATACATTAGTTCTGAGATTGAGTTTAGAT SEQ ID ACCTATGCTGAATTAAATCATCAAGCTAATCAGTTAGTCCATTACTTACAAACTTTAGGA NO. 41 A ATTGGGCCAGAGGTCTTAGTCGCTATTTCAGTAGAACGTTCTTTAGAAATGATTATCGGC 4 nucl TTATTAGCCATTCTCAAGGCGTGTGGTGCTTATCTCCCTCTTGCTCCTGACTATCCCACT acid GAGCGTCTTCAGTTCATGTTAGAAGATAGTCAAGCTTCTTTTTTGATTACCCACAGTTCT TTATTAGAAAAATTGCCTTCTTCTCAAGCGACTCTAATTTGTTTAGATCACATCCAAGAG CAGATTTCTCAATATTCTCCCGATAATCTTCAAAGTGAGTTAACTCCTTCCAATTTGGCT AACGTTATTTACACCTCTGGCTCTACGGGTAAGCCTAAAGGGGTGATGGTTGAACATCGG GGCTTAGTTAACTTAGCGAGTTCTCAAATTCAATCTTTTGCAGTCAAAAATAACAGTCGT GTACTGCAATTTGCTTCCTTTAGTTTTGATGCTTGTATTTCAGAAATTTTGATGACCTTT GGTTCTGGAGCGACTCTTTATCTTGCTCAAAAAAATGATTTATTGCCAGGTCAGCCATTA ATGGAAAGGTTAGAAAAGAATAAAATTACCCATGTTACTTTACCCCCTTCAGCTTTAGCT GTTTTACCAAAAAAACCGTTACCCAACTTACAAACTTTAATTGTGGCGGGTGAGGCTTGT CCTCTGGATTTAGTCAAACAATGGTCAGTCGGTAGAAACTTTTTCAATGCCTATGGCCCG ACAGAAACGAGTGTTTGTGCCACGATTGGACAATGTTATCAAGATGATTTAAAGGTCACG ATTGGTAAGGCGATCGCTAATGTCCAAATTTATATTTTGGATGCCTTTTTACAACCAGTA CCCATCGGAGTACCAGGGGAATTATACATTGGTGGAGTCGGAGTTGCGAGGGGTTATCTA AATCGTCCTGAATTAACGGCGGAAAGATTTATTCCTAATCCTTTTGATCCCCCCCTAACC CCCCTTAAAAAGGGGGGAGATAAGAGCTATGAAACTTTTAAAAAGGGGGAAGAGCAACCA TCAAAACTCTATAAAACGGGAGATTTAGCTCGTTATTTACCCGATGGCAATATTGAATAT TTAGGACGCATTGACAATCAGGTAAAAATTCGCGGTTTTCGCATTGAGTTAGGAGAAATT GAAGCGGTTCTGAGTCAATGTCCCGATGTGCAAAATACGGCGGTG SEQ ID TTACAATTAGCTCAAATCTGGTCAGAGATTTTAGGCATTAATAATATTGGTATTCAGGAA NO. 42 T AACTTCTTTGAATTAGGCGGTCATTCTTTATTAGCAGTCAGTCTGATCAATCGTATTGAA 4 nucl CAAAAGTTAGATAAACGTTTACCATTAACCAGTCTTTTTCAAAATGGAACCATAGCAAGT acid CTAGCTCAATTACTAG SEQ ID ACTCCATTTTTTGCTGTTCATCCCATTGGTGGTAATGTGCTATGTTATGCCGATTTAGCT NO. 43 CGTAATTTAGGAACGAAACAGCCGTTTTATGGATTACAATCATTAGGGCTAAGTGAATTA TE nucl GAAAAAACTGTAGCCTCTATTGAAGAAATGGCGATGATTTATATTGAAGCAATACAAACT acid GTTCAAGCCTCTGGTCCCTACTATTTAGGAGGTTGGTCAATGGGAGGAGTGATAGCTTTT GAAATCGCCCAACAATTATTGACCCAAGGTCAAGAAGTTGCTTTACTGGCTTTAATAGAT AGTTATTCTCCCAGTTTACTTAATTCAGTTAATAGGGAGAAAAATTCTGCTAATTCCCTG ACAGAAGAATTTAATGAAGATATCAATATTGCCTATTCTTTCATCAGAGACTTAGCAAGT ATATTTAATCAAGAAATCTCTTTCTCTGGGAGTGAACTTGCTCATTTTACATCAGACGAA TTACTAGACAAGTTTATTACTTGGAGTCAAGAGACGAATCTTTTGCCGTCAGATTTTGGG AAGCAGCAGGTTAAAACCTGGTTTAAAGTTTTCCAGATTAATCACCAAGCTTTGAGCAGC TATTCTCCCAAGACGTATCTGGGTAGAAGTGTTTTCTTAGGAGCGGAAGACAGTTCTATT AAAAATCCTGGTTGGCATCAA SEQ ID AGCGGGTCTCAAGACCAAAAAACGATACAGTTTAGCCTCTACTACTTTGGTAGCTATGAA NO. 44 GCGGAATTTAACCCGAATAAATATAACTTACTGTTTGAAGGAGCTAAATTTGGCGATCGC MO nucl GCTGGTTTTACGGCCCTTTGGATTCCTGAACGTCATTTCCACGCTTTTGGTGGTTTTTCT acid CCCAATCCTTCGGTTTTGGCGGCGGCTTTAGCACGGGAAACCAAACAGATTCAACTGCGA TCAGGCAGTGTGGTTTTACCGCTACATAATTCCATCCGAGTCGCCGAAGAATGGGCAGTG GTGGACAATCTTTCCCAGGGCCGCGTTGGTATTGCTTTTGCATCGGGTTGGCATCCCCAG GATTTTGTCTTGGCTCCCCAGTCCTTTGGCCAACATCGGGAATTGATGTTCCAAGAAATT GAAACCGTCCAGAAACTTTGGCGAGGGGAAGCGATCACCGTGCCAGACGGAAAGGGTCAA AGGGTAGAGGTTAAAACCTATCCCCAACCGATGCAGTCCCAGTTACCCAGCTGGATTACT ATTGTCAATAATCCCGATACCTATATCAGAGCAGGGGCGATCGGTGCTAATATCCTTACC AATCTGATGGGGCAAAGCGTGGAAGATTTAGCCCGTAATATTGCGCTATATCGTCAATCT TTGGCAGAGCATGGTTATGATCCCGCGTCGGGAACGGTGACAGTTCTCCTGCATACTTTT GTTGGCAAGGATTTAGAACAAGTTCGAGAACAGGCTCGCCAACCCTTTGGGCAATACCTC ACCTCCTCTGTCGGACTCTTGCAGAACATGGTCAAGAGCCAGGGCATGAAAGTGGATTTT GAACAATTAAGAGACGAAGATCGGGACTTTCTCCTCGCTTCTGCCTATAAACGCTATACA GAAACCAGTGCTTTAATTGGCACACCCGAATCCTGTCGTCAAATTATTGATCATTTGCAG TCCATCGGTGTGGATGAAGTGGCTTGTTTTATTGATTTTGGGGTAGATGAACAAACAGTT TTGGCCAATTTACCCTATCTCCAGTCCCTAAAAGACTTATATCAA SEQ ID ATTGATCCCCCCCTAACCCCCCTTGATAAGGGGATTGATCCCCCCCTAACCCCCCTTGAT NO. 45 AAGGGGATTGATCCCCCCCTAACCCCCCTTGATAAGGGG SP 1 nucl acid SEQ ID CCTTATCAAGGGGGGTTAGGGGGGGATCAATCCCCTTATCAAGGGGGGTTAGGGGGGGAT NO. 46 CAATCCCCTTATCAAGGGGGGTTAGGGGGTGATCAATCCCCTTATCAAGGGGGGTTAGGG SP 2 nucl GGTGATCAATCCCCTTATCAAGGGGGGTTAGGGGGGGATCAATCCCCTTATCAAGGAGAG acid TTAGGGGGGGATCAATCCCCTTATCAAGGGGGGTTAGGGGGGGATCAAGTC SEQ ID CCTGCTTCAGAAATGCGAGAGTGGGTCGAAAACACTGTTAGTCGCATCTTGGCTTTCCAA NO. 47 CCAGAACGCGGTTTAGAAATTGGTTGTGGTACAGGTTTGTTACTCTCCAGGGTAGCAAAG MT nucl CATTGTCTTGAATATTGGGCAACGGATTATTCCCAAGGGGCGATCCAGTATGTTGAACGG acid GTTTGCAATGCCGTTGAAGGTTTAGAACAGGTTAAATTACGCTGTCAAATGGCAGATAAT TTTGAAGGTATTGCCCTACATCAATTTGATACCGTCGTCTTAAATTCGATTATTCAGTAT TTTCCCAGTGTGGATTATCTGTTACAGGTGCTTGAAGGGGCGATCAACGTCATTGGCGAG CGAGGTCAGATTTTTGTCGGGGATGTGCGGAGTTTACCCCTATTAGAGCCATATCATGCG GCTGTGCAATTAGCCCAAGCTTCTGACTCGAAAACTGTTGAACAATGGCAACAACAGGTG CGTCAAAGTGTAGCAGGTGAAGAAGAACTGGTCATTGATCCCACATTGTTCCTGGCTTTA AAACAACATTTTCCGCAAATTAGCTGGGTAGAAATTCAACCGAAACGGGGTGTGGCTCAC AATGAGTTAACTCAATTTCGCTATGATGTCACTCTCCATTTAGAGACTATCAATAATCAA GCATTATTGAGCGGCAATCCAACGGTAATTACCTGGTTAAATTGGCAACTTGACCAACTG TCTTTAACACAAATTAAAGATAAATTATTAACAGACAAACCTGAATTGTGGGGAATTCGT GGTATTCCTAATCAGCGAGTTGAAGAGGCTCTAAAAATTTGGGAATGGGTGGAAAATGCC CCTGATGTTGAAACGGTTGAACAACTCAAAAAACTTCTCAAACAACAAGTAGATACTGGT ATTAATCCTGAACAGGTTTGGCAATTAGCTGAGTCTCTCGGTTACACCGCTCACCTTAGT TGGTGGGAAAGTAGTCAAGACGGTTCCTTTGATGTCATTTTTCAGCGGAATTCAGAAGCG GAGGACTCAAAAAAATTAACCCTTTCAAAACTTGCTTTCTGGGATGAAAAACCCTTTAAA ATAAAGCCCTGGAGTGACTATACTAACAACCCTCTGCGCGGTAAGTTAGTCCAAAAATTA ATTCCT SEQ ID ATGACAAATTATGGCAAATCTATGTCTCATTACTATGATCTAGTGGTAGGACATAAAGGT NO. 48 TATAACAAAGATTACGCCACTGAAGTAGAATTCATTCACAATTTAGTTGAGACTTACACA MT 2 ACTGAAGCCAAATCTATCCTATACTTGGGCTGTGGTACGGGTTATCATGCCGCTCTTTTA nucl acid GCACAGAAAGGGTATTCTGTACATGGTGTTGATCTCAGTGCTGAAATGTTAGAGCAGGCT AAAACTCGCATTGAAGATGAAACAATAGCTTCTAATCTGAGTTTTTCTCAAGGAAATATT TGTGAAATCCGTTTAAATCGTCAGTTTAATGTTGTTCTTGCTCTATTTCATGTGGTTAAC TATCAAACGACCAATCAAAATTTACTGGCAACGTTTGCAACGGTTAAAAACCATTTAAAA GCTGGGGGGATTTTTATTTGTGATGTGTCCTATGGGTCTTACGTACTGGGGGAATTTAAG AGTCGGCCTACGGCATCAATATTGCGTTTAGAGGATAATTCCAATGGTAACGAAGTAACC TATATTAGTGAACTAAATTTTTTAACCCATGAAAATATAGTGGAAGTTACTCACAATTTA TGGGTAACAAATCAAGAAAATCAACTTCTAGAGAATTCACGGGAAACACATCTTCAGCGC TATCTTTTCAAGCCTGAAGTTGAATTGTTGGCTGATGCTTGTGAACTAACTGTTCTTGAT
GCGATGCCCTGGCTTGAACAACGTCCTTTGACAAACATTCCTTGTCCTTCAGTTTGTTTT GTTATTGGGCATAAAACAACCCATTCAGCTTAA SEQ ID CCGACCTGTGATAAACAATTC NO. 49 Primer A SEQ ID CKNCCDGTDATRAANARYTC NO. 50 Primer B SEQ ID TTCAATATCCTGGGGATA NO. 51 Primer C SEQ ID YTCDATRTCYTGNGGRTA NO. 52 Primer D SEQ ID CGTTGGTTACAGGCCCTTTCT NO. 53 Primer E SEQ ID MGNTGGYTNCARGCNYTNWS NO. 54 Primer F SEQ ID TTAGACTTAAGCCATTGG NO. 55 Primer G SEQ ID YTNGAYYTNWSNCAYTGG NO. 56 Primer H SEQ ID CATAGAAGAATCGAGACCATATTC NO. 57 Primer I SEQ ID CATNSWNSWRTCNARNCCRTAYTC NO. 58 Primer J SEQ ID MTTQTASSANALASFNQFLRDVKAIAQPYWYPTVSNKRSFSEVIRSWGMLSLLIFLIVGL NO. 59 VAVTAFNSFVNRRLIDVIIQEKDASQFASTLTVYAIGLICVTLLAGFTKDIRKKIALDWY ABC QWLNTQIVEKYFSNRAYYKINFQSDIDNPDQRLAQEIEPIATNAISFSATFLEKSLEMLT Transporter FLVVVWSISRQIAIPLMFYTIIGNFIAAYLNQELSKINQAQLQSKADYNYALTHVRTHAE SIAFFRGEKEEQNIIQRRFQEVINDTKNKINWEKGNEIFSRGYRSVIQFFPFLVLGPLYI KGEIDYGQVEQASLASFMFASALGELITEFGTSGRFSSYVERLNEFSNALETVTKQAENV STITTIEENHFAFEHVTLETPDYEKVIVEDLSLTVQKGEGLLIVGPSGRGKSSLLRAIAG LWNAGTGRLVRPPLEEILFLPQRPYIILGTLREQLLYPLTNSEMSNTELQAVLQQVNLQN VLNRVDDFDSEKPWENILSLGEQQRLAFARLLVNSPSFTILDEATSALDLTNEGILYEQL QTRKTTFISVGHRESLFNYHQWVLELSADSSWELLSVQDYRLKKAGEMFTNASSNNSITP DITIDNGSEPEIVYSLEGFSHQEMKLLTDLSLSSIRSKASRGKVITAKDGFTYLYDKNPQ ILKWLR SEQ ID ATGACAACCCAAACAGCTTCTAGTGCCAATGCCCTTGCTTCCTTTAACCAATTTTTAAGG NO. 60 GATGTAAAGGCGATCGCCCAACCCTATTGGTATCCCACTGTATCAAATAAAAGAAGCTTT ABC TCTGAGGTTATTCGTTCCTGGGGAATGCTATCACTGCTTATCTTTTTGATTGTGGGATTA Transporter GTCGCCGTCACGGCTTTTAATAGTTTTGTTAATCGTCGTTTAATTGATGTCATTATTCAA Nucl acid GAAAAAGATGCGTCTCAATTTGCCAGTACATTAACTGTCTATGCGATCGGATTAATCTGT GTAACGCTGCTGGCAGGGTTCACTAAAGATATTCGCAAAAAAATTGCCCTAGATTGGTAT CAATGGTTAAACACCCAGATTGTAGAGAAATATTTTAGTAATCGTGCCTATTATAAAATT AACTTTCAATCTGACATTGATAACCCCGATCAACGTCTAGCCCAGGAAATTGAACCGATC GCCACAAACGCCATTAGTTTCTCGGCCACTTTTTTGGAAAAAAGTTTGGAAATGCTAACT TTTTTAGTGGTAGTTTGGTCAATTTCTCGACAGATTGCTATTCCGCTAATGTTTTACACG ATTATCGGTAATTTTATTGCCGCCTATCTAAATCAAGAATTAAGCAAGATCAATCAGGCA CAACTGCAATCAAAAGCAGATTATAACTATGCCTTAACCCATGTTCGGACTCATGCGGAA TCTATTGCTTTTTTTCGGGGAGAAAAAGAGGAACAAAATATTATTCAGCGACGTTTTCAG GAAGTTATCAATGATACGAAAAATAAAATTAACTGGGAAAAAGGGAATGAAATTTTTAGT CGGGGCTATCGTTCCGTCATTCAGTTTTTTCCTTTTTTAGTCCTTGGCCCTTTGTATATT AAAGGAGAAATTGATTATGGACAAGTTGAGCAAGCTTCATTAGCTAGTTTTATGTTTGCA TCGGCCCTGGGAGAATTAATTACAGAATTTGGTACTTCAGGACGTTTTTCTAGTTATGTA GAACGTTTAAATGAATTTTCTAATGCCTTAGAAACTGTGACTAAACAAGCCGAGAATGTC AGCACAATTACAACCATAGAAGAAAATCATTTTGCCTTTGAACACGTCACCCTAGAAACC CCTGACTATGAAAAGGTGATTGTTGAGGATTTATCTCTTACTGTTCAAAAAGGTGAAGGA TTATTGATTGTCGGGCCCAGTGGTCGAGGTAAAAGTTCTTTATTAAGGGCGATCGCCGGT TTATGGAATGCTGGCACTGGGCGTTTAGTGCGTCCTCCCCTAGAAGAAATTCTCTTTTTG CCCCAACGTCCCTACATTATTTTGGGAACCTTACGCGAACAATTGCTGTATCCTCTAACC AATAGTGAGATGAGCAATACCGAACTTCAAGCAGTATTACAACAAGTCAATTTGCAAAAT GTGCTAAATCGGGTGGATGACTTTGACTCCGAAAAACCCTGGGAAAACATTCTCTCCCTC GGTGAACAACAACGCCTAGCCTTTGCTCGATTGTTAGTGAATTCTCCGAGTTTTACCATT TTAGATGAGGCGACCAGTGCCTTAGATTTAACAAATGAGGGGATTTTATACGAGCAATTA CAAACTCGCAAGACAACCTTTATTAGTGTGGGTCATCGAGAAAGTTTGTTTAATTACCAT CAATGGGTTTTAGAACTTTCTGCTGACTCTAGTTGGGAACTCTTAAGCGTTCAAGATTAT CGCCTTAAAAAAGCGGGAGAAATGTTTACTAATGCTTCGAGTAACAATTCCATAACACCC GATATTACTATCGATAATGGATCAGAACCAGAAATAGTCTATTCTCTTGAAGGATTTTCC CATCAGGAAATGAAACTATTAACAGACCTATCACTCTCTAGCATTCGGAGTAAAGCCAGT CGAGGGAAGGTGATTACAGCCAAGGATGGTTTTACCTACCTTTATGACAAAAATCCTCAG ATATTAAAGTGGCTCAGAACTTAA
[0082]In one embodiment the entire gene cluster is transformed and expressed in a heterologous system. SEQ ID NO. 61 encompasses the genes of said cluster.
TABLE-US-00002 1-27260 ATGACTATTAACTATGGTGATCTGCAAGAACCCTTTAATAAATTCTCAACCCTAGTTGAA Microginin- TTACTCCGTTATCGGGCAAGCAGTCAACCGGAACGCCTCGCCTATATTTTTCTGCGAGAC Cluster GGAGAAATCGAAGAAGCTCGTTTAACCTATGGGGAACTGGATCAAAAGGCTAGGGCGATC 1-1743 GCCGCTTATCTACAATCCTTAGAAGCCGAGGGCGAAAGGGGTTTACTGCTCTATCCCCCA Adenylation- GGACTAGATTTTATTTCAGCTTTTTTTGGTTGTTTATATGCGGGAGTCGTTGCCATTCCC Protein (A*) GCCTATCCACCCCGACGGAATCAAAACCTTTTGCGTTTACAGGCGATTATTGCCGATTCT 1892-2158 CAAGCCCGATTTACCTTCACCAATGCCGCTCTATTTCCCAGTTTAAAAAACCAATGGGCT Acyl-Carrier- AAAGACCCTGAATTAGGAGCAATGGAATGGATTGTTACCGATGAAATTGACCATCACCTC Protein (ACP) AGGGAGGATTGGCTAGAACCAACCCTCGAAAAAAACAGTCTCGCTTTTCTACAATACACC 2204-3016 TCTGGTTCAACGGGAACTCCAAAGGGAGTAATGGTCAGTCACCATAATTTGTTGATTAAT Methyltransferase TCAGCCGATTTAGATCGTGGTTGGGGCCATGATCAAGATAGCGTAATGGTCACTTGGCTA (MT) CCGACCTTCCATGATATGGGTCTGATTTATGGGGTTATTCAGCCTTTGTACAAAGGATTT 3464-13123 CTTTGTTACATGATGTCCCCTGCCAGCTTTATGGAACGACCGTTACGTTGGTTACAGGCC PKS/NRPS (KS-AT- CTTTCTGATAAAAAAGCAACCCATAGTGCGGCCCCCAACTTTGCCTACGATCTTTGTGTG ACP-AMT-MO-C-A-T) CGGAAAATTCCCCCTGAAAAACGGGCTACGTTAGACTTAAGCCATTGGTGCATGGCCTTA 13120-17832 AATGGGGCCGAACCCGTCAGAGCGGAGGTACTTAAAAAGTTTGCGGAGGCTTTTCAAGTT NRPS 2 (C-A-Mt-T) TCTGGTTTCAAAGCCACAGCCCTTTGTCCTGGCTACGGTTTAGCAGAAGCCACCCTGAAA 17836-25194 GTTACGGCGGTTAGTTATGACAGTCCCCCTTACTTTTATCCCGTTCAGGCTAATGCTTTA NRPS 3 (C-A-T-C- GAAAAAAATAAGATTGTGGGAGCCACTGAAACCGATACCAATGTGCAGACCCTCGTGGGC A-T) TGCGGCTGGACAACGATTGATACTCAAATCGTCATTGTCAATCCTGAAACCCTGAAACCT 25257-27260 TGCTCCCCTGAAATTGTCGGCGAAATTTGGGTATCAGGTTCAACAATCGCCCAAGGCTAT ABC-Transporter TGGGGAAAACCTCAAGAGACTCAGGAAACCTTTCAAGCTTATTTGGCAGATACAGGAGCC (ABC) GGGCCTTTTCTGCGAACAGGAGACTTGGGCTTCATTAAAGATGGTGAATTGTTTATCACA GGTCGGCTCAAGGAAATTATTCTGATTCGAGGACGCAATAATTATCCCCAGGATATTGAA TTAACCGTCCAAAATAGTCATCCCGCTCTGCGTCCCAGTTGTGGGGCTGCTTTTACCGTT GAAAATAAGGGCGAAGAAAAGCTCGTGGTCGTTCAGGAAGTGGAGCGCACCTGGCTCCGT AAGGTAGATATAGATGAGGTAAAAAGAGCCATTCGTAAAGCTGTTGTCCAGGAATATGAT TTACAGGTTTATGCGATCGCGCTGATCAGGACTGGCAGTTTACCAAAAACCTCTAGCGGT AAAATTCAGCGTCGTAGCTGTCGGGCCAAATTTTTAGAGGGAAGCCTGGAAATTTTGGGC TAAGAAAATTTCTCGATCGGCACTTAATGTGTTAAATTCGTATGTCGATTGAAACTTCGA CCAATTCTTTCTCTCCCCTTAAGTCCATGTCTCTGGATTTGAAAATTCCTTAAACTTTAA CTACATTTCTCAAGAAAGCAAATTGAATCTAATGTCCACAGAAATCCCAAACGACAAAAA ACAACCGACCCTAACGAAAATTCAAAACTGGTTAGTGGCTTACATGACAGAGATGATGGA AGTGGACGAAGATGAGATTGATCTGAGCGTTCCCTTTGATGAATATGGTCTCGATTCTTC TATGGCAGTTGCTTTGATCGCTGATCTAGAGGATTGGTTACGACGAGATTTACATCGCAC CCTGATCTACGATTATCCAACTCTAGAAAAGTTGGCTAAACAGGTTAGTGAACCCTGACA TTTTTATAAAGTTTGTGCTTAAAAATTTTGAGGAAGTTCTAAAATGACAAATTATGGCAA ATCTATGTCTCATTACTATGATCTAGTGGTAGGACATAAAGGTTATAACAAAGATTACGC CACTGAAGTAGAATTCATTCACAATTTAGTTGAGACTTACACAACTGAAGCCAAATCTAT CCTATACTTGGGCTGTGGTACGGGTTATCATGCCGCTCTTTTAGCACAGAAAGGGTATTC TGTACATGGTGTTGATCTCAGTGCTGAAATGTTAGAGCAGGCTAAAACTCGCATTGAAGA TGAAACAATAGCTTCTAATCTGAGTTTTTCTCAAGGAAATATTTGTGAAATCCGTTTAAA TCGTCAGTTTAATGTTGTTCTTGCTCTATTTCATGTGGTTAACTATCAAACGACCAATCA AAATTTACTGGCAACGTTTGCAACGGTTAAAAACCATTTAAAAGCTGGGGGGATTTTTAT TTGTGATGTGTCCTATGGGTCTTACGTACTGGGGGAATTTAAGAGTCGGCCTACGGCATC AATATTGCGTTTAGAGGATAATTCCAATGGTAACGAAGTAACCTATATTAGTGAACTAAA TTTTTTAACCCATGAAAATATAGTGGAAGTTACTCACAATTTATGGGTAACAAATCAAGA AAATCAACTTCTAGAGAATTCACGGGAAACACATCTTCAGCGCTATCTTTTCAAGCCTGA AGTTGAATTGTTGGCTGATGCTTGTGAACTAACTGTTCTTGATGCGATGCCCTGGCTTGA ACAACGTCCTTTGACAAACATTCCTTGTCCTTCAGTTTGTTTTGTTATTGGGCATAAAAC AACCCATTCAGCTTAAATTCTGCTAAAAAAAATCCAACTTACCTTATTCTCTGAAACCAC ACAAGCCATGAATACAATTCAAGATGCCAAGACCGAAAATTACTCAATCTTAAATCAGTC AATTCCAAGACCTCTCAAACTGAGTAATATCCTATTACGATAAGATTTTGCGTTCTCCTT TGTTTGGAATGTCAGCAGAGGAGTCTCTATATTGGCTAGAGAAATGTTTATGTCAAGAGC ATCAGGGCTTCGATGTACAAGTTAAGTATCATCAAAAAATGCTGAAGAATATGTTACGTT TGACCGATAGTTTGGATTATCTATGGCCAGTTAACCGTGAAATGCGGCTCATGAAAGCTG GGGGGTCAATTGAACGGGCGATCACCAATAACATTAAAGCTTTTCTTCAATTTAAAGAAA CTGTAACCGTATTAAATTAGAAAAACCGCAGTGAGGAATTTGAATGGAACCCATCGCAAT TATTGGTCTTGCTTGCCGCTTTCCAGGGGCTGACAATCCAGAAGCTTTCTGGCAACTCAT GCGAAATGGGGTGGATGCGATCGCCGATATTCCTCCTGAACGTTGGGATATTGAGCGTTT CTACGATCCCACACCTGCCACTGCCAAGAAGATGTATAGTCGCCAGGGCGGTTTTCTAAA AAATGTCGATCAATTTGACCCTCAATTTTTCCGAATTTCTCCCCTAGAAGCCACCTATCT AGATCCTCAACAAAGACTGCTACTGGAAGTCACCTGGGAAGCCTTAGAAAATGCTGCCAT TGTGCCTGAAACCTTAGCTGGTAGCCAATCAGGGGTTTTTATTGGTATCAGTGATGTGGA TTATCATCGTTTGGCTTATCAAAGTCCTACTAACTTGACCGCCTATGTGGGTACAGGCAA CAGCACCAGTATTGCGGCTAACCGTTTATCATATCTGTTTGATTTGCGTGGCCCCAGTTT GGCCGTAGATACCGCTTGCTCTTCTTCCCTCGTCGCCGTTCACTTGGCCTGTCAGAGTTT GCAAAGTCAAGAATCGAACCTCTGCTTAGTGGGGGGAGTTAATCTCATTTTGTCGCCAGA GACAACCGTTGTTTTTTCCCAAGCGAGAATGATCGCCCCCGACAGTCGTTGTAAAACCTT TGACGCGAGGGCCGATGGTTATGTGCGCTCGGAAGGCTGTGGAGTAGTCGTACTTAAACG TCTTAGGGATGCCATTCAGGACGGCGATCGCATTTTAGCAGTGATTGAAGGTTCCGCGGT GAATCAGGATGGTTTAAGTAATGGACTCACGGCCCCTAATGGCCCTGCTCAACAGGCGGT GATTCGTCAGGCCCTGGCAAATGCCCAGGTAAAACCGGCCCAGATTAGCTATGTCGAAGC CCATGGCACGGGGACAGAATTGGGGGATCCGATCGAAGTTAAATCTCTGAAAGCGGTTTT GGGTGAAAAGCGATCGCTCGATCAAACCTGTTGGCTCGGTTCTGTGAAAACCAACATTGG TCATTTAGAAGCGGCGGCGGGAATGGCGGGTCTGATTAAAGTCGTTCTCTGCCTACAACA CCAAGAAATTCCCCCTAATCTCCACTTTCAAACCCTTAATCCCTATATTTCCCTAGCTGA CACAGCTTTTGCGATTCCCACTCAGGCTCAACCCTGGCGGACCAAACCCCCTAAGTCTGG TGAAAACGGTGTCGAACGACGTTTAGCAGGACTCAGTTCCTTTGGGTTTGGGGGGACAAA TTCCCATGTGATTCTCAGCGAAGCCCCTGTCACCGTTAAAAACAATCAACAAAATGGGCA GAAGTTGATAGAACGTCCCTGGCATTTGCTGACTTTATCTGCCAAGAATGAAGAAGCCTT AAAAGCCTTAGTCCATTGTTATCAAAAGTATTTAGCTGATCATCATGAAATTCCTCTCGC TGATGTTTGTTTTACGGCCAATAGTCGGCGATCGCACTTTAATCATCGTTTAGGAGTAGT GGCTAGAGATCGCTTAGAAATGTTGCAGAAGTTAGAGAACTTTAGTAACCAAGAAAGGAT GAGAGAACCGAAGAGTATTAACAAAAAGAAAAAACCTAAAATTGTTTTTCTATTTGCCGG TCAAGGTTCTCAATATGTAGGTATGGGTCGTCAACTGTACGAAACCCAACCCATCTTTCG CCAAACCTTGGATCGCTGTGCTGAAATCCTGCGACCCCATTTAGATCAACCCCTCTTAGA AATTCTTTATCCTGCTGACCCAGAAGCCGAAACAGCGAGTTTTTACCTAGAGCAGACTGC CTATACCCAACCCACTTTATTCGCATTCGAGTATGCCCTAGCACAGTTATGGCGTTCCTG GGGAATAGAACCGGCGGCAGTAATTGGTCACAGTGTCGGTGAATATGTGGCGGCCACCGT TGCCGGAGCCTTAAGTCTAGAAGAAGGATTAACGCTAATTGCCAAACGGGCAAAACTGAT GCAGTCTCTCCCCAAGAATGGGACAATGATCGCCGTTTTTGCCGCAGAAGAGCGGGTTAA AGCTGTTATTGAGCCTTATAGGACTGATGTAGCGATCGCTGCTGTTAATGGACCAGAAAA TTTTGTTATTTCAGGAAAAGCGCCGATTATTGCTGAGATTATCATTCATTTAACGGCAGC AGGAATAGAAGTTCGTCCTCTCAAAGTTTCCCATGCTTTTCACTCGCACCTGTTGGAGCC AATTTTAGATTCCTTAGAACAGGAAGCTGCTGCTATTTCCTACCAACCCCTGCAAATTCC CTTAGTTGCTAATTTAACGGGGGAAGTTCTACCAGAAGGAGCAACGATTGAGGCTCGTTA CTGGCGAAATCATGCACGCAACCCTGTACAATTTTATGGGAGTATCCAAACGCTGATCGA GCAGAAATTCAGTCTTTTTTTAGAAGTTAGCCCTAAACCGACTTTATCTCGATTGGGTCA ACAATGTTGTCCAGAAAGATCGACCACTTGGCTATTTTCCCTCGCCCCTCCTCAAGAAGA AGAACAAAGCCTACTAAATAGTTTGGCGATTCTCTATGATTCCCAAGGAGCCGAAATAAA CTGGGAAGGGTTTAATCAAAATTATCCCCACCATTTACTGGCTCTACCGACCTATCCTTT TCAACGTCAACGCTATTGGCTTGAAACCGGTAAACCGACTTCTGAAGAAACAACCATGAC GACCAATGCCACTAATGTCCAAGCTATCTCCAGCCATCAAAAACAACAGGAGATTCTAAT CACATTGCAAACCCTAGTGGGAAATTTACTGCAATTGTCCCCTGCTGATGTCAATGTTCA TACACCTTTCCTGGAGATGGGGGCAGATTCCATTGTCATGGTTGAGGCGGTCAGACGGAT TGAGAATACCTATAACGTTAAAATTGCTATGCGTCAGTTATTTGAGGAGTTATCTACTTT AGATGCTTTAGCTACTTATTTAGCTCAAAATCCGGCTACTGATTGCCAAACTGCTCAAAT TAATACCGAGGTGTTTTCTGCGCCCATTGCCTGCTCAAATAACCGATCGCCCAATGTCGT GCTGAGTTCTAATACCAACGGCTTTCAACGTCAAACAGCTTCTCCAGGTTTTTCGGCGAT CGCCCCCCTTGCAGGAATGGGAGGAGCAGGGGAAATGGGAGGAGTTGAAGTGCCTCAAGT TTCTGTGCCACAAACCAGTGCGGTAACAGCCTCAGGTTCAACCGTTTCTAGTTCTGCCCT GGAAAACATTATGGGTCAACAGTTACAACTGATGGCCAAACAGTTAGAAGTCTTGCAAAC GGCCAATTTTGCCCCGACGACTCCCCGAACCACAGAAAATTCCCCATCTTCCGTCAGTCA AAATAGGTCAAACGGACTTACACAACAGTTAATTCCCCCCCAGCAATTAGCGGCGAACCT AGAGCCAATAGCCAGTCGCACCCGTCAAACCAGCAATCAAGCTTCTGCTCCTAAACCGAC AGTAACAGCCACTCCCTGGGGGCCGAAAAAACCACCCACAGGTGGATTCACTCCCCAACA ACAGCAACATCTAGAGGCATTAATTGCTCGCTTTACGGAACGTACCAAAACCTCTAAGCA AATTGTGCAAAGCGATCGCCTGCGTTTAGCAGATAGTCGAGCCTCGGTCGGATTCCGTAT GTCTATTAAAGAGATGCTTTATCCCATTGTGGCCCAACGTTCTCAAGGATCAAGAATTTG GGATGTGGACGGTAATGAATATATTGATATGACGATGGGGCAAGGGGTAACGCTGTTTGG GCATCAACCAGACTTCATTATGTCGGCCCTACAAAGCCAACTCACTGAAGGCATTCATCT CAATCCGCGATCGCCAATTGTGGGAGAAGTGGCCGCCTTAATTTGTGAACTAACAGGAGC CGAACGAGCTTGTTTTTGCAACTCTGGAACCGAAGCCGTAATGGCCGCTATTCGTATCGC CAGGGCAACAACAGGTCGGAGTAAAATTGCCCTCTTTGAAGGCTCCTATCATGGACATGC GGACGGAACCCTTTTTAGGAACCAAATTATTGATAACCAACTCCACTCTTTTCCCCTAGC TCTAGGCGTTCCCCCCAGCCTTAGTTCCGATGTGGTGGTATTGGACTATGGCAGTGCGGA AGCTCTGAACTATTTACAAACCCAGGGGCAGGATTTAGCGGCGGTCTTAGTAGAACCAAT TCAAAGTGGCAATCCTCTACTCCAACCCCAACAATTTCTCCAAAGTCTGCGACAAATTAC CAGTCAAATGGGCATTGCCCTGATTTTTGATGAAATGATTACGGGTTTTCGATCGCACCC AGGGGGAGCGCAAGCTTTATTTGGAGTACAGGCGGATATTGCCACCTATGGCAAAGTAGT TGCGGGAGGAATGCCCATTGGAGTTATTGCAGGTAAGGCCCATTATCTGGACAGCATTGA CGGGGGAATGTGGCGTTATGGCGATAAATCCTATCCTGGGGTGGACAGAACCTTTTTTGG GGGAACCTTTAATCAGCATCCGTTAGCAATGGTAGCGGCTAGGGCTGTCCTGACCCATTT AAAGGAGCAGGGGCCAGGTCTGCAACAACAATTAACTGAACGCACTGCGGCCTTAGCCGA TACACTGAATCATTATTTTCAAGCCGAAGAAGTTCCTATTAAAATCGAACAGTTTAGTTC TTTCTTCCGGTTTGCCCTCTCTGGCAATTTGGATTTACTTTTCTATCACATGGTAGAAAA AGGTATTTATGTCTGGGAATGGCGTAAACATTTTCTTTCAACCGCCCATACGGAAGCCGA TCTTGCCCAATTTGTCCAAGCGGTTAAGGATAGCATCACAGAATTGCGTCAGGGAGGTTT TATCCCCGCAAAAAAGCCTTCCTGGCCAGTGCCAACGCCTCAAATTGATCCCCCCCTAAC CCCCCTTGATAAGGGGATTGATCCCCCCCTAACCCCCCTTGATAAGGGGATTGATCCCCC CCTAACCCCCCTTGATAAGGGGGGAGATGTTGATGTCGCGCTTGATAAGGGAGGAAATTC TCATTCTGTTAGGGACAGTAAGTTAGGGAAAGGGAGCGGGTCTCAAGACCAAAAAACGAT ACAGTTTAGCCTCTACTACTTTGGTAGCTATGAAGCGGAATTTAACCCGAATAAATATAA CTTACTGTTTGAAGGAGCTAAATTTGGCGATCGCGCTGGTTTTACGGCCCTTTGGATTCC TGAACGTCATTTCCACGCTTTTGGTGGTTTTTCTCCCAATCCTTCGGTTTTGGCGGCGGC TTTAGCACGGGAAACCAAACAGATTCAACTGCGATCAGGCAGTGTGGTTTTACCGCTACA TAATTCCATCCGAGTCGCCGAAGAATGGGCAGTGGTGGACAATCTTTCCCAGGGCCGCGT TGGTATTGCTTTTGCATCGGGTTGGCATCCCCAGGATTTTGTCTTGGCTCCCCAGTCCTT TGGCCAACATCGGGAATTGATGTTCCAAGAAATTGAAACCGTCCAGAAACTTTGGCGAGG GGAAGCGATCACCGTGCCAGACGGAAAGGGTCAAAGGGTAGAGGTTAAAACCTATCCCCA ACCGATGCAGTCCCAGTTACCCAGCTGGATTACTATTGTCAATAATCCCGATACCTATAT CAGAGCAGGGGCGATCGGTGCTAATATCCTTACCAATCTGATGGGGCAAAGCGTGGAAGA TTTAGCCCGTAATATTGCGCTATATCGTCAATCTTTGGCAGAGCATGGTTATGATCCCGC GTCGGGAACGGTGACAGTTCTCCTGCATACTTTTGTTGGCAAGGATTTAGAACAAGTTCG AGAACAGGCTCGCCAACCCTTTGGGCAATACCTCACCTCCTCTGTCGGACTCTTGCAGAA CATGGTCAAGAGCCAGGGCATGAAAGTGGATTTTGAACAATTAAGAGACGAAGATCGGGA CTTTCTCCTCGCTTCTGCCTATAAACGCTATACAGAAACCAGTGCTTTAATTGGCACACC CGAATCCTGTCGTCAAATTATTGATCATTTGCAGTCCATCGGTGTGGATGAAGTGGCTTG TTTTATTGATTTTGGGGTAGATGAACAAACAGTTTTGGCCAATTTACCCTATCTCCAGTC CCTAAAAGACTTATATCAACCTCATCTCCCCCCTTATCAAGGGGGGTTAGGGGGGGATCA ATCCCCTTATCAAGGGGGGTTAGGGGGGGATCAATCCCCTTATCAAGGGGGGTTAGGGGG TGATCAATCCCCTTATCAAGGGGGGTTAGGGGGTGATCAATCCCCTTATCAAGGGGGGTT AGGGGGGGATCAATCCCCTTATCAAGGAGAGTTAGGGGGGGATCAATCCCCTTATCAAGG GGGGTTAGGGGGGGATCAAGTCCCTCTCACCGAAGCCCAACGACAACTGTGGATTTTGGC TCAATTAGGAGACAACGGCTCTGTGGCCTATAACCAATCAGTGACATTGCAATTAAGTGG CCCATTAAATCCCGTCGCAATGAATCAAGCTATTCAACAAATCAGCGATCGCCATGAAGC GTTACGAACCAAAATTAATGCCCAGGGAGATAGTCAAGAAATCCTGCCCCAGGTCGAAAT TAACTGCCCTATCTTAGACTTCAGTCTTGACCAAGCTTCGGCCCAACAGCAAGCAGAACA ATGGTTAAAGGAAGAAAGTGAAAAACCCTTTGATTTGAGCCAGGGTTCTCTCGTGCGTTG GCATCTACTCAAATTAGAACCAGAATTACATTTGTTAGTATTAACGGCCCATCACATTAT CAGTGACGGTTGGTCAATGGGGGTAATCCTTCGGGAATTAGGAGAGTTATATTCAGCCAA ATGTCAGGGTGTTACGGCTAATCTTAAAACCCCAAAACAGTTTCGAGAATTGATTGAATG GCAAAGCCAGCCAAGCCAAGGGGAAGAACTGAAAAAACAGCAAGCCTATTGGTTAGCAAC CCTTGCCGATCCCCCTGTTTTGAATTTACCCACTGACAAACCTCGTCCAGCTTTACCCAG TTACCAAGCTAATCGTCGAAGTCTAACTTTAGATAGCCAATTTACAGAAAAACTAAAGCA ATTTAGTCGTAAACAGGGCTGTACCTTGCTGATGACCCTGTTATCGGTTTATAACATTCT CGTTCATCGTTTGACGGGACAGGATGATATTCTGGTGGGTCTGCCAGCCTCTGGACGGGG GCTTTTAGATAGTGAAGGTATGGTGGGTTATTGCACCCATTTTTTACCAATTCGCAGTCA ATTAGCAGGTAATCCCACTTTTGCTGAATATCTCAAACAAATGCGGGGGGTTTTGTTGTC GGCTTATGAACATCAGGACTATCCCTTTGCTCTTTTGCTCAATCAGTTAGATTTACCGCG TAATACCAGTCGCTCTCCTTTAATTGATGTCAGTTTCAATTTAGAACCAGTTATTAACCT ACCCAAAATGAAAGGATTAGAGATTAGTTTGTTGCCTCAAAGTGTAAGTTTTAAGGATCG AGATTTGCATTGGAATGTGACAGAAATGGGTGGAGAAGCTCTGATTGATTGTGACTACAA TACAGACTTATTTAAAGATGAAACGATTCAGCGTTGGTTAGGCCATTTTCAAACCTTACT TGAGGCAGTTATTAATGATTCGCAACAAAATCTGCGGGAATTACCCTTATTAAGTTCTGC TGAACGACAACAGTTATTAGTGGATTGGAATCAAACCAAGACCGACTATCCCCAAGATCA GTGTATTCATCAATTATTTGAAGCGCAAGTTGAACGGACTCCCGATGCGATTGCGGTGGT ATTTGAAACTCAACAATTAACTTACAGTGAATTAAATTGTCGAGCCAATCAGTTAGCACA TTATTTACAAAAATTAGGAGTTGGGCCAGAGGTCTTAGTCGGTATTTTGGTCGAACGTTC TTTAGAAATGATTGTCGGATTGTTAGGGATTCTCAAGGCTGGGGGAGCCTATGTACCTCT TGATCCTGACTATCCCCCTGAACGTCTTCAATTTATGTTAGAAGATAGTCAATTTTTTCT CCTCTTAACCCAACAGCATTTACTGGAATCTTTTGCTCAGTCTTCAGAAACGGCTACTCC CAAGATTATTTGTTTGGATAGCGACTACCAAATTATTTCCCAGGCAAAGAATATTAATCC CGAAAATTCAGTCACAACGAGTAATCTTGCCTATGTAATTTATACCTCTGGTTCGACAGG TAAACCGAAGGGCGTGATGAATAATCATGTTGCTATTAGTAATAAATTGTTATGGGTACA AGACACTTATCCTCTAACCACAGAAGACTGTATTTTACAAAAAACTCCCTTTAGTTTTGA TGTTTCAGTGTGGGAATTATTCTGGCCCCTACTAAACGGAGCGCGTTTGGTTTTTGCCAA GCCGAATGGCCATAAAGATGCCAGTTACTTAGTCAATCTGATTCAAGAGCAACAAGTAAC AACGCTACATTTTGTGTCTTCTATGCTACAGCTTTTTCTGACAGAAAAAGACGTAGAAAA ATGTAATAGTCTTAAACGAGTCATTTGTAGTGGTGAAGCCCTTTCTTTAGAGCTTCAAGA ACGTTTTTTTGCTCGTTTAGTCTGTGAATTACACAATCTTTATGGACCGACAGAAGCCGC TATTCATGTCACATTTTGGCAATGTCAATCAGATAGCAATTTGAAAACAGTACCCATTGG TCGGCCGATCGCTAATATCCAAATTTACATTTTAGACTCTCATCTTCAGCCAGTACCTAT TGGAGTAATCGGAGAATTGCACATTGGTGGGGTTGGTTTGGCGCGGGGTTATTTAAACAG GCCTGAGTTAACGGCGGAGAAATTTATTGCAAATCCGTTTGCTTCCCTTGATCCCCCCCT AACCCCCCTTGATAAGGGGGGAGATGAGAGCTATAAAACTTTTAAAAAGGGGGGAGAGCA ACCATCAAGATTGTATAAAACGGGAGATTTAGCTCGTTATTTACCCGATGGCAAGATTGA GTATCTAGGGCGCATTGATAATCAGGTAAAAATTCGCGGTTTCCGGATTGAATTGGGGGA AATTGAAGCGGTTTTGCTATCCCATCCCCAGGTACGAGAAGCGGTCGTTTTGGTGAGCGA AAGCGATCGCTCTGAAAATCGGGCTTTGGTCGCTTATATTGTCCCTAATGATCCTGCTTG TACGACTCAATCATTACGAGAGTTTGTTAAACGGCAGCTTCCTGACTATATGATCCCAGC TTATTGGCTGATCCTTGACAATTTACCGTTAACCAGCAATGGCAAAATTGATCGTCGGGC TTTACCGTTACCTAATCCAGAGTTAAATCGTTCGATAGACTATGTGGCTCCCAAAAATCC TACCCAGGAGGCGATCGCCGCTATTTTTGGTCAAGTTTTAAAACTGGAAAAAGTGGGAAT TTATGATAACTTTTTTGAGATCGGCGGTAATTCTTTGCAAGCCACTCAAGTTATTTCACG CTTACGAGAAAGTTTTGCCCTAGAGTTGCCCTTGCGTCGCCTGTTTGAACAACCGACTGT GGCGGATTTGGCTTTAGCCGTAACGGACATTCATGCCACTTTACAAAAATTACAAACCCC TATTGATGATTTATCAGGCGATCGCGAGGAGATTGAACTATGAAATCTATTGAAACCTTT TTGTCAGATTTAGCCAATCAAGATATTAAACTCTGGATGGACGGCGATCGCCTGCGTTGT AATGCACCCCAGGGCCTATTAACCCCAGAGATTCAAACAGAACTGAAAAACCGTAAAGCA GAAATCATTCACTTTCTCAATCAACTGGGTTCAGAGGAGCAAATTAATCCTAGAACGATT CTTCCCATTCCTCGTGATGGCCAATTACCCCTCTCCTTTGCCCAGTCGCGACTCTGGTTC TTGTATCAATTAGAAGGAGCCACGGGAACCTATAACATGACAGGGGCCTTGAGTTTAAGC GGGCCTCTTCAGGTCGAAGCCCTCAAACAAGCCCTAAGAACTATCATTCAACGCCATGAG CCATTGCGTACCAGTTTCCAATCGGTTGACGGGGTTCCAGTGCAGGTGATTAATCCCTAT CCTGTTTGGGAATTAGCGATGGTTGATTTGACAGGAAAGGAGACAGAAGCAGAAAAATTG GCCTATCAGGAATCCCAAACCCCGTTTGATTTGACCAATAGTCCTTTGTTGAGGGTAACG CTCCTCAAATTACAGCCAGAAAAGCATATTTTATTAATTAATATGCACCATATTATTTCC GATGGCTGGTCAATCGGTGTTTTTGTTCGTGAATTGTCCCATCTCTATAGGGCTTTTGTG GCGGGTAAAGAACCAACTTTACCGATTTTACCAATTCAGTATGCGGATTTTGCCGTTTGG CAGCGAGAGTGGTTACAGGGTAAGGTTTTAGCGGCTCAATTGGAATATTGGAAGCGACAA TTGGCAGATGCTCCTCCTCTGCTGGAACTGCCCACTGATCGCCCTCGTCCCGCAATCCAA ACCTTTCAAGGCAAGACAGAAAGATTTGAGCTAGATAGGAAACTGACCCAAGAATTAAAG GCATTAAGTCAACAGTCGGGTTGTACTTTATTTATGACTTTGTTGGCCGCTTTTGGGGTG GTTTTATCCCGTTATAGTGGCCAGACTGATATCGTCATTGGTTCGGCGATCGCCAACCGT AATCGCCAAGACATTGAGGGGTTAATTGGCTTTTTTGTTAACACTTTGGCGTTGAGGTTA GATTTATCAGAAAAACCCAGCTTTGCCGCTTTTTTAAAACAAGTACAGGAAGTCACTCAG GATGCCTATGAGCATCAAGACTTGCCCTTTGAAATGTTAGTGGAAGAATTACAACTAGAG CGCAAATTAGACCGAAATCCTTTGGTACAGGTGATGTTTGCCCTACAAAATGCGGCCAAT GAAACCTGGAATTTACCTGGGTTGACCATTGAAGAAATGTCTTGGGAACTTGAACCTGCC CGTTTTGACCTAGAGGTTCATTTATCAGAAGTTAACGCCGGCATAGCTGGATTCTGTTGC
TACACCATTGATCTATTTGATGATGCAACGATCGCCCGTCTATTGGAACATTTTCAGAAT CTTCTCAGGGCAATTATTGTTAATCCTCAAGAATCGGTAAGTTTATTACCCTTGTTGTCA GAACAGGAAGAAAAGCAACTTTTAGTTGATTGGAATCAAACCCAAGCCGATTATCCCCAA GATAAGCTTGTCCATCAGTTATTTGAAGTTCAAGCAGCCAGTCAGCCAGAAGCGATCGCT CTAATCTTTGAAAATCAGGTTTTGACCTATGGAGAATTAAACCATCGCGCCAATCAATTA GCTCACTATCTTCAGTCGTTAGGAGTCACCAAAGAACAAATCGTCGGGGTTTATCTGGAA CGTTCCCTTGAAATGGCGATCGGATTTTTAGGTATTCTCAAAGCAGGAGCCGCCTATCTC CCCATTGATCCTGAATATCCCTCAGTACGCACCCAATTTATTCTCGAAGATACCCAACTT TCGCTTCTCTTAACTCAGGCAGAACTGGCAGAAAAACTGCCCCAGACTCAAAACAAAATT ATCTGTCTAGATCGGGACTGGCCAGAAATTACCTCCCAACCCCAGACAAACCTAGACCTA AAGATAGAACCTAATAACCTAGCCTATTGCATCTATACTTCTGGTTCCACAGGACAACCC AAAGGAGTACTGATTTCCCATCAAGCCCTACTCAACTTAATTTTCTGGCATCAACAAGCG TTTGAGATTGGCCCCTTACATAAAGCGACCCAAGTGGCAGGCATTGCTTTCGATGCAACG GTTTGGGAATTGTGGCCCTATCTGACCACAGGAGCCTGTATTAATCTGGTTCCCCAAAAT ATTCTGCTCTCACCGACGGATTTACGGGATTGGTTGCTTAACCGAGAAATTACCATGAGT TTTGTGCCAACTCCTTTAGCTGAAAAATTATTATCCTTGGATTGGCCTAACCATTCTTGT CTAAAAACCCTGTTACTGGGAGGTGACAAACTTCATTTTTATCCTGCTGCGTCCCTTCCC TTTCAGGTCATTAACAACTATGGCCCAACGGAAAATACAGTGGTTGCGACCTCTGGACTG GTCAAATCATCTTCATCTCATCACTTTGGAACTCCGACTATTGGTCGTCCCATTGCCAAC GTCCAAATCTATTTATTAGACCAAAACCTACAACCTGTCCCCATTGGTGTACCAGGAGAA TTACATTTAGGTGGGGCGGGTTTAGCGCAGGGCTATCTCAATCGTCCTGAGTTAACGGCT GAAAAATTTATTGCCAATCCCTTTGATCCCCCCCTAACCCCCCTTGATAAGGGGGGAGAA GAACCCTCAAAACTCTATAAAACGGGAGACTTAGCCCGTTATTTACCCGATGGCAATGTA GAATTTTTGGGACGTATTGACAATCAGGTAAAAATTCGGGGTTTTCGCATCGAAACTGGG GAAATCGAAGCCGTTTTAAGTCAATATTTCCTATTAGCTGAAAGTGTAGTCGTTGCCAAG GAAGATAATACTGGGGATAAACGCCTCGTGGCTTATTTGGTTCCCGCCTTGCAAAATGAG GCCCTACCAGAGCAATTAGCCCAATGGCAAAGTGAATACATCAGTGATTGGCAAAGTCTC TATGAAAGAACCTATAGTCAAGGGCAAGACAGCCTAGCTGATCTCACTTTTAATATCACG GGTTGGAATAGCAGTTATACTCGTCAACCCCTTCCTGCTTCAGAAATGCGAGAGTGGGTC GAAAACACTGTTAGTCGCATCTTGGCTTTCCAACCAGAACGCGGTTTAGAAATTGGTTGT GGTACAGGTTTGTTACTCTCCAGGGTAGCAAAGCATTGTCTTGAATATTGGGCAACGGAT TATTCCCAAGGGGCGATCCAGTATGTTGAACGGGTTTGCAATGCCGTTGAAGGTTTAGAA CAGGTTAAATTACGCTGTCAAATGGCAGATAATTTTGAAGGTATTGCCCTACATCAATTT GATACCGTCGTCTTAAATTCGATTATTCAGTATTTTCCCAGTGTGGATTATCTGTTACAG GTGCTTGAAGGGGCGATCAACGTCATTGGCGAGCGAGGTCAGATTTTTGTCGGGGATGTG CGGAGTTTACCCCTATTAGAGCCATATCATGCGGCTGTGCAATTAGCCCAAGCTTCTGAC TCGAAAACTGTTGAACAATGGCAACAACAGGTGCGTCAAAGTGTAGCAGGTGAAGAAGAA CTGGTCATTGATCCCACATTGTTCCTGGCTTTAAAACAACATTTTCCGCAAATTAGCTGG GTAGAAATTCAACCGAAACGGGGTGTGGCTCACAATGAGTTAACTCAATTTCGCTATGAT GTCACTCTCCATTTAGAGACTATCAATAATCAAGCATTATTGAGCGGCAATCCAACGGTA ATTACCTGGTTAAATTGGCAACTTGACCAACTGTCTTTAACACAAATTAAAGATAAATTA TTAACAGACAAACCTGAATTGTGGGGAATTCGTGGTATTCCTAATCAGCGAGTTGAAGAG GCTCTAAAAATTTGGGAATGGGTGGAAAATGCCCCTGATGTTGAAACGGTTGAACAACTC AAAAAACTTCTCAAACAACAAGTAGATACTGGTATTAATCCTGAACAGGTTTGGCAATTA GCTGAGTCTCTCGGTTACACCGCTCACCTTAGTTGGTGGGAAAGTAGTCAAGACGGTTCC TTTGATGTCATTTTTCAGCGGAATTCAGAAGCGGAGGACTCAAAAAAATTAACCCTTTCA AAACTTGCTTTCTGGGATGAAAAACCCTTTAAAATAAAGCCCTGGAGTGACTATACTAAC AACCCTCTGCGCGGTAAGTTAGTCCAAAAATTAATTCCTAAAGTACGAGAATTTCTGCAA GAAAAACTACCCAGTTATATGGTTCCCCAGGCGTTTGTGCTGCTTGATTCCCTTCCTTTG ACCCCCAATGGTAAGGTGGATCGTAAGGCGTTACCTTCTCCTGATGCGGCGACTCGTGAT TTAGCGAACAGTTTTGTCTTACCCCGCAATCCGATTGAAGCTCAACTGACTCAAATTTGG AGTGAAGTTTTGGGACTGGAACGCATTGGCGTTAAGGACAACTTTTTTGAATTGGGAGGA CATTCTCTTTTGGCTACCCAGGTTTTATCAAGAATTAATTCAGCCTTTGGACTTGATCTT TCTGTGCAAATTATGTTTGAATCACCAACGATCGCGGGCATTGCGGGTTATATTCAAGCG GTAGATTGGGTCGCCCAGGATCAAGCCGATAGCTCGTTAAATCATGAAAATACTGAGGTA GTGGAGTTCTAAGTTATGACGAAAAAGATTGTTGAATTTGTCTGTTATCTACGGGATTTA GGCATTACTTTAGAAGCTGATGAAAACCGCTTACGCTGTCAGGCTCCCGAAGGAATTTTG ACCCCAGCACTCCGTCAAGAAATTGGCGATCACAAACTGGAATTATTACAATTTTTACAA TGGGTCAAACAGTCTAAAAGTACCGCTCATTTGCCTATTAAACCTGTCGCTAGAGACGGT CATTTACCCCTGTCTTTTGCTCAACAACGTTTATGGTTTTTACATTATCTTTCCCCTGAT AGTCGTTCCTACAATACCCTGGAAATATTGCAAATTGATGGGAATCTCAATCTGACTGTG CTAGAGCAGAGTTTGGGGGAATTAATTAACCGCCATGAAATTTTTAGAACAACATTCCCC ACTGTTTCAGGGGAACCGATTCAGAAAATTGCACTTCCTAGTCGTTTTCAGTTAAAAGTT GATAATTATCAAGATTTAGACGAAAATGAACAATCAGCTAAAATTCAACAAGTAGCAGAA TTGGAAGCAGGACAAGCTTTTGATTTAACGGTGGGGCCACTGATTCAGTTTAAGCTATTG CAATTGAGTCCCCAGAAGTCGGTGCTGCTGTTGAAAATGCACCATATTATCTATGATGGC TGGTCTTTTGGGATTCTGATTCGGGAATTATCGGCTCTATACGAAGCATTTTTAAAGAAC TTAGCCAATCCTCTCCCTGCGTTGTCTATTCAGTATGCAGATTTTGCGGTTTGGCAACGT CAATATCTCTCAGGTGAGGTCTTAGATAAACAACTCAATTATTGGCAAGAACAGTTAGCA ACAGTCTCTCCTGTTCTTACTTTACCAACGGATAGACCCCGTCCGGCGATACAAACTTTT CAGGGAGGAGTTGAGCGTTTTCAACTGGATCAAAATGTCACTCAAGGTCTTAAAAAGTTA GGTCAAGATCAGGTTGCAACCCTGTTTATGACGTTGTTGGCCGGTTTCGGCGTTTTGCTA TCTCGTTATAGTGGTCAATCTGATCTGATGGTGGGTTCTCCGATCGCTAATCGTAATCAA GCAGCGATCGAACCTTTAATTGGCTTTTTTGCTAACACTTTGGCTTTAAGAATTAATTTA TCAGAAAATCCCAGTTTTTTAGAATTATTAGAACAAGTTAAACAGACAACTTTAGAGGGT TATGCTCACCAAGACCTACCCTTTGAGATGTTAGTAGAAAAGCTACAACTTGACCGTGAT TTGAGCAGAAATCCTTTAGTACAAGTCATGTTTGCGCTACAAAATACCTCTCAAGATACT TGGAATCTTTCGGGTTTAAGTATTGAAAGTTTATCTTTATCAGTGGAAGAAACTGTCAGA TTTGATCTAGAAGTAAACTGCTGGCAAAATTCAGAAGGTTTAGCAATAGATTGGATTTAC AGCAGAGATTTATTTGACACTGCAACAATTGCAAGAATGGGAGAACATTTTCAAAATTTA GTTCAGGCAATCATACTCAATCCAAAAGCTACAGTTAAAGAACTTCCTTTATTAACACCC AAGGAACGTGAGCAATTATTAATATCTTGGAATAATAGCAAGACTGATTATCCTCAAGAG CAGTGTATTTATCAATTATTTGAAGCACAAGTTGAACGGACTCCAAAGGCGATCGCAGTG GTATTTGAGGAGCAATCATTAACATACACTGAATTAAACCATCGCGCTAATCAGTTAGCC CATTATTTACAAACTTTAGGCGTGGGAGCAGAAGTCTTAGTCGGTATTTCCCTAGAACGT TCTTTAGAGATGATTATCGGCTTATTAGGGATTCTCAAGGTAGGTGGTGCTTATCTTCCT CTTGATCCAGACTATCCCACTGAGCGTCTTCAGTTGATGTTAGAAGACAGTCAAGTTCCT TTTTTGATTACCCACAGTTCTTTATTAGCAAAATTGCCTCCCTCTCAAGCAACTCTGATT TGTTTAGATCATATCCAAGAGCAGATTTCTCAATATTCTCCAGATAATCTTCAATGTCAG TTAACTCCTGCCAATTTAGCTAACGTTATTTATACCTCTGGCTCTACGGGTAAGCCTAAA GGGGTGATGGTTGAACATAAAGGTTTAGTTAACTTAGCTCTTGCTCAAATTCAATCTTTT GCAGTCAACCATAACAGTCGTGTGCTGCAATTTGCTTCTTTTAGTTTTGATGCTTGTATT TCAGAAATTTTGATGACCTTTGGTTCTGGAGCGACGCTTTATCTTGCACAAAAAGATGCT TTATTGCCAGGTCAGCCATTAATTGAACGGTTAGTAAAGAATGGAATTACTCATGTGACT TTGCCGCCTTCAGCTTTAGTGGTTTTACCCCAGGAACCGTTACGCAACTTAGAAACCTTA ATTGTGGCGGGTGAGGCTTGTTCTCTTGATTTAGTGAAACAATGGTCAATCGATAGAAAC TTTTTCAATGCCTATGGGCCAACGGAAGCGAGTGTTTGTGCCACTATTGGACAATGTTAT CAAGATGATTTAAAGGTGACGATTGGTAAGGCGATCGCCAATGTCCAAATTTATATTTTA GATGCCTTTTTACAGCCGGTGCCGGTGGGAGTGTCAGGAGAGTTATACATTGGTGGAGTT GGGGTGGCAAGGGGCTATTTAAATCGTCCTGAATTAACCCAAGAAAAATTTATTGCTAAT CCTTTTAGTAACGACCCAGATTCTCGGCTCTATAAAACTGGCGACTTAGCGCGTTATTTA CCCGATGGTAATATTGAATATTTAGGACGCATTGACAATCAGGTAAAAATTCGCGGTTTT CGCATTGAGTTAGGAGAAATTGAAGCGGTTCTGAGTCAATGTCCCGATGTGCAAAATACG GCGGTGATTGTCCGCGAAGATACTCCTGGCGATAAGCGCTTAGTTGCCTATGTGGTTCTT ACTTCTGACTCCCAGATAACTACTAGCGAACTGCGTCAATTTTTGGCGAATCAATTACCC GCCTATCTTGTTCCTAATACCTTTGTTATTTTAGATGATTTGCCCCTAACCCCCAGTGGC AAATGCGATCGCCGTTCCTTACCTATACCCGAAACACAAGCGTTATCAAATGACTATATT GCCCCTAAATCTCCCACTGAAGAAATTCTGGCTCAAATATGGGGGCAAGTTCTCAAGATA GAAAGAGTCAGCAGAGAAGATAATTTCTTTGAATTGGGGGGGCATTCCCTTTTAGCTACC CAGGTAATGTCCCGTCTGCGTGAAACTTTTCAAGTCGAATTACCTTTGCGTAGTCTCTTT ACCGCTCCCACTATTGCTGAATTGGCCCTAACAATTGAGCAATCTCAGCAAACCATTGCT GCTCCCCCCATCCTAACCAGAAACGACAGTGCTAACCTCCCGTTATCTTTTGCTCAACAA CGTTTATGGTTTCTGGATCAATTAGAACCTAACAGCGCCTTTTATCATGTAGGGGGAGCC GTAAGACTAGAAGGAACATTAAATATTACTGCCTTAGAGCAAAGCTTAAAAGAAATTATT AATCGTCATGAAGCTTTACGCACAAATTTTATAACGATTGATGGTCAAGCCACTCAAATT ATTCACCCTACTATTAATTGGCGATTGTCTGTTGTTGATTGTCAAAATTTAACCGACACT CAATCTCTGGAAATTGCGGAAGCTGAAAAGCCCTTTAATCTTGCTCAAGATTGCTTATTT CGTGCTACTTTATTCGTGCGATCACCGCTAGAATATCATCTACTCGTGACCATGCACCAT ATTGTTAGCGATGGCTGGTCAATTGGAGTATTTTTTCAAGAACTAACTCATCTTTACGCT GTCTATAATCAGGGTTTACCCTCATCTTTAACGCCTATTAAAATACAATATGCTGATTTT GCGGTCTGGCAACGGAATTGGTTACAAGGTGAAATTTTAAGTAATCAATTGAATTATTGG CGCGAACAATTAGCAAATGCTCCTGCTTTTTTACCTTTACCGACAGATAGACCTAGGCCC GCAATCCAAACTTTTATTGGTTCTCATCAAGAATTTAAACTTTCTCAGCCATTAAGCCAA AAATTGAATCAACTAAGTCAGAAGCATGGAGTGACTTTATTTATGACTCTCCTGGCTGCT TTTGCTACCTTACTTTACCGTTATACAGGACAAGCAGATATTTTAGTTGGTTCTCCTATT GCTAACCGTAATCGTAAGGAAATTGAGGGATTAATCGGCTTTTTTGTTAATACATTAGTT CTGAGATTGAGTTTAGATAATGATTTAAGTTTTCAAAATTTGCTAAACCATGTTAGAGAG GTTTCTTTAGCAGCCTACGCCCATCAAGATTTACCTTTTGAAATGTTAGTAGAAGCACTA CACCCTCAACGAGATCTCAGTCATACCCCTTTATTTCAGGTAATGTTTGTTTTGCAAAAT ACACCAGTGGCTGATCTAGAACTTAAAAATGTAAAGGTTTGTCCTCTACCGATGGAAAAT AAGACTGCTAAATTTGATTTAACCTTATCAATGGAGAATCTAGAGGAAGGATTGATTGGG GTTTGGGAATATAACACCGATCTATTTAATGGCTCAACCATTGAGCGAATGAGTGGACAT TTTGTCACTTTGTTAGAAGATATTGTTGCCGCTCCAACGAAGTCAGTTTTACGGTTGTCT TTGCTGACGCAAGAGGAAAAACTGCAATTATTGATTAAAAATCAGGGTGTTCAAGTTGAT TATTCTCAAGAGCAGTGCATCCATCAATTATTTGAAGCGCAAGTTGAACGGACTCCCGAT GCGATTGCGGTGGTATTTGAGGAGCAATCATTAACCTATGCTGAATTAAATCATCAAGCT AATCAGTTAGTCCATTACTTACAAACTTTAGGAATTGGGCCAGAGGTCTTAGTCGCTATT TCAGTAGAACGTTCTTTAGAAATGATTATCGGCTTATTAGCCATTCTCAAGGCGTGTGGT GCTTATCTCCCTCTTGCTCCTGACTATCCCACTGAGCGTCTTCAGTTCATGTTAGAAGAT AGTCAAGCTTCTTTTTTGATTACCCACAGTTCTTTATTAGAAAAATTGCCTTCTTCTCAA GCGACTCTAATTTGTTTAGATCACATCCAAGAGCAGATTTCTCAATATTCTCCCGATAAT CTTCAAAGTGAGTTAACTCCTTCCAATTTGGCTAACGTTATTTACACCTCTGGCTCTACG GGTAAGCCTAAAGGGGTGATGGTTGAACATCGGGGCTTAGTTAACTTAGCGAGTTCTCAA ATTCAATCTTTTGCAGTCAAAAATAACAGTCGTGTACTGCAATTTGCTTCCTTTAGTTTT GATGCTTGTATTTCAGAAATTTTGATGACCTTTGGTTCTGGAGCGACTCTTTATCTTGCT CAAAAAAATGATTTATTGCCAGGTCAGCCATTAATGGAAAGGTTAGAAAAGAATAAAATT ACCCATGTTACTTTACCCCCTTCAGCTTTAGCTGTTTTACCAAAAAAACCGTTACCCAAC TTACAAACTTTAATTGTGGCGGGTGAGGCTTGTCCTCTGGATTTAGTCAAACAATGGTCA GTCGGTAGAAACTTTTTCAATGCCTATGGCCCGACAGAAACGAGTGTTTGTGCCACGATT GGACAATGTTATCAAGATGATTTAAAGGTCACGATTGGTAAGGCGATCGCTAATGTCCAA ATTTATATTTTGGATGCCTTTTTACAACCAGTACCCATCGGAGTACCAGGGGAATTATAC ATTGGTGGAGTCGGAGTTGCGAGGGGTTATCTAAATCGTCCTGAATTAACGGCGGAAAGA TTTATTCCTAATCCTTTTGATCCCCCCCTAACCCCCCTTAAAAAGGGGGGAGATAAGAGC TATGAAACTTTTAAAAAGGGGGAAGAGCAACCATCAAAACTCTATAAAACGGGAGATTTA GCTCGTTATTTACCCGATGGCAATATTGAATATTTAGGACGCATTGACAATCAGGTAAAA ATTCGCGGTTTTCGCATTGAGTTAGGAGAAATTGAAGCGGTTCTGAGTCAATGTCCCGAT GTGCAAAATACGGCGGTGATTGTCCGTGAAGATACTCCTGGCGATAAACGTTTAGTTGCC TATGTGGTTCTTACTTCTGACTCCCAGATAACTACTAGCGAACTGCGTCAATTCTTGGCT AATCAATTACCTGCCTATCTCGTTCCCAATACCTTTGTTATTTTAGATGATTTGCCCCTA ACCCCCAATGGTAAATGCGATCGCCGTTCCTTACCGCTTCCTGATGATCAGACCAGAAAA AATATTCCTAAAATTGGCCCGCGTAATTTAGTGGAATTACAATTAGCTCAAATCTGGTCA GAGATTTTAGGCATTAATAATATTGGTATTCAGGAAAACTTCTTTGAATTAGGCGGTCAT TCTTTATTAGCAGTCAGTCTGATCAATCGTATTGAACAAAAGTTAGATAAACGTTTACCA TTAACCAGTCTTTTTCAAAATGGAACCATAGCAAGTCTAGCTCAATTACTAGCGCAAGAA ACAACTCAGCCAGCCTCTTCACCGTTGATTGCTATCCAGTCTCAAGGTGATAAAACTCCA TTTTTTGCTGTTCATCCCATTGGTGGTAATGTGCTATGTTATGCCGATTTAGCTCGTAAT TTAGGAACGAAACAGCCGTTTTATGGATTACAATCATTAGGGCTAAGTGAATTAGAAAAA ACTGTAGCCTCTATTGAAGAAATGGCGATGATTTATATTGAAGCAATACAAACTGTTCAA GCCTCTGGTCCCTACTATTTAGGAGGTTGGTCAATGGGAGGAGTGATAGCTTTTGAAATC GCCCAACAATTATTGACCCAAGGTCAAGAAGTTGCTTTACTGGCTTTAATAGATAGTTAT TCTCCCAGTTTACTTAATTCAGTTAATAGGGAGAAAAATTCTGCTAATTCCCTGACAGAA GAATTTAATGAAGATATCAATATTGCCTATTCTTTCATCAGAGACTTAGCAAGTATATTT AATCAAGAAATCTCTTTCTCTGGGAGTGAACTTGCTCATTTTACATCAGACGAATTACTA GACAAGTTTATTACTTGGAGTCAAGAGACGAATCTTTTGCCGTCAGATTTTGGGAAGCAG CAGGTTAAAACCTGGTTTAAAGTTTTCCAGATTAATCACCAAGCTTTGAGCAGCTATTCT CCCAAGACGTATCTGGGTAGAAGTGTTTTCTTAGGAGCGGAAGACAGTTCTATTAAAAAT CCTGGTTGGCATCAAGTAATCAATGACTTGCAATCTCAATGGATTAGCGGCGATCACTAC GGTTTAATTAAAAATCCAGTCCTCGCTGAAAAACTCAATAGCTACCTAGCCTAAAACTTT CAAAAAGCCTGATTATTGTTTAAAATGAATGATCGTTCACCGGTCAGAGGACAAGTATGA CAACCCAAACAGCTTCTAGTGCCAATGCCCTTGCTTCCTTTAACCAATTTTTAAGGGATG TAAAGGCGATCGCCCAACCCTATTGGTATCCCACTGTATCAAATAAAAGAAGCTTTTCTG AGGTTATTCGTTCCTGGGGAATGCTATCACTGCTTATCTTTTTGATTGTGGGATTAGTCG CCGTCACGGCTTTTAATAGTTTTGTTAATCGTCGTTTAATTGATGTCATTATTCAAGAAA AAGATGCGTCTCAATTTGCCAGTACATTAACTGTCTATGCGATCGGATTAATCTGTGTAA CGCTGCTGGCAGGGTTCACTAAAGATATTCGCAAAAAAATTGCCCTAGATTGGTATCAAT GGTTAAACACCCAGATTGTAGAGAAATATTTTAGTAATCGTGCCTATTATAAAATTAACT TTCAATCTGACATTGATAACCCCGATCAACGTCTAGCCCAGGAAATTGAACCGATCGCCA CAAACGCCATTAGTTTCTCGGCCACTTTTTTGGAAAAAAGTTTGGAAATGCTAACTTTTT TAGTGGTAGTTTGGTCAATTTCTCGACAGATTGCTATTCCGCTAATGTTTTACACGATTA TCGGTAATTTTATTGCCGCCTATCTAAATCAAGAATTAAGCAAGATCAATCAGGCACAAC TGCAATCAAAAGCAGATTATAACTATGCCTTAACCCATGTTCGGACTCATGCGGAATCTA TTGCTTTTTTTCGGGGAGAAAAAGAGGAACAAAATATTATTCAGCGACGTTTTCAGGAAG TTATCAATGATACGAAAAATAAAATTAACTGGGAAAAAGGGAATGAAATTTTTAGTCGGG GCTATCGTTCCGTCATTCAGTTTTTTCCTTTTTTAGTCCTTGGCCCTTTGTATATTAAAG GAGAAATTGATTATGGACAAGTTGAGCAAGCTTCATTAGCTAGTTTTATGTTTGCATCGG CCCTGGGAGAATTAATTACAGAATTTGGTACTTCAGGACGTTTTTCTAGTTATGTAGAAC GTTTAAATGAATTTTCTAATGCCTTAGAAACTGTGACTAAACAAGCCGAGAATGTCAGCA CAATTACAACCATAGAAGAAAATCATTTTGCCTTTGAACACGTCACCCTAGAAACCCCTG ACTATGAAAAGGTGATTGTTGAGGATTTATCTCTTACTGTTCAAAAAGGTGAAGGATTAT TGATTGTCGGGCCCAGTGGTCGAGGTAAAAGTTCTTTATTAAGGGCGATCGCCGGTTTAT GGAATGCTGGCACTGGGCGTTTAGTGCGTCCTCCCCTAGAAGAAATTCTCTTTTTGCCCC AACGTCCCTACATTATTTTGGGAACCTTACGCGAACAATTGCTGTATCCTCTAACCAATA GTGAGATGAGCAATACCGAACTTCAAGCAGTATTACAACAAGTCAATTTGCAAAATGTGC TAAATCGGGTGGATGACTTTGACTCCGAAAAACCCTGGGAAAACATTCTCTCCCTCGGTG AACAACAACGCCTAGCCTTTGCTCGATTGTTAGTGAATTCTCCGAGTTTTACCATTTTAG ATGAGGCGACCAGTGCCTTAGATTTAACAAATGAGGGGATTTTATACGAGCAATTACAAA CTCGCAAGACAACCTTTATTAGTGTGGGTCATCGAGAAAGTTTGTTTAATTACCATCAAT GGGTTTTAGAACTTTCTGCTGACTCTAGTTGGGAACTCTTAAGCGTTCAAGATTATCGCC TTAAAAAAGCGGGAGAAATGTTTACTAATGCTTCGAGTAACAATTCCATAACACCCGATA TTACTATCGATAATGGATCAGAACCAGAAATAGTCTATTCTCTTGAAGGATTTTCCCATC AGGAAATGAAACTATTAACAGACCTATCACTCTCTAGCATTCGGAGTAAAGCCAGTCGAG GGAAGGTGATTACAGCCAAGGATGGTTTTACCTACCTTTATGACAAAAATCCTCAGATAT TAAAGTGGCTCAGAACTTAA
Sequence CWU
1
611580PRTMicrocystis aeruginosa 1Met Thr Ile Asn Tyr Gly Asp Leu Gln Glu
Pro Phe Asn Lys Phe Ser1 5 10
15Thr Leu Val Glu Leu Leu Arg Tyr Arg Ala Ser Ser Gln Pro Glu Arg
20 25 30Leu Ala Tyr Ile Phe Leu
Arg Asp Gly Glu Ile Glu Glu Ala Arg Leu 35 40
45Thr Tyr Gly Glu Leu Asp Gln Lys Ala Arg Ala Ile Ala Ala
Tyr Leu 50 55 60Gln Ser Leu Glu Ala
Glu Gly Glu Arg Gly Leu Leu Leu Tyr Pro Pro65 70
75 80Gly Leu Asp Phe Ile Ser Ala Phe Phe Gly
Cys Leu Tyr Ala Gly Val 85 90
95Val Ala Ile Pro Ala Tyr Pro Pro Arg Arg Asn Gln Asn Leu Leu Arg
100 105 110Leu Gln Ala Ile Ile
Ala Asp Ser Gln Ala Arg Phe Thr Phe Thr Asn 115
120 125Ala Ala Leu Phe Pro Ser Leu Lys Asn Gln Trp Ala
Lys Asp Pro Glu 130 135 140Leu Gly Ala
Met Glu Trp Ile Val Thr Asp Glu Ile Asp His His Leu145
150 155 160Arg Glu Asp Trp Leu Glu Pro
Thr Leu Glu Lys Asn Ser Leu Ala Phe 165
170 175Leu Gln Tyr Thr Ser Gly Ser Thr Gly Thr Pro Lys
Gly Val Met Val 180 185 190Ser
His His Asn Leu Leu Ile Asn Ser Ala Asp Leu Asp Arg Gly Trp 195
200 205Gly His Asp Gln Asp Ser Val Met Val
Thr Trp Leu Pro Thr Phe His 210 215
220Asp Met Gly Leu Ile Tyr Gly Val Ile Gln Pro Leu Tyr Lys Gly Phe225
230 235 240Leu Cys Tyr Met
Met Ser Pro Ala Ser Phe Met Glu Arg Pro Leu Arg 245
250 255Trp Leu Gln Ala Leu Ser Asp Lys Lys Ala
Thr His Ser Ala Ala Pro 260 265
270Asn Phe Ala Tyr Asp Leu Cys Val Arg Lys Ile Pro Pro Glu Lys Arg
275 280 285Ala Thr Leu Asp Leu Ser His
Trp Cys Met Ala Leu Asn Gly Ala Glu 290 295
300Pro Val Arg Ala Glu Val Leu Lys Lys Phe Ala Glu Ala Phe Gln
Val305 310 315 320Ser Gly
Phe Lys Ala Thr Ala Leu Cys Pro Gly Tyr Gly Leu Ala Glu
325 330 335Ala Thr Leu Lys Val Thr Ala
Val Ser Tyr Asp Ser Pro Pro Tyr Phe 340 345
350Tyr Pro Val Gln Ala Asn Ala Leu Glu Lys Asn Lys Ile Val
Gly Ala 355 360 365Thr Glu Thr Asp
Thr Asn Val Gln Thr Leu Val Gly Cys Gly Trp Thr 370
375 380Thr Ile Asp Thr Gln Ile Val Ile Val Asn Pro Glu
Thr Leu Lys Pro385 390 395
400Cys Ser Pro Glu Ile Val Gly Glu Ile Trp Val Ser Gly Ser Thr Ile
405 410 415Ala Gln Gly Tyr Trp
Gly Lys Pro Gln Glu Thr Gln Glu Thr Phe Gln 420
425 430Ala Tyr Leu Ala Asp Thr Gly Ala Gly Pro Phe Leu
Arg Thr Gly Asp 435 440 445Leu Gly
Phe Ile Lys Asp Gly Glu Leu Phe Ile Thr Gly Arg Leu Lys 450
455 460Glu Ile Ile Leu Ile Arg Gly Arg Asn Asn Tyr
Pro Gln Asp Ile Glu465 470 475
480Leu Thr Val Gln Asn Ser His Pro Ala Leu Arg Pro Ser Cys Gly Ala
485 490 495Ala Phe Thr Val
Glu Asn Lys Gly Glu Glu Lys Leu Val Val Val Gln 500
505 510Glu Val Glu Arg Thr Trp Leu Arg Lys Val Asp
Ile Asp Glu Val Lys 515 520 525Arg
Ala Ile Arg Lys Ala Val Val Gln Glu Tyr Asp Leu Gln Val Tyr 530
535 540Ala Ile Ala Leu Ile Arg Thr Gly Ser Leu
Pro Lys Thr Ser Ser Gly545 550 555
560Lys Ile Gln Arg Arg Ser Cys Arg Ala Lys Phe Leu Glu Gly Ser
Leu 565 570 575Glu Ile Leu
Gly 580288PRTMicrocystis aeruginosa 2Met Ser Thr Glu Ile Pro
Asn Asp Lys Lys Gln Pro Thr Leu Thr Lys1 5
10 15Ile Gln Asn Trp Leu Val Ala Tyr Met Thr Glu Met
Met Glu Val Asp 20 25 30Glu
Asp Glu Ile Asp Leu Ser Val Pro Phe Asp Glu Tyr Gly Leu Asp 35
40 45Ser Ser Met Ala Val Ala Leu Ile Ala
Asp Leu Glu Asp Trp Leu Arg 50 55
60Arg Asp Leu His Arg Thr Leu Ile Tyr Asp Tyr Pro Thr Leu Glu Lys65
70 75 80Leu Ala Lys Gln Val
Ser Glu Pro 853431PRTMicrocystis aeruginosa 3Met Glu Pro
Ile Ala Ile Ile Gly Leu Ala Cys Arg Phe Pro Gly Ala1 5
10 15Asp Asn Pro Glu Ala Phe Trp Gln Leu
Met Arg Asn Gly Val Asp Ala 20 25
30Ile Ala Asp Ile Pro Pro Glu Arg Trp Asp Ile Glu Arg Phe Tyr Asp
35 40 45Pro Thr Pro Ala Thr Ala Lys
Lys Met Tyr Ser Arg Gln Gly Gly Phe 50 55
60Leu Lys Asn Val Asp Gln Phe Asp Pro Gln Phe Phe Arg Ile Ser Pro65
70 75 80Leu Glu Ala Thr
Tyr Leu Asp Pro Gln Gln Arg Leu Leu Leu Glu Val 85
90 95Thr Trp Glu Ala Leu Glu Asn Ala Ala Ile
Val Pro Glu Thr Leu Ala 100 105
110Gly Ser Gln Ser Gly Val Phe Ile Gly Ile Ser Asp Val Asp Tyr His
115 120 125Arg Leu Ala Tyr Gln Ser Pro
Thr Asn Leu Thr Ala Tyr Val Gly Thr 130 135
140Gly Asn Ser Thr Ser Ile Ala Ala Asn Arg Leu Ser Tyr Leu Phe
Asp145 150 155 160Leu Arg
Gly Pro Ser Leu Ala Val Asp Thr Ala Cys Ser Ser Ser Leu
165 170 175Val Ala Val His Leu Ala Cys
Gln Ser Leu Gln Ser Gln Glu Ser Asn 180 185
190Leu Cys Leu Val Gly Gly Val Asn Leu Ile Leu Ser Pro Glu
Thr Thr 195 200 205Val Val Phe Ser
Gln Ala Arg Met Ile Ala Pro Asp Ser Arg Cys Lys 210
215 220Thr Phe Asp Ala Arg Ala Asp Gly Tyr Val Arg Ser
Glu Gly Cys Gly225 230 235
240Val Val Val Leu Lys Arg Leu Arg Asp Ala Ile Gln Asp Gly Asp Arg
245 250 255Ile Leu Ala Val Ile
Glu Gly Ser Ala Val Asn Gln Asp Gly Leu Ser 260
265 270Asn Gly Leu Thr Ala Pro Asn Gly Pro Ala Gln Gln
Ala Val Ile Arg 275 280 285Gln Ala
Leu Ala Asn Ala Gln Val Lys Pro Ala Gln Ile Ser Tyr Val 290
295 300Glu Ala His Gly Thr Gly Thr Glu Leu Gly Asp
Pro Ile Glu Val Lys305 310 315
320Ser Leu Lys Ala Val Leu Gly Glu Lys Arg Ser Leu Asp Gln Thr Cys
325 330 335Trp Leu Gly Ser
Val Lys Thr Asn Ile Gly His Leu Glu Ala Ala Ala 340
345 350Gly Met Ala Gly Leu Ile Lys Val Val Leu Cys
Leu Gln His Gln Glu 355 360 365Ile
Pro Pro Asn Leu His Phe Gln Thr Leu Asn Pro Tyr Ile Ser Leu 370
375 380Ala Asp Thr Ala Phe Ala Ile Pro Thr Gln
Ala Gln Pro Trp Arg Thr385 390 395
400Lys Pro Pro Lys Ser Gly Glu Asn Gly Val Glu Arg Arg Leu Ala
Gly 405 410 415Leu Ser Ser
Phe Gly Phe Gly Gly Thr Asn Ser His Val Ile Leu 420
425 4304324PRTMicrocystis aeruginosa 4Val Phe Leu
Phe Ala Gly Gln Gly Ser Gln Tyr Val Gly Met Gly Arg1 5
10 15Gln Leu Tyr Glu Thr Gln Pro Ile Phe
Arg Gln Thr Leu Asp Arg Cys 20 25
30Ala Glu Ile Leu Arg Pro His Leu Asp Gln Pro Leu Leu Glu Ile Leu
35 40 45Tyr Pro Ala Asp Pro Glu Ala
Glu Thr Ala Ser Phe Tyr Leu Glu Gln 50 55
60Thr Ala Tyr Thr Gln Pro Thr Leu Phe Ala Phe Glu Tyr Ala Leu Ala65
70 75 80Gln Leu Trp Arg
Ser Trp Gly Ile Glu Pro Ala Ala Val Ile Gly His 85
90 95Ser Val Gly Glu Tyr Val Ala Ala Thr Val
Ala Gly Ala Leu Ser Leu 100 105
110Glu Glu Gly Leu Thr Leu Ile Ala Lys Arg Ala Lys Leu Met Gln Ser
115 120 125Leu Pro Lys Asn Gly Thr Met
Ile Ala Val Phe Ala Ala Glu Glu Arg 130 135
140Val Lys Ala Val Ile Glu Pro Tyr Arg Thr Asp Val Ala Ile Ala
Ala145 150 155 160Val Asn
Gly Pro Glu Asn Phe Val Ile Ser Gly Lys Ala Pro Ile Ile
165 170 175Ala Glu Ile Ile Ile His Leu
Thr Ala Ala Gly Ile Glu Val Arg Pro 180 185
190Leu Lys Val Ser His Ala Phe His Ser His Leu Leu Glu Pro
Ile Leu 195 200 205Asp Ser Leu Glu
Gln Glu Ala Ala Ala Ile Ser Tyr Gln Pro Leu Gln 210
215 220Ile Pro Leu Val Ala Asn Leu Thr Gly Glu Val Leu
Pro Glu Gly Ala225 230 235
240Thr Ile Glu Ala Arg Tyr Trp Arg Asn His Ala Arg Asn Pro Val Gln
245 250 255Phe Tyr Gly Ser Ile
Gln Thr Leu Ile Glu Gln Lys Phe Ser Leu Phe 260
265 270Leu Glu Val Ser Pro Lys Pro Thr Leu Ser Arg Leu
Gly Gln Gln Cys 275 280 285Cys Pro
Glu Arg Ser Thr Thr Trp Leu Phe Ser Leu Ala Pro Pro Gln 290
295 300Glu Glu Glu Gln Ser Leu Leu Asn Ser Leu Ala
Ile Leu Tyr Asp Ser305 310 315
320Gln Gly Ala Glu568PRTMicrocystis aeruginosa 5Ile Thr Leu Gln Thr
Leu Val Gly Asn Leu Leu Gln Leu Ser Pro Ala1 5
10 15Asp Val Asn Val His Thr Pro Phe Leu Glu Met
Gly Ala Asp Ser Ile 20 25
30Val Met Val Glu Ala Val Arg Arg Ile Glu Asn Thr Tyr Asn Val Lys
35 40 45Ile Ala Met Arg Gln Leu Phe Glu
Glu Leu Ser Thr Leu Asp Ala Leu 50 55
60Ala Thr Tyr Leu656394PRTMicrocystis aeruginosa 6Lys Glu Met Leu Tyr
Pro Ile Val Ala Gln Arg Ser Gln Gly Ser Arg1 5
10 15Ile Trp Asp Val Asp Gly Asn Glu Tyr Ile Asp
Met Thr Met Gly Gln 20 25
30Gly Val Thr Leu Phe Gly His Gln Pro Asp Phe Ile Met Ser Ala Leu
35 40 45Gln Ser Gln Leu Thr Glu Gly Ile
His Leu Asn Pro Arg Ser Pro Ile 50 55
60Val Gly Glu Val Ala Ala Leu Ile Cys Glu Leu Thr Gly Ala Glu Arg65
70 75 80Ala Cys Phe Cys Asn
Ser Gly Thr Glu Ala Val Met Ala Ala Ile Arg 85
90 95Ile Ala Arg Ala Thr Thr Gly Arg Ser Lys Ile
Ala Leu Phe Glu Gly 100 105
110Ser Tyr His Gly His Ala Asp Gly Thr Leu Phe Arg Asn Gln Ile Ile
115 120 125Asp Asn Gln Leu His Ser Phe
Pro Leu Ala Leu Gly Val Pro Pro Ser 130 135
140Leu Ser Ser Asp Val Val Val Leu Asp Tyr Gly Ser Ala Glu Ala
Leu145 150 155 160Asn Tyr
Leu Gln Thr Gln Gly Gln Asp Leu Ala Ala Val Leu Val Glu
165 170 175Pro Ile Gln Ser Gly Asn Pro
Leu Leu Gln Pro Gln Gln Phe Leu Gln 180 185
190Ser Leu Arg Gln Ile Thr Ser Gln Met Gly Ile Ala Leu Ile
Phe Asp 195 200 205Glu Met Ile Thr
Gly Phe Arg Ser His Pro Gly Gly Ala Gln Ala Leu 210
215 220Phe Gly Val Gln Ala Asp Ile Ala Thr Tyr Gly Lys
Val Val Ala Gly225 230 235
240Gly Met Pro Ile Gly Val Ile Ala Gly Lys Ala His Tyr Leu Asp Ser
245 250 255Ile Asp Gly Gly Met
Trp Arg Tyr Gly Asp Lys Ser Tyr Pro Gly Val 260
265 270Asp Arg Thr Phe Phe Gly Gly Thr Phe Asn Gln His
Pro Leu Ala Met 275 280 285Val Ala
Ala Arg Ala Val Leu Thr His Leu Lys Glu Gln Gly Pro Gly 290
295 300Leu Gln Gln Gln Leu Thr Glu Arg Thr Ala Ala
Leu Ala Asp Thr Leu305 310 315
320Asn His Tyr Phe Gln Ala Glu Glu Val Pro Ile Lys Ile Glu Gln Phe
325 330 335Ser Ser Phe Phe
Arg Phe Ala Leu Ser Gly Asn Leu Asp Leu Leu Phe 340
345 350Tyr His Met Val Glu Lys Gly Ile Tyr Val Trp
Glu Trp Arg Lys His 355 360 365Phe
Leu Ser Thr Ala His Thr Glu Ala Asp Leu Ala Gln Phe Val Gln 370
375 380Ala Val Lys Asp Ser Ile Thr Glu Leu
Arg385 3907300PRTMicrocystis aeruginosa 7Gly Gly Asp Gln
Val Pro Leu Thr Glu Ala Gln Arg Gln Leu Trp Ile1 5
10 15Leu Ala Gln Leu Gly Asp Asn Gly Ser Val
Ala Tyr Asn Gln Ser Val 20 25
30Thr Leu Gln Leu Ser Gly Pro Leu Asn Pro Val Ala Met Asn Gln Ala
35 40 45Ile Gln Gln Ile Ser Asp Arg His
Glu Ala Leu Arg Thr Lys Ile Asn 50 55
60Ala Gln Gly Asp Ser Gln Glu Ile Leu Pro Gln Val Glu Ile Asn Cys65
70 75 80Pro Ile Leu Asp Phe
Ser Leu Asp Gln Ala Ser Ala Gln Gln Gln Ala 85
90 95Glu Gln Trp Leu Lys Glu Glu Ser Glu Lys Pro
Phe Asp Leu Ser Gln 100 105
110Gly Ser Leu Val Arg Trp His Leu Leu Lys Leu Glu Pro Glu Leu His
115 120 125Leu Leu Val Leu Thr Ala His
His Ile Ile Ser Asp Gly Trp Ser Met 130 135
140Gly Val Ile Leu Arg Glu Leu Gly Glu Leu Tyr Ser Ala Lys Cys
Gln145 150 155 160Gly Val
Thr Ala Asn Leu Lys Thr Pro Lys Gln Phe Arg Glu Leu Ile
165 170 175Glu Trp Gln Ser Gln Pro Ser
Gln Gly Glu Glu Leu Lys Lys Gln Gln 180 185
190Ala Tyr Trp Leu Ala Thr Leu Ala Asp Pro Pro Val Leu Asn
Leu Pro 195 200 205Thr Asp Lys Pro
Arg Pro Ala Leu Pro Ser Tyr Gln Ala Asn Arg Arg 210
215 220Ser Leu Thr Leu Asp Ser Gln Phe Thr Glu Lys Leu
Lys Gln Phe Ser225 230 235
240Arg Lys Gln Gly Cys Thr Leu Leu Met Thr Leu Leu Ser Val Tyr Asn
245 250 255Ile Leu Val His Arg
Leu Thr Gly Gln Asp Asp Ile Leu Val Gly Leu 260
265 270Pro Ala Ser Gly Arg Gly Leu Leu Asp Ser Glu Gly
Met Val Gly Tyr 275 280 285Cys Thr
His Phe Leu Pro Ile Arg Ser Gln Leu Ala 290 295
3008430PRTMicrocystis aeruginosa 8Thr Tyr Ser Glu Leu Asn Cys
Arg Ala Asn Gln Leu Ala His Tyr Leu1 5 10
15Gln Lys Leu Gly Val Gly Pro Glu Val Leu Val Gly Ile
Leu Val Glu 20 25 30Arg Ser
Leu Glu Met Ile Val Gly Leu Leu Gly Ile Leu Lys Ala Gly 35
40 45Gly Ala Tyr Val Pro Leu Asp Pro Asp Tyr
Pro Pro Glu Arg Leu Gln 50 55 60Phe
Met Leu Glu Asp Ser Gln Phe Phe Leu Leu Leu Thr Gln Gln His65
70 75 80Leu Leu Glu Ser Phe Ala
Gln Ser Ser Glu Thr Ala Thr Pro Lys Ile 85
90 95Ile Cys Leu Asp Ser Asp Tyr Gln Ile Ile Ser Gln
Ala Lys Asn Ile 100 105 110Asn
Pro Glu Asn Ser Val Thr Thr Ser Asn Leu Ala Tyr Val Ile Tyr 115
120 125Thr Ser Gly Ser Thr Gly Lys Pro Lys
Gly Val Met Asn Asn His Val 130 135
140Ala Ile Ser Asn Lys Leu Leu Trp Val Gln Asp Thr Tyr Pro Leu Thr145
150 155 160Thr Glu Asp Cys
Ile Leu Gln Lys Thr Pro Phe Ser Phe Asp Val Ser 165
170 175Val Trp Glu Leu Phe Trp Pro Leu Leu Asn
Gly Ala Arg Leu Val Phe 180 185
190Ala Lys Pro Asn Gly His Lys Asp Ala Ser Tyr Leu Val Asn Leu Ile
195 200 205Gln Glu Gln Gln Val Thr Thr
Leu His Phe Val Ser Ser Met Leu Gln 210 215
220Leu Phe Leu Thr Glu Lys Asp Val Glu Lys Cys Asn Ser Leu Lys
Arg225 230 235 240Val Ile
Cys Ser Gly Glu Ala Leu Ser Leu Glu Leu Gln Glu Arg Phe
245 250 255Phe Ala Arg Leu Val Cys Glu
Leu His Asn Leu Tyr Gly Pro Thr Glu 260 265
270Ala Ala Ile His Val Thr Phe Trp Gln Cys Gln Ser Asp Ser
Asn Leu 275 280 285Lys Thr Val Pro
Ile Gly Arg Pro Ile Ala Asn Ile Gln Ile Tyr Ile 290
295 300Leu Asp Ser His Leu Gln Pro Val Pro Ile Gly Val
Ile Gly Glu Leu305 310 315
320His Ile Gly Gly Val Gly Leu Ala Arg Gly Tyr Leu Asn Arg Pro Glu
325 330 335Leu Thr Ala Glu Lys
Phe Ile Ala Asn Pro Phe Ala Ser Leu Asp Pro 340
345 350Pro Leu Thr Pro Leu Asp Lys Gly Gly Asp Glu Ser
Tyr Lys Thr Phe 355 360 365Lys Lys
Gly Gly Glu Gln Pro Ser Arg Leu Tyr Lys Thr Gly Asp Leu 370
375 380Ala Arg Tyr Leu Pro Asp Gly Lys Ile Glu Tyr
Leu Gly Arg Ile Asp385 390 395
400Asn Gln Val Lys Ile Arg Gly Phe Arg Ile Glu Leu Gly Glu Ile Glu
405 410 415Ala Val Leu Leu
Ser His Pro Gln Val Arg Glu Ala Val Val 420
425 430965PRTMicrocystis aeruginosa 9Glu Ala Ile Ala Ala
Ile Phe Gly Gln Val Leu Lys Leu Glu Lys Val1 5
10 15Gly Ile Tyr Asp Asn Phe Phe Glu Ile Gly Gly
Asn Ser Leu Gln Ala 20 25
30Thr Gln Val Ile Ser Arg Leu Arg Glu Ser Phe Ala Leu Glu Leu Pro
35 40 45Leu Arg Arg Leu Phe Glu Gln Pro
Thr Val Ala Asp Leu Ala Leu Ala 50 55
60Val6510300PRTMicrocystis aeruginosa 10Pro Arg Asp Gly Gln Leu Pro Leu
Ser Phe Ala Gln Ser Arg Leu Trp1 5 10
15Phe Leu Tyr Gln Leu Glu Gly Ala Thr Gly Thr Tyr Asn Met
Thr Gly 20 25 30Ala Leu Ser
Leu Ser Gly Pro Leu Gln Val Glu Ala Leu Lys Gln Ala 35
40 45Leu Arg Thr Ile Ile Gln Arg His Glu Pro Leu
Arg Thr Ser Phe Gln 50 55 60Ser Val
Asp Gly Val Pro Val Gln Val Ile Asn Pro Tyr Pro Val Trp65
70 75 80Glu Leu Ala Met Val Asp Leu
Thr Gly Lys Glu Thr Glu Ala Glu Lys 85 90
95Leu Ala Tyr Gln Glu Ser Gln Thr Pro Phe Asp Leu Thr
Asn Ser Pro 100 105 110Leu Leu
Arg Val Thr Leu Leu Lys Leu Gln Pro Glu Lys His Ile Leu 115
120 125Leu Ile Asn Met His His Ile Ile Ser Asp
Gly Trp Ser Ile Gly Val 130 135 140Phe
Val Arg Glu Leu Ser His Leu Tyr Arg Ala Phe Val Ala Gly Lys145
150 155 160Glu Pro Thr Leu Pro Ile
Leu Pro Ile Gln Tyr Ala Asp Phe Ala Val 165
170 175Trp Gln Arg Glu Trp Leu Gln Gly Lys Val Leu Ala
Ala Gln Leu Glu 180 185 190Tyr
Trp Lys Arg Gln Leu Ala Asp Ala Pro Pro Leu Leu Glu Leu Pro 195
200 205Thr Asp Arg Pro Arg Pro Ala Ile Gln
Thr Phe Gln Gly Lys Thr Glu 210 215
220Arg Phe Glu Leu Asp Arg Lys Leu Thr Gln Glu Leu Lys Ala Leu Ser225
230 235 240Gln Gln Ser Gly
Cys Thr Leu Phe Met Thr Leu Leu Ala Ala Phe Gly 245
250 255Val Val Leu Ser Arg Tyr Ser Gly Gln Thr
Asp Ile Val Ile Gly Ser 260 265
270Ala Ile Ala Asn Arg Asn Arg Gln Asp Ile Glu Gly Leu Ile Gly Phe
275 280 285Phe Val Asn Thr Leu Ala Leu
Arg Leu Asp Leu Ser 290 295
30011409PRTMicrocystis aeruginosa 11Thr Tyr Gly Glu Leu Asn His Arg Ala
Asn Gln Leu Ala His Tyr Leu1 5 10
15Gln Ser Leu Gly Val Thr Lys Glu Gln Ile Val Gly Val Tyr Leu
Glu 20 25 30Arg Ser Leu Glu
Met Ala Ile Gly Phe Leu Gly Ile Leu Lys Ala Gly 35
40 45Ala Ala Tyr Leu Pro Ile Asp Pro Glu Tyr Pro Ser
Val Arg Thr Gln 50 55 60Phe Ile Leu
Glu Asp Thr Gln Leu Ser Leu Leu Leu Thr Gln Ala Glu65 70
75 80Leu Ala Glu Lys Leu Pro Gln Thr
Gln Asn Lys Ile Ile Cys Leu Asp 85 90
95Arg Asp Trp Pro Glu Ile Thr Ser Gln Pro Gln Thr Asn Leu
Asp Leu 100 105 110Lys Ile Glu
Pro Asn Asn Leu Ala Tyr Cys Ile Tyr Thr Ser Gly Ser 115
120 125Thr Gly Gln Pro Lys Gly Val Leu Ile Ser His
Gln Ala Leu Leu Asn 130 135 140Leu Ile
Phe Trp His Gln Gln Ala Phe Glu Ile Gly Pro Leu His Lys145
150 155 160Ala Thr Gln Val Ala Gly Ile
Ala Phe Asp Ala Thr Val Trp Glu Leu 165
170 175Trp Pro Tyr Leu Thr Thr Gly Ala Cys Ile Asn Leu
Val Pro Gln Asn 180 185 190Ile
Leu Leu Ser Pro Thr Asp Leu Arg Asp Trp Leu Leu Asn Arg Glu 195
200 205Ile Thr Met Ser Phe Val Pro Thr Pro
Leu Ala Glu Lys Leu Leu Ser 210 215
220Leu Asp Trp Pro Asn His Ser Cys Leu Lys Thr Leu Leu Leu Gly Gly225
230 235 240Asp Lys Leu His
Phe Tyr Pro Ala Ala Ser Leu Pro Phe Gln Val Ile 245
250 255Asn Asn Tyr Gly Pro Thr Glu Asn Thr Val
Val Ala Thr Ser Gly Leu 260 265
270Val Lys Ser Ser Ser Ser His His Phe Gly Thr Pro Thr Ile Gly Arg
275 280 285Pro Ile Ala Asn Val Gln Ile
Tyr Leu Leu Asp Gln Asn Leu Gln Pro 290 295
300Val Pro Ile Gly Val Pro Gly Glu Leu His Leu Gly Gly Ala Gly
Leu305 310 315 320Ala Gln
Gly Tyr Leu Asn Arg Pro Glu Leu Thr Ala Glu Lys Phe Ile
325 330 335Ala Asn Pro Phe Asp Pro Pro
Leu Thr Pro Leu Asp Lys Gly Gly Glu 340 345
350Glu Pro Ser Lys Leu Tyr Lys Thr Gly Asp Leu Ala Arg Tyr
Leu Pro 355 360 365Asp Gly Asn Val
Glu Phe Leu Gly Arg Ile Asp Asn Gln Val Lys Ile 370
375 380Arg Gly Phe Arg Ile Glu Thr Gly Glu Ile Glu Ala
Val Leu Ser Gln385 390 395
400Tyr Phe Leu Leu Ala Glu Ser Val Val
4051265PRTMicrocystis aeruginosa 12Ala Gln Leu Thr Gln Ile Trp Ser Glu
Val Leu Gly Leu Glu Arg Ile1 5 10
15Gly Val Lys Asp Asn Phe Phe Glu Leu Gly Gly His Ser Leu Leu
Ala 20 25 30Thr Gln Val Leu
Ser Arg Ile Asn Ser Ala Phe Gly Leu Asp Leu Ser 35
40 45Val Gln Ile Met Phe Glu Ser Pro Thr Ile Ala Gly
Ile Ala Gly Tyr 50 55
60Ile6513305PRTMicrocystis aeruginosa 13Ala Arg Asp Gly His Leu Pro Leu
Ser Phe Ala Gln Gln Arg Leu Trp1 5 10
15Phe Leu His Tyr Leu Ser Pro Asp Ser Arg Ser Tyr Asn Thr
Leu Glu 20 25 30Ile Leu Gln
Ile Asp Gly Asn Leu Asn Leu Thr Val Leu Glu Gln Ser 35
40 45Leu Gly Glu Leu Ile Asn Arg His Glu Ile Phe
Arg Thr Thr Phe Pro 50 55 60Thr Val
Ser Gly Glu Pro Ile Gln Lys Ile Ala Leu Pro Ser Arg Phe65
70 75 80Gln Leu Lys Val Asp Asn Tyr
Gln Asp Leu Asp Glu Asn Glu Gln Ser 85 90
95Ala Lys Ile Gln Gln Val Ala Glu Leu Glu Ala Gly Gln
Ala Phe Asp 100 105 110Leu Thr
Val Gly Pro Leu Ile Gln Phe Lys Leu Leu Gln Leu Ser Pro 115
120 125Gln Lys Ser Val Leu Leu Leu Lys Met His
His Ile Ile Tyr Asp Gly 130 135 140Trp
Ser Phe Gly Ile Leu Ile Arg Glu Leu Ser Ala Leu Tyr Glu Ala145
150 155 160Phe Leu Lys Asn Leu Ala
Asn Pro Leu Pro Ala Leu Ser Ile Gln Tyr 165
170 175Ala Asp Phe Ala Val Trp Gln Arg Gln Tyr Leu Ser
Gly Glu Val Leu 180 185 190Asp
Lys Gln Leu Asn Tyr Trp Gln Glu Gln Leu Ala Thr Val Ser Pro 195
200 205Val Leu Thr Leu Pro Thr Asp Arg Pro
Arg Pro Ala Ile Gln Thr Phe 210 215
220Gln Gly Gly Val Glu Arg Phe Gln Leu Asp Gln Asn Val Thr Gln Gly225
230 235 240Leu Lys Lys Leu
Gly Gln Asp Gln Val Ala Thr Leu Phe Met Thr Leu 245
250 255Leu Ala Gly Phe Gly Val Leu Leu Ser Arg
Tyr Ser Gly Gln Ser Asp 260 265
270Leu Met Val Gly Ser Pro Ile Ala Asn Arg Asn Gln Ala Ala Ile Glu
275 280 285Pro Leu Ile Gly Phe Phe Ala
Asn Thr Leu Ala Leu Arg Ile Asn Leu 290 295
300Ser30514395PRTMicrocystis aeruginosa 14Thr Tyr Thr Glu Leu Asn
His Arg Ala Asn Gln Leu Ala His Tyr Leu1 5
10 15Gln Thr Leu Gly Val Gly Ala Glu Val Leu Val Gly
Ile Ser Leu Glu 20 25 30Arg
Ser Leu Glu Met Ile Ile Gly Leu Leu Gly Ile Leu Lys Val Gly 35
40 45Gly Ala Tyr Leu Pro Leu Asp Pro Asp
Tyr Pro Thr Glu Arg Leu Gln 50 55
60Leu Met Leu Glu Asp Ser Gln Val Pro Phe Leu Ile Thr His Ser Ser65
70 75 80Leu Leu Ala Lys Leu
Pro Pro Ser Gln Ala Thr Leu Ile Cys Leu Asp 85
90 95His Ile Gln Glu Gln Ile Ser Gln Tyr Ser Pro
Asp Asn Leu Gln Cys 100 105
110Gln Leu Thr Pro Ala Asn Leu Ala Asn Val Ile Tyr Thr Ser Gly Ser
115 120 125Thr Gly Lys Pro Lys Gly Val
Met Val Glu His Lys Gly Leu Val Asn 130 135
140Leu Ala Leu Ala Gln Ile Gln Ser Phe Ala Val Asn His Asn Ser
Arg145 150 155 160Val Leu
Gln Phe Ala Ser Phe Ser Phe Asp Ala Cys Ile Ser Glu Ile
165 170 175Leu Met Thr Phe Gly Ser Gly
Ala Thr Leu Tyr Leu Ala Gln Lys Asp 180 185
190Ala Leu Leu Pro Gly Gln Pro Leu Ile Glu Arg Leu Val Lys
Asn Gly 195 200 205Ile Thr His Val
Thr Leu Pro Pro Ser Ala Leu Val Val Leu Pro Gln 210
215 220Glu Pro Leu Arg Asn Leu Glu Thr Leu Ile Val Ala
Gly Glu Ala Cys225 230 235
240Ser Leu Asp Leu Val Lys Gln Trp Ser Ile Asp Arg Asn Phe Phe Asn
245 250 255Ala Tyr Gly Pro Thr
Glu Ala Ser Val Cys Ala Thr Ile Gly Gln Cys 260
265 270Tyr Gln Asp Asp Leu Lys Val Thr Ile Gly Lys Ala
Ile Ala Asn Val 275 280 285Gln Ile
Tyr Ile Leu Asp Ala Phe Leu Gln Pro Val Pro Val Gly Val 290
295 300Ser Gly Glu Leu Tyr Ile Gly Gly Val Gly Val
Ala Arg Gly Tyr Leu305 310 315
320Asn Arg Pro Glu Leu Thr Gln Glu Lys Phe Ile Ala Asn Pro Phe Ser
325 330 335Asn Asp Pro Asp
Ser Arg Leu Tyr Lys Thr Gly Asp Leu Ala Arg Tyr 340
345 350Leu Pro Asp Gly Asn Ile Glu Tyr Leu Gly Arg
Ile Asp Asn Gln Val 355 360 365Lys
Ile Arg Gly Phe Arg Ile Glu Leu Gly Glu Ile Glu Ala Val Leu 370
375 380Ser Gln Cys Pro Asp Val Gln Asn Thr Ala
Val385 390 3951565PRTMicrocystis
aeruginosa 15Glu Ile Leu Ala Gln Ile Trp Gly Gln Val Leu Lys Ile Glu Arg
Val1 5 10 15Ser Arg Glu
Asp Asn Phe Phe Glu Leu Gly Gly His Ser Leu Leu Ala 20
25 30Thr Gln Val Met Ser Arg Leu Arg Glu Thr
Phe Gln Val Glu Leu Pro 35 40
45Leu Arg Ser Leu Phe Thr Ala Pro Thr Ile Ala Glu Leu Ala Leu Thr 50
55 60Ile6516299PRTMicrocystis aeruginosa
16Asn Asp Ser Ala Asn Leu Pro Leu Ser Phe Ala Gln Gln Arg Leu Trp1
5 10 15Phe Leu Asp Gln Leu Glu
Pro Asn Ser Ala Phe Tyr His Val Gly Gly 20 25
30Ala Val Arg Leu Glu Gly Thr Leu Asn Ile Thr Ala Leu
Glu Gln Ser 35 40 45Leu Lys Glu
Ile Ile Asn Arg His Glu Ala Leu Arg Thr Asn Phe Ile 50
55 60Thr Ile Asp Gly Gln Ala Thr Gln Ile Ile His Pro
Thr Ile Asn Trp65 70 75
80Arg Leu Ser Val Val Asp Cys Gln Asn Leu Thr Asp Thr Gln Ser Leu
85 90 95Glu Ile Ala Glu Ala Glu
Lys Pro Phe Asn Leu Ala Gln Asp Cys Leu 100
105 110Phe Arg Ala Thr Leu Phe Val Arg Ser Pro Leu Glu
Tyr His Leu Leu 115 120 125Val Thr
Met His His Ile Val Ser Asp Gly Trp Ser Ile Gly Val Phe 130
135 140Phe Gln Glu Leu Thr His Leu Tyr Ala Val Tyr
Asn Gln Gly Leu Pro145 150 155
160Ser Ser Leu Thr Pro Ile Lys Ile Gln Tyr Ala Asp Phe Ala Val Trp
165 170 175Gln Arg Asn Trp
Leu Gln Gly Glu Ile Leu Ser Asn Gln Leu Asn Tyr 180
185 190Trp Arg Glu Gln Leu Ala Asn Ala Pro Ala Phe
Leu Pro Leu Pro Thr 195 200 205Asp
Arg Pro Arg Pro Ala Ile Gln Thr Phe Ile Gly Ser His Gln Glu 210
215 220Phe Lys Leu Ser Gln Pro Leu Ser Gln Lys
Leu Asn Gln Leu Ser Gln225 230 235
240Lys His Gly Val Thr Leu Phe Met Thr Leu Leu Ala Ala Phe Ala
Thr 245 250 255Leu Leu Tyr
Arg Tyr Thr Gly Gln Ala Asp Ile Leu Val Gly Ser Pro 260
265 270Ile Ala Asn Arg Asn Arg Lys Glu Ile Glu
Gly Leu Ile Gly Phe Phe 275 280
285Val Asn Thr Leu Val Leu Arg Leu Ser Leu Asp 290
29517415PRTMicrocystis aeruginosa 17Thr Tyr Ala Glu Leu Asn His Gln Ala
Asn Gln Leu Val His Tyr Leu1 5 10
15Gln Thr Leu Gly Ile Gly Pro Glu Val Leu Val Ala Ile Ser Val
Glu 20 25 30Arg Ser Leu Glu
Met Ile Ile Gly Leu Leu Ala Ile Leu Lys Ala Cys 35
40 45Gly Ala Tyr Leu Pro Leu Ala Pro Asp Tyr Pro Thr
Glu Arg Leu Gln 50 55 60Phe Met Leu
Glu Asp Ser Gln Ala Ser Phe Leu Ile Thr His Ser Ser65 70
75 80Leu Leu Glu Lys Leu Pro Ser Ser
Gln Ala Thr Leu Ile Cys Leu Asp 85 90
95His Ile Gln Glu Gln Ile Ser Gln Tyr Ser Pro Asp Asn Leu
Gln Ser 100 105 110Glu Leu Thr
Pro Ser Asn Leu Ala Asn Val Ile Tyr Thr Ser Gly Ser 115
120 125Thr Gly Lys Pro Lys Gly Val Met Val Glu His
Arg Gly Leu Val Asn 130 135 140Leu Ala
Ser Ser Gln Ile Gln Ser Phe Ala Val Lys Asn Asn Ser Arg145
150 155 160Val Leu Gln Phe Ala Ser Phe
Ser Phe Asp Ala Cys Ile Ser Glu Ile 165
170 175Leu Met Thr Phe Gly Ser Gly Ala Thr Leu Tyr Leu
Ala Gln Lys Asn 180 185 190Asp
Leu Leu Pro Gly Gln Pro Leu Met Glu Arg Leu Glu Lys Asn Lys 195
200 205Ile Thr His Val Thr Leu Pro Pro Ser
Ala Leu Ala Val Leu Pro Lys 210 215
220Lys Pro Leu Pro Asn Leu Gln Thr Leu Ile Val Ala Gly Glu Ala Cys225
230 235 240Pro Leu Asp Leu
Val Lys Gln Trp Ser Val Gly Arg Asn Phe Phe Asn 245
250 255Ala Tyr Gly Pro Thr Glu Thr Ser Val Cys
Ala Thr Ile Gly Gln Cys 260 265
270Tyr Gln Asp Asp Leu Lys Val Thr Ile Gly Lys Ala Ile Ala Asn Val
275 280 285Gln Ile Tyr Ile Leu Asp Ala
Phe Leu Gln Pro Val Pro Ile Gly Val 290 295
300Pro Gly Glu Leu Tyr Ile Gly Gly Val Gly Val Ala Arg Gly Tyr
Leu305 310 315 320Asn Arg
Pro Glu Leu Thr Ala Glu Arg Phe Ile Pro Asn Pro Phe Asp
325 330 335Pro Pro Leu Thr Pro Leu Lys
Lys Gly Gly Asp Lys Ser Tyr Glu Thr 340 345
350Phe Lys Lys Gly Glu Glu Gln Pro Ser Lys Leu Tyr Lys Thr
Gly Asp 355 360 365Leu Ala Arg Tyr
Leu Pro Asp Gly Asn Ile Glu Tyr Leu Gly Arg Ile 370
375 380Asp Asn Gln Val Lys Ile Arg Gly Phe Arg Ile Glu
Leu Gly Glu Ile385 390 395
400Glu Ala Val Leu Ser Gln Cys Pro Asp Val Gln Asn Thr Ala Val
405 410 4151865PRTMicrocystis
aeruginosa 18Leu Gln Leu Ala Gln Ile Trp Ser Glu Ile Leu Gly Ile Asn Asn
Ile1 5 10 15Gly Ile Gln
Glu Asn Phe Phe Glu Leu Gly Gly His Ser Leu Leu Ala 20
25 30Val Ser Leu Ile Asn Arg Ile Glu Gln Lys
Leu Asp Lys Arg Leu Pro 35 40
45Leu Thr Ser Leu Phe Gln Asn Gly Thr Ile Ala Ser Leu Ala Gln Leu 50
55 60Leu6519227PRTMicrocystis aeruginosa
19Thr Pro Phe Phe Ala Val His Pro Ile Gly Gly Asn Val Leu Cys Tyr1
5 10 15Ala Asp Leu Ala Arg Asn
Leu Gly Thr Lys Gln Pro Phe Tyr Gly Leu 20 25
30Gln Ser Leu Gly Leu Ser Glu Leu Glu Lys Thr Val Ala
Ser Ile Glu 35 40 45Glu Met Ala
Met Ile Tyr Ile Glu Ala Ile Gln Thr Val Gln Ala Ser 50
55 60Gly Pro Tyr Tyr Leu Gly Gly Trp Ser Met Gly Gly
Val Ile Ala Phe65 70 75
80Glu Ile Ala Gln Gln Leu Leu Thr Gln Gly Gln Glu Val Ala Leu Leu
85 90 95Ala Leu Ile Asp Ser Tyr
Ser Pro Ser Leu Leu Asn Ser Val Asn Arg 100
105 110Glu Lys Asn Ser Ala Asn Ser Leu Thr Glu Glu Phe
Asn Glu Asp Ile 115 120 125Asn Ile
Ala Tyr Ser Phe Ile Arg Asp Leu Ala Ser Ile Phe Asn Gln 130
135 140Glu Ile Ser Phe Ser Gly Ser Glu Leu Ala His
Phe Thr Ser Asp Glu145 150 155
160Leu Leu Asp Lys Phe Ile Thr Trp Ser Gln Glu Thr Asn Leu Leu Pro
165 170 175Ser Asp Phe Gly
Lys Gln Gln Val Lys Thr Trp Phe Lys Val Phe Gln 180
185 190Ile Asn His Gln Ala Leu Ser Ser Tyr Ser Pro
Lys Thr Tyr Leu Gly 195 200 205Arg
Ser Val Phe Leu Gly Ala Glu Asp Ser Ser Ile Lys Asn Pro Gly 210
215 220Trp His Gln22520345PRTMicrocystis
aeruginosa 20Phe Ser Leu Tyr Tyr Phe Gly Ser Tyr Glu Ala Glu Phe Asn Pro
Asn1 5 10 15Lys Tyr Asn
Leu Leu Phe Glu Gly Ala Lys Phe Gly Asp Arg Ala Gly 20
25 30Phe Thr Ala Leu Trp Ile Pro Glu Arg His
Phe His Ala Phe Gly Gly 35 40
45Phe Ser Pro Asn Pro Ser Val Leu Ala Ala Ala Leu Ala Arg Glu Thr 50
55 60Lys Gln Ile Gln Leu Arg Ser Gly Ser
Val Val Leu Pro Leu His Asn65 70 75
80Ser Ile Arg Val Ala Glu Glu Trp Ala Val Val Asp Asn Leu
Ser Gln 85 90 95Gly Arg
Val Gly Ile Ala Phe Ala Ser Gly Trp His Pro Gln Asp Phe 100
105 110Val Leu Ala Pro Gln Ser Phe Gly Gln
His Arg Glu Leu Met Phe Gln 115 120
125Glu Ile Glu Thr Val Gln Lys Leu Trp Arg Gly Glu Ala Ile Thr Val
130 135 140Pro Asp Gly Lys Gly Gln Arg
Val Glu Val Lys Thr Tyr Pro Gln Pro145 150
155 160Met Gln Ser Gln Leu Pro Ser Trp Ile Thr Ile Val
Asn Asn Pro Asp 165 170
175Thr Tyr Ile Arg Ala Gly Ala Ile Gly Ala Asn Ile Leu Thr Asn Leu
180 185 190Met Gly Gln Ser Val Glu
Asp Leu Ala Arg Asn Ile Ala Leu Tyr Arg 195 200
205Gln Ser Leu Ala Glu His Gly Tyr Asp Pro Ala Ser Gly Thr
Val Thr 210 215 220Val Leu Leu His Thr
Phe Val Gly Lys Asp Leu Glu Gln Val Arg Glu225 230
235 240Gln Ala Arg Gln Pro Phe Gly Gln Tyr Leu
Thr Ser Ser Val Gly Leu 245 250
255Leu Gln Asn Met Val Lys Ser Gln Gly Met Lys Val Asp Phe Glu Gln
260 265 270Leu Arg Asp Glu Asp
Arg Asp Phe Leu Leu Ala Ser Ala Tyr Lys Arg 275
280 285Tyr Thr Glu Thr Ser Ala Leu Ile Gly Thr Pro Glu
Ser Cys Arg Gln 290 295 300Ile Ile Asp
His Leu Gln Ser Ile Gly Val Asp Glu Val Ala Cys Phe305
310 315 320Ile Asp Phe Gly Val Asp Glu
Gln Thr Val Leu Ala Asn Leu Pro Tyr 325
330 335Leu Gln Ser Leu Lys Asp Leu Tyr Gln 340
3452133PRTMicrocystis aeruginosa 21Ile Asp Pro Pro Leu
Thr Pro Leu Asp Lys Gly Ile Asp Pro Pro Leu1 5
10 15Thr Pro Leu Asp Lys Gly Ile Asp Pro Pro Leu
Thr Pro Leu Asp Lys 20 25
30Gly2277PRTMicrocystis aeruginosa 22Pro Tyr Gln Gly Gly Leu Gly Gly Asp
Gln Ser Pro Tyr Gln Gly Gly1 5 10
15Leu Gly Gly Asp Gln Ser Pro Tyr Gln Gly Gly Leu Gly Gly Asp
Gln 20 25 30Ser Pro Tyr Gln
Gly Gly Leu Gly Gly Asp Gln Ser Pro Tyr Gln Gly 35
40 45Gly Leu Gly Gly Asp Gln Ser Pro Tyr Gln Gly Glu
Leu Gly Gly Asp 50 55 60Gln Ser Pro
Tyr Gln Gly Gly Leu Gly Gly Asp Gln Val65 70
7523382PRTMicrocystis aeruginosa 23Pro Ala Ser Glu Met Arg Glu Trp
Val Glu Asn Thr Val Ser Arg Ile1 5 10
15Leu Ala Phe Gln Pro Glu Arg Gly Leu Glu Ile Gly Cys Gly
Thr Gly 20 25 30Leu Leu Leu
Ser Arg Val Ala Lys His Cys Leu Glu Tyr Trp Ala Thr 35
40 45Asp Tyr Ser Gln Gly Ala Ile Gln Tyr Val Glu
Arg Val Cys Asn Ala 50 55 60Val Glu
Gly Leu Glu Gln Val Lys Leu Arg Cys Gln Met Ala Asp Asn65
70 75 80Phe Glu Gly Ile Ala Leu His
Gln Phe Asp Thr Val Val Leu Asn Ser 85 90
95Ile Ile Gln Tyr Phe Pro Ser Val Asp Tyr Leu Leu Gln
Val Leu Glu 100 105 110Gly Ala
Ile Asn Val Ile Gly Glu Arg Gly Gln Ile Phe Val Gly Asp 115
120 125Val Arg Ser Leu Pro Leu Leu Glu Pro Tyr
His Ala Ala Val Gln Leu 130 135 140Ala
Gln Ala Ser Asp Ser Lys Thr Val Glu Gln Trp Gln Gln Gln Val145
150 155 160Arg Gln Ser Val Ala Gly
Glu Glu Glu Leu Val Ile Asp Pro Thr Leu 165
170 175Phe Leu Ala Leu Lys Gln His Phe Pro Gln Ile Ser
Trp Val Glu Ile 180 185 190Gln
Pro Lys Arg Gly Val Ala His Asn Glu Leu Thr Gln Phe Arg Tyr 195
200 205Asp Val Thr Leu His Leu Glu Thr Ile
Asn Asn Gln Ala Leu Leu Ser 210 215
220Gly Asn Pro Thr Val Ile Thr Trp Leu Asn Trp Gln Leu Asp Gln Leu225
230 235 240Ser Leu Thr Gln
Ile Lys Asp Lys Leu Leu Thr Asp Lys Pro Glu Leu 245
250 255Trp Gly Ile Arg Gly Ile Pro Asn Gln Arg
Val Glu Glu Ala Leu Lys 260 265
270Ile Trp Glu Trp Val Glu Asn Ala Pro Asp Val Glu Thr Val Glu Gln
275 280 285Leu Lys Lys Leu Leu Lys Gln
Gln Val Asp Thr Gly Ile Asn Pro Glu 290 295
300Gln Val Trp Gln Leu Ala Glu Ser Leu Gly Tyr Thr Ala His Leu
Ser305 310 315 320Trp Trp
Glu Ser Ser Gln Asp Gly Ser Phe Asp Val Ile Phe Gln Arg
325 330 335Asn Ser Glu Ala Glu Asp Ser
Lys Lys Leu Thr Leu Ser Lys Leu Ala 340 345
350Phe Trp Asp Glu Lys Pro Phe Lys Ile Lys Pro Trp Ser Asp
Tyr Thr 355 360 365Asn Asn Pro Leu
Arg Gly Lys Leu Val Gln Lys Leu Ile Pro 370 375
38024270PRTMicrocystis aeruginosa 24Met Thr Asn Tyr Gly Lys Ser
Met Ser His Tyr Tyr Asp Leu Val Val1 5 10
15Gly His Lys Gly Tyr Asn Lys Asp Tyr Ala Thr Glu Val
Glu Phe Ile 20 25 30His Asn
Leu Val Glu Thr Tyr Thr Thr Glu Ala Lys Ser Ile Leu Tyr 35
40 45Leu Gly Cys Gly Thr Gly Tyr His Ala Ala
Leu Leu Ala Gln Lys Gly 50 55 60Tyr
Ser Val His Gly Val Asp Leu Ser Ala Glu Met Leu Glu Gln Ala65
70 75 80Lys Thr Arg Ile Glu Asp
Glu Thr Ile Ala Ser Asn Leu Ser Phe Ser 85
90 95Gln Gly Asn Ile Cys Glu Ile Arg Leu Asn Arg Gln
Phe Asn Val Val 100 105 110Leu
Ala Leu Phe His Val Val Asn Tyr Gln Thr Thr Asn Gln Asn Leu 115
120 125Leu Ala Thr Phe Ala Thr Val Lys Asn
His Leu Lys Ala Gly Gly Ile 130 135
140Phe Ile Cys Asp Val Ser Tyr Gly Ser Tyr Val Leu Gly Glu Phe Lys145
150 155 160Ser Arg Pro Thr
Ala Ser Ile Leu Arg Leu Glu Asp Asn Ser Asn Gly 165
170 175Asn Glu Val Thr Tyr Ile Ser Glu Leu Asn
Phe Leu Thr His Glu Asn 180 185
190Ile Val Glu Val Thr His Asn Leu Trp Val Thr Asn Gln Glu Asn Gln
195 200 205Leu Leu Glu Asn Ser Arg Glu
Thr His Leu Gln Arg Tyr Leu Phe Lys 210 215
220Pro Glu Val Glu Leu Leu Ala Asp Ala Cys Glu Leu Thr Val Leu
Asp225 230 235 240Ala Met
Pro Trp Leu Glu Gln Arg Pro Leu Thr Asn Ile Pro Cys Pro
245 250 255Ser Val Cys Phe Val Ile Gly
His Lys Thr Thr His Ser Ala 260 265
270251743DNAMicrocystis aeruginosa 25atgactatta actatggtga
tctgcaagaa ccctttaata aattctcaac cctagttgaa 60ttactccgtt atcgggcaag
cagtcaaccg gaacgcctcg cctatatttt tctgcgagac 120ggagaaatcg aagaagctcg
tttaacctat ggggaactgg atcaaaaggc tagggcgatc 180gccgcttatc tacaatcctt
agaagccgag ggcgaaaggg gtttactgct ctatccccca 240ggactagatt ttatttcagc
tttttttggt tgtttatatg cgggagtcgt tgccattccc 300gcctatccac cccgacggaa
tcaaaacctt ttgcgtttac aggcgattat tgccgattct 360caagcccgat ttaccttcac
caatgccgct ctatttccca gtttaaaaaa ccaatgggct 420aaagaccctg aattaggagc
aatggaatgg attgttaccg atgaaattga ccatcacctc 480agggaggatt ggctagaacc
aaccctcgaa aaaaacagtc tcgcttttct acaatacacc 540tctggttcaa cgggaactcc
aaagggagta atggtcagtc accataattt gttgattaat 600tcagccgatt tagatcgtgg
ttggggccat gatcaagata gcgtaatggt cacttggcta 660ccgaccttcc atgatatggg
tctgatttat ggggttattc agcctttgta caaaggattt 720ctttgttaca tgatgtcccc
tgccagcttt atggaacgac cgttacgttg gttacaggcc 780ctttctgata aaaaagcaac
ccatagtgcg gcccccaact ttgcctacga tctttgtgtg 840cggaaaattc cccctgaaaa
acgggctacg ttagacttaa gccattggtg catggcctta 900aatggggccg aacccgtcag
agcggaggta cttaaaaagt ttgcggaggc ttttcaagtt 960tctggtttca aagccacagc
cctttgtcct ggctacggtt tagcagaagc caccctgaaa 1020gttacggcgg ttagttatga
cagtccccct tacttttatc ccgttcaggc taatgcttta 1080gaaaaaaata agattgtggg
agccactgaa accgatacca atgtgcagac cctcgtgggc 1140tgcggctgga caacgattga
tactcaaatc gtcattgtca atcctgaaac cctgaaacct 1200tgctcccctg aaattgtcgg
cgaaatttgg gtatcaggtt caacaatcgc ccaaggctat 1260tggggaaaac ctcaagagac
tcaggaaacc tttcaagctt atttggcaga tacaggagcc 1320gggccttttc tgcgaacagg
agacttgggc ttcattaaag atggtgaatt gtttatcaca 1380ggtcggctca aggaaattat
tctgattcga ggacgcaata attatcccca ggatattgaa 1440ttaaccgtcc aaaatagtca
tcccgctctg cgtcccagtt gtggggctgc ttttaccgtt 1500gaaaataagg gcgaagaaaa
gctcgtggtc gttcaggaag tggagcgcac ctggctccgt 1560aaggtagata tagatgaggt
aaaaagagcc attcgtaaag ctgttgtcca ggaatatgat 1620ttacaggttt atgcgatcgc
gctgatcagg actggcagtt taccaaaaac ctctagcggt 1680aaaattcagc gtcgtagctg
tcgggccaaa tttttagagg gaagcctgga aattttgggc 1740taa
174326267DNAMicrocystis
aeruginosa 26atgtccacag aaatcccaaa cgacaaaaaa caaccgaccc taacgaaaat
tcaaaactgg 60ttagtggctt acatgacaga gatgatggaa gtggacgaag atgagattga
tctgagcgtt 120ccctttgatg aatatggtct cgattcttct atggcagttg ctttgatcgc
tgatctagag 180gattggttac gacgagattt acatcgcacc ctgatctacg attatccaac
tctagaaaag 240ttggctaaac aggttagtga accctga
267271293DNAMicrocystis aeruginosa 27atggaaccca tcgcaattat
tggtcttgct tgccgctttc caggggctga caatccagaa 60gctttctggc aactcatgcg
aaatggggtg gatgcgatcg ccgatattcc tcctgaacgt 120tgggatattg agcgtttcta
cgatcccaca cctgccactg ccaagaagat gtatagtcgc 180cagggcggtt ttctaaaaaa
tgtcgatcaa tttgaccctc aatttttccg aatttctccc 240ctagaagcca cctatctaga
tcctcaacaa agactgctac tggaagtcac ctgggaagcc 300ttagaaaatg ctgccattgt
gcctgaaacc ttagctggta gccaatcagg ggtttttatt 360ggtatcagtg atgtggatta
tcatcgtttg gcttatcaaa gtcctactaa cttgaccgcc 420tatgtgggta caggcaacag
caccagtatt gcggctaacc gtttatcata tctgtttgat 480ttgcgtggcc ccagtttggc
cgtagatacc gcttgctctt cttccctcgt cgccgttcac 540ttggcctgtc agagtttgca
aagtcaagaa tcgaacctct gcttagtggg gggagttaat 600ctcattttgt cgccagagac
aaccgttgtt ttttcccaag cgagaatgat cgcccccgac 660agtcgttgta aaacctttga
cgcgagggcc gatggttatg tgcgctcgga aggctgtgga 720gtagtcgtac ttaaacgtct
tagggatgcc attcaggacg gcgatcgcat tttagcagtg 780attgaaggtt ccgcggtgaa
tcaggatggt ttaagtaatg gactcacggc ccctaatggc 840cctgctcaac aggcggtgat
tcgtcaggcc ctggcaaatg cccaggtaaa accggcccag 900attagctatg tcgaagccca
tggcacgggg acagaattgg gggatccgat cgaagttaaa 960tctctgaaag cggttttggg
tgaaaagcga tcgctcgatc aaacctgttg gctcggttct 1020gtgaaaacca acattggtca
tttagaagcg gcggcgggaa tggcgggtct gattaaagtc 1080gttctctgcc tacaacacca
agaaattccc cctaatctcc actttcaaac ccttaatccc 1140tatatttccc tagctgacac
agcttttgcg attcccactc aggctcaacc ctggcggacc 1200aaacccccta agtctggtga
aaacggtgtc gaacgacgtt tagcaggact cagttccttt 1260gggtttgggg ggacaaattc
ccatgtgatt ctc 129328972DNAMicrocystis
aeruginosa 28gtttttctat ttgccggtca aggttctcaa tatgtaggta tgggtcgtca
actgtacgaa 60acccaaccca tctttcgcca aaccttggat cgctgtgctg aaatcctgcg
accccattta 120gatcaacccc tcttagaaat tctttatcct gctgacccag aagccgaaac
agcgagtttt 180tacctagagc agactgccta tacccaaccc actttattcg cattcgagta
tgccctagca 240cagttatggc gttcctgggg aatagaaccg gcggcagtaa ttggtcacag
tgtcggtgaa 300tatgtggcgg ccaccgttgc cggagcctta agtctagaag aaggattaac
gctaattgcc 360aaacgggcaa aactgatgca gtctctcccc aagaatggga caatgatcgc
cgtttttgcc 420gcagaagagc gggttaaagc tgttattgag ccttatagga ctgatgtagc
gatcgctgct 480gttaatggac cagaaaattt tgttatttca ggaaaagcgc cgattattgc
tgagattatc 540attcatttaa cggcagcagg aatagaagtt cgtcctctca aagtttccca
tgcttttcac 600tcgcacctgt tggagccaat tttagattcc ttagaacagg aagctgctgc
tatttcctac 660caacccctgc aaattccctt agttgctaat ttaacggggg aagttctacc
agaaggagca 720acgattgagg ctcgttactg gcgaaatcat gcacgcaacc ctgtacaatt
ttatgggagt 780atccaaacgc tgatcgagca gaaattcagt ctttttttag aagttagccc
taaaccgact 840ttatctcgat tgggtcaaca atgttgtcca gaaagatcga ccacttggct
attttccctc 900gcccctcctc aagaagaaga acaaagccta ctaaatagtt tggcgattct
ctatgattcc 960caaggagccg aa
97229204DNAMicrocystis aeruginosa 29atcacattgc aaaccctagt
gggaaattta ctgcaattgt cccctgctga tgtcaatgtt 60catacacctt tcctggagat
gggggcagat tccattgtca tggttgaggc ggtcagacgg 120attgagaata cctataacgt
taaaattgct atgcgtcagt tatttgagga gttatctact 180ttagatgctt tagctactta
ttta 204301182DNAMicrocystis
aeruginosa 30aaagagatgc tttatcccat tgtggcccaa cgttctcaag gatcaagaat
ttgggatgtg 60gacggtaatg aatatattga tatgacgatg gggcaagggg taacgctgtt
tgggcatcaa 120ccagacttca ttatgtcggc cctacaaagc caactcactg aaggcattca
tctcaatccg 180cgatcgccaa ttgtgggaga agtggccgcc ttaatttgtg aactaacagg
agccgaacga 240gcttgttttt gcaactctgg aaccgaagcc gtaatggccg ctattcgtat
cgccagggca 300acaacaggtc ggagtaaaat tgccctcttt gaaggctcct atcatggaca
tgcggacgga 360acccttttta ggaaccaaat tattgataac caactccact cttttcccct
agctctaggc 420gttcccccca gccttagttc cgatgtggtg gtattggact atggcagtgc
ggaagctctg 480aactatttac aaacccaggg gcaggattta gcggcggtct tagtagaacc
aattcaaagt 540ggcaatcctc tactccaacc ccaacaattt ctccaaagtc tgcgacaaat
taccagtcaa 600atgggcattg ccctgatttt tgatgaaatg attacgggtt ttcgatcgca
cccaggggga 660gcgcaagctt tatttggagt acaggcggat attgccacct atggcaaagt
agttgcggga 720ggaatgccca ttggagttat tgcaggtaag gcccattatc tggacagcat
tgacggggga 780atgtggcgtt atggcgataa atcctatcct ggggtggaca gaaccttttt
tgggggaacc 840tttaatcagc atccgttagc aatggtagcg gctagggctg tcctgaccca
tttaaaggag 900caggggccag gtctgcaaca acaattaact gaacgcactg cggccttagc
cgatacactg 960aatcattatt ttcaagccga agaagttcct attaaaatcg aacagtttag
ttctttcttc 1020cggtttgccc tctctggcaa tttggattta cttttctatc acatggtaga
aaaaggtatt 1080tatgtctggg aatggcgtaa acattttctt tcaaccgccc atacggaagc
cgatcttgcc 1140caatttgtcc aagcggttaa ggatagcatc acagaattgc gt
118231900DNAMicrocystis aeruginosa 31gggggggatc aagtccctct
caccgaagcc caacgacaac tgtggatttt ggctcaatta 60ggagacaacg gctctgtggc
ctataaccaa tcagtgacat tgcaattaag tggcccatta 120aatcccgtcg caatgaatca
agctattcaa caaatcagcg atcgccatga agcgttacga 180accaaaatta atgcccaggg
agatagtcaa gaaatcctgc cccaggtcga aattaactgc 240cctatcttag acttcagtct
tgaccaagct tcggcccaac agcaagcaga acaatggtta 300aaggaagaaa gtgaaaaacc
ctttgatttg agccagggtt ctctcgtgcg ttggcatcta 360ctcaaattag aaccagaatt
acatttgtta gtattaacgg cccatcacat tatcagtgac 420ggttggtcaa tgggggtaat
ccttcgggaa ttaggagagt tatattcagc caaatgtcag 480ggtgttacgg ctaatcttaa
aaccccaaaa cagtttcgag aattgattga atggcaaagc 540cagccaagcc aaggggaaga
actgaaaaaa cagcaagcct attggttagc aacccttgcc 600gatccccctg ttttgaattt
acccactgac aaacctcgtc cagctttacc cagttaccaa 660gctaatcgtc gaagtctaac
tttagatagc caatttacag aaaaactaaa gcaatttagt 720cgtaaacagg gctgtacctt
gctgatgacc ctgttatcgg tttataacat tctcgttcat 780cgtttgacgg gacaggatga
tattctggtg ggtctgccag cctctggacg ggggctttta 840gatagtgaag gtatggtggg
ttattgcacc cattttttac caattcgcag tcaattagca 900321290DNAMicrocystis
aeruginosa 32acttacagtg aattaaattg tcgagccaat cagttagcac attatttaca
aaaattagga 60gttgggccag aggtcttagt cggtattttg gtcgaacgtt ctttagaaat
gattgtcgga 120ttgttaggga ttctcaaggc tgggggagcc tatgtacctc ttgatcctga
ctatccccct 180gaacgtcttc aatttatgtt agaagatagt caattttttc tcctcttaac
ccaacagcat 240ttactggaat cttttgctca gtcttcagaa acggctactc ccaagattat
ttgtttggat 300agcgactacc aaattatttc ccaggcaaag aatattaatc ccgaaaattc
agtcacaacg 360agtaatcttg cctatgtaat ttatacctct ggttcgacag gtaaaccgaa
gggcgtgatg 420aataatcatg ttgctattag taataaattg ttatgggtac aagacactta
tcctctaacc 480acagaagact gtattttaca aaaaactccc tttagttttg atgtttcagt
gtgggaatta 540ttctggcccc tactaaacgg agcgcgtttg gtttttgcca agccgaatgg
ccataaagat 600gccagttact tagtcaatct gattcaagag caacaagtaa caacgctaca
ttttgtgtct 660tctatgctac agctttttct gacagaaaaa gacgtagaaa aatgtaatag
tcttaaacga 720gtcatttgta gtggtgaagc cctttcttta gagcttcaag aacgtttttt
tgctcgttta 780gtctgtgaat tacacaatct ttatggaccg acagaagccg ctattcatgt
cacattttgg 840caatgtcaat cagatagcaa tttgaaaaca gtacccattg gtcggccgat
cgctaatatc 900caaatttaca ttttagactc tcatcttcag ccagtaccta ttggagtaat
cggagaattg 960cacattggtg gggttggttt ggcgcggggt tatttaaaca ggcctgagtt
aacggcggag 1020aaatttattg caaatccgtt tgcttccctt gatccccccc taacccccct
tgataagggg 1080ggagatgaga gctataaaac ttttaaaaag gggggagagc aaccatcaag
attgtataaa 1140acgggagatt tagctcgtta tttacccgat ggcaagattg agtatctagg
gcgcattgat 1200aatcaggtaa aaattcgcgg tttccggatt gaattggggg aaattgaagc
ggttttgcta 1260tcccatcccc aggtacgaga agcggtcgtt
129033195DNAMicrocystis aeruginosa 33gaggcgatcg ccgctatttt
tggtcaagtt ttaaaactgg aaaaagtggg aatttatgat 60aacttttttg agatcggcgg
taattctttg caagccactc aagttatttc acgcttacga 120gaaagttttg ccctagagtt
gcccttgcgt cgcctgtttg aacaaccgac tgtggcggat 180ttggctttag ccgta
19534900DNAMicrocystis
aeruginosa 34cctcgtgatg gccaattacc cctctccttt gcccagtcgc gactctggtt
cttgtatcaa 60ttagaaggag ccacgggaac ctataacatg acaggggcct tgagtttaag
cgggcctctt 120caggtcgaag ccctcaaaca agccctaaga actatcattc aacgccatga
gccattgcgt 180accagtttcc aatcggttga cggggttcca gtgcaggtga ttaatcccta
tcctgtttgg 240gaattagcga tggttgattt gacaggaaag gagacagaag cagaaaaatt
ggcctatcag 300gaatcccaaa ccccgtttga tttgaccaat agtcctttgt tgagggtaac
gctcctcaaa 360ttacagccag aaaagcatat tttattaatt aatatgcacc atattatttc
cgatggctgg 420tcaatcggtg tttttgttcg tgaattgtcc catctctata gggcttttgt
ggcgggtaaa 480gaaccaactt taccgatttt accaattcag tatgcggatt ttgccgtttg
gcagcgagag 540tggttacagg gtaaggtttt agcggctcaa ttggaatatt ggaagcgaca
attggcagat 600gctcctcctc tgctggaact gcccactgat cgccctcgtc ccgcaatcca
aacctttcaa 660ggcaagacag aaagatttga gctagatagg aaactgaccc aagaattaaa
ggcattaagt 720caacagtcgg gttgtacttt atttatgact ttgttggccg cttttggggt
ggttttatcc 780cgttatagtg gccagactga tatcgtcatt ggttcggcga tcgccaaccg
taatcgccaa 840gacattgagg ggttaattgg cttttttgtt aacactttgg cgttgaggtt
agatttatca 900351227DNAMicrocystis aeruginosa 35acctatggag aattaaacca
tcgcgccaat caattagctc actatcttca gtcgttagga 60gtcaccaaag aacaaatcgt
cggggtttat ctggaacgtt cccttgaaat ggcgatcgga 120tttttaggta ttctcaaagc
aggagccgcc tatctcccca ttgatcctga atatccctca 180gtacgcaccc aatttattct
cgaagatacc caactttcgc ttctcttaac tcaggcagaa 240ctggcagaaa aactgcccca
gactcaaaac aaaattatct gtctagatcg ggactggcca 300gaaattacct cccaacccca
gacaaaccta gacctaaaga tagaacctaa taacctagcc 360tattgcatct atacttctgg
ttccacagga caacccaaag gagtactgat ttcccatcaa 420gccctactca acttaatttt
ctggcatcaa caagcgtttg agattggccc cttacataaa 480gcgacccaag tggcaggcat
tgctttcgat gcaacggttt gggaattgtg gccctatctg 540accacaggag cctgtattaa
tctggttccc caaaatattc tgctctcacc gacggattta 600cgggattggt tgcttaaccg
agaaattacc atgagttttg tgccaactcc tttagctgaa 660aaattattat ccttggattg
gcctaaccat tcttgtctaa aaaccctgtt actgggaggt 720gacaaacttc atttttatcc
tgctgcgtcc cttccctttc aggtcattaa caactatggc 780ccaacggaaa atacagtggt
tgcgacctct ggactggtca aatcatcttc atctcatcac 840tttggaactc cgactattgg
tcgtcccatt gccaacgtcc aaatctattt attagaccaa 900aacctacaac ctgtccccat
tggtgtacca ggagaattac atttaggtgg ggcgggttta 960gcgcagggct atctcaatcg
tcctgagtta acggctgaaa aatttattgc caatcccttt 1020gatccccccc taacccccct
tgataagggg ggagaagaac cctcaaaact ctataaaacg 1080ggagacttag cccgttattt
acccgatggc aatgtagaat ttttgggacg tattgacaat 1140caggtaaaaa ttcggggttt
tcgcatcgaa actggggaaa tcgaagccgt tttaagtcaa 1200tatttcctat tagctgaaag
tgtagtc 122736195DNAMicrocystis
aeruginosa 36gctcaactga ctcaaatttg gagtgaagtt ttgggactgg aacgcattgg
cgttaaggac 60aacttttttg aattgggagg acattctctt ttggctaccc aggttttatc
aagaattaat 120tcagcctttg gacttgatct ttctgtgcaa attatgtttg aatcaccaac
gatcgcgggc 180attgcgggtt atatt
19537915DNAMicrocystis aeruginosa 37gctagagacg gtcatttacc
cctgtctttt gctcaacaac gtttatggtt tttacattat 60ctttcccctg atagtcgttc
ctacaatacc ctggaaatat tgcaaattga tgggaatctc 120aatctgactg tgctagagca
gagtttgggg gaattaatta accgccatga aatttttaga 180acaacattcc ccactgtttc
aggggaaccg attcagaaaa ttgcacttcc tagtcgtttt 240cagttaaaag ttgataatta
tcaagattta gacgaaaatg aacaatcagc taaaattcaa 300caagtagcag aattggaagc
aggacaagct tttgatttaa cggtggggcc actgattcag 360tttaagctat tgcaattgag
tccccagaag tcggtgctgc tgttgaaaat gcaccatatt 420atctatgatg gctggtcttt
tgggattctg attcgggaat tatcggctct atacgaagca 480tttttaaaga acttagccaa
tcctctccct gcgttgtcta ttcagtatgc agattttgcg 540gtttggcaac gtcaatatct
ctcaggtgag gtcttagata aacaactcaa ttattggcaa 600gaacagttag caacagtctc
tcctgttctt actttaccaa cggatagacc ccgtccggcg 660atacaaactt ttcagggagg
agttgagcgt tttcaactgg atcaaaatgt cactcaaggt 720cttaaaaagt taggtcaaga
tcaggttgca accctgttta tgacgttgtt ggccggtttc 780ggcgttttgc tatctcgtta
tagtggtcaa tctgatctga tggtgggttc tccgatcgct 840aatcgtaatc aagcagcgat
cgaaccttta attggctttt ttgctaacac tttggcttta 900agaattaatt tatca
915381185DNAMicrocystis
aeruginosa 38acatacactg aattaaacca tcgcgctaat cagttagccc attatttaca
aactttaggc 60gtgggagcag aagtcttagt cggtatttcc ctagaacgtt ctttagagat
gattatcggc 120ttattaggga ttctcaaggt aggtggtgct tatcttcctc ttgatccaga
ctatcccact 180gagcgtcttc agttgatgtt agaagacagt caagttcctt ttttgattac
ccacagttct 240ttattagcaa aattgcctcc ctctcaagca actctgattt gtttagatca
tatccaagag 300cagatttctc aatattctcc agataatctt caatgtcagt taactcctgc
caatttagct 360aacgttattt atacctctgg ctctacgggt aagcctaaag gggtgatggt
tgaacataaa 420ggtttagtta acttagctct tgctcaaatt caatcttttg cagtcaacca
taacagtcgt 480gtgctgcaat ttgcttcttt tagttttgat gcttgtattt cagaaatttt
gatgaccttt 540ggttctggag cgacgcttta tcttgcacaa aaagatgctt tattgccagg
tcagccatta 600attgaacggt tagtaaagaa tggaattact catgtgactt tgccgccttc
agctttagtg 660gttttacccc aggaaccgtt acgcaactta gaaaccttaa ttgtggcggg
tgaggcttgt 720tctcttgatt tagtgaaaca atggtcaatc gatagaaact ttttcaatgc
ctatgggcca 780acggaagcga gtgtttgtgc cactattgga caatgttatc aagatgattt
aaaggtgacg 840attggtaagg cgatcgccaa tgtccaaatt tatattttag atgccttttt
acagccggtg 900ccggtgggag tgtcaggaga gttatacatt ggtggagttg gggtggcaag
gggctattta 960aatcgtcctg aattaaccca agaaaaattt attgctaatc cttttagtaa
cgacccagat 1020tctcggctct ataaaactgg cgacttagcg cgttatttac ccgatggtaa
tattgaatat 1080ttaggacgca ttgacaatca ggtaaaaatt cgcggttttc gcattgagtt
aggagaaatt 1140gaagcggttc tgagtcaatg tcccgatgtg caaaatacgg cggtg
118539195DNAMicrocystis aeruginosa 39gaaattctgg ctcaaatatg
ggggcaagtt ctcaagatag aaagagtcag cagagaagat 60aatttctttg aattgggggg
gcattccctt ttagctaccc aggtaatgtc ccgtctgcgt 120gaaacttttc aagtcgaatt
acctttgcgt agtctcttta ccgctcccac tattgctgaa 180ttggccctaa caatt
19540897DNAMicrocystis
aeruginosa 40aacgacagtg ctaacctccc gttatctttt gctcaacaac gtttatggtt
tctggatcaa 60ttagaaccta acagcgcctt ttatcatgta gggggagccg taagactaga
aggaacatta 120aatattactg ccttagagca aagcttaaaa gaaattatta atcgtcatga
agctttacgc 180acaaatttta taacgattga tggtcaagcc actcaaatta ttcaccctac
tattaattgg 240cgattgtctg ttgttgattg tcaaaattta accgacactc aatctctgga
aattgcggaa 300gctgaaaagc cctttaatct tgctcaagat tgcttatttc gtgctacttt
attcgtgcga 360tcaccgctag aatatcatct actcgtgacc atgcaccata ttgttagcga
tggctggtca 420attggagtat tttttcaaga actaactcat ctttacgctg tctataatca
gggtttaccc 480tcatctttaa cgcctattaa aatacaatat gctgattttg cggtctggca
acggaattgg 540ttacaaggtg aaattttaag taatcaattg aattattggc gcgaacaatt
agcaaatgct 600cctgcttttt tacctttacc gacagataga cctaggcccg caatccaaac
ttttattggt 660tctcatcaag aatttaaact ttctcagcca ttaagccaaa aattgaatca
actaagtcag 720aagcatggag tgactttatt tatgactctc ctggctgctt ttgctacctt
actttaccgt 780tatacaggac aagcagatat tttagttggt tctcctattg ctaaccgtaa
tcgtaaggaa 840attgagggat taatcggctt ttttgttaat acattagttc tgagattgag
tttagat 897411245DNAMicrocystis aeruginosa 41acctatgctg aattaaatca
tcaagctaat cagttagtcc attacttaca aactttagga 60attgggccag aggtcttagt
cgctatttca gtagaacgtt ctttagaaat gattatcggc 120ttattagcca ttctcaaggc
gtgtggtgct tatctccctc ttgctcctga ctatcccact 180gagcgtcttc agttcatgtt
agaagatagt caagcttctt ttttgattac ccacagttct 240ttattagaaa aattgccttc
ttctcaagcg actctaattt gtttagatca catccaagag 300cagatttctc aatattctcc
cgataatctt caaagtgagt taactccttc caatttggct 360aacgttattt acacctctgg
ctctacgggt aagcctaaag gggtgatggt tgaacatcgg 420ggcttagtta acttagcgag
ttctcaaatt caatcttttg cagtcaaaaa taacagtcgt 480gtactgcaat ttgcttcctt
tagttttgat gcttgtattt cagaaatttt gatgaccttt 540ggttctggag cgactcttta
tcttgctcaa aaaaatgatt tattgccagg tcagccatta 600atggaaaggt tagaaaagaa
taaaattacc catgttactt tacccccttc agctttagct 660gttttaccaa aaaaaccgtt
acccaactta caaactttaa ttgtggcggg tgaggcttgt 720cctctggatt tagtcaaaca
atggtcagtc ggtagaaact ttttcaatgc ctatggcccg 780acagaaacga gtgtttgtgc
cacgattgga caatgttatc aagatgattt aaaggtcacg 840attggtaagg cgatcgctaa
tgtccaaatt tatattttgg atgccttttt acaaccagta 900cccatcggag taccagggga
attatacatt ggtggagtcg gagttgcgag gggttatcta 960aatcgtcctg aattaacggc
ggaaagattt attcctaatc cttttgatcc ccccctaacc 1020ccccttaaaa aggggggaga
taagagctat gaaactttta aaaaggggga agagcaacca 1080tcaaaactct ataaaacggg
agatttagct cgttatttac ccgatggcaa tattgaatat 1140ttaggacgca ttgacaatca
ggtaaaaatt cgcggttttc gcattgagtt aggagaaatt 1200gaagcggttc tgagtcaatg
tcccgatgtg caaaatacgg cggtg 124542196DNAMicrocystis
aeruginosa 42ttacaattag ctcaaatctg gtcagagatt ttaggcatta ataatattgg
tattcaggaa 60aacttctttg aattaggcgg tcattcttta ttagcagtca gtctgatcaa
tcgtattgaa 120caaaagttag ataaacgttt accattaacc agtctttttc aaaatggaac
catagcaagt 180ctagctcaat tactag
19643681DNAMicrocystis aeruginosa 43actccatttt ttgctgttca
tcccattggt ggtaatgtgc tatgttatgc cgatttagct 60cgtaatttag gaacgaaaca
gccgttttat ggattacaat cattagggct aagtgaatta 120gaaaaaactg tagcctctat
tgaagaaatg gcgatgattt atattgaagc aatacaaact 180gttcaagcct ctggtcccta
ctatttagga ggttggtcaa tgggaggagt gatagctttt 240gaaatcgccc aacaattatt
gacccaaggt caagaagttg ctttactggc tttaatagat 300agttattctc ccagtttact
taattcagtt aatagggaga aaaattctgc taattccctg 360acagaagaat ttaatgaaga
tatcaatatt gcctattctt tcatcagaga cttagcaagt 420atatttaatc aagaaatctc
tttctctggg agtgaacttg ctcattttac atcagacgaa 480ttactagaca agtttattac
ttggagtcaa gagacgaatc ttttgccgtc agattttggg 540aagcagcagg ttaaaacctg
gtttaaagtt ttccagatta atcaccaagc tttgagcagc 600tattctccca agacgtatct
gggtagaagt gttttcttag gagcggaaga cagttctatt 660aaaaatcctg gttggcatca a
681441065DNAMicrocystis
aeruginosa 44agcgggtctc aagaccaaaa aacgatacag tttagcctct actactttgg
tagctatgaa 60gcggaattta acccgaataa atataactta ctgtttgaag gagctaaatt
tggcgatcgc 120gctggtttta cggccctttg gattcctgaa cgtcatttcc acgcttttgg
tggtttttct 180cccaatcctt cggttttggc ggcggcttta gcacgggaaa ccaaacagat
tcaactgcga 240tcaggcagtg tggttttacc gctacataat tccatccgag tcgccgaaga
atgggcagtg 300gtggacaatc tttcccaggg ccgcgttggt attgcttttg catcgggttg
gcatccccag 360gattttgtct tggctcccca gtcctttggc caacatcggg aattgatgtt
ccaagaaatt 420gaaaccgtcc agaaactttg gcgaggggaa gcgatcaccg tgccagacgg
aaagggtcaa 480agggtagagg ttaaaaccta tccccaaccg atgcagtccc agttacccag
ctggattact 540attgtcaata atcccgatac ctatatcaga gcaggggcga tcggtgctaa
tatccttacc 600aatctgatgg ggcaaagcgt ggaagattta gcccgtaata ttgcgctata
tcgtcaatct 660ttggcagagc atggttatga tcccgcgtcg ggaacggtga cagttctcct
gcatactttt 720gttggcaagg atttagaaca agttcgagaa caggctcgcc aaccctttgg
gcaatacctc 780acctcctctg tcggactctt gcagaacatg gtcaagagcc agggcatgaa
agtggatttt 840gaacaattaa gagacgaaga tcgggacttt ctcctcgctt ctgcctataa
acgctataca 900gaaaccagtg ctttaattgg cacacccgaa tcctgtcgtc aaattattga
tcatttgcag 960tccatcggtg tggatgaagt ggcttgtttt attgattttg gggtagatga
acaaacagtt 1020ttggccaatt taccctatct ccagtcccta aaagacttat atcaa
10654599DNAMicrocystis aeruginosa 45attgatcccc ccctaacccc
ccttgataag gggattgatc cccccctaac cccccttgat 60aaggggattg atccccccct
aacccccctt gataagggg 9946231DNAMicrocystis
aeruginosa 46ccttatcaag gggggttagg gggggatcaa tccccttatc aaggggggtt
agggggggat 60caatcccctt atcaaggggg gttagggggt gatcaatccc cttatcaagg
ggggttaggg 120ggtgatcaat ccccttatca aggggggtta gggggggatc aatcccctta
tcaaggagag 180ttaggggggg atcaatcccc ttatcaaggg gggttagggg gggatcaagt c
231471146DNAMicrocystis aeruginosa 47cctgcttcag aaatgcgaga
gtgggtcgaa aacactgtta gtcgcatctt ggctttccaa 60ccagaacgcg gtttagaaat
tggttgtggt acaggtttgt tactctccag ggtagcaaag 120cattgtcttg aatattgggc
aacggattat tcccaagggg cgatccagta tgttgaacgg 180gtttgcaatg ccgttgaagg
tttagaacag gttaaattac gctgtcaaat ggcagataat 240tttgaaggta ttgccctaca
tcaatttgat accgtcgtct taaattcgat tattcagtat 300tttcccagtg tggattatct
gttacaggtg cttgaagggg cgatcaacgt cattggcgag 360cgaggtcaga tttttgtcgg
ggatgtgcgg agtttacccc tattagagcc atatcatgcg 420gctgtgcaat tagcccaagc
ttctgactcg aaaactgttg aacaatggca acaacaggtg 480cgtcaaagtg tagcaggtga
agaagaactg gtcattgatc ccacattgtt cctggcttta 540aaacaacatt ttccgcaaat
tagctgggta gaaattcaac cgaaacgggg tgtggctcac 600aatgagttaa ctcaatttcg
ctatgatgtc actctccatt tagagactat caataatcaa 660gcattattga gcggcaatcc
aacggtaatt acctggttaa attggcaact tgaccaactg 720tctttaacac aaattaaaga
taaattatta acagacaaac ctgaattgtg gggaattcgt 780ggtattccta atcagcgagt
tgaagaggct ctaaaaattt gggaatgggt ggaaaatgcc 840cctgatgttg aaacggttga
acaactcaaa aaacttctca aacaacaagt agatactggt 900attaatcctg aacaggtttg
gcaattagct gagtctctcg gttacaccgc tcaccttagt 960tggtgggaaa gtagtcaaga
cggttccttt gatgtcattt ttcagcggaa ttcagaagcg 1020gaggactcaa aaaaattaac
cctttcaaaa cttgctttct gggatgaaaa accctttaaa 1080ataaagccct ggagtgacta
tactaacaac cctctgcgcg gtaagttagt ccaaaaatta 1140attcct
114648813DNAMicrocystis
aeruginosa 48atgacaaatt atggcaaatc tatgtctcat tactatgatc tagtggtagg
acataaaggt 60tataacaaag attacgccac tgaagtagaa ttcattcaca atttagttga
gacttacaca 120actgaagcca aatctatcct atacttgggc tgtggtacgg gttatcatgc
cgctctttta 180gcacagaaag ggtattctgt acatggtgtt gatctcagtg ctgaaatgtt
agagcaggct 240aaaactcgca ttgaagatga aacaatagct tctaatctga gtttttctca
aggaaatatt 300tgtgaaatcc gtttaaatcg tcagtttaat gttgttcttg ctctatttca
tgtggttaac 360tatcaaacga ccaatcaaaa tttactggca acgtttgcaa cggttaaaaa
ccatttaaaa 420gctgggggga tttttatttg tgatgtgtcc tatgggtctt acgtactggg
ggaatttaag 480agtcggccta cggcatcaat attgcgttta gaggataatt ccaatggtaa
cgaagtaacc 540tatattagtg aactaaattt tttaacccat gaaaatatag tggaagttac
tcacaattta 600tgggtaacaa atcaagaaaa tcaacttcta gagaattcac gggaaacaca
tcttcagcgc 660tatcttttca agcctgaagt tgaattgttg gctgatgctt gtgaactaac
tgttcttgat 720gcgatgccct ggcttgaaca acgtcctttg acaaacattc cttgtccttc
agtttgtttt 780gttattgggc ataaaacaac ccattcagct taa
8134921DNAArtificial Sequenceoligonucleotide primer with
homology to Microcystis aeruginosa 49ccgacctgtg ataaacaatt c
215020DNAArtificial
Sequenceoligonucleotide primer with homology to Microcystis
aeruginosa 50cknccdgtda traanarytc
205118DNAArtificial Sequenceoligonucleotide primer with homology
to Microcystis aeruginosa 51ttcaatatcc tggggata
185218DNAArtificial Sequenceoligonucleotide
primer with homology to Microcystis aeruginosa 52ytcdatrtcy tgnggrta
185321DNAArtificial
Sequenceoligonucleotide primer with homology to Microcystis
aeruginosa 53cgttggttac aggccctttc t
215420DNAArtificial Sequenceoligonucleotide primer with homology
to Microcystis aeruginosa 54mgntggytnc argcnytnws
205518DNAArtificial Sequenceoligonucleotide
primer with homology to Microcystis aeruginosa 55ttagacttaa gccattgg
185618DNAArtificial
Sequenceoligonucleotide primer with homology to Microcystis
aeruginosa 56ytngayytnw sncaytgg
185724DNAArtificial Sequenceoligonucleotide primer with homology
to Microcystis aeruginosa 57catagaagaa tcgagaccat attc
245824DNAArtificial Sequenceoligonucleotide
primer with homology to Microcystis aeruginosa 58catnswnswr
tcnarnccrt aytc
2459666PRTMicrocystis aeruginosa 59Met Thr Thr Gln Thr Ala Ser Ser Ala
Asn Ala Leu Ala Ser Phe Asn1 5 10
15Gln Phe Leu Arg Asp Val Lys Ala Ile Ala Gln Pro Tyr Trp Tyr
Pro 20 25 30Thr Val Ser Asn
Lys Arg Ser Phe Ser Glu Val Ile Arg Ser Trp Gly 35
40 45Met Leu Ser Leu Leu Ile Phe Leu Ile Val Gly Leu
Val Ala Val Thr 50 55 60Ala Phe Asn
Ser Phe Val Asn Arg Arg Leu Ile Asp Val Ile Ile Gln65 70
75 80Glu Lys Asp Ala Ser Gln Phe Ala
Ser Thr Leu Thr Val Tyr Ala Ile 85 90
95Gly Leu Ile Cys Val Thr Leu Leu Ala Gly Phe Thr Lys Asp
Ile Arg 100 105 110Lys Lys Ile
Ala Leu Asp Trp Tyr Gln Trp Leu Asn Thr Gln Ile Val 115
120 125Glu Lys Tyr Phe Ser Asn Arg Ala Tyr Tyr Lys
Ile Asn Phe Gln Ser 130 135 140Asp Ile
Asp Asn Pro Asp Gln Arg Leu Ala Gln Glu Ile Glu Pro Ile145
150 155 160Ala Thr Asn Ala Ile Ser Phe
Ser Ala Thr Phe Leu Glu Lys Ser Leu 165
170 175Glu Met Leu Thr Phe Leu Val Val Val Trp Ser Ile
Ser Arg Gln Ile 180 185 190Ala
Ile Pro Leu Met Phe Tyr Thr Ile Ile Gly Asn Phe Ile Ala Ala 195
200 205Tyr Leu Asn Gln Glu Leu Ser Lys Ile
Asn Gln Ala Gln Leu Gln Ser 210 215
220Lys Ala Asp Tyr Asn Tyr Ala Leu Thr His Val Arg Thr His Ala Glu225
230 235 240Ser Ile Ala Phe
Phe Arg Gly Glu Lys Glu Glu Gln Asn Ile Ile Gln 245
250 255Arg Arg Phe Gln Glu Val Ile Asn Asp Thr
Lys Asn Lys Ile Asn Trp 260 265
270Glu Lys Gly Asn Glu Ile Phe Ser Arg Gly Tyr Arg Ser Val Ile Gln
275 280 285Phe Phe Pro Phe Leu Val Leu
Gly Pro Leu Tyr Ile Lys Gly Glu Ile 290 295
300Asp Tyr Gly Gln Val Glu Gln Ala Ser Leu Ala Ser Phe Met Phe
Ala305 310 315 320Ser Ala
Leu Gly Glu Leu Ile Thr Glu Phe Gly Thr Ser Gly Arg Phe
325 330 335Ser Ser Tyr Val Glu Arg Leu
Asn Glu Phe Ser Asn Ala Leu Glu Thr 340 345
350Val Thr Lys Gln Ala Glu Asn Val Ser Thr Ile Thr Thr Ile
Glu Glu 355 360 365Asn His Phe Ala
Phe Glu His Val Thr Leu Glu Thr Pro Asp Tyr Glu 370
375 380Lys Val Ile Val Glu Asp Leu Ser Leu Thr Val Gln
Lys Gly Glu Gly385 390 395
400Leu Leu Ile Val Gly Pro Ser Gly Arg Gly Lys Ser Ser Leu Leu Arg
405 410 415Ala Ile Ala Gly Leu
Trp Asn Ala Gly Thr Gly Arg Leu Val Arg Pro 420
425 430Pro Leu Glu Glu Ile Leu Phe Leu Pro Gln Arg Pro
Tyr Ile Ile Leu 435 440 445Gly Thr
Leu Arg Glu Gln Leu Leu Tyr Pro Leu Thr Asn Ser Glu Met 450
455 460Ser Asn Thr Glu Leu Gln Ala Val Leu Gln Gln
Val Asn Leu Gln Asn465 470 475
480Val Leu Asn Arg Val Asp Asp Phe Asp Ser Glu Lys Pro Trp Glu Asn
485 490 495Ile Leu Ser Leu
Gly Glu Gln Gln Arg Leu Ala Phe Ala Arg Leu Leu 500
505 510Val Asn Ser Pro Ser Phe Thr Ile Leu Asp Glu
Ala Thr Ser Ala Leu 515 520 525Asp
Leu Thr Asn Glu Gly Ile Leu Tyr Glu Gln Leu Gln Thr Arg Lys 530
535 540Thr Thr Phe Ile Ser Val Gly His Arg Glu
Ser Leu Phe Asn Tyr His545 550 555
560Gln Trp Val Leu Glu Leu Ser Ala Asp Ser Ser Trp Glu Leu Leu
Ser 565 570 575Val Gln Asp
Tyr Arg Leu Lys Lys Ala Gly Glu Met Phe Thr Asn Ala 580
585 590Ser Ser Asn Asn Ser Ile Thr Pro Asp Ile
Thr Ile Asp Asn Gly Ser 595 600
605Glu Pro Glu Ile Val Tyr Ser Leu Glu Gly Phe Ser His Gln Glu Met 610
615 620Lys Leu Leu Thr Asp Leu Ser Leu
Ser Ser Ile Arg Ser Lys Ala Ser625 630
635 640Arg Gly Lys Val Ile Thr Ala Lys Asp Gly Phe Thr
Tyr Leu Tyr Asp 645 650
655Lys Asn Pro Gln Ile Leu Lys Trp Leu Arg 660
665602004DNAMicrocystis aeruginosa 60atgacaaccc aaacagcttc tagtgccaat
gcccttgctt cctttaacca atttttaagg 60gatgtaaagg cgatcgccca accctattgg
tatcccactg tatcaaataa aagaagcttt 120tctgaggtta ttcgttcctg gggaatgcta
tcactgctta tctttttgat tgtgggatta 180gtcgccgtca cggcttttaa tagttttgtt
aatcgtcgtt taattgatgt cattattcaa 240gaaaaagatg cgtctcaatt tgccagtaca
ttaactgtct atgcgatcgg attaatctgt 300gtaacgctgc tggcagggtt cactaaagat
attcgcaaaa aaattgccct agattggtat 360caatggttaa acacccagat tgtagagaaa
tattttagta atcgtgccta ttataaaatt 420aactttcaat ctgacattga taaccccgat
caacgtctag cccaggaaat tgaaccgatc 480gccacaaacg ccattagttt ctcggccact
tttttggaaa aaagtttgga aatgctaact 540tttttagtgg tagtttggtc aatttctcga
cagattgcta ttccgctaat gttttacacg 600attatcggta attttattgc cgcctatcta
aatcaagaat taagcaagat caatcaggca 660caactgcaat caaaagcaga ttataactat
gccttaaccc atgttcggac tcatgcggaa 720tctattgctt tttttcgggg agaaaaagag
gaacaaaata ttattcagcg acgttttcag 780gaagttatca atgatacgaa aaataaaatt
aactgggaaa aagggaatga aatttttagt 840cggggctatc gttccgtcat tcagtttttt
ccttttttag tccttggccc tttgtatatt 900aaaggagaaa ttgattatgg acaagttgag
caagcttcat tagctagttt tatgtttgca 960tcggccctgg gagaattaat tacagaattt
ggtacttcag gacgtttttc tagttatgta 1020gaacgtttaa atgaattttc taatgcctta
gaaactgtga ctaaacaagc cgagaatgtc 1080agcacaatta caaccataga agaaaatcat
tttgcctttg aacacgtcac cctagaaacc 1140cctgactatg aaaaggtgat tgttgaggat
ttatctctta ctgttcaaaa aggtgaagga 1200ttattgattg tcgggcccag tggtcgaggt
aaaagttctt tattaagggc gatcgccggt 1260ttatggaatg ctggcactgg gcgtttagtg
cgtcctcccc tagaagaaat tctctttttg 1320ccccaacgtc cctacattat tttgggaacc
ttacgcgaac aattgctgta tcctctaacc 1380aatagtgaga tgagcaatac cgaacttcaa
gcagtattac aacaagtcaa tttgcaaaat 1440gtgctaaatc gggtggatga ctttgactcc
gaaaaaccct gggaaaacat tctctccctc 1500ggtgaacaac aacgcctagc ctttgctcga
ttgttagtga attctccgag ttttaccatt 1560ttagatgagg cgaccagtgc cttagattta
acaaatgagg ggattttata cgagcaatta 1620caaactcgca agacaacctt tattagtgtg
ggtcatcgag aaagtttgtt taattaccat 1680caatgggttt tagaactttc tgctgactct
agttgggaac tcttaagcgt tcaagattat 1740cgccttaaaa aagcgggaga aatgtttact
aatgcttcga gtaacaattc cataacaccc 1800gatattacta tcgataatgg atcagaacca
gaaatagtct attctcttga aggattttcc 1860catcaggaaa tgaaactatt aacagaccta
tcactctcta gcattcggag taaagccagt 1920cgagggaagg tgattacagc caaggatggt
tttacctacc tttatgacaa aaatcctcag 1980atattaaagt ggctcagaac ttaa
20046127260DNAMicrocystis aeruginosa
61atgactatta actatggtga tctgcaagaa ccctttaata aattctcaac cctagttgaa
60ttactccgtt atcgggcaag cagtcaaccg gaacgcctcg cctatatttt tctgcgagac
120ggagaaatcg aagaagctcg tttaacctat ggggaactgg atcaaaaggc tagggcgatc
180gccgcttatc tacaatcctt agaagccgag ggcgaaaggg gtttactgct ctatccccca
240ggactagatt ttatttcagc tttttttggt tgtttatatg cgggagtcgt tgccattccc
300gcctatccac cccgacggaa tcaaaacctt ttgcgtttac aggcgattat tgccgattct
360caagcccgat ttaccttcac caatgccgct ctatttccca gtttaaaaaa ccaatgggct
420aaagaccctg aattaggagc aatggaatgg attgttaccg atgaaattga ccatcacctc
480agggaggatt ggctagaacc aaccctcgaa aaaaacagtc tcgcttttct acaatacacc
540tctggttcaa cgggaactcc aaagggagta atggtcagtc accataattt gttgattaat
600tcagccgatt tagatcgtgg ttggggccat gatcaagata gcgtaatggt cacttggcta
660ccgaccttcc atgatatggg tctgatttat ggggttattc agcctttgta caaaggattt
720ctttgttaca tgatgtcccc tgccagcttt atggaacgac cgttacgttg gttacaggcc
780ctttctgata aaaaagcaac ccatagtgcg gcccccaact ttgcctacga tctttgtgtg
840cggaaaattc cccctgaaaa acgggctacg ttagacttaa gccattggtg catggcctta
900aatggggccg aacccgtcag agcggaggta cttaaaaagt ttgcggaggc ttttcaagtt
960tctggtttca aagccacagc cctttgtcct ggctacggtt tagcagaagc caccctgaaa
1020gttacggcgg ttagttatga cagtccccct tacttttatc ccgttcaggc taatgcttta
1080gaaaaaaata agattgtggg agccactgaa accgatacca atgtgcagac cctcgtgggc
1140tgcggctgga caacgattga tactcaaatc gtcattgtca atcctgaaac cctgaaacct
1200tgctcccctg aaattgtcgg cgaaatttgg gtatcaggtt caacaatcgc ccaaggctat
1260tggggaaaac ctcaagagac tcaggaaacc tttcaagctt atttggcaga tacaggagcc
1320gggccttttc tgcgaacagg agacttgggc ttcattaaag atggtgaatt gtttatcaca
1380ggtcggctca aggaaattat tctgattcga ggacgcaata attatcccca ggatattgaa
1440ttaaccgtcc aaaatagtca tcccgctctg cgtcccagtt gtggggctgc ttttaccgtt
1500gaaaataagg gcgaagaaaa gctcgtggtc gttcaggaag tggagcgcac ctggctccgt
1560aaggtagata tagatgaggt aaaaagagcc attcgtaaag ctgttgtcca ggaatatgat
1620ttacaggttt atgcgatcgc gctgatcagg actggcagtt taccaaaaac ctctagcggt
1680aaaattcagc gtcgtagctg tcgggccaaa tttttagagg gaagcctgga aattttgggc
1740taagaaaatt tctcgatcgg cacttaatgt gttaaattcg tatgtcgatt gaaacttcga
1800ccaattcttt ctctcccctt aagtccatgt ctctggattt gaaaattcct taaactttaa
1860ctacatttct caagaaagca aattgaatct aatgtccaca gaaatcccaa acgacaaaaa
1920acaaccgacc ctaacgaaaa ttcaaaactg gttagtggct tacatgacag agatgatgga
1980agtggacgaa gatgagattg atctgagcgt tccctttgat gaatatggtc tcgattcttc
2040tatggcagtt gctttgatcg ctgatctaga ggattggtta cgacgagatt tacatcgcac
2100cctgatctac gattatccaa ctctagaaaa gttggctaaa caggttagtg aaccctgaca
2160tttttataaa gtttgtgctt aaaaattttg aggaagttct aaaatgacaa attatggcaa
2220atctatgtct cattactatg atctagtggt aggacataaa ggttataaca aagattacgc
2280cactgaagta gaattcattc acaatttagt tgagacttac acaactgaag ccaaatctat
2340cctatacttg ggctgtggta cgggttatca tgccgctctt ttagcacaga aagggtattc
2400tgtacatggt gttgatctca gtgctgaaat gttagagcag gctaaaactc gcattgaaga
2460tgaaacaata gcttctaatc tgagtttttc tcaaggaaat atttgtgaaa tccgtttaaa
2520tcgtcagttt aatgttgttc ttgctctatt tcatgtggtt aactatcaaa cgaccaatca
2580aaatttactg gcaacgtttg caacggttaa aaaccattta aaagctgggg ggatttttat
2640ttgtgatgtg tcctatgggt cttacgtact gggggaattt aagagtcggc ctacggcatc
2700aatattgcgt ttagaggata attccaatgg taacgaagta acctatatta gtgaactaaa
2760ttttttaacc catgaaaata tagtggaagt tactcacaat ttatgggtaa caaatcaaga
2820aaatcaactt ctagagaatt cacgggaaac acatcttcag cgctatcttt tcaagcctga
2880agttgaattg ttggctgatg cttgtgaact aactgttctt gatgcgatgc cctggcttga
2940acaacgtcct ttgacaaaca ttccttgtcc ttcagtttgt tttgttattg ggcataaaac
3000aacccattca gcttaaattc tgctaaaaaa aatccaactt accttattct ctgaaaccac
3060acaagccatg aatacaattc aagatgccaa gaccgaaaat tactcaatct taaatcagtc
3120aattccaaga cctctcaaac tgagtaatat cctattacga taagattttg cgttctcctt
3180tgtttggaat gtcagcagag gagtctctat attggctaga gaaatgttta tgtcaagagc
3240atcagggctt cgatgtacaa gttaagtatc atcaaaaaat gctgaagaat atgttacgtt
3300tgaccgatag tttggattat ctatggccag ttaaccgtga aatgcggctc atgaaagctg
3360gggggtcaat tgaacgggcg atcaccaata acattaaagc ttttcttcaa tttaaagaaa
3420ctgtaaccgt attaaattag aaaaaccgca gtgaggaatt tgaatggaac ccatcgcaat
3480tattggtctt gcttgccgct ttccaggggc tgacaatcca gaagctttct ggcaactcat
3540gcgaaatggg gtggatgcga tcgccgatat tcctcctgaa cgttgggata ttgagcgttt
3600ctacgatccc acacctgcca ctgccaagaa gatgtatagt cgccagggcg gttttctaaa
3660aaatgtcgat caatttgacc ctcaattttt ccgaatttct cccctagaag ccacctatct
3720agatcctcaa caaagactgc tactggaagt cacctgggaa gccttagaaa atgctgccat
3780tgtgcctgaa accttagctg gtagccaatc aggggttttt attggtatca gtgatgtgga
3840ttatcatcgt ttggcttatc aaagtcctac taacttgacc gcctatgtgg gtacaggcaa
3900cagcaccagt attgcggcta accgtttatc atatctgttt gatttgcgtg gccccagttt
3960ggccgtagat accgcttgct cttcttccct cgtcgccgtt cacttggcct gtcagagttt
4020gcaaagtcaa gaatcgaacc tctgcttagt ggggggagtt aatctcattt tgtcgccaga
4080gacaaccgtt gttttttccc aagcgagaat gatcgccccc gacagtcgtt gtaaaacctt
4140tgacgcgagg gccgatggtt atgtgcgctc ggaaggctgt ggagtagtcg tacttaaacg
4200tcttagggat gccattcagg acggcgatcg cattttagca gtgattgaag gttccgcggt
4260gaatcaggat ggtttaagta atggactcac ggcccctaat ggccctgctc aacaggcggt
4320gattcgtcag gccctggcaa atgcccaggt aaaaccggcc cagattagct atgtcgaagc
4380ccatggcacg gggacagaat tgggggatcc gatcgaagtt aaatctctga aagcggtttt
4440gggtgaaaag cgatcgctcg atcaaacctg ttggctcggt tctgtgaaaa ccaacattgg
4500tcatttagaa gcggcggcgg gaatggcggg tctgattaaa gtcgttctct gcctacaaca
4560ccaagaaatt ccccctaatc tccactttca aacccttaat ccctatattt ccctagctga
4620cacagctttt gcgattccca ctcaggctca accctggcgg accaaacccc ctaagtctgg
4680tgaaaacggt gtcgaacgac gtttagcagg actcagttcc tttgggtttg gggggacaaa
4740ttcccatgtg attctcagcg aagcccctgt caccgttaaa aacaatcaac aaaatgggca
4800gaagttgata gaacgtccct ggcatttgct gactttatct gccaagaatg aagaagcctt
4860aaaagcctta gtccattgtt atcaaaagta tttagctgat catcatgaaa ttcctctcgc
4920tgatgtttgt tttacggcca atagtcggcg atcgcacttt aatcatcgtt taggagtagt
4980ggctagagat cgcttagaaa tgttgcagaa gttagagaac tttagtaacc aagaaaggat
5040gagagaaccg aagagtatta acaaaaagaa aaaacctaaa attgtttttc tatttgccgg
5100tcaaggttct caatatgtag gtatgggtcg tcaactgtac gaaacccaac ccatctttcg
5160ccaaaccttg gatcgctgtg ctgaaatcct gcgaccccat ttagatcaac ccctcttaga
5220aattctttat cctgctgacc cagaagccga aacagcgagt ttttacctag agcagactgc
5280ctatacccaa cccactttat tcgcattcga gtatgcccta gcacagttat ggcgttcctg
5340gggaatagaa ccggcggcag taattggtca cagtgtcggt gaatatgtgg cggccaccgt
5400tgccggagcc ttaagtctag aagaaggatt aacgctaatt gccaaacggg caaaactgat
5460gcagtctctc cccaagaatg ggacaatgat cgccgttttt gccgcagaag agcgggttaa
5520agctgttatt gagccttata ggactgatgt agcgatcgct gctgttaatg gaccagaaaa
5580ttttgttatt tcaggaaaag cgccgattat tgctgagatt atcattcatt taacggcagc
5640aggaatagaa gttcgtcctc tcaaagtttc ccatgctttt cactcgcacc tgttggagcc
5700aattttagat tccttagaac aggaagctgc tgctatttcc taccaacccc tgcaaattcc
5760cttagttgct aatttaacgg gggaagttct accagaagga gcaacgattg aggctcgtta
5820ctggcgaaat catgcacgca accctgtaca attttatggg agtatccaaa cgctgatcga
5880gcagaaattc agtctttttt tagaagttag ccctaaaccg actttatctc gattgggtca
5940acaatgttgt ccagaaagat cgaccacttg gctattttcc ctcgcccctc ctcaagaaga
6000agaacaaagc ctactaaata gtttggcgat tctctatgat tcccaaggag ccgaaataaa
6060ctgggaaggg tttaatcaaa attatcccca ccatttactg gctctaccga cctatccttt
6120tcaacgtcaa cgctattggc ttgaaaccgg taaaccgact tctgaagaaa caaccatgac
6180gaccaatgcc actaatgtcc aagctatctc cagccatcaa aaacaacagg agattctaat
6240cacattgcaa accctagtgg gaaatttact gcaattgtcc cctgctgatg tcaatgttca
6300tacacctttc ctggagatgg gggcagattc cattgtcatg gttgaggcgg tcagacggat
6360tgagaatacc tataacgtta aaattgctat gcgtcagtta tttgaggagt tatctacttt
6420agatgcttta gctacttatt tagctcaaaa tccggctact gattgccaaa ctgctcaaat
6480taataccgag gtgttttctg cgcccattgc ctgctcaaat aaccgatcgc ccaatgtcgt
6540gctgagttct aataccaacg gctttcaacg tcaaacagct tctccaggtt tttcggcgat
6600cgcccccctt gcaggaatgg gaggagcagg ggaaatggga ggagttgaag tgcctcaagt
6660ttctgtgcca caaaccagtg cggtaacagc ctcaggttca accgtttcta gttctgccct
6720ggaaaacatt atgggtcaac agttacaact gatggccaaa cagttagaag tcttgcaaac
6780ggccaatttt gccccgacga ctccccgaac cacagaaaat tccccatctt ccgtcagtca
6840aaataggtca aacggactta cacaacagtt aattcccccc cagcaattag cggcgaacct
6900agagccaata gccagtcgca cccgtcaaac cagcaatcaa gcttctgctc ctaaaccgac
6960agtaacagcc actccctggg ggccgaaaaa accacccaca ggtggattca ctccccaaca
7020acagcaacat ctagaggcat taattgctcg ctttacggaa cgtaccaaaa cctctaagca
7080aattgtgcaa agcgatcgcc tgcgtttagc agatagtcga gcctcggtcg gattccgtat
7140gtctattaaa gagatgcttt atcccattgt ggcccaacgt tctcaaggat caagaatttg
7200ggatgtggac ggtaatgaat atattgatat gacgatgggg caaggggtaa cgctgtttgg
7260gcatcaacca gacttcatta tgtcggccct acaaagccaa ctcactgaag gcattcatct
7320caatccgcga tcgccaattg tgggagaagt ggccgcctta atttgtgaac taacaggagc
7380cgaacgagct tgtttttgca actctggaac cgaagccgta atggccgcta ttcgtatcgc
7440cagggcaaca acaggtcgga gtaaaattgc cctctttgaa ggctcctatc atggacatgc
7500ggacggaacc ctttttagga accaaattat tgataaccaa ctccactctt ttcccctagc
7560tctaggcgtt ccccccagcc ttagttccga tgtggtggta ttggactatg gcagtgcgga
7620agctctgaac tatttacaaa cccaggggca ggatttagcg gcggtcttag tagaaccaat
7680tcaaagtggc aatcctctac tccaacccca acaatttctc caaagtctgc gacaaattac
7740cagtcaaatg ggcattgccc tgatttttga tgaaatgatt acgggttttc gatcgcaccc
7800agggggagcg caagctttat ttggagtaca ggcggatatt gccacctatg gcaaagtagt
7860tgcgggagga atgcccattg gagttattgc aggtaaggcc cattatctgg acagcattga
7920cgggggaatg tggcgttatg gcgataaatc ctatcctggg gtggacagaa ccttttttgg
7980gggaaccttt aatcagcatc cgttagcaat ggtagcggct agggctgtcc tgacccattt
8040aaaggagcag gggccaggtc tgcaacaaca attaactgaa cgcactgcgg ccttagccga
8100tacactgaat cattattttc aagccgaaga agttcctatt aaaatcgaac agtttagttc
8160tttcttccgg tttgccctct ctggcaattt ggatttactt ttctatcaca tggtagaaaa
8220aggtatttat gtctgggaat ggcgtaaaca ttttctttca accgcccata cggaagccga
8280tcttgcccaa tttgtccaag cggttaagga tagcatcaca gaattgcgtc agggaggttt
8340tatccccgca aaaaagcctt cctggccagt gccaacgcct caaattgatc cccccctaac
8400cccccttgat aaggggattg atccccccct aacccccctt gataagggga ttgatccccc
8460cctaaccccc cttgataagg ggggagatgt tgatgtcgcg cttgataagg gaggaaattc
8520tcattctgtt agggacagta agttagggaa agggagcggg tctcaagacc aaaaaacgat
8580acagtttagc ctctactact ttggtagcta tgaagcggaa tttaacccga ataaatataa
8640cttactgttt gaaggagcta aatttggcga tcgcgctggt tttacggccc tttggattcc
8700tgaacgtcat ttccacgctt ttggtggttt ttctcccaat ccttcggttt tggcggcggc
8760tttagcacgg gaaaccaaac agattcaact gcgatcaggc agtgtggttt taccgctaca
8820taattccatc cgagtcgccg aagaatgggc agtggtggac aatctttccc agggccgcgt
8880tggtattgct tttgcatcgg gttggcatcc ccaggatttt gtcttggctc cccagtcctt
8940tggccaacat cgggaattga tgttccaaga aattgaaacc gtccagaaac tttggcgagg
9000ggaagcgatc accgtgccag acggaaaggg tcaaagggta gaggttaaaa cctatcccca
9060accgatgcag tcccagttac ccagctggat tactattgtc aataatcccg atacctatat
9120cagagcaggg gcgatcggtg ctaatatcct taccaatctg atggggcaaa gcgtggaaga
9180tttagcccgt aatattgcgc tatatcgtca atctttggca gagcatggtt atgatcccgc
9240gtcgggaacg gtgacagttc tcctgcatac ttttgttggc aaggatttag aacaagttcg
9300agaacaggct cgccaaccct ttgggcaata cctcacctcc tctgtcggac tcttgcagaa
9360catggtcaag agccagggca tgaaagtgga ttttgaacaa ttaagagacg aagatcggga
9420ctttctcctc gcttctgcct ataaacgcta tacagaaacc agtgctttaa ttggcacacc
9480cgaatcctgt cgtcaaatta ttgatcattt gcagtccatc ggtgtggatg aagtggcttg
9540ttttattgat tttggggtag atgaacaaac agttttggcc aatttaccct atctccagtc
9600cctaaaagac ttatatcaac ctcatctccc cccttatcaa ggggggttag ggggggatca
9660atccccttat caaggggggt taggggggga tcaatcccct tatcaagggg ggttaggggg
9720tgatcaatcc ccttatcaag gggggttagg gggtgatcaa tccccttatc aaggggggtt
9780agggggggat caatcccctt atcaaggaga gttagggggg gatcaatccc cttatcaagg
9840ggggttaggg ggggatcaag tccctctcac cgaagcccaa cgacaactgt ggattttggc
9900tcaattagga gacaacggct ctgtggccta taaccaatca gtgacattgc aattaagtgg
9960cccattaaat cccgtcgcaa tgaatcaagc tattcaacaa atcagcgatc gccatgaagc
10020gttacgaacc aaaattaatg cccagggaga tagtcaagaa atcctgcccc aggtcgaaat
10080taactgccct atcttagact tcagtcttga ccaagcttcg gcccaacagc aagcagaaca
10140atggttaaag gaagaaagtg aaaaaccctt tgatttgagc cagggttctc tcgtgcgttg
10200gcatctactc aaattagaac cagaattaca tttgttagta ttaacggccc atcacattat
10260cagtgacggt tggtcaatgg gggtaatcct tcgggaatta ggagagttat attcagccaa
10320atgtcagggt gttacggcta atcttaaaac cccaaaacag tttcgagaat tgattgaatg
10380gcaaagccag ccaagccaag gggaagaact gaaaaaacag caagcctatt ggttagcaac
10440ccttgccgat ccccctgttt tgaatttacc cactgacaaa cctcgtccag ctttacccag
10500ttaccaagct aatcgtcgaa gtctaacttt agatagccaa tttacagaaa aactaaagca
10560atttagtcgt aaacagggct gtaccttgct gatgaccctg ttatcggttt ataacattct
10620cgttcatcgt ttgacgggac aggatgatat tctggtgggt ctgccagcct ctggacgggg
10680gcttttagat agtgaaggta tggtgggtta ttgcacccat tttttaccaa ttcgcagtca
10740attagcaggt aatcccactt ttgctgaata tctcaaacaa atgcgggggg ttttgttgtc
10800ggcttatgaa catcaggact atccctttgc tcttttgctc aatcagttag atttaccgcg
10860taataccagt cgctctcctt taattgatgt cagtttcaat ttagaaccag ttattaacct
10920acccaaaatg aaaggattag agattagttt gttgcctcaa agtgtaagtt ttaaggatcg
10980agatttgcat tggaatgtga cagaaatggg tggagaagct ctgattgatt gtgactacaa
11040tacagactta tttaaagatg aaacgattca gcgttggtta ggccattttc aaaccttact
11100tgaggcagtt attaatgatt cgcaacaaaa tctgcgggaa ttacccttat taagttctgc
11160tgaacgacaa cagttattag tggattggaa tcaaaccaag accgactatc cccaagatca
11220gtgtattcat caattatttg aagcgcaagt tgaacggact cccgatgcga ttgcggtggt
11280atttgaaact caacaattaa cttacagtga attaaattgt cgagccaatc agttagcaca
11340ttatttacaa aaattaggag ttgggccaga ggtcttagtc ggtattttgg tcgaacgttc
11400tttagaaatg attgtcggat tgttagggat tctcaaggct gggggagcct atgtacctct
11460tgatcctgac tatccccctg aacgtcttca atttatgtta gaagatagtc aattttttct
11520cctcttaacc caacagcatt tactggaatc ttttgctcag tcttcagaaa cggctactcc
11580caagattatt tgtttggata gcgactacca aattatttcc caggcaaaga atattaatcc
11640cgaaaattca gtcacaacga gtaatcttgc ctatgtaatt tatacctctg gttcgacagg
11700taaaccgaag ggcgtgatga ataatcatgt tgctattagt aataaattgt tatgggtaca
11760agacacttat cctctaacca cagaagactg tattttacaa aaaactccct ttagttttga
11820tgtttcagtg tgggaattat tctggcccct actaaacgga gcgcgtttgg tttttgccaa
11880gccgaatggc cataaagatg ccagttactt agtcaatctg attcaagagc aacaagtaac
11940aacgctacat tttgtgtctt ctatgctaca gctttttctg acagaaaaag acgtagaaaa
12000atgtaatagt cttaaacgag tcatttgtag tggtgaagcc ctttctttag agcttcaaga
12060acgttttttt gctcgtttag tctgtgaatt acacaatctt tatggaccga cagaagccgc
12120tattcatgtc acattttggc aatgtcaatc agatagcaat ttgaaaacag tacccattgg
12180tcggccgatc gctaatatcc aaatttacat tttagactct catcttcagc cagtacctat
12240tggagtaatc ggagaattgc acattggtgg ggttggtttg gcgcggggtt atttaaacag
12300gcctgagtta acggcggaga aatttattgc aaatccgttt gcttcccttg atccccccct
12360aacccccctt gataaggggg gagatgagag ctataaaact tttaaaaagg ggggagagca
12420accatcaaga ttgtataaaa cgggagattt agctcgttat ttacccgatg gcaagattga
12480gtatctaggg cgcattgata atcaggtaaa aattcgcggt ttccggattg aattggggga
12540aattgaagcg gttttgctat cccatcccca ggtacgagaa gcggtcgttt tggtgagcga
12600aagcgatcgc tctgaaaatc gggctttggt cgcttatatt gtccctaatg atcctgcttg
12660tacgactcaa tcattacgag agtttgttaa acggcagctt cctgactata tgatcccagc
12720ttattggctg atccttgaca atttaccgtt aaccagcaat ggcaaaattg atcgtcgggc
12780tttaccgtta cctaatccag agttaaatcg ttcgatagac tatgtggctc ccaaaaatcc
12840tacccaggag gcgatcgccg ctatttttgg tcaagtttta aaactggaaa aagtgggaat
12900ttatgataac ttttttgaga tcggcggtaa ttctttgcaa gccactcaag ttatttcacg
12960cttacgagaa agttttgccc tagagttgcc cttgcgtcgc ctgtttgaac aaccgactgt
13020ggcggatttg gctttagccg taacggacat tcatgccact ttacaaaaat tacaaacccc
13080tattgatgat ttatcaggcg atcgcgagga gattgaacta tgaaatctat tgaaaccttt
13140ttgtcagatt tagccaatca agatattaaa ctctggatgg acggcgatcg cctgcgttgt
13200aatgcacccc agggcctatt aaccccagag attcaaacag aactgaaaaa ccgtaaagca
13260gaaatcattc actttctcaa tcaactgggt tcagaggagc aaattaatcc tagaacgatt
13320cttcccattc ctcgtgatgg ccaattaccc ctctcctttg cccagtcgcg actctggttc
13380ttgtatcaat tagaaggagc cacgggaacc tataacatga caggggcctt gagtttaagc
13440gggcctcttc aggtcgaagc cctcaaacaa gccctaagaa ctatcattca acgccatgag
13500ccattgcgta ccagtttcca atcggttgac ggggttccag tgcaggtgat taatccctat
13560cctgtttggg aattagcgat ggttgatttg acaggaaagg agacagaagc agaaaaattg
13620gcctatcagg aatcccaaac cccgtttgat ttgaccaata gtcctttgtt gagggtaacg
13680ctcctcaaat tacagccaga aaagcatatt ttattaatta atatgcacca tattatttcc
13740gatggctggt caatcggtgt ttttgttcgt gaattgtccc atctctatag ggcttttgtg
13800gcgggtaaag aaccaacttt accgatttta ccaattcagt atgcggattt tgccgtttgg
13860cagcgagagt ggttacaggg taaggtttta gcggctcaat tggaatattg gaagcgacaa
13920ttggcagatg ctcctcctct gctggaactg cccactgatc gccctcgtcc cgcaatccaa
13980acctttcaag gcaagacaga aagatttgag ctagatagga aactgaccca agaattaaag
14040gcattaagtc aacagtcggg ttgtacttta tttatgactt tgttggccgc ttttggggtg
14100gttttatccc gttatagtgg ccagactgat atcgtcattg gttcggcgat cgccaaccgt
14160aatcgccaag acattgaggg gttaattggc ttttttgtta acactttggc gttgaggtta
14220gatttatcag aaaaacccag ctttgccgct tttttaaaac aagtacagga agtcactcag
14280gatgcctatg agcatcaaga cttgcccttt gaaatgttag tggaagaatt acaactagag
14340cgcaaattag accgaaatcc tttggtacag gtgatgtttg ccctacaaaa tgcggccaat
14400gaaacctgga atttacctgg gttgaccatt gaagaaatgt cttgggaact tgaacctgcc
14460cgttttgacc tagaggttca tttatcagaa gttaacgccg gcatagctgg attctgttgc
14520tacaccattg atctatttga tgatgcaacg atcgcccgtc tattggaaca ttttcagaat
14580cttctcaggg caattattgt taatcctcaa gaatcggtaa gtttattacc cttgttgtca
14640gaacaggaag aaaagcaact tttagttgat tggaatcaaa cccaagccga ttatccccaa
14700gataagcttg tccatcagtt atttgaagtt caagcagcca gtcagccaga agcgatcgct
14760ctaatctttg aaaatcaggt tttgacctat ggagaattaa accatcgcgc caatcaatta
14820gctcactatc ttcagtcgtt aggagtcacc aaagaacaaa tcgtcggggt ttatctggaa
14880cgttcccttg aaatggcgat cggattttta ggtattctca aagcaggagc cgcctatctc
14940cccattgatc ctgaatatcc ctcagtacgc acccaattta ttctcgaaga tacccaactt
15000tcgcttctct taactcaggc agaactggca gaaaaactgc cccagactca aaacaaaatt
15060atctgtctag atcgggactg gccagaaatt acctcccaac cccagacaaa cctagaccta
15120aagatagaac ctaataacct agcctattgc atctatactt ctggttccac aggacaaccc
15180aaaggagtac tgatttccca tcaagcccta ctcaacttaa ttttctggca tcaacaagcg
15240tttgagattg gccccttaca taaagcgacc caagtggcag gcattgcttt cgatgcaacg
15300gtttgggaat tgtggcccta tctgaccaca ggagcctgta ttaatctggt tccccaaaat
15360attctgctct caccgacgga tttacgggat tggttgctta accgagaaat taccatgagt
15420tttgtgccaa ctcctttagc tgaaaaatta ttatccttgg attggcctaa ccattcttgt
15480ctaaaaaccc tgttactggg aggtgacaaa cttcattttt atcctgctgc gtcccttccc
15540tttcaggtca ttaacaacta tggcccaacg gaaaatacag tggttgcgac ctctggactg
15600gtcaaatcat cttcatctca tcactttgga actccgacta ttggtcgtcc cattgccaac
15660gtccaaatct atttattaga ccaaaaccta caacctgtcc ccattggtgt accaggagaa
15720ttacatttag gtggggcggg tttagcgcag ggctatctca atcgtcctga gttaacggct
15780gaaaaattta ttgccaatcc ctttgatccc cccctaaccc cccttgataa ggggggagaa
15840gaaccctcaa aactctataa aacgggagac ttagcccgtt atttacccga tggcaatgta
15900gaatttttgg gacgtattga caatcaggta aaaattcggg gttttcgcat cgaaactggg
15960gaaatcgaag ccgttttaag tcaatatttc ctattagctg aaagtgtagt cgttgccaag
16020gaagataata ctggggataa acgcctcgtg gcttatttgg ttcccgcctt gcaaaatgag
16080gccctaccag agcaattagc ccaatggcaa agtgaataca tcagtgattg gcaaagtctc
16140tatgaaagaa cctatagtca agggcaagac agcctagctg atctcacttt taatatcacg
16200ggttggaata gcagttatac tcgtcaaccc cttcctgctt cagaaatgcg agagtgggtc
16260gaaaacactg ttagtcgcat cttggctttc caaccagaac gcggtttaga aattggttgt
16320ggtacaggtt tgttactctc cagggtagca aagcattgtc ttgaatattg ggcaacggat
16380tattcccaag gggcgatcca gtatgttgaa cgggtttgca atgccgttga aggtttagaa
16440caggttaaat tacgctgtca aatggcagat aattttgaag gtattgccct acatcaattt
16500gataccgtcg tcttaaattc gattattcag tattttccca gtgtggatta tctgttacag
16560gtgcttgaag gggcgatcaa cgtcattggc gagcgaggtc agatttttgt cggggatgtg
16620cggagtttac ccctattaga gccatatcat gcggctgtgc aattagccca agcttctgac
16680tcgaaaactg ttgaacaatg gcaacaacag gtgcgtcaaa gtgtagcagg tgaagaagaa
16740ctggtcattg atcccacatt gttcctggct ttaaaacaac attttccgca aattagctgg
16800gtagaaattc aaccgaaacg gggtgtggct cacaatgagt taactcaatt tcgctatgat
16860gtcactctcc atttagagac tatcaataat caagcattat tgagcggcaa tccaacggta
16920attacctggt taaattggca acttgaccaa ctgtctttaa cacaaattaa agataaatta
16980ttaacagaca aacctgaatt gtggggaatt cgtggtattc ctaatcagcg agttgaagag
17040gctctaaaaa tttgggaatg ggtggaaaat gcccctgatg ttgaaacggt tgaacaactc
17100aaaaaacttc tcaaacaaca agtagatact ggtattaatc ctgaacaggt ttggcaatta
17160gctgagtctc tcggttacac cgctcacctt agttggtggg aaagtagtca agacggttcc
17220tttgatgtca tttttcagcg gaattcagaa gcggaggact caaaaaaatt aaccctttca
17280aaacttgctt tctgggatga aaaacccttt aaaataaagc cctggagtga ctatactaac
17340aaccctctgc gcggtaagtt agtccaaaaa ttaattccta aagtacgaga atttctgcaa
17400gaaaaactac ccagttatat ggttccccag gcgtttgtgc tgcttgattc ccttcctttg
17460acccccaatg gtaaggtgga tcgtaaggcg ttaccttctc ctgatgcggc gactcgtgat
17520ttagcgaaca gttttgtctt accccgcaat ccgattgaag ctcaactgac tcaaatttgg
17580agtgaagttt tgggactgga acgcattggc gttaaggaca acttttttga attgggagga
17640cattctcttt tggctaccca ggttttatca agaattaatt cagcctttgg acttgatctt
17700tctgtgcaaa ttatgtttga atcaccaacg atcgcgggca ttgcgggtta tattcaagcg
17760gtagattggg tcgcccagga tcaagccgat agctcgttaa atcatgaaaa tactgaggta
17820gtggagttct aagttatgac gaaaaagatt gttgaatttg tctgttatct acgggattta
17880ggcattactt tagaagctga tgaaaaccgc ttacgctgtc aggctcccga aggaattttg
17940accccagcac tccgtcaaga aattggcgat cacaaactgg aattattaca atttttacaa
18000tgggtcaaac agtctaaaag taccgctcat ttgcctatta aacctgtcgc tagagacggt
18060catttacccc tgtcttttgc tcaacaacgt ttatggtttt tacattatct ttcccctgat
18120agtcgttcct acaataccct ggaaatattg caaattgatg ggaatctcaa tctgactgtg
18180ctagagcaga gtttggggga attaattaac cgccatgaaa tttttagaac aacattcccc
18240actgtttcag gggaaccgat tcagaaaatt gcacttccta gtcgttttca gttaaaagtt
18300gataattatc aagatttaga cgaaaatgaa caatcagcta aaattcaaca agtagcagaa
18360ttggaagcag gacaagcttt tgatttaacg gtggggccac tgattcagtt taagctattg
18420caattgagtc cccagaagtc ggtgctgctg ttgaaaatgc accatattat ctatgatggc
18480tggtcttttg ggattctgat tcgggaatta tcggctctat acgaagcatt tttaaagaac
18540ttagccaatc ctctccctgc gttgtctatt cagtatgcag attttgcggt ttggcaacgt
18600caatatctct caggtgaggt cttagataaa caactcaatt attggcaaga acagttagca
18660acagtctctc ctgttcttac tttaccaacg gatagacccc gtccggcgat acaaactttt
18720cagggaggag ttgagcgttt tcaactggat caaaatgtca ctcaaggtct taaaaagtta
18780ggtcaagatc aggttgcaac cctgtttatg acgttgttgg ccggtttcgg cgttttgcta
18840tctcgttata gtggtcaatc tgatctgatg gtgggttctc cgatcgctaa tcgtaatcaa
18900gcagcgatcg aacctttaat tggctttttt gctaacactt tggctttaag aattaattta
18960tcagaaaatc ccagtttttt agaattatta gaacaagtta aacagacaac tttagagggt
19020tatgctcacc aagacctacc ctttgagatg ttagtagaaa agctacaact tgaccgtgat
19080ttgagcagaa atcctttagt acaagtcatg tttgcgctac aaaatacctc tcaagatact
19140tggaatcttt cgggtttaag tattgaaagt ttatctttat cagtggaaga aactgtcaga
19200tttgatctag aagtaaactg ctggcaaaat tcagaaggtt tagcaataga ttggatttac
19260agcagagatt tatttgacac tgcaacaatt gcaagaatgg gagaacattt tcaaaattta
19320gttcaggcaa tcatactcaa tccaaaagct acagttaaag aacttccttt attaacaccc
19380aaggaacgtg agcaattatt aatatcttgg aataatagca agactgatta tcctcaagag
19440cagtgtattt atcaattatt tgaagcacaa gttgaacgga ctccaaaggc gatcgcagtg
19500gtatttgagg agcaatcatt aacatacact gaattaaacc atcgcgctaa tcagttagcc
19560cattatttac aaactttagg cgtgggagca gaagtcttag tcggtatttc cctagaacgt
19620tctttagaga tgattatcgg cttattaggg attctcaagg taggtggtgc ttatcttcct
19680cttgatccag actatcccac tgagcgtctt cagttgatgt tagaagacag tcaagttcct
19740tttttgatta cccacagttc tttattagca aaattgcctc cctctcaagc aactctgatt
19800tgtttagatc atatccaaga gcagatttct caatattctc cagataatct tcaatgtcag
19860ttaactcctg ccaatttagc taacgttatt tatacctctg gctctacggg taagcctaaa
19920ggggtgatgg ttgaacataa aggtttagtt aacttagctc ttgctcaaat tcaatctttt
19980gcagtcaacc ataacagtcg tgtgctgcaa tttgcttctt ttagttttga tgcttgtatt
20040tcagaaattt tgatgacctt tggttctgga gcgacgcttt atcttgcaca aaaagatgct
20100ttattgccag gtcagccatt aattgaacgg ttagtaaaga atggaattac tcatgtgact
20160ttgccgcctt cagctttagt ggttttaccc caggaaccgt tacgcaactt agaaacctta
20220attgtggcgg gtgaggcttg ttctcttgat ttagtgaaac aatggtcaat cgatagaaac
20280tttttcaatg cctatgggcc aacggaagcg agtgtttgtg ccactattgg acaatgttat
20340caagatgatt taaaggtgac gattggtaag gcgatcgcca atgtccaaat ttatatttta
20400gatgcctttt tacagccggt gccggtggga gtgtcaggag agttatacat tggtggagtt
20460ggggtggcaa ggggctattt aaatcgtcct gaattaaccc aagaaaaatt tattgctaat
20520ccttttagta acgacccaga ttctcggctc tataaaactg gcgacttagc gcgttattta
20580cccgatggta atattgaata tttaggacgc attgacaatc aggtaaaaat tcgcggtttt
20640cgcattgagt taggagaaat tgaagcggtt ctgagtcaat gtcccgatgt gcaaaatacg
20700gcggtgattg tccgcgaaga tactcctggc gataagcgct tagttgccta tgtggttctt
20760acttctgact cccagataac tactagcgaa ctgcgtcaat ttttggcgaa tcaattaccc
20820gcctatcttg ttcctaatac ctttgttatt ttagatgatt tgcccctaac ccccagtggc
20880aaatgcgatc gccgttcctt acctataccc gaaacacaag cgttatcaaa tgactatatt
20940gcccctaaat ctcccactga agaaattctg gctcaaatat gggggcaagt tctcaagata
21000gaaagagtca gcagagaaga taatttcttt gaattggggg ggcattccct tttagctacc
21060caggtaatgt cccgtctgcg tgaaactttt caagtcgaat tacctttgcg tagtctcttt
21120accgctccca ctattgctga attggcccta acaattgagc aatctcagca aaccattgct
21180gctcccccca tcctaaccag aaacgacagt gctaacctcc cgttatcttt tgctcaacaa
21240cgtttatggt ttctggatca attagaacct aacagcgcct tttatcatgt agggggagcc
21300gtaagactag aaggaacatt aaatattact gccttagagc aaagcttaaa agaaattatt
21360aatcgtcatg aagctttacg cacaaatttt ataacgattg atggtcaagc cactcaaatt
21420attcacccta ctattaattg gcgattgtct gttgttgatt gtcaaaattt aaccgacact
21480caatctctgg aaattgcgga agctgaaaag ccctttaatc ttgctcaaga ttgcttattt
21540cgtgctactt tattcgtgcg atcaccgcta gaatatcatc tactcgtgac catgcaccat
21600attgttagcg atggctggtc aattggagta ttttttcaag aactaactca tctttacgct
21660gtctataatc agggtttacc ctcatcttta acgcctatta aaatacaata tgctgatttt
21720gcggtctggc aacggaattg gttacaaggt gaaattttaa gtaatcaatt gaattattgg
21780cgcgaacaat tagcaaatgc tcctgctttt ttacctttac cgacagatag acctaggccc
21840gcaatccaaa cttttattgg ttctcatcaa gaatttaaac tttctcagcc attaagccaa
21900aaattgaatc aactaagtca gaagcatgga gtgactttat ttatgactct cctggctgct
21960tttgctacct tactttaccg ttatacagga caagcagata ttttagttgg ttctcctatt
22020gctaaccgta atcgtaagga aattgaggga ttaatcggct tttttgttaa tacattagtt
22080ctgagattga gtttagataa tgatttaagt tttcaaaatt tgctaaacca tgttagagag
22140gtttctttag cagcctacgc ccatcaagat ttaccttttg aaatgttagt agaagcacta
22200caccctcaac gagatctcag tcatacccct ttatttcagg taatgtttgt tttgcaaaat
22260acaccagtgg ctgatctaga acttaaaaat gtaaaggttt gtcctctacc gatggaaaat
22320aagactgcta aatttgattt aaccttatca atggagaatc tagaggaagg attgattggg
22380gtttgggaat ataacaccga tctatttaat ggctcaacca ttgagcgaat gagtggacat
22440tttgtcactt tgttagaaga tattgttgcc gctccaacga agtcagtttt acggttgtct
22500ttgctgacgc aagaggaaaa actgcaatta ttgattaaaa atcagggtgt tcaagttgat
22560tattctcaag agcagtgcat ccatcaatta tttgaagcgc aagttgaacg gactcccgat
22620gcgattgcgg tggtatttga ggagcaatca ttaacctatg ctgaattaaa tcatcaagct
22680aatcagttag tccattactt acaaacttta ggaattgggc cagaggtctt agtcgctatt
22740tcagtagaac gttctttaga aatgattatc ggcttattag ccattctcaa ggcgtgtggt
22800gcttatctcc ctcttgctcc tgactatccc actgagcgtc ttcagttcat gttagaagat
22860agtcaagctt cttttttgat tacccacagt tctttattag aaaaattgcc ttcttctcaa
22920gcgactctaa tttgtttaga tcacatccaa gagcagattt ctcaatattc tcccgataat
22980cttcaaagtg agttaactcc ttccaatttg gctaacgtta tttacacctc tggctctacg
23040ggtaagccta aaggggtgat ggttgaacat cggggcttag ttaacttagc gagttctcaa
23100attcaatctt ttgcagtcaa aaataacagt cgtgtactgc aatttgcttc ctttagtttt
23160gatgcttgta tttcagaaat tttgatgacc tttggttctg gagcgactct ttatcttgct
23220caaaaaaatg atttattgcc aggtcagcca ttaatggaaa ggttagaaaa gaataaaatt
23280acccatgtta ctttaccccc ttcagcttta gctgttttac caaaaaaacc gttacccaac
23340ttacaaactt taattgtggc gggtgaggct tgtcctctgg atttagtcaa acaatggtca
23400gtcggtagaa actttttcaa tgcctatggc ccgacagaaa cgagtgtttg tgccacgatt
23460ggacaatgtt atcaagatga tttaaaggtc acgattggta aggcgatcgc taatgtccaa
23520atttatattt tggatgcctt tttacaacca gtacccatcg gagtaccagg ggaattatac
23580attggtggag tcggagttgc gaggggttat ctaaatcgtc ctgaattaac ggcggaaaga
23640tttattccta atccttttga tcccccccta acccccctta aaaagggggg agataagagc
23700tatgaaactt ttaaaaaggg ggaagagcaa ccatcaaaac tctataaaac gggagattta
23760gctcgttatt tacccgatgg caatattgaa tatttaggac gcattgacaa tcaggtaaaa
23820attcgcggtt ttcgcattga gttaggagaa attgaagcgg ttctgagtca atgtcccgat
23880gtgcaaaata cggcggtgat tgtccgtgaa gatactcctg gcgataaacg tttagttgcc
23940tatgtggttc ttacttctga ctcccagata actactagcg aactgcgtca attcttggct
24000aatcaattac ctgcctatct cgttcccaat acctttgtta ttttagatga tttgccccta
24060acccccaatg gtaaatgcga tcgccgttcc ttaccgcttc ctgatgatca gaccagaaaa
24120aatattccta aaattggccc gcgtaattta gtggaattac aattagctca aatctggtca
24180gagattttag gcattaataa tattggtatt caggaaaact tctttgaatt aggcggtcat
24240tctttattag cagtcagtct gatcaatcgt attgaacaaa agttagataa acgtttacca
24300ttaaccagtc tttttcaaaa tggaaccata gcaagtctag ctcaattact agcgcaagaa
24360acaactcagc cagcctcttc accgttgatt gctatccagt ctcaaggtga taaaactcca
24420ttttttgctg ttcatcccat tggtggtaat gtgctatgtt atgccgattt agctcgtaat
24480ttaggaacga aacagccgtt ttatggatta caatcattag ggctaagtga attagaaaaa
24540actgtagcct ctattgaaga aatggcgatg atttatattg aagcaataca aactgttcaa
24600gcctctggtc cctactattt aggaggttgg tcaatgggag gagtgatagc ttttgaaatc
24660gcccaacaat tattgaccca aggtcaagaa gttgctttac tggctttaat agatagttat
24720tctcccagtt tacttaattc agttaatagg gagaaaaatt ctgctaattc cctgacagaa
24780gaatttaatg aagatatcaa tattgcctat tctttcatca gagacttagc aagtatattt
24840aatcaagaaa tctctttctc tgggagtgaa cttgctcatt ttacatcaga cgaattacta
24900gacaagttta ttacttggag tcaagagacg aatcttttgc cgtcagattt tgggaagcag
24960caggttaaaa cctggtttaa agttttccag attaatcacc aagctttgag cagctattct
25020cccaagacgt atctgggtag aagtgttttc ttaggagcgg aagacagttc tattaaaaat
25080cctggttggc atcaagtaat caatgacttg caatctcaat ggattagcgg cgatcactac
25140ggtttaatta aaaatccagt cctcgctgaa aaactcaata gctacctagc ctaaaacttt
25200caaaaagcct gattattgtt taaaatgaat gatcgttcac cggtcagagg acaagtatga
25260caacccaaac agcttctagt gccaatgccc ttgcttcctt taaccaattt ttaagggatg
25320taaaggcgat cgcccaaccc tattggtatc ccactgtatc aaataaaaga agcttttctg
25380aggttattcg ttcctgggga atgctatcac tgcttatctt tttgattgtg ggattagtcg
25440ccgtcacggc ttttaatagt tttgttaatc gtcgtttaat tgatgtcatt attcaagaaa
25500aagatgcgtc tcaatttgcc agtacattaa ctgtctatgc gatcggatta atctgtgtaa
25560cgctgctggc agggttcact aaagatattc gcaaaaaaat tgccctagat tggtatcaat
25620ggttaaacac ccagattgta gagaaatatt ttagtaatcg tgcctattat aaaattaact
25680ttcaatctga cattgataac cccgatcaac gtctagccca ggaaattgaa ccgatcgcca
25740caaacgccat tagtttctcg gccacttttt tggaaaaaag tttggaaatg ctaacttttt
25800tagtggtagt ttggtcaatt tctcgacaga ttgctattcc gctaatgttt tacacgatta
25860tcggtaattt tattgccgcc tatctaaatc aagaattaag caagatcaat caggcacaac
25920tgcaatcaaa agcagattat aactatgcct taacccatgt tcggactcat gcggaatcta
25980ttgctttttt tcggggagaa aaagaggaac aaaatattat tcagcgacgt tttcaggaag
26040ttatcaatga tacgaaaaat aaaattaact gggaaaaagg gaatgaaatt tttagtcggg
26100gctatcgttc cgtcattcag ttttttcctt ttttagtcct tggccctttg tatattaaag
26160gagaaattga ttatggacaa gttgagcaag cttcattagc tagttttatg tttgcatcgg
26220ccctgggaga attaattaca gaatttggta cttcaggacg tttttctagt tatgtagaac
26280gtttaaatga attttctaat gccttagaaa ctgtgactaa acaagccgag aatgtcagca
26340caattacaac catagaagaa aatcattttg cctttgaaca cgtcacccta gaaacccctg
26400actatgaaaa ggtgattgtt gaggatttat ctcttactgt tcaaaaaggt gaaggattat
26460tgattgtcgg gcccagtggt cgaggtaaaa gttctttatt aagggcgatc gccggtttat
26520ggaatgctgg cactgggcgt ttagtgcgtc ctcccctaga agaaattctc tttttgcccc
26580aacgtcccta cattattttg ggaaccttac gcgaacaatt gctgtatcct ctaaccaata
26640gtgagatgag caataccgaa cttcaagcag tattacaaca agtcaatttg caaaatgtgc
26700taaatcgggt ggatgacttt gactccgaaa aaccctggga aaacattctc tccctcggtg
26760aacaacaacg cctagccttt gctcgattgt tagtgaattc tccgagtttt accattttag
26820atgaggcgac cagtgcctta gatttaacaa atgaggggat tttatacgag caattacaaa
26880ctcgcaagac aacctttatt agtgtgggtc atcgagaaag tttgtttaat taccatcaat
26940gggttttaga actttctgct gactctagtt gggaactctt aagcgttcaa gattatcgcc
27000ttaaaaaagc gggagaaatg tttactaatg cttcgagtaa caattccata acacccgata
27060ttactatcga taatggatca gaaccagaaa tagtctattc tcttgaagga ttttcccatc
27120aggaaatgaa actattaaca gacctatcac tctctagcat tcggagtaaa gccagtcgag
27180ggaaggtgat tacagccaag gatggtttta cctaccttta tgacaaaaat cctcagatat
27240taaagtggct cagaacttaa
27260
User Contributions:
Comment about this patent or add new information about this topic: