Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees

Patent application title: MICROGININ PRODUCING PROTEINS AND NUCLEIC ACIDS ENCODING A MICROGININ GENE CLUSTER AS WELL AS METHODS FOR CREATING NOVEL MICROGININS

Inventors:  Dan Kramer (Berlin, DE)  Dan Kramer (Berlin, DE)
Assignees:  CYANO BIOTECH GMBH  HUMBOLDT-UNIVERSITAET ZU BERLIN
IPC8 Class: AC07H2100FI
USPC Class: 536 231
Class name: Nitrogen containing n-glycosides, polymers thereof, metal derivatives (e.g., nucleic acids, oligonucleotides, etc.) dna or rna fragments or modified forms thereof (e.g., genes, etc.)
Publication date: 2011-02-10
Patent application number: 20110034680



r nucleic acid molecules enabling the synthesis of microginin and microginin analogues. The invention also provides for methods for identifying microginins as well creating microginins which may not be found in nature.

Claims:

1-19. (canceled)

20. A nucleic acid encoding a peptide spacer sequence (SP), whereina. the peptide sequence comprises at least 4 glycine amino acids per single repeat unit (SRU), orb. at least five proline and/or leucine amino acids per single repeat unit (SRU),c. a SRU within the SP is between 7 and 15 amino acids in length, andd. the SP comprises between 2 and 10 SRUs.

21. The nucleic acid according to claim 20, encoding a peptide SRU with a sequence as shown in SEQ ID NO. 20 or SEQ ID NO. 21.

22. The nucleic acid according to claim 21, with a sequence as shown in SEQ ID NO. 43 or SEQ ID NO. 44.

Description:

TECHNICAL FIELD

[0001]The present invention relates to the fields of chemistry, biology, biochemistry, molecular biology. The invention provides for novel nucleic acid molecules enabling the synthesis of microginin and microginin analogues. Microginin finds an application in therapeutics. The invention thus extends into the field of mammalian therapeutics and drug development.

INTRODUCTION

Cyanobacteria and Microginin

[0002]Cyanbacteria are gram-negative bacteria. Due to their ability to perform photosynthesis they were long thought to belong to the plant kingdom and were formerly classified as blue-green algae. Cyanbacteria have adapted to almost all ecological niches. Most of strains known up to date are found in fresh water lakes and oceans. In the last few years cyanobacteria have been recognised as a source for biologically active natural compounds.

[0003]Cyanobacteria are a group of microscopic organisms somewhere "in between" algae and bacteria and they are found in freshwater and marine areas throughout the world. Scientifically, they are considered to be bacteria, but because they can perform photosynthesis, they also used to be classified as "blue-green algae".

[0004]Cyanobacterial peptides (cyanopeptides) are among the most ubiquitously found potentially hazardous natural products in surface waters used by humans. Though these substances are natural in origin, eutrophication (i.e. excessive loading with fertilising nutrients) has caused massive cyanobacterial proliferation throughout Europe. Thus, cyanopeptides now occur with unnatural frequency and concentration.

[0005]A large group among the diverse cyanopeptides are the oligopeptides (peptides with a molecular weight of <2KD). But while specific cyanopeptides--e.g. microcystins and nodularins--are well studied and recognised as being causative for many animal poisonings and human illness, a substantial and increasing body of evidence points toward a decisive role of other potentially toxic cyanopeptides in the causation of both acute and chronic human illnesses.

[0006]Freshwater and marine cyanobacteria are known to produce a variety of bioactive compounds, among them potent hepatotoxins and neurotoxins. Many of the toxic species of cyanobacteria tend to massive proliferation in eutrophicated water bodies and thus have been the cause for considerable hazards for animal and human health. One of the most widespread bloom-forming cyanobacteria is the genus Microcystis, a well-known producer of the hepatotoxic peptide microcystin. Microcystins are a group of closely related cyclic heptapeptides sharing the common structure. So far, more than 80 derivatives of microcystins have been identified, varying largely by the degree of methylation, peptide sequence, and toxicity.

[0007]The traditional botanical code describes the genus Microcystis as a coccal, unicellular cyanobacterium that grows as mucilaginous colonies of irregularly arranged cells (under natural conditions, while strain cultures usually grow as single cells). According to this tradition, morphological criteria such as size of the individual cells, colony morphology, and mucilage characteristics are used for species delimitation within Microcystis (i.e., morphospecies). Microcystin-producing strains as well as strains that do not synthesize microcystin have been reported for all species within the genus Microcystis. However, whereas most field samples and strains of Microcystis aeruginosa and Microcystis viridis studied to date were found to contain microcystins, strains of M. wesenbergii, M. novaceckii, and M. ichthyoblabe have only sporadically been reported to contain microcystins.

[0008]Beside microcystins, various other linear and cyclic oligopeptides such as anabaenopeptins, aeruginosins, microginins and cyanopeptolins are found within the genus Microcystis (Namikoshi, M., and K. L. Rinehart. 1996. Bioactive compounds produced by cyanobacteria. J. Ind. Microbiol. 17:373-384.).

[0009]Similar to microcystins, these peptides possess unusual amino acids like 3-amino-6-hydroxy-2-piperidone (Ahp) in cyanopeptolins, 2-carboxy-6-hydroxyoctahydroindol (Choi) in aeruginosin-type molecules or 3-amino-2 hydroxy-decanoic acid (Ahda) in microginins and numerous structural variants also exist within these groups. These peptides show diverse bioactivities, frequently protease inhibition (Namikoshi, M., and K. L. Rinehart. 1996. Bioactive compounds produced by cyanobacteria. J. Ind. Microbiol. 17:373-384).

[0010]The occurrence of both microcystins and other oligopeptides such as anabaenopeptins, microginins and cyanopeptolins in natural Microcystis populations was recently demonstrated. It is well known that the species and genotype composition in natural Microcystis populations is heterogeneous, and both microcystin- and non-microcystin-containing strains have been isolated from the same sample. Just as strains producing microginin and strains not producing microginin have been found. These results suggest a considerable diversity of genotypes with different oligopeptide patterns in natural Microcystis populations.

[0011]By typing single Microcystis colonies, it was possible in 1999 to show for the first time that the actual peptide diversity in a natural population of this genus is extremely high. Many of the substances detected belong to well-known groups of cyanobacterial peptides like microcystins, anabaenopeptins, microginins, cyanopeptolins, and aeruginosins, of which many have been discovered in Microcystis spp. In addition, numerous unknown components have been detected in such colonies. However, the origin of these unknown components has yet to be investigated, since besides the observed epiphytic cyanobacteria and algae, heterotrophic bacteria are also known to be present in Microcystis colonies. Chemical screening of cyanobacterial samples (both from field samples and from culture strains) has demonstrated a wide variety of substances: e.g. an almost monospecific bloom of Planktothrix agardhii contained as many as 255 different substances, most of which were oligopeptides.

[0012]Thus, it may be concluded, that the situation with respect to the assignment of the capability of microginin production to certain species and strains, i.e. also a true understanding of the genotypes and species involved as well as their evolution has to date, not been possible. In fact PEPCY a research project supported by the European Commission concluded that present information shows that one species or "morphotype" (i.e. individuals with the same morphological characteristics) may comprise a range of genotypes that encode for different "chemotypes" (i.e. morphologically indistinguishable individuals containing different cyanopeptides).

Ace Inhibitors and Microginin

[0013]ACE catalyses the conversion of angiotensin I into angiotensin II within the mammalian renin-angiotensin system, leading to arterial stenosis, which in turn causes an increase of blood pressure. ACE inhibitors counteract this process and therefore play a role in human medicine as blood pressure lowering agents. Microginin is an important drug candidate for ACE inhibition. So far only 30 structural variants of microginin are known, making clinical development difficult.

[0014]Microginins are characterized by a decanoic acid derivate, 3-amino-2-hydroxy-decanoic acid (Ahda) at the N-terminus and a predominance of two tyrosine units at the C-terminus. They vary in length from 4 to 6 amino acids with the variability occurring at the C-terminal end (Microginins, zinc metalloprotease inhibitors from the cyanobacterium Microcystis aeruginosa, 2000, Tetrahedron 56:8643-8656). In the past it has only been possible by means of synthesis of 3-amino-2-hydroxy-decanoic acid to chemically generate microginin variants (J Org. Chem. 1999 Apr. 16; 64(8):2852-2859. Acylnitrene Route to Vicinal Amino Alcohols. Application to the Synthesis of (-)-Bestatin and Analogues. Bergmeier S C, Stanchina D M.) Alternatively cyanobacterial strains were screened for microginin activity, which was tedious and time consuming. It has so far not been possible to screen for strains efficiently due to the lack of species understanding and a methodology of efficiently distinguishing microginin producers from non-producers (see above). Further it was not possible to easily and efficiently alter and thus develop microginins in order to provide for a variety of lead compounds from which better ACE-inhibitors may be developed.

BRIEF DESCRIPTION OF THE INVENTION

[0015]From Microcystis aeruginosa a cluster of genes, spanning about 30 kbps has been isolated encoding a hybrid synthetase composed of non-ribosomal peptide synthetases (NRPS), polyketide synthases (PKS) and tailoring enzyme which as the inventors show is responsible for the biosynthesis of microginin. The strain from which this nucleic acid was first isolated by G. C. Kurzinger from Lake Pehlitz 1977].

[0016]The inventors provide for a biological system enabling not only the production of micoginins, the heterologous expression of microginin, but also a system for modifying microginin and thus developing so far unknown variants of microginin. The invention further provides for nucleic acids and methods for identifying strains which have the ability to produce microginin.

[0017]In particular the invention relates to one or more nucleic acids encoding a microginin synthetase enzyme complex with the following activities: an adenylation domain (A*) wherein, the adenylation domain comprises a peptide sequence according to SEQ ID NO. 1, an acyl carrier protein (ACP), an elongation module (EM) of polyketide synthases (PKS) comprising the following activities: (i) ketoacylsynthase (KS), (ii) acyl transferase (AT) (iii) acyl carrier protein (ACP2), an aminotransferase (AMT), three to five elongation modules (EM) of non-ribosomal peptide synthetases (NRPS) comprising the following activities: (i) condensation domain (C), (ii) adenylation domain (A), (iii) thiolation domain (T) and a thioesterase (TE).

DETAILED DESCRIPTION OF THE INVENTION

[0018]As outlined above the invention in particular relates to one or more nucleic acids encoding a microginin synthetase enzyme complex with the following activities: an adenylation domain (A*) wherein, the adenylation domain comprises a peptide sequence according to SEQ ID NO. 1, an acyl carrier protein (ACP), an elongation module (EM) of polyketide synthases (PKS) comprising the following activities: (i) ketoacylsynthase (KS), (ii) acyl transferase (AT) (iii) acyl carrier protein (ACP 2), an aminotransferase (AMT), three to five elongation modules (EM) of non-ribosomal peptide synthetases (NRPS) comprising the following activities: (i) condensation domain (C), (ii) adenylation domain (A), (iii) thiolation domain (T) and a thioesterase (TE).

[0019]The inventors have found that microginin is the product of non-ribosomal synthesis. It is important to understand that microginin as previously identified in nature may also in part have been the product of ribosomal synthesis and further processed via various enzymatic reactions.

[0020]It is important to note that the nucleic acid claimed herein, i.e. a microginin synthetase enzyme complex may also be present in organisms other organisms than Microcystis sp., such as Nostoc, Anabaena, Plankthotrix or Oscillatoria. The term microginin shall thus not limit the invention to such nucleic acids producing synthetase enzyme complexes resulting in peptides officially termed "microginin".

[0021]Herein, an adenylation domain (A*) is understood to activate octanoic acid as an acyl adenylate and an acyl carrier protein (ACP) is understood to bind the octanoic acid adenylate as a thioester.

[0022]An elongation module (EM) of polyketide synthases (PKS) is also known e.g. from the Jamaicamide synthetase gene cluster isolated from Lyngbya majuscula (Chem. Biol. Vol. 11, 2004 pp 817-833. Structure and Biosynthesis of the Jamaicamides, new mixed polyketide-peptide neurotoxin from the marine cyanobacterium Lyngbya majuscula) herein comprises at least the following activities: (i) ketoacylsynthase (KS), (ii) acyl transferase (AT) and (iii) acyl carrier protein (ACP2). The AT is responsible for the recognition of malonyl-CoA, the KS is responsible for the Claisen-type-condensation of the activated octanoic acid adenylate with malonyl-CoA and the ACP2 is responsible for binding of the resulting decanoic acid.

[0023]An aminotransferase (AMT) performs the β-amination of the decanoic acid.

[0024]The nucleic acid according to the invention may have three to five elongation modules (EM) of non-ribosomal peptide synthetases (NRPS) comprising at least the following activities: (i) condensation domain (C), (ii) adenylation domain (A), (iii) thiolation domain (T). The A is responsible for the activation of carboxyl groups of amino acids, the T is responsible for the binding and the transport of the activated intermediate, the C is responsible for the condensation of the activated amino acids with the growing peptide chain.

[0025]Finally the nucleic acid according to the invention shall contain a thioesterase (TE) activity which performs the cleavage of the final product from the synthetase complex.

[0026]One may envision that the nucleic acid according to the invention is present in a vector or a bacterial chromosome, in which case one may envision that the portions designated above while being in one cell need not all, be in, or on, one molecule. It is essential to the invention however, that a cell meant to produce microginin synthetase enzyme complex contains the activities designated above in order to produce an enzyme complex according to the invention which in turn may produce a microginin. Thus, the invention also encompasses derivatives of the nucleic acid molecule as outlined above having the function of a microginin synthetase enzyme complex.

[0027]The molecule is characterized by a special adenylation domain (A*) which is unusual in that it is not similar to known adenlyation domains found in other molecules encoding non-ribosomal enzyme complexes such as the microcystin synthetase gene cluster (Chem. Biol. Vol. 7 2000, pp 753-764: Structural organisation of microcystin synthesis in Microcystis aeruginosa PCC 7806: In integrated peptide-polyketide-synthetase system) Molecules encompassed herein are those which carry this adenylation domain (A*) as depicted in SEQ ID NO. 1 and at least an ACP whereby this ACP may stem from another known non-ribosomal enzyme complex, at least one EM of PKS whereby this EM may stem from another known non-ribosomal enzyme complex comprising at least the following activities: (i) KS, (ii) AT (iii) ACP, an AMT whereby this AMT may stem from another known non-ribosomal enzyme complex three to five EMs comprising at least the following activities: (i) C, (ii) A, (iii) T whereby these EMs may stem from another known non-ribosomal enzyme complex and a TE whereby this TE may stem from another known non-ribosomal enzyme complex. Chimeras whereby parts of the above are on one or more vectors and or integrated in chromosomes are equally encompassed by the invention as long as all the components are in one cell.

[0028]The invention also pertains to isolated nucleic acid molecules encoding a microginin synthetase enzyme complex comprising an adenylation domain which is 85% identical to SEQ ID NO. 1, more preferred 90% identical to SEQ ID NO. 1 most preferred 95% identical to SEQ ID NO. 1. Sequence identity herein is in percent of total sequence of the adenylation domains when aligned with conventional nucleotide alignment software, such as the best fit and or pileup programs of the GCG package

[0029]The invention also pertains to a microginin synthetase enzyme protein complex with the following activities: an adenylation domain (A*) wherein, the adenylation domain comprises a peptide sequence according to SEQ ID NO. 1, an acyl carrier protein (ACP), an elongation module (EM) of polyketide synthases (PKS) comprising the following activities: (i) ketoacylsynthase (KS), (ii) acyl transferase (AT) (iii) acyl carrier protein (ACP 2), an aminotransferase (AMT), three to five elongation modules (EM) of non-ribosomal peptide synthetases (NRPS) comprising the following activities: (i) condensation domain (C), (ii) adenylation domain (A), (iii) thiolation domain (T) and a thioesterase (TE).

[0030]The invention in particular also relates to a nucleic acid molecule encoding an adenylation domain (A*) wherein, the adenylation domain comprises a peptide sequence according to SEQ ID NO. 1.

[0031]The invention in particular also relates to a peptide molecule, an adenylation domain (A*) wherein, the molecule comprises a peptide sequence according to SEQ ID NO. 1.

[0032]The invention in particular also relates to a nucleic acid molecule encoding an adenylation domain (A*) wherein, the molecule comprises a nucleic acid sequence according to SEQ ID NO. 25.

[0033]In a preferred embodiment of the invention the nucleic acid additionally and optionally comprises sequences encoding the following activities or domains: a monooxygenase (MO), an integrated N-methyltransferase domain (MT) within one or more elongation modules (EM) of NRPS, a non-integrated N-methyltrasferase (MT), a modifying activity (MA) wherein, said MA is selected from the group comprising the following activities: halogenase, sulfatase, glycosylase, racemase, O-methyltransferase and C-methyltransferase, two or more peptide repeat spacer sequences (SP) consisting of one or more repeats of being either glycine rich or proline and leucine rich, located adjacently upstream and downstream of the MO and/or another MA.

[0034]Herein MO is an enzyme catalyzing the hydroxylation of the decanoic acid, an integrated N-methyltransferase domain (MT) within one or more elongation modules (EM) of NRPS catalyses the methylation of the amide bond by the respective module and a non-integrated N-methyltrasferase (MT) catalyzes the methylation of an amino group of the microginin.

[0035]The term modifying enzyme stands for numerous enzymes such enzymes may add groups or create bonds, in a preferred embodiment MA is selected from the group comprising the following activities: halogenase, sulfatase, glycosylase, racemase, O-methyltransferase and C-methyltransferase.

[0036]Nucleic acids encoding two or more peptide repeat spacer sequences (SP) consisting of one or more repeats being either glycine rich or proline and leucine rich have astonishingly been found by the inventors to aid in integration of novel MAs into existing microginin synthetase enzyme complexes. By means of placing such SPs adjacently to MAs the inventors are able to create microginin synthetase enzyme complexes (MSEC) comprising activities previously not found in MSECs. This in turn allows for the creation of novel microginins with potentially novel therapeutic properties. Thus the invention relates to nucleic acids encoding two or more peptide repeat spacer sequences (SP) consisting of one or more repeats being either glycine rich or proline and leucine rich may be positioned adjacently to a MA such as but not limited to a halogenase, a sulfatase, a glycosylase, a racemase, an O-methyltransferase or a C-methyltransferase. These SPs aid in ensuring that the "foreign" activity "works" in the enzyme complex. The inventors have found, that this is due to the lack of secondary structures in the SP peptide chains.

[0037]The nucleic acid according to the invention in a preferred embodiment optionally comprises the following sequences, nucleic acid sequences encoding protein sequences as follows:

[0038]An adenylation domain (A*) according to SEQ ID NO. 1, an acyl carrier protein (ACP) according to SEQ ID NO. 2, an elongation module of polyketide synthases responsible for the activation and the condensation of malonyl-Co A: (i) ketoacylsynthase domain (KS) according to SEQ ID NO. 3, (ii) acyl transferase domain (AT) according to SEQ ID NO. 4, an acyl carrier protein domain (ACP 2) according to SEQ ID NO. 5, an aminotransferase (AMT) according to SEQ ID NO. 6, an elongation modules of non-ribosomal peptide synthetases responsible for the activation and condensation of alanin: (i) condensation domain (C) according to SEQ ID NO. 7, (ii) adenylation domain (A) according to SEQ ID NO. 8, (iii) thiolation domains (T) according to SEQ ID NO. 9, an elongation modules of non-ribosomal peptide synthetases responsible for the activation and condensation of leucin: (i) condensation domain (C 2) according to SEQ ID NO. 10, (ii) adenylation domain (A 2) according to SEQ ID NO. 11, (iii) thiolation domain (T 2) according to SEQ ID NO. 12, an elongation modules of non-ribosomal peptide synthetases responsible for the activation and condensation of tyrosine 1: (i) condensation domain (C 3) according to SEQ ID NO. 13, (ii) adenylation domain (A 3) according to SEQ ID NO. 14 (iii) thiolation domain (T 3) according to SEQ ID NO. 15, an elongation modules of non-ribosomal peptide synthetases responsible for the activation and condensation of tyrosine 2: (i) condensation domain (C 4) according to SEQ ID NO. 16, (ii) adenylation domain (A 4) according to SEQ ID NO. 17, (iii) thiolation domain (T 4) according to SEQ ID NO. 18, a thioesterase (TE) according to SEQ ID NO. 19, a monooxygenase (MO) according to SEQ ID NO. 20, two or more peptide repeat spacer sequences (SP1/SP2) according to SEQ ID NO. 21 and 22, an integrated N-methyltransferase domain (MT) within the elongation module (EM) of the NRPS responsible for the activation and condensation of leucin according to SEQ ID 23 and a non-integrated N-methyltrasferase (MT 2) according to SEQ ID NO. 24.

[0039]As outlined above, the minimal requirement according to the invention is a nucleic acid encoding a microginin synthetase enzyme complex with the following activities: an adenylation domain (A*) wherein, the adenylation domain comprises a peptide sequence according to SEQ ID NO. 1, an ACP according to SEQ ID NO. 2, an elongation module (EM) of polyketide synthases (PKS) comprising the following activities: (i) ketoacylsynthase (KS) according to SEQ ID NO. 3, (ii) acyl transferase (AT) according to SEQ ID NO 4, (iii) acyl carrier protein (ACP 2) according to SEQ ID NO. 5, an aminotransferase (AMT) according to SEQ ID NO. 6, three to five elongation modules (EM) of non-ribosomal peptide synthetases (NRPS) comprising the following activities: (i) condensation domain (C) according to SEQ ID NO. 7, (ii) adenylation domain (A) according to SEQ ID NO. 8, (iii) thiolation domain (T) according to SEQ ID NO. 9 and a thioesterase (TE) according to SEQ ID NO. 10. A molecule comprising the above sequences is preferred herein.

[0040]The invention explicitly also relates to analogs hereto, additionally comprising, e.g. other activities and/or spacer regions both transcribed and non-transcribed.

[0041]It is apparent to those skilled in the art, that amino acids may be exchanged maintaining the enzymatic activity required. Thus, the invention also relates to molecules with sequences which are not identical to those outlined above however, altered only in so far as the enzymatic activity desired is retained.

[0042]The nucleic acid according to the invention may contain nucleic acids selected from the group comprising: an adenylation domain (A*) according to SEQ ID NO. 25, an acyl carrier protein (ACP) according to SEQ ID NO. 26, an elongation module of polyketide synthases encoding for the activation and the condensation of malonyl-Co A: (i) ketoacylsynthase domain (KS) according to SEQ ID NO. 27, (ii) acyl transferase domain (AT) according to SEQ ID NO. 28, (iii) acyl carrier protein domain (ACP 2) according to SEQ ID NO. 29, an aminotransferase (AMT) according to SEQ ID NO. 30, an elongation modules of non-ribosomal peptide synthetases encoding for the activation and condensation of alanin: (i) condensation domain (c) according to SEQ ID NO. 31, (ii) adenylation domain (A) according to SEQ ID NO. 32, (iii) thiolation domain (T) according to SEQ ID NO. 33, an elongation modules of non-ribosomal peptide synthetases encoding for the activation and condensation of leucin: (i) condensation domain (C 2) according to SEQ ID NO. 34, (ii) adenylation domain (A 2) according to SEQ ID NO. 35, (iii) thiolation domain (T 2) according to SEQ ID NO. 36, elongation modules of non-ribosomal peptide synthetases encoding for the activation and condensation of tyrosine 1: (i) condensation domains (C 3) according to SEQ ID NO. 37, (ii) adenylation domains (A 3) according to SEQ ID NO. 38, (iii) thiolation domains (T 3) according to SEQ ID NO. 39, elongation modules of non-ribosomal peptide synthetases encoding for the activation and condensation of tyrosine 2: (i) condensation domains (C 4) according to SEQ ID NO. 40, (ii) adenylation domains (A 4) according to SEQ ID NO. 41, (iii) thiolation domains (T 4) according to SEQ ID NO. 42, a thioesterase (TE) according to SEQ ID NO. 43, a monooxygenase (MO) according to SEQ ID NO. 44, two or more peptide repeat spacer sequences (SP1/2) according to SEQ ID NO. 45 and 46, an integrated N-methyltransferase domain (MT) within the elongation module (EM) of the NRPS encoding for the activation and condensation of leucin according to SEQ ID 47 and a non-integrated N-methyltrasferase (MT 2) according to SEQ ID NO. 48.

[0043]As outlined above, the minimal requirement according to the invention is a nucleic acid encoding a microginin synthetase enzyme complex with the following activities: an adenylation domain (A*) wherein, the adenylation domain is a nucleic acid sequence according to SEQ ID NO. 25, an ACP with a nucleic acid sequence according to SEQ ID NO. 26, an elongation module (EM) of polyketide synthases (PKS) comprising the following activities: (i) ketoacylsynthase (KS) with a nucleic acid sequence according to SEQ ID NO. 27, (ii) acyl transferase (AT) with a nucleic acid sequence according to SEQ ID NO 28, (iii) acyl carrier protein (ACP 2) with a nucleic acid sequence according to SEQ ID NO. 29, an aminotransferase (AMT) with a nucleic acid sequence according to SEQ ID NO. 30, three to five elongation modules (EM) of non-ribosomal peptide synthetases (NRPS) comprising the following activities: (i) condensation domain (C) with a nucleic acid sequence according to SEQ ID NO. 31, (ii) adenylation domain (A) with a nucleic acid sequence according to SEQ ID NO. 32, (iii) thiolation domain (T) with a nucleic acid sequence according to SEQ ID NO. 33 and a thioesterase (TE) with a nucleic acid sequence according to SEQ ID NO. 43. A molecule comprising the above sequences is preferred herein.

[0044]The invention also relates to nucleic acid molecules with sequences which are not identical to those outlined above however, altered only in so far as the enzymatic activity desired is retained. I particular one skilled in the art will know that positions in nucleic acid triplets may "wobble" and these positions may thus be altered with no influence on the peptide sequence. Further multiple amino acids are encoded by more than one DNA triplet. One skilled in the art will know that one may alter such triplets maintaining the amino acid sequence. Thus said sequences are equally encompassed by the invention.

[0045]The invention also pertains to isolated nucleic acid molecules encoding a microginin synthetase enzyme complex comprising an adenylation domain which is 85% identical to SEQ ID NO. 25, more preferred 90% identical to SEQ ID NO. 1 most preferred 95% identical to SEQ ID NO. 1. Sequence identity herein is in percent of total sequence of the adenylation domains when aligned with a conventional amino acid alignment software such as the best fit and or pileup programs of the GCG package.

[0046]In a preferred embodiment the one or more nucleic acids according to the invention are organized in sequence parts encoding the microginin synthetase enzyme complex in an upstream to downstream manner as depicted in FIG. 1. In a particularly preferred embodiment the activities and domains are arranged as shown and on one molecule.

[0047]The nucleic acid molecule may be part of a vector. Such vectors are in particular, bacterial artificial chromosomes (BAC), Cosmids or Fosmids, and Lambda vectors, Preferred plasmid vectors which are able to replicate autonomously in cyanobacteria are derived from the pVZ vectors. Preferred fosmid vectors which are able to replicate autonomously in cyanobacteria are derived from the pCC1FOS® and pCC2FOS® vectors (Epicentre Biotechnologies). The integration of the nucleic acid according to the invention into the vector is a procedure known to those skilled in the art (Molecular Cloning: A Laboratory manual, 1989, Cold Spring Harbour Laboratory Press) or in the manuals of manufactures of kits for creation of genomic libraries (e.g. Epicenter Biotechnologies).

[0048]In a preferred embodiment the invention concerns a microorganism transformed with a nucleic acid according to the invention. The nucleic acid according to the invention may integrated into the chromosome of the host organism or may present on a separate vector (see also examples). It is preferred that the phototrophic cyanobacterial host organism is selected for the group comprising: Synechocystis sp., Synechococcus sp., Anabaena sp., Nostoc sp., Spirulina sp., Microcystis sp. . . . Cells are cultured as follows:

Media: Bg 11 (for cultivation of cyanobacteria)Aeration: air containing 0.3-3.0% carbon dioxideLight intensity: 40-100 μE/m2*s (diameter of illuminated culture vessels of photobioreactor d=4-12 cm)Cell density at harvest: OD.sub.750nm 1-2And if the host is Microcystis aeruginosa: Light quality: Additional red light illumination with 25 μE/m2*s for 24-48 hours before harvesting.

[0049]It is preferred that the heterotrophic host organism is selected for the group comprising: E. coli and Bacillus sp. due to a more suitable GC content and codon usage than other heterotrophic bacteria.

[0050]In case of using E. coli for the heterologues expression of the microginin synthetase a phosphopanthetein transferase (Ppt) has to be co-expressed in order to enable the synthesis of microginin. The co-expression of the Ppt from a microginin producing strain would be preferred. Other Ppt's with a broad specificity even from heterotophic organisms like Bacillus sp. are also suitable.

[0051]In one embodiment of the invention the invention relates to a method of producing a microginin, comprising culturing a cell under conditions under which the cell will produce microginin, wherein said cell comprises a nucleic acid encoding a recombinant microginin, according to the invention, and wherein said cell does not produce the microginin in the absence of said nucleic acid.

[0052]The inventors have identified nucleic acid sequences which for the first time make it possible to detect nucleic acids encoding a microginin synthetase enzyme complex. This has been extremely difficult, due to the fact that other gene clusters which encode non-ribosomal protein producing complexes share sequence similarity with the present cluster claimed herein. Such primers or probes according to the invention are selected from the group of, a) nucleic acid according to SEQ ID NO. 49 (Primer A), b) nucleic acid according to SEQ ID NO. 50 (Primer B), c) nucleic acid according to SEQ ID NO. 51 (Primer C), d) nucleic acid according to SEQ ID NO. 52 (Primer D), e) nucleic acid according to SEQ ID NO. 53 (Primer E), f) nucleic acid according to SEQ ID NO. 54 (Primer F), g) nucleic acid according to SEQ ID NO. 55 (Primer G), h) nucleic acid according to SEQ ID NO. 56 (Primer H), i) nucleic acid according to SEQ ID NO. 57 (Primer I) and j) nucleic acid according to SEQ ID NO. 58 (Primer J). It is known to one skilled in the art that such primers or probes may be altered slightly and still accomplishes the task of specifically detecting the desired target sequence. Such alterations in sequence are equally encompassed by the invention. The primers or probes according to the invention may be applied in hybridization reactions and/or amplification reactions. Such reactions are known to one skilled in the art.

[0053]The invention also concerns a method for detecting a microginin synthetase gene cluster in a sample wherein, one or more of the nucleic acids according to the invention are, applied in an amplification and/or a hybridization reaction.

[0054]In a preferred embodiment of the method according to the invention primers D and F or H and J or E and I or E and A are added to a PCR reaction mixture comprising a sample and wherein, presence of an amplification product represents presence of microginin synthetase gene cluster and absence of an amplification product represents absence of a microginin synthetase gene cluster. As can be seen from the examples (example 3 below), certain combinations are preferred. Samples may be isolated DNA, prokaryotic cells stemming from plates or liquid cultures.

[0055]When performing an amplification reaction with primers D and F the most preferred amplification conditions are as follows: a) denaturing, b) 48° C. annealing and c) elongation (product size: 675 bp). These temperatures may vary a bit in the range of 2-8 degrees C.

[0056]When performing an amplification reaction with primers H and J the most preferred amplification conditions are as follows: a) denaturing, b) 54° C. annealing and c) elongation (product size: 1174 bp). These temperatures may vary a bit in the range of 2-8 degrees C.

[0057]When performing an amplification reaction with primers E and I the most preferred amplification conditions are as follows: a) denaturing, b) 56° C. annealing and c) elongation (product size: 1279 bp). These temperatures may vary a bit in the range of 2-8 degrees C.

[0058]When performing an amplification reaction with primers E and A the most preferred amplification conditions are as follows: a) denaturing, b) 57° C. annealing and c) elongation (product size: 621 bp). These temperatures may vary a bit in the range of 2-8 degrees C. Molarity is most commonly 0.2-1.0 μM for the primers. Buffers and other reagents depending on polymerase used.

[0059]When performing hybridisation reactions the above nucleic acids are usually labeled. Such labels may be radioactive or non-radioactive, such as fluorescent. The nucleic acid primers or probes may be applied, e.g. for the screening of libraries.

[0060]The invention also relates to antibodies against a peptide according to SEQ ID NO. 1 (A*). The creation of such antibodies is known to one skilled in the art. The antibodies may be polyclonal or monoclonal. Such antibodies may be labeled or non-labeled, they may also be altered in other form, such as humanized.

[0061]The inventors have astonishingly found that newly identified peptide repeat spacer sequences (SP) may be placed adjacently to MAs I in order to create novel hybrid gene clusters. These SPs act by spacing the novel activity or domain so that it is functionally active in the microginin synthetase enzyme complex.

[0062]The invention thus, further relates to nucleic acids encoding a peptide repeat spacer sequence (SP) wherein, the peptide sequence comprises at least 4 glycin amino acids per single repeat unit (SRU) or, at least 5 proline and/or leucin amino acids per SRU, A SRU within the SP is between 7 and 15 amino acids in length and, the SP comprises between 2 and 10 SRUs.

[0063]The invention further relates to peptides of a peptide repeat spacer sequence (SP) wherein, the peptide sequence comprises at least 4 glycin amino acids or, at least 5 proline and/or leucin amino acids, the single repeat unit (SRU) within the SP is between 7 and 15 amino acids in length and, the SP comprises between 2 and 10 SRU. In a preferred embodiment of the invention the SRU is between 9 and 13 amino acids in length in a particularly preferred embodiment the SRU is eleven amino acids in length. In a preferred embodiment the SP comprises between 3 and 9 SRU.

[0064]In a preferred embodiment the nucleic acid encoding the peptide repeat spacer sequence (SP) according to the invention, encodes a peptide SRU as shown in SEQ ID NO. 20 or SEQ ID NO. 21. In a further embodiment the peptide repeat spacer sequence (SP) according to the invention, comprises or contains a sequence as shown in SEQ ID NO. 20 or SEQ ID NO. 21. In a further embodiment the nucleic acid according to the invention has a sequence as laid down in SEQ ID NO. 43 or SEQ ID NO. 44.

[0065]Not only by means of the above mentioned SPs but in particular because of these the inventors are able to create enzyme complexes resulting in microginin variants which may not be found in nature. This is an essential aspect of the present invention. The invention provides for, for the first time a simple method of producing recombinant microginin variants comprising, modifying the nucleic acid according to the invention in vitro or in vivo, growing a recombinant cell comprising said recombinantly modified nucleic acid encoding a microginin synthetase under conditions which lead to synthesis of a microginin and, recovering the synthesized microginin.

[0066]In a preferred embodiment of said method according to the invention, said modifying of said nucleic acid may be an action selected from the group of one or more of the following actions: a) inactivation of one or more of the MTs present, b) substitution of one or more of the MTs present with a halogenase, a sulfatase, a glycosylase, a racemase, an O-methyltransferase or a C-methyltransferase, c) inactivation of the MO, d) substitution of the MO with a halogenase, a sulfatase, a glycosylase, a racemase, an O-methyltransferase or a C-methyltransferase, e) inactivation of the AMT, f) substitution of the AMT with a halogenase, a sulfatase, a glycosylase, a racemase, an O-methyltransferase or a C-methyltransferase, g) inactivation of the PKS module, h) substitution of the entire PKS module with an alternative PKS module and/or substitution of one or more of the domains (KS, AT, ACP) therein, i) inactivation of the A* domain, j) substitution of the A* domain with alternative A domains, k) inactivation of one or more of the NRPS modules and 1) substitution of one or more of the NRPS modules with alternative NRPS modules and/or substitution of one or more of the domains (C, A, T) therein.

[0067]Halogenases, sulfatases, glycosylases, racemases, O-methyltransferases or C-methyltransferases are known from prokaryotes. These enzymes are encoded by genes of the secondary metabolism in particular NRPS/PKS systems.

[0068]Alternative PKS-systems, entire modules as well as single domains (KS, AT, ACP) are found in cyanobacteria as well as Actinomycetes, Myxobacteria, Bacillus among the bacteria.

[0069]Alternative NRPS-systems, entire modules as well as single domains (C, A, T) are found in cyanobacteria as well as Actinomycetes, Myxobacteria, Bacillus among the bacteria.

[0070]In a preferred embodiment the above are from cyanobacteria.

[0071]It is important to note, that said inactivation and/or substitution may done in many ways, e.g. inactivation may imply deleting the complete activity or domain, or may imply inactivation by means of a single nucleotide exchange.

[0072]The methods are known to those skilled in the art and comprise basic molecular biological methods such as DNA isolation, restriction digestion, ligation, transformation, amplification etc.

[0073]In a preferred embodiment said alternative modules or domains which are used for substitution of the original module or domain, additionally may comprise one or more SP nucleic acids according to the invention located adjacently upstream of the module or domain used for substitution and one or more SP nucleic acids according the invention located adjacently downstream of the module or domain used for substitution. Thus, in this embodiment of the invention a construct is made comprising the domain which is to be entered into the original nucleic acid according to the invention, further comprising one or more SPs located adjacently in an upstream and downstream manner. This construct is then ligated into the original microginin synthetase encoding nucleic acid. The resultant construct is then brought into a host by means of transformation for either a) integration into the host chromosome or b) with a self-replicating vector.

[0074]The polypeptides, i.e. proteins can be any of those described above but with not more than 10 (e.g., not more than: 10, nine, eight, seven, six, five, four, three, two, or one) conservative substitutions. Conservative substitutions are known in the art and typically include substitution of, e.g. one polar amino acid with another polar amino acid and one acidic amino acid with another acidic amino acid. Accordingly, conservative substitutions preferably include substitutions within the following groups of amino acids: glycine, alanine, valine, proline, isoleucine, and leucine (non polar, aliphatic side chain); aspartic acid and glutamic acid (negatively charged side chain); asparagine, glutamine, methionine, cysteine, serine and threonine (polar uncharged side chain); lysine, histidine and arginine; and phenylalanine, tryptophane and tyrosine (aromatic side chain); and lysine, arginine an histidine (positively charged side chain). It is well known in the art how to determine the effect of a given substitution, e.g. on pK1 etc. All that is required of a polypeptide having one or more conservative substitutions is that it has at least 50% (e.g., at least: 55%; 60%; 65%, 70%; 75%; 80%; 85%; 90%; 95%; 98%; 99%; 99.5%; or 100% or more) of the ability of the unaltered protein according to the invention.

[0075]In preferred embodiments the polynucleotides, i.e. nucleic acids of the present invention also comprise nucleic acid molecules which are at least 85%, preferably 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to those claimed herein.

[0076]The determination of percent identity between two sequences is accomplished using the mathematical algorithm of Karlin and Altschul (1993) Proc. Natl. Acad. Sci. USA 90: 5873-5877. Such an algorithm is incorporated into the BLASTN and BLASTP programs of Altschul et al. (1990) J. Mol. Biol. 215: 403-410. BLAST nucleotide searches are performed with the BLASTN program, score=100, word length=12, to obtain nucleotide sequences homologous to the nucleic acids according to the invention. BLAST protein searches are performed with the BLASTP program, score=50, wordlength=3, to obtain amino acid sequences homologous to the EPO variant polypeptide, respectively. To obtain gapped alignments for comparative purposes, Gapped BLAST is utilized as described in Altschul et al. (1997) Nucleic Acids Res. 25: 3389-3402. When utilizing BLAST and Gapped BLAST programs, the default parameters of the respective programs are used.

FIGURES

[0077]FIG. 1 depicts the structure of microginin.

[0078]FIG. 2 depicts the microginin synthetase gene cluster and the biosynthetic pathway of microginin.

EXAMPLES

Example 1

Method for Detecting Gene Clusters According to the Invention

[0079]Strains carrying a gene cluster encoding a microginin synthetase complex can be distinguished from strains not carrying such a gene cluster performing a PCR reaction using RedTaq ReadyMix PCR Reaction Mix with MgCl2 (Sigma) and primer pairs and the corresponding annealing temperatures as described in Claims 11-12. In particular the PCR conditions are as follows: an initial denaturation for 1 minutes at 95° C., followed by 30 cycles of denaturation at 95° C. for 30 seconds, elongation at said annealing temperatures for 30 seconds and extension at 72° C. for 1 kb of product size.

Example 2

Method for Optimised Cultivation of Microginin Producing Microcystis spp.

[0080]Strains. Media: Bg 11 (for cultivation of cyanobacteria)Aeration: air containing 0.3-3.0% carbon dioxideLight intensity: 40-100 μE/m2*s (diameter of illuminated culture vessels of photobioreactor d=4-12 cm)Light quality: Additional red light illumination with 25 μE/m2*s for 24-48 hours before harvesting.Cell density at harvest: OD.sub.750nm 1-2

Tables

TABLE-US-00001 [0081]TABLE 1 SEQ ID MTINYGDLQEPFNKFSTLVELLRYRASSQPERLAYIFLRDGEIEEARLTYGELDQKARAI NO. 1 A* AAYLQSLEAEGERGLLLYPPGLDFISAFFGCLYAGVVAIPAYPPRRNQNLLRLQAIIADS QARFTFTNAALFPSLKNQWAKDPELGAMEWIVTDEIDHHLREDWLEPTLEKNSLAFLQYT SGSTGTPKGVMVSHHNLLINSADLDRGWGHDQDSVMVTWLPTFHDMGLIYGVIQPLYKGF LCYMMSPASFMERPLRWLQALSDKKATHSAAPNFAYDLCVRKIPPEKRATLDLSHWCMAL NGAEPVRAEVLKKFAEAFQVSGFKATALCPGYGLAEATLKVTAVSYDSPPYFYPVQANAL EKNKIVGATETDTNVQTLVGCGWTTIDTQIVIVNPETLKPCSPEIVGEIWVSGSTIAQGY WGKPQETQETFQAYLADTGAGPFLRTGDLGFIKDGELFITGRLKEIILIRGRNNYPQDIE LTVQNSHPALRPSCGAAFTVENKGEEKLVVVQEVERTWLRKVDIDEVKRAIRKAVVQEYD LQVYAIALIRTGSLPKTSSGKIQRRSCRAKFLEGSLEILG SEQ ID MSTEIPNDKKQPTLTKIQNWLVAYMTEMMEVDEDEIDLSVPFDEYGLDSSMAVALIADLE NO. 2 DWLRRDLHRTLIYDYPTLEKLAKQVSEP ACP SEQ ID MEPIAIIGLACRFPGADNPEAFWQLMRNGVDAIADIPPERWDIERFYDPTPATAKKMYSR NO. 3 QGGFLKNVDQFDPQFFRISPLEATYLDPQQRLLLEVTWEALENAAIVPETLAGSQSGVFI KS GISDVDYHRLAYQSPTNLTAYVGTGNSTSIAANRLSYLFDLRGPSLAVDTACSSSLVAVH LACQSLQSQESNLCLVGGVNLILSPETTVVFSQARMIAPDSRCKTFDARADGYVRSEGCG VVVLKRLRDAIQDGDRILAVIEGSAVNQDGLSNGLTAPNGPAQQAVIRQALANAQVKPAQ ISYVEAHGTGTELGDPIEVKSLKAVLGEKRSLDQTCWLGSVKTNIGHLEAAAGMAGLIKV VLCLQHQEIPPNLHFQTLNPYISLADTAFAIPTQAQPWRTKPPKSGENGVERRLAGLSSF GFGGTNSHVIL SEQ ID VFLFAGQGSQYVGMGRQLYETQPIFRQTLDRCAEILRPHLDQPLLEILYPADPEAETASF NO. 4 AT YLEQTAYTQPTLFAFEYALAQLWRSWGIEPAAVIGHSVGEYVAATVAGALSLEEGLTLIA KRAKLMQSLPKNGTMIAVFAAEERVKAVIEPYRTDVAIAAVNGPENFVISGKAPIIAEII IHLTAAGIEVRPLKVSHAFHSHLLEPILDSLEQEAAAISYQPLQIPLVANLTGEVLPEGA TIEARYWRNHARNPVQFYGSIQTLIEQKFSLFLEVSPKPTLSRLGQQCCPERSTTWLFSL APPQEEEQSLLNSLAILYDSQGAE SEQ ID ITLQTLVGNLLQLSPADVNVHTPFLEMGADSIVMVEAVRRIENTYNVKIAMRQLFEELST NO. 5 LDALATYL ACP 2 SEQ ID KEMLYPIVAQRSQGSRIWDVDGNEYIDMTMGQGVTLFGHQPDFIMSALQSQLTEGIHLNP NO. 6 RSPIVGEVAALICELTGAERACFCNSGTEAVMAAIRIARATTGRSKIALFEGSYHGHADG AMT TLFRNQIIDNQLHSFPLALGVPPSLSSDVVVLDYGSAEALNYLQTQGQDLAAVLVEPIQS GNPLLQPQQFLQSLRQITSQMGIALIFDEMITGFRSHPGGAQALFGVQADIATYGKVVAG GMPIGVIAGKAHYLDSIDGGMWRYGDKSYPGVDRTFFGGTFNQHPLAMVAARAVLTHLKE QGPGLQQQLTERTAALADTLNHYFQAEEVPIKIEQFSSFFRFALSGNLDLLFYHMVEKGI YVWEWRKHFLSTAHTEADLAQFVQAVKDSITELR SEQ ID GGDQVPLTEAQRQLWILAQLGDNGSVAYNQSVTLQLSGPLNPVAMNQAIQQISDRHEALR NO. 7 C TKINAQGDSQEILPQVEINCPILDFSLDQASAQQQAEQWLKEESEKPFDLSQGSLVRWHL LKLEPELHLLVLTAHHIISDGWSMGVILRELGELYSAKCQGVTANLKTPKQFRELIEWQS QPSQGEELKKQQAYWLATLADPPVLNLPTDKPRPALPSYQANRRSLTLDSQFTEKLKQFS RKQGCTLLMTLLSVYNILVHRLTGQDDILVGLPASGRGLLDSEGMVGYCTHFLPIRSQLA SEQ ID TYSELNCRANQLAHYLQKLGVGPEVLVGILVERSLEMIVGLLGILKAGGAYVPLDPDYPP NO. 8 A ERLQFMLEDSQFFLLLTQQHLLESFAQSSETATPKIICLDSDYQIISQAKNINPENSVTT SNLAYVIYTSGSTGKPKGVMNNHVAISNKLLWVQDTYPLTTEDCILQKTPFSFDVSVWEL FWPLLNGARLVFAKPNGHKDASYLVNLIQEQQVTTLHFVSSMLQLFLTEKDVEKCNSLKR VICSGEALSLELQERFFARLVCELHNLYGPTEAAIHVTFWQCQSDSNLKTVPIGRPIANI QIYILDSHLQPVPIGVIGELHIGGVGLARGYLNRPELTAEKFIANPFASLDPPLTPLDKG GDESYKTFKKGGEQPSRLYKTGDLARYLPDGKIEYLGRIDNQVKIRGFRIELGEIEAVLL SHPQVREAVV SEQ ID EAIAAIFGQVLKLEKVGIYDNFFEIGGNSLQATQVISRLRESFALELPLRRLFEQPTVAD NO. 9 T LALAV SEQ ID PRDGQLPLSFAQSRLWFLYQLEGATGTYNMTGALSLSGPLQVEALKQALRTIIQRHEPLR NO. 10 C 2 TSFQSVDGVPVQVINPYPVWELAMVDLTGKETEAEKLAYQESQTPFDLTNSPLLRVTLLK LQPEKHILLINMHHIISDGWSIGVFVRELSHLYRAFVAGKEPTLPILPIQYADFAVWQRE WLQGKVLAAQLEYWKRQLADAPPLLELPTDRPRPAIQTFQGKTERFELDRKLTQELKALS QQSGCTLFMTLLAAFGVVLSRYSGQTDIVIGSAIANRNRQDIEGLIGFFVNTLALRLDLS SEQ ID TYGELNHRANQLAHYLQSLGVTKEQIVGVYLERSLEMAIGFLGILKAGAAYLPIDPEYPS NO. 11 A 2 VRTQFILEDTQLSLLLTQAELAEKLPQTQNKIICLDRDWPEITSQPQTNLDLKIEPNNLA YCIYTSGSTGQPKGVLISHQALLNLIFWHQQAFEIGPLHKATQVAGIAFDATVWELWPYL TTGACINLVPQNILLSPTDLRDWLLNREITMSFVPTPLAEKLLSLDWPNHSCLKTLLLGG DKLHFYPAASLPFQVINNYGPTENTVVATSGLVKSSSSHHFGTPTIGRPIANVQIYLLDQ NLQPVPIGVPGELHLGGAGLAQGYLNRPELTAEKFIANPFDPPLTPLDKGGEEPSKLYKT GDLARYLPDGNVEFLGRIDNQVKIRGFRIETGEIEAVLSQYFLLAESVV SEQ ID AQLTQIWSEVLGLERIGVKDNFFELGGHSLLATQVLSRINSAFGLDLSVQIMFESPTIAG NO. 12 T 2 IAGYI SEQ ID ARDGHLPLSFAQQRLWFLHYLSPDSRSYNTLEILQIDGNLNLTVLEQSLGELINRHEIFR NO. 13 C 3 TTFPTVSGEPIQKIALPSRFQLKVDNYQDLDENEQSAKIQQVAELEAGQAFDLTVGPLIQ FKLLQLSPQKSVLLLKMHHIIYDGWSFGILIRELSALYEAFLKNLANPLPALSIQYADFA VWQRQYLSGEVLDKQLNYWQEQLATVSPVLTLPTDRPRPAIQTFQGGVERFQLDQNVTQG LKKLGQDQVATLFMTLLAGFGVLLSRYSGQSDLMVGSPIANRNQAAIEPLIGFFANTLAL RINLS SEQ ID TYTELNHRANQLAHYLQTLGVGAEVLVGISLERSLEMIIGLLGILKVGGAYLPLDPDYPT NO. 14 A 3 ERLQLMLEDSQVPFLITHSSLLAKLPPSQATLICLDHIQEQISQYSPDNLQCQLTPANLA NVIYTSGSTGKPKGVMVEHKGLVNLALAQIQSFAVNHNSRVLQFASFSFDACISEILMTF GSGATLYLAQKDALLPGQPLIERLVKNGITHVTLPPSALVVLPQEPLRNLETLIVAGEAC SLDLVKQWSIDRNFFNAYGPTEASVCATIGQCYQDDLKVTIGKAIANVQIYILDAFLQPV PVGVSGELYIGGVGVARGYLNRPELTQEKFIANPFSNDPDSRLYKTGDLARYLPDGNIEY LGRIDNQVKIRGFRIELGEIEAVLSQCPDVQNTAV SEQ ID EILAQIWGQVLKIERVSREDNFFELGGHSLLATQVMSRLRETFQVELPLRSLFTAPTIAE NO. 15 T 3 LALTI SEQ ID NDSANLPLSFAQQRLWFLDQLEPNSAFYHVGGAVRLEGTLNITALEQSLKEIINRHEALR NO. 16 C 4 TNFITIDGQATQIIHPTINWRLSVVDCQNLTDTQSLEIAEAEKPFNLAQDCLFRATLFVR SPLEYHLLVTMHHIVSDGWSIGVFFQELTHLYAVYNQGLPSSLTPIKIQYADFAVWQRNW LQGEILSNQLNYWREQLANAPAFLPLPTDRPRPAIQTFIGSHQEFKLSQPLSQKLNQLSQ KHGVTLFMTLLAAFATLLYRYTGQADILVGSPIANRNRKEIEGLIGFFVNTLVLRLSLD SEQ ID TYAELNHQANQLVHYLQTLGIGPEVLVAISVERSLEMIIGLLAILKACGAYLPLAPDYPT NO. 17 A 4 ERLQFMLEDSQASFLITHSSLLEKLPSSQATLICLDHIQEQISQYSPDNLQSELTPSNLA NVIYTSGSTGKPKGVMVEHRGLVNLASSQIQSFAVKNNSRVLQFASFSFDACISEILMTF GSGATLYLAQKNDLLPGQPLMERLEKNKITHVTLPPSALAVLPKKPLPNLQTLIVAGEAC PLDLVKQWSVGRNFFNAYGPTETSVCATIGQCYQDDLKVTIGKAIANVQIYILDAFLQPV PIGVPGELYIGGVGVARGYLNRPELTAERFIPNPFDPPLTPLKKGGDKSYETFKKGEEQP SKLYKTGDLARYLPDGNIEYLGRIDNQVKIRGFRIELGEIEAVLSQCPDVQNTAV SEQ ID LQLAQIWSEILGINNIGIQENFFELGGHSLLAVSLINRIEQKLDKRLPLTSLFQNGTIAS NO. 18 T 4 LAQLL SEQ ID TPFFAVHPIGGNVLCYADLARNLGTKQPFYGLQSLGLSELEKTVASIEEMAMIYIEAIQT NO. 19 VQASGPYYLGGWSMGGVIAFEIAQQLLTQGQEVALLALIDSYSPSLLNSVNREKNSANSL TE TEEFNEDINIAYSFIRDLASIFNQEISFSGSELAHFTSDELLDKFITWSQETNLLPSDFG KQQVKTWFKVFQINHQALSSYSPKTYLGRSVFLGAEDSSIKNPGWHQ SEQ ID FSLYYFGSYEAEFNPNKYNLLFEGAKFGDRAGFTALWIPERHFHAFGGFSPNPSVLAAAL NO. 20 ARETKQIQLRSGSVVLPLHNSIRVAEEWAVVDNLSQGRVGIAFASGWHPQDFVLAPQSFG MO QHRELMFQEIETVQKLWRGEAITVPDGKGQRVEVKTYPQPMQSQLPSWITIVNNPDTYIR AGAIGANILTNLMGQSVEDLARNIALYRQSLAEHGYDPASGTVTVLLHTFVGKDLEQVRE QARQPFGQYLTSSVGLLQNMVKSQGMKVDFEQLRDEDRDFLLASAYKRYTETSALIGTPE SCRQIIDHLQSIGVDEVACFIDFGVDEQTVLANLPYLQSLKDLYQ SEQ ID IDPPLTPLDKGIDPPLTPLDKGIDPPLTPLDKG NO. 21 SP 1 SEQ ID PYQGGLGGDQSPYQGGLGGDQSPYQGGLGGDQSPYQGGLGGDQSPYQGGLGGDQSPYQGE NO. 22 LGGDQSPYQGGLGGDQV SP 2 SEQ ID PASEMREWVENTVSRILAFQPERGLEIGCGTGLLLSRVAKHCLEYWATDYSQGAIQYVER NO. 23 VCNAVEGLEQVKLRCQMADNFEGIALHQFDTVVLNSIIQYFPSVDYLLQVLEGAINVIGE MT RGQIFVGDVRSLPLLEPYHAAVQLAQASDSKTVEQWQQQVRQSVAGEEELVIDPTLFLAL KQHFPQISWVEIQPKRGVAHNELTQFRYDVTLHLETINNQALLSGNPTVITWLNWQLDQL SLTQIKDKLLTDKPELWGIRGIPNQRVEEALKIWEWVENAPDVETVEQLKKLLKQQVDTG INPEQVWQLAESLGYTAHLSWWESSQDGSFDVIFQRNSEAEDSKKLTLSKLAFWDEKPFK IKPWSDYTNNPLRGKLVQKLIP SEQ ID MTNYGKSMSHYYDLVVGHKGYNKDYATEVEFIHNLVETYTTEAKSILYLGCGTGYHAALL NO. 24 AQKGYSVHGVDLSAEMLEQAKTRIEDETIASNLSFSQGNICEIRLNRQFNVVLALFHVVN MT 2 YQTTNQNLLATFATVKNHLKAGGIFICDVSYGSYVLGEFKSRPTASILRLEDNSNGNEVT YISELNFLTHENIVEVTHNLWVTNQENQLLENSRETHLQRYLFKPEVELLADACELTVLD AMPWLEQRPLTNIPCPSVCFVIGHKTTHSA SEQ ID ATGACTATTAACTATGGTGATCTGCAAGAACCCTTTAATAAATTCTCAACCCTAGTTGAA NO. 25 TTACTCCGTTATCGGGCAAGCAGTCAACCGGAACGCCTCGCCTATATTTTTCTGCGAGAC A* nucl GGAGAAATCGAAGAAGCTCGTTTAACCTATGGGGAACTGGATCAAAAGGCTAGGGCGATC acid GCCGCTTATCTACAATCCTTAGAAGCCGAGGGCGAAAGGGGTTTACTGCTCTATCCCCCA GGACTAGATTTTATTTCAGCTTTTTTTGGTTGTTTATATGCGGGAGTCGTTGCCATTCCC GCCTATCCACCCCGACGGAATCAAAACCTTTTGCGTTTACAGGCGATTATTGCCGATTCT CAAGCCCGATTTACCTTCACCAATGCCGCTCTATTTCCCAGTTTAAAAAACCAATGGGCT AAAGACCCTGAATTAGGAGCAATGGAATGGATTGTTACCGATGAAATTGACCATCACCTC AGGGAGGATTGGCTAGAACCAACCCTCGAAAAAAACAGTCTCGCTTTTCTACAATACACC TCTGGTTCAACGGGAACTCCAAAGGGAGTAATGGTCAGTCACCATAATTTGTTGATTAAT TCAGCCGATTTAGATCGTGGTTGGGGCCATGATCAAGATAGCGTAATGGTCACTTGGCTA CCGACCTTCCATGATATGGGTCTGATTTATGGGGTTATTCAGCCTTTGTACAAAGGATTT CTTTGTTACATGATGTCCCCTGCCAGCTTTATGGAACGACCGTTACGTTGGTTACAGGCC CTTTCTGATAAAAAAGCAACCCATAGTGCGGCCCCCAACTTTGCCTACGATCTTTGTGTG CGGAAAATTCCCCCTGAAAAACGGGCTACGTTAGACTTAAGCCATTGGTGCATGGCCTTA AATGGGGCCGAACCCGTCAGAGCGGAGGTACTTAAAAAGTTTGCGGAGGCCTTTTCAAGTT TCTGGTTTCAAAGCCACAGCCCTTTGTCCTGGCTACGGTTTAGCAGAAGCCACCCTGAAA GTTACGGCGGTTAGTTATGACAGTCCCCCTTACTTTTATCCCGTTCAGGCTAATGCTTTA GAAAAAAATAAGATTGTGGGAGCCACTGAAACCGATACCAATGTGCAGACCCTCGTGGGC TGCGGCTGGACAACGATTGATACTCAAATCGTCATTGTCAATCCTGAAACCCTGAAACCT TGCTCCCCTGAAATTGTCGGCGAAATTTGGGTATCAGGTTCAACAATCGCCCAAGGCTAT TGGGGAAAACCTCAAGAGACTCAGGAAACCTTTCAAGCTTATTTGGCAGATACAGGAGCC GGGCCTTTTCTGCGAACAGGAGACTTGGGCTTCATTAAAGATGGTGAATTGTTTATCACA GGTCGGCTCAAGGAAATTATTCTGATTCGAGGACGCAATAATTATCCCCAGGATATTGAA TTAACCGTCCAAAATAGTCATCCCGCTCTGCGTCCCAGTTGTGGGGCTGCTTTTACCGTT GAAAATAAGGGCGAAGAAAAGCTCGTGGTCGTTCAGGAAGTGGAGCGCACCTGGCTCCGT AAGGTAGATATAGATGAGGTAAAAAGAGCCATTCGTAAAGCTGTTGTCCAGGAATATGAT TTACAGGTTTATGCGATCGCGCTGATCAGGACTGGCAGTTTACCAAAAACCTCTAGCGGT AAAATTCAGCGTCGTAGCTGTCGGGCCAAATTTTTAGAGGGAAGCCTGGAAATTTTGGGC TAA SEQ ID ATGTCCACAGAAATCCCAAACGACAAAAAACAACCGACCCTAACGAAAATTCAAAACTGG NO. 26 TTAGTGGCTTACATGACAGAGATGATGGAAGTGGACGAAGATGAGATTGATCTGAGCGTT ACP nucl CCCTTTGATGAATATGGTCTCGATTCTTCTATGGCAGTTGCTTTGATCGCTGATCTAGAG acid GATTGGTTACGACGAGATTTACATCGCACCCTGATCTACGATTATCCAACTCTAGAAAAG TTGGCTAAACAGGTTAGTGAACCCTGA SEQ ID ATGGAACCCATCGCAATTATTGGTCTTGCTTGCCGCTTTCCAGGGGCTGACAATCCAGAA NO. 27 GCTTTCTGGCAACTCATGCGAAATGGGGTGGATGCGATCGCCGATATTCCTCCTGAACGT KS nucl TGGGATATTGAGCGTTTCTACGATCCCACACCTGCCACTGCCAAGAAGATGTATAGTCGC acid CAGGGCGGTTTTCTAAAAAATGTCGATCAATTTGACCCTCAATTTTTCCGAATTTCTCCC CTAGAAGCCACCTATCTAGATCCTCAACAAAGACTGCTACTGGAAGTCACCTGGGAAGCC TTAGAAAATGCTGCCATTGTGCCTGAAACCTTAGCTGGTAGCCAATCAGGGGTTTTTATT GGTATCAGTGATGTGGATTATCATCGTTTGGCTTATCAAAGTCCTACTAACTTGACCGCC TATGTGGGTACAGGCAACAGCACCAGTATTGCGGCTAACCGTTTATCATATCTGTTTGAT TTGCGTGGCCCCAGTTTGGCCGTAGATACCGCTTGCTCTTCTTCCCTCGTCGCCGTTCAC TTGGCCTGTCAGAGTTTGCAAAGTCAAGAATCGAACCTCTGCTTAGTGGGGGGAGTTAAT CTCATTTTGTCGCCAGAGACAACCGTTGTTTTTTCCCAAGCGAGAATGATCGCCCCCGAC AGTCGTTGTAAAACCTTTGACGCGAGGGCCGATGGTTATGTGCGCTCGGAAGGCTGTGGA GTAGTCGTACTTAAACGTCTTAGGGATGCCATTCAGGACGGCGATCGCATTTTAGCAGTG ATTGAAGGTTCCGCGGTGAATCAGGATGGTTTAAGTAATGGACTCACGGCCCCTAATGGC CCTGCTCAACAGGCGGTGATTCGTCAGGCCCTGGCAAATGCCCAGGTAAAACCGGCCCAG ATTAGCTATGTCGAAGCCCATGGCACGGGGACAGAATTGGGGGATCCGATCGAAGTTAAA TCTCTGAAAGCGGTTTTGGGTGAAAAGCGATCGCTCGATCAAACCTGTTGGCTCGGTTCT GTGAAAACCAACATTGGTCATTTAGAAGCGGCGGCGGGAATGGCGGGTCTGATTAAAGTC GTTCTCTGCCTACAACACCAAGAAATTCCCCCTAATCTCCACTTTCAAACCCTTAATCCC TATATTTCCCTAGCTGACACAGCTTTTGCGATTCCCACTCAGGCTCAACCCTGGCGGACC AAACCCCCTAAGTCTGGTGAAAACGGTGTCGAACGACGTTTAGCAGGACTCAGTTCCTTT GGGTTTGGGGGGACAAATTCCCATGTGATTCTC SEQ ID GTTTTTCTATTTGCCGGTCAAGGTTCTCAATATGTAGGTATGGGTCGTCAACTGTACGAA NO. 28 ACCCAACCCATCTTTCGCCAAACCTTGGATCGCTGTGCTGAAATCCTGCGACCCCATTTA AT nucl GATCAACCCCTCTTAGAAATTCTTTATCCTGCTGACCCAGAAGCCGAAACAGCGAGTTTT acid TACCTAGAGCAGACTGCCTATACCCAACCCACTTTATTCGCATTCGAGTATGCCCTAGCA CAGTTATGGCGTTCCTGGGGAATAGAACCGGCGGCAGTAATTGGTCACAGTGTCGGTGAA TATGTGGCGGCCACCGTTGCCGGAGCCTTAAGTCTAGAAGAAGGATTAACGCTAATTGCC AAACGGGCAAAACTGATGCAGTCTCTCCCCAAGAATGGGACAATGATCGCCGTTTTTGCC GCAGAAGAGCGGGTTAAAGCTGTTATTGAGCCTTATAGGACTGATGTAGCGATCGCTGCT GTTAATGGACCAGAAAATTTTGTTATTTCAGGAAAAGCGCCGATTATTGCTGAGATTATC ATTCATTTAACGGCAGCAGGAATAGAAGTTCGTCCTCTCAAAGTTTCCCATGCTTTTCAC TCGCACCTGTTGGAGCCAATTTTAGATTCCTTAGAACAGGAAGCTGCTGCTATTTCCTAC CAACCCCTGCAAATTCCCTTAGTTGCTAATTTAACGGGGGAAGTTCTACCAGAAGGAGCA ACGATTGAGGCTCGTTACTGGCGAAATCATGCACGCAACCCTGTACAATTTTATGGGAGT ATCCAAACGCTGATCGAGCAGAAATTCAGTCTTTTTTTAGAAGTTAGCCCTAAACCGACT TTATCTCGATTGGGTCAACAATGTTGTCCAGAAAGATCGACCACTTGGCTATTTTCCCTC GCCCCTCCTCAAGAAGAAGAACAAAGCCTACTAAATAGTTTGGCGATTCTCTATGATTCC CAAGGAGCCGAA SEQ ID ATCACATTGCAAACCCTAGTGGGAAATTTACTGCAATTGTCCCCTGCTGATGTCAATGTT NO. 29 CATACACCTTTCCTGGAGATGGGGGCAGATTCCATTGTCATGGTTGAGGCGGTCAGACGG ACP 2 ATTGAGAATACCTATAACGTTAAAATTGCTATGCGTCAGTTATTTGAGGAGTTATCTACT nucl acid TTAGATGCTTTAGCTACTTATTTA SEQ ID AAAGAGATGCTTTATCCCATTGTGGCCCAACGTTCTCAAGGATCAAGAATTTGGGATGTG NO. 30 GACGGTAATGAATATATTGATATGACGATGGGGCAAGGGGTAACGCTGTTTGGGCATCAA AMT CCAGACTTCATTATGTCGGCCCTACAAAGCCAACTCACTGAAGGCATTCATCTCAATCCG nucl acid CGATCGCCAATTGTGGGAGAAGTGGCCGCCTTAATTTGTGAACTAACAGGAGCCGAACGA GCTTGTTTTTGCAACTCTGGAACCGAAGCCGTAATGGCCGCTATTCGTATCGCCAGGGCA ACAACAGGTCGGAGTAAAATTGCCCTCTTTGAAGGCTCCTATCATGGACATGCGGACGGA ACCCTTTTTAGGAACCAAATTATTGATAACCAACTCCACTCTTTTCCCCTAGCTCTAGGC GTTCCCCCCAGCCTTAGTTCCGATGTGGTGGTATTGGACTATGGCAGTGCGGAAGCTCTG AACTATTTACAAACCCAGGGGCAGGATTTAGCGGCGGTCTTAGTAGAACCAATTCAAAGT GGCAATCCTCTACTCCAACCCCAACAATTTCTCCAAAGTCTGCGACAAATTACCAGTCAA ATGGGCATTGCCCTGATTTTTGATGAAATGATTACGGGTTTTCGATCGCACCCAGGGGGA GCGCAAGCTTTATTTGGAGTACAGGCGGATATTGCCACCTATGGCAAAGTAGTTGCGGGA GGAATGCCCATTGGAGTTATTGCAGGTAAGGCCCATTATCTGGACAGCATTGACGGGGGA ATGTGGCGTTATGGCGATAAATCCTATCCTGGGGTGGACAGAACCTTTTTTGGGGGAACC TTTAATCAGCATCCGTTAGCAATGGTAGCGGCTAGGGCTGTCCTGACCCATTTAAAGGAG CAGGGGCCAGGTCTGCAACAACAATTAACTGAACGCACTGCGGCCTTAGCCGATACACTG AATCATTATTTTCAAGCCGAAGAAGTTCCTATTAAAATCGAACAGTTTAGTTCTTTCTTC CGGTTTGCCCTCTCTGGCAATTTGGATTTACTTTTCTATCACATGGTAGAAAAAGGTATT

TATGTCTGGGAATGGCGTAAACATTTTCTTTCAACCGCCCATACGGAAGCCGATCTTGCC CAATTTGTCCAAGCGGTTAAGGATAGCATCACAGAATTGCGT SEQ ID GGGGGGGATCAAGTCCCTCTCACCGAAGCCCAACGACAACTGTGGATTTTGGCTCAATTA NO. 31 C GGAGACAACGGCTCTGTGGCCTATAACCAATCAGTGACATTGCAATTAAGTGGCCCATTA nucl acid AATCCCGTCGCAATGAATCAAGCTATTCAACAAATCAGCGATCGCCATGAAGCGTTACGA ACCAAAATTAATGCCCAGGGAGATAGTCAAGAAATCCTGCCCCAGGTCGAAATTAACTGC CCTATCTTAGACTTCAGTCTTGACCAAGCTTCGGCCCAACAGCAAGCAGAACAATGGTTA AAGGAAGAAAGTGAAAAACCCTTTGATTTGAGCCAGGGTTCTCTCGTGCGTTGGCATCTA CTCAAATTAGAACCAGAATTACATTTGTTAGTATTAACGGCCCATCACATTATCAGTGAC GGTTGGTCAATGGGGGTAATCCTTCGGGAATTAGGAGAGTTATATTCAGCCAAATGTCAG GGTGTTACGGCTAATCTTAAAACCCCAAAACAGTTTCGAGAATTGATTGAATGGCAAGC CAGCCAAGCCAAGGGGAAGAACTGAAAAAACAGCAAGCCTATTGGTTAGCAACCCTTGCC GATCCCCCTGTTTTGAATTTACCCACTGACAAACCTCGTCCAGCTTTACCCAGTTACCAA GCTAATCGTCGAAGTCTAACTTTAGATAGCCAATTTACAGAAAAACTAAAGCAATTTAGT CGTAAACAGGGCTGTACCTTGCTGATGACCCTGTTATCGGTTTATAACATTCTCGTTCAT CGTTTGACGGGACAGGATGATATTCTGGTGGGTCTGCCAGCCTCTGGACGGGGGCTTTTA GATAGTGAAGGTATGGTGGGTTATTGCACCCATTTTTTACCAATTCGCAGTCAATTAGCA SEQ ID ACTTACAGTGAATTAAATTGTCGAGCCAATCAGTTAGCACATTATTTACAAAAATTAGGA NO. 32 A GTTGGGCCAGAGGTCTTAGTCGGTATTTTGGTCGAACGTTCTTTAGAAATGATTGTCGGA nucl acid TTGTTAGGGATTCTCAAGGCTGGGGGAGCCTATGTACCTCTTGATCCTGACTATCCCCCT GAACGTCTTCAATTTATGTTAGAAGATAGTCAATTTTTTCTCCTCTTAACCCAACAGCAT TTACTGGAATCTTTTGCTCAGTCTTCAGAAACGGCTACTCCCAAGATTATTTGTTTGGAT AGCGACTACCAAATTATTTCCCAGGCAAAGAATATTAATCCCGAAAATTCAGTCACAACG AGTAATCTTGCCTATGTAATTTATACCTCTGGTTCGACAGGTAAACCGAAGGGCGTGATG AATAATCATGTTGCTATTAGTAATAAATTGTTATGGGTACAAGACACTTATCCTCTAACC ACAGAAGACTGTATTTTACAAAAAACTCCCTTTAGTTTTGATGTTTCAGTGTGGGAATTA TTCTGGCCCCTACTAAACGGAGCGCGTTTGGTTTTTGCCAAGCCGAATGGCCATAAAGAT GCCAGTTACTTAGTCAATCTGATTCAAGAGCAACAAGTAACAACGCTACATTTTGTGTCT TCTATGCTACAGCTTTTTCTGACAGAAAAAGACGTAGAAAAATGTAATAGTCTTAAACGA GTCATTTGTAGTGGTGAAGCCCTTTCTTTAGAGCTTCAAGAACGTTTTTTTGCTCGTTTA GTCTGTGAATTACACAATCTTTATGGACCGACAGAAGCCGCTATTCATGTCACATTTTGG CAATGTCAATCAGATAGCAATTTGAAAACAGTACCCATTGGTCGGCCGATCGCTAATATC CAAATTTACATTTTAGACTCTCATCTTCAGCCAGTACCTATTGGAGTAATCGGAGAATTG CACATTGGTGGGGTTGGTTTGGCGCGGGGTTATTTAAACAGGCCTGAGTTAACGGCGGAG AAATTTATTGCAAATCCGTTTGCTTCCCTTGATCCCCCCCTAACCCCCCTTGATAAGGGG GGAGATGAGAGCTATAAAACTTTTAAAAAGGGGGGAGAGCAACCATCAAGATTGTATAAA ACGGGAGATTTAGCTCGTTATTTACCCGATGGCAAGATTGAGTATCTAGGGCGCATTGAT AATCAGGTAAAAATTCGCGGTTTCCGGATTGAATTGGGGGAAATTGAAGCGGTTTTGCTA TCCCATCCCCAGGTACGAGAAGCGGTCGTT SEQ ID GAGGCGATCGCCGCTATTTTTGGTCAAGTTTTAAAACTGGAAAAAGTGGGAATTTATGAT NO. 33 T AACTTTTTTGAGATCGGCGGTAATTCTTTGCAAGCCACTCAAGTTATTTCACGCTTACGA nucl acid GAAAGTTTTGCCCTAGAGTTGCCCTTGCGTCGCCTGTTTGAACAACCGACTGTGGCGGAT TTGGCTTTAGCCGTA SEQ ID CCTCGTGATGGCCAATTACCCCTCTCCTTTGCCCAGTCGCGACTCTGGTTCTTGTATCAA NO. 34 C TTAGAAGGAGCCACGGGAACCTATAACATGACAGGGGCCTTGAGTTTAAGCGGGCCTCTT 2 nucl CAGGTCGAAGCCCTCAAACAAGCCCTAAGAACTATCATTCAACGCCATGAGCCATTGCGT acid ACCAGTTTCCAATCGGTTGACGGGGTTCCAGTGCAGGTGATTAATCCCTATCCTGTTTGG GAATTAGCGATGGTTGATTTGACAGGAAAGGAGACAGAAGCAGAAAAATTGGCCTATCAG GAATCCCAAACCCCGTTTGATTTGACCAATAGTCCTTTGTTGAGGGTAACGCTCCTCAAA TTACAGCCAGAAAAGCATATTTTATTAATTAATATGCACCATATTATTTCCGATGGCTGG TCAATCGGTGTTTTTGTTCGTGAATTGTCCCATCTCTATAGGGCTTTTGTGGCGGGTAAA GAACCAACTTTACCGATTTTACCAATTCAGTATGCGGATTTTGCCGTTTGGCAGCGAGAG TGGTTACAGGGTAAGGTTTTAGCGGCTCAATTGGAATATTGGAAGCGACAATTGGCAGAT GCTCCTCCTCTGCTGGAACTGCCCACTGATCGCCCTCGTCCCGCAATCCAAACCTTTCAA GGCAAGACAGAAAGATTTGAGCTAGATAGGAAACTGACCCAAGAATTAAAGGCATTAAGT CAACAGTCGGGTTGTACTTTATTTATGACTTTGTTGGCCGCTTTTGGGGTGGTTTTATCC CGTTATAGTGGCCAGACTGATATCGTCATTGGTTCGGCGATCGCCAACCGTAATCGCCAA GACATTGAGGGGTTAATTGGCTTTTTTGTTAACACTTTGGCGTTGAGGTTAGATTTATCA SEQ ID ACCTATGGAGAATTAAACCATCGCGCCAATCAATTAGCTCACTATCTTCAGTCGTTAGGA NO. 35 A GTCACCAAAGAACAAATCGTCGGGGTTTATCTGGAACGTTCCCTTGAAATGGCGATCGGA 2 nucl TTTTTAGGTATTCTCAAAGCAGGAGCCGCCTATCTCCCCATTGATCCTGAATATCCCTCA acid GTACGCACCCAATTTATTCTCGAAGATACCCAACTTTCGCTTCTCTTAACTCAGGCAGAA CTGGCAGAAAAACTGCCCCAGACTCAAAACAAAATTATCTGTCTAGATCGGGACTGGCCA GAAATTACCTCCCAACCCCAGACAAACCTAGACCTAAAGATAGAACCTAATAACCTAGCC TATTGCATCTATACTTCTGGTTCCACAGGACAACCCAAAGGAGTACTGATTTCCCATCAA GCCCTACTCAACTTAATTTTCTGGCATCAACAAGCGTTTGAGATTGGCCCCTTACATAAA GCGACCCAAGTGGCAGGCATTGCTTTCGATGCAACGGTTTGGGAATTGTGGCCCTATCTG ACCACAGGAGCCTGTATTAATCTGGTTCCCCAAAATATTCTGCTCTCACCGACGGATTTA CGGGATTGGTTGCTTAACCGAGAAATTACCATGAGTTTTGTGCCAACTCCTTTAGCTGAA AAATTATTATCCTTGGATTGGCCTAACCATTCTTGTCTAAAAACCCTGTTACTGGGAGGT GACAAACTTCATTTTTATCCTGCTGCGTCCCTTCCCTTTCAGGTCATTAACAACTATGGC CCAACGGAAAATACAGTGGTTGCGACCTCTGGACTGGTCAAATCATCTTCATCTCATCAC TTTGGAACTCCGACTATTGGTCGTCCCATTGCCAACGTCCAAATCTATTTATTAGACCAA AACCTACAACCTGTCCCCATTGGTGTACCAGGAGAATTACATTTAGGTGGGGCGGGTTTA GCGCAGGGCTATCTCAATCGTCCTGAGTTAACGGCTGAAAAATTTATTGCCAATCCCTTT GATCCCCCCCTAACCCCCCTTGATAAGGGGGGAGAAGAACCCTCAAAACTCTATAAAACG GGAGACTTAGCCCGTTATTTACCCGATGGCAATGTAGAATTTTTGGGACGTATTGACAAT CAGGTAAAAATTCGGGGTTTTCGCATCGAAACTGGGGAAATCGAAGCCGTTTTAAGTCAA TATTTCCTATTAGCTGAAAGTGTAGTC SEQ ID GCTCAACTGACTCAAATTTGGAGTGAAGTTTTGGGACTGGAACGCATTGGCGTTAAGGAC NO. 36 T AACTTTTTTGAATTGGGAGGACATTCTCTTTTGGCTACCCAGGTTTTATCAAGAATTAAT 2 nucl TCAGCCTTTGGACTTGATCTTTCTGTGCAAATTATGTTTGAATCACCAACGATCGCGGGC acid ATTGCGGGTTATATT SEQ ID GCTAGAGACGGTCATTTACCCCTGTCTTTTGCTCAACAACGTTTATGGTTTTTACATTAT NO. 37 C CTTTCCCCTGATAGTCGTTCCTACAATACCCTGGAAATATTGCAAATTGATGGGAATCTC 3 nucl AATCTGACTGTGCTAGAGCAGAGTTTGGGGGAATTAATTAACCGCCATGAAATTTTTAGA acid ACAACATTCCCCACTGTTTCAGGGGAACCGATTCAGAAAATTGCACTTCCTAGTCGTTTT CAGTTAAAAGTTGATAATTATCAAGATTTAGACGAAAATGAACAATCAGCTAAAATTCAA CAAGTAGCAGAATTGGAAGCAGGACAAGCTTTTGATTTAACGGTGGGGCCACTGATTCAG TTTAAGCTATTGCAATTGAGTCCCCAGAAGTCGGTGCTGCTGTTGAAAATGCACCATATT ATCTATGATGGCTGGTCTTTTGGGATTCTGATTCGGGAATTATCGGCTCTATACGAAGCA TTTTTAAAGAACTTAGCCAATCCTCTCCCTGCGTTGTCTATTCAGTATGCAGATTTTGCG GTTTGGCAACGTCAATATCTCTCAGGTGAGGTCTTAGATAAACAACTCAATTATTGGCAA GAACAGTTAGCAACAGTCTCTCCTGTTCTTACTTTACCAACGGATAGACCCCGTCCGGCG ATACAAACTTTTCAGGGAGGAGTTGAGCGTTTTCAACTGGATCAAAATGTCACTCAAGGT CTTAAAAAGTTAGGTCAAGATCAGGTTGCAACCCTGTTTATGACGTTGTTGGCCGGTTTC GGCGTTTTGCTATCTCGTTATAGTGGTCAATCTGATCTGATGGTGGGTTCTCCGATCGCT AATCGTAATCAAGCAGCGATCGAACCTTTAATTGGCTTTTTTGCTAACACTTTGGCTTTA AGAATTAATTTATCA SEQ ID ACATACACTGAATTAAACCATCGCGCTAATCAGTTAGCCCATTATTTACAAACTTTAGGC NO. 38 A GTGGGAGCAGAAGTCTTAGTCGGTATTTCCCTAGAACGTTCTTTAGAGATGATTATCGGC 3 nucl TTATTAGGGATTCTCAAGGTAGGTGGTGCTTATCTTCCTCTTGATCCAGACTATCCCACT acid GAGCGTCTTCAGTTGATGTTAGAAGACAGTCAAGTTCCTTTTTTGATTACCCACAGTTCT TTATTAGCAAAATTGCCTCCCTCTCAAGCAACTCTGATTTGTTTAGATCATATCCAAGAG CAGATTTCTCAATATTCTCCAGATAATCTTCAATGTCAGTTAACTCCTGCCAATTTAGCT AACGTTATTTATACCTCTGGCTCTACGGGTAAGCCTAAAGGGGTGATGGTTGAACATAAA GGTTTAGTTAACTTAGCTCTTGCTCAAATTCAATCTTTTGCAGTCAACCATAACAGTCGT GTGCTGCAATTTGCTTCTTTTAGTTTTGATGCTTGTATTTCAGAAATTTTGATGACCTTT GGTTCTGGAGCGACGCTTTATCTTGCACAAAAAGATGCTTTATTGCCAGGTCAGCCATTA ATTGAACGGTTAGTAAAGAATGGAATTACTCATGTGACTTTGCCGCCTTCAGCTTTAGTG GTTTTACCCCAGGAACCGTTACGCAACTTAGAAACCTTAATTGTGGCGGGTGAGGCTTGT TCTCTTGATTTAGTGAAACAATGGTCAATCGATAGAAACTTTTTCAATGCCTATGGGCCA ACGGAAGCGAGTGTTTGTGCCACTATTGGACAATGTTATCAAGATGATTTAAAGGTGACG ATTGGTAAGGCGATCGCCAATGTCCAAATTTATATTTTAGATGCCTTTTTACAGCCGGTG CCGGTGGGAGTGTCAGGAGAGTTATACATTGGTGGAGTTGGGGTGGCAAGGGGCTATTTA AATCGTCCTGAATTAACCCAAGAAAAATTTATTGCTAATCCTTTTAGTAACGACCCAGAT TCTCGGCTCTATAAAACTGGCGACTTAGCGCGTTATTTACCCGATGGTAATATTGAATAT TTAGGACGCATTGACAATCAGGTAAAAATTCGCGGTTTTCGCATTGAGTTAGGAGAAATT GAAGCGGTTCTGAGTCAATGTCCCGATGTGCAAAATACGGCGGTG SEQ ID GAAATTCTGGCTCAAATATGGGGGCAAGTTCTCAAGATAGAAAGAGTCAGCAGAGAAGAT NO. 39 T AATTTCTTTGAATTGGGGGGGCATTCCCTTTTAGCTACCCAGGTAATGTCCCGTCTGCGT 3 nucl GAAACTTTTCAAGTCGAATTACCTTTGCGTAGTCTCTTTACCGCTCCCACTATTGCTGAA acid TTGGCCCTAACAATT SEQ ID AACGACAGTGCTAACCTCCCGTTATCTTTTGCTCAACAACGTTTATGGTTTCTGGATCAA NO. 40 C TTAGAACCTAACAGCGCCTTTTATCATGTAGGGGGAGCCGTAAGACTAGAAGGAACATTA 4 nucl AATATTACTGCCTTAGAGCAAAGCTTAAAAGAAATTATTAATCGTCATGAAGCTTTACGC acid ACAAATTTTATAACGATTGATGGTCAAGCCACTCAAATTATTCACCCTACTATTAATTGG CGATTGTCTGTTGTTGATTGTCAAAATTTAACCGACACTCAATCTCTGGAAATTGCGGAA GCTGAAAAGCCCTTTAATCTTGCTCAAGATTGCTTATTTCGTGCTACTTTATTCGTGCGA TCACCGCTAGAATATCATCTACTCGTGACCATGCACCATATTGTTAGCGATGGCTGGTCA ATTGGAGTATTTTTTCAAGAACTAACTCATCTTTACGCTGTCTATAATCAGGGTTTACCC TCATCTTTAACGCCTATTAAAATACAATATGCTGATTTTGCGGTCTGGCAACGGAATTGG TTACAAGGTGAAATTTTAAGTAATCAATTGAATTATTGGCGCGAACAATTAGCAAATGCT CCTGCTTTTTTACCTTTACCGACAGATAGACCTAGGCCCGCAATCCAAACTTTTATTGGT TCTCATCAAGAATTTAAACTTTCTCAGCCATTAAGCCAAAAATTGAATCAACTAAGTCAG AAGCATGGAGTGACTTTATTTATGACTCTCCTGGCTGCTTTTGCTACCTTACTTTACCGT TATACAGGACAAGCAGATATTTTAGTTGGTTCTCCTATTGCTAACCGTAATCGTAAGGAA ATTGAGGGATTAATCGGCTTTTTTGTTAATACATTAGTTCTGAGATTGAGTTTAGAT SEQ ID ACCTATGCTGAATTAAATCATCAAGCTAATCAGTTAGTCCATTACTTACAAACTTTAGGA NO. 41 A ATTGGGCCAGAGGTCTTAGTCGCTATTTCAGTAGAACGTTCTTTAGAAATGATTATCGGC 4 nucl TTATTAGCCATTCTCAAGGCGTGTGGTGCTTATCTCCCTCTTGCTCCTGACTATCCCACT acid GAGCGTCTTCAGTTCATGTTAGAAGATAGTCAAGCTTCTTTTTTGATTACCCACAGTTCT TTATTAGAAAAATTGCCTTCTTCTCAAGCGACTCTAATTTGTTTAGATCACATCCAAGAG CAGATTTCTCAATATTCTCCCGATAATCTTCAAAGTGAGTTAACTCCTTCCAATTTGGCT AACGTTATTTACACCTCTGGCTCTACGGGTAAGCCTAAAGGGGTGATGGTTGAACATCGG GGCTTAGTTAACTTAGCGAGTTCTCAAATTCAATCTTTTGCAGTCAAAAATAACAGTCGT GTACTGCAATTTGCTTCCTTTAGTTTTGATGCTTGTATTTCAGAAATTTTGATGACCTTT GGTTCTGGAGCGACTCTTTATCTTGCTCAAAAAAATGATTTATTGCCAGGTCAGCCATTA ATGGAAAGGTTAGAAAAGAATAAAATTACCCATGTTACTTTACCCCCTTCAGCTTTAGCT GTTTTACCAAAAAAACCGTTACCCAACTTACAAACTTTAATTGTGGCGGGTGAGGCTTGT CCTCTGGATTTAGTCAAACAATGGTCAGTCGGTAGAAACTTTTTCAATGCCTATGGCCCG ACAGAAACGAGTGTTTGTGCCACGATTGGACAATGTTATCAAGATGATTTAAAGGTCACG ATTGGTAAGGCGATCGCTAATGTCCAAATTTATATTTTGGATGCCTTTTTACAACCAGTA CCCATCGGAGTACCAGGGGAATTATACATTGGTGGAGTCGGAGTTGCGAGGGGTTATCTA AATCGTCCTGAATTAACGGCGGAAAGATTTATTCCTAATCCTTTTGATCCCCCCCTAACC CCCCTTAAAAAGGGGGGAGATAAGAGCTATGAAACTTTTAAAAAGGGGGAAGAGCAACCA TCAAAACTCTATAAAACGGGAGATTTAGCTCGTTATTTACCCGATGGCAATATTGAATAT TTAGGACGCATTGACAATCAGGTAAAAATTCGCGGTTTTCGCATTGAGTTAGGAGAAATT GAAGCGGTTCTGAGTCAATGTCCCGATGTGCAAAATACGGCGGTG SEQ ID TTACAATTAGCTCAAATCTGGTCAGAGATTTTAGGCATTAATAATATTGGTATTCAGGAA NO. 42 T AACTTCTTTGAATTAGGCGGTCATTCTTTATTAGCAGTCAGTCTGATCAATCGTATTGAA 4 nucl CAAAAGTTAGATAAACGTTTACCATTAACCAGTCTTTTTCAAAATGGAACCATAGCAAGT acid CTAGCTCAATTACTAG SEQ ID ACTCCATTTTTTGCTGTTCATCCCATTGGTGGTAATGTGCTATGTTATGCCGATTTAGCT NO. 43 CGTAATTTAGGAACGAAACAGCCGTTTTATGGATTACAATCATTAGGGCTAAGTGAATTA TE nucl GAAAAAACTGTAGCCTCTATTGAAGAAATGGCGATGATTTATATTGAAGCAATACAAACT acid GTTCAAGCCTCTGGTCCCTACTATTTAGGAGGTTGGTCAATGGGAGGAGTGATAGCTTTT GAAATCGCCCAACAATTATTGACCCAAGGTCAAGAAGTTGCTTTACTGGCTTTAATAGAT AGTTATTCTCCCAGTTTACTTAATTCAGTTAATAGGGAGAAAAATTCTGCTAATTCCCTG ACAGAAGAATTTAATGAAGATATCAATATTGCCTATTCTTTCATCAGAGACTTAGCAAGT ATATTTAATCAAGAAATCTCTTTCTCTGGGAGTGAACTTGCTCATTTTACATCAGACGAA TTACTAGACAAGTTTATTACTTGGAGTCAAGAGACGAATCTTTTGCCGTCAGATTTTGGG AAGCAGCAGGTTAAAACCTGGTTTAAAGTTTTCCAGATTAATCACCAAGCTTTGAGCAGC TATTCTCCCAAGACGTATCTGGGTAGAAGTGTTTTCTTAGGAGCGGAAGACAGTTCTATT AAAAATCCTGGTTGGCATCAA SEQ ID AGCGGGTCTCAAGACCAAAAAACGATACAGTTTAGCCTCTACTACTTTGGTAGCTATGAA NO. 44 GCGGAATTTAACCCGAATAAATATAACTTACTGTTTGAAGGAGCTAAATTTGGCGATCGC MO nucl GCTGGTTTTACGGCCCTTTGGATTCCTGAACGTCATTTCCACGCTTTTGGTGGTTTTTCT acid CCCAATCCTTCGGTTTTGGCGGCGGCTTTAGCACGGGAAACCAAACAGATTCAACTGCGA TCAGGCAGTGTGGTTTTACCGCTACATAATTCCATCCGAGTCGCCGAAGAATGGGCAGTG GTGGACAATCTTTCCCAGGGCCGCGTTGGTATTGCTTTTGCATCGGGTTGGCATCCCCAG GATTTTGTCTTGGCTCCCCAGTCCTTTGGCCAACATCGGGAATTGATGTTCCAAGAAATT GAAACCGTCCAGAAACTTTGGCGAGGGGAAGCGATCACCGTGCCAGACGGAAAGGGTCAA AGGGTAGAGGTTAAAACCTATCCCCAACCGATGCAGTCCCAGTTACCCAGCTGGATTACT ATTGTCAATAATCCCGATACCTATATCAGAGCAGGGGCGATCGGTGCTAATATCCTTACC AATCTGATGGGGCAAAGCGTGGAAGATTTAGCCCGTAATATTGCGCTATATCGTCAATCT TTGGCAGAGCATGGTTATGATCCCGCGTCGGGAACGGTGACAGTTCTCCTGCATACTTTT GTTGGCAAGGATTTAGAACAAGTTCGAGAACAGGCTCGCCAACCCTTTGGGCAATACCTC ACCTCCTCTGTCGGACTCTTGCAGAACATGGTCAAGAGCCAGGGCATGAAAGTGGATTTT GAACAATTAAGAGACGAAGATCGGGACTTTCTCCTCGCTTCTGCCTATAAACGCTATACA GAAACCAGTGCTTTAATTGGCACACCCGAATCCTGTCGTCAAATTATTGATCATTTGCAG TCCATCGGTGTGGATGAAGTGGCTTGTTTTATTGATTTTGGGGTAGATGAACAAACAGTT TTGGCCAATTTACCCTATCTCCAGTCCCTAAAAGACTTATATCAA SEQ ID ATTGATCCCCCCCTAACCCCCCTTGATAAGGGGATTGATCCCCCCCTAACCCCCCTTGAT NO. 45 AAGGGGATTGATCCCCCCCTAACCCCCCTTGATAAGGGG SP 1 nucl acid SEQ ID CCTTATCAAGGGGGGTTAGGGGGGGATCAATCCCCTTATCAAGGGGGGTTAGGGGGGGAT NO. 46 CAATCCCCTTATCAAGGGGGGTTAGGGGGTGATCAATCCCCTTATCAAGGGGGGTTAGGG SP 2 nucl GGTGATCAATCCCCTTATCAAGGGGGGTTAGGGGGGGATCAATCCCCTTATCAAGGAGAG acid TTAGGGGGGGATCAATCCCCTTATCAAGGGGGGTTAGGGGGGGATCAAGTC SEQ ID CCTGCTTCAGAAATGCGAGAGTGGGTCGAAAACACTGTTAGTCGCATCTTGGCTTTCCAA NO. 47 CCAGAACGCGGTTTAGAAATTGGTTGTGGTACAGGTTTGTTACTCTCCAGGGTAGCAAAG MT nucl CATTGTCTTGAATATTGGGCAACGGATTATTCCCAAGGGGCGATCCAGTATGTTGAACGG acid GTTTGCAATGCCGTTGAAGGTTTAGAACAGGTTAAATTACGCTGTCAAATGGCAGATAAT TTTGAAGGTATTGCCCTACATCAATTTGATACCGTCGTCTTAAATTCGATTATTCAGTAT TTTCCCAGTGTGGATTATCTGTTACAGGTGCTTGAAGGGGCGATCAACGTCATTGGCGAG CGAGGTCAGATTTTTGTCGGGGATGTGCGGAGTTTACCCCTATTAGAGCCATATCATGCG GCTGTGCAATTAGCCCAAGCTTCTGACTCGAAAACTGTTGAACAATGGCAACAACAGGTG CGTCAAAGTGTAGCAGGTGAAGAAGAACTGGTCATTGATCCCACATTGTTCCTGGCTTTA AAACAACATTTTCCGCAAATTAGCTGGGTAGAAATTCAACCGAAACGGGGTGTGGCTCAC AATGAGTTAACTCAATTTCGCTATGATGTCACTCTCCATTTAGAGACTATCAATAATCAA GCATTATTGAGCGGCAATCCAACGGTAATTACCTGGTTAAATTGGCAACTTGACCAACTG TCTTTAACACAAATTAAAGATAAATTATTAACAGACAAACCTGAATTGTGGGGAATTCGT GGTATTCCTAATCAGCGAGTTGAAGAGGCTCTAAAAATTTGGGAATGGGTGGAAAATGCC CCTGATGTTGAAACGGTTGAACAACTCAAAAAACTTCTCAAACAACAAGTAGATACTGGT ATTAATCCTGAACAGGTTTGGCAATTAGCTGAGTCTCTCGGTTACACCGCTCACCTTAGT TGGTGGGAAAGTAGTCAAGACGGTTCCTTTGATGTCATTTTTCAGCGGAATTCAGAAGCG GAGGACTCAAAAAAATTAACCCTTTCAAAACTTGCTTTCTGGGATGAAAAACCCTTTAAA ATAAAGCCCTGGAGTGACTATACTAACAACCCTCTGCGCGGTAAGTTAGTCCAAAAATTA ATTCCT SEQ ID ATGACAAATTATGGCAAATCTATGTCTCATTACTATGATCTAGTGGTAGGACATAAAGGT NO. 48 TATAACAAAGATTACGCCACTGAAGTAGAATTCATTCACAATTTAGTTGAGACTTACACA MT 2 ACTGAAGCCAAATCTATCCTATACTTGGGCTGTGGTACGGGTTATCATGCCGCTCTTTTA nucl acid GCACAGAAAGGGTATTCTGTACATGGTGTTGATCTCAGTGCTGAAATGTTAGAGCAGGCT AAAACTCGCATTGAAGATGAAACAATAGCTTCTAATCTGAGTTTTTCTCAAGGAAATATT TGTGAAATCCGTTTAAATCGTCAGTTTAATGTTGTTCTTGCTCTATTTCATGTGGTTAAC TATCAAACGACCAATCAAAATTTACTGGCAACGTTTGCAACGGTTAAAAACCATTTAAAA GCTGGGGGGATTTTTATTTGTGATGTGTCCTATGGGTCTTACGTACTGGGGGAATTTAAG AGTCGGCCTACGGCATCAATATTGCGTTTAGAGGATAATTCCAATGGTAACGAAGTAACC TATATTAGTGAACTAAATTTTTTAACCCATGAAAATATAGTGGAAGTTACTCACAATTTA TGGGTAACAAATCAAGAAAATCAACTTCTAGAGAATTCACGGGAAACACATCTTCAGCGC TATCTTTTCAAGCCTGAAGTTGAATTGTTGGCTGATGCTTGTGAACTAACTGTTCTTGAT

GCGATGCCCTGGCTTGAACAACGTCCTTTGACAAACATTCCTTGTCCTTCAGTTTGTTTT GTTATTGGGCATAAAACAACCCATTCAGCTTAA SEQ ID CCGACCTGTGATAAACAATTC NO. 49 Primer A SEQ ID CKNCCDGTDATRAANARYTC NO. 50 Primer B SEQ ID TTCAATATCCTGGGGATA NO. 51 Primer C SEQ ID YTCDATRTCYTGNGGRTA NO. 52 Primer D SEQ ID CGTTGGTTACAGGCCCTTTCT NO. 53 Primer E SEQ ID MGNTGGYTNCARGCNYTNWS NO. 54 Primer F SEQ ID TTAGACTTAAGCCATTGG NO. 55 Primer G SEQ ID YTNGAYYTNWSNCAYTGG NO. 56 Primer H SEQ ID CATAGAAGAATCGAGACCATATTC NO. 57 Primer I SEQ ID CATNSWNSWRTCNARNCCRTAYTC NO. 58 Primer J SEQ ID MTTQTASSANALASFNQFLRDVKAIAQPYWYPTVSNKRSFSEVIRSWGMLSLLIFLIVGL NO. 59 VAVTAFNSFVNRRLIDVIIQEKDASQFASTLTVYAIGLICVTLLAGFTKDIRKKIALDWY ABC QWLNTQIVEKYFSNRAYYKINFQSDIDNPDQRLAQEIEPIATNAISFSATFLEKSLEMLT Transporter FLVVVWSISRQIAIPLMFYTIIGNFIAAYLNQELSKINQAQLQSKADYNYALTHVRTHAE SIAFFRGEKEEQNIIQRRFQEVINDTKNKINWEKGNEIFSRGYRSVIQFFPFLVLGPLYI KGEIDYGQVEQASLASFMFASALGELITEFGTSGRFSSYVERLNEFSNALETVTKQAENV STITTIEENHFAFEHVTLETPDYEKVIVEDLSLTVQKGEGLLIVGPSGRGKSSLLRAIAG LWNAGTGRLVRPPLEEILFLPQRPYIILGTLREQLLYPLTNSEMSNTELQAVLQQVNLQN VLNRVDDFDSEKPWENILSLGEQQRLAFARLLVNSPSFTILDEATSALDLTNEGILYEQL QTRKTTFISVGHRESLFNYHQWVLELSADSSWELLSVQDYRLKKAGEMFTNASSNNSITP DITIDNGSEPEIVYSLEGFSHQEMKLLTDLSLSSIRSKASRGKVITAKDGFTYLYDKNPQ ILKWLR SEQ ID ATGACAACCCAAACAGCTTCTAGTGCCAATGCCCTTGCTTCCTTTAACCAATTTTTAAGG NO. 60 GATGTAAAGGCGATCGCCCAACCCTATTGGTATCCCACTGTATCAAATAAAAGAAGCTTT ABC TCTGAGGTTATTCGTTCCTGGGGAATGCTATCACTGCTTATCTTTTTGATTGTGGGATTA Transporter GTCGCCGTCACGGCTTTTAATAGTTTTGTTAATCGTCGTTTAATTGATGTCATTATTCAA Nucl acid GAAAAAGATGCGTCTCAATTTGCCAGTACATTAACTGTCTATGCGATCGGATTAATCTGT GTAACGCTGCTGGCAGGGTTCACTAAAGATATTCGCAAAAAAATTGCCCTAGATTGGTAT CAATGGTTAAACACCCAGATTGTAGAGAAATATTTTAGTAATCGTGCCTATTATAAAATT AACTTTCAATCTGACATTGATAACCCCGATCAACGTCTAGCCCAGGAAATTGAACCGATC GCCACAAACGCCATTAGTTTCTCGGCCACTTTTTTGGAAAAAAGTTTGGAAATGCTAACT TTTTTAGTGGTAGTTTGGTCAATTTCTCGACAGATTGCTATTCCGCTAATGTTTTACACG ATTATCGGTAATTTTATTGCCGCCTATCTAAATCAAGAATTAAGCAAGATCAATCAGGCA CAACTGCAATCAAAAGCAGATTATAACTATGCCTTAACCCATGTTCGGACTCATGCGGAA TCTATTGCTTTTTTTCGGGGAGAAAAAGAGGAACAAAATATTATTCAGCGACGTTTTCAG GAAGTTATCAATGATACGAAAAATAAAATTAACTGGGAAAAAGGGAATGAAATTTTTAGT CGGGGCTATCGTTCCGTCATTCAGTTTTTTCCTTTTTTAGTCCTTGGCCCTTTGTATATT AAAGGAGAAATTGATTATGGACAAGTTGAGCAAGCTTCATTAGCTAGTTTTATGTTTGCA TCGGCCCTGGGAGAATTAATTACAGAATTTGGTACTTCAGGACGTTTTTCTAGTTATGTA GAACGTTTAAATGAATTTTCTAATGCCTTAGAAACTGTGACTAAACAAGCCGAGAATGTC AGCACAATTACAACCATAGAAGAAAATCATTTTGCCTTTGAACACGTCACCCTAGAAACC CCTGACTATGAAAAGGTGATTGTTGAGGATTTATCTCTTACTGTTCAAAAAGGTGAAGGA TTATTGATTGTCGGGCCCAGTGGTCGAGGTAAAAGTTCTTTATTAAGGGCGATCGCCGGT TTATGGAATGCTGGCACTGGGCGTTTAGTGCGTCCTCCCCTAGAAGAAATTCTCTTTTTG CCCCAACGTCCCTACATTATTTTGGGAACCTTACGCGAACAATTGCTGTATCCTCTAACC AATAGTGAGATGAGCAATACCGAACTTCAAGCAGTATTACAACAAGTCAATTTGCAAAAT GTGCTAAATCGGGTGGATGACTTTGACTCCGAAAAACCCTGGGAAAACATTCTCTCCCTC GGTGAACAACAACGCCTAGCCTTTGCTCGATTGTTAGTGAATTCTCCGAGTTTTACCATT TTAGATGAGGCGACCAGTGCCTTAGATTTAACAAATGAGGGGATTTTATACGAGCAATTA CAAACTCGCAAGACAACCTTTATTAGTGTGGGTCATCGAGAAAGTTTGTTTAATTACCAT CAATGGGTTTTAGAACTTTCTGCTGACTCTAGTTGGGAACTCTTAAGCGTTCAAGATTAT CGCCTTAAAAAAGCGGGAGAAATGTTTACTAATGCTTCGAGTAACAATTCCATAACACCC GATATTACTATCGATAATGGATCAGAACCAGAAATAGTCTATTCTCTTGAAGGATTTTCC CATCAGGAAATGAAACTATTAACAGACCTATCACTCTCTAGCATTCGGAGTAAAGCCAGT CGAGGGAAGGTGATTACAGCCAAGGATGGTTTTACCTACCTTTATGACAAAAATCCTCAG ATATTAAAGTGGCTCAGAACTTAA

[0082]In one embodiment the entire gene cluster is transformed and expressed in a heterologous system. SEQ ID NO. 61 encompasses the genes of said cluster.

TABLE-US-00002 1-27260 ATGACTATTAACTATGGTGATCTGCAAGAACCCTTTAATAAATTCTCAACCCTAGTTGAA Microginin- TTACTCCGTTATCGGGCAAGCAGTCAACCGGAACGCCTCGCCTATATTTTTCTGCGAGAC Cluster GGAGAAATCGAAGAAGCTCGTTTAACCTATGGGGAACTGGATCAAAAGGCTAGGGCGATC 1-1743 GCCGCTTATCTACAATCCTTAGAAGCCGAGGGCGAAAGGGGTTTACTGCTCTATCCCCCA Adenylation- GGACTAGATTTTATTTCAGCTTTTTTTGGTTGTTTATATGCGGGAGTCGTTGCCATTCCC Protein (A*) GCCTATCCACCCCGACGGAATCAAAACCTTTTGCGTTTACAGGCGATTATTGCCGATTCT 1892-2158 CAAGCCCGATTTACCTTCACCAATGCCGCTCTATTTCCCAGTTTAAAAAACCAATGGGCT Acyl-Carrier- AAAGACCCTGAATTAGGAGCAATGGAATGGATTGTTACCGATGAAATTGACCATCACCTC Protein (ACP) AGGGAGGATTGGCTAGAACCAACCCTCGAAAAAAACAGTCTCGCTTTTCTACAATACACC 2204-3016 TCTGGTTCAACGGGAACTCCAAAGGGAGTAATGGTCAGTCACCATAATTTGTTGATTAAT Methyltransferase TCAGCCGATTTAGATCGTGGTTGGGGCCATGATCAAGATAGCGTAATGGTCACTTGGCTA (MT) CCGACCTTCCATGATATGGGTCTGATTTATGGGGTTATTCAGCCTTTGTACAAAGGATTT 3464-13123 CTTTGTTACATGATGTCCCCTGCCAGCTTTATGGAACGACCGTTACGTTGGTTACAGGCC PKS/NRPS (KS-AT- CTTTCTGATAAAAAAGCAACCCATAGTGCGGCCCCCAACTTTGCCTACGATCTTTGTGTG ACP-AMT-MO-C-A-T) CGGAAAATTCCCCCTGAAAAACGGGCTACGTTAGACTTAAGCCATTGGTGCATGGCCTTA 13120-17832 AATGGGGCCGAACCCGTCAGAGCGGAGGTACTTAAAAAGTTTGCGGAGGCTTTTCAAGTT NRPS 2 (C-A-Mt-T) TCTGGTTTCAAAGCCACAGCCCTTTGTCCTGGCTACGGTTTAGCAGAAGCCACCCTGAAA 17836-25194 GTTACGGCGGTTAGTTATGACAGTCCCCCTTACTTTTATCCCGTTCAGGCTAATGCTTTA NRPS 3 (C-A-T-C- GAAAAAAATAAGATTGTGGGAGCCACTGAAACCGATACCAATGTGCAGACCCTCGTGGGC A-T) TGCGGCTGGACAACGATTGATACTCAAATCGTCATTGTCAATCCTGAAACCCTGAAACCT 25257-27260 TGCTCCCCTGAAATTGTCGGCGAAATTTGGGTATCAGGTTCAACAATCGCCCAAGGCTAT ABC-Transporter TGGGGAAAACCTCAAGAGACTCAGGAAACCTTTCAAGCTTATTTGGCAGATACAGGAGCC (ABC) GGGCCTTTTCTGCGAACAGGAGACTTGGGCTTCATTAAAGATGGTGAATTGTTTATCACA GGTCGGCTCAAGGAAATTATTCTGATTCGAGGACGCAATAATTATCCCCAGGATATTGAA TTAACCGTCCAAAATAGTCATCCCGCTCTGCGTCCCAGTTGTGGGGCTGCTTTTACCGTT GAAAATAAGGGCGAAGAAAAGCTCGTGGTCGTTCAGGAAGTGGAGCGCACCTGGCTCCGT AAGGTAGATATAGATGAGGTAAAAAGAGCCATTCGTAAAGCTGTTGTCCAGGAATATGAT TTACAGGTTTATGCGATCGCGCTGATCAGGACTGGCAGTTTACCAAAAACCTCTAGCGGT AAAATTCAGCGTCGTAGCTGTCGGGCCAAATTTTTAGAGGGAAGCCTGGAAATTTTGGGC TAAGAAAATTTCTCGATCGGCACTTAATGTGTTAAATTCGTATGTCGATTGAAACTTCGA CCAATTCTTTCTCTCCCCTTAAGTCCATGTCTCTGGATTTGAAAATTCCTTAAACTTTAA CTACATTTCTCAAGAAAGCAAATTGAATCTAATGTCCACAGAAATCCCAAACGACAAAAA ACAACCGACCCTAACGAAAATTCAAAACTGGTTAGTGGCTTACATGACAGAGATGATGGA AGTGGACGAAGATGAGATTGATCTGAGCGTTCCCTTTGATGAATATGGTCTCGATTCTTC TATGGCAGTTGCTTTGATCGCTGATCTAGAGGATTGGTTACGACGAGATTTACATCGCAC CCTGATCTACGATTATCCAACTCTAGAAAAGTTGGCTAAACAGGTTAGTGAACCCTGACA TTTTTATAAAGTTTGTGCTTAAAAATTTTGAGGAAGTTCTAAAATGACAAATTATGGCAA ATCTATGTCTCATTACTATGATCTAGTGGTAGGACATAAAGGTTATAACAAAGATTACGC CACTGAAGTAGAATTCATTCACAATTTAGTTGAGACTTACACAACTGAAGCCAAATCTAT CCTATACTTGGGCTGTGGTACGGGTTATCATGCCGCTCTTTTAGCACAGAAAGGGTATTC TGTACATGGTGTTGATCTCAGTGCTGAAATGTTAGAGCAGGCTAAAACTCGCATTGAAGA TGAAACAATAGCTTCTAATCTGAGTTTTTCTCAAGGAAATATTTGTGAAATCCGTTTAAA TCGTCAGTTTAATGTTGTTCTTGCTCTATTTCATGTGGTTAACTATCAAACGACCAATCA AAATTTACTGGCAACGTTTGCAACGGTTAAAAACCATTTAAAAGCTGGGGGGATTTTTAT TTGTGATGTGTCCTATGGGTCTTACGTACTGGGGGAATTTAAGAGTCGGCCTACGGCATC AATATTGCGTTTAGAGGATAATTCCAATGGTAACGAAGTAACCTATATTAGTGAACTAAA TTTTTTAACCCATGAAAATATAGTGGAAGTTACTCACAATTTATGGGTAACAAATCAAGA AAATCAACTTCTAGAGAATTCACGGGAAACACATCTTCAGCGCTATCTTTTCAAGCCTGA AGTTGAATTGTTGGCTGATGCTTGTGAACTAACTGTTCTTGATGCGATGCCCTGGCTTGA ACAACGTCCTTTGACAAACATTCCTTGTCCTTCAGTTTGTTTTGTTATTGGGCATAAAAC AACCCATTCAGCTTAAATTCTGCTAAAAAAAATCCAACTTACCTTATTCTCTGAAACCAC ACAAGCCATGAATACAATTCAAGATGCCAAGACCGAAAATTACTCAATCTTAAATCAGTC AATTCCAAGACCTCTCAAACTGAGTAATATCCTATTACGATAAGATTTTGCGTTCTCCTT TGTTTGGAATGTCAGCAGAGGAGTCTCTATATTGGCTAGAGAAATGTTTATGTCAAGAGC ATCAGGGCTTCGATGTACAAGTTAAGTATCATCAAAAAATGCTGAAGAATATGTTACGTT TGACCGATAGTTTGGATTATCTATGGCCAGTTAACCGTGAAATGCGGCTCATGAAAGCTG GGGGGTCAATTGAACGGGCGATCACCAATAACATTAAAGCTTTTCTTCAATTTAAAGAAA CTGTAACCGTATTAAATTAGAAAAACCGCAGTGAGGAATTTGAATGGAACCCATCGCAAT TATTGGTCTTGCTTGCCGCTTTCCAGGGGCTGACAATCCAGAAGCTTTCTGGCAACTCAT GCGAAATGGGGTGGATGCGATCGCCGATATTCCTCCTGAACGTTGGGATATTGAGCGTTT CTACGATCCCACACCTGCCACTGCCAAGAAGATGTATAGTCGCCAGGGCGGTTTTCTAAA AAATGTCGATCAATTTGACCCTCAATTTTTCCGAATTTCTCCCCTAGAAGCCACCTATCT AGATCCTCAACAAAGACTGCTACTGGAAGTCACCTGGGAAGCCTTAGAAAATGCTGCCAT TGTGCCTGAAACCTTAGCTGGTAGCCAATCAGGGGTTTTTATTGGTATCAGTGATGTGGA TTATCATCGTTTGGCTTATCAAAGTCCTACTAACTTGACCGCCTATGTGGGTACAGGCAA CAGCACCAGTATTGCGGCTAACCGTTTATCATATCTGTTTGATTTGCGTGGCCCCAGTTT GGCCGTAGATACCGCTTGCTCTTCTTCCCTCGTCGCCGTTCACTTGGCCTGTCAGAGTTT GCAAAGTCAAGAATCGAACCTCTGCTTAGTGGGGGGAGTTAATCTCATTTTGTCGCCAGA GACAACCGTTGTTTTTTCCCAAGCGAGAATGATCGCCCCCGACAGTCGTTGTAAAACCTT TGACGCGAGGGCCGATGGTTATGTGCGCTCGGAAGGCTGTGGAGTAGTCGTACTTAAACG TCTTAGGGATGCCATTCAGGACGGCGATCGCATTTTAGCAGTGATTGAAGGTTCCGCGGT GAATCAGGATGGTTTAAGTAATGGACTCACGGCCCCTAATGGCCCTGCTCAACAGGCGGT GATTCGTCAGGCCCTGGCAAATGCCCAGGTAAAACCGGCCCAGATTAGCTATGTCGAAGC CCATGGCACGGGGACAGAATTGGGGGATCCGATCGAAGTTAAATCTCTGAAAGCGGTTTT GGGTGAAAAGCGATCGCTCGATCAAACCTGTTGGCTCGGTTCTGTGAAAACCAACATTGG TCATTTAGAAGCGGCGGCGGGAATGGCGGGTCTGATTAAAGTCGTTCTCTGCCTACAACA CCAAGAAATTCCCCCTAATCTCCACTTTCAAACCCTTAATCCCTATATTTCCCTAGCTGA CACAGCTTTTGCGATTCCCACTCAGGCTCAACCCTGGCGGACCAAACCCCCTAAGTCTGG TGAAAACGGTGTCGAACGACGTTTAGCAGGACTCAGTTCCTTTGGGTTTGGGGGGACAAA TTCCCATGTGATTCTCAGCGAAGCCCCTGTCACCGTTAAAAACAATCAACAAAATGGGCA GAAGTTGATAGAACGTCCCTGGCATTTGCTGACTTTATCTGCCAAGAATGAAGAAGCCTT AAAAGCCTTAGTCCATTGTTATCAAAAGTATTTAGCTGATCATCATGAAATTCCTCTCGC TGATGTTTGTTTTACGGCCAATAGTCGGCGATCGCACTTTAATCATCGTTTAGGAGTAGT GGCTAGAGATCGCTTAGAAATGTTGCAGAAGTTAGAGAACTTTAGTAACCAAGAAAGGAT GAGAGAACCGAAGAGTATTAACAAAAAGAAAAAACCTAAAATTGTTTTTCTATTTGCCGG TCAAGGTTCTCAATATGTAGGTATGGGTCGTCAACTGTACGAAACCCAACCCATCTTTCG CCAAACCTTGGATCGCTGTGCTGAAATCCTGCGACCCCATTTAGATCAACCCCTCTTAGA AATTCTTTATCCTGCTGACCCAGAAGCCGAAACAGCGAGTTTTTACCTAGAGCAGACTGC CTATACCCAACCCACTTTATTCGCATTCGAGTATGCCCTAGCACAGTTATGGCGTTCCTG GGGAATAGAACCGGCGGCAGTAATTGGTCACAGTGTCGGTGAATATGTGGCGGCCACCGT TGCCGGAGCCTTAAGTCTAGAAGAAGGATTAACGCTAATTGCCAAACGGGCAAAACTGAT GCAGTCTCTCCCCAAGAATGGGACAATGATCGCCGTTTTTGCCGCAGAAGAGCGGGTTAA AGCTGTTATTGAGCCTTATAGGACTGATGTAGCGATCGCTGCTGTTAATGGACCAGAAAA TTTTGTTATTTCAGGAAAAGCGCCGATTATTGCTGAGATTATCATTCATTTAACGGCAGC AGGAATAGAAGTTCGTCCTCTCAAAGTTTCCCATGCTTTTCACTCGCACCTGTTGGAGCC AATTTTAGATTCCTTAGAACAGGAAGCTGCTGCTATTTCCTACCAACCCCTGCAAATTCC CTTAGTTGCTAATTTAACGGGGGAAGTTCTACCAGAAGGAGCAACGATTGAGGCTCGTTA CTGGCGAAATCATGCACGCAACCCTGTACAATTTTATGGGAGTATCCAAACGCTGATCGA GCAGAAATTCAGTCTTTTTTTAGAAGTTAGCCCTAAACCGACTTTATCTCGATTGGGTCA ACAATGTTGTCCAGAAAGATCGACCACTTGGCTATTTTCCCTCGCCCCTCCTCAAGAAGA AGAACAAAGCCTACTAAATAGTTTGGCGATTCTCTATGATTCCCAAGGAGCCGAAATAAA CTGGGAAGGGTTTAATCAAAATTATCCCCACCATTTACTGGCTCTACCGACCTATCCTTT TCAACGTCAACGCTATTGGCTTGAAACCGGTAAACCGACTTCTGAAGAAACAACCATGAC GACCAATGCCACTAATGTCCAAGCTATCTCCAGCCATCAAAAACAACAGGAGATTCTAAT CACATTGCAAACCCTAGTGGGAAATTTACTGCAATTGTCCCCTGCTGATGTCAATGTTCA TACACCTTTCCTGGAGATGGGGGCAGATTCCATTGTCATGGTTGAGGCGGTCAGACGGAT TGAGAATACCTATAACGTTAAAATTGCTATGCGTCAGTTATTTGAGGAGTTATCTACTTT AGATGCTTTAGCTACTTATTTAGCTCAAAATCCGGCTACTGATTGCCAAACTGCTCAAAT TAATACCGAGGTGTTTTCTGCGCCCATTGCCTGCTCAAATAACCGATCGCCCAATGTCGT GCTGAGTTCTAATACCAACGGCTTTCAACGTCAAACAGCTTCTCCAGGTTTTTCGGCGAT CGCCCCCCTTGCAGGAATGGGAGGAGCAGGGGAAATGGGAGGAGTTGAAGTGCCTCAAGT TTCTGTGCCACAAACCAGTGCGGTAACAGCCTCAGGTTCAACCGTTTCTAGTTCTGCCCT GGAAAACATTATGGGTCAACAGTTACAACTGATGGCCAAACAGTTAGAAGTCTTGCAAAC GGCCAATTTTGCCCCGACGACTCCCCGAACCACAGAAAATTCCCCATCTTCCGTCAGTCA AAATAGGTCAAACGGACTTACACAACAGTTAATTCCCCCCCAGCAATTAGCGGCGAACCT AGAGCCAATAGCCAGTCGCACCCGTCAAACCAGCAATCAAGCTTCTGCTCCTAAACCGAC AGTAACAGCCACTCCCTGGGGGCCGAAAAAACCACCCACAGGTGGATTCACTCCCCAACA ACAGCAACATCTAGAGGCATTAATTGCTCGCTTTACGGAACGTACCAAAACCTCTAAGCA AATTGTGCAAAGCGATCGCCTGCGTTTAGCAGATAGTCGAGCCTCGGTCGGATTCCGTAT GTCTATTAAAGAGATGCTTTATCCCATTGTGGCCCAACGTTCTCAAGGATCAAGAATTTG GGATGTGGACGGTAATGAATATATTGATATGACGATGGGGCAAGGGGTAACGCTGTTTGG GCATCAACCAGACTTCATTATGTCGGCCCTACAAAGCCAACTCACTGAAGGCATTCATCT CAATCCGCGATCGCCAATTGTGGGAGAAGTGGCCGCCTTAATTTGTGAACTAACAGGAGC CGAACGAGCTTGTTTTTGCAACTCTGGAACCGAAGCCGTAATGGCCGCTATTCGTATCGC CAGGGCAACAACAGGTCGGAGTAAAATTGCCCTCTTTGAAGGCTCCTATCATGGACATGC GGACGGAACCCTTTTTAGGAACCAAATTATTGATAACCAACTCCACTCTTTTCCCCTAGC TCTAGGCGTTCCCCCCAGCCTTAGTTCCGATGTGGTGGTATTGGACTATGGCAGTGCGGA AGCTCTGAACTATTTACAAACCCAGGGGCAGGATTTAGCGGCGGTCTTAGTAGAACCAAT TCAAAGTGGCAATCCTCTACTCCAACCCCAACAATTTCTCCAAAGTCTGCGACAAATTAC CAGTCAAATGGGCATTGCCCTGATTTTTGATGAAATGATTACGGGTTTTCGATCGCACCC AGGGGGAGCGCAAGCTTTATTTGGAGTACAGGCGGATATTGCCACCTATGGCAAAGTAGT TGCGGGAGGAATGCCCATTGGAGTTATTGCAGGTAAGGCCCATTATCTGGACAGCATTGA CGGGGGAATGTGGCGTTATGGCGATAAATCCTATCCTGGGGTGGACAGAACCTTTTTTGG GGGAACCTTTAATCAGCATCCGTTAGCAATGGTAGCGGCTAGGGCTGTCCTGACCCATTT AAAGGAGCAGGGGCCAGGTCTGCAACAACAATTAACTGAACGCACTGCGGCCTTAGCCGA TACACTGAATCATTATTTTCAAGCCGAAGAAGTTCCTATTAAAATCGAACAGTTTAGTTC TTTCTTCCGGTTTGCCCTCTCTGGCAATTTGGATTTACTTTTCTATCACATGGTAGAAAA AGGTATTTATGTCTGGGAATGGCGTAAACATTTTCTTTCAACCGCCCATACGGAAGCCGA TCTTGCCCAATTTGTCCAAGCGGTTAAGGATAGCATCACAGAATTGCGTCAGGGAGGTTT TATCCCCGCAAAAAAGCCTTCCTGGCCAGTGCCAACGCCTCAAATTGATCCCCCCCTAAC CCCCCTTGATAAGGGGATTGATCCCCCCCTAACCCCCCTTGATAAGGGGATTGATCCCCC CCTAACCCCCCTTGATAAGGGGGGAGATGTTGATGTCGCGCTTGATAAGGGAGGAAATTC TCATTCTGTTAGGGACAGTAAGTTAGGGAAAGGGAGCGGGTCTCAAGACCAAAAAACGAT ACAGTTTAGCCTCTACTACTTTGGTAGCTATGAAGCGGAATTTAACCCGAATAAATATAA CTTACTGTTTGAAGGAGCTAAATTTGGCGATCGCGCTGGTTTTACGGCCCTTTGGATTCC TGAACGTCATTTCCACGCTTTTGGTGGTTTTTCTCCCAATCCTTCGGTTTTGGCGGCGGC TTTAGCACGGGAAACCAAACAGATTCAACTGCGATCAGGCAGTGTGGTTTTACCGCTACA TAATTCCATCCGAGTCGCCGAAGAATGGGCAGTGGTGGACAATCTTTCCCAGGGCCGCGT TGGTATTGCTTTTGCATCGGGTTGGCATCCCCAGGATTTTGTCTTGGCTCCCCAGTCCTT TGGCCAACATCGGGAATTGATGTTCCAAGAAATTGAAACCGTCCAGAAACTTTGGCGAGG GGAAGCGATCACCGTGCCAGACGGAAAGGGTCAAAGGGTAGAGGTTAAAACCTATCCCCA ACCGATGCAGTCCCAGTTACCCAGCTGGATTACTATTGTCAATAATCCCGATACCTATAT CAGAGCAGGGGCGATCGGTGCTAATATCCTTACCAATCTGATGGGGCAAAGCGTGGAAGA TTTAGCCCGTAATATTGCGCTATATCGTCAATCTTTGGCAGAGCATGGTTATGATCCCGC GTCGGGAACGGTGACAGTTCTCCTGCATACTTTTGTTGGCAAGGATTTAGAACAAGTTCG AGAACAGGCTCGCCAACCCTTTGGGCAATACCTCACCTCCTCTGTCGGACTCTTGCAGAA CATGGTCAAGAGCCAGGGCATGAAAGTGGATTTTGAACAATTAAGAGACGAAGATCGGGA CTTTCTCCTCGCTTCTGCCTATAAACGCTATACAGAAACCAGTGCTTTAATTGGCACACC CGAATCCTGTCGTCAAATTATTGATCATTTGCAGTCCATCGGTGTGGATGAAGTGGCTTG TTTTATTGATTTTGGGGTAGATGAACAAACAGTTTTGGCCAATTTACCCTATCTCCAGTC CCTAAAAGACTTATATCAACCTCATCTCCCCCCTTATCAAGGGGGGTTAGGGGGGGATCA ATCCCCTTATCAAGGGGGGTTAGGGGGGGATCAATCCCCTTATCAAGGGGGGTTAGGGGG TGATCAATCCCCTTATCAAGGGGGGTTAGGGGGTGATCAATCCCCTTATCAAGGGGGGTT AGGGGGGGATCAATCCCCTTATCAAGGAGAGTTAGGGGGGGATCAATCCCCTTATCAAGG GGGGTTAGGGGGGGATCAAGTCCCTCTCACCGAAGCCCAACGACAACTGTGGATTTTGGC TCAATTAGGAGACAACGGCTCTGTGGCCTATAACCAATCAGTGACATTGCAATTAAGTGG CCCATTAAATCCCGTCGCAATGAATCAAGCTATTCAACAAATCAGCGATCGCCATGAAGC GTTACGAACCAAAATTAATGCCCAGGGAGATAGTCAAGAAATCCTGCCCCAGGTCGAAAT TAACTGCCCTATCTTAGACTTCAGTCTTGACCAAGCTTCGGCCCAACAGCAAGCAGAACA ATGGTTAAAGGAAGAAAGTGAAAAACCCTTTGATTTGAGCCAGGGTTCTCTCGTGCGTTG GCATCTACTCAAATTAGAACCAGAATTACATTTGTTAGTATTAACGGCCCATCACATTAT CAGTGACGGTTGGTCAATGGGGGTAATCCTTCGGGAATTAGGAGAGTTATATTCAGCCAA ATGTCAGGGTGTTACGGCTAATCTTAAAACCCCAAAACAGTTTCGAGAATTGATTGAATG GCAAAGCCAGCCAAGCCAAGGGGAAGAACTGAAAAAACAGCAAGCCTATTGGTTAGCAAC CCTTGCCGATCCCCCTGTTTTGAATTTACCCACTGACAAACCTCGTCCAGCTTTACCCAG TTACCAAGCTAATCGTCGAAGTCTAACTTTAGATAGCCAATTTACAGAAAAACTAAAGCA ATTTAGTCGTAAACAGGGCTGTACCTTGCTGATGACCCTGTTATCGGTTTATAACATTCT CGTTCATCGTTTGACGGGACAGGATGATATTCTGGTGGGTCTGCCAGCCTCTGGACGGGG GCTTTTAGATAGTGAAGGTATGGTGGGTTATTGCACCCATTTTTTACCAATTCGCAGTCA ATTAGCAGGTAATCCCACTTTTGCTGAATATCTCAAACAAATGCGGGGGGTTTTGTTGTC GGCTTATGAACATCAGGACTATCCCTTTGCTCTTTTGCTCAATCAGTTAGATTTACCGCG TAATACCAGTCGCTCTCCTTTAATTGATGTCAGTTTCAATTTAGAACCAGTTATTAACCT ACCCAAAATGAAAGGATTAGAGATTAGTTTGTTGCCTCAAAGTGTAAGTTTTAAGGATCG AGATTTGCATTGGAATGTGACAGAAATGGGTGGAGAAGCTCTGATTGATTGTGACTACAA TACAGACTTATTTAAAGATGAAACGATTCAGCGTTGGTTAGGCCATTTTCAAACCTTACT TGAGGCAGTTATTAATGATTCGCAACAAAATCTGCGGGAATTACCCTTATTAAGTTCTGC TGAACGACAACAGTTATTAGTGGATTGGAATCAAACCAAGACCGACTATCCCCAAGATCA GTGTATTCATCAATTATTTGAAGCGCAAGTTGAACGGACTCCCGATGCGATTGCGGTGGT ATTTGAAACTCAACAATTAACTTACAGTGAATTAAATTGTCGAGCCAATCAGTTAGCACA TTATTTACAAAAATTAGGAGTTGGGCCAGAGGTCTTAGTCGGTATTTTGGTCGAACGTTC TTTAGAAATGATTGTCGGATTGTTAGGGATTCTCAAGGCTGGGGGAGCCTATGTACCTCT TGATCCTGACTATCCCCCTGAACGTCTTCAATTTATGTTAGAAGATAGTCAATTTTTTCT CCTCTTAACCCAACAGCATTTACTGGAATCTTTTGCTCAGTCTTCAGAAACGGCTACTCC CAAGATTATTTGTTTGGATAGCGACTACCAAATTATTTCCCAGGCAAAGAATATTAATCC CGAAAATTCAGTCACAACGAGTAATCTTGCCTATGTAATTTATACCTCTGGTTCGACAGG TAAACCGAAGGGCGTGATGAATAATCATGTTGCTATTAGTAATAAATTGTTATGGGTACA AGACACTTATCCTCTAACCACAGAAGACTGTATTTTACAAAAAACTCCCTTTAGTTTTGA TGTTTCAGTGTGGGAATTATTCTGGCCCCTACTAAACGGAGCGCGTTTGGTTTTTGCCAA GCCGAATGGCCATAAAGATGCCAGTTACTTAGTCAATCTGATTCAAGAGCAACAAGTAAC AACGCTACATTTTGTGTCTTCTATGCTACAGCTTTTTCTGACAGAAAAAGACGTAGAAAA ATGTAATAGTCTTAAACGAGTCATTTGTAGTGGTGAAGCCCTTTCTTTAGAGCTTCAAGA ACGTTTTTTTGCTCGTTTAGTCTGTGAATTACACAATCTTTATGGACCGACAGAAGCCGC TATTCATGTCACATTTTGGCAATGTCAATCAGATAGCAATTTGAAAACAGTACCCATTGG TCGGCCGATCGCTAATATCCAAATTTACATTTTAGACTCTCATCTTCAGCCAGTACCTAT TGGAGTAATCGGAGAATTGCACATTGGTGGGGTTGGTTTGGCGCGGGGTTATTTAAACAG GCCTGAGTTAACGGCGGAGAAATTTATTGCAAATCCGTTTGCTTCCCTTGATCCCCCCCT AACCCCCCTTGATAAGGGGGGAGATGAGAGCTATAAAACTTTTAAAAAGGGGGGAGAGCA ACCATCAAGATTGTATAAAACGGGAGATTTAGCTCGTTATTTACCCGATGGCAAGATTGA GTATCTAGGGCGCATTGATAATCAGGTAAAAATTCGCGGTTTCCGGATTGAATTGGGGGA AATTGAAGCGGTTTTGCTATCCCATCCCCAGGTACGAGAAGCGGTCGTTTTGGTGAGCGA AAGCGATCGCTCTGAAAATCGGGCTTTGGTCGCTTATATTGTCCCTAATGATCCTGCTTG TACGACTCAATCATTACGAGAGTTTGTTAAACGGCAGCTTCCTGACTATATGATCCCAGC TTATTGGCTGATCCTTGACAATTTACCGTTAACCAGCAATGGCAAAATTGATCGTCGGGC TTTACCGTTACCTAATCCAGAGTTAAATCGTTCGATAGACTATGTGGCTCCCAAAAATCC TACCCAGGAGGCGATCGCCGCTATTTTTGGTCAAGTTTTAAAACTGGAAAAAGTGGGAAT TTATGATAACTTTTTTGAGATCGGCGGTAATTCTTTGCAAGCCACTCAAGTTATTTCACG CTTACGAGAAAGTTTTGCCCTAGAGTTGCCCTTGCGTCGCCTGTTTGAACAACCGACTGT GGCGGATTTGGCTTTAGCCGTAACGGACATTCATGCCACTTTACAAAAATTACAAACCCC TATTGATGATTTATCAGGCGATCGCGAGGAGATTGAACTATGAAATCTATTGAAACCTTT TTGTCAGATTTAGCCAATCAAGATATTAAACTCTGGATGGACGGCGATCGCCTGCGTTGT AATGCACCCCAGGGCCTATTAACCCCAGAGATTCAAACAGAACTGAAAAACCGTAAAGCA GAAATCATTCACTTTCTCAATCAACTGGGTTCAGAGGAGCAAATTAATCCTAGAACGATT CTTCCCATTCCTCGTGATGGCCAATTACCCCTCTCCTTTGCCCAGTCGCGACTCTGGTTC TTGTATCAATTAGAAGGAGCCACGGGAACCTATAACATGACAGGGGCCTTGAGTTTAAGC GGGCCTCTTCAGGTCGAAGCCCTCAAACAAGCCCTAAGAACTATCATTCAACGCCATGAG CCATTGCGTACCAGTTTCCAATCGGTTGACGGGGTTCCAGTGCAGGTGATTAATCCCTAT CCTGTTTGGGAATTAGCGATGGTTGATTTGACAGGAAAGGAGACAGAAGCAGAAAAATTG GCCTATCAGGAATCCCAAACCCCGTTTGATTTGACCAATAGTCCTTTGTTGAGGGTAACG CTCCTCAAATTACAGCCAGAAAAGCATATTTTATTAATTAATATGCACCATATTATTTCC GATGGCTGGTCAATCGGTGTTTTTGTTCGTGAATTGTCCCATCTCTATAGGGCTTTTGTG GCGGGTAAAGAACCAACTTTACCGATTTTACCAATTCAGTATGCGGATTTTGCCGTTTGG CAGCGAGAGTGGTTACAGGGTAAGGTTTTAGCGGCTCAATTGGAATATTGGAAGCGACAA TTGGCAGATGCTCCTCCTCTGCTGGAACTGCCCACTGATCGCCCTCGTCCCGCAATCCAA ACCTTTCAAGGCAAGACAGAAAGATTTGAGCTAGATAGGAAACTGACCCAAGAATTAAAG GCATTAAGTCAACAGTCGGGTTGTACTTTATTTATGACTTTGTTGGCCGCTTTTGGGGTG GTTTTATCCCGTTATAGTGGCCAGACTGATATCGTCATTGGTTCGGCGATCGCCAACCGT AATCGCCAAGACATTGAGGGGTTAATTGGCTTTTTTGTTAACACTTTGGCGTTGAGGTTA GATTTATCAGAAAAACCCAGCTTTGCCGCTTTTTTAAAACAAGTACAGGAAGTCACTCAG GATGCCTATGAGCATCAAGACTTGCCCTTTGAAATGTTAGTGGAAGAATTACAACTAGAG CGCAAATTAGACCGAAATCCTTTGGTACAGGTGATGTTTGCCCTACAAAATGCGGCCAAT GAAACCTGGAATTTACCTGGGTTGACCATTGAAGAAATGTCTTGGGAACTTGAACCTGCC CGTTTTGACCTAGAGGTTCATTTATCAGAAGTTAACGCCGGCATAGCTGGATTCTGTTGC

TACACCATTGATCTATTTGATGATGCAACGATCGCCCGTCTATTGGAACATTTTCAGAAT CTTCTCAGGGCAATTATTGTTAATCCTCAAGAATCGGTAAGTTTATTACCCTTGTTGTCA GAACAGGAAGAAAAGCAACTTTTAGTTGATTGGAATCAAACCCAAGCCGATTATCCCCAA GATAAGCTTGTCCATCAGTTATTTGAAGTTCAAGCAGCCAGTCAGCCAGAAGCGATCGCT CTAATCTTTGAAAATCAGGTTTTGACCTATGGAGAATTAAACCATCGCGCCAATCAATTA GCTCACTATCTTCAGTCGTTAGGAGTCACCAAAGAACAAATCGTCGGGGTTTATCTGGAA CGTTCCCTTGAAATGGCGATCGGATTTTTAGGTATTCTCAAAGCAGGAGCCGCCTATCTC CCCATTGATCCTGAATATCCCTCAGTACGCACCCAATTTATTCTCGAAGATACCCAACTT TCGCTTCTCTTAACTCAGGCAGAACTGGCAGAAAAACTGCCCCAGACTCAAAACAAAATT ATCTGTCTAGATCGGGACTGGCCAGAAATTACCTCCCAACCCCAGACAAACCTAGACCTA AAGATAGAACCTAATAACCTAGCCTATTGCATCTATACTTCTGGTTCCACAGGACAACCC AAAGGAGTACTGATTTCCCATCAAGCCCTACTCAACTTAATTTTCTGGCATCAACAAGCG TTTGAGATTGGCCCCTTACATAAAGCGACCCAAGTGGCAGGCATTGCTTTCGATGCAACG GTTTGGGAATTGTGGCCCTATCTGACCACAGGAGCCTGTATTAATCTGGTTCCCCAAAAT ATTCTGCTCTCACCGACGGATTTACGGGATTGGTTGCTTAACCGAGAAATTACCATGAGT TTTGTGCCAACTCCTTTAGCTGAAAAATTATTATCCTTGGATTGGCCTAACCATTCTTGT CTAAAAACCCTGTTACTGGGAGGTGACAAACTTCATTTTTATCCTGCTGCGTCCCTTCCC TTTCAGGTCATTAACAACTATGGCCCAACGGAAAATACAGTGGTTGCGACCTCTGGACTG GTCAAATCATCTTCATCTCATCACTTTGGAACTCCGACTATTGGTCGTCCCATTGCCAAC GTCCAAATCTATTTATTAGACCAAAACCTACAACCTGTCCCCATTGGTGTACCAGGAGAA TTACATTTAGGTGGGGCGGGTTTAGCGCAGGGCTATCTCAATCGTCCTGAGTTAACGGCT GAAAAATTTATTGCCAATCCCTTTGATCCCCCCCTAACCCCCCTTGATAAGGGGGGAGAA GAACCCTCAAAACTCTATAAAACGGGAGACTTAGCCCGTTATTTACCCGATGGCAATGTA GAATTTTTGGGACGTATTGACAATCAGGTAAAAATTCGGGGTTTTCGCATCGAAACTGGG GAAATCGAAGCCGTTTTAAGTCAATATTTCCTATTAGCTGAAAGTGTAGTCGTTGCCAAG GAAGATAATACTGGGGATAAACGCCTCGTGGCTTATTTGGTTCCCGCCTTGCAAAATGAG GCCCTACCAGAGCAATTAGCCCAATGGCAAAGTGAATACATCAGTGATTGGCAAAGTCTC TATGAAAGAACCTATAGTCAAGGGCAAGACAGCCTAGCTGATCTCACTTTTAATATCACG GGTTGGAATAGCAGTTATACTCGTCAACCCCTTCCTGCTTCAGAAATGCGAGAGTGGGTC GAAAACACTGTTAGTCGCATCTTGGCTTTCCAACCAGAACGCGGTTTAGAAATTGGTTGT GGTACAGGTTTGTTACTCTCCAGGGTAGCAAAGCATTGTCTTGAATATTGGGCAACGGAT TATTCCCAAGGGGCGATCCAGTATGTTGAACGGGTTTGCAATGCCGTTGAAGGTTTAGAA CAGGTTAAATTACGCTGTCAAATGGCAGATAATTTTGAAGGTATTGCCCTACATCAATTT GATACCGTCGTCTTAAATTCGATTATTCAGTATTTTCCCAGTGTGGATTATCTGTTACAG GTGCTTGAAGGGGCGATCAACGTCATTGGCGAGCGAGGTCAGATTTTTGTCGGGGATGTG CGGAGTTTACCCCTATTAGAGCCATATCATGCGGCTGTGCAATTAGCCCAAGCTTCTGAC TCGAAAACTGTTGAACAATGGCAACAACAGGTGCGTCAAAGTGTAGCAGGTGAAGAAGAA CTGGTCATTGATCCCACATTGTTCCTGGCTTTAAAACAACATTTTCCGCAAATTAGCTGG GTAGAAATTCAACCGAAACGGGGTGTGGCTCACAATGAGTTAACTCAATTTCGCTATGAT GTCACTCTCCATTTAGAGACTATCAATAATCAAGCATTATTGAGCGGCAATCCAACGGTA ATTACCTGGTTAAATTGGCAACTTGACCAACTGTCTTTAACACAAATTAAAGATAAATTA TTAACAGACAAACCTGAATTGTGGGGAATTCGTGGTATTCCTAATCAGCGAGTTGAAGAG GCTCTAAAAATTTGGGAATGGGTGGAAAATGCCCCTGATGTTGAAACGGTTGAACAACTC AAAAAACTTCTCAAACAACAAGTAGATACTGGTATTAATCCTGAACAGGTTTGGCAATTA GCTGAGTCTCTCGGTTACACCGCTCACCTTAGTTGGTGGGAAAGTAGTCAAGACGGTTCC TTTGATGTCATTTTTCAGCGGAATTCAGAAGCGGAGGACTCAAAAAAATTAACCCTTTCA AAACTTGCTTTCTGGGATGAAAAACCCTTTAAAATAAAGCCCTGGAGTGACTATACTAAC AACCCTCTGCGCGGTAAGTTAGTCCAAAAATTAATTCCTAAAGTACGAGAATTTCTGCAA GAAAAACTACCCAGTTATATGGTTCCCCAGGCGTTTGTGCTGCTTGATTCCCTTCCTTTG ACCCCCAATGGTAAGGTGGATCGTAAGGCGTTACCTTCTCCTGATGCGGCGACTCGTGAT TTAGCGAACAGTTTTGTCTTACCCCGCAATCCGATTGAAGCTCAACTGACTCAAATTTGG AGTGAAGTTTTGGGACTGGAACGCATTGGCGTTAAGGACAACTTTTTTGAATTGGGAGGA CATTCTCTTTTGGCTACCCAGGTTTTATCAAGAATTAATTCAGCCTTTGGACTTGATCTT TCTGTGCAAATTATGTTTGAATCACCAACGATCGCGGGCATTGCGGGTTATATTCAAGCG GTAGATTGGGTCGCCCAGGATCAAGCCGATAGCTCGTTAAATCATGAAAATACTGAGGTA GTGGAGTTCTAAGTTATGACGAAAAAGATTGTTGAATTTGTCTGTTATCTACGGGATTTA GGCATTACTTTAGAAGCTGATGAAAACCGCTTACGCTGTCAGGCTCCCGAAGGAATTTTG ACCCCAGCACTCCGTCAAGAAATTGGCGATCACAAACTGGAATTATTACAATTTTTACAA TGGGTCAAACAGTCTAAAAGTACCGCTCATTTGCCTATTAAACCTGTCGCTAGAGACGGT CATTTACCCCTGTCTTTTGCTCAACAACGTTTATGGTTTTTACATTATCTTTCCCCTGAT AGTCGTTCCTACAATACCCTGGAAATATTGCAAATTGATGGGAATCTCAATCTGACTGTG CTAGAGCAGAGTTTGGGGGAATTAATTAACCGCCATGAAATTTTTAGAACAACATTCCCC ACTGTTTCAGGGGAACCGATTCAGAAAATTGCACTTCCTAGTCGTTTTCAGTTAAAAGTT GATAATTATCAAGATTTAGACGAAAATGAACAATCAGCTAAAATTCAACAAGTAGCAGAA TTGGAAGCAGGACAAGCTTTTGATTTAACGGTGGGGCCACTGATTCAGTTTAAGCTATTG CAATTGAGTCCCCAGAAGTCGGTGCTGCTGTTGAAAATGCACCATATTATCTATGATGGC TGGTCTTTTGGGATTCTGATTCGGGAATTATCGGCTCTATACGAAGCATTTTTAAAGAAC TTAGCCAATCCTCTCCCTGCGTTGTCTATTCAGTATGCAGATTTTGCGGTTTGGCAACGT CAATATCTCTCAGGTGAGGTCTTAGATAAACAACTCAATTATTGGCAAGAACAGTTAGCA ACAGTCTCTCCTGTTCTTACTTTACCAACGGATAGACCCCGTCCGGCGATACAAACTTTT CAGGGAGGAGTTGAGCGTTTTCAACTGGATCAAAATGTCACTCAAGGTCTTAAAAAGTTA GGTCAAGATCAGGTTGCAACCCTGTTTATGACGTTGTTGGCCGGTTTCGGCGTTTTGCTA TCTCGTTATAGTGGTCAATCTGATCTGATGGTGGGTTCTCCGATCGCTAATCGTAATCAA GCAGCGATCGAACCTTTAATTGGCTTTTTTGCTAACACTTTGGCTTTAAGAATTAATTTA TCAGAAAATCCCAGTTTTTTAGAATTATTAGAACAAGTTAAACAGACAACTTTAGAGGGT TATGCTCACCAAGACCTACCCTTTGAGATGTTAGTAGAAAAGCTACAACTTGACCGTGAT TTGAGCAGAAATCCTTTAGTACAAGTCATGTTTGCGCTACAAAATACCTCTCAAGATACT TGGAATCTTTCGGGTTTAAGTATTGAAAGTTTATCTTTATCAGTGGAAGAAACTGTCAGA TTTGATCTAGAAGTAAACTGCTGGCAAAATTCAGAAGGTTTAGCAATAGATTGGATTTAC AGCAGAGATTTATTTGACACTGCAACAATTGCAAGAATGGGAGAACATTTTCAAAATTTA GTTCAGGCAATCATACTCAATCCAAAAGCTACAGTTAAAGAACTTCCTTTATTAACACCC AAGGAACGTGAGCAATTATTAATATCTTGGAATAATAGCAAGACTGATTATCCTCAAGAG CAGTGTATTTATCAATTATTTGAAGCACAAGTTGAACGGACTCCAAAGGCGATCGCAGTG GTATTTGAGGAGCAATCATTAACATACACTGAATTAAACCATCGCGCTAATCAGTTAGCC CATTATTTACAAACTTTAGGCGTGGGAGCAGAAGTCTTAGTCGGTATTTCCCTAGAACGT TCTTTAGAGATGATTATCGGCTTATTAGGGATTCTCAAGGTAGGTGGTGCTTATCTTCCT CTTGATCCAGACTATCCCACTGAGCGTCTTCAGTTGATGTTAGAAGACAGTCAAGTTCCT TTTTTGATTACCCACAGTTCTTTATTAGCAAAATTGCCTCCCTCTCAAGCAACTCTGATT TGTTTAGATCATATCCAAGAGCAGATTTCTCAATATTCTCCAGATAATCTTCAATGTCAG TTAACTCCTGCCAATTTAGCTAACGTTATTTATACCTCTGGCTCTACGGGTAAGCCTAAA GGGGTGATGGTTGAACATAAAGGTTTAGTTAACTTAGCTCTTGCTCAAATTCAATCTTTT GCAGTCAACCATAACAGTCGTGTGCTGCAATTTGCTTCTTTTAGTTTTGATGCTTGTATT TCAGAAATTTTGATGACCTTTGGTTCTGGAGCGACGCTTTATCTTGCACAAAAAGATGCT TTATTGCCAGGTCAGCCATTAATTGAACGGTTAGTAAAGAATGGAATTACTCATGTGACT TTGCCGCCTTCAGCTTTAGTGGTTTTACCCCAGGAACCGTTACGCAACTTAGAAACCTTA ATTGTGGCGGGTGAGGCTTGTTCTCTTGATTTAGTGAAACAATGGTCAATCGATAGAAAC TTTTTCAATGCCTATGGGCCAACGGAAGCGAGTGTTTGTGCCACTATTGGACAATGTTAT CAAGATGATTTAAAGGTGACGATTGGTAAGGCGATCGCCAATGTCCAAATTTATATTTTA GATGCCTTTTTACAGCCGGTGCCGGTGGGAGTGTCAGGAGAGTTATACATTGGTGGAGTT GGGGTGGCAAGGGGCTATTTAAATCGTCCTGAATTAACCCAAGAAAAATTTATTGCTAAT CCTTTTAGTAACGACCCAGATTCTCGGCTCTATAAAACTGGCGACTTAGCGCGTTATTTA CCCGATGGTAATATTGAATATTTAGGACGCATTGACAATCAGGTAAAAATTCGCGGTTTT CGCATTGAGTTAGGAGAAATTGAAGCGGTTCTGAGTCAATGTCCCGATGTGCAAAATACG GCGGTGATTGTCCGCGAAGATACTCCTGGCGATAAGCGCTTAGTTGCCTATGTGGTTCTT ACTTCTGACTCCCAGATAACTACTAGCGAACTGCGTCAATTTTTGGCGAATCAATTACCC GCCTATCTTGTTCCTAATACCTTTGTTATTTTAGATGATTTGCCCCTAACCCCCAGTGGC AAATGCGATCGCCGTTCCTTACCTATACCCGAAACACAAGCGTTATCAAATGACTATATT GCCCCTAAATCTCCCACTGAAGAAATTCTGGCTCAAATATGGGGGCAAGTTCTCAAGATA GAAAGAGTCAGCAGAGAAGATAATTTCTTTGAATTGGGGGGGCATTCCCTTTTAGCTACC CAGGTAATGTCCCGTCTGCGTGAAACTTTTCAAGTCGAATTACCTTTGCGTAGTCTCTTT ACCGCTCCCACTATTGCTGAATTGGCCCTAACAATTGAGCAATCTCAGCAAACCATTGCT GCTCCCCCCATCCTAACCAGAAACGACAGTGCTAACCTCCCGTTATCTTTTGCTCAACAA CGTTTATGGTTTCTGGATCAATTAGAACCTAACAGCGCCTTTTATCATGTAGGGGGAGCC GTAAGACTAGAAGGAACATTAAATATTACTGCCTTAGAGCAAAGCTTAAAAGAAATTATT AATCGTCATGAAGCTTTACGCACAAATTTTATAACGATTGATGGTCAAGCCACTCAAATT ATTCACCCTACTATTAATTGGCGATTGTCTGTTGTTGATTGTCAAAATTTAACCGACACT CAATCTCTGGAAATTGCGGAAGCTGAAAAGCCCTTTAATCTTGCTCAAGATTGCTTATTT CGTGCTACTTTATTCGTGCGATCACCGCTAGAATATCATCTACTCGTGACCATGCACCAT ATTGTTAGCGATGGCTGGTCAATTGGAGTATTTTTTCAAGAACTAACTCATCTTTACGCT GTCTATAATCAGGGTTTACCCTCATCTTTAACGCCTATTAAAATACAATATGCTGATTTT GCGGTCTGGCAACGGAATTGGTTACAAGGTGAAATTTTAAGTAATCAATTGAATTATTGG CGCGAACAATTAGCAAATGCTCCTGCTTTTTTACCTTTACCGACAGATAGACCTAGGCCC GCAATCCAAACTTTTATTGGTTCTCATCAAGAATTTAAACTTTCTCAGCCATTAAGCCAA AAATTGAATCAACTAAGTCAGAAGCATGGAGTGACTTTATTTATGACTCTCCTGGCTGCT TTTGCTACCTTACTTTACCGTTATACAGGACAAGCAGATATTTTAGTTGGTTCTCCTATT GCTAACCGTAATCGTAAGGAAATTGAGGGATTAATCGGCTTTTTTGTTAATACATTAGTT CTGAGATTGAGTTTAGATAATGATTTAAGTTTTCAAAATTTGCTAAACCATGTTAGAGAG GTTTCTTTAGCAGCCTACGCCCATCAAGATTTACCTTTTGAAATGTTAGTAGAAGCACTA CACCCTCAACGAGATCTCAGTCATACCCCTTTATTTCAGGTAATGTTTGTTTTGCAAAAT ACACCAGTGGCTGATCTAGAACTTAAAAATGTAAAGGTTTGTCCTCTACCGATGGAAAAT AAGACTGCTAAATTTGATTTAACCTTATCAATGGAGAATCTAGAGGAAGGATTGATTGGG GTTTGGGAATATAACACCGATCTATTTAATGGCTCAACCATTGAGCGAATGAGTGGACAT TTTGTCACTTTGTTAGAAGATATTGTTGCCGCTCCAACGAAGTCAGTTTTACGGTTGTCT TTGCTGACGCAAGAGGAAAAACTGCAATTATTGATTAAAAATCAGGGTGTTCAAGTTGAT TATTCTCAAGAGCAGTGCATCCATCAATTATTTGAAGCGCAAGTTGAACGGACTCCCGAT GCGATTGCGGTGGTATTTGAGGAGCAATCATTAACCTATGCTGAATTAAATCATCAAGCT AATCAGTTAGTCCATTACTTACAAACTTTAGGAATTGGGCCAGAGGTCTTAGTCGCTATT TCAGTAGAACGTTCTTTAGAAATGATTATCGGCTTATTAGCCATTCTCAAGGCGTGTGGT GCTTATCTCCCTCTTGCTCCTGACTATCCCACTGAGCGTCTTCAGTTCATGTTAGAAGAT AGTCAAGCTTCTTTTTTGATTACCCACAGTTCTTTATTAGAAAAATTGCCTTCTTCTCAA GCGACTCTAATTTGTTTAGATCACATCCAAGAGCAGATTTCTCAATATTCTCCCGATAAT CTTCAAAGTGAGTTAACTCCTTCCAATTTGGCTAACGTTATTTACACCTCTGGCTCTACG GGTAAGCCTAAAGGGGTGATGGTTGAACATCGGGGCTTAGTTAACTTAGCGAGTTCTCAA ATTCAATCTTTTGCAGTCAAAAATAACAGTCGTGTACTGCAATTTGCTTCCTTTAGTTTT GATGCTTGTATTTCAGAAATTTTGATGACCTTTGGTTCTGGAGCGACTCTTTATCTTGCT CAAAAAAATGATTTATTGCCAGGTCAGCCATTAATGGAAAGGTTAGAAAAGAATAAAATT ACCCATGTTACTTTACCCCCTTCAGCTTTAGCTGTTTTACCAAAAAAACCGTTACCCAAC TTACAAACTTTAATTGTGGCGGGTGAGGCTTGTCCTCTGGATTTAGTCAAACAATGGTCA GTCGGTAGAAACTTTTTCAATGCCTATGGCCCGACAGAAACGAGTGTTTGTGCCACGATT GGACAATGTTATCAAGATGATTTAAAGGTCACGATTGGTAAGGCGATCGCTAATGTCCAA ATTTATATTTTGGATGCCTTTTTACAACCAGTACCCATCGGAGTACCAGGGGAATTATAC ATTGGTGGAGTCGGAGTTGCGAGGGGTTATCTAAATCGTCCTGAATTAACGGCGGAAAGA TTTATTCCTAATCCTTTTGATCCCCCCCTAACCCCCCTTAAAAAGGGGGGAGATAAGAGC TATGAAACTTTTAAAAAGGGGGAAGAGCAACCATCAAAACTCTATAAAACGGGAGATTTA GCTCGTTATTTACCCGATGGCAATATTGAATATTTAGGACGCATTGACAATCAGGTAAAA ATTCGCGGTTTTCGCATTGAGTTAGGAGAAATTGAAGCGGTTCTGAGTCAATGTCCCGAT GTGCAAAATACGGCGGTGATTGTCCGTGAAGATACTCCTGGCGATAAACGTTTAGTTGCC TATGTGGTTCTTACTTCTGACTCCCAGATAACTACTAGCGAACTGCGTCAATTCTTGGCT AATCAATTACCTGCCTATCTCGTTCCCAATACCTTTGTTATTTTAGATGATTTGCCCCTA ACCCCCAATGGTAAATGCGATCGCCGTTCCTTACCGCTTCCTGATGATCAGACCAGAAAA AATATTCCTAAAATTGGCCCGCGTAATTTAGTGGAATTACAATTAGCTCAAATCTGGTCA GAGATTTTAGGCATTAATAATATTGGTATTCAGGAAAACTTCTTTGAATTAGGCGGTCAT TCTTTATTAGCAGTCAGTCTGATCAATCGTATTGAACAAAAGTTAGATAAACGTTTACCA TTAACCAGTCTTTTTCAAAATGGAACCATAGCAAGTCTAGCTCAATTACTAGCGCAAGAA ACAACTCAGCCAGCCTCTTCACCGTTGATTGCTATCCAGTCTCAAGGTGATAAAACTCCA TTTTTTGCTGTTCATCCCATTGGTGGTAATGTGCTATGTTATGCCGATTTAGCTCGTAAT TTAGGAACGAAACAGCCGTTTTATGGATTACAATCATTAGGGCTAAGTGAATTAGAAAAA ACTGTAGCCTCTATTGAAGAAATGGCGATGATTTATATTGAAGCAATACAAACTGTTCAA GCCTCTGGTCCCTACTATTTAGGAGGTTGGTCAATGGGAGGAGTGATAGCTTTTGAAATC GCCCAACAATTATTGACCCAAGGTCAAGAAGTTGCTTTACTGGCTTTAATAGATAGTTAT TCTCCCAGTTTACTTAATTCAGTTAATAGGGAGAAAAATTCTGCTAATTCCCTGACAGAA GAATTTAATGAAGATATCAATATTGCCTATTCTTTCATCAGAGACTTAGCAAGTATATTT AATCAAGAAATCTCTTTCTCTGGGAGTGAACTTGCTCATTTTACATCAGACGAATTACTA GACAAGTTTATTACTTGGAGTCAAGAGACGAATCTTTTGCCGTCAGATTTTGGGAAGCAG CAGGTTAAAACCTGGTTTAAAGTTTTCCAGATTAATCACCAAGCTTTGAGCAGCTATTCT CCCAAGACGTATCTGGGTAGAAGTGTTTTCTTAGGAGCGGAAGACAGTTCTATTAAAAAT CCTGGTTGGCATCAAGTAATCAATGACTTGCAATCTCAATGGATTAGCGGCGATCACTAC GGTTTAATTAAAAATCCAGTCCTCGCTGAAAAACTCAATAGCTACCTAGCCTAAAACTTT CAAAAAGCCTGATTATTGTTTAAAATGAATGATCGTTCACCGGTCAGAGGACAAGTATGA CAACCCAAACAGCTTCTAGTGCCAATGCCCTTGCTTCCTTTAACCAATTTTTAAGGGATG TAAAGGCGATCGCCCAACCCTATTGGTATCCCACTGTATCAAATAAAAGAAGCTTTTCTG AGGTTATTCGTTCCTGGGGAATGCTATCACTGCTTATCTTTTTGATTGTGGGATTAGTCG CCGTCACGGCTTTTAATAGTTTTGTTAATCGTCGTTTAATTGATGTCATTATTCAAGAAA AAGATGCGTCTCAATTTGCCAGTACATTAACTGTCTATGCGATCGGATTAATCTGTGTAA CGCTGCTGGCAGGGTTCACTAAAGATATTCGCAAAAAAATTGCCCTAGATTGGTATCAAT GGTTAAACACCCAGATTGTAGAGAAATATTTTAGTAATCGTGCCTATTATAAAATTAACT TTCAATCTGACATTGATAACCCCGATCAACGTCTAGCCCAGGAAATTGAACCGATCGCCA CAAACGCCATTAGTTTCTCGGCCACTTTTTTGGAAAAAAGTTTGGAAATGCTAACTTTTT TAGTGGTAGTTTGGTCAATTTCTCGACAGATTGCTATTCCGCTAATGTTTTACACGATTA TCGGTAATTTTATTGCCGCCTATCTAAATCAAGAATTAAGCAAGATCAATCAGGCACAAC TGCAATCAAAAGCAGATTATAACTATGCCTTAACCCATGTTCGGACTCATGCGGAATCTA TTGCTTTTTTTCGGGGAGAAAAAGAGGAACAAAATATTATTCAGCGACGTTTTCAGGAAG TTATCAATGATACGAAAAATAAAATTAACTGGGAAAAAGGGAATGAAATTTTTAGTCGGG GCTATCGTTCCGTCATTCAGTTTTTTCCTTTTTTAGTCCTTGGCCCTTTGTATATTAAAG GAGAAATTGATTATGGACAAGTTGAGCAAGCTTCATTAGCTAGTTTTATGTTTGCATCGG CCCTGGGAGAATTAATTACAGAATTTGGTACTTCAGGACGTTTTTCTAGTTATGTAGAAC GTTTAAATGAATTTTCTAATGCCTTAGAAACTGTGACTAAACAAGCCGAGAATGTCAGCA CAATTACAACCATAGAAGAAAATCATTTTGCCTTTGAACACGTCACCCTAGAAACCCCTG ACTATGAAAAGGTGATTGTTGAGGATTTATCTCTTACTGTTCAAAAAGGTGAAGGATTAT TGATTGTCGGGCCCAGTGGTCGAGGTAAAAGTTCTTTATTAAGGGCGATCGCCGGTTTAT GGAATGCTGGCACTGGGCGTTTAGTGCGTCCTCCCCTAGAAGAAATTCTCTTTTTGCCCC AACGTCCCTACATTATTTTGGGAACCTTACGCGAACAATTGCTGTATCCTCTAACCAATA GTGAGATGAGCAATACCGAACTTCAAGCAGTATTACAACAAGTCAATTTGCAAAATGTGC TAAATCGGGTGGATGACTTTGACTCCGAAAAACCCTGGGAAAACATTCTCTCCCTCGGTG AACAACAACGCCTAGCCTTTGCTCGATTGTTAGTGAATTCTCCGAGTTTTACCATTTTAG ATGAGGCGACCAGTGCCTTAGATTTAACAAATGAGGGGATTTTATACGAGCAATTACAAA CTCGCAAGACAACCTTTATTAGTGTGGGTCATCGAGAAAGTTTGTTTAATTACCATCAAT GGGTTTTAGAACTTTCTGCTGACTCTAGTTGGGAACTCTTAAGCGTTCAAGATTATCGCC TTAAAAAAGCGGGAGAAATGTTTACTAATGCTTCGAGTAACAATTCCATAACACCCGATA TTACTATCGATAATGGATCAGAACCAGAAATAGTCTATTCTCTTGAAGGATTTTCCCATC AGGAAATGAAACTATTAACAGACCTATCACTCTCTAGCATTCGGAGTAAAGCCAGTCGAG GGAAGGTGATTACAGCCAAGGATGGTTTTACCTACCTTTATGACAAAAATCCTCAGATAT TAAAGTGGCTCAGAACTTAA

Sequence CWU 1

611580PRTMicrocystis aeruginosa 1Met Thr Ile Asn Tyr Gly Asp Leu Gln Glu Pro Phe Asn Lys Phe Ser1 5 10 15Thr Leu Val Glu Leu Leu Arg Tyr Arg Ala Ser Ser Gln Pro Glu Arg 20 25 30Leu Ala Tyr Ile Phe Leu Arg Asp Gly Glu Ile Glu Glu Ala Arg Leu 35 40 45Thr Tyr Gly Glu Leu Asp Gln Lys Ala Arg Ala Ile Ala Ala Tyr Leu 50 55 60Gln Ser Leu Glu Ala Glu Gly Glu Arg Gly Leu Leu Leu Tyr Pro Pro65 70 75 80Gly Leu Asp Phe Ile Ser Ala Phe Phe Gly Cys Leu Tyr Ala Gly Val 85 90 95Val Ala Ile Pro Ala Tyr Pro Pro Arg Arg Asn Gln Asn Leu Leu Arg 100 105 110Leu Gln Ala Ile Ile Ala Asp Ser Gln Ala Arg Phe Thr Phe Thr Asn 115 120 125Ala Ala Leu Phe Pro Ser Leu Lys Asn Gln Trp Ala Lys Asp Pro Glu 130 135 140Leu Gly Ala Met Glu Trp Ile Val Thr Asp Glu Ile Asp His His Leu145 150 155 160Arg Glu Asp Trp Leu Glu Pro Thr Leu Glu Lys Asn Ser Leu Ala Phe 165 170 175Leu Gln Tyr Thr Ser Gly Ser Thr Gly Thr Pro Lys Gly Val Met Val 180 185 190Ser His His Asn Leu Leu Ile Asn Ser Ala Asp Leu Asp Arg Gly Trp 195 200 205Gly His Asp Gln Asp Ser Val Met Val Thr Trp Leu Pro Thr Phe His 210 215 220Asp Met Gly Leu Ile Tyr Gly Val Ile Gln Pro Leu Tyr Lys Gly Phe225 230 235 240Leu Cys Tyr Met Met Ser Pro Ala Ser Phe Met Glu Arg Pro Leu Arg 245 250 255Trp Leu Gln Ala Leu Ser Asp Lys Lys Ala Thr His Ser Ala Ala Pro 260 265 270Asn Phe Ala Tyr Asp Leu Cys Val Arg Lys Ile Pro Pro Glu Lys Arg 275 280 285Ala Thr Leu Asp Leu Ser His Trp Cys Met Ala Leu Asn Gly Ala Glu 290 295 300Pro Val Arg Ala Glu Val Leu Lys Lys Phe Ala Glu Ala Phe Gln Val305 310 315 320Ser Gly Phe Lys Ala Thr Ala Leu Cys Pro Gly Tyr Gly Leu Ala Glu 325 330 335Ala Thr Leu Lys Val Thr Ala Val Ser Tyr Asp Ser Pro Pro Tyr Phe 340 345 350Tyr Pro Val Gln Ala Asn Ala Leu Glu Lys Asn Lys Ile Val Gly Ala 355 360 365Thr Glu Thr Asp Thr Asn Val Gln Thr Leu Val Gly Cys Gly Trp Thr 370 375 380Thr Ile Asp Thr Gln Ile Val Ile Val Asn Pro Glu Thr Leu Lys Pro385 390 395 400Cys Ser Pro Glu Ile Val Gly Glu Ile Trp Val Ser Gly Ser Thr Ile 405 410 415Ala Gln Gly Tyr Trp Gly Lys Pro Gln Glu Thr Gln Glu Thr Phe Gln 420 425 430Ala Tyr Leu Ala Asp Thr Gly Ala Gly Pro Phe Leu Arg Thr Gly Asp 435 440 445Leu Gly Phe Ile Lys Asp Gly Glu Leu Phe Ile Thr Gly Arg Leu Lys 450 455 460Glu Ile Ile Leu Ile Arg Gly Arg Asn Asn Tyr Pro Gln Asp Ile Glu465 470 475 480Leu Thr Val Gln Asn Ser His Pro Ala Leu Arg Pro Ser Cys Gly Ala 485 490 495Ala Phe Thr Val Glu Asn Lys Gly Glu Glu Lys Leu Val Val Val Gln 500 505 510Glu Val Glu Arg Thr Trp Leu Arg Lys Val Asp Ile Asp Glu Val Lys 515 520 525Arg Ala Ile Arg Lys Ala Val Val Gln Glu Tyr Asp Leu Gln Val Tyr 530 535 540Ala Ile Ala Leu Ile Arg Thr Gly Ser Leu Pro Lys Thr Ser Ser Gly545 550 555 560Lys Ile Gln Arg Arg Ser Cys Arg Ala Lys Phe Leu Glu Gly Ser Leu 565 570 575Glu Ile Leu Gly 580288PRTMicrocystis aeruginosa 2Met Ser Thr Glu Ile Pro Asn Asp Lys Lys Gln Pro Thr Leu Thr Lys1 5 10 15Ile Gln Asn Trp Leu Val Ala Tyr Met Thr Glu Met Met Glu Val Asp 20 25 30Glu Asp Glu Ile Asp Leu Ser Val Pro Phe Asp Glu Tyr Gly Leu Asp 35 40 45Ser Ser Met Ala Val Ala Leu Ile Ala Asp Leu Glu Asp Trp Leu Arg 50 55 60Arg Asp Leu His Arg Thr Leu Ile Tyr Asp Tyr Pro Thr Leu Glu Lys65 70 75 80Leu Ala Lys Gln Val Ser Glu Pro 853431PRTMicrocystis aeruginosa 3Met Glu Pro Ile Ala Ile Ile Gly Leu Ala Cys Arg Phe Pro Gly Ala1 5 10 15Asp Asn Pro Glu Ala Phe Trp Gln Leu Met Arg Asn Gly Val Asp Ala 20 25 30Ile Ala Asp Ile Pro Pro Glu Arg Trp Asp Ile Glu Arg Phe Tyr Asp 35 40 45Pro Thr Pro Ala Thr Ala Lys Lys Met Tyr Ser Arg Gln Gly Gly Phe 50 55 60Leu Lys Asn Val Asp Gln Phe Asp Pro Gln Phe Phe Arg Ile Ser Pro65 70 75 80Leu Glu Ala Thr Tyr Leu Asp Pro Gln Gln Arg Leu Leu Leu Glu Val 85 90 95Thr Trp Glu Ala Leu Glu Asn Ala Ala Ile Val Pro Glu Thr Leu Ala 100 105 110Gly Ser Gln Ser Gly Val Phe Ile Gly Ile Ser Asp Val Asp Tyr His 115 120 125Arg Leu Ala Tyr Gln Ser Pro Thr Asn Leu Thr Ala Tyr Val Gly Thr 130 135 140Gly Asn Ser Thr Ser Ile Ala Ala Asn Arg Leu Ser Tyr Leu Phe Asp145 150 155 160Leu Arg Gly Pro Ser Leu Ala Val Asp Thr Ala Cys Ser Ser Ser Leu 165 170 175Val Ala Val His Leu Ala Cys Gln Ser Leu Gln Ser Gln Glu Ser Asn 180 185 190Leu Cys Leu Val Gly Gly Val Asn Leu Ile Leu Ser Pro Glu Thr Thr 195 200 205Val Val Phe Ser Gln Ala Arg Met Ile Ala Pro Asp Ser Arg Cys Lys 210 215 220Thr Phe Asp Ala Arg Ala Asp Gly Tyr Val Arg Ser Glu Gly Cys Gly225 230 235 240Val Val Val Leu Lys Arg Leu Arg Asp Ala Ile Gln Asp Gly Asp Arg 245 250 255Ile Leu Ala Val Ile Glu Gly Ser Ala Val Asn Gln Asp Gly Leu Ser 260 265 270Asn Gly Leu Thr Ala Pro Asn Gly Pro Ala Gln Gln Ala Val Ile Arg 275 280 285Gln Ala Leu Ala Asn Ala Gln Val Lys Pro Ala Gln Ile Ser Tyr Val 290 295 300Glu Ala His Gly Thr Gly Thr Glu Leu Gly Asp Pro Ile Glu Val Lys305 310 315 320Ser Leu Lys Ala Val Leu Gly Glu Lys Arg Ser Leu Asp Gln Thr Cys 325 330 335Trp Leu Gly Ser Val Lys Thr Asn Ile Gly His Leu Glu Ala Ala Ala 340 345 350Gly Met Ala Gly Leu Ile Lys Val Val Leu Cys Leu Gln His Gln Glu 355 360 365Ile Pro Pro Asn Leu His Phe Gln Thr Leu Asn Pro Tyr Ile Ser Leu 370 375 380Ala Asp Thr Ala Phe Ala Ile Pro Thr Gln Ala Gln Pro Trp Arg Thr385 390 395 400Lys Pro Pro Lys Ser Gly Glu Asn Gly Val Glu Arg Arg Leu Ala Gly 405 410 415Leu Ser Ser Phe Gly Phe Gly Gly Thr Asn Ser His Val Ile Leu 420 425 4304324PRTMicrocystis aeruginosa 4Val Phe Leu Phe Ala Gly Gln Gly Ser Gln Tyr Val Gly Met Gly Arg1 5 10 15Gln Leu Tyr Glu Thr Gln Pro Ile Phe Arg Gln Thr Leu Asp Arg Cys 20 25 30Ala Glu Ile Leu Arg Pro His Leu Asp Gln Pro Leu Leu Glu Ile Leu 35 40 45Tyr Pro Ala Asp Pro Glu Ala Glu Thr Ala Ser Phe Tyr Leu Glu Gln 50 55 60Thr Ala Tyr Thr Gln Pro Thr Leu Phe Ala Phe Glu Tyr Ala Leu Ala65 70 75 80Gln Leu Trp Arg Ser Trp Gly Ile Glu Pro Ala Ala Val Ile Gly His 85 90 95Ser Val Gly Glu Tyr Val Ala Ala Thr Val Ala Gly Ala Leu Ser Leu 100 105 110Glu Glu Gly Leu Thr Leu Ile Ala Lys Arg Ala Lys Leu Met Gln Ser 115 120 125Leu Pro Lys Asn Gly Thr Met Ile Ala Val Phe Ala Ala Glu Glu Arg 130 135 140Val Lys Ala Val Ile Glu Pro Tyr Arg Thr Asp Val Ala Ile Ala Ala145 150 155 160Val Asn Gly Pro Glu Asn Phe Val Ile Ser Gly Lys Ala Pro Ile Ile 165 170 175Ala Glu Ile Ile Ile His Leu Thr Ala Ala Gly Ile Glu Val Arg Pro 180 185 190Leu Lys Val Ser His Ala Phe His Ser His Leu Leu Glu Pro Ile Leu 195 200 205Asp Ser Leu Glu Gln Glu Ala Ala Ala Ile Ser Tyr Gln Pro Leu Gln 210 215 220Ile Pro Leu Val Ala Asn Leu Thr Gly Glu Val Leu Pro Glu Gly Ala225 230 235 240Thr Ile Glu Ala Arg Tyr Trp Arg Asn His Ala Arg Asn Pro Val Gln 245 250 255Phe Tyr Gly Ser Ile Gln Thr Leu Ile Glu Gln Lys Phe Ser Leu Phe 260 265 270Leu Glu Val Ser Pro Lys Pro Thr Leu Ser Arg Leu Gly Gln Gln Cys 275 280 285Cys Pro Glu Arg Ser Thr Thr Trp Leu Phe Ser Leu Ala Pro Pro Gln 290 295 300Glu Glu Glu Gln Ser Leu Leu Asn Ser Leu Ala Ile Leu Tyr Asp Ser305 310 315 320Gln Gly Ala Glu568PRTMicrocystis aeruginosa 5Ile Thr Leu Gln Thr Leu Val Gly Asn Leu Leu Gln Leu Ser Pro Ala1 5 10 15Asp Val Asn Val His Thr Pro Phe Leu Glu Met Gly Ala Asp Ser Ile 20 25 30Val Met Val Glu Ala Val Arg Arg Ile Glu Asn Thr Tyr Asn Val Lys 35 40 45Ile Ala Met Arg Gln Leu Phe Glu Glu Leu Ser Thr Leu Asp Ala Leu 50 55 60Ala Thr Tyr Leu656394PRTMicrocystis aeruginosa 6Lys Glu Met Leu Tyr Pro Ile Val Ala Gln Arg Ser Gln Gly Ser Arg1 5 10 15Ile Trp Asp Val Asp Gly Asn Glu Tyr Ile Asp Met Thr Met Gly Gln 20 25 30Gly Val Thr Leu Phe Gly His Gln Pro Asp Phe Ile Met Ser Ala Leu 35 40 45Gln Ser Gln Leu Thr Glu Gly Ile His Leu Asn Pro Arg Ser Pro Ile 50 55 60Val Gly Glu Val Ala Ala Leu Ile Cys Glu Leu Thr Gly Ala Glu Arg65 70 75 80Ala Cys Phe Cys Asn Ser Gly Thr Glu Ala Val Met Ala Ala Ile Arg 85 90 95Ile Ala Arg Ala Thr Thr Gly Arg Ser Lys Ile Ala Leu Phe Glu Gly 100 105 110Ser Tyr His Gly His Ala Asp Gly Thr Leu Phe Arg Asn Gln Ile Ile 115 120 125Asp Asn Gln Leu His Ser Phe Pro Leu Ala Leu Gly Val Pro Pro Ser 130 135 140Leu Ser Ser Asp Val Val Val Leu Asp Tyr Gly Ser Ala Glu Ala Leu145 150 155 160Asn Tyr Leu Gln Thr Gln Gly Gln Asp Leu Ala Ala Val Leu Val Glu 165 170 175Pro Ile Gln Ser Gly Asn Pro Leu Leu Gln Pro Gln Gln Phe Leu Gln 180 185 190Ser Leu Arg Gln Ile Thr Ser Gln Met Gly Ile Ala Leu Ile Phe Asp 195 200 205Glu Met Ile Thr Gly Phe Arg Ser His Pro Gly Gly Ala Gln Ala Leu 210 215 220Phe Gly Val Gln Ala Asp Ile Ala Thr Tyr Gly Lys Val Val Ala Gly225 230 235 240Gly Met Pro Ile Gly Val Ile Ala Gly Lys Ala His Tyr Leu Asp Ser 245 250 255Ile Asp Gly Gly Met Trp Arg Tyr Gly Asp Lys Ser Tyr Pro Gly Val 260 265 270Asp Arg Thr Phe Phe Gly Gly Thr Phe Asn Gln His Pro Leu Ala Met 275 280 285Val Ala Ala Arg Ala Val Leu Thr His Leu Lys Glu Gln Gly Pro Gly 290 295 300Leu Gln Gln Gln Leu Thr Glu Arg Thr Ala Ala Leu Ala Asp Thr Leu305 310 315 320Asn His Tyr Phe Gln Ala Glu Glu Val Pro Ile Lys Ile Glu Gln Phe 325 330 335Ser Ser Phe Phe Arg Phe Ala Leu Ser Gly Asn Leu Asp Leu Leu Phe 340 345 350Tyr His Met Val Glu Lys Gly Ile Tyr Val Trp Glu Trp Arg Lys His 355 360 365Phe Leu Ser Thr Ala His Thr Glu Ala Asp Leu Ala Gln Phe Val Gln 370 375 380Ala Val Lys Asp Ser Ile Thr Glu Leu Arg385 3907300PRTMicrocystis aeruginosa 7Gly Gly Asp Gln Val Pro Leu Thr Glu Ala Gln Arg Gln Leu Trp Ile1 5 10 15Leu Ala Gln Leu Gly Asp Asn Gly Ser Val Ala Tyr Asn Gln Ser Val 20 25 30Thr Leu Gln Leu Ser Gly Pro Leu Asn Pro Val Ala Met Asn Gln Ala 35 40 45Ile Gln Gln Ile Ser Asp Arg His Glu Ala Leu Arg Thr Lys Ile Asn 50 55 60Ala Gln Gly Asp Ser Gln Glu Ile Leu Pro Gln Val Glu Ile Asn Cys65 70 75 80Pro Ile Leu Asp Phe Ser Leu Asp Gln Ala Ser Ala Gln Gln Gln Ala 85 90 95Glu Gln Trp Leu Lys Glu Glu Ser Glu Lys Pro Phe Asp Leu Ser Gln 100 105 110Gly Ser Leu Val Arg Trp His Leu Leu Lys Leu Glu Pro Glu Leu His 115 120 125Leu Leu Val Leu Thr Ala His His Ile Ile Ser Asp Gly Trp Ser Met 130 135 140Gly Val Ile Leu Arg Glu Leu Gly Glu Leu Tyr Ser Ala Lys Cys Gln145 150 155 160Gly Val Thr Ala Asn Leu Lys Thr Pro Lys Gln Phe Arg Glu Leu Ile 165 170 175Glu Trp Gln Ser Gln Pro Ser Gln Gly Glu Glu Leu Lys Lys Gln Gln 180 185 190Ala Tyr Trp Leu Ala Thr Leu Ala Asp Pro Pro Val Leu Asn Leu Pro 195 200 205Thr Asp Lys Pro Arg Pro Ala Leu Pro Ser Tyr Gln Ala Asn Arg Arg 210 215 220Ser Leu Thr Leu Asp Ser Gln Phe Thr Glu Lys Leu Lys Gln Phe Ser225 230 235 240Arg Lys Gln Gly Cys Thr Leu Leu Met Thr Leu Leu Ser Val Tyr Asn 245 250 255Ile Leu Val His Arg Leu Thr Gly Gln Asp Asp Ile Leu Val Gly Leu 260 265 270Pro Ala Ser Gly Arg Gly Leu Leu Asp Ser Glu Gly Met Val Gly Tyr 275 280 285Cys Thr His Phe Leu Pro Ile Arg Ser Gln Leu Ala 290 295 3008430PRTMicrocystis aeruginosa 8Thr Tyr Ser Glu Leu Asn Cys Arg Ala Asn Gln Leu Ala His Tyr Leu1 5 10 15Gln Lys Leu Gly Val Gly Pro Glu Val Leu Val Gly Ile Leu Val Glu 20 25 30Arg Ser Leu Glu Met Ile Val Gly Leu Leu Gly Ile Leu Lys Ala Gly 35 40 45Gly Ala Tyr Val Pro Leu Asp Pro Asp Tyr Pro Pro Glu Arg Leu Gln 50 55 60Phe Met Leu Glu Asp Ser Gln Phe Phe Leu Leu Leu Thr Gln Gln His65 70 75 80Leu Leu Glu Ser Phe Ala Gln Ser Ser Glu Thr Ala Thr Pro Lys Ile 85 90 95Ile Cys Leu Asp Ser Asp Tyr Gln Ile Ile Ser Gln Ala Lys Asn Ile 100 105 110Asn Pro Glu Asn Ser Val Thr Thr Ser Asn Leu Ala Tyr Val Ile Tyr 115 120 125Thr Ser Gly Ser Thr Gly Lys Pro Lys Gly Val Met Asn Asn His Val 130 135 140Ala Ile Ser Asn Lys Leu Leu Trp Val Gln Asp Thr Tyr Pro Leu Thr145 150 155 160Thr Glu Asp Cys Ile Leu Gln Lys Thr Pro Phe Ser Phe Asp Val Ser 165 170 175Val Trp Glu Leu Phe Trp Pro Leu Leu Asn Gly Ala Arg Leu Val Phe 180 185 190Ala Lys Pro Asn Gly His Lys Asp Ala Ser Tyr Leu Val Asn Leu Ile 195 200 205Gln Glu Gln Gln Val Thr Thr Leu His Phe Val Ser Ser Met Leu Gln 210 215 220Leu Phe Leu Thr Glu Lys Asp Val Glu Lys Cys Asn Ser Leu Lys Arg225 230 235 240Val Ile Cys Ser Gly Glu Ala Leu Ser Leu Glu Leu Gln Glu Arg Phe 245 250 255Phe Ala Arg Leu Val Cys Glu Leu His Asn Leu Tyr Gly Pro Thr Glu 260 265

270Ala Ala Ile His Val Thr Phe Trp Gln Cys Gln Ser Asp Ser Asn Leu 275 280 285Lys Thr Val Pro Ile Gly Arg Pro Ile Ala Asn Ile Gln Ile Tyr Ile 290 295 300Leu Asp Ser His Leu Gln Pro Val Pro Ile Gly Val Ile Gly Glu Leu305 310 315 320His Ile Gly Gly Val Gly Leu Ala Arg Gly Tyr Leu Asn Arg Pro Glu 325 330 335Leu Thr Ala Glu Lys Phe Ile Ala Asn Pro Phe Ala Ser Leu Asp Pro 340 345 350Pro Leu Thr Pro Leu Asp Lys Gly Gly Asp Glu Ser Tyr Lys Thr Phe 355 360 365Lys Lys Gly Gly Glu Gln Pro Ser Arg Leu Tyr Lys Thr Gly Asp Leu 370 375 380Ala Arg Tyr Leu Pro Asp Gly Lys Ile Glu Tyr Leu Gly Arg Ile Asp385 390 395 400Asn Gln Val Lys Ile Arg Gly Phe Arg Ile Glu Leu Gly Glu Ile Glu 405 410 415Ala Val Leu Leu Ser His Pro Gln Val Arg Glu Ala Val Val 420 425 430965PRTMicrocystis aeruginosa 9Glu Ala Ile Ala Ala Ile Phe Gly Gln Val Leu Lys Leu Glu Lys Val1 5 10 15Gly Ile Tyr Asp Asn Phe Phe Glu Ile Gly Gly Asn Ser Leu Gln Ala 20 25 30Thr Gln Val Ile Ser Arg Leu Arg Glu Ser Phe Ala Leu Glu Leu Pro 35 40 45Leu Arg Arg Leu Phe Glu Gln Pro Thr Val Ala Asp Leu Ala Leu Ala 50 55 60Val6510300PRTMicrocystis aeruginosa 10Pro Arg Asp Gly Gln Leu Pro Leu Ser Phe Ala Gln Ser Arg Leu Trp1 5 10 15Phe Leu Tyr Gln Leu Glu Gly Ala Thr Gly Thr Tyr Asn Met Thr Gly 20 25 30Ala Leu Ser Leu Ser Gly Pro Leu Gln Val Glu Ala Leu Lys Gln Ala 35 40 45Leu Arg Thr Ile Ile Gln Arg His Glu Pro Leu Arg Thr Ser Phe Gln 50 55 60Ser Val Asp Gly Val Pro Val Gln Val Ile Asn Pro Tyr Pro Val Trp65 70 75 80Glu Leu Ala Met Val Asp Leu Thr Gly Lys Glu Thr Glu Ala Glu Lys 85 90 95Leu Ala Tyr Gln Glu Ser Gln Thr Pro Phe Asp Leu Thr Asn Ser Pro 100 105 110Leu Leu Arg Val Thr Leu Leu Lys Leu Gln Pro Glu Lys His Ile Leu 115 120 125Leu Ile Asn Met His His Ile Ile Ser Asp Gly Trp Ser Ile Gly Val 130 135 140Phe Val Arg Glu Leu Ser His Leu Tyr Arg Ala Phe Val Ala Gly Lys145 150 155 160Glu Pro Thr Leu Pro Ile Leu Pro Ile Gln Tyr Ala Asp Phe Ala Val 165 170 175Trp Gln Arg Glu Trp Leu Gln Gly Lys Val Leu Ala Ala Gln Leu Glu 180 185 190Tyr Trp Lys Arg Gln Leu Ala Asp Ala Pro Pro Leu Leu Glu Leu Pro 195 200 205Thr Asp Arg Pro Arg Pro Ala Ile Gln Thr Phe Gln Gly Lys Thr Glu 210 215 220Arg Phe Glu Leu Asp Arg Lys Leu Thr Gln Glu Leu Lys Ala Leu Ser225 230 235 240Gln Gln Ser Gly Cys Thr Leu Phe Met Thr Leu Leu Ala Ala Phe Gly 245 250 255Val Val Leu Ser Arg Tyr Ser Gly Gln Thr Asp Ile Val Ile Gly Ser 260 265 270Ala Ile Ala Asn Arg Asn Arg Gln Asp Ile Glu Gly Leu Ile Gly Phe 275 280 285Phe Val Asn Thr Leu Ala Leu Arg Leu Asp Leu Ser 290 295 30011409PRTMicrocystis aeruginosa 11Thr Tyr Gly Glu Leu Asn His Arg Ala Asn Gln Leu Ala His Tyr Leu1 5 10 15Gln Ser Leu Gly Val Thr Lys Glu Gln Ile Val Gly Val Tyr Leu Glu 20 25 30Arg Ser Leu Glu Met Ala Ile Gly Phe Leu Gly Ile Leu Lys Ala Gly 35 40 45Ala Ala Tyr Leu Pro Ile Asp Pro Glu Tyr Pro Ser Val Arg Thr Gln 50 55 60Phe Ile Leu Glu Asp Thr Gln Leu Ser Leu Leu Leu Thr Gln Ala Glu65 70 75 80Leu Ala Glu Lys Leu Pro Gln Thr Gln Asn Lys Ile Ile Cys Leu Asp 85 90 95Arg Asp Trp Pro Glu Ile Thr Ser Gln Pro Gln Thr Asn Leu Asp Leu 100 105 110Lys Ile Glu Pro Asn Asn Leu Ala Tyr Cys Ile Tyr Thr Ser Gly Ser 115 120 125Thr Gly Gln Pro Lys Gly Val Leu Ile Ser His Gln Ala Leu Leu Asn 130 135 140Leu Ile Phe Trp His Gln Gln Ala Phe Glu Ile Gly Pro Leu His Lys145 150 155 160Ala Thr Gln Val Ala Gly Ile Ala Phe Asp Ala Thr Val Trp Glu Leu 165 170 175Trp Pro Tyr Leu Thr Thr Gly Ala Cys Ile Asn Leu Val Pro Gln Asn 180 185 190Ile Leu Leu Ser Pro Thr Asp Leu Arg Asp Trp Leu Leu Asn Arg Glu 195 200 205Ile Thr Met Ser Phe Val Pro Thr Pro Leu Ala Glu Lys Leu Leu Ser 210 215 220Leu Asp Trp Pro Asn His Ser Cys Leu Lys Thr Leu Leu Leu Gly Gly225 230 235 240Asp Lys Leu His Phe Tyr Pro Ala Ala Ser Leu Pro Phe Gln Val Ile 245 250 255Asn Asn Tyr Gly Pro Thr Glu Asn Thr Val Val Ala Thr Ser Gly Leu 260 265 270Val Lys Ser Ser Ser Ser His His Phe Gly Thr Pro Thr Ile Gly Arg 275 280 285Pro Ile Ala Asn Val Gln Ile Tyr Leu Leu Asp Gln Asn Leu Gln Pro 290 295 300Val Pro Ile Gly Val Pro Gly Glu Leu His Leu Gly Gly Ala Gly Leu305 310 315 320Ala Gln Gly Tyr Leu Asn Arg Pro Glu Leu Thr Ala Glu Lys Phe Ile 325 330 335Ala Asn Pro Phe Asp Pro Pro Leu Thr Pro Leu Asp Lys Gly Gly Glu 340 345 350Glu Pro Ser Lys Leu Tyr Lys Thr Gly Asp Leu Ala Arg Tyr Leu Pro 355 360 365Asp Gly Asn Val Glu Phe Leu Gly Arg Ile Asp Asn Gln Val Lys Ile 370 375 380Arg Gly Phe Arg Ile Glu Thr Gly Glu Ile Glu Ala Val Leu Ser Gln385 390 395 400Tyr Phe Leu Leu Ala Glu Ser Val Val 4051265PRTMicrocystis aeruginosa 12Ala Gln Leu Thr Gln Ile Trp Ser Glu Val Leu Gly Leu Glu Arg Ile1 5 10 15Gly Val Lys Asp Asn Phe Phe Glu Leu Gly Gly His Ser Leu Leu Ala 20 25 30Thr Gln Val Leu Ser Arg Ile Asn Ser Ala Phe Gly Leu Asp Leu Ser 35 40 45Val Gln Ile Met Phe Glu Ser Pro Thr Ile Ala Gly Ile Ala Gly Tyr 50 55 60Ile6513305PRTMicrocystis aeruginosa 13Ala Arg Asp Gly His Leu Pro Leu Ser Phe Ala Gln Gln Arg Leu Trp1 5 10 15Phe Leu His Tyr Leu Ser Pro Asp Ser Arg Ser Tyr Asn Thr Leu Glu 20 25 30Ile Leu Gln Ile Asp Gly Asn Leu Asn Leu Thr Val Leu Glu Gln Ser 35 40 45Leu Gly Glu Leu Ile Asn Arg His Glu Ile Phe Arg Thr Thr Phe Pro 50 55 60Thr Val Ser Gly Glu Pro Ile Gln Lys Ile Ala Leu Pro Ser Arg Phe65 70 75 80Gln Leu Lys Val Asp Asn Tyr Gln Asp Leu Asp Glu Asn Glu Gln Ser 85 90 95Ala Lys Ile Gln Gln Val Ala Glu Leu Glu Ala Gly Gln Ala Phe Asp 100 105 110Leu Thr Val Gly Pro Leu Ile Gln Phe Lys Leu Leu Gln Leu Ser Pro 115 120 125Gln Lys Ser Val Leu Leu Leu Lys Met His His Ile Ile Tyr Asp Gly 130 135 140Trp Ser Phe Gly Ile Leu Ile Arg Glu Leu Ser Ala Leu Tyr Glu Ala145 150 155 160Phe Leu Lys Asn Leu Ala Asn Pro Leu Pro Ala Leu Ser Ile Gln Tyr 165 170 175Ala Asp Phe Ala Val Trp Gln Arg Gln Tyr Leu Ser Gly Glu Val Leu 180 185 190Asp Lys Gln Leu Asn Tyr Trp Gln Glu Gln Leu Ala Thr Val Ser Pro 195 200 205Val Leu Thr Leu Pro Thr Asp Arg Pro Arg Pro Ala Ile Gln Thr Phe 210 215 220Gln Gly Gly Val Glu Arg Phe Gln Leu Asp Gln Asn Val Thr Gln Gly225 230 235 240Leu Lys Lys Leu Gly Gln Asp Gln Val Ala Thr Leu Phe Met Thr Leu 245 250 255Leu Ala Gly Phe Gly Val Leu Leu Ser Arg Tyr Ser Gly Gln Ser Asp 260 265 270Leu Met Val Gly Ser Pro Ile Ala Asn Arg Asn Gln Ala Ala Ile Glu 275 280 285Pro Leu Ile Gly Phe Phe Ala Asn Thr Leu Ala Leu Arg Ile Asn Leu 290 295 300Ser30514395PRTMicrocystis aeruginosa 14Thr Tyr Thr Glu Leu Asn His Arg Ala Asn Gln Leu Ala His Tyr Leu1 5 10 15Gln Thr Leu Gly Val Gly Ala Glu Val Leu Val Gly Ile Ser Leu Glu 20 25 30Arg Ser Leu Glu Met Ile Ile Gly Leu Leu Gly Ile Leu Lys Val Gly 35 40 45Gly Ala Tyr Leu Pro Leu Asp Pro Asp Tyr Pro Thr Glu Arg Leu Gln 50 55 60Leu Met Leu Glu Asp Ser Gln Val Pro Phe Leu Ile Thr His Ser Ser65 70 75 80Leu Leu Ala Lys Leu Pro Pro Ser Gln Ala Thr Leu Ile Cys Leu Asp 85 90 95His Ile Gln Glu Gln Ile Ser Gln Tyr Ser Pro Asp Asn Leu Gln Cys 100 105 110Gln Leu Thr Pro Ala Asn Leu Ala Asn Val Ile Tyr Thr Ser Gly Ser 115 120 125Thr Gly Lys Pro Lys Gly Val Met Val Glu His Lys Gly Leu Val Asn 130 135 140Leu Ala Leu Ala Gln Ile Gln Ser Phe Ala Val Asn His Asn Ser Arg145 150 155 160Val Leu Gln Phe Ala Ser Phe Ser Phe Asp Ala Cys Ile Ser Glu Ile 165 170 175Leu Met Thr Phe Gly Ser Gly Ala Thr Leu Tyr Leu Ala Gln Lys Asp 180 185 190Ala Leu Leu Pro Gly Gln Pro Leu Ile Glu Arg Leu Val Lys Asn Gly 195 200 205Ile Thr His Val Thr Leu Pro Pro Ser Ala Leu Val Val Leu Pro Gln 210 215 220Glu Pro Leu Arg Asn Leu Glu Thr Leu Ile Val Ala Gly Glu Ala Cys225 230 235 240Ser Leu Asp Leu Val Lys Gln Trp Ser Ile Asp Arg Asn Phe Phe Asn 245 250 255Ala Tyr Gly Pro Thr Glu Ala Ser Val Cys Ala Thr Ile Gly Gln Cys 260 265 270Tyr Gln Asp Asp Leu Lys Val Thr Ile Gly Lys Ala Ile Ala Asn Val 275 280 285Gln Ile Tyr Ile Leu Asp Ala Phe Leu Gln Pro Val Pro Val Gly Val 290 295 300Ser Gly Glu Leu Tyr Ile Gly Gly Val Gly Val Ala Arg Gly Tyr Leu305 310 315 320Asn Arg Pro Glu Leu Thr Gln Glu Lys Phe Ile Ala Asn Pro Phe Ser 325 330 335Asn Asp Pro Asp Ser Arg Leu Tyr Lys Thr Gly Asp Leu Ala Arg Tyr 340 345 350Leu Pro Asp Gly Asn Ile Glu Tyr Leu Gly Arg Ile Asp Asn Gln Val 355 360 365Lys Ile Arg Gly Phe Arg Ile Glu Leu Gly Glu Ile Glu Ala Val Leu 370 375 380Ser Gln Cys Pro Asp Val Gln Asn Thr Ala Val385 390 3951565PRTMicrocystis aeruginosa 15Glu Ile Leu Ala Gln Ile Trp Gly Gln Val Leu Lys Ile Glu Arg Val1 5 10 15Ser Arg Glu Asp Asn Phe Phe Glu Leu Gly Gly His Ser Leu Leu Ala 20 25 30Thr Gln Val Met Ser Arg Leu Arg Glu Thr Phe Gln Val Glu Leu Pro 35 40 45Leu Arg Ser Leu Phe Thr Ala Pro Thr Ile Ala Glu Leu Ala Leu Thr 50 55 60Ile6516299PRTMicrocystis aeruginosa 16Asn Asp Ser Ala Asn Leu Pro Leu Ser Phe Ala Gln Gln Arg Leu Trp1 5 10 15Phe Leu Asp Gln Leu Glu Pro Asn Ser Ala Phe Tyr His Val Gly Gly 20 25 30Ala Val Arg Leu Glu Gly Thr Leu Asn Ile Thr Ala Leu Glu Gln Ser 35 40 45Leu Lys Glu Ile Ile Asn Arg His Glu Ala Leu Arg Thr Asn Phe Ile 50 55 60Thr Ile Asp Gly Gln Ala Thr Gln Ile Ile His Pro Thr Ile Asn Trp65 70 75 80Arg Leu Ser Val Val Asp Cys Gln Asn Leu Thr Asp Thr Gln Ser Leu 85 90 95Glu Ile Ala Glu Ala Glu Lys Pro Phe Asn Leu Ala Gln Asp Cys Leu 100 105 110Phe Arg Ala Thr Leu Phe Val Arg Ser Pro Leu Glu Tyr His Leu Leu 115 120 125Val Thr Met His His Ile Val Ser Asp Gly Trp Ser Ile Gly Val Phe 130 135 140Phe Gln Glu Leu Thr His Leu Tyr Ala Val Tyr Asn Gln Gly Leu Pro145 150 155 160Ser Ser Leu Thr Pro Ile Lys Ile Gln Tyr Ala Asp Phe Ala Val Trp 165 170 175Gln Arg Asn Trp Leu Gln Gly Glu Ile Leu Ser Asn Gln Leu Asn Tyr 180 185 190Trp Arg Glu Gln Leu Ala Asn Ala Pro Ala Phe Leu Pro Leu Pro Thr 195 200 205Asp Arg Pro Arg Pro Ala Ile Gln Thr Phe Ile Gly Ser His Gln Glu 210 215 220Phe Lys Leu Ser Gln Pro Leu Ser Gln Lys Leu Asn Gln Leu Ser Gln225 230 235 240Lys His Gly Val Thr Leu Phe Met Thr Leu Leu Ala Ala Phe Ala Thr 245 250 255Leu Leu Tyr Arg Tyr Thr Gly Gln Ala Asp Ile Leu Val Gly Ser Pro 260 265 270Ile Ala Asn Arg Asn Arg Lys Glu Ile Glu Gly Leu Ile Gly Phe Phe 275 280 285Val Asn Thr Leu Val Leu Arg Leu Ser Leu Asp 290 29517415PRTMicrocystis aeruginosa 17Thr Tyr Ala Glu Leu Asn His Gln Ala Asn Gln Leu Val His Tyr Leu1 5 10 15Gln Thr Leu Gly Ile Gly Pro Glu Val Leu Val Ala Ile Ser Val Glu 20 25 30Arg Ser Leu Glu Met Ile Ile Gly Leu Leu Ala Ile Leu Lys Ala Cys 35 40 45Gly Ala Tyr Leu Pro Leu Ala Pro Asp Tyr Pro Thr Glu Arg Leu Gln 50 55 60Phe Met Leu Glu Asp Ser Gln Ala Ser Phe Leu Ile Thr His Ser Ser65 70 75 80Leu Leu Glu Lys Leu Pro Ser Ser Gln Ala Thr Leu Ile Cys Leu Asp 85 90 95His Ile Gln Glu Gln Ile Ser Gln Tyr Ser Pro Asp Asn Leu Gln Ser 100 105 110Glu Leu Thr Pro Ser Asn Leu Ala Asn Val Ile Tyr Thr Ser Gly Ser 115 120 125Thr Gly Lys Pro Lys Gly Val Met Val Glu His Arg Gly Leu Val Asn 130 135 140Leu Ala Ser Ser Gln Ile Gln Ser Phe Ala Val Lys Asn Asn Ser Arg145 150 155 160Val Leu Gln Phe Ala Ser Phe Ser Phe Asp Ala Cys Ile Ser Glu Ile 165 170 175Leu Met Thr Phe Gly Ser Gly Ala Thr Leu Tyr Leu Ala Gln Lys Asn 180 185 190Asp Leu Leu Pro Gly Gln Pro Leu Met Glu Arg Leu Glu Lys Asn Lys 195 200 205Ile Thr His Val Thr Leu Pro Pro Ser Ala Leu Ala Val Leu Pro Lys 210 215 220Lys Pro Leu Pro Asn Leu Gln Thr Leu Ile Val Ala Gly Glu Ala Cys225 230 235 240Pro Leu Asp Leu Val Lys Gln Trp Ser Val Gly Arg Asn Phe Phe Asn 245 250 255Ala Tyr Gly Pro Thr Glu Thr Ser Val Cys Ala Thr Ile Gly Gln Cys 260 265 270Tyr Gln Asp Asp Leu Lys Val Thr Ile Gly Lys Ala Ile Ala Asn Val 275 280 285Gln Ile Tyr Ile Leu Asp Ala Phe Leu Gln Pro Val Pro Ile Gly Val 290 295 300Pro Gly Glu Leu Tyr Ile Gly Gly Val Gly Val Ala Arg Gly Tyr Leu305 310 315 320Asn Arg Pro Glu Leu Thr Ala Glu Arg Phe Ile Pro Asn Pro Phe Asp 325 330 335Pro Pro Leu Thr Pro Leu Lys Lys Gly Gly Asp Lys Ser Tyr Glu Thr 340 345 350Phe Lys Lys Gly Glu Glu Gln Pro Ser Lys Leu Tyr Lys Thr Gly Asp 355 360 365Leu Ala Arg Tyr Leu Pro Asp Gly Asn Ile Glu Tyr Leu Gly Arg Ile 370

375 380Asp Asn Gln Val Lys Ile Arg Gly Phe Arg Ile Glu Leu Gly Glu Ile385 390 395 400Glu Ala Val Leu Ser Gln Cys Pro Asp Val Gln Asn Thr Ala Val 405 410 4151865PRTMicrocystis aeruginosa 18Leu Gln Leu Ala Gln Ile Trp Ser Glu Ile Leu Gly Ile Asn Asn Ile1 5 10 15Gly Ile Gln Glu Asn Phe Phe Glu Leu Gly Gly His Ser Leu Leu Ala 20 25 30Val Ser Leu Ile Asn Arg Ile Glu Gln Lys Leu Asp Lys Arg Leu Pro 35 40 45Leu Thr Ser Leu Phe Gln Asn Gly Thr Ile Ala Ser Leu Ala Gln Leu 50 55 60Leu6519227PRTMicrocystis aeruginosa 19Thr Pro Phe Phe Ala Val His Pro Ile Gly Gly Asn Val Leu Cys Tyr1 5 10 15Ala Asp Leu Ala Arg Asn Leu Gly Thr Lys Gln Pro Phe Tyr Gly Leu 20 25 30Gln Ser Leu Gly Leu Ser Glu Leu Glu Lys Thr Val Ala Ser Ile Glu 35 40 45Glu Met Ala Met Ile Tyr Ile Glu Ala Ile Gln Thr Val Gln Ala Ser 50 55 60Gly Pro Tyr Tyr Leu Gly Gly Trp Ser Met Gly Gly Val Ile Ala Phe65 70 75 80Glu Ile Ala Gln Gln Leu Leu Thr Gln Gly Gln Glu Val Ala Leu Leu 85 90 95Ala Leu Ile Asp Ser Tyr Ser Pro Ser Leu Leu Asn Ser Val Asn Arg 100 105 110Glu Lys Asn Ser Ala Asn Ser Leu Thr Glu Glu Phe Asn Glu Asp Ile 115 120 125Asn Ile Ala Tyr Ser Phe Ile Arg Asp Leu Ala Ser Ile Phe Asn Gln 130 135 140Glu Ile Ser Phe Ser Gly Ser Glu Leu Ala His Phe Thr Ser Asp Glu145 150 155 160Leu Leu Asp Lys Phe Ile Thr Trp Ser Gln Glu Thr Asn Leu Leu Pro 165 170 175Ser Asp Phe Gly Lys Gln Gln Val Lys Thr Trp Phe Lys Val Phe Gln 180 185 190Ile Asn His Gln Ala Leu Ser Ser Tyr Ser Pro Lys Thr Tyr Leu Gly 195 200 205Arg Ser Val Phe Leu Gly Ala Glu Asp Ser Ser Ile Lys Asn Pro Gly 210 215 220Trp His Gln22520345PRTMicrocystis aeruginosa 20Phe Ser Leu Tyr Tyr Phe Gly Ser Tyr Glu Ala Glu Phe Asn Pro Asn1 5 10 15Lys Tyr Asn Leu Leu Phe Glu Gly Ala Lys Phe Gly Asp Arg Ala Gly 20 25 30Phe Thr Ala Leu Trp Ile Pro Glu Arg His Phe His Ala Phe Gly Gly 35 40 45Phe Ser Pro Asn Pro Ser Val Leu Ala Ala Ala Leu Ala Arg Glu Thr 50 55 60Lys Gln Ile Gln Leu Arg Ser Gly Ser Val Val Leu Pro Leu His Asn65 70 75 80Ser Ile Arg Val Ala Glu Glu Trp Ala Val Val Asp Asn Leu Ser Gln 85 90 95Gly Arg Val Gly Ile Ala Phe Ala Ser Gly Trp His Pro Gln Asp Phe 100 105 110Val Leu Ala Pro Gln Ser Phe Gly Gln His Arg Glu Leu Met Phe Gln 115 120 125Glu Ile Glu Thr Val Gln Lys Leu Trp Arg Gly Glu Ala Ile Thr Val 130 135 140Pro Asp Gly Lys Gly Gln Arg Val Glu Val Lys Thr Tyr Pro Gln Pro145 150 155 160Met Gln Ser Gln Leu Pro Ser Trp Ile Thr Ile Val Asn Asn Pro Asp 165 170 175Thr Tyr Ile Arg Ala Gly Ala Ile Gly Ala Asn Ile Leu Thr Asn Leu 180 185 190Met Gly Gln Ser Val Glu Asp Leu Ala Arg Asn Ile Ala Leu Tyr Arg 195 200 205Gln Ser Leu Ala Glu His Gly Tyr Asp Pro Ala Ser Gly Thr Val Thr 210 215 220Val Leu Leu His Thr Phe Val Gly Lys Asp Leu Glu Gln Val Arg Glu225 230 235 240Gln Ala Arg Gln Pro Phe Gly Gln Tyr Leu Thr Ser Ser Val Gly Leu 245 250 255Leu Gln Asn Met Val Lys Ser Gln Gly Met Lys Val Asp Phe Glu Gln 260 265 270Leu Arg Asp Glu Asp Arg Asp Phe Leu Leu Ala Ser Ala Tyr Lys Arg 275 280 285Tyr Thr Glu Thr Ser Ala Leu Ile Gly Thr Pro Glu Ser Cys Arg Gln 290 295 300Ile Ile Asp His Leu Gln Ser Ile Gly Val Asp Glu Val Ala Cys Phe305 310 315 320Ile Asp Phe Gly Val Asp Glu Gln Thr Val Leu Ala Asn Leu Pro Tyr 325 330 335Leu Gln Ser Leu Lys Asp Leu Tyr Gln 340 3452133PRTMicrocystis aeruginosa 21Ile Asp Pro Pro Leu Thr Pro Leu Asp Lys Gly Ile Asp Pro Pro Leu1 5 10 15Thr Pro Leu Asp Lys Gly Ile Asp Pro Pro Leu Thr Pro Leu Asp Lys 20 25 30Gly2277PRTMicrocystis aeruginosa 22Pro Tyr Gln Gly Gly Leu Gly Gly Asp Gln Ser Pro Tyr Gln Gly Gly1 5 10 15Leu Gly Gly Asp Gln Ser Pro Tyr Gln Gly Gly Leu Gly Gly Asp Gln 20 25 30Ser Pro Tyr Gln Gly Gly Leu Gly Gly Asp Gln Ser Pro Tyr Gln Gly 35 40 45Gly Leu Gly Gly Asp Gln Ser Pro Tyr Gln Gly Glu Leu Gly Gly Asp 50 55 60Gln Ser Pro Tyr Gln Gly Gly Leu Gly Gly Asp Gln Val65 70 7523382PRTMicrocystis aeruginosa 23Pro Ala Ser Glu Met Arg Glu Trp Val Glu Asn Thr Val Ser Arg Ile1 5 10 15Leu Ala Phe Gln Pro Glu Arg Gly Leu Glu Ile Gly Cys Gly Thr Gly 20 25 30Leu Leu Leu Ser Arg Val Ala Lys His Cys Leu Glu Tyr Trp Ala Thr 35 40 45Asp Tyr Ser Gln Gly Ala Ile Gln Tyr Val Glu Arg Val Cys Asn Ala 50 55 60Val Glu Gly Leu Glu Gln Val Lys Leu Arg Cys Gln Met Ala Asp Asn65 70 75 80Phe Glu Gly Ile Ala Leu His Gln Phe Asp Thr Val Val Leu Asn Ser 85 90 95Ile Ile Gln Tyr Phe Pro Ser Val Asp Tyr Leu Leu Gln Val Leu Glu 100 105 110Gly Ala Ile Asn Val Ile Gly Glu Arg Gly Gln Ile Phe Val Gly Asp 115 120 125Val Arg Ser Leu Pro Leu Leu Glu Pro Tyr His Ala Ala Val Gln Leu 130 135 140Ala Gln Ala Ser Asp Ser Lys Thr Val Glu Gln Trp Gln Gln Gln Val145 150 155 160Arg Gln Ser Val Ala Gly Glu Glu Glu Leu Val Ile Asp Pro Thr Leu 165 170 175Phe Leu Ala Leu Lys Gln His Phe Pro Gln Ile Ser Trp Val Glu Ile 180 185 190Gln Pro Lys Arg Gly Val Ala His Asn Glu Leu Thr Gln Phe Arg Tyr 195 200 205Asp Val Thr Leu His Leu Glu Thr Ile Asn Asn Gln Ala Leu Leu Ser 210 215 220Gly Asn Pro Thr Val Ile Thr Trp Leu Asn Trp Gln Leu Asp Gln Leu225 230 235 240Ser Leu Thr Gln Ile Lys Asp Lys Leu Leu Thr Asp Lys Pro Glu Leu 245 250 255Trp Gly Ile Arg Gly Ile Pro Asn Gln Arg Val Glu Glu Ala Leu Lys 260 265 270Ile Trp Glu Trp Val Glu Asn Ala Pro Asp Val Glu Thr Val Glu Gln 275 280 285Leu Lys Lys Leu Leu Lys Gln Gln Val Asp Thr Gly Ile Asn Pro Glu 290 295 300Gln Val Trp Gln Leu Ala Glu Ser Leu Gly Tyr Thr Ala His Leu Ser305 310 315 320Trp Trp Glu Ser Ser Gln Asp Gly Ser Phe Asp Val Ile Phe Gln Arg 325 330 335Asn Ser Glu Ala Glu Asp Ser Lys Lys Leu Thr Leu Ser Lys Leu Ala 340 345 350Phe Trp Asp Glu Lys Pro Phe Lys Ile Lys Pro Trp Ser Asp Tyr Thr 355 360 365Asn Asn Pro Leu Arg Gly Lys Leu Val Gln Lys Leu Ile Pro 370 375 38024270PRTMicrocystis aeruginosa 24Met Thr Asn Tyr Gly Lys Ser Met Ser His Tyr Tyr Asp Leu Val Val1 5 10 15Gly His Lys Gly Tyr Asn Lys Asp Tyr Ala Thr Glu Val Glu Phe Ile 20 25 30His Asn Leu Val Glu Thr Tyr Thr Thr Glu Ala Lys Ser Ile Leu Tyr 35 40 45Leu Gly Cys Gly Thr Gly Tyr His Ala Ala Leu Leu Ala Gln Lys Gly 50 55 60Tyr Ser Val His Gly Val Asp Leu Ser Ala Glu Met Leu Glu Gln Ala65 70 75 80Lys Thr Arg Ile Glu Asp Glu Thr Ile Ala Ser Asn Leu Ser Phe Ser 85 90 95Gln Gly Asn Ile Cys Glu Ile Arg Leu Asn Arg Gln Phe Asn Val Val 100 105 110Leu Ala Leu Phe His Val Val Asn Tyr Gln Thr Thr Asn Gln Asn Leu 115 120 125Leu Ala Thr Phe Ala Thr Val Lys Asn His Leu Lys Ala Gly Gly Ile 130 135 140Phe Ile Cys Asp Val Ser Tyr Gly Ser Tyr Val Leu Gly Glu Phe Lys145 150 155 160Ser Arg Pro Thr Ala Ser Ile Leu Arg Leu Glu Asp Asn Ser Asn Gly 165 170 175Asn Glu Val Thr Tyr Ile Ser Glu Leu Asn Phe Leu Thr His Glu Asn 180 185 190Ile Val Glu Val Thr His Asn Leu Trp Val Thr Asn Gln Glu Asn Gln 195 200 205Leu Leu Glu Asn Ser Arg Glu Thr His Leu Gln Arg Tyr Leu Phe Lys 210 215 220Pro Glu Val Glu Leu Leu Ala Asp Ala Cys Glu Leu Thr Val Leu Asp225 230 235 240Ala Met Pro Trp Leu Glu Gln Arg Pro Leu Thr Asn Ile Pro Cys Pro 245 250 255Ser Val Cys Phe Val Ile Gly His Lys Thr Thr His Ser Ala 260 265 270251743DNAMicrocystis aeruginosa 25atgactatta actatggtga tctgcaagaa ccctttaata aattctcaac cctagttgaa 60ttactccgtt atcgggcaag cagtcaaccg gaacgcctcg cctatatttt tctgcgagac 120ggagaaatcg aagaagctcg tttaacctat ggggaactgg atcaaaaggc tagggcgatc 180gccgcttatc tacaatcctt agaagccgag ggcgaaaggg gtttactgct ctatccccca 240ggactagatt ttatttcagc tttttttggt tgtttatatg cgggagtcgt tgccattccc 300gcctatccac cccgacggaa tcaaaacctt ttgcgtttac aggcgattat tgccgattct 360caagcccgat ttaccttcac caatgccgct ctatttccca gtttaaaaaa ccaatgggct 420aaagaccctg aattaggagc aatggaatgg attgttaccg atgaaattga ccatcacctc 480agggaggatt ggctagaacc aaccctcgaa aaaaacagtc tcgcttttct acaatacacc 540tctggttcaa cgggaactcc aaagggagta atggtcagtc accataattt gttgattaat 600tcagccgatt tagatcgtgg ttggggccat gatcaagata gcgtaatggt cacttggcta 660ccgaccttcc atgatatggg tctgatttat ggggttattc agcctttgta caaaggattt 720ctttgttaca tgatgtcccc tgccagcttt atggaacgac cgttacgttg gttacaggcc 780ctttctgata aaaaagcaac ccatagtgcg gcccccaact ttgcctacga tctttgtgtg 840cggaaaattc cccctgaaaa acgggctacg ttagacttaa gccattggtg catggcctta 900aatggggccg aacccgtcag agcggaggta cttaaaaagt ttgcggaggc ttttcaagtt 960tctggtttca aagccacagc cctttgtcct ggctacggtt tagcagaagc caccctgaaa 1020gttacggcgg ttagttatga cagtccccct tacttttatc ccgttcaggc taatgcttta 1080gaaaaaaata agattgtggg agccactgaa accgatacca atgtgcagac cctcgtgggc 1140tgcggctgga caacgattga tactcaaatc gtcattgtca atcctgaaac cctgaaacct 1200tgctcccctg aaattgtcgg cgaaatttgg gtatcaggtt caacaatcgc ccaaggctat 1260tggggaaaac ctcaagagac tcaggaaacc tttcaagctt atttggcaga tacaggagcc 1320gggccttttc tgcgaacagg agacttgggc ttcattaaag atggtgaatt gtttatcaca 1380ggtcggctca aggaaattat tctgattcga ggacgcaata attatcccca ggatattgaa 1440ttaaccgtcc aaaatagtca tcccgctctg cgtcccagtt gtggggctgc ttttaccgtt 1500gaaaataagg gcgaagaaaa gctcgtggtc gttcaggaag tggagcgcac ctggctccgt 1560aaggtagata tagatgaggt aaaaagagcc attcgtaaag ctgttgtcca ggaatatgat 1620ttacaggttt atgcgatcgc gctgatcagg actggcagtt taccaaaaac ctctagcggt 1680aaaattcagc gtcgtagctg tcgggccaaa tttttagagg gaagcctgga aattttgggc 1740taa 174326267DNAMicrocystis aeruginosa 26atgtccacag aaatcccaaa cgacaaaaaa caaccgaccc taacgaaaat tcaaaactgg 60ttagtggctt acatgacaga gatgatggaa gtggacgaag atgagattga tctgagcgtt 120ccctttgatg aatatggtct cgattcttct atggcagttg ctttgatcgc tgatctagag 180gattggttac gacgagattt acatcgcacc ctgatctacg attatccaac tctagaaaag 240ttggctaaac aggttagtga accctga 267271293DNAMicrocystis aeruginosa 27atggaaccca tcgcaattat tggtcttgct tgccgctttc caggggctga caatccagaa 60gctttctggc aactcatgcg aaatggggtg gatgcgatcg ccgatattcc tcctgaacgt 120tgggatattg agcgtttcta cgatcccaca cctgccactg ccaagaagat gtatagtcgc 180cagggcggtt ttctaaaaaa tgtcgatcaa tttgaccctc aatttttccg aatttctccc 240ctagaagcca cctatctaga tcctcaacaa agactgctac tggaagtcac ctgggaagcc 300ttagaaaatg ctgccattgt gcctgaaacc ttagctggta gccaatcagg ggtttttatt 360ggtatcagtg atgtggatta tcatcgtttg gcttatcaaa gtcctactaa cttgaccgcc 420tatgtgggta caggcaacag caccagtatt gcggctaacc gtttatcata tctgtttgat 480ttgcgtggcc ccagtttggc cgtagatacc gcttgctctt cttccctcgt cgccgttcac 540ttggcctgtc agagtttgca aagtcaagaa tcgaacctct gcttagtggg gggagttaat 600ctcattttgt cgccagagac aaccgttgtt ttttcccaag cgagaatgat cgcccccgac 660agtcgttgta aaacctttga cgcgagggcc gatggttatg tgcgctcgga aggctgtgga 720gtagtcgtac ttaaacgtct tagggatgcc attcaggacg gcgatcgcat tttagcagtg 780attgaaggtt ccgcggtgaa tcaggatggt ttaagtaatg gactcacggc ccctaatggc 840cctgctcaac aggcggtgat tcgtcaggcc ctggcaaatg cccaggtaaa accggcccag 900attagctatg tcgaagccca tggcacgggg acagaattgg gggatccgat cgaagttaaa 960tctctgaaag cggttttggg tgaaaagcga tcgctcgatc aaacctgttg gctcggttct 1020gtgaaaacca acattggtca tttagaagcg gcggcgggaa tggcgggtct gattaaagtc 1080gttctctgcc tacaacacca agaaattccc cctaatctcc actttcaaac ccttaatccc 1140tatatttccc tagctgacac agcttttgcg attcccactc aggctcaacc ctggcggacc 1200aaacccccta agtctggtga aaacggtgtc gaacgacgtt tagcaggact cagttccttt 1260gggtttgggg ggacaaattc ccatgtgatt ctc 129328972DNAMicrocystis aeruginosa 28gtttttctat ttgccggtca aggttctcaa tatgtaggta tgggtcgtca actgtacgaa 60acccaaccca tctttcgcca aaccttggat cgctgtgctg aaatcctgcg accccattta 120gatcaacccc tcttagaaat tctttatcct gctgacccag aagccgaaac agcgagtttt 180tacctagagc agactgccta tacccaaccc actttattcg cattcgagta tgccctagca 240cagttatggc gttcctgggg aatagaaccg gcggcagtaa ttggtcacag tgtcggtgaa 300tatgtggcgg ccaccgttgc cggagcctta agtctagaag aaggattaac gctaattgcc 360aaacgggcaa aactgatgca gtctctcccc aagaatggga caatgatcgc cgtttttgcc 420gcagaagagc gggttaaagc tgttattgag ccttatagga ctgatgtagc gatcgctgct 480gttaatggac cagaaaattt tgttatttca ggaaaagcgc cgattattgc tgagattatc 540attcatttaa cggcagcagg aatagaagtt cgtcctctca aagtttccca tgcttttcac 600tcgcacctgt tggagccaat tttagattcc ttagaacagg aagctgctgc tatttcctac 660caacccctgc aaattccctt agttgctaat ttaacggggg aagttctacc agaaggagca 720acgattgagg ctcgttactg gcgaaatcat gcacgcaacc ctgtacaatt ttatgggagt 780atccaaacgc tgatcgagca gaaattcagt ctttttttag aagttagccc taaaccgact 840ttatctcgat tgggtcaaca atgttgtcca gaaagatcga ccacttggct attttccctc 900gcccctcctc aagaagaaga acaaagccta ctaaatagtt tggcgattct ctatgattcc 960caaggagccg aa 97229204DNAMicrocystis aeruginosa 29atcacattgc aaaccctagt gggaaattta ctgcaattgt cccctgctga tgtcaatgtt 60catacacctt tcctggagat gggggcagat tccattgtca tggttgaggc ggtcagacgg 120attgagaata cctataacgt taaaattgct atgcgtcagt tatttgagga gttatctact 180ttagatgctt tagctactta ttta 204301182DNAMicrocystis aeruginosa 30aaagagatgc tttatcccat tgtggcccaa cgttctcaag gatcaagaat ttgggatgtg 60gacggtaatg aatatattga tatgacgatg gggcaagggg taacgctgtt tgggcatcaa 120ccagacttca ttatgtcggc cctacaaagc caactcactg aaggcattca tctcaatccg 180cgatcgccaa ttgtgggaga agtggccgcc ttaatttgtg aactaacagg agccgaacga 240gcttgttttt gcaactctgg aaccgaagcc gtaatggccg ctattcgtat cgccagggca 300acaacaggtc ggagtaaaat tgccctcttt gaaggctcct atcatggaca tgcggacgga 360acccttttta ggaaccaaat tattgataac caactccact cttttcccct agctctaggc 420gttcccccca gccttagttc cgatgtggtg gtattggact atggcagtgc ggaagctctg 480aactatttac aaacccaggg gcaggattta gcggcggtct tagtagaacc aattcaaagt 540ggcaatcctc tactccaacc ccaacaattt ctccaaagtc tgcgacaaat taccagtcaa 600atgggcattg ccctgatttt tgatgaaatg attacgggtt ttcgatcgca cccaggggga 660gcgcaagctt tatttggagt acaggcggat attgccacct atggcaaagt agttgcggga 720ggaatgccca ttggagttat tgcaggtaag gcccattatc tggacagcat tgacggggga 780atgtggcgtt atggcgataa atcctatcct ggggtggaca gaaccttttt tgggggaacc 840tttaatcagc atccgttagc aatggtagcg gctagggctg tcctgaccca tttaaaggag 900caggggccag gtctgcaaca acaattaact gaacgcactg cggccttagc cgatacactg 960aatcattatt ttcaagccga agaagttcct attaaaatcg aacagtttag ttctttcttc 1020cggtttgccc tctctggcaa tttggattta cttttctatc acatggtaga aaaaggtatt 1080tatgtctggg aatggcgtaa acattttctt tcaaccgccc atacggaagc cgatcttgcc 1140caatttgtcc aagcggttaa ggatagcatc acagaattgc gt 118231900DNAMicrocystis aeruginosa 31gggggggatc aagtccctct caccgaagcc caacgacaac tgtggatttt ggctcaatta 60ggagacaacg gctctgtggc

ctataaccaa tcagtgacat tgcaattaag tggcccatta 120aatcccgtcg caatgaatca agctattcaa caaatcagcg atcgccatga agcgttacga 180accaaaatta atgcccaggg agatagtcaa gaaatcctgc cccaggtcga aattaactgc 240cctatcttag acttcagtct tgaccaagct tcggcccaac agcaagcaga acaatggtta 300aaggaagaaa gtgaaaaacc ctttgatttg agccagggtt ctctcgtgcg ttggcatcta 360ctcaaattag aaccagaatt acatttgtta gtattaacgg cccatcacat tatcagtgac 420ggttggtcaa tgggggtaat ccttcgggaa ttaggagagt tatattcagc caaatgtcag 480ggtgttacgg ctaatcttaa aaccccaaaa cagtttcgag aattgattga atggcaaagc 540cagccaagcc aaggggaaga actgaaaaaa cagcaagcct attggttagc aacccttgcc 600gatccccctg ttttgaattt acccactgac aaacctcgtc cagctttacc cagttaccaa 660gctaatcgtc gaagtctaac tttagatagc caatttacag aaaaactaaa gcaatttagt 720cgtaaacagg gctgtacctt gctgatgacc ctgttatcgg tttataacat tctcgttcat 780cgtttgacgg gacaggatga tattctggtg ggtctgccag cctctggacg ggggctttta 840gatagtgaag gtatggtggg ttattgcacc cattttttac caattcgcag tcaattagca 900321290DNAMicrocystis aeruginosa 32acttacagtg aattaaattg tcgagccaat cagttagcac attatttaca aaaattagga 60gttgggccag aggtcttagt cggtattttg gtcgaacgtt ctttagaaat gattgtcgga 120ttgttaggga ttctcaaggc tgggggagcc tatgtacctc ttgatcctga ctatccccct 180gaacgtcttc aatttatgtt agaagatagt caattttttc tcctcttaac ccaacagcat 240ttactggaat cttttgctca gtcttcagaa acggctactc ccaagattat ttgtttggat 300agcgactacc aaattatttc ccaggcaaag aatattaatc ccgaaaattc agtcacaacg 360agtaatcttg cctatgtaat ttatacctct ggttcgacag gtaaaccgaa gggcgtgatg 420aataatcatg ttgctattag taataaattg ttatgggtac aagacactta tcctctaacc 480acagaagact gtattttaca aaaaactccc tttagttttg atgtttcagt gtgggaatta 540ttctggcccc tactaaacgg agcgcgtttg gtttttgcca agccgaatgg ccataaagat 600gccagttact tagtcaatct gattcaagag caacaagtaa caacgctaca ttttgtgtct 660tctatgctac agctttttct gacagaaaaa gacgtagaaa aatgtaatag tcttaaacga 720gtcatttgta gtggtgaagc cctttcttta gagcttcaag aacgtttttt tgctcgttta 780gtctgtgaat tacacaatct ttatggaccg acagaagccg ctattcatgt cacattttgg 840caatgtcaat cagatagcaa tttgaaaaca gtacccattg gtcggccgat cgctaatatc 900caaatttaca ttttagactc tcatcttcag ccagtaccta ttggagtaat cggagaattg 960cacattggtg gggttggttt ggcgcggggt tatttaaaca ggcctgagtt aacggcggag 1020aaatttattg caaatccgtt tgcttccctt gatccccccc taacccccct tgataagggg 1080ggagatgaga gctataaaac ttttaaaaag gggggagagc aaccatcaag attgtataaa 1140acgggagatt tagctcgtta tttacccgat ggcaagattg agtatctagg gcgcattgat 1200aatcaggtaa aaattcgcgg tttccggatt gaattggggg aaattgaagc ggttttgcta 1260tcccatcccc aggtacgaga agcggtcgtt 129033195DNAMicrocystis aeruginosa 33gaggcgatcg ccgctatttt tggtcaagtt ttaaaactgg aaaaagtggg aatttatgat 60aacttttttg agatcggcgg taattctttg caagccactc aagttatttc acgcttacga 120gaaagttttg ccctagagtt gcccttgcgt cgcctgtttg aacaaccgac tgtggcggat 180ttggctttag ccgta 19534900DNAMicrocystis aeruginosa 34cctcgtgatg gccaattacc cctctccttt gcccagtcgc gactctggtt cttgtatcaa 60ttagaaggag ccacgggaac ctataacatg acaggggcct tgagtttaag cgggcctctt 120caggtcgaag ccctcaaaca agccctaaga actatcattc aacgccatga gccattgcgt 180accagtttcc aatcggttga cggggttcca gtgcaggtga ttaatcccta tcctgtttgg 240gaattagcga tggttgattt gacaggaaag gagacagaag cagaaaaatt ggcctatcag 300gaatcccaaa ccccgtttga tttgaccaat agtcctttgt tgagggtaac gctcctcaaa 360ttacagccag aaaagcatat tttattaatt aatatgcacc atattatttc cgatggctgg 420tcaatcggtg tttttgttcg tgaattgtcc catctctata gggcttttgt ggcgggtaaa 480gaaccaactt taccgatttt accaattcag tatgcggatt ttgccgtttg gcagcgagag 540tggttacagg gtaaggtttt agcggctcaa ttggaatatt ggaagcgaca attggcagat 600gctcctcctc tgctggaact gcccactgat cgccctcgtc ccgcaatcca aacctttcaa 660ggcaagacag aaagatttga gctagatagg aaactgaccc aagaattaaa ggcattaagt 720caacagtcgg gttgtacttt atttatgact ttgttggccg cttttggggt ggttttatcc 780cgttatagtg gccagactga tatcgtcatt ggttcggcga tcgccaaccg taatcgccaa 840gacattgagg ggttaattgg cttttttgtt aacactttgg cgttgaggtt agatttatca 900351227DNAMicrocystis aeruginosa 35acctatggag aattaaacca tcgcgccaat caattagctc actatcttca gtcgttagga 60gtcaccaaag aacaaatcgt cggggtttat ctggaacgtt cccttgaaat ggcgatcgga 120tttttaggta ttctcaaagc aggagccgcc tatctcccca ttgatcctga atatccctca 180gtacgcaccc aatttattct cgaagatacc caactttcgc ttctcttaac tcaggcagaa 240ctggcagaaa aactgcccca gactcaaaac aaaattatct gtctagatcg ggactggcca 300gaaattacct cccaacccca gacaaaccta gacctaaaga tagaacctaa taacctagcc 360tattgcatct atacttctgg ttccacagga caacccaaag gagtactgat ttcccatcaa 420gccctactca acttaatttt ctggcatcaa caagcgtttg agattggccc cttacataaa 480gcgacccaag tggcaggcat tgctttcgat gcaacggttt gggaattgtg gccctatctg 540accacaggag cctgtattaa tctggttccc caaaatattc tgctctcacc gacggattta 600cgggattggt tgcttaaccg agaaattacc atgagttttg tgccaactcc tttagctgaa 660aaattattat ccttggattg gcctaaccat tcttgtctaa aaaccctgtt actgggaggt 720gacaaacttc atttttatcc tgctgcgtcc cttccctttc aggtcattaa caactatggc 780ccaacggaaa atacagtggt tgcgacctct ggactggtca aatcatcttc atctcatcac 840tttggaactc cgactattgg tcgtcccatt gccaacgtcc aaatctattt attagaccaa 900aacctacaac ctgtccccat tggtgtacca ggagaattac atttaggtgg ggcgggttta 960gcgcagggct atctcaatcg tcctgagtta acggctgaaa aatttattgc caatcccttt 1020gatccccccc taacccccct tgataagggg ggagaagaac cctcaaaact ctataaaacg 1080ggagacttag cccgttattt acccgatggc aatgtagaat ttttgggacg tattgacaat 1140caggtaaaaa ttcggggttt tcgcatcgaa actggggaaa tcgaagccgt tttaagtcaa 1200tatttcctat tagctgaaag tgtagtc 122736195DNAMicrocystis aeruginosa 36gctcaactga ctcaaatttg gagtgaagtt ttgggactgg aacgcattgg cgttaaggac 60aacttttttg aattgggagg acattctctt ttggctaccc aggttttatc aagaattaat 120tcagcctttg gacttgatct ttctgtgcaa attatgtttg aatcaccaac gatcgcgggc 180attgcgggtt atatt 19537915DNAMicrocystis aeruginosa 37gctagagacg gtcatttacc cctgtctttt gctcaacaac gtttatggtt tttacattat 60ctttcccctg atagtcgttc ctacaatacc ctggaaatat tgcaaattga tgggaatctc 120aatctgactg tgctagagca gagtttgggg gaattaatta accgccatga aatttttaga 180acaacattcc ccactgtttc aggggaaccg attcagaaaa ttgcacttcc tagtcgtttt 240cagttaaaag ttgataatta tcaagattta gacgaaaatg aacaatcagc taaaattcaa 300caagtagcag aattggaagc aggacaagct tttgatttaa cggtggggcc actgattcag 360tttaagctat tgcaattgag tccccagaag tcggtgctgc tgttgaaaat gcaccatatt 420atctatgatg gctggtcttt tgggattctg attcgggaat tatcggctct atacgaagca 480tttttaaaga acttagccaa tcctctccct gcgttgtcta ttcagtatgc agattttgcg 540gtttggcaac gtcaatatct ctcaggtgag gtcttagata aacaactcaa ttattggcaa 600gaacagttag caacagtctc tcctgttctt actttaccaa cggatagacc ccgtccggcg 660atacaaactt ttcagggagg agttgagcgt tttcaactgg atcaaaatgt cactcaaggt 720cttaaaaagt taggtcaaga tcaggttgca accctgttta tgacgttgtt ggccggtttc 780ggcgttttgc tatctcgtta tagtggtcaa tctgatctga tggtgggttc tccgatcgct 840aatcgtaatc aagcagcgat cgaaccttta attggctttt ttgctaacac tttggcttta 900agaattaatt tatca 915381185DNAMicrocystis aeruginosa 38acatacactg aattaaacca tcgcgctaat cagttagccc attatttaca aactttaggc 60gtgggagcag aagtcttagt cggtatttcc ctagaacgtt ctttagagat gattatcggc 120ttattaggga ttctcaaggt aggtggtgct tatcttcctc ttgatccaga ctatcccact 180gagcgtcttc agttgatgtt agaagacagt caagttcctt ttttgattac ccacagttct 240ttattagcaa aattgcctcc ctctcaagca actctgattt gtttagatca tatccaagag 300cagatttctc aatattctcc agataatctt caatgtcagt taactcctgc caatttagct 360aacgttattt atacctctgg ctctacgggt aagcctaaag gggtgatggt tgaacataaa 420ggtttagtta acttagctct tgctcaaatt caatcttttg cagtcaacca taacagtcgt 480gtgctgcaat ttgcttcttt tagttttgat gcttgtattt cagaaatttt gatgaccttt 540ggttctggag cgacgcttta tcttgcacaa aaagatgctt tattgccagg tcagccatta 600attgaacggt tagtaaagaa tggaattact catgtgactt tgccgccttc agctttagtg 660gttttacccc aggaaccgtt acgcaactta gaaaccttaa ttgtggcggg tgaggcttgt 720tctcttgatt tagtgaaaca atggtcaatc gatagaaact ttttcaatgc ctatgggcca 780acggaagcga gtgtttgtgc cactattgga caatgttatc aagatgattt aaaggtgacg 840attggtaagg cgatcgccaa tgtccaaatt tatattttag atgccttttt acagccggtg 900ccggtgggag tgtcaggaga gttatacatt ggtggagttg gggtggcaag gggctattta 960aatcgtcctg aattaaccca agaaaaattt attgctaatc cttttagtaa cgacccagat 1020tctcggctct ataaaactgg cgacttagcg cgttatttac ccgatggtaa tattgaatat 1080ttaggacgca ttgacaatca ggtaaaaatt cgcggttttc gcattgagtt aggagaaatt 1140gaagcggttc tgagtcaatg tcccgatgtg caaaatacgg cggtg 118539195DNAMicrocystis aeruginosa 39gaaattctgg ctcaaatatg ggggcaagtt ctcaagatag aaagagtcag cagagaagat 60aatttctttg aattgggggg gcattccctt ttagctaccc aggtaatgtc ccgtctgcgt 120gaaacttttc aagtcgaatt acctttgcgt agtctcttta ccgctcccac tattgctgaa 180ttggccctaa caatt 19540897DNAMicrocystis aeruginosa 40aacgacagtg ctaacctccc gttatctttt gctcaacaac gtttatggtt tctggatcaa 60ttagaaccta acagcgcctt ttatcatgta gggggagccg taagactaga aggaacatta 120aatattactg ccttagagca aagcttaaaa gaaattatta atcgtcatga agctttacgc 180acaaatttta taacgattga tggtcaagcc actcaaatta ttcaccctac tattaattgg 240cgattgtctg ttgttgattg tcaaaattta accgacactc aatctctgga aattgcggaa 300gctgaaaagc cctttaatct tgctcaagat tgcttatttc gtgctacttt attcgtgcga 360tcaccgctag aatatcatct actcgtgacc atgcaccata ttgttagcga tggctggtca 420attggagtat tttttcaaga actaactcat ctttacgctg tctataatca gggtttaccc 480tcatctttaa cgcctattaa aatacaatat gctgattttg cggtctggca acggaattgg 540ttacaaggtg aaattttaag taatcaattg aattattggc gcgaacaatt agcaaatgct 600cctgcttttt tacctttacc gacagataga cctaggcccg caatccaaac ttttattggt 660tctcatcaag aatttaaact ttctcagcca ttaagccaaa aattgaatca actaagtcag 720aagcatggag tgactttatt tatgactctc ctggctgctt ttgctacctt actttaccgt 780tatacaggac aagcagatat tttagttggt tctcctattg ctaaccgtaa tcgtaaggaa 840attgagggat taatcggctt ttttgttaat acattagttc tgagattgag tttagat 897411245DNAMicrocystis aeruginosa 41acctatgctg aattaaatca tcaagctaat cagttagtcc attacttaca aactttagga 60attgggccag aggtcttagt cgctatttca gtagaacgtt ctttagaaat gattatcggc 120ttattagcca ttctcaaggc gtgtggtgct tatctccctc ttgctcctga ctatcccact 180gagcgtcttc agttcatgtt agaagatagt caagcttctt ttttgattac ccacagttct 240ttattagaaa aattgccttc ttctcaagcg actctaattt gtttagatca catccaagag 300cagatttctc aatattctcc cgataatctt caaagtgagt taactccttc caatttggct 360aacgttattt acacctctgg ctctacgggt aagcctaaag gggtgatggt tgaacatcgg 420ggcttagtta acttagcgag ttctcaaatt caatcttttg cagtcaaaaa taacagtcgt 480gtactgcaat ttgcttcctt tagttttgat gcttgtattt cagaaatttt gatgaccttt 540ggttctggag cgactcttta tcttgctcaa aaaaatgatt tattgccagg tcagccatta 600atggaaaggt tagaaaagaa taaaattacc catgttactt tacccccttc agctttagct 660gttttaccaa aaaaaccgtt acccaactta caaactttaa ttgtggcggg tgaggcttgt 720cctctggatt tagtcaaaca atggtcagtc ggtagaaact ttttcaatgc ctatggcccg 780acagaaacga gtgtttgtgc cacgattgga caatgttatc aagatgattt aaaggtcacg 840attggtaagg cgatcgctaa tgtccaaatt tatattttgg atgccttttt acaaccagta 900cccatcggag taccagggga attatacatt ggtggagtcg gagttgcgag gggttatcta 960aatcgtcctg aattaacggc ggaaagattt attcctaatc cttttgatcc ccccctaacc 1020ccccttaaaa aggggggaga taagagctat gaaactttta aaaaggggga agagcaacca 1080tcaaaactct ataaaacggg agatttagct cgttatttac ccgatggcaa tattgaatat 1140ttaggacgca ttgacaatca ggtaaaaatt cgcggttttc gcattgagtt aggagaaatt 1200gaagcggttc tgagtcaatg tcccgatgtg caaaatacgg cggtg 124542196DNAMicrocystis aeruginosa 42ttacaattag ctcaaatctg gtcagagatt ttaggcatta ataatattgg tattcaggaa 60aacttctttg aattaggcgg tcattcttta ttagcagtca gtctgatcaa tcgtattgaa 120caaaagttag ataaacgttt accattaacc agtctttttc aaaatggaac catagcaagt 180ctagctcaat tactag 19643681DNAMicrocystis aeruginosa 43actccatttt ttgctgttca tcccattggt ggtaatgtgc tatgttatgc cgatttagct 60cgtaatttag gaacgaaaca gccgttttat ggattacaat cattagggct aagtgaatta 120gaaaaaactg tagcctctat tgaagaaatg gcgatgattt atattgaagc aatacaaact 180gttcaagcct ctggtcccta ctatttagga ggttggtcaa tgggaggagt gatagctttt 240gaaatcgccc aacaattatt gacccaaggt caagaagttg ctttactggc tttaatagat 300agttattctc ccagtttact taattcagtt aatagggaga aaaattctgc taattccctg 360acagaagaat ttaatgaaga tatcaatatt gcctattctt tcatcagaga cttagcaagt 420atatttaatc aagaaatctc tttctctggg agtgaacttg ctcattttac atcagacgaa 480ttactagaca agtttattac ttggagtcaa gagacgaatc ttttgccgtc agattttggg 540aagcagcagg ttaaaacctg gtttaaagtt ttccagatta atcaccaagc tttgagcagc 600tattctccca agacgtatct gggtagaagt gttttcttag gagcggaaga cagttctatt 660aaaaatcctg gttggcatca a 681441065DNAMicrocystis aeruginosa 44agcgggtctc aagaccaaaa aacgatacag tttagcctct actactttgg tagctatgaa 60gcggaattta acccgaataa atataactta ctgtttgaag gagctaaatt tggcgatcgc 120gctggtttta cggccctttg gattcctgaa cgtcatttcc acgcttttgg tggtttttct 180cccaatcctt cggttttggc ggcggcttta gcacgggaaa ccaaacagat tcaactgcga 240tcaggcagtg tggttttacc gctacataat tccatccgag tcgccgaaga atgggcagtg 300gtggacaatc tttcccaggg ccgcgttggt attgcttttg catcgggttg gcatccccag 360gattttgtct tggctcccca gtcctttggc caacatcggg aattgatgtt ccaagaaatt 420gaaaccgtcc agaaactttg gcgaggggaa gcgatcaccg tgccagacgg aaagggtcaa 480agggtagagg ttaaaaccta tccccaaccg atgcagtccc agttacccag ctggattact 540attgtcaata atcccgatac ctatatcaga gcaggggcga tcggtgctaa tatccttacc 600aatctgatgg ggcaaagcgt ggaagattta gcccgtaata ttgcgctata tcgtcaatct 660ttggcagagc atggttatga tcccgcgtcg ggaacggtga cagttctcct gcatactttt 720gttggcaagg atttagaaca agttcgagaa caggctcgcc aaccctttgg gcaatacctc 780acctcctctg tcggactctt gcagaacatg gtcaagagcc agggcatgaa agtggatttt 840gaacaattaa gagacgaaga tcgggacttt ctcctcgctt ctgcctataa acgctataca 900gaaaccagtg ctttaattgg cacacccgaa tcctgtcgtc aaattattga tcatttgcag 960tccatcggtg tggatgaagt ggcttgtttt attgattttg gggtagatga acaaacagtt 1020ttggccaatt taccctatct ccagtcccta aaagacttat atcaa 10654599DNAMicrocystis aeruginosa 45attgatcccc ccctaacccc ccttgataag gggattgatc cccccctaac cccccttgat 60aaggggattg atccccccct aacccccctt gataagggg 9946231DNAMicrocystis aeruginosa 46ccttatcaag gggggttagg gggggatcaa tccccttatc aaggggggtt agggggggat 60caatcccctt atcaaggggg gttagggggt gatcaatccc cttatcaagg ggggttaggg 120ggtgatcaat ccccttatca aggggggtta gggggggatc aatcccctta tcaaggagag 180ttaggggggg atcaatcccc ttatcaaggg gggttagggg gggatcaagt c 231471146DNAMicrocystis aeruginosa 47cctgcttcag aaatgcgaga gtgggtcgaa aacactgtta gtcgcatctt ggctttccaa 60ccagaacgcg gtttagaaat tggttgtggt acaggtttgt tactctccag ggtagcaaag 120cattgtcttg aatattgggc aacggattat tcccaagggg cgatccagta tgttgaacgg 180gtttgcaatg ccgttgaagg tttagaacag gttaaattac gctgtcaaat ggcagataat 240tttgaaggta ttgccctaca tcaatttgat accgtcgtct taaattcgat tattcagtat 300tttcccagtg tggattatct gttacaggtg cttgaagggg cgatcaacgt cattggcgag 360cgaggtcaga tttttgtcgg ggatgtgcgg agtttacccc tattagagcc atatcatgcg 420gctgtgcaat tagcccaagc ttctgactcg aaaactgttg aacaatggca acaacaggtg 480cgtcaaagtg tagcaggtga agaagaactg gtcattgatc ccacattgtt cctggcttta 540aaacaacatt ttccgcaaat tagctgggta gaaattcaac cgaaacgggg tgtggctcac 600aatgagttaa ctcaatttcg ctatgatgtc actctccatt tagagactat caataatcaa 660gcattattga gcggcaatcc aacggtaatt acctggttaa attggcaact tgaccaactg 720tctttaacac aaattaaaga taaattatta acagacaaac ctgaattgtg gggaattcgt 780ggtattccta atcagcgagt tgaagaggct ctaaaaattt gggaatgggt ggaaaatgcc 840cctgatgttg aaacggttga acaactcaaa aaacttctca aacaacaagt agatactggt 900attaatcctg aacaggtttg gcaattagct gagtctctcg gttacaccgc tcaccttagt 960tggtgggaaa gtagtcaaga cggttccttt gatgtcattt ttcagcggaa ttcagaagcg 1020gaggactcaa aaaaattaac cctttcaaaa cttgctttct gggatgaaaa accctttaaa 1080ataaagccct ggagtgacta tactaacaac cctctgcgcg gtaagttagt ccaaaaatta 1140attcct 114648813DNAMicrocystis aeruginosa 48atgacaaatt atggcaaatc tatgtctcat tactatgatc tagtggtagg acataaaggt 60tataacaaag attacgccac tgaagtagaa ttcattcaca atttagttga gacttacaca 120actgaagcca aatctatcct atacttgggc tgtggtacgg gttatcatgc cgctctttta 180gcacagaaag ggtattctgt acatggtgtt gatctcagtg ctgaaatgtt agagcaggct 240aaaactcgca ttgaagatga aacaatagct tctaatctga gtttttctca aggaaatatt 300tgtgaaatcc gtttaaatcg tcagtttaat gttgttcttg ctctatttca tgtggttaac 360tatcaaacga ccaatcaaaa tttactggca acgtttgcaa cggttaaaaa ccatttaaaa 420gctgggggga tttttatttg tgatgtgtcc tatgggtctt acgtactggg ggaatttaag 480agtcggccta cggcatcaat attgcgttta gaggataatt ccaatggtaa cgaagtaacc 540tatattagtg aactaaattt tttaacccat gaaaatatag tggaagttac tcacaattta 600tgggtaacaa atcaagaaaa tcaacttcta gagaattcac gggaaacaca tcttcagcgc 660tatcttttca agcctgaagt tgaattgttg gctgatgctt gtgaactaac tgttcttgat 720gcgatgccct ggcttgaaca acgtcctttg acaaacattc cttgtccttc agtttgtttt 780gttattgggc ataaaacaac ccattcagct taa 8134921DNAArtificial Sequenceoligonucleotide primer with homology to Microcystis aeruginosa 49ccgacctgtg ataaacaatt c 215020DNAArtificial Sequenceoligonucleotide primer with homology to Microcystis aeruginosa 50cknccdgtda traanarytc 205118DNAArtificial Sequenceoligonucleotide primer with homology to Microcystis aeruginosa 51ttcaatatcc tggggata 185218DNAArtificial Sequenceoligonucleotide primer with homology to Microcystis aeruginosa 52ytcdatrtcy tgnggrta 185321DNAArtificial Sequenceoligonucleotide primer with homology to Microcystis aeruginosa 53cgttggttac aggccctttc t 215420DNAArtificial Sequenceoligonucleotide primer with homology

to Microcystis aeruginosa 54mgntggytnc argcnytnws 205518DNAArtificial Sequenceoligonucleotide primer with homology to Microcystis aeruginosa 55ttagacttaa gccattgg 185618DNAArtificial Sequenceoligonucleotide primer with homology to Microcystis aeruginosa 56ytngayytnw sncaytgg 185724DNAArtificial Sequenceoligonucleotide primer with homology to Microcystis aeruginosa 57catagaagaa tcgagaccat attc 245824DNAArtificial Sequenceoligonucleotide primer with homology to Microcystis aeruginosa 58catnswnswr tcnarnccrt aytc 2459666PRTMicrocystis aeruginosa 59Met Thr Thr Gln Thr Ala Ser Ser Ala Asn Ala Leu Ala Ser Phe Asn1 5 10 15Gln Phe Leu Arg Asp Val Lys Ala Ile Ala Gln Pro Tyr Trp Tyr Pro 20 25 30Thr Val Ser Asn Lys Arg Ser Phe Ser Glu Val Ile Arg Ser Trp Gly 35 40 45Met Leu Ser Leu Leu Ile Phe Leu Ile Val Gly Leu Val Ala Val Thr 50 55 60Ala Phe Asn Ser Phe Val Asn Arg Arg Leu Ile Asp Val Ile Ile Gln65 70 75 80Glu Lys Asp Ala Ser Gln Phe Ala Ser Thr Leu Thr Val Tyr Ala Ile 85 90 95Gly Leu Ile Cys Val Thr Leu Leu Ala Gly Phe Thr Lys Asp Ile Arg 100 105 110Lys Lys Ile Ala Leu Asp Trp Tyr Gln Trp Leu Asn Thr Gln Ile Val 115 120 125Glu Lys Tyr Phe Ser Asn Arg Ala Tyr Tyr Lys Ile Asn Phe Gln Ser 130 135 140Asp Ile Asp Asn Pro Asp Gln Arg Leu Ala Gln Glu Ile Glu Pro Ile145 150 155 160Ala Thr Asn Ala Ile Ser Phe Ser Ala Thr Phe Leu Glu Lys Ser Leu 165 170 175Glu Met Leu Thr Phe Leu Val Val Val Trp Ser Ile Ser Arg Gln Ile 180 185 190Ala Ile Pro Leu Met Phe Tyr Thr Ile Ile Gly Asn Phe Ile Ala Ala 195 200 205Tyr Leu Asn Gln Glu Leu Ser Lys Ile Asn Gln Ala Gln Leu Gln Ser 210 215 220Lys Ala Asp Tyr Asn Tyr Ala Leu Thr His Val Arg Thr His Ala Glu225 230 235 240Ser Ile Ala Phe Phe Arg Gly Glu Lys Glu Glu Gln Asn Ile Ile Gln 245 250 255Arg Arg Phe Gln Glu Val Ile Asn Asp Thr Lys Asn Lys Ile Asn Trp 260 265 270Glu Lys Gly Asn Glu Ile Phe Ser Arg Gly Tyr Arg Ser Val Ile Gln 275 280 285Phe Phe Pro Phe Leu Val Leu Gly Pro Leu Tyr Ile Lys Gly Glu Ile 290 295 300Asp Tyr Gly Gln Val Glu Gln Ala Ser Leu Ala Ser Phe Met Phe Ala305 310 315 320Ser Ala Leu Gly Glu Leu Ile Thr Glu Phe Gly Thr Ser Gly Arg Phe 325 330 335Ser Ser Tyr Val Glu Arg Leu Asn Glu Phe Ser Asn Ala Leu Glu Thr 340 345 350Val Thr Lys Gln Ala Glu Asn Val Ser Thr Ile Thr Thr Ile Glu Glu 355 360 365Asn His Phe Ala Phe Glu His Val Thr Leu Glu Thr Pro Asp Tyr Glu 370 375 380Lys Val Ile Val Glu Asp Leu Ser Leu Thr Val Gln Lys Gly Glu Gly385 390 395 400Leu Leu Ile Val Gly Pro Ser Gly Arg Gly Lys Ser Ser Leu Leu Arg 405 410 415Ala Ile Ala Gly Leu Trp Asn Ala Gly Thr Gly Arg Leu Val Arg Pro 420 425 430Pro Leu Glu Glu Ile Leu Phe Leu Pro Gln Arg Pro Tyr Ile Ile Leu 435 440 445Gly Thr Leu Arg Glu Gln Leu Leu Tyr Pro Leu Thr Asn Ser Glu Met 450 455 460Ser Asn Thr Glu Leu Gln Ala Val Leu Gln Gln Val Asn Leu Gln Asn465 470 475 480Val Leu Asn Arg Val Asp Asp Phe Asp Ser Glu Lys Pro Trp Glu Asn 485 490 495Ile Leu Ser Leu Gly Glu Gln Gln Arg Leu Ala Phe Ala Arg Leu Leu 500 505 510Val Asn Ser Pro Ser Phe Thr Ile Leu Asp Glu Ala Thr Ser Ala Leu 515 520 525Asp Leu Thr Asn Glu Gly Ile Leu Tyr Glu Gln Leu Gln Thr Arg Lys 530 535 540Thr Thr Phe Ile Ser Val Gly His Arg Glu Ser Leu Phe Asn Tyr His545 550 555 560Gln Trp Val Leu Glu Leu Ser Ala Asp Ser Ser Trp Glu Leu Leu Ser 565 570 575Val Gln Asp Tyr Arg Leu Lys Lys Ala Gly Glu Met Phe Thr Asn Ala 580 585 590Ser Ser Asn Asn Ser Ile Thr Pro Asp Ile Thr Ile Asp Asn Gly Ser 595 600 605Glu Pro Glu Ile Val Tyr Ser Leu Glu Gly Phe Ser His Gln Glu Met 610 615 620Lys Leu Leu Thr Asp Leu Ser Leu Ser Ser Ile Arg Ser Lys Ala Ser625 630 635 640Arg Gly Lys Val Ile Thr Ala Lys Asp Gly Phe Thr Tyr Leu Tyr Asp 645 650 655Lys Asn Pro Gln Ile Leu Lys Trp Leu Arg 660 665602004DNAMicrocystis aeruginosa 60atgacaaccc aaacagcttc tagtgccaat gcccttgctt cctttaacca atttttaagg 60gatgtaaagg cgatcgccca accctattgg tatcccactg tatcaaataa aagaagcttt 120tctgaggtta ttcgttcctg gggaatgcta tcactgctta tctttttgat tgtgggatta 180gtcgccgtca cggcttttaa tagttttgtt aatcgtcgtt taattgatgt cattattcaa 240gaaaaagatg cgtctcaatt tgccagtaca ttaactgtct atgcgatcgg attaatctgt 300gtaacgctgc tggcagggtt cactaaagat attcgcaaaa aaattgccct agattggtat 360caatggttaa acacccagat tgtagagaaa tattttagta atcgtgccta ttataaaatt 420aactttcaat ctgacattga taaccccgat caacgtctag cccaggaaat tgaaccgatc 480gccacaaacg ccattagttt ctcggccact tttttggaaa aaagtttgga aatgctaact 540tttttagtgg tagtttggtc aatttctcga cagattgcta ttccgctaat gttttacacg 600attatcggta attttattgc cgcctatcta aatcaagaat taagcaagat caatcaggca 660caactgcaat caaaagcaga ttataactat gccttaaccc atgttcggac tcatgcggaa 720tctattgctt tttttcgggg agaaaaagag gaacaaaata ttattcagcg acgttttcag 780gaagttatca atgatacgaa aaataaaatt aactgggaaa aagggaatga aatttttagt 840cggggctatc gttccgtcat tcagtttttt ccttttttag tccttggccc tttgtatatt 900aaaggagaaa ttgattatgg acaagttgag caagcttcat tagctagttt tatgtttgca 960tcggccctgg gagaattaat tacagaattt ggtacttcag gacgtttttc tagttatgta 1020gaacgtttaa atgaattttc taatgcctta gaaactgtga ctaaacaagc cgagaatgtc 1080agcacaatta caaccataga agaaaatcat tttgcctttg aacacgtcac cctagaaacc 1140cctgactatg aaaaggtgat tgttgaggat ttatctctta ctgttcaaaa aggtgaagga 1200ttattgattg tcgggcccag tggtcgaggt aaaagttctt tattaagggc gatcgccggt 1260ttatggaatg ctggcactgg gcgtttagtg cgtcctcccc tagaagaaat tctctttttg 1320ccccaacgtc cctacattat tttgggaacc ttacgcgaac aattgctgta tcctctaacc 1380aatagtgaga tgagcaatac cgaacttcaa gcagtattac aacaagtcaa tttgcaaaat 1440gtgctaaatc gggtggatga ctttgactcc gaaaaaccct gggaaaacat tctctccctc 1500ggtgaacaac aacgcctagc ctttgctcga ttgttagtga attctccgag ttttaccatt 1560ttagatgagg cgaccagtgc cttagattta acaaatgagg ggattttata cgagcaatta 1620caaactcgca agacaacctt tattagtgtg ggtcatcgag aaagtttgtt taattaccat 1680caatgggttt tagaactttc tgctgactct agttgggaac tcttaagcgt tcaagattat 1740cgccttaaaa aagcgggaga aatgtttact aatgcttcga gtaacaattc cataacaccc 1800gatattacta tcgataatgg atcagaacca gaaatagtct attctcttga aggattttcc 1860catcaggaaa tgaaactatt aacagaccta tcactctcta gcattcggag taaagccagt 1920cgagggaagg tgattacagc caaggatggt tttacctacc tttatgacaa aaatcctcag 1980atattaaagt ggctcagaac ttaa 20046127260DNAMicrocystis aeruginosa 61atgactatta actatggtga tctgcaagaa ccctttaata aattctcaac cctagttgaa 60ttactccgtt atcgggcaag cagtcaaccg gaacgcctcg cctatatttt tctgcgagac 120ggagaaatcg aagaagctcg tttaacctat ggggaactgg atcaaaaggc tagggcgatc 180gccgcttatc tacaatcctt agaagccgag ggcgaaaggg gtttactgct ctatccccca 240ggactagatt ttatttcagc tttttttggt tgtttatatg cgggagtcgt tgccattccc 300gcctatccac cccgacggaa tcaaaacctt ttgcgtttac aggcgattat tgccgattct 360caagcccgat ttaccttcac caatgccgct ctatttccca gtttaaaaaa ccaatgggct 420aaagaccctg aattaggagc aatggaatgg attgttaccg atgaaattga ccatcacctc 480agggaggatt ggctagaacc aaccctcgaa aaaaacagtc tcgcttttct acaatacacc 540tctggttcaa cgggaactcc aaagggagta atggtcagtc accataattt gttgattaat 600tcagccgatt tagatcgtgg ttggggccat gatcaagata gcgtaatggt cacttggcta 660ccgaccttcc atgatatggg tctgatttat ggggttattc agcctttgta caaaggattt 720ctttgttaca tgatgtcccc tgccagcttt atggaacgac cgttacgttg gttacaggcc 780ctttctgata aaaaagcaac ccatagtgcg gcccccaact ttgcctacga tctttgtgtg 840cggaaaattc cccctgaaaa acgggctacg ttagacttaa gccattggtg catggcctta 900aatggggccg aacccgtcag agcggaggta cttaaaaagt ttgcggaggc ttttcaagtt 960tctggtttca aagccacagc cctttgtcct ggctacggtt tagcagaagc caccctgaaa 1020gttacggcgg ttagttatga cagtccccct tacttttatc ccgttcaggc taatgcttta 1080gaaaaaaata agattgtggg agccactgaa accgatacca atgtgcagac cctcgtgggc 1140tgcggctgga caacgattga tactcaaatc gtcattgtca atcctgaaac cctgaaacct 1200tgctcccctg aaattgtcgg cgaaatttgg gtatcaggtt caacaatcgc ccaaggctat 1260tggggaaaac ctcaagagac tcaggaaacc tttcaagctt atttggcaga tacaggagcc 1320gggccttttc tgcgaacagg agacttgggc ttcattaaag atggtgaatt gtttatcaca 1380ggtcggctca aggaaattat tctgattcga ggacgcaata attatcccca ggatattgaa 1440ttaaccgtcc aaaatagtca tcccgctctg cgtcccagtt gtggggctgc ttttaccgtt 1500gaaaataagg gcgaagaaaa gctcgtggtc gttcaggaag tggagcgcac ctggctccgt 1560aaggtagata tagatgaggt aaaaagagcc attcgtaaag ctgttgtcca ggaatatgat 1620ttacaggttt atgcgatcgc gctgatcagg actggcagtt taccaaaaac ctctagcggt 1680aaaattcagc gtcgtagctg tcgggccaaa tttttagagg gaagcctgga aattttgggc 1740taagaaaatt tctcgatcgg cacttaatgt gttaaattcg tatgtcgatt gaaacttcga 1800ccaattcttt ctctcccctt aagtccatgt ctctggattt gaaaattcct taaactttaa 1860ctacatttct caagaaagca aattgaatct aatgtccaca gaaatcccaa acgacaaaaa 1920acaaccgacc ctaacgaaaa ttcaaaactg gttagtggct tacatgacag agatgatgga 1980agtggacgaa gatgagattg atctgagcgt tccctttgat gaatatggtc tcgattcttc 2040tatggcagtt gctttgatcg ctgatctaga ggattggtta cgacgagatt tacatcgcac 2100cctgatctac gattatccaa ctctagaaaa gttggctaaa caggttagtg aaccctgaca 2160tttttataaa gtttgtgctt aaaaattttg aggaagttct aaaatgacaa attatggcaa 2220atctatgtct cattactatg atctagtggt aggacataaa ggttataaca aagattacgc 2280cactgaagta gaattcattc acaatttagt tgagacttac acaactgaag ccaaatctat 2340cctatacttg ggctgtggta cgggttatca tgccgctctt ttagcacaga aagggtattc 2400tgtacatggt gttgatctca gtgctgaaat gttagagcag gctaaaactc gcattgaaga 2460tgaaacaata gcttctaatc tgagtttttc tcaaggaaat atttgtgaaa tccgtttaaa 2520tcgtcagttt aatgttgttc ttgctctatt tcatgtggtt aactatcaaa cgaccaatca 2580aaatttactg gcaacgtttg caacggttaa aaaccattta aaagctgggg ggatttttat 2640ttgtgatgtg tcctatgggt cttacgtact gggggaattt aagagtcggc ctacggcatc 2700aatattgcgt ttagaggata attccaatgg taacgaagta acctatatta gtgaactaaa 2760ttttttaacc catgaaaata tagtggaagt tactcacaat ttatgggtaa caaatcaaga 2820aaatcaactt ctagagaatt cacgggaaac acatcttcag cgctatcttt tcaagcctga 2880agttgaattg ttggctgatg cttgtgaact aactgttctt gatgcgatgc cctggcttga 2940acaacgtcct ttgacaaaca ttccttgtcc ttcagtttgt tttgttattg ggcataaaac 3000aacccattca gcttaaattc tgctaaaaaa aatccaactt accttattct ctgaaaccac 3060acaagccatg aatacaattc aagatgccaa gaccgaaaat tactcaatct taaatcagtc 3120aattccaaga cctctcaaac tgagtaatat cctattacga taagattttg cgttctcctt 3180tgtttggaat gtcagcagag gagtctctat attggctaga gaaatgttta tgtcaagagc 3240atcagggctt cgatgtacaa gttaagtatc atcaaaaaat gctgaagaat atgttacgtt 3300tgaccgatag tttggattat ctatggccag ttaaccgtga aatgcggctc atgaaagctg 3360gggggtcaat tgaacgggcg atcaccaata acattaaagc ttttcttcaa tttaaagaaa 3420ctgtaaccgt attaaattag aaaaaccgca gtgaggaatt tgaatggaac ccatcgcaat 3480tattggtctt gcttgccgct ttccaggggc tgacaatcca gaagctttct ggcaactcat 3540gcgaaatggg gtggatgcga tcgccgatat tcctcctgaa cgttgggata ttgagcgttt 3600ctacgatccc acacctgcca ctgccaagaa gatgtatagt cgccagggcg gttttctaaa 3660aaatgtcgat caatttgacc ctcaattttt ccgaatttct cccctagaag ccacctatct 3720agatcctcaa caaagactgc tactggaagt cacctgggaa gccttagaaa atgctgccat 3780tgtgcctgaa accttagctg gtagccaatc aggggttttt attggtatca gtgatgtgga 3840ttatcatcgt ttggcttatc aaagtcctac taacttgacc gcctatgtgg gtacaggcaa 3900cagcaccagt attgcggcta accgtttatc atatctgttt gatttgcgtg gccccagttt 3960ggccgtagat accgcttgct cttcttccct cgtcgccgtt cacttggcct gtcagagttt 4020gcaaagtcaa gaatcgaacc tctgcttagt ggggggagtt aatctcattt tgtcgccaga 4080gacaaccgtt gttttttccc aagcgagaat gatcgccccc gacagtcgtt gtaaaacctt 4140tgacgcgagg gccgatggtt atgtgcgctc ggaaggctgt ggagtagtcg tacttaaacg 4200tcttagggat gccattcagg acggcgatcg cattttagca gtgattgaag gttccgcggt 4260gaatcaggat ggtttaagta atggactcac ggcccctaat ggccctgctc aacaggcggt 4320gattcgtcag gccctggcaa atgcccaggt aaaaccggcc cagattagct atgtcgaagc 4380ccatggcacg gggacagaat tgggggatcc gatcgaagtt aaatctctga aagcggtttt 4440gggtgaaaag cgatcgctcg atcaaacctg ttggctcggt tctgtgaaaa ccaacattgg 4500tcatttagaa gcggcggcgg gaatggcggg tctgattaaa gtcgttctct gcctacaaca 4560ccaagaaatt ccccctaatc tccactttca aacccttaat ccctatattt ccctagctga 4620cacagctttt gcgattccca ctcaggctca accctggcgg accaaacccc ctaagtctgg 4680tgaaaacggt gtcgaacgac gtttagcagg actcagttcc tttgggtttg gggggacaaa 4740ttcccatgtg attctcagcg aagcccctgt caccgttaaa aacaatcaac aaaatgggca 4800gaagttgata gaacgtccct ggcatttgct gactttatct gccaagaatg aagaagcctt 4860aaaagcctta gtccattgtt atcaaaagta tttagctgat catcatgaaa ttcctctcgc 4920tgatgtttgt tttacggcca atagtcggcg atcgcacttt aatcatcgtt taggagtagt 4980ggctagagat cgcttagaaa tgttgcagaa gttagagaac tttagtaacc aagaaaggat 5040gagagaaccg aagagtatta acaaaaagaa aaaacctaaa attgtttttc tatttgccgg 5100tcaaggttct caatatgtag gtatgggtcg tcaactgtac gaaacccaac ccatctttcg 5160ccaaaccttg gatcgctgtg ctgaaatcct gcgaccccat ttagatcaac ccctcttaga 5220aattctttat cctgctgacc cagaagccga aacagcgagt ttttacctag agcagactgc 5280ctatacccaa cccactttat tcgcattcga gtatgcccta gcacagttat ggcgttcctg 5340gggaatagaa ccggcggcag taattggtca cagtgtcggt gaatatgtgg cggccaccgt 5400tgccggagcc ttaagtctag aagaaggatt aacgctaatt gccaaacggg caaaactgat 5460gcagtctctc cccaagaatg ggacaatgat cgccgttttt gccgcagaag agcgggttaa 5520agctgttatt gagccttata ggactgatgt agcgatcgct gctgttaatg gaccagaaaa 5580ttttgttatt tcaggaaaag cgccgattat tgctgagatt atcattcatt taacggcagc 5640aggaatagaa gttcgtcctc tcaaagtttc ccatgctttt cactcgcacc tgttggagcc 5700aattttagat tccttagaac aggaagctgc tgctatttcc taccaacccc tgcaaattcc 5760cttagttgct aatttaacgg gggaagttct accagaagga gcaacgattg aggctcgtta 5820ctggcgaaat catgcacgca accctgtaca attttatggg agtatccaaa cgctgatcga 5880gcagaaattc agtctttttt tagaagttag ccctaaaccg actttatctc gattgggtca 5940acaatgttgt ccagaaagat cgaccacttg gctattttcc ctcgcccctc ctcaagaaga 6000agaacaaagc ctactaaata gtttggcgat tctctatgat tcccaaggag ccgaaataaa 6060ctgggaaggg tttaatcaaa attatcccca ccatttactg gctctaccga cctatccttt 6120tcaacgtcaa cgctattggc ttgaaaccgg taaaccgact tctgaagaaa caaccatgac 6180gaccaatgcc actaatgtcc aagctatctc cagccatcaa aaacaacagg agattctaat 6240cacattgcaa accctagtgg gaaatttact gcaattgtcc cctgctgatg tcaatgttca 6300tacacctttc ctggagatgg gggcagattc cattgtcatg gttgaggcgg tcagacggat 6360tgagaatacc tataacgtta aaattgctat gcgtcagtta tttgaggagt tatctacttt 6420agatgcttta gctacttatt tagctcaaaa tccggctact gattgccaaa ctgctcaaat 6480taataccgag gtgttttctg cgcccattgc ctgctcaaat aaccgatcgc ccaatgtcgt 6540gctgagttct aataccaacg gctttcaacg tcaaacagct tctccaggtt tttcggcgat 6600cgcccccctt gcaggaatgg gaggagcagg ggaaatggga ggagttgaag tgcctcaagt 6660ttctgtgcca caaaccagtg cggtaacagc ctcaggttca accgtttcta gttctgccct 6720ggaaaacatt atgggtcaac agttacaact gatggccaaa cagttagaag tcttgcaaac 6780ggccaatttt gccccgacga ctccccgaac cacagaaaat tccccatctt ccgtcagtca 6840aaataggtca aacggactta cacaacagtt aattcccccc cagcaattag cggcgaacct 6900agagccaata gccagtcgca cccgtcaaac cagcaatcaa gcttctgctc ctaaaccgac 6960agtaacagcc actccctggg ggccgaaaaa accacccaca ggtggattca ctccccaaca 7020acagcaacat ctagaggcat taattgctcg ctttacggaa cgtaccaaaa cctctaagca 7080aattgtgcaa agcgatcgcc tgcgtttagc agatagtcga gcctcggtcg gattccgtat 7140gtctattaaa gagatgcttt atcccattgt ggcccaacgt tctcaaggat caagaatttg 7200ggatgtggac ggtaatgaat atattgatat gacgatgggg caaggggtaa cgctgtttgg 7260gcatcaacca gacttcatta tgtcggccct acaaagccaa ctcactgaag gcattcatct 7320caatccgcga tcgccaattg tgggagaagt ggccgcctta atttgtgaac taacaggagc 7380cgaacgagct tgtttttgca actctggaac cgaagccgta atggccgcta ttcgtatcgc 7440cagggcaaca acaggtcgga gtaaaattgc cctctttgaa ggctcctatc atggacatgc 7500ggacggaacc ctttttagga accaaattat tgataaccaa ctccactctt ttcccctagc 7560tctaggcgtt ccccccagcc ttagttccga tgtggtggta ttggactatg gcagtgcgga 7620agctctgaac tatttacaaa cccaggggca ggatttagcg gcggtcttag tagaaccaat 7680tcaaagtggc aatcctctac tccaacccca acaatttctc caaagtctgc gacaaattac 7740cagtcaaatg ggcattgccc tgatttttga tgaaatgatt acgggttttc gatcgcaccc 7800agggggagcg caagctttat ttggagtaca ggcggatatt gccacctatg gcaaagtagt 7860tgcgggagga atgcccattg gagttattgc aggtaaggcc cattatctgg acagcattga 7920cgggggaatg tggcgttatg gcgataaatc ctatcctggg gtggacagaa ccttttttgg 7980gggaaccttt aatcagcatc cgttagcaat ggtagcggct agggctgtcc tgacccattt 8040aaaggagcag gggccaggtc tgcaacaaca attaactgaa cgcactgcgg ccttagccga 8100tacactgaat cattattttc aagccgaaga agttcctatt aaaatcgaac agtttagttc 8160tttcttccgg tttgccctct ctggcaattt ggatttactt ttctatcaca tggtagaaaa

8220aggtatttat gtctgggaat ggcgtaaaca ttttctttca accgcccata cggaagccga 8280tcttgcccaa tttgtccaag cggttaagga tagcatcaca gaattgcgtc agggaggttt 8340tatccccgca aaaaagcctt cctggccagt gccaacgcct caaattgatc cccccctaac 8400cccccttgat aaggggattg atccccccct aacccccctt gataagggga ttgatccccc 8460cctaaccccc cttgataagg ggggagatgt tgatgtcgcg cttgataagg gaggaaattc 8520tcattctgtt agggacagta agttagggaa agggagcggg tctcaagacc aaaaaacgat 8580acagtttagc ctctactact ttggtagcta tgaagcggaa tttaacccga ataaatataa 8640cttactgttt gaaggagcta aatttggcga tcgcgctggt tttacggccc tttggattcc 8700tgaacgtcat ttccacgctt ttggtggttt ttctcccaat ccttcggttt tggcggcggc 8760tttagcacgg gaaaccaaac agattcaact gcgatcaggc agtgtggttt taccgctaca 8820taattccatc cgagtcgccg aagaatgggc agtggtggac aatctttccc agggccgcgt 8880tggtattgct tttgcatcgg gttggcatcc ccaggatttt gtcttggctc cccagtcctt 8940tggccaacat cgggaattga tgttccaaga aattgaaacc gtccagaaac tttggcgagg 9000ggaagcgatc accgtgccag acggaaaggg tcaaagggta gaggttaaaa cctatcccca 9060accgatgcag tcccagttac ccagctggat tactattgtc aataatcccg atacctatat 9120cagagcaggg gcgatcggtg ctaatatcct taccaatctg atggggcaaa gcgtggaaga 9180tttagcccgt aatattgcgc tatatcgtca atctttggca gagcatggtt atgatcccgc 9240gtcgggaacg gtgacagttc tcctgcatac ttttgttggc aaggatttag aacaagttcg 9300agaacaggct cgccaaccct ttgggcaata cctcacctcc tctgtcggac tcttgcagaa 9360catggtcaag agccagggca tgaaagtgga ttttgaacaa ttaagagacg aagatcggga 9420ctttctcctc gcttctgcct ataaacgcta tacagaaacc agtgctttaa ttggcacacc 9480cgaatcctgt cgtcaaatta ttgatcattt gcagtccatc ggtgtggatg aagtggcttg 9540ttttattgat tttggggtag atgaacaaac agttttggcc aatttaccct atctccagtc 9600cctaaaagac ttatatcaac ctcatctccc cccttatcaa ggggggttag ggggggatca 9660atccccttat caaggggggt taggggggga tcaatcccct tatcaagggg ggttaggggg 9720tgatcaatcc ccttatcaag gggggttagg gggtgatcaa tccccttatc aaggggggtt 9780agggggggat caatcccctt atcaaggaga gttagggggg gatcaatccc cttatcaagg 9840ggggttaggg ggggatcaag tccctctcac cgaagcccaa cgacaactgt ggattttggc 9900tcaattagga gacaacggct ctgtggccta taaccaatca gtgacattgc aattaagtgg 9960cccattaaat cccgtcgcaa tgaatcaagc tattcaacaa atcagcgatc gccatgaagc 10020gttacgaacc aaaattaatg cccagggaga tagtcaagaa atcctgcccc aggtcgaaat 10080taactgccct atcttagact tcagtcttga ccaagcttcg gcccaacagc aagcagaaca 10140atggttaaag gaagaaagtg aaaaaccctt tgatttgagc cagggttctc tcgtgcgttg 10200gcatctactc aaattagaac cagaattaca tttgttagta ttaacggccc atcacattat 10260cagtgacggt tggtcaatgg gggtaatcct tcgggaatta ggagagttat attcagccaa 10320atgtcagggt gttacggcta atcttaaaac cccaaaacag tttcgagaat tgattgaatg 10380gcaaagccag ccaagccaag gggaagaact gaaaaaacag caagcctatt ggttagcaac 10440ccttgccgat ccccctgttt tgaatttacc cactgacaaa cctcgtccag ctttacccag 10500ttaccaagct aatcgtcgaa gtctaacttt agatagccaa tttacagaaa aactaaagca 10560atttagtcgt aaacagggct gtaccttgct gatgaccctg ttatcggttt ataacattct 10620cgttcatcgt ttgacgggac aggatgatat tctggtgggt ctgccagcct ctggacgggg 10680gcttttagat agtgaaggta tggtgggtta ttgcacccat tttttaccaa ttcgcagtca 10740attagcaggt aatcccactt ttgctgaata tctcaaacaa atgcgggggg ttttgttgtc 10800ggcttatgaa catcaggact atccctttgc tcttttgctc aatcagttag atttaccgcg 10860taataccagt cgctctcctt taattgatgt cagtttcaat ttagaaccag ttattaacct 10920acccaaaatg aaaggattag agattagttt gttgcctcaa agtgtaagtt ttaaggatcg 10980agatttgcat tggaatgtga cagaaatggg tggagaagct ctgattgatt gtgactacaa 11040tacagactta tttaaagatg aaacgattca gcgttggtta ggccattttc aaaccttact 11100tgaggcagtt attaatgatt cgcaacaaaa tctgcgggaa ttacccttat taagttctgc 11160tgaacgacaa cagttattag tggattggaa tcaaaccaag accgactatc cccaagatca 11220gtgtattcat caattatttg aagcgcaagt tgaacggact cccgatgcga ttgcggtggt 11280atttgaaact caacaattaa cttacagtga attaaattgt cgagccaatc agttagcaca 11340ttatttacaa aaattaggag ttgggccaga ggtcttagtc ggtattttgg tcgaacgttc 11400tttagaaatg attgtcggat tgttagggat tctcaaggct gggggagcct atgtacctct 11460tgatcctgac tatccccctg aacgtcttca atttatgtta gaagatagtc aattttttct 11520cctcttaacc caacagcatt tactggaatc ttttgctcag tcttcagaaa cggctactcc 11580caagattatt tgtttggata gcgactacca aattatttcc caggcaaaga atattaatcc 11640cgaaaattca gtcacaacga gtaatcttgc ctatgtaatt tatacctctg gttcgacagg 11700taaaccgaag ggcgtgatga ataatcatgt tgctattagt aataaattgt tatgggtaca 11760agacacttat cctctaacca cagaagactg tattttacaa aaaactccct ttagttttga 11820tgtttcagtg tgggaattat tctggcccct actaaacgga gcgcgtttgg tttttgccaa 11880gccgaatggc cataaagatg ccagttactt agtcaatctg attcaagagc aacaagtaac 11940aacgctacat tttgtgtctt ctatgctaca gctttttctg acagaaaaag acgtagaaaa 12000atgtaatagt cttaaacgag tcatttgtag tggtgaagcc ctttctttag agcttcaaga 12060acgttttttt gctcgtttag tctgtgaatt acacaatctt tatggaccga cagaagccgc 12120tattcatgtc acattttggc aatgtcaatc agatagcaat ttgaaaacag tacccattgg 12180tcggccgatc gctaatatcc aaatttacat tttagactct catcttcagc cagtacctat 12240tggagtaatc ggagaattgc acattggtgg ggttggtttg gcgcggggtt atttaaacag 12300gcctgagtta acggcggaga aatttattgc aaatccgttt gcttcccttg atccccccct 12360aacccccctt gataaggggg gagatgagag ctataaaact tttaaaaagg ggggagagca 12420accatcaaga ttgtataaaa cgggagattt agctcgttat ttacccgatg gcaagattga 12480gtatctaggg cgcattgata atcaggtaaa aattcgcggt ttccggattg aattggggga 12540aattgaagcg gttttgctat cccatcccca ggtacgagaa gcggtcgttt tggtgagcga 12600aagcgatcgc tctgaaaatc gggctttggt cgcttatatt gtccctaatg atcctgcttg 12660tacgactcaa tcattacgag agtttgttaa acggcagctt cctgactata tgatcccagc 12720ttattggctg atccttgaca atttaccgtt aaccagcaat ggcaaaattg atcgtcgggc 12780tttaccgtta cctaatccag agttaaatcg ttcgatagac tatgtggctc ccaaaaatcc 12840tacccaggag gcgatcgccg ctatttttgg tcaagtttta aaactggaaa aagtgggaat 12900ttatgataac ttttttgaga tcggcggtaa ttctttgcaa gccactcaag ttatttcacg 12960cttacgagaa agttttgccc tagagttgcc cttgcgtcgc ctgtttgaac aaccgactgt 13020ggcggatttg gctttagccg taacggacat tcatgccact ttacaaaaat tacaaacccc 13080tattgatgat ttatcaggcg atcgcgagga gattgaacta tgaaatctat tgaaaccttt 13140ttgtcagatt tagccaatca agatattaaa ctctggatgg acggcgatcg cctgcgttgt 13200aatgcacccc agggcctatt aaccccagag attcaaacag aactgaaaaa ccgtaaagca 13260gaaatcattc actttctcaa tcaactgggt tcagaggagc aaattaatcc tagaacgatt 13320cttcccattc ctcgtgatgg ccaattaccc ctctcctttg cccagtcgcg actctggttc 13380ttgtatcaat tagaaggagc cacgggaacc tataacatga caggggcctt gagtttaagc 13440gggcctcttc aggtcgaagc cctcaaacaa gccctaagaa ctatcattca acgccatgag 13500ccattgcgta ccagtttcca atcggttgac ggggttccag tgcaggtgat taatccctat 13560cctgtttggg aattagcgat ggttgatttg acaggaaagg agacagaagc agaaaaattg 13620gcctatcagg aatcccaaac cccgtttgat ttgaccaata gtcctttgtt gagggtaacg 13680ctcctcaaat tacagccaga aaagcatatt ttattaatta atatgcacca tattatttcc 13740gatggctggt caatcggtgt ttttgttcgt gaattgtccc atctctatag ggcttttgtg 13800gcgggtaaag aaccaacttt accgatttta ccaattcagt atgcggattt tgccgtttgg 13860cagcgagagt ggttacaggg taaggtttta gcggctcaat tggaatattg gaagcgacaa 13920ttggcagatg ctcctcctct gctggaactg cccactgatc gccctcgtcc cgcaatccaa 13980acctttcaag gcaagacaga aagatttgag ctagatagga aactgaccca agaattaaag 14040gcattaagtc aacagtcggg ttgtacttta tttatgactt tgttggccgc ttttggggtg 14100gttttatccc gttatagtgg ccagactgat atcgtcattg gttcggcgat cgccaaccgt 14160aatcgccaag acattgaggg gttaattggc ttttttgtta acactttggc gttgaggtta 14220gatttatcag aaaaacccag ctttgccgct tttttaaaac aagtacagga agtcactcag 14280gatgcctatg agcatcaaga cttgcccttt gaaatgttag tggaagaatt acaactagag 14340cgcaaattag accgaaatcc tttggtacag gtgatgtttg ccctacaaaa tgcggccaat 14400gaaacctgga atttacctgg gttgaccatt gaagaaatgt cttgggaact tgaacctgcc 14460cgttttgacc tagaggttca tttatcagaa gttaacgccg gcatagctgg attctgttgc 14520tacaccattg atctatttga tgatgcaacg atcgcccgtc tattggaaca ttttcagaat 14580cttctcaggg caattattgt taatcctcaa gaatcggtaa gtttattacc cttgttgtca 14640gaacaggaag aaaagcaact tttagttgat tggaatcaaa cccaagccga ttatccccaa 14700gataagcttg tccatcagtt atttgaagtt caagcagcca gtcagccaga agcgatcgct 14760ctaatctttg aaaatcaggt tttgacctat ggagaattaa accatcgcgc caatcaatta 14820gctcactatc ttcagtcgtt aggagtcacc aaagaacaaa tcgtcggggt ttatctggaa 14880cgttcccttg aaatggcgat cggattttta ggtattctca aagcaggagc cgcctatctc 14940cccattgatc ctgaatatcc ctcagtacgc acccaattta ttctcgaaga tacccaactt 15000tcgcttctct taactcaggc agaactggca gaaaaactgc cccagactca aaacaaaatt 15060atctgtctag atcgggactg gccagaaatt acctcccaac cccagacaaa cctagaccta 15120aagatagaac ctaataacct agcctattgc atctatactt ctggttccac aggacaaccc 15180aaaggagtac tgatttccca tcaagcccta ctcaacttaa ttttctggca tcaacaagcg 15240tttgagattg gccccttaca taaagcgacc caagtggcag gcattgcttt cgatgcaacg 15300gtttgggaat tgtggcccta tctgaccaca ggagcctgta ttaatctggt tccccaaaat 15360attctgctct caccgacgga tttacgggat tggttgctta accgagaaat taccatgagt 15420tttgtgccaa ctcctttagc tgaaaaatta ttatccttgg attggcctaa ccattcttgt 15480ctaaaaaccc tgttactggg aggtgacaaa cttcattttt atcctgctgc gtcccttccc 15540tttcaggtca ttaacaacta tggcccaacg gaaaatacag tggttgcgac ctctggactg 15600gtcaaatcat cttcatctca tcactttgga actccgacta ttggtcgtcc cattgccaac 15660gtccaaatct atttattaga ccaaaaccta caacctgtcc ccattggtgt accaggagaa 15720ttacatttag gtggggcggg tttagcgcag ggctatctca atcgtcctga gttaacggct 15780gaaaaattta ttgccaatcc ctttgatccc cccctaaccc cccttgataa ggggggagaa 15840gaaccctcaa aactctataa aacgggagac ttagcccgtt atttacccga tggcaatgta 15900gaatttttgg gacgtattga caatcaggta aaaattcggg gttttcgcat cgaaactggg 15960gaaatcgaag ccgttttaag tcaatatttc ctattagctg aaagtgtagt cgttgccaag 16020gaagataata ctggggataa acgcctcgtg gcttatttgg ttcccgcctt gcaaaatgag 16080gccctaccag agcaattagc ccaatggcaa agtgaataca tcagtgattg gcaaagtctc 16140tatgaaagaa cctatagtca agggcaagac agcctagctg atctcacttt taatatcacg 16200ggttggaata gcagttatac tcgtcaaccc cttcctgctt cagaaatgcg agagtgggtc 16260gaaaacactg ttagtcgcat cttggctttc caaccagaac gcggtttaga aattggttgt 16320ggtacaggtt tgttactctc cagggtagca aagcattgtc ttgaatattg ggcaacggat 16380tattcccaag gggcgatcca gtatgttgaa cgggtttgca atgccgttga aggtttagaa 16440caggttaaat tacgctgtca aatggcagat aattttgaag gtattgccct acatcaattt 16500gataccgtcg tcttaaattc gattattcag tattttccca gtgtggatta tctgttacag 16560gtgcttgaag gggcgatcaa cgtcattggc gagcgaggtc agatttttgt cggggatgtg 16620cggagtttac ccctattaga gccatatcat gcggctgtgc aattagccca agcttctgac 16680tcgaaaactg ttgaacaatg gcaacaacag gtgcgtcaaa gtgtagcagg tgaagaagaa 16740ctggtcattg atcccacatt gttcctggct ttaaaacaac attttccgca aattagctgg 16800gtagaaattc aaccgaaacg gggtgtggct cacaatgagt taactcaatt tcgctatgat 16860gtcactctcc atttagagac tatcaataat caagcattat tgagcggcaa tccaacggta 16920attacctggt taaattggca acttgaccaa ctgtctttaa cacaaattaa agataaatta 16980ttaacagaca aacctgaatt gtggggaatt cgtggtattc ctaatcagcg agttgaagag 17040gctctaaaaa tttgggaatg ggtggaaaat gcccctgatg ttgaaacggt tgaacaactc 17100aaaaaacttc tcaaacaaca agtagatact ggtattaatc ctgaacaggt ttggcaatta 17160gctgagtctc tcggttacac cgctcacctt agttggtggg aaagtagtca agacggttcc 17220tttgatgtca tttttcagcg gaattcagaa gcggaggact caaaaaaatt aaccctttca 17280aaacttgctt tctgggatga aaaacccttt aaaataaagc cctggagtga ctatactaac 17340aaccctctgc gcggtaagtt agtccaaaaa ttaattccta aagtacgaga atttctgcaa 17400gaaaaactac ccagttatat ggttccccag gcgtttgtgc tgcttgattc ccttcctttg 17460acccccaatg gtaaggtgga tcgtaaggcg ttaccttctc ctgatgcggc gactcgtgat 17520ttagcgaaca gttttgtctt accccgcaat ccgattgaag ctcaactgac tcaaatttgg 17580agtgaagttt tgggactgga acgcattggc gttaaggaca acttttttga attgggagga 17640cattctcttt tggctaccca ggttttatca agaattaatt cagcctttgg acttgatctt 17700tctgtgcaaa ttatgtttga atcaccaacg atcgcgggca ttgcgggtta tattcaagcg 17760gtagattggg tcgcccagga tcaagccgat agctcgttaa atcatgaaaa tactgaggta 17820gtggagttct aagttatgac gaaaaagatt gttgaatttg tctgttatct acgggattta 17880ggcattactt tagaagctga tgaaaaccgc ttacgctgtc aggctcccga aggaattttg 17940accccagcac tccgtcaaga aattggcgat cacaaactgg aattattaca atttttacaa 18000tgggtcaaac agtctaaaag taccgctcat ttgcctatta aacctgtcgc tagagacggt 18060catttacccc tgtcttttgc tcaacaacgt ttatggtttt tacattatct ttcccctgat 18120agtcgttcct acaataccct ggaaatattg caaattgatg ggaatctcaa tctgactgtg 18180ctagagcaga gtttggggga attaattaac cgccatgaaa tttttagaac aacattcccc 18240actgtttcag gggaaccgat tcagaaaatt gcacttccta gtcgttttca gttaaaagtt 18300gataattatc aagatttaga cgaaaatgaa caatcagcta aaattcaaca agtagcagaa 18360ttggaagcag gacaagcttt tgatttaacg gtggggccac tgattcagtt taagctattg 18420caattgagtc cccagaagtc ggtgctgctg ttgaaaatgc accatattat ctatgatggc 18480tggtcttttg ggattctgat tcgggaatta tcggctctat acgaagcatt tttaaagaac 18540ttagccaatc ctctccctgc gttgtctatt cagtatgcag attttgcggt ttggcaacgt 18600caatatctct caggtgaggt cttagataaa caactcaatt attggcaaga acagttagca 18660acagtctctc ctgttcttac tttaccaacg gatagacccc gtccggcgat acaaactttt 18720cagggaggag ttgagcgttt tcaactggat caaaatgtca ctcaaggtct taaaaagtta 18780ggtcaagatc aggttgcaac cctgtttatg acgttgttgg ccggtttcgg cgttttgcta 18840tctcgttata gtggtcaatc tgatctgatg gtgggttctc cgatcgctaa tcgtaatcaa 18900gcagcgatcg aacctttaat tggctttttt gctaacactt tggctttaag aattaattta 18960tcagaaaatc ccagtttttt agaattatta gaacaagtta aacagacaac tttagagggt 19020tatgctcacc aagacctacc ctttgagatg ttagtagaaa agctacaact tgaccgtgat 19080ttgagcagaa atcctttagt acaagtcatg tttgcgctac aaaatacctc tcaagatact 19140tggaatcttt cgggtttaag tattgaaagt ttatctttat cagtggaaga aactgtcaga 19200tttgatctag aagtaaactg ctggcaaaat tcagaaggtt tagcaataga ttggatttac 19260agcagagatt tatttgacac tgcaacaatt gcaagaatgg gagaacattt tcaaaattta 19320gttcaggcaa tcatactcaa tccaaaagct acagttaaag aacttccttt attaacaccc 19380aaggaacgtg agcaattatt aatatcttgg aataatagca agactgatta tcctcaagag 19440cagtgtattt atcaattatt tgaagcacaa gttgaacgga ctccaaaggc gatcgcagtg 19500gtatttgagg agcaatcatt aacatacact gaattaaacc atcgcgctaa tcagttagcc 19560cattatttac aaactttagg cgtgggagca gaagtcttag tcggtatttc cctagaacgt 19620tctttagaga tgattatcgg cttattaggg attctcaagg taggtggtgc ttatcttcct 19680cttgatccag actatcccac tgagcgtctt cagttgatgt tagaagacag tcaagttcct 19740tttttgatta cccacagttc tttattagca aaattgcctc cctctcaagc aactctgatt 19800tgtttagatc atatccaaga gcagatttct caatattctc cagataatct tcaatgtcag 19860ttaactcctg ccaatttagc taacgttatt tatacctctg gctctacggg taagcctaaa 19920ggggtgatgg ttgaacataa aggtttagtt aacttagctc ttgctcaaat tcaatctttt 19980gcagtcaacc ataacagtcg tgtgctgcaa tttgcttctt ttagttttga tgcttgtatt 20040tcagaaattt tgatgacctt tggttctgga gcgacgcttt atcttgcaca aaaagatgct 20100ttattgccag gtcagccatt aattgaacgg ttagtaaaga atggaattac tcatgtgact 20160ttgccgcctt cagctttagt ggttttaccc caggaaccgt tacgcaactt agaaacctta 20220attgtggcgg gtgaggcttg ttctcttgat ttagtgaaac aatggtcaat cgatagaaac 20280tttttcaatg cctatgggcc aacggaagcg agtgtttgtg ccactattgg acaatgttat 20340caagatgatt taaaggtgac gattggtaag gcgatcgcca atgtccaaat ttatatttta 20400gatgcctttt tacagccggt gccggtggga gtgtcaggag agttatacat tggtggagtt 20460ggggtggcaa ggggctattt aaatcgtcct gaattaaccc aagaaaaatt tattgctaat 20520ccttttagta acgacccaga ttctcggctc tataaaactg gcgacttagc gcgttattta 20580cccgatggta atattgaata tttaggacgc attgacaatc aggtaaaaat tcgcggtttt 20640cgcattgagt taggagaaat tgaagcggtt ctgagtcaat gtcccgatgt gcaaaatacg 20700gcggtgattg tccgcgaaga tactcctggc gataagcgct tagttgccta tgtggttctt 20760acttctgact cccagataac tactagcgaa ctgcgtcaat ttttggcgaa tcaattaccc 20820gcctatcttg ttcctaatac ctttgttatt ttagatgatt tgcccctaac ccccagtggc 20880aaatgcgatc gccgttcctt acctataccc gaaacacaag cgttatcaaa tgactatatt 20940gcccctaaat ctcccactga agaaattctg gctcaaatat gggggcaagt tctcaagata 21000gaaagagtca gcagagaaga taatttcttt gaattggggg ggcattccct tttagctacc 21060caggtaatgt cccgtctgcg tgaaactttt caagtcgaat tacctttgcg tagtctcttt 21120accgctccca ctattgctga attggcccta acaattgagc aatctcagca aaccattgct 21180gctcccccca tcctaaccag aaacgacagt gctaacctcc cgttatcttt tgctcaacaa 21240cgtttatggt ttctggatca attagaacct aacagcgcct tttatcatgt agggggagcc 21300gtaagactag aaggaacatt aaatattact gccttagagc aaagcttaaa agaaattatt 21360aatcgtcatg aagctttacg cacaaatttt ataacgattg atggtcaagc cactcaaatt 21420attcacccta ctattaattg gcgattgtct gttgttgatt gtcaaaattt aaccgacact 21480caatctctgg aaattgcgga agctgaaaag ccctttaatc ttgctcaaga ttgcttattt 21540cgtgctactt tattcgtgcg atcaccgcta gaatatcatc tactcgtgac catgcaccat 21600attgttagcg atggctggtc aattggagta ttttttcaag aactaactca tctttacgct 21660gtctataatc agggtttacc ctcatcttta acgcctatta aaatacaata tgctgatttt 21720gcggtctggc aacggaattg gttacaaggt gaaattttaa gtaatcaatt gaattattgg 21780cgcgaacaat tagcaaatgc tcctgctttt ttacctttac cgacagatag acctaggccc 21840gcaatccaaa cttttattgg ttctcatcaa gaatttaaac tttctcagcc attaagccaa 21900aaattgaatc aactaagtca gaagcatgga gtgactttat ttatgactct cctggctgct 21960tttgctacct tactttaccg ttatacagga caagcagata ttttagttgg ttctcctatt 22020gctaaccgta atcgtaagga aattgaggga ttaatcggct tttttgttaa tacattagtt 22080ctgagattga gtttagataa tgatttaagt tttcaaaatt tgctaaacca tgttagagag 22140gtttctttag cagcctacgc ccatcaagat ttaccttttg aaatgttagt agaagcacta 22200caccctcaac gagatctcag tcatacccct ttatttcagg taatgtttgt tttgcaaaat 22260acaccagtgg ctgatctaga acttaaaaat gtaaaggttt gtcctctacc gatggaaaat 22320aagactgcta aatttgattt aaccttatca atggagaatc tagaggaagg attgattggg 22380gtttgggaat ataacaccga tctatttaat ggctcaacca ttgagcgaat gagtggacat 22440tttgtcactt tgttagaaga tattgttgcc gctccaacga agtcagtttt acggttgtct 22500ttgctgacgc aagaggaaaa actgcaatta ttgattaaaa atcagggtgt tcaagttgat 22560tattctcaag agcagtgcat ccatcaatta tttgaagcgc aagttgaacg gactcccgat 22620gcgattgcgg tggtatttga ggagcaatca ttaacctatg ctgaattaaa tcatcaagct 22680aatcagttag tccattactt acaaacttta ggaattgggc cagaggtctt agtcgctatt 22740tcagtagaac gttctttaga aatgattatc ggcttattag ccattctcaa ggcgtgtggt 22800gcttatctcc ctcttgctcc tgactatccc actgagcgtc ttcagttcat gttagaagat 22860agtcaagctt cttttttgat tacccacagt tctttattag aaaaattgcc ttcttctcaa 22920gcgactctaa tttgtttaga tcacatccaa gagcagattt ctcaatattc tcccgataat 22980cttcaaagtg agttaactcc ttccaatttg gctaacgtta tttacacctc tggctctacg 23040ggtaagccta aaggggtgat ggttgaacat cggggcttag ttaacttagc gagttctcaa 23100attcaatctt ttgcagtcaa aaataacagt cgtgtactgc aatttgcttc ctttagtttt 23160gatgcttgta tttcagaaat tttgatgacc tttggttctg gagcgactct ttatcttgct 23220caaaaaaatg atttattgcc aggtcagcca ttaatggaaa ggttagaaaa gaataaaatt

23280acccatgtta ctttaccccc ttcagcttta gctgttttac caaaaaaacc gttacccaac 23340ttacaaactt taattgtggc gggtgaggct tgtcctctgg atttagtcaa acaatggtca 23400gtcggtagaa actttttcaa tgcctatggc ccgacagaaa cgagtgtttg tgccacgatt 23460ggacaatgtt atcaagatga tttaaaggtc acgattggta aggcgatcgc taatgtccaa 23520atttatattt tggatgcctt tttacaacca gtacccatcg gagtaccagg ggaattatac 23580attggtggag tcggagttgc gaggggttat ctaaatcgtc ctgaattaac ggcggaaaga 23640tttattccta atccttttga tcccccccta acccccctta aaaagggggg agataagagc 23700tatgaaactt ttaaaaaggg ggaagagcaa ccatcaaaac tctataaaac gggagattta 23760gctcgttatt tacccgatgg caatattgaa tatttaggac gcattgacaa tcaggtaaaa 23820attcgcggtt ttcgcattga gttaggagaa attgaagcgg ttctgagtca atgtcccgat 23880gtgcaaaata cggcggtgat tgtccgtgaa gatactcctg gcgataaacg tttagttgcc 23940tatgtggttc ttacttctga ctcccagata actactagcg aactgcgtca attcttggct 24000aatcaattac ctgcctatct cgttcccaat acctttgtta ttttagatga tttgccccta 24060acccccaatg gtaaatgcga tcgccgttcc ttaccgcttc ctgatgatca gaccagaaaa 24120aatattccta aaattggccc gcgtaattta gtggaattac aattagctca aatctggtca 24180gagattttag gcattaataa tattggtatt caggaaaact tctttgaatt aggcggtcat 24240tctttattag cagtcagtct gatcaatcgt attgaacaaa agttagataa acgtttacca 24300ttaaccagtc tttttcaaaa tggaaccata gcaagtctag ctcaattact agcgcaagaa 24360acaactcagc cagcctcttc accgttgatt gctatccagt ctcaaggtga taaaactcca 24420ttttttgctg ttcatcccat tggtggtaat gtgctatgtt atgccgattt agctcgtaat 24480ttaggaacga aacagccgtt ttatggatta caatcattag ggctaagtga attagaaaaa 24540actgtagcct ctattgaaga aatggcgatg atttatattg aagcaataca aactgttcaa 24600gcctctggtc cctactattt aggaggttgg tcaatgggag gagtgatagc ttttgaaatc 24660gcccaacaat tattgaccca aggtcaagaa gttgctttac tggctttaat agatagttat 24720tctcccagtt tacttaattc agttaatagg gagaaaaatt ctgctaattc cctgacagaa 24780gaatttaatg aagatatcaa tattgcctat tctttcatca gagacttagc aagtatattt 24840aatcaagaaa tctctttctc tgggagtgaa cttgctcatt ttacatcaga cgaattacta 24900gacaagttta ttacttggag tcaagagacg aatcttttgc cgtcagattt tgggaagcag 24960caggttaaaa cctggtttaa agttttccag attaatcacc aagctttgag cagctattct 25020cccaagacgt atctgggtag aagtgttttc ttaggagcgg aagacagttc tattaaaaat 25080cctggttggc atcaagtaat caatgacttg caatctcaat ggattagcgg cgatcactac 25140ggtttaatta aaaatccagt cctcgctgaa aaactcaata gctacctagc ctaaaacttt 25200caaaaagcct gattattgtt taaaatgaat gatcgttcac cggtcagagg acaagtatga 25260caacccaaac agcttctagt gccaatgccc ttgcttcctt taaccaattt ttaagggatg 25320taaaggcgat cgcccaaccc tattggtatc ccactgtatc aaataaaaga agcttttctg 25380aggttattcg ttcctgggga atgctatcac tgcttatctt tttgattgtg ggattagtcg 25440ccgtcacggc ttttaatagt tttgttaatc gtcgtttaat tgatgtcatt attcaagaaa 25500aagatgcgtc tcaatttgcc agtacattaa ctgtctatgc gatcggatta atctgtgtaa 25560cgctgctggc agggttcact aaagatattc gcaaaaaaat tgccctagat tggtatcaat 25620ggttaaacac ccagattgta gagaaatatt ttagtaatcg tgcctattat aaaattaact 25680ttcaatctga cattgataac cccgatcaac gtctagccca ggaaattgaa ccgatcgcca 25740caaacgccat tagtttctcg gccacttttt tggaaaaaag tttggaaatg ctaacttttt 25800tagtggtagt ttggtcaatt tctcgacaga ttgctattcc gctaatgttt tacacgatta 25860tcggtaattt tattgccgcc tatctaaatc aagaattaag caagatcaat caggcacaac 25920tgcaatcaaa agcagattat aactatgcct taacccatgt tcggactcat gcggaatcta 25980ttgctttttt tcggggagaa aaagaggaac aaaatattat tcagcgacgt tttcaggaag 26040ttatcaatga tacgaaaaat aaaattaact gggaaaaagg gaatgaaatt tttagtcggg 26100gctatcgttc cgtcattcag ttttttcctt ttttagtcct tggccctttg tatattaaag 26160gagaaattga ttatggacaa gttgagcaag cttcattagc tagttttatg tttgcatcgg 26220ccctgggaga attaattaca gaatttggta cttcaggacg tttttctagt tatgtagaac 26280gtttaaatga attttctaat gccttagaaa ctgtgactaa acaagccgag aatgtcagca 26340caattacaac catagaagaa aatcattttg cctttgaaca cgtcacccta gaaacccctg 26400actatgaaaa ggtgattgtt gaggatttat ctcttactgt tcaaaaaggt gaaggattat 26460tgattgtcgg gcccagtggt cgaggtaaaa gttctttatt aagggcgatc gccggtttat 26520ggaatgctgg cactgggcgt ttagtgcgtc ctcccctaga agaaattctc tttttgcccc 26580aacgtcccta cattattttg ggaaccttac gcgaacaatt gctgtatcct ctaaccaata 26640gtgagatgag caataccgaa cttcaagcag tattacaaca agtcaatttg caaaatgtgc 26700taaatcgggt ggatgacttt gactccgaaa aaccctggga aaacattctc tccctcggtg 26760aacaacaacg cctagccttt gctcgattgt tagtgaattc tccgagtttt accattttag 26820atgaggcgac cagtgcctta gatttaacaa atgaggggat tttatacgag caattacaaa 26880ctcgcaagac aacctttatt agtgtgggtc atcgagaaag tttgtttaat taccatcaat 26940gggttttaga actttctgct gactctagtt gggaactctt aagcgttcaa gattatcgcc 27000ttaaaaaagc gggagaaatg tttactaatg cttcgagtaa caattccata acacccgata 27060ttactatcga taatggatca gaaccagaaa tagtctattc tcttgaagga ttttcccatc 27120aggaaatgaa actattaaca gacctatcac tctctagcat tcggagtaaa gccagtcgag 27180ggaaggtgat tacagccaag gatggtttta cctaccttta tgacaaaaat cctcagatat 27240taaagtggct cagaacttaa 27260



Patent applications by Dan Kramer, Berlin DE

Patent applications by CYANO BIOTECH GMBH

Patent applications by HUMBOLDT-UNIVERSITAET ZU BERLIN

Patent applications in class DNA or RNA fragments or modified forms thereof (e.g., genes, etc.)

Patent applications in all subclasses DNA or RNA fragments or modified forms thereof (e.g., genes, etc.)


User Contributions:

Comment about this patent or add new information about this topic:

CAPTCHA
Similar patent applications:
DateTitle
2014-07-10Use of microvesicles in diagnosis and prognosis of medical diseases and conditions
2014-07-10Stabilized nucleic acid dark quencher-fluorophore probes
2014-07-10Method to produce water-soluble sugars from biomass using solvents containing lactones
2014-07-10Immunosuppression compound and treatment method
2014-06-19Medicinal agent for medical applications
New patent applications in this class:
DateTitle
2022-05-05Methods for purification of messenger rna
2019-05-16Novel minimal utr sequences
2019-05-16Dna gridiron compositions and methods
2019-05-16Methods and compositions for nucleoside triphosphate and ribonucleic acid production
2019-05-16Trityl-mono-galnac compounds and their use
New patent applications from these inventors:
DateTitle
2017-06-22Recombinant cyanobacterial cell for contamination control in a cyanobacterial culture producing a chemical compound of interest
2015-01-15Cyanobacterium sp. host cell and vector for production of chemical compounds in cyanobacterial cultures
2014-10-30Metabolically enhanced cyanobacterium with sequentially inducible production genes for the production of a first chemical compound
2014-06-26Cyanobacterium sp. host cell and vector for production of chemical compounds in cyanobacterial cultures
2014-06-26Cyanobacterium sp. for production of compounds
Top Inventors for class "Organic compounds -- part of the class 532-570 series"
RankInventor's name
1William Marshall
2Anastasia Khvorova
3Eric E. Swayze
4Devin Leake
5Stephen Scaringe
Website © 2025 Advameg, Inc.