Patent application title: TREATMENT OF PAIN
Inventors:
Keith Foster (Salisbury, GB)
Keith Foster (Salisbury, GB)
John Chaddock (Salisbury, GB)
Philip Marks (Salisbury, GB)
Patrick Stancombe (Salisbury, GB)
Patrick Stancombe (Salisbury, GB)
K. Roger Aoki (Irvine, CA, US)
Joseph Francis (Irvine, CA, US)
Joseph Francis (Irvine, CA, US)
Lance Steward (Irvine, CA, US)
Assignees:
SYNTAXIN LIMITED
Allergan, Inc.
IPC8 Class: AA61K3848FI
USPC Class:
424 9463
Class name: Enzyme or coenzyme containing hydrolases (3. ) (e.g., urease, lipase, asparaginase, muramidase, etc.) acting on peptide bonds (3.4) (e.g., urokinease, etc.)
Publication date: 2010-02-11
Patent application number: 20100034802
Claims:
1. Use of a therapeutic molecule for the manufacture of a medicament for
the treatment of particular types of pain, wherein the therapeutic
molecule is a single chain, polypeptide fusion protein, comprising:a. a
non-cytotoxic protease, or a fragment thereof, which protease or protease
fragment is capable of cleaving a protein of the exocytic fusion
apparatus of a nociceptive sensory afferent;b. a Targeting Moiety that is
capable of binding to a Binding Site on the nociceptive sensory afferent,
which Binding Site is capable of undergoing endocytosis to be
incorporated into an endosome within the nociceptive sensory afferent;c.
a protease cleavage site at which site the fusion protein is cleavable by
a protease, wherein the protease cleavage site is located between the
non-cytotoxic protease or fragment thereof and the Targeting Moiety;
andd. a translocation domain that is capable of translocating the
protease or protease fragment from within an endosome, across the
endosomal membrane and into the cytosol of the nociceptive sensory
afferent.
2. Use according to claim 1, wherein the Targeting Moiety and the protease cleavage site are separated by at most 10 amino acid residues, preferably by at most 5 amino acid residues, and more preferably by at most zero amino acid residues.
3. Use according to claim 1 or claim 2, wherein the Targeting Moiety is located between the protease cleavage site and the translocation domain.
4. Use according to any preceding claim, wherein the non-cytotoxic protease is a clostridial neurotoxin L-chain or an IgA protease.
5. Use according to any preceding claim, wherein the translocation domain is the HN domain of a clostridial neurotoxin.
6. Use according to any preceding claim, wherein the Targeting Moiety comprises at most 50 amino acid residues, preferably at most 40 amino acid residues, more preferably at least 30 amino acid residues, and most preferably at most 20 amino acid residues.
7. Use according to any of claims 1-6, wherein the Targeting Moiety is an opioid.
8. Use according to any of claim 1-6, wherein the Targeting Moiety is an agonist of a receptor present on a nociceptive sensory afferent.
9. Use according to claim 8, wherein the Targeting Moiety is an agonist of a receptor present on a primary nociceptive sensory afferent.
10. Use according to any of claims 1-6, wherein the Targeting Moiety binds to the ORL1 receptor.
11. Use according to claim 10, wherein the Targeting Moiety binds specifically to the ORL1 receptor.
12. Use according to claim 10 or 11, wherein the Targeting Moiety is an agonist of the ORL1 receptor.
13. Use according to any one of claims 10-12, wherein the Targeting Moiety has at least 70% homology to SEQ ID No. 38 or a fragment thereof.
14. Use according to claim 13, wherein the Targeting Moiety as at least 80% homology to SEQ ID No. 38 or a fragment thereof.
15. Use according to claim 14, wherein the Targeting Moiety has at least 90% homology to SEQ ID No. 38 or a fragment thereof.
16. Use according to claim 15, wherein the Targeting Moiety has at least 95% homology to SEQ ID No. 38 or a fragment thereof.
17. Use according to any one of claims 10-12, wherein the Targeting Moiety is SEQ ID No. 38 or a fragment thereof.
18. Use according to any of claims 10-12, wherein the Targeting Moiety is one of SEQ ID Nos: 40, 42, 44, 46, 48 or 50.
19. Use according to any one of claims 10-12, wherein the Targeting Moiety is nociceptin.
20. Use according to any of claims 1-6, wherein the Targeting Moiety is selected from the group consisting of nociceptin, β-endorphin, endomorphine-1, endomorphine-2, dynorphin, met-enkephalin, leu-enkephalin, galanin, and PAR-2 peptide.
21. Use according to any preceding claim, wherein the fusion protein comprises a purification tag.
22. Use according to claim 21, wherein the fusion protein comprises a purification tag, which is present at the N-terminal and/or C-terminal end of the fusion protein.
23. Use according to claim 21 or 22, wherein the purification tag is joined to the fusion protein by a peptide spacer molecule.
24. Use according to any preceding claim, wherein the translocation domain is separated from the Targeting Moiety by a peptide spacer molecule.
25. Use according to any preceding claim, wherein the polypeptide fusion protein comprising any one of SEQ ID NOs: 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 52, 59, 61, 64, 67, 69, 71, 73, 76, 79, 82, 85, or 88.
26. A method of preparing a non-cytotoxic fusion protein, comprising:a. contacting a single-chain polypeptide fusion protein as defined in any of claims 1-25 with a protease capable of cleaving the protease cleavage site;b. cleaving the protease cleavage site; and thereby forming a di-chain fusion protein.
27. A non-cytotoxic fusion protein, obtainable by the method of claim 26, wherein the protein is a di-chain polypeptide, and wherein:a. the first chain comprises the non-cytotoxic protease, or a fragment thereof, which protease or protease fragment is capable of cleaving a protein of the exocytic fusion apparatus of a nociceptive sensory afferent;b. the second chain comprises the TM and the translocation domain that is capable of translocating the protease or protease fragment from within an endosome, across the endosomal membrane and into the cytosol of the nociceptive sensory afferent; andthe first and second chains are disulphide linked together.
28. Use of a fusion protein according to claim 27, for the manufacture of a medicament for treating, preventing or ameliorating particular types of pain.
29. A method of treating, preventing or ameliorating particular types of pain in a subject, comprising administering to said patient a therapeutically effective amount of a fusion protein as defined in any of claims 1-27.
Description:
[0001]This invention relates to the use of non-cytotoxic fusion proteins
for the treatment of specific types of pain.
[0002]Toxins may be generally divided into two groups according to the type of effect that they have on a target cell. In more detail, the first group of toxins kill their natural target cells, and are therefore known as cytotoxic toxin molecules. This group of toxins is exemplified inter alia by plant toxins such as ricin, and abrin, and by bacterial toxins such as diphtheria toxin, and Pseudomonas exotoxin A. Cytotoxic toxins have attracted much interest in the design of "magic bullets" (e.g. immunoconjugates, which comprise a cytotoxic toxin component and an antibody that binds to a specific marker on a target cell) for the treatment of cellular disorders and conditions such as cancer. Cytotoxic toxins typically kill their target cells by inhibiting the cellular process of protein synthesis.
[0003]The second group of toxins, which are known as non-cytotoxic toxins, do not (as their name confirms) kill their natural target cells. Non-cytotoxic toxins have attracted much less commercial interest than have their cytotoxic counterparts, and exert their effects on a target cell by inhibiting cellular processes other than protein synthesis. Non-cytotoxic toxins are produced by a variety of plants, and by a variety of microorganisms such as Clostridium sp. and Neisseria sp.
[0004]Clostridial neurotoxins are proteins that typically have a molecular mass of the order of 150 kDa. They are produced by various species of bacteria, especially of the genus Clostridium, most importantly C. tetani and several strains of C. botulinum, C. butyricum and C. argentinense. There are at present eight different classes of the clostridial neurotoxin, namely: tetanus toxin, and botulinum neurotoxin in its serotypes A, B, C1, D, E, F and G, and they all share similar structures and modes of action.
[0005]Clostridial neurotoxins represent a major group of non-cytotoxic toxin molecules, and are synthesised by the host bacterium as single polypeptides that are modified post-translationally by a proteolytic cleavage event to form two polypeptide chains joined together by a disulphide bond. The two chains are termed the heavy chain (H-chain), which has a molecular mass of approximately 100 kDa, and the light chain (L-chain), which has a molecular mass of approximately 50 kDa.
[0006]L-chains possess a protease function (zinc-dependent endopeptidase activity) and exhibit a high substrate specificity for vesicle and/or plasma membrane associated proteins involved in the exocytic process. L-chains from different clostridial species or serotypes may hydrolyse different but specific peptide bonds in one of three substrate proteins, namely synaptobrevin, syntaxin or SNAP-25. These substrates are important components of the neurosecretory machinery.
[0007]Neisseria sp., most importantly from the species N. gonorrhoeae, produce functionally similar non-cytotoxic proteases. An example of such a protease is IgA protease (see WO99/58571).
[0008]It has been well documented in the art that toxin molecules may be re-targeted to a cell that is not the toxin's natural target cell. When so re-targeted, the modified toxin is capable of binding to a desired target cell and, following subsequent translocation into the cytosol, is capable of exerting its effect on the target cell. Said re-targeting is achieved by replacing the natural Targeting Moiety (TM) of the toxin with a different TM. In this regard, the TM is selected so that it will bind to a desired target cell, and allow subsequent passage of the modified toxin into an endosome within the target cell. The modified toxin also comprises a translocation domain to enable entry of the non-cytotoxic protease into the cell cytosol. The translocation domain can be the natural translocation domain of the toxin or it can be a different translocation domain obtained from a microbial protein with translocation activity.
[0009]The above-mentioned TM replacement may be effected by conventional chemical conjugation techniques, which are well known to a skilled person. In this regard, reference is made to Hermanson, G. T. (1996), Bioconjugate techniques, Academic Press, and to Wong, S. S. (1991), Chemistry of protein conjugation and cross-linking, CRC Press.
[0010]Chemical conjugation is, however, often imprecise. For example, following conjugation, a TM may become joined to the remainder of the conjugate at more than one attachment site.
[0011]Chemical conjugation is also difficult to control. For example, a TM may become joined to the remainder of the modified toxin at an attachment site on the protease component and/or on the translocation component. This is problematic when attachment to only one of said components (preferably at a single site) is desired for therapeutic efficacy.
[0012]Thus, chemical conjugation results in a mixed population of modified toxin molecules, which is undesirable.
[0013]As an alternative to chemical conjugation, TM replacement may be effected by recombinant preparation of a single polypeptide fusion protein (see WO98/07864). This technique is based on the in vivo bacterial mechanism by which native clostridial neurotoxin (i.e. holotoxin) is prepared, and results in a fusion protein having the following structural arrangement:
NH2-[protease component]-[translocation component]-[TM]-COOH
[0014]According to WO98/07864, the TM is placed towards the C-terminal end of the fusion protein. The fusion protein is then activated by treatment with a protease, which cleaves at a site between the protease component and the translocation component. A di-chain protein is thus produced, comprising the protease component as a single polypeptide chain covalently attached (via a disulphide bridge) to another single polypeptide chain containing the translocation component plus TM. Whilst the WO98/07864 methodology follows (in terms of structural arrangement of the fusion protein) the natural expression system of clostridial holotoxin, the present inventors have found that this system may result in the production of certain fusion proteins that have a substantially-reduced binding ability for the intended target cell.
[0015]This problem is particularly relevant in the context of treating specific types of pain.
[0016]The present invention addresses one or more of the above-mentioned problems by providing use of a therapeutic molecule for the manufacture of a medicament for the treatment of particular types of pain, wherein the therapeutic molecule is a single chain, polypeptide fusion protein, comprising: [0017]a. a non-cytotoxic protease, or a fragment thereof, which protease or protease fragment is capable of cleaving a protein of the exocytic fusion apparatus in a nociceptive sensory afferent; [0018]b. a Targeting Moiety that is capable of binding to a Binding Site on the nociceptive sensory afferent, which Binding Site is capable of undergoing endocytosis to be incorporated into an endosome within the nociceptive sensory afferent;
[0019]c. a protease cleavage site at which site the fusion protein is cleavable by a protease, wherein the protease cleavage site is located between the non-cytotoxic protease or fragment thereof and the Targeting Moiety; and [0020]d. a translocation domain that is capable of translocating the protease or protease fragment from within an endosome, across the endosomal membrane and into the cytosol of the nociceptive sensory afferent.
[0021]The present inventors have found that the WO 98/07864 fusion protein system is not optimal for TMs requiring a N-terminal domain for interaction with a binding site on a nociceptive sensory afferent. This problem is particularly acute with TMs that require a specific N-terminus amino acid residue or a specific sequence of amino acid residues including the N-terminus amino acid residue for interaction with a binding site on a nociceptive sensory afferent.
[0022]In contrast to WO98/07864, the present invention employs non-cytotoxic fusion proteins, wherein the TM component of the fusion includes the relevant binding domain in an intra domain or an amino acid sequence located towards the middle (ie. of the linear peptide sequence) of the TM, or preferably located towards the N-terminus of the TM, or more preferably at or near to the N-terminus. The N-terminal domain is capable of binding to a Binding Site on a nociceptive sensory afferent, and the TM preferably has a requirement for a specific and defined sequence of amino acid residue(s) to be free at its N-terminus.
[0023]The compounds described here may be used to treat a patient suffering from one or more types of chronic pain including neuropathic pain, inflammatory pain, headache pain, somatic pain, visceral pain, and referred pain.
[0024]To "treat," as used here, means to deal with medically. It includes, for example, administering a compound of the invention to prevent pain or to lessen its severity.
[0025]The term "pain," as used here, means any unpleasant sensory experience, usually associated with a physical disorder. The physical disorder may or may not be apparent to a clinician. Pain is of two types: chronic and acute. An "acute pain" is a pain of short duration having a sudden onset. One type of acute pain, for example, is cutaneous pain felt on injury to the skin or other superficial tissues, such as caused by a cut or a burn. Cutaneous nociceptors terminate just below the skin, and due to the high concentration of nerve endings, produce a well-defined, localized pain of short duration. "Chronic pain" is a pain other than an acute pain. Chronic pain includes neuropathic pain, inflammatory pain, headache pain, somatic pain visceral pain and referred pain.
I. Neuropathic Pain
[0026]The compounds of the invention may be used to treat pain caused by or otherwise associated with any of the following neuropathic pain conditions. "Neuropathic pain" means abnormal sensory input, resulting in discomfort, from the peripheral nervous system, central nervous systems, or both.
A. Symptoms of Neuropathic Pain
[0027]Symptoms of neuropathic pain can involve persistent, spontaneous pain, as well as allodynia (a painful response to a stimulus that normally is not painful), hyperalgesia (an accentuated response to a painful stimulus that usually causes only a mild discomfort, such as a pin prick), or hyperpathia (where a short discomfort becomes a prolonged severe pain).
B. Causes of Neuropathic Pain
[0028]Neuropathic pain may be caused by any of the following.
[0029]1. A traumatic insult, such as, for example, a nerve compression injury (e.g., a nerve crush, a nerve stretch, a nerve entrapment or an incomplete nerve transsection); a spinal cord injury (e.g., a hemisection of the spinal cord); a limb amputation; a contusion; an inflammation (e.g., an inflammation of the spinal cord); or a surgical procedure.
[0030]2. An ischemic event, including, for example, a stroke and heart attack.
[0031]3. An infectious agent
[0032]4. Exposure to a toxic agent, including, for example, a drug, an alcohol, a heavy metal (e.g., lead, arsenic, mercury), an industrial agent (e.g., a solvent, fumes from a glue) or nitrous oxide.
[0033]5. A disease, including, for example, an inflammatory disorder, a neoplastic tumor, an acquired immune deficiency syndrome (AIDS), Lymes disease, a leprosy, a metabolic disease, a peripheral nerve disorder, like neuroma, a mononeuropathy or a polyneuropathy.
C. Types of Neuropathic Pain
1. Neuralgia.
[0034]A neuralgia is a pain that radiates along the course of one or more specific nerves usually without any demonstrable pathological change in the nerve structure. The causes of neuralgia are varied. Chemical irritation, inflammation, trauma (including surgery), compression by nearby structures (for instance, tumors), and infections may all lead to neuralgia. In many cases, however, the cause is unknown or unidentifiable. Neuralgia is most common in elderly persons, but it may occur at any age. A neuralgia, includes, without limitation, a trigeminal neuralgia, a post-herpetic neuralgia, a postherpetic neuralgia, a glossopharyngeal neuralgia, a sciatica and an atypical facial pain.
[0035]Neuralgia is pain in the distribution of a nerve or nerves. Examples are trigeminal neuralgia, atypical facial pain, and postherpetic neuralgia (caused by shingles or herpes). The affected nerves are responsible for sensing touch, temperature and pressure in the facial area from the jaw to the forehead. The disorder generally causes short episodes of excruciating pain, usually for less than two minutes and on only one side of the face. The pain can be described in a variety of ways such as "stabbing," "sharp," "like lightning," "burning," and even "itchy". In the atypical form of TN, the pain can also present as severe or merely aching and last for extended periods. The pain associated with TN is recognized as one the most excruciating pains that can be experienced.
[0036]Simple stimuli such as eating, talking, washing the face, or any light touch or sensation can trigger an attack (even the sensation of a gentle breeze). The attacks can occur in clusters or as an isolated attack.
[0037]Symptoms include sharp, stabbing pain or constant, burning pain located anywhere, usually on or near the surface of the body, in the same location for each episode; pain along the path of a specific nerve; impaired function of affected body part due to pain, or muscle weakness due to concomitant motor nerve damage; increased sensitivity of the skin or numbness of the affected skin area (feeling similar to a local anesthetic such as a Novacaine shot); and any touch or pressure is interpreted as pain. Movement may also be painful.
[0038]Trigeminal neuralgia is the most common form of neuralgia. It affects the main sensory nerve of the face, the trigeminal nerve ("trigeminal" literally means "three origins", referring to the division of the nerve into 3 branches). This condition involves sudden and short attacks of severe pain on the side of the face, along the area supplied by the trigeminal nerve on that side. The pain attacks may be severe enough to cause a facial grimace, which is classically referred to as a painful tic (tic douloureux). Sometimes, the cause of trigeminal neuralgia is a blood vessel or small tumor pressing on the nerve. Disorders such as multiple sclerosis (an inflammatory disease affecting the brain and spinal cord), certain forms of arthritis, and diabetes (high blood sugar) may also cause trigeminal neuralgia, but a cause is not always identified. In this condition, certain movements such as chewing, talking, swallowing, or touching an area of the face may trigger a spasm of excruciating pain.
[0039]A related but rather uncommon neuralgia affects the glosso-pharyngeal nerve, which provides sensation to the throat. Symptoms of this neuralgia are short, shock-like episodes of pain located in the throat.
[0040]Neuralgia may occur after infections such as shingles, which is caused by the varicella-zoster virus, a type of herpesvirus. This neuralgia produces a constant burning pain after the shingles rash has healed. The pain is worsened by movement of or contact with the affected area. Not all of those diagnosed with shingles go on to experience postherpetic neuralgia, which can be more painful than shingles. The pain and sensitivity can last for months or even years. The pain is usually in the form of an intolerable sensitivity to any touch but especially light touch. Postherpetic neuralgia is not restricted to the face; it can occur anywhere on the body but usually occurs at the location of the shingles rash.
[0041]Depression is not uncommon due to the pain and social isolation during the illness.
[0042]Postherpetic neuralgia may be debilitating long after signs of the original herpes infection have disappeared. Other infectious diseases that may cause neuralgia are syphilis and Lyme disease.
[0043]Diabetes is another common cause of neuralgia. This very common medical problem affects almost 1 out of every 20 Americans during adulthood. Diabetes damages the tiny arteries that supply circulation to the nerves, resulting in nerve fiber malfunction and sometimes nerve loss. Diabetes can produce almost any neuralgia, including trigeminal neuralgia, carpal tunnel syndrome (pain and numbness of the hand and wrist), and meralgia paresthetica (numbness and pain in the thigh due to damage to the lateral femoral cutaneous nerve). Strict control of blood sugar may prevent diabetic nerve damage and may accelerate recovery in patients who do develop neuralgia.
[0044]Other medical conditions that may be associated with neuralgias are chronic renal insufficiency and porphyria--a hereditary disease in which the body cannot rid itself of certain substances produced after the normal breakdown of blood in the body. Certain drugs may also cause this problem.
2. Deafferentation.
[0045]Deafferentation indicates a loss of the sensory input from a portion of the body, and can be caused by interruption of either peripheral sensory fibres or nerves from the central nervous system. A deafferentation pain syndrome, includes, without limitation, an injury to the brain or spinal cord, a post-stroke pain, a phantom pain, a paraplegia, a brachial plexus avulsion injuries, lumbar radiculopathies.
3. Complex Regional Pain Syndromes (CRPSs)
[0046]CRPS is a chronic pain syndrome resulting from sympathetically-maintained pain, and presents in two forms. CRPS 1 currently replaces the term "reflex sympathetic dystrophy syndrome". It is a chronic nerve disorder that occurs most often in the arms or legs after a minor or major injury. CRPS 1 is associated with severe pain; changes in the nails, bone, and skin; and an increased sensitivity to touch in the affected limb. CRPS 2 replaces the term causalgia, and results from an identified injury to the nerve. A CRPS, includes, without limitation, a CRPS Type I (reflex sympathetic dystrophy) and a CRPS Type II (causalgia).
4. Neuropathy.
[0047]A neuropathy is a functional or pathological change in a nerve and is characterized clinically by sensory or motor neuron abnormalities.
[0048]Central neuropathy is a functional or pathological change in the central nervous system.
[0049]Peripheral neuropathy is a functional or pathological change in one or more peripheral nerves. The peripheral nerves relay information from your central nervous system (brain and spinal cord) to muscles and other organs and from your skin, joints, and other organs back to your brain. Peripheral neuropathy occurs when these nerves fail to carry information to and from the brain and spinal cord, resulting in pain, loss of sensation, or inability to control muscles. In some cases, the failure of nerves that control blood vessels, intestines, and other organs results in abnormal blood pressure, digestion problems, and loss of other basic body processes. Risk factors for neuropathy include diabetes, heavy alcohol use, and exposure to certain chemicals and drugs. Some people have a hereditary predisposition for neuropathy. Prolonged pressure on a nerve is another risk for developing a nerve injury. Pressure injury may be caused by prolonged immobility (such as a long surgical procedure or lengthy illness) or compression of a nerve by casts, splints, braces, crutches, or other devices. Polyneuropathy implies a widespread process that usually affects both sides of the body equally. The symptoms depend on which type of nerve is affected. The three main types of nerves are sensory, motor, and autonomic. Neuropathy can affect any one or a combination of all three types of nerves. Symptoms also depend on whether the condition affects the whole body or just one nerve (as from an injury). The cause of chronic inflammatory polyneuropathy is an abnormal immune response. The specific antigens, immune processes, and triggering factors are variable and in many cases are unknown. It may occur in association with other conditions such as HIV, inflammatory bowel disease, lupus erythematosis, chronic active hepatitis, and blood cell abnormalities.
[0050]Peripheral neuropathy may involve a function or pathological change to a single nerve or nerve group (monneuropathy) or a function or pathological change affecting multiple nerves (polyneuropathy).
Peripheral Neuropathies
Hereditary Disorders
[0051]Charcot-Marie-Tooth disease [0052]Friedreich's ataxia
Systemic or Metabolic Disorders
[0052] [0053]Diabetes (diabetic neuropathy) [0054]Dietary deficiencies (especially vitamin B-12) [0055]Excessive alcohol use (alcoholic neuropathy) [0056]Uremia (from kidney failure) [0057]Cancer
Infectious or Inflammatory Conditions
[0057] [0058]AIDS [0059]Hepatitis [0060]Colorado tick fever diphtheria [0061]Guillain-Barre syndrome [0062]HIV infection without development of AIDS [0063]leprosy [0064]Lyme [0065]polyarteritis nodosa [0066]rheumatoid arthritis [0067]sarcoidosis [0068]Sjogren syndrome [0069]syphilis [0070]systemic lupus erythematosus [0071]amyloid
Exposure to Toxic Compounds
[0071] [0072]sniffing glue or other toxic compounds [0073]nitrous oxide [0074]industrial agents--especially solvents [0075]heavy metals (lead, arsenic, mercury, etc.) [0076]Neuropathy secondary to drugs like analgesic nephropathy
Miscellaneous Causes
[0076] [0077]ischemia (decreased oxygen/decreased blood flow) [0078]prolonged exposure to cold temperature
[0079]a. Polyneuropathy
[0080]Polyneuropathy is a peripheral neuropathy involving the loss of movement or sensation to an area caused by damage or destruction to multiple peripheral nerves. Polyneuropathic pain, includes, without limitation, post-polio syndrome, postmastectomy syndrome, diabetic neuropathy, alcohol neuropathy, amyloid, toxins, AIDS, hypothyroidism, uremia, vitamin deficiencies, chemotherapy-induced pain, 2',3'-didexoycytidine (ddC) treatment, Guillain-Barre syndrome or Fabry's disease.
[0081]b. Mononeuropathy
[0082]Mononeuropathy is a peripheral neuropathy involving loss of movement or sensation to an area caused by damage or destruction to a single peripheral nerve or nerve group. Mononeuropathy is most often caused by damage to a local area resulting from injury or trauma, although occasionally systemic disorders may cause isolated nerve damage (as with mononeuritis multiplex). The usual causes are direct trauma, prolonged pressure on the nerve, and compression of the nerve by swelling or injury to nearby body structures. The damage includes destruction of the myelin sheath (covering) of the nerve or of part of the nerve cell (the axon). This damage slows or prevents conduction of impulses through the nerve. Mononeuropathy may involve any part of the body. Mononeuropathic pain, includes, without limitation, a sciatic nerve dysfunction, a common peroneal nerve dysfunction. a radial nerve dysfunction, an ulnar nerve dysfunction, a cranial mononeuropathy VI, a cranial mononeuropathy VII, a cranial mononeuropathy III (compression type), a cranial mononeuropathy III (diabetic type), an axillary nerve dysfunction, a carpal tunnel syndrome, a femoral nerve dysfunction, a tibial nerve dysfunction, a Bell's palsy, a thoracic outlet syndrome, a carpal tunnel syndrome and a sixth (abducent) nerve palsy
[0083]c. Generalized Peripheral Neuropathies
[0084]Generalized peripheral neuropathies are symmetrical, and usually due to various systematic illnesses and disease processes that affect the peripheral nervous system in its entirety. They are further subdivided into several categories:
[0085]i. Distal axonopathies are the result of some metabolic or toxic derangement of neurons. They may be caused by metabolic diseases such as diabetes, renal failure, deficiency syndromes such as malnutrition and alcoholism, or the effects of toxins or drugs. Distal axonopathy (aka dying back neuropathy) is a type of peripheral neuropathy that results from some metabolic or toxic derangement of peripheral nervous system (PNS) neurons. It is the most common response of nerves to metabolic or toxic disturbances, and as such may be caused by metabolic diseases such as diabetes, renal failure, deficiency syndromes such as malnutrition and alcoholism, or the effects of toxins or drugs. The most common cause of distal axonopathy is diabetes, and the most common distal axonopathy is diabetic neuropathy.
[0086]ii. Myelinopathies are due to a primary attack on myelin causing an acute failure of impulse conduction. The most common cause is acute inflammatory demyelinating polyneuropathy (AIDP; aka Guillain-Barre syndrome), though other causes include chronic inflammatory demyelinating syndrome (CIDP), genetic metabolic disorders (e.g., leukodystrophy), or toxins. Myelinopathy is due to primary destruction of myelin or the myelinating Schwann cells, which leaves the axon intact, but causes an acute failure of impulse conduction. This demyelination slows down or completely blocks the conduction of electrical impulses through the nerve. The most common cause is acute inflammatory demyelinating polyneuropathy (AIDP, better known as Guillain-Barre syndrome), though other causes include chronic inflammatory demyelinating polyneuropathy (CIDP), genetic metabolic disorders (e.g., leukodystrophy or Charcot-Marie-Tooth disease), or toxins.
[0087]iii. Neuronopathies are the result of destruction of peripheral nervous system (PNS) neurons. They may be caused by motor neurone diseases, sensory neuronopathies (e.g., Herpes zoster), toxins or autonomic dysfunction. Neurotoxins may cause neuronopathies, such as the chemotherapy agent vincristine. Neuronopathy is dysfunction due to damage to neurons of the peripheral nervous system (PNS), resulting in a peripheral neuropathy. It may be caused by motor neurone diseases, sensory neuronopathies (e.g., Herpes zoster), toxic substances or autonomic dysfunction. A person with neuronopathy may present in different ways, depending on the cause, the way it affects the nerve cells, and the type of nerve cell that is most affected.
[0088]iv. Focal entrapment neuropathies (e.g., carpal tunnel syndrome).
II. Inflammatory Pain
[0089]The compounds of the invention may be used to treat pain caused by or otherwise associated with any of the following inflammatory conditions
A. Arthritic Disorder
[0090]Arthritic disorders include, for example, a rheumatoid arthritis; a juvenile rheumatoid arthritis; a systemic lupus erythematosus (SLE); a gouty arthritis; a scleroderma; an osteoarthritis; a psoriatic arthritis; an ankylosing spondylitis; a Reiter's syndrome (reactive arthritis); an adult Still's disease; an arthritis from a viral infection; an arthritis from a bacterial infection, such as, e.g., a gonococcal arthritis and a non-gonococcal bacterial arthritis (septic arthritis); a Tertiary Lyme disease; a tuberculous arthritis; and an arthritis from a fungal infection, such as, e,g. a blastomycosis
B. Autoimmune Diseases
[0091]Autoimmune diseases include, for example, a Guillain-Barre syndrome, a Hashimoto's thyroiditis, a pernicious anemia, an Addison's disease, a type I diabetes, a systemic lupus erythematosus, a dermatomyositis, a Sjogren's syndrome, a lupus erythematosus, a multiple sclerosis, a myasthenia gravis, a Reiter's syndrome and a Grave's disease.
C. Connective Tissue Disorder
[0092]Connective tissue disorders include, for example, a spondyloarthritis a dermatomyositis, and a fibromyalgia.
D. Injury
[0093]Inflammation caused by injury, including, for example, a crush, puncture, stretch of a tissue or joint, may cause chronic inflammatory pain.
E. Infection
[0094]Inflammation caused by infection, including, for example, a tuberculosis or an interstitial keratitis may cause chronic inflammatory pain.
F. Neuritis
[0095]Neuritis is an inflammatory process affecting a nerve or group of nerves. Symptoms depend on the nerves involved, but may include pain, paresthesias, paresis, or hypesthesia (numbness). [0096]Examples include: [0097]a. Brachial neuritis [0098]b. Retrobulbar neuropathy, an inflammatory process affecting the part of the optic nerve lying immediately behind the eyeball. [0099]c. Optic neuropathy, an inflammatory process affecting the optic nerve causing sudden, reduced vision in the affected eye. The cause of optic neuritis is unknown. The sudden inflammation of the optic nerve (the nerve connecting the eye and the brain) leads to swelling and destruction of the myelin sheath. The inflammation may occasionally be the result of a viral infection, or it may be caused by autoimmune diseases such as multiple sclerosis. Risk factors are related to the possible causes. [0100]d. Vestibular neuritis, a viral infection causing an inflammatory process affecting the vestibular nerve.
G. Joint Inflammation
[0101]Inflammation of the joint, such as that caused by bursitis or tendonitis, for example, may cause chronic inflammatory pain.
III. Headache Pain
[0102]The compounds of the invention may be used to treat pain caused by or otherwise associated with any of the following headache conditions. A headache (medically known as cephalgia) is a condition of mild to severe pain in the head; sometimes neck or upper back pain may also be interpreted as a headache. It may indicate an underlying local or systemic disease or be a disorder in itself.
A. Muscular/Myogenic Headache
[0103]Muscular/myogenic headaches appear to involve the tightening or tensing of facial and neck muscles; they may radiate to the forehead. Tension headache is the most common form of myogenic headache.
[0104]A tension headache is a condition involving pain or discomfort in the head, scalp, or neck, usually associated with muscle tightness in these areas. Tension headaches result from the contraction of neck and scalp muscles. One cause of this muscle contraction is a response to stress, depression or anxiety. Any activity that causes the head to be held in one position for a long time without moving can cause a headache. Such activities include typing or use of computers, fine work with the hands, and use of a microscope. Sleeping in a cold room or sleeping with the neck in an abnormal position may also trigger this type of headache. A tension-type headache, includes, without limitation, an episodic tension headache and a chronic tension headache.
B. Vascular Headache
[0105]The most common type of vascular headache is migraine. Other kinds of vascular headaches include cluster headaches, which cause repeated episodes of intense pain, and headaches resulting from high blood pressure
[0106]1. Migraine
[0107]A migraine is a heterogeneous disorder that generally involves recurring headaches. Migraines are different from other headaches because they occur with other symptoms, such as, e.g., nausea, vomiting, or sensitivity to light. In most people, a throbbing pain is felt only on one side of the head. Clinical features such as type of aura symptoms, presence of prodromes, or associated symptoms such as vertigo, may be seen in subgroups of patients with different underlying pathophysiological and genetic mechanisms. A migraine headache, includes, without limitation, a migraine without aura (common migraine), a migraine with aura (classic migraine), a menstrual migraine, a migraine equivalent (acephalic headache), a complicated migraine, an abdominal migraine and a mixed tension migraine.
[0108]2. Cluster headache
[0109]Cluster headaches affect one side of the head (unilateral) and may be associated with tearing of the eyes and nasal congestion. They occurs in clusters, happening repeatedly every day at the same time for several weeks and then remitting.
D. High Blood Pressure Headache
E. Traction and Inflammatory Headache
[0110]Traction and inflammatory headaches are usually symptoms of other disorders, ranging from stroke to sinus infection.
F. Hormone Headache
G. Rebound Headache
[0111]Rebound headaches, also known as medication overuse headaches, occur when medication is taken too frequently to relieve headache. Rebound headaches frequently occur daily and can be very painful.
H. Chronic Sinusitis Headache
[0112]Sinusitis is inflammation, either bacterial, fungal, viral, allergic or autoimmune, of the paranasal sinuses. Chronic sinusitis is one of the most common complications of the common cold. Symptoms include: Nasal congestion; facial pain; headache; fever; general malaise; thick green or yellow discharge; feeling of facial `fullness` worsening on bending over. In a small number of cases, chronic maxillary sinusitis can also be brought on by the spreading of bacteria from a dental infection. Chronic hyperplastic eosinophilic sinusitis is a noninfective form of chronic sinusitis.
I. An Organic Headache
J. Ictal Headaches
[0113]Ital headaches are headaches associated with seizure activity.
IV. Somatic Pain
[0114]The compounds of the invention may be used to treat pain caused by or otherwise associated with any of the following somatic pain conditions. Somatic pain originates from ligaments, tendons, bones, blood vessels, and even nerves themselves. It is detected with somatic nociceptors. The scarcity of pain receptors in these areas produces a dull, poorly-localized pain of longer duration than cutaneous pain; examples include sprains and broken bones. Additional examples include the following.
A. Excessive Muscle Tension
[0115]Excessive muscle tension can be caused, for example, by a sprain or a strain.
B. Repetitive Motion Disorders
[0116]Repetitive motion disorders can result from overuse of the hands, wrists, elbows, shoulders, neck, back, hips, knees, feet, legs, or ankles.
C. Muscle Disorders
[0117]Muscle disorders causing somatic pain include, for example, a polymyositis, a dermatomyositis, a lupus, a fibromyalgia, a polymyalgia rheumatica, and a rhabdomyolysis.
D. Myalgia
[0118]Myalgia is muscle pain and is a symptom of many diseases and disorders. The most common cause for myalgia is either overuse or over-stretching of a muscle or group of muscles. Myalgia without a traumatic history is often due to viral infections. Longer-term myalgias may be indicative of a metabolic myopathy, some nutritional deficiencies or chronic fatigue syndrome.
E. Infection
[0119]Infection can cause somatic pain. Examples of such infection include, for example, an abscess in the muscle, a trichinosis, an influenza, a Lyme disease, a malaria, a Rocky Mountain spotted fever, Avian influenza, the common cold, community-acquired pneumonia, meningitis, monkeypox, Severe Acute Respiratory Syndrome, toxic shock syndrome, trichinosis, typhoid fever, and upper respiratory tract infection.
F. Drugs
[0120]Drugs can cause somatic pain. Such drugs include, for example, cocaine, a statin for lowering cholesterol (such as atorvastatin, simvastatin, and lovastatin), and an ACE inhibitor for lowering blood pressure (such as enalapril and captopril)
V. Visceral Pain
[0121]The compounds of the invention may be used to treat pain caused by or otherwise associated with any of the following visceral pain conditions. Visceral pain originates from body's viscera, or organs. Visceral nociceptors are located within body organs and internal cavities. The even greater scarcity of nociceptors in these areas produces pain that is usually more aching and of a longer duration than somatic pain. Visceral pain is extremely difficult to localise, and several injuries to visceral tissue exhibit "referred" pain, where the sensation is localised to an area completely unrelated to the site of injury. Examples of visceral pain include the following.
A. Functional Visceral Pain
[0122]Functional visceral pain includes, for example, an irritable bowel syndrome and a chronic functional abdominal pain (CFAP), a functional constipation and a functional dyspepsia, a non-cardiac chest pain (NCCP) and a chronic abdominal pain.
B. Chronic Gastrointestinal Inflammation
[0123]Chronic gastrointestinal inflammation includes, for example, a gastritis, an inflammatory bowel disease, like, e.g., a Crohn's disease, an ulcerative colitis, a microscopic colitis, a diverticulitis and a gastroenteritis; an interstitial cystitis; an intestinal ischemia; a cholecystitis; an appendicitis; a gastroesophageal reflux; an ulcer, a nephrolithiasis, an urinary tract infection, a pancreatitis and a hernia.
C. Autoimmune Pain
[0124]Autoimmune pain includes, for example, a sarcoidosis and a vasculitis.
D. Orangic Visceral Pain
[0125]Organic visceral pain includes, for example, pain resulting from a traumatic, inflammatory or degenerative lesion of the gut or produced by a tumor impinging on sensory innervation.
E. Treatment-Induced Visceral Pain
[0126]Treatment-induced visceral pain includes, for example, a pain attendant to chemotherapy therapy or a pain attendant to radiation therapy.
VI. Referred Pain
[0127]The compounds of the invention may be used to treat pain caused by or otherwise associated with any of the following referred pain conditions.
[0128]Referred pain arises from pain localized to an area separate from the site of pain stimulation. Often, referred pain arises when a nerve is compressed or damaged at or near its origin. In this circumstance, the sensation of pain will generally be felt in the territory that the nerve serves, even though the damage originates elsewhere. A common example occurs in intervertebral disc herniation, in which a nerve root arising from the spinal cord is compressed by adjacent disc material. Although pain may arise from the damaged disc itself, pain will also be felt in the region served by the compressed nerve (for example, the thigh, knee, or foot). Relieving the pressure on the nerve root may ameliorate the referred pain, provided that permanent nerve damage has not occurred. Myocardial ischaemia (the loss of blood flow to a part of the heart muscle tissue) is possibly the best known example of referred pain; the sensation can occur in the upper chest as a restricted feeling, or as an ache in the left shoulder, arm or even hand.
[0129]The non-cytotoxic protease component of the present invention is a non-cytotoxic protease, or a fragment thereof, which protease or protease fragment is capable of cleaving different but specific peptide bonds in one of three substrate proteins, namely synaptobrevin, syntaxin or SNAP-25, of the exocytic fusion apparatus in a nociceptive sensory afferent. These substrates are important components of the neurosecretory machinery. The non-cytotoxic protease component of the present invention is preferably a neisserial IgA protease or a fragment thereof or a clostridial neurotoxin L-chain or a fragment thereof. A particularly preferred non-cytotoxic protease component is a botulinum neurotoxin (BoNT) L-chain or a fragment thereof.
[0130]The translocation component of the present invention enables translocation of the non-cytotoxic protease (or fragment thereof) into the target cell such that functional expression of protease activity occurs within the cytosol of the target cell. The translocation component is preferably capable of forming ion-permeable pores in lipid membranes under conditions of low pH. Preferably it has been found to use only those portions of the protein molecule capable of pore-formation within the endosomal membrane. The translocation component may be obtained from a microbial protein source, in particular from a bacterial or viral protein source. Hence, in one embodiment, the translocation component is a translocating domain of an enzyme, such as a bacterial toxin or viral protein. The translocation component of the present invention is preferably a clostridial neurotoxin H-chain or a fragment thereof. Most preferably it is the HN domain (or a functional component thereof), wherein HN means a portion or fragment of the H-chain of a clostridial neurotoxin approximately equivalent to the amino-terminal half of the H-chain, or the domain corresponding to that fragment in the intact H-chain.
[0131]The TM component of the present invention is responsible for binding the fusion protein of the present invention to a Binding Site on a target cell. Thus, the TM component is simply a ligand through which a fusion protein of the present invention binds to a selected target cell.
[0132]In the context of the present invention, the target cell is a nociceptive sensory afferent, preferably a primary nociceptive afferent (e.g. an A-fibre such as an A6-fibre or a C-fibre). Thus, the fusion proteins of the present invention are capable of inhibiting neurotransmitter or neuromodulator [e.g. glutamate, substance P, calcitonin-gene related peptide (CGRP), and/or neuropeptide Y] release from discrete populations of nociceptive sensory afferent neurons. In use, the fusion proteins reduce or prevent the transmission of sensory afferent signals (e.g. neurotransmitters or neuromodulators) from peripheral to central pain fibres, and therefore have application as therapeutic molecules for the treatment of pain, in particular chronic pain.
[0133]It is routine to confirm that a TM binds to a nociceptive sensory afferent. For example, a simple radioactive displacement experiment may be employed in which tissue or cells representative of the nociceptive sensory afferent (for example DRGs) are exposed to labelled (e.g. tritiated) ligand in the presence of an excess of unlabelled ligand. In such an experiment, the relative proportions of non-specific and specific binding may be assessed, thereby allowing confirmation that the ligand binds to the nociceptive sensory afferent target cell. Optionally, the assay may include one or more binding antagonists, and the assay may further comprise observing a loss of ligand binding. Examples of this type of experiment can be found in Hulme, E. C. (1990), Receptor-binding studies, a brief outline, pp. 303-311, In Receptor biochemistry, A Practical Approach, Ed. E. C. Hulme, Oxford University Press.
[0134]The fusion proteins of the present invention generally demonstrate a reduced binding affinity (in the region of up to 100-fold) for nociceptive sensory afferent target cells when compared with the corresponding `free` TM. However, despite this observation, the fusion proteins of the present invention surprisingly demonstrate good efficacy. This can be attributed to two principal features. First, the non-cytotoxic protease component is catalytic--thus, the therapeutic effect of a few such molecules is rapidly amplified. Secondly, the receptors present on the nociceptive sensory afferents need only act as a gateway for entry of the therapeutic, and need not necessarily be stimulated to a level required in order to achieve a ligand-receptor mediated pharmacological response. Accordingly, the fusion proteins of the present invention may be administered at a dosage that is much lower that would be employed for other types of analgesic molecules such as NSAIDS, morphine, and gabapentin. The latter molecules are typically administered at high microgram to milligram (even up to hundreds of milligram) quantities, whereas the fusion proteins of the present invention may be administered at much lower dosages, typically at least 10-fold lower, and more typically at 100-fold lower.
[0135]The TM preferably comprises a maximum of 50 amino acid residues, more preferably a maximum of 40 amino acid residues, particularly preferably a maximum of 30 amino acid residues, and most preferably a maximum of 20 amino acid residues.
[0136]Opioids represent a preferred group of TMs of the present invention. Within this family of peptides is included enkephalins (met and leu), endomorphins 1 and 2, β-endorphin and dynorphin. Opioid peptides are frequently used in the clinic to modify the activity to nociceptors, and other cells involved in the pain response. As exemplified by the three-step World Health Organisation Analgesic Ladder, opioids have entry points into the pharmacological treatment of chronic cancer and non-cancer pain at all three stages, underlining their importance to the treatment of pain. Reference to opioids embraces fragments, variants and derivatives thereof, which retain the ability to bind to nociceptive sensory afferents.
[0137]The TM of the invention can also be a molecule that acts as an "agonist" at one or more of the receptors present on a nociceptive sensory afferent, more particularly on a primary nociceptive afferent. Conventionally, an agonist has been considered any molecule that can either increase or decrease activities within a cell, namely any molecule that simply causes an alteration of cell activity. For example, the conventional meaning of an agonist would include a chemical substance capable of combining with a receptor on a cell and initiating a reaction or activity, or a drug that induces an active response by activating receptors, whether the response is an increase or decrease in cellular activity.
[0138]However, for the purposes of this invention, an agonist is more specifically defined as a molecule that is capable of stimulating the process of exocytic fusion in a target cell, which process is susceptible to inhibition by a protease (or fragment thereof) capable of cleaving a protein of the exocytic fusion apparatus in said target cell.
[0139]Accordingly, the particular agonist definition of the present invention would exclude many molecules that would be conventionally considered as agonists. For example, nerve growth factor (NGF) is an agonist in respect of its ability to promote neuronal differentiation via binding to a TrkA receptor. However, NGF is not an agonist when assessed by the above criteria because it is not a principal inducer of exocytic fusion. In addition, the process that NGF stimulates (i.e. cell differentiation) is not susceptible to inhibition by the protease activity of a non-cytotoxic toxin molecule.
[0140]The agonist properties of a TM that binds to a receptor on a nociceptive afferent can be confirmed using the methods described in Example 10.
[0141]In a preferred embodiment of the invention, the target for the TM is the ORL1 receptor. This receptor is a member of the G-protein-coupled class of receptors, and has a seven transmembrane domain structure. The properties of the ORL1 receptor are discussed in detail in Mogil & Pasternak (2001), Pharmacological Reviews, Vol. 53, No. 3, pages 381-415.
[0142]In one embodiment, the TM is a molecule that binds (preferably that specifically binds) to the ORL1 receptor. More preferably, the TM is an "agonist" of the ORL1 receptor. The term "agonist" in this context is defined as above.
[0143]The agonist properties of a TM that binds to an ORL1 receptor can be confirmed using the methods described in Example 10. These methods are based on previous experiments [see Inoue et al. 1998 [Proc. Natl. Acad. Sci., 95, 10949-10953]), which confirm that the natural agonist of the ORL1 receptor, nociceptin, causes the induction of substance P release from nociceptive primary afferent neurons. This is supported by the fact that: [0144]the nociceptin-induced responses are abolished by specific NK1 receptor (the substance P receptor) antagonists; and [0145]pre-treatment of the cells with capsaicin (which depletes substance P from small diameter primary afferent neurons) attenuates the nociceptin-induced responses.
[0146]Similarly, Inoue et al. confirm that an intraplantar injection of botulinum neurotoxin type A abolishes the nociceptin-induced responses. Since it is known that BoNT inhibits the release of substance P from primary afferent neurons (Welch et al., 2000, Toxicon, 38, 245-258), this confirms the link between nociceptin-ORL1 interaction and subsequent release of substance P.
[0147]Thus, a TM can be said to have agonist activity at the ORL1 receptor if the TM causes an induction in the release of substance P from a nociceptive sensory afferent neuron (see Example 10).
[0148]In a particularly preferred embodiment of the invention, the TM is nociceptin--the natural ligand for the ORL1 receptor. Nociceptin targets the ORL1 receptor with high affinity. Examples of other preferred TMs include:
TABLE-US-00001 SEQ Code Sequence Ref. ID No. Nociceptin FGGFTGARKSARKLANQ [1] 37, 38 1-17 Nociceptin FGGFTGARKSA [1] 39, 40 1-11 Nociceptin FGGFTGARKYA [1] 41, 42 [Y10]1-11 Nociceptin FGGFTGARKSY [1] 43, 44 [Y11]1-11 Nociceptin FGGFTGARKSARKYANQ [1] 45, 46 [Y14]1-17 Nociceptin FGGFTGARKSARK [2] 47, 48 1-13 Nociceptin FGGFTGARKSARKRKNQ [3, 4] 49, 50 [R14K15] 1-17 (also known in this specification as "variant" nociceptin) Peptide agonist Peptide agonists from [5] -- combinatorial library approach [1] Mogil & Pasternak, 2001, Pharmacol. Rev., 53, 381-415 [2] Maile et al., 2003, Neurosci. Lett., 350, 190-192 [3] Rizzi et al., 2002, J. Pharmacol. Exp. Therap., 300, 57-63 [4] Okada et al., 2000, Biochem. Biophys. Res. Commun., 278, 493-498 [5] Dooley et al., 1997, J Pharmacol Exp Ther. 283 (2), 735-41.
[0149]The above-identified "variant" TM demonstrates particularly good binding affinity (when compared with natural nociceptin) for nociceptive sensory afferents. This is surprising as the amino acid modifications occur at a position away from the N-terminus of the TM. Moreover, the modifications are almost at the C-terminus of the TM, which in turn is attached to a large polypeptide sequence (i.e. the translocation domain). Generally speaking, a TM-containing fusion protein will demonstrate an approximate 100-fold reduction in binding ability vis-a-vis the TM per se. The above-mentioned "variant" TM per se demonstrates an approximate 3- to 10-fold increase in binding ability for a nociceptive sensory afferent (e.g. via the ORL1 receptor) vis-a-vis natural nociceptin. Thus, a "variant" TM-containing fusion might be expected to demonstrate an approximate 10-fold reduction in binding ability for a nociceptive sensory afferent (e.g. via the ORL1 receptor) vis-a-vis `free` nociceptin. However, the present inventors have demonstrated that such "variant" TM-containing fusion proteins demonstrate a binding ability that (most surprisingly) closely mirrors that of `free` nociceptin--see FIG. 14.
[0150]In the context of the present invention, the term opioid or an agonist of the ORL1 receptor (such as nociceptin, or any one of the peptides listed in the table above) embraces molecules having at least 70%, preferably at least 80%, more preferably at least 90%, and most preferably at least 95% homology with said opioid or agonist. The agonist homologues retain the agonist properties of nociceptin at the ORL1 receptor, which may be tested using the methods provided in Example 10. Similarly, an opioid homologue substantially retains the binding function of the opioid with which it shows high homology.
[0151]The invention also encompasses fragments, variants, and derivatives of any one of the TMs described above. These fragments, variants, and derivatives substantially retain the properties that are ascribed to said TMs.
[0152]In addition to the above-mentioned opioid and non-opioid classes of TMs, a variety of other polypeptides are suitable for targeting the fusion proteins of the present invention to nociceptive sensory afferents (e.g. to nociceptors). In this regard, particular reference is made to galanin and derivatives of galanin. Galanin receptors are found pre- and post-synaptically in DRGs (Liu & Hokfelt, (2002), Trends Pharm. Sci., 23(10), 468-74), and are enhanced in expression during neuropathic pain states. Proteinase-activated receptors (PARs) are also a preferred group of TMs of the present invention, most particularly PAR-2. It is known that agonists of PAR-2 induce/elicit acute inflammation, in part via a neurogenic mechanism. PAR2 is expressed by primary spinal afferent neurons, and PAR2 agonists stimulate release of substance P (SP) and calcitonin gene-related peptide (CGRP) in peripheral tissues
[0153]A particularly preferred set of TMs of the present invention includes:
TABLE-US-00002 Ligand Reference Nociceptin Guerrini, et al., (1997) J. Med. Chem., 40, pp. 1789-1793 β-endorphin Blanc, et al., (1983) J. Biol. Chem., 258(13), pp. 8277-8284 Endomorphin-1; Zadina, et al., (1997). Nature, 386, pp. Endomorphin-2 499-502 Dynorphin Fields & Basbaum (2002) Chapter 11, In The Textbook of Pain, Wall & Melzack eds. Met-enkephalin Fields & Basbaum (2002) Chapter 11, In The Textbook of Pain, Wall & Melzack eds. Leu-enkephalin Fields & Basbaum (2002) Chapter 11, In The Textbook of Pain, Wall & Melzack eds. Galanin Xu et al., (2000) Neuropeptides, 34 (3&4), 137-147 PAR-2 peptide Vergnolle et al., (2001) Nat. Med., 7(7), 821-826
[0154]The protease cleavage site of the present invention allows cleavage (preferably controlled cleavage) of the fusion protein at a position between the non-cytotoxic protease component and the TM component. It is this cleavage reaction that converts the fusion protein from a single chain polypeptide into a disulphide-linked, di-chain polypeptide.
[0155]According to a preferred embodiment of the present invention, the TM binds via a domain or amino acid sequence that is located away from the C-terminus of the TM. For example, the relevant binding domain may include an intra domain or an amino acid sequence located towards the middle (i.e. of the linear peptide sequence) of the TM. Preferably, the relevant binding domain is located towards the N-terminus of the TM, more preferably at or near to the N-terminus.
[0156]In one embodiment, the single chain polypeptide fusion may include more than one proteolytic cleavage site. However, where two or more such sites exist, they are different, thereby substantially preventing the occurrence of multiple cleavage events in the presence of a single protease. In another embodiment, it is preferred that the single chain polypeptide fusion has a single protease cleavage site.
[0157]The protease cleavage sequence(s) may be introduced (and/or any inherent cleavage sequence removed) at the DNA level by conventional means, such as by site-directed mutagenesis. Screening to confirm the presence of cleavage sequences may be performed manually or with the assistance of computer software (e.g. the MapDraw program by DNASTAR, Inc.).
[0158]Whilst any protease cleavage site may be employed, the following are preferred: [0159]Enterokinase (DDDDK↓) [0160]Factor Xa (IEGR↓/IDGR↓) [0161]TEV (Tobacco Etch virus) (ENLYFQ↓G) [0162]Thrombin (LVPR↓GS) [0163]PreScission (LEVLFQ↓GP).
[0164]Also embraced by the term protease cleavage site is an intein, which is a self-cleaving sequence. The self-splicing reaction is controllable, for example by varying the concentration of reducing agent present.
[0165]In use, the protease cleavage site is cleaved and the N-terminal region (preferably the N-terminus) of the TM becomes exposed. The resulting polypeptide has a TM with an N-terminal domain or an intra domain that is substantially free from the remainder of the fusion protein. This arrangement ensures that the N-terminal component (or intra domain) of the TM may interact directly with a Binding Site on a target cell.
[0166]In a preferred embodiment, the TM and the protease cleavage site are distanced apart in the fusion protein by at most 10 amino acid residues, more preferably by at most 5 amino acid residues, and most preferably by zero amino acid residues. Thus, following cleavage of the protease cleavage site, a fusion is provided with a TM that has an N-terminal domain that is substantially free from the remainder of the fusion. This arrangement ensures that the N-terminal component of the Targeting Moiety may interact directly with a Binding Site on a target cell.
[0167]One advantage associated with the above-mentioned activation step is that the TM only becomes susceptible to N-terminal degradation once proteolytic cleavage of the fusion protein has occurred. In addition, the selection of a specific protease cleavage site permits selective activation of the polypeptide fusion into a di-chain conformation.
[0168]Construction of the single-chain polypeptide fusion of the present invention places the protease cleavage site between the TM and the non-cytotoxic protease component.
[0169]It is preferred that, in the single-chain fusion, the TM is located between the protease cleavage site and the translocation component. This ensures that the TM is attached to the translocation domain (i.e. as occurs with native clostridial holotoxin), though in the case of the present invention the order of the two components is reversed vis-a-vis native holotoxin. A further advantage with this arrangement is that the TM is located in an exposed loop region of the fusion protein, which has minimal structural effects on the conformation of the fusion protein. In this regard, said loop is variously referred to as the linker, the activation loop, the inter-domain linker, or just the surface exposed loop (Schiavo et al 2000, Phys. Rev., 80, 717-766; Turton et al., 2002, Trends Biochem. Sci., 27, 552-558).
[0170]In one embodiment, in the single chain polypeptide, the non-cytotoxic protease component and the translocation component are linked together by a disulphide bond. Thus, following cleavage of the protease cleavage site, the polypeptide assumes a di-chain conformation, wherein the protease and translocation components remain linked together by the disulphide bond. To this end, it is preferred that the protease and translocation components are distanced apart from one another in the single chain fusion protein by a maximum of 100 amino acid residues, more preferably a maximum of 80 amino acid residues, particularly preferably by a maximum of 60 amino acid residues, and most preferably by a maximum of 50 amino acid residues.
[0171]In one embodiment, the non-cytotoxic protease component forms a disulphide bond with the translocation component of the fusion protein. For example, the amino acid residue of the protease component that forms the disulphide bond is located within the last 20, preferably within the last 10 C-terminal amino acid residues of the protease component. Similarly, the amino acid residue within the translocation component that forms the second part of the disulphide bond may be located within the first 20, preferably within the first 10 N-terminal amino acid residues of the translocation component.
[0172]Alternatively, in the single chain polypeptide, the non-cytotoxic protease component and the TM may be linked together by a disulphide bond. In this regard, the amino acid residue of the TM that forms the disulphide bond is preferably located away from the N-terminus of the TM, more preferably towards to C-terminus of the TM.
[0173]In one embodiment, the non-cytotoxic protease component forms a disulphide bond with the TM component of the fusion protein. In this regard, the amino acid residue of the protease component that forms the disulphide bond is preferably located within the last 20, more preferably within the last 10 C-terminal amino acid residues of the protease component. Similarly, the amino acid residue within the TM component that forms the second part of the disulphide bond is preferably located within the last 20, more preferably within the last 10 C-terminal amino acid residues of the TM.
[0174]The above disulphide bond arrangements have the advantage that the protease and translocation components are arranged in a manner similar to that for native clostridial neurotoxin. By way of comparison, referring to the primary amino acid sequence for native clostridial neurotoxin, the respective cysteine amino acid residues are distanced apart by between 8 and 27 amino acid residues--taken from Popoff, M R & Marvaud, J-C, 1999, Structural & genomic features of clostridial neurotoxins, Chapter 9, in The Comprehensive Sourcebook of Bacterial Protein Toxins. Ed. Alouf & Freer:
TABLE-US-00003 `Native` length between Serotype1 Sequence C-C BoNT/A1 CVRGIITSKTKS----LDKGYNKALNDLC 23 BoNT/A2 CVRGIIPFKTKS----LDEGYNKALNDLC 23 BoNT/B CKSVKAPG-------------------IC 8 BoNT/C CHKAIDGRS----------LYNKTLDC 15 BoNT/D CLRLTK---------------NSRDDSTC 12 BoNT/E CKN-IVSVK----------GIRK---SIC 13 BoNT/F CKS-VIPRK----------GTKAPP-RLC 15 BoNT/G CKPVMYKNT----------GKSE----QC 13 TeNT CKKIIPPTNIRENLYNRTASLTDLGGELC 27 1Information from proteolytic strains only
[0175]The fusion protein may comprise one or more purification tags, which are located N-terminal to the protease component and/or C-terminal to the translocation component.
[0176]Whilst any purification tag may be employed, the following are preferred:
His-tag (e.g. 6× histidine), preferably as a C-terminal and/or N-terminal tagMBP-tag (maltose binding protein), preferably as an N-terminal tagGST-tag (glutathione-S-transferase), preferably as an N-terminal tagHis-MBP-tag, preferably as an N-terminal tagGST-MBP-tag, preferably as an N-terminal tagThioredoxin-tag, preferably as an N-terminal tagCBD-tag (Chitin Binding Domain), preferably as an N-terminal tag.
[0177]According to a further embodiment of the present invention, one or more peptide spacer molecules may be included in the fusion protein. For example, a peptide spacer may be employed between a purification tag and the rest of the fusion protein molecule (e.g. between an N-terminal purification tag and a protease component of the present invention; and/or between a C-terminal purification tag and a translocation component of the present invention). A peptide spacer may be also employed between the TM and translocation components of the present invention.
[0178]A variety of different spacer molecules may be employed in any of the fusion proteins of the present invention. Examples of such spacer molecules include those illustrated in FIGS. 28 and 29. Particular mention here is made to GS15, GS20, GS25, and Hx27--see FIGS. 28 and 29.
[0179]The present inventors have unexpectedly found that the fusion proteins (eg. CPNv/A) of the present invention may demonstrate an improved binding activity for nociceptive sensory afferents when the size of the spacer is selected so that (in use) the C-terminus of the TM and the N-terminus of the translocation component are separated from one another by 40-105 angstroms, preferably by 50-100 angstroms, and more preferably by 50-90 angstroms. In another embodiment, the preferred spacers have an amino acid sequence of 11-29 amino acid residues, preferably 15-27 amino acid residues, and more preferably 20-27 amino acid residues. Suitable spacers may be routinely identified and obtained according to Crasto, C. J. and Feng, J. A. (2000) May, 13(5), pp. 309-312--see also http://www.fccc./edu/research/labs/fen/limker.html.
[0180]In accordance with a second aspect of the present invention, there is provided a DNA sequence that encodes the above-mentioned single chain polypeptide. In a preferred aspect of the present invention, the DNA sequence is prepared as part of a DNA vector, wherein the vector comprises a promoter and terminator.
[0181]In a preferred embodiment, the vector has a promoter selected from:
TABLE-US-00004 Promoter Induction Agent Typical Induction Condition Tac (hybrid) IPTG 0.2 mM (0.05-2.0 mM) AraBAD L-arabinose 0.2% (0.002-0.4%) T7-lac operator IPTG 0.2 mM (0.05-2.0 mM)
[0182]The DNA construct of the present invention is preferably designed in silico, and then synthesised by conventional DNA synthesis techniques.
[0183]The above-mentioned DNA sequence information is optionally modified for codon-biasing according to the ultimate host cell (e.g. E. coli) expression system that is to be employed.
[0184]The DNA backbone is preferably screened for any inherent nucleic acid sequence, which when transcribed and translated would produce an amino acid sequence corresponding to the protease cleave site encoded by the second peptide-coding sequence. This screening may be performed manually or with the assistance of computer software (e.g. the MapDraw program by DNASTAR, Inc.).
[0185]According to a further embodiment of the present invention, there is provided a method of preparing a non-cytotoxic agent, comprising: [0186]a. contacting a single-chain polypeptide fusion protein of the invention with a protease capable of cleaving the protease cleavage site; [0187]b. cleaving the protease cleavage site, and thereby forming a di-chain fusion protein.
[0188]This aspect provides a di-chain polypeptide, which generally mimics the structure of clostridial holotoxin. In more detail, the resulting di-chain polypeptide typically has a structure wherein: [0189]a. the first chain comprises the non-cytotoxic protease, or a fragment thereof, which protease or protease fragment is capable of cleaving a protein of the exocytic fusion apparatus of a nociceptive sensory afferent; [0190]b. the second chain comprises the TM and the translocation domain that is capable of translocating the protease or protease fragment from within an endosome, across the endosomal membrane and into the cytosol of the nociceptive sensory afferent; and [0191]the first and second chains are disulphide linked together.
[0192]In use, the single chain or di-chain polypeptide of the invention treat, prevent or ameliorate pain.
[0193]In use, a therapeutically effective amount of a single chain or di-chain polypeptide of the invention is administered to a patient.
[0194]The present invention addresses a wide range of pain conditions, in particular chronic pain conditions. Preferred conditions include cancerous and non-cancerous pain, inflammatory pain and neuropathic pain. The opioid-fusions of the present application are particularly suited to addressing inflammatory pain, though may be less suited to addressing neuropathic pain. The galanin-fusions are more suited to addressing neuropathic pain.
[0195]In use, the polypeptides of the present invention are typically employed in the form of a pharmaceutical composition in association with a pharmaceutical carrier, diluent and/or excipient, although the exact form of the composition may be tailored to the mode of administration. Administration is preferably to a mammal, more preferably to a human.
[0196]The polypeptides may, for example, be employed in the form of a sterile solution for intra-articular administration or intra-cranial administration. Spinal injection (e.g. epidural or intrathecal) is preferred.
[0197]The dosage ranges for administration of the polypeptides of the present invention are those to produce the desired therapeutic effect. It will be appreciated that the dosage range required depends on the precise nature of the components, the route of administration, the nature of the formulation, the age of the patient, the nature, extent or severity of the patient's condition, contraindications, if any, and the judgement of the attending physician.
[0198]Suitable daily dosages are in the range 0.0001-1 mg/kg, preferably 0.0001-0.5 mg/kg, more preferably 0.002-0.5 mg/kg, and particularly preferably 0.004-0.5 mg/kg. The unit dosage can vary from less that 1 microgram to 30 mg, but typically will be in the region of 0.01 to 1 mg per dose, which may be administered daily or preferably less frequently, such as weekly or six monthly.
[0199]A particularly preferred dosing regimen is based on 2.5 ng of fusion protein (e.g. CPNv/A) as the 1× dose. In this regard, preferred dosages are in the range 1×-100× (i.e. 2.5-250 ng). This dosage range is significantly lower (i.e. at least 10-fold, typically 100-fold lower) than would be employed with other types of analgesic molecules such as NSAIDS, morphine, and gabapentin. Moreover, the above-mentioned difference is considerably magnified when the same comparison is made on a molar basis--this is because the fusion proteins of the present invention have a considerably greater Mw than do conventional `small` molecule therapeutics.
[0200]Wide variations in the required dosage, however, are to be expected depending on the precise nature of the components, and the differing efficiencies of various routes of administration.
[0201]Variations in these dosage levels can be adjusted using standard empirical routines for optimisation, as is well understood in the art.
[0202]Compositions suitable for injection may be in the form of solutions, suspensions or emulsions, or dry powders which are dissolved or suspended in a suitable vehicle prior to use.
[0203]Fluid unit dosage forms are typically prepared utilising a pyrogen-free sterile vehicle. The active ingredients, depending on the vehicle and concentration used, can be either dissolved or suspended in the vehicle.
[0204]In preparing administrable solutions, the polypeptides can be dissolved in a vehicle, the solution being made isotonic if necessary by addition of sodium chloride and sterilised by filtration through a sterile filter using aseptic techniques before filling into suitable sterile vials or ampoules and sealing. Alternatively, if solution stability is adequate, the solution in its sealed containers may be sterilised by autoclaving.
[0205]Advantageously additives such as buffering, solubilising, stabilising, preservative or bactericidal, suspending or emulsifying agents may be dissolved in the vehicle.
[0206]Dry powders which are dissolved or suspended in a suitable vehicle prior to use may be prepared by filling pre-sterilised drug substance and other ingredients into a sterile container using aseptic technique in a sterile area.
[0207]Alternatively the polypeptides and other ingredients may be dissolved in an aqueous vehicle, the solution is sterilized by filtration and distributed into suitable containers using aseptic technique in a sterile area. The product is then freeze dried and the containers are sealed aseptically.
[0208]Parenteral suspensions, suitable for intramuscular, subcutaneous or intradermal injection, are prepared in substantially the same manner, except that the sterile components are suspended in the sterile vehicle, instead of being dissolved and sterilisation cannot be accomplished by filtration. The components may be isolated in a sterile state or alternatively it may be sterilised after isolation, e.g. by gamma irradiation.
[0209]Advantageously, a suspending agent for example polyvinylpyrrolidone is included in the composition/s to facilitate uniform distribution of the components.
DEFINITIONS SECTION
[0210]Targeting Moiety (TM) means any chemical structure associated with an agent that functionally interacts with a Binding Site to cause a physical association between the agent and the surface of a target cell. In the context of the present invention, the target cell is a nociceptive sensory afferent. The term TM embraces any molecule (i.e. a naturally occurring molecule, or a chemically/physically modified variant thereof that is capable of binding to a Binding Site on the target cell, which Binding Site is capable of internalisation (e.g. endosome formation)--also referred to as receptor-mediated endocytosis. The TM may possess an endosomal membrane translocation function, in which case separate TM and Translocation Domain components need not be present in an agent of the present invention.
[0211]The TM of the present invention binds (preferably specifically binds) to a nociceptive sensory afferent (e.g. a primary nociceptive afferent). In this regard, specifically binds means that the TM binds to a nociceptive sensory afferent (e.g. a primary nociceptive afferent) with a greater affinity than it binds to other neurons such as non-nociceptive afferents, and/or to motor neurons (i.e. the natural target for clostridial neurotoxin holotoxin). The term "specifically binding" can also mean that a given TM binds to a given receptor, for example the ORL1 receptor, with a binding affinity (Ka) of 106 M-1 or greater, preferably 107 M-1 or greater, more preferably 108 M-1 or greater, and most preferably, 109 M-1 or greater.
[0212]For the purposes of this invention, an agonist is defined as a molecule that is capable of stimulating the process of exocytic fusion in a target cell, which process is susceptible to inhibition by a protease (or fragment thereof) capable of cleaving a protein of the exocytic fusion apparatus in said target cell.
[0213]Accordingly, the particular agonist definition of the present invention would exclude many molecules that would be conventionally considered as agonists.
[0214]For example, nerve growth factor (NGF) is an agonist in respect of its ability to promote neuronal differentiation via binding to a TrkA receptor. However, NGF is not an agonist when assessed by the above criteria because it is not a principal inducer of exocytic fusion. In addition, the process that NGF stimulates (i.e. cell differentiation) is not susceptible to inhibition by the protease activity of a non-cytotoxic toxin molecule.
[0215]The term "fragment", when used in relation to a protein, means a peptide having at least thirty-five, preferably at least twenty-five, more preferably at least twenty, and most preferably at least ten amino acid residues of the protein in question.
[0216]The term "variant", when used in relation to a protein, means a peptide or peptide fragment of the protein that contains one or more analogues of an amino acid (e.g. an unnatural amino acid), or a substituted linkage.
[0217]The term "derivative", when used in relation to a protein, means a protein that comprises the protein in question, and a further peptide sequence. The further peptide sequence should preferably not interfere with the basic folding and thus conformational structure of the original protein. Two or more peptides (or fragments, or variants) may be joined together to form a derivative. Alternatively, a peptide (or fragment, or variant) may be joined to an unrelated molecule (e.g. a second, unrelated peptide). Derivatives may be chemically synthesized, but will be typically prepared by recombinant nucleic acid methods. Additional components such as lipid, and/or polysaccharide, and/or polyketide components may be included.
[0218]Throughout this specification, reference to the "ORL1 receptor" embraces all members of the ORL1 receptor family. Members of the ORL1 receptor family typically have a seven transmembrane domain structure and are coupled to G-proteins of the Gi and G0 families. A method for determining the G-protein-stimulating activity of ligands of the ORL1 receptor is given in Example 12. A method for measuring reduction in cellular cAMP levels following ORL1 activation is given in Example 11. A further characteristic of members of the ORL1 receptor family is that they are typically able to bind nociceptin (the natural ligand of ORL1). As an example, all alternative splice variants of the ORL1 receptor, are members of the ORL1 receptor family.
[0219]The term non-cytotoxic means that the protease molecule in question does not kill the target cell to which it has been re-targeted.
[0220]The protease of the present invention embraces all naturally-occurring non-cytotoxic proteases that are capable of cleaving one or more proteins of the exocytic fusion apparatus in eukaryotic cells.
[0221]The protease of the present invention is preferably a bacterial protease (or fragment thereof). More preferably the bacterial protease is selected from the genera Clostridium or Neisseria (e.g. a clostridial L-chain, or a neisserial IgA protease preferably from N. gonorrhoeae).
[0222]The present invention also embraces modified non-cytotoxic proteases, which include amino acid sequences that do not occur in nature and/or synthetic amino acid residues, so long as the modified proteases still demonstrate the above-mentioned protease activity.
[0223]The protease of the present invention preferably demonstrates a serine or metalloprotease activity (e.g. endopeptidase activity). The protease is preferably specific for a SNARE protein (e.g. SNAP-25, synaptobrevin/VAMP, or syntaxin).
[0224]Particular mention is made to the protease domains of neurotoxins, for example the protease domains of bacterial neurotoxins. Thus, the present invention embraces the use of neurotoxin domains, which occur in nature, as well as recombinantly prepared versions of said naturally-occurring neurotoxins.
[0225]Exemplary neurotoxins are produced by clostridia, and the term clostridial neurotoxin embraces neurotoxins produced by C. tetani (TeNT), and by C. botulinum (BoNT) serotypes A-G, as well as the closely related BoNT-like neurotoxins produced by C. barati and C. butyricum. The above-mentioned abbreviations are used throughout the present specification. For example, the nomenclature BoNT/A denotes the source of neurotoxin as BoNT (serotype A). Corresponding nomenclature applies to other BoNT serotypes.
[0226]The term L-chain fragment means a component of the L-chain of a neurotoxin, which fragment demonstrates a metalloprotease activity and is capable of proteolytically cleaving a vesicle and/or plasma membrane associated protein involved in cellular exocytosis.
[0227]A Translocation Domain is a molecule that enables translocation of a protease (or fragment thereof) into a target cell such that a functional expression of protease activity occurs within the cytosol of the target cell. Whether any molecule (e.g. a protein or peptide) possesses the requisite translocation function of the present invention may be confirmed by any one of a number of conventional assays.
[0228]For example, Shone C. (1987) describes an in vitro assay employing liposomes, which are challenged with a test molecule. Presence of the requisite translocation function is confirmed by release from the liposomes of K.sup.+ and/or labelled NAD, which may be readily monitored [see Shone C. (1987) Eur. J. Biochem; vol. 167(1): pp. 175-180].
[0229]A further example is provided by Blaustein R. (1987), which describes a simple in vitro assay employing planar phospholipid bilayer membranes. The membranes are challenged with a test molecule and the requisite translocation function is confirmed by an increase in conductance across said membranes [see Blaustein (1987) FEBS Letts; vol. 226, no. 1: pp. 115-120].
[0230]Additional methodology to enable assessment of membrane fusion and thus identification of Translocation Domains suitable for use in the present invention are provided by Methods in Enzymology Vol 220 and 221, Membrane Fusion Techniques, Parts A and B, Academic Press 1993.
[0231]The Translocation Domain is preferably capable of formation of ion-permeable pores in lipid membranes under conditions of low pH. Preferably it has been found to use only those portions of the protein molecule capable of pore-formation within the endosomal membrane.
[0232]The Translocation Domain may be obtained from a microbial protein source, in particular from a bacterial or viral protein source. Hence, in one embodiment, the Translocation Domain is a translocating domain of an enzyme, such as a bacterial toxin or viral protein.
[0233]It is well documented that certain domains of bacterial toxin molecules are capable of forming such pores. It is also known that certain translocation domains of virally expressed membrane fusion proteins are capable of forming such pores. Such domains may be employed in the present invention.
[0234]The Translocation Domain may be of a clostridial origin, namely the HN domain (or a functional component thereof). HN means a portion or fragment of the H-chain of a clostridial neurotoxin approximately equivalent to the amino-terminal half of the H-chain, or the domain corresponding to that fragment in the intact H-chain. It is preferred that the H-chain substantially lacks the natural binding function of the HC component of the H-chain. In this regard, the HC function may be removed by deletion of the HC amino acid sequence (either at the DNA synthesis level, or at the post-synthesis level by nuclease or protease treatment). Alternatively, the HC function may be inactivated by chemical or biological treatment. Thus, the H-chain is preferably incapable of binding to the Binding Site on a target cell to which native clostridial neurotoxin (i.e. holotoxin) binds.
[0235]In one embodiment, the translocation domain is a HN domain (or a fragment thereof) of a clostridial neurotoxin. Examples of suitable clostridial Translocation Domains include: [0236]Botulinum type A neurotoxin--amino acid residues (449-871) [0237]Botulinum type B neurotoxin--amino acid residues (441-858) [0238]Botulinum type C neurotoxin--amino acid residues (442-866) [0239]Botulinum type D neurotoxin--amino acid residues (446-862) [0240]Botulinum type E neurotoxin--amino acid residues (423-845) [0241]Botulinum type F neurotoxin--amino acid residues (440-864) [0242]Botulinum type G neurotoxin--amino acid residues (442-863) [0243]Tetanus neurotoxin--amino acid residues (458-879)
[0244]For further details on the genetic basis of toxin production in Clostridium botulinum and C. tetani, we refer to Henderson et al (1997) in The Clostridia: Molecular Biology and Pathogenesis, Academic press.
[0245]The term HN embraces naturally-occurring neurotoxin HN portions, and modified HN portions having amino acid sequences that do not occur in nature and/or synthetic amino acid residues, so long as the modified HN portions still demonstrate the above-mentioned translocation function.
[0246]Alternatively, the Translocation Domain may be of a non-clostridial origin (see Table 4). Examples of non-clostridial Translocation Domain origins include, but not be restricted to, the translocation domain of diphtheria toxin [O=Keefe et al., Proc. Natl. Acad. Sci. USA (1992) 89, 6202-6206; Silverman et al., J. Biol. Chem. (1993) 269, 22524-22532; and London, E. (1992) Biochem. Biophys. Acta., 1112, pp. 25-51], the translocation domain of Pseudomonas exotoxin type A [Prior et al. Biochemistry (1992) 31, 3555-3559], the translocation domains of anthrax toxin [Blanke et al. Proc. Natl. Acad. Sci. USA (1996) 93, 8437-8442], a variety of fusogenic or hydrophobic peptides of translocating function [Plank et al. J. Biol. Chem. (1994) 269, 12918-12924; and Wagner et al (1992) PNAS, 89, pp. 7934-7938], and amphiphilic peptides [Murata et al (1992) Biochem., 31, pp. 1986-1992]. The Translocation Domain may mirror the Translocation Domain present in a naturally-occurring protein, or may include amino acid variations so long as the variations do not destroy the translocating ability of the Translocation Domain.
[0247]Particular examples of viral Translocation Domains suitable for use in the present invention include certain translocating domains of virally expressed membrane fusion proteins. For example, Wagner et al. (1992) and Murata et al. (1992) describe the translocation (i.e. membrane fusion and vesiculation) function of a number of fusogenic and amphiphilic peptides derived from the N-terminal region of influenza virus haemagglutinin. Other virally expressed membrane fusion proteins known to have the desired translocating activity are a translocating domain of a fusogenic peptide of Semliki Forest Virus (SFV), a translocating domain of vesicular stomatitis virus (VSV) glycoprotein G, a translocating domain of SER virus F protein and a translocating domain of Foamy virus envelope glycoprotein. Virally encoded Aspike proteins have particular application in the context of the present invention, for example, the E1 protein of SFV and the G protein of the G protein of VSV.
[0248]Use of the Translocation Domains listed in Table (below) includes use of sequence variants thereof. A variant may comprise one or more conservative nucleic acid substitutions and/or nucleic acid deletions or insertions, with the proviso that the variant possesses the requisite translocating function. A variant may also comprise one or more amino acid substitutions and/or amino acid deletions or insertions, so long as the variant possesses the requisite translocating function.
TABLE-US-00005 Translocation Amino acid domain source residues References Diphtheria toxin 194-380 Silverman et al., 1994, J. Biol. Chem. 269, 22524-22532 London E., 1992, Biochem. Biophys. Acta., 1113, 25-51 Domain II of 405-613 Prior et al., 1992, Biochemistry pseudomonas 31, 3555-3559 exotoxin Kihara & Pastan, 1994, Bioconj Chem. 5, 532-538 Influenza virus GLFGAIAGFIENGWE Plank et al., 1994, J. Biol. Chem. haemagglutinin GMIDGWYG, and 269, 12918-12924 Variants thereof Wagner et al., 1992, PNAS, 89, 7934-7938 Murata et al., 1992, Biochemistry 31, 1986-1992 Semliki Forest virus Translocation domain Kielian et al., 1996, J Cell Biol. fusogenic protein 134(4), 863-872 Vesicular Stomatitis 118-139 Yao et al., 2003, Virology 310(2), virus glycoprotein G 319-332 SER virus F protein Translocation domain Seth et al., 2003, J Virol 77(11) 6520-6527 Foamy virus Translocation domain Picard-Maureau et al., 2003, J envelope Virol. 77(8), 4722-4730 glycoprotein
FIGURES
[0249]FIG. 1 Purification of a LC/A-nociceptin-HN/A fusion protein
[0250]FIG. 2 Purification of a nociceptin-LC/A-HN/A fusion protein
[0251]FIG. 3 Purification of a LC/C-nociceptin-HN/C fusion protein
[0252]FIG. 4 Purification of a LC/A-met enkephalin-HN/A fusion protein
[0253]FIG. 5 Comparison of binding efficacy of a LC/A-nociceptin-HN/A fusion protein and a nociceptin-LC/A-HN/A fusion protein
[0254]FIG. 6 In vitro catalytic activity of a LC/A-nociceptin-HN/A fusion protein
[0255]FIG. 7 Purification of a LC/A-nociceptin variant-HN/A fusion protein
[0256]FIG. 8 Comparison of binding efficacy of a LC/A-nociceptin-HN/A fusion protein and a LC/A-nociceptin variant-HN/A fusion protein
[0257]FIG. 9 Expressed/purified LC/A-nociceptin-HN/A fusion protein family with variable spacer length product(s)
[0258]FIG. 10 Inhibition of SP release and cleavage of SNAP-25 by CPN-A
[0259]FIG. 11 Inhibition of SP release and cleavage of SNAP-25 over extended time periods after exposure of DRG to CPN-A
[0260]FIG. 12 Cleavage of SNAP-25 by CPNv-A
[0261]FIG. 13 Cleavage of SNAP-25 over extended time periods after exposure of DRG to CPNv-A
[0262]FIG. 14 CPNv-A fusion-mediated displacement of [3H]-nociceptin binding
[0263]FIG. 15 Expressed/purified CPNv(Ek)-A product
[0264]FIG. 16 Cleavage of SNAP-25 by CPNv(Ek)-A
[0265]FIG. 17 Expressed/purified CPNv-C product
[0266]FIG. 18 Cleavage of syntaxin by CPNv-C
[0267]FIG. 19 CPN-A efficacy in the Acute Capsaicin-Induced Mechanical Allodynia model
[0268]FIG. 20 CPN-A efficacy in the Streptozotocin (STZ)-Induced Peripheral Diabetic Neuropathy (Neuropathic Pain) model
[0269]FIG. 21 CPNv-A efficacy in the Acute Capsaicin-Induced Mechanical Allodynia model
[0270]FIG. 22 Expressed/purified LC/A-CPLE-HN/A product
[0271]FIG. 23 Expressed/purified LC/A-CPBE-HN/A product
[0272]FIG. 24 Expressed/purified CPOP-A product
[0273]FIG. 25 Expressed/purified CPOPv-A product
[0274]FIG. 26 In vitro SNAP-25 cleavage in a DRG cell model
[0275]FIG. 27 Expressed/purified CPNv-A-FXa-HT (removable his-tag)
[0276]FIG. 28 In vitro efficacy of LC/A-nociceptin-HN/A fusion proteins with variable spacer length, as assessed by ligand competition assay
[0277]FIG. 29 In vitro efficacy of LC/A-nociceptin-HN/A fusion proteins with variable spacer length, as assessed by in vitro SNAP-25 cleavage
[0278]The Figures are now described in more detail.
FIG. 1--Purification of a LC/A-Nociceptin-HN/A Fusion Protein
[0279]Using the methodology outlined in Example 9, a LC/A-nociceptin-HN/A fusion protein was purified from E. coli BL21 cells. Briefly, the soluble products obtained following cell disruption were applied to a nickel-charged affinity capture column. Bound proteins were eluted with 100 mM imidazole, treated with Factor Xa to activate the fusion protein and remove the maltose-binding protein (MBP) tag, then re-applied to a second nickel-charged affinity capture column. Samples from the purification procedure were assessed by SDS-PAGE (Panel A) and Western blotting (Panel B). Anti-nociceptin antisera (obtained from Abcam) were used as the primary antibody for Western blotting. The final purified material in the absence and presence of reducing agent is identified in the lanes marked [-] and [+] respectively.
FIG. 2--Purification of a Nociceptin-LC/A-HN/A Fusion Protein
[0280]Using the methodology outlined in Example 9, a nociceptin-LC/A-HN/A fusion protein was purified from E. coli BL21 cells. Briefly, the soluble products obtained following cell disruption were applied to a nickel-charged affinity capture column. Bound proteins were eluted with 100 mM imidazole, treated with Factor Xa to activate the fusion protein and remove the maltose-binding protein (MBP) tag, then re-applied to a second nickel-charged affinity capture column. Samples from the purification procedure were assessed by SDS-PAGE (Panel A) and Western blotting (Panel B). Anti-nociceptin antisera (obtained from Abcam) were used as the primary antibody for Western blotting. The final purified material in the absence and presence of reducing agent is identified in the lanes marked [-] and [+] respectively.
FIG. 3--Purification of a LC/C-Nociceptin-HN/C Fusion Protein
[0281]Using the methodology outlined in Example 9, an LC/C-nociceptin-HN/C fusion protein was purified from E. coli BL21 cells. Briefly, the soluble products obtained following cell disruption were applied to a nickel-charged affinity capture column. Bound proteins were eluted with 100 mM imidazole, treated with Factor Xa to activate the fusion protein and remove the maltose-binding protein (MBP) tag, then re-applied to a second nickel-charged affinity capture column. Samples from the purification procedure were assessed by SDS-PAGE (Panel A) and Western blotting (Panel B). Anti-nociceptin antisera (obtained from Abcam) were used as the primary antibody for Western blotting. The final purified material in the absence and presence of reducing agent is identified in the lanes marked H and [+] respectively.
FIG. 4--Purification of a LC/A-met Enkephalin-HN/A Fusion Protein
[0282]Using the methodology outlined in Example 9, an LC/A-met enkephalin-HN/A fusion protein was purified from E. coli BL21 cells. Briefly, the soluble products obtained following cell disruption were applied to a nickel-charged affinity capture column. Bound proteins were eluted with 100 mM imidazole, treated with Factor Xa to activate the fusion protein and remove the maltose-binding protein (MBP) tag, then re-applied to a second nickel-charged affinity capture column. Samples from the purification procedure were assessed by SDS-PAGE. The final purified material in the absence and presence of reducing agent is identified in the lanes marked [-] and [+] respectively.
FIG. 5--Comparison of Binding Efficacy of a LC/A-Nociceptin-HN/A Fusion Protein and a Nociceptin-LC/A-HN/A Fusion Protein
[0283]The ability of nociceptin fusions to bind to the ORL1 receptor was assessed using a simple competition-based assay. Primary cultures of dorsal root ganglia (DRG) were exposed to varying concentrations of test material in the presence of 1 nM [3H]-nociceptin. The reduction in specific binding of the radiolabelled ligand was assessed by scintillation counting, and plotted in comparison to the efficacy of unlabelled ligand (Tocris nociceptin). It is clear that the LC/A-nociceptin-HN/A fusion is far superior to the nociceptin-LC/A-HN/A fusion at interacting with the ORL1 receptor.
FIG. 6--In Vitro Catalytic Activity of a LC/A-Nociceptin-HN/A Fusion Protein
[0284]The in vitro endopeptidase activity of the purified LC/A-nociceptin-HN/A fusion protein was determined essentially as described in Chaddock et al 2002, Prot. Express Purif. 25, 219-228. Briefly, SNAP-25 peptide immobilised to an ELISA plate was exposed to varying concentrations of fusion protein for 1 hour at 37° C. Following a series of washes, the amount of cleaved SNAP-25 peptide was quantified by reactivity with a specific antisera.
FIG. 7--Purification of a LC/A-Nociceptin Variant-HN/A Fusion Protein
[0285]Using the methodology outlined in Example 9, an LC/A-nociceptin variant-HN/A fusion protein was purified from E. coli BL21 cells. Briefly, the soluble products obtained following cell disruption were applied to a nickel-charged affinity capture column. Bound proteins were eluted with 100 mM imidazole, treated with Factor Xa to activate the fusion protein and remove the maltose-binding protein (MBP) tag, then re-applied to a second nickel-charged affinity capture column. Samples from the purification procedure were assessed by SDS-PAGE. The final purified material in the absence and presence of reducing agent is identified in the lanes marked [-] and [+] respectively.
FIG. 8--Comparison of Binding Efficacy of a LC/A-Nociceptin-HN/A Fusion Protein and a LC/A-Nociceptin Variant-HN/A Fusion Protein
[0286]The ability of nociceptin fusions to bind to the ORL1 receptor was assessed using a simple competition-based assay. Primary cultures of dorsal root ganglia (DRG) were exposed to varying concentrations of test material in the presence of 1 nM [3H]-nociceptin. The reduction in specific binding of the radiolabelled ligand was assessed by scintillation counting, and plotted in comparison to the efficacy of unlabelled ligand (Tocris nociceptin). It is clear that the LC/A-nociceptin variant-HN/A fusion (CPNv-LHA) is superior to the LC/A-nociceptin variant-HN/A fusion (CPN-LHA) at interacting with the ORL1 receptor.
FIG. 9--Expressed/Purified LC/A-Nociceptin-HN/A Fusion Protein Family with Variable Spacer Length Product(s)
[0287]Using the methodology outlined in Example 9, variants of the LC/A-CPN-HN/A fusion consisting of GS10, GS30 and HX27 are purified from E. coli cell paste. Samples from the purification of LC/A-CPN(GS10)-HN/A, LC/A-CPN(GS15)-HN/A, LC/A-CPN(GS25)-HN/A, LC/A-CPN(GS30)-HN/A and LC/A-CPN(HX27)-HN/A were assessed by SDS-PAGE prior to staining with Coomassie Blue. The electrophoresis profile indicates purification of a disulphide-bonded di-chain species of the expected molecular mass of CPBE-A. Top panel: M=benchmark molecular mass markers; S=total E. coli protein soluble fraction; FT=proteins that did not bind to the Ni2+-charged Sepharose column; FUSION=fusion protein eluted by the addition of imidazole. Bottom panel: Lane 1=benchmark molecular mass markers; Lane 2=total E. coli protein soluble fraction; Lane 3=purified material following initial capture on Ni2+-charged Sepharose; Lane 4=Factor Xa treated material prior to final capture on Ni2+-charged Sepharose; Lane 5=purified final material post activation with Factor Xa (5 μl); Lane 6=purified final material post activation with Factor Xa (10 μl); Lane 7=purified final material post activation with Factor Xa (20 μl); Lane 8=purified final material post activation with Factor Xa+DTT (5 μl); Lane 9=purified final material post activation with Factor Xa+DTT (10 μl); Lane 10=purified final material post activation with Factor Xa+DTT (20 μl).
FIG. 10--Inhibition of SP Release and Cleavage of SNAP-25 by CPN-A
[0288]Briefly, primary cultures of dorsal root ganglia (DRG) were exposed to varying concentrations of CPN-A for 24 hours. Cellular proteins were separated by SDS-PAGE, Western blotted, and probed with anti-SNAP-25 to facilitate an assessment of SNAP-25 cleavage. The percentage of cleaved SNAP-25 was calculated by densitometric analysis and plotted against fusion concentration (dashed line). Material was also recovered for an analysis of substance P content using a specific EIA kit. Inhibition of substance P release is illustrated by the solid line. The fusion concentration required to achieve 50% maximal SNAP-25 cleavage is estimated to be 6.30±2.48 nM.
FIG. 11--Inhibition of SP Release and Cleavage of SNAP-25 Over Extended Time Periods after Exposure of DRG to CPN-A
[0289]Primary cultures of dorsal root ganglia (DRG) were exposed to varying concentrations of CPN-A for 24 hours. Botulinum neurotoxin (BoNT/A) was used as a control. After this initial exposure, extracellular material was removed by washing, and the cells incubated at 37° C. for varying periods of time. At specific time points, cellular proteins were separated by SDS-PAGE, Western blotted, and probed with anti-SNAP-25 to facilitate an assessment of SNAP-25 cleavage. The percentage of cleaved SNAP-25 was calculated by densitometric analysis and illustrated by the dotted lines. Material was also recovered for an analysis of substance P content using a specific EIA kit. Inhibition of substance P release is illustrated by the solid lines.
FIG. 12--Cleavage of SNAP-25 by CPNv-A
[0290]Primary cultures of dorsal root ganglia (DRG) were exposed to varying concentrations of CPNv-A for 24 hours. Cellular proteins were separated by SDS-PAGE, Western blotted, and probed with anti-SNAP-25 to facilitate an assessment of SNAP-25 cleavage. The percentage of cleaved SNAP-25 was calculated by densitometric analysis. The fusion concentration required to achieve 50% maximal SNAP-25 cleavage is estimated to be 1.38±0.36 nM.
FIG. 13--Cleavage of SNAP-25 Over Extended Time Periods after Exposure of DRG to CPNv-A
[0291]Primary cultures of dorsal root ganglia (DRG) were exposed to varying concentrations of CPNv-A for 24 hours. CPN-A was used as a control. After this initial exposure, extracellular material was removed by washing, and the cells incubated at 37° C. for varying periods of time. At specific time points, cellular proteins were separated by SDS-PAGE, Western blotted, and probed with anti-SNAP-25 to facilitate an assessment of SNAP-25 cleavage. The percentage of cleaved SNAP-25 was calculated by densitometric analysis.
FIG. 14--CPNv-A Fusion-Mediated Displacement of [3H]-Nociceptin Binding
[0292]The ability of nociceptin fusions to bind to the ORL1 receptor was assessed using a simple competition-based assay. Primary cultures of dorsal root ganglia (DRG) were exposed to varying concentrations of test material in the presence of 1 nM [3H]-nociceptin. The reduction in specific binding of the radiolabelled ligand was assessed by scintillation counting, and plotted in comparison to the efficacy of unlabelled ligand (Tocris nociceptin). It is clear that the LC/A-nociceptin variant-HN/A fusion (labelled as CPNv-LHnA) is superior to the LC/A-nociceptin-HN/A fusion (labelled as CPN-LHnA) at interacting with the ORL1 receptor.
FIG. 15--Expressed/Purified CPNv(Ek)-A Product
[0293]Proteins were subjected to SDS-PAGE prior to staining with Coomassie Blue. The electrophoresis profile indicates purification of a disulphide-bonded di-chain species of the expected molecular mass of CPNv(Ek)-A. Lane 1=benchmark molecular mass markers; Lane 2=total E. coli protein soluble fraction; Lane 3=purified material following initial capture on Ni2+-charged Sepharose; Lane 4=purified final material post activation with enterokinase (5 μl); Lane 5=purified final material post activation with enterokinase (10 μl); Lane 6=purified final material post activation with enterokinase (20 μl); Lane 7=purified final material post activation with enterokinase+DTT (5 μl); Lane 8=purified final material post activation with enterokinase+DTT (10 μl); Lane 9=purified final material post activation with enterokinase+DTT (20 μl).
FIG. 16--Cleavage of SNAP-25 by CPNv(Ek)-A
[0294]Primary cultures of dorsal root ganglia (DRG) were exposed to varying concentrations of CPNv(Ek)-A for 24 hours. Cellular proteins were separated by SDS-PAGE, Western blotted, and probed with anti-SNAP-25 to facilitate an assessment of SNAP-25 cleavage. The percentage of cleaved SNAP-25 was calculated by densitometric analysis. CPNv-A as prepared in Example 9 was used for comparison purposes. The percentage cleavage of SNAP-25 by CPNv(Ek)-A (labelled as En activated) and CPNv-A (labelled as Xa activated) are illustrated.
FIG. 17--Expressed/Purified CPNv-C Product
[0295]Proteins were subjected to SDS-PAGE prior to staining with Coomassie Blue. The electrophoresis profile indicates purification of a disulphide-bonded di-chain species of the expected molecular mass of CPNv-C. Lane 1=benchmark molecular mass markers; Lane 2=total E. coli protein soluble fraction; Lane 3=purified material following initial capture on Ni2+-charged Sepharose; Lane 4=Factor Xa treated material prior to final capture on Ni2+-charged Sepharose; Lane 5=purified material following second capture on Ni2+-charged Sepharose; Lane 6=final purified material; Lane 7=final purified material+DTT; Lane 8=benchmark molecular mass markers.
FIG. 18--Cleavage of Syntaxin by CPNv-C
[0296]Primary cultures of dorsal root ganglia (DRG) were exposed to varying concentrations of CPNv-C for 24 hours. Cellular proteins were separated by SDS-PAGE, Western blotted, and probed with anti-syntaxin to facilitate an assessment of syntaxin cleavage. The percentage of cleaved syntaxin was calculated by densitometric analysis. The fusion concentration required to achieve 50% maximal syntaxin cleavage is estimated to be 3.13±1.96 nM.
FIG. 19--CPN-A Efficacy in the Acute Capsaicin-Induced Mechanical Allodynia Model
[0297]The ability of an LC/A-nociceptin-HN/A fusion (CPN/A) to inhibit capsaicin-induced mechanical allodynia was evaluated following subcutaneous intraplantar injection in the rat hind paw. Test animals were evaluated for paw withdrawal frequency (PWF %) in response to a 10 g Von Frey filament stimulus series (10 stimuli×3 trials) prior to recruitment into the study (Pre-Treat); after subcutaneous intraplantar treatment with CPN/A but before capsaicin (Pre-CAP); and following capsaicin challenge post-injection of CPN/A (average of responses at 15' and 30'; CAP). Capsaicin challenge was achieved by injection of 10 μL of a 0.3% solution. Sample dilutions were prepared in 0.5% BSA/saline.
FIG. 20--CPN-A Efficacy in the Streptozotocin (STZ)-Induced Peripheral Diabetic Neuropathy (Neuropathic Pain) Model
[0298]Male Sprague-Dawley rats (250-300 g) are treated with 65 mg/kg STZ in citrate buffer (I.V.) and blood glucose and lipid are measured weekly to define the readiness of the model. Paw Withdrawal Threshold (PWT) is measured in response to a Von Frey filament stimulus series over a period of time. Allodynia is said to be established when the PWT on two consecutive test dates (separated by 1 week) measures below 6 g on the scale. At this point, rats are randomized to either a saline group (negative efficacy control), gabapentin group (positive efficacy control) or a test group (CPN/A). Test materials (20-25 μl) are injected subcutaneously as a single injection (except gabapentin) and the PWT is measured at 1 day post-treatment and periodically thereafter over a 2 week period. Gabapentin (30 mg/kg i.p. @ 3 ml/kg injection volume) is injected daily, 2 hours prior to the start of PWT testing.
FIG. 21--CPNv-A Efficacy in the Acute Capsaicin-Induced Mechanical Allodynia Model
[0299]The ability of an LC/A-nociceptin variant-HN/A fusion (CPNv/A) to inhibit capsaicin-induced mechanical allodynia was evaluated following subcutaneous intraplantar injection in the rat hind paw. Test animals were evaluated for paw withdrawal frequency (PWF %) in response to a 10 g Von Frey filament stimulus series (10 stimuli×3 trials) prior to recruitment into the study (Pre-Treat), after subcutaneous intraplantar treatment with CPNv/A but before capsaicin (Pre-CAP), and following capsaicin challenge post-injection of CPNv/A (average of responses at 15' and 30'; CAP). Capsaicin challenge was achieved by injection of 10 μL of a 0.3% solution. Sample dilutions were prepared in 0.5% BSA/saline. These data are expressed as a normalized paw withdrawal frequency differential, in which the difference between the peak response (post-capsaicin) and the baseline response (pre-capsaicin) is expressed as a percentage. With this analysis, it can be seen that CPNv/A is more potent than CPN/A since a lower dose of CPNv/A is required to achieve similar analgesic effect to that seen with CPN/A.
FIG. 22--Expressed/Purified LC/A-CPLE-HN/A Product
[0300]Proteins were subjected to SDS-PAGE prior to staining with Coomassie Blue. The electrophoresis profile indicates purification of a disulphide-bonded di-chain species of the expected molecular mass of CPLE-A. Lane 1=benchmark molecular mass markers; Lane 2=total E. coli protein soluble fraction; Lane 3=purified material following initial capture on Ni2+-charged Sepharose; Lane 4=Factor Xa treated material prior to final capture on Ni2+-charged Sepharose; Lane 5=purified material following second capture on Ni2+-charged Sepharose; Lane 6=final purified material; Lane 7=final purified material+DTT.
FIG. 23--Expressed/Purified LC/A-CPBE-HN/A Product
[0301]Proteins were subjected to SDS-PAGE prior to staining with Coomassie Blue. The electrophoresis profile indicates purification of a disulphide-bonded di-chain species of the expected molecular mass of CPBE-A. Lane 1=total E. coli protein soluble fraction; Lane 2=purified material following initial capture on Ni2+-charged Sepharose; Lane 3=Factor Xa treated material prior to final capture on Ni2+-charged Sepharose; Lane 4=purified final material post activation with Factor Xa (5 μl); Lane 5=purified final material post activation with Factor Xa (10 μl); Lane 6=purified final material post activation with Factor Xa (20 μl); Lane 7=purified final material post activation with Factor Xa+DTT (5 μl); Lane 8=purified final material post activation with Factor Xa+DTT (10 μl); Lane 9=purified final material post activation with Factor Xa+DTT (20 μl); Lane 10=benchmark molecular mass markers.
FIG. 24--Expressed/Purified CPOP-A Product
[0302]Proteins were subjected to SDS-PAGE prior to staining with Coomassie Blue. The electrophoresis profile indicates purification of a disulphide-bonded di-chain species of the expected molecular mass of CPOP-A. Lane 1=benchmark molecular mass markers; Lane 2=purified material following initial capture on Ni2+-charged Sepharose; Lane 3 Factor Xa treated material prior to final capture on Ni2+-charged Sepharose; Lane 4=purified material following second capture on Ni2+-charged Sepharose; Lane 5=purified final material post activation with Factor Xa (5 μl); Lane 6=purified final material post activation with Factor Xa (10 μl); Lane 7=purified final material post activation with Factor Xa (20 μl); Lane 8=purified final material post activation with Factor Xa+DTT (5 μl); Lane 9=purified final material post activation with Factor Xa+DTT (10 μl); Lane 10=purified final material post activation with Factor Xa+DTT (20 μl).
FIG. 25--Expressed/Purified CPOPv-A Product
[0303]Proteins were subjected to SDS-PAGE prior to staining with Coomassie Blue. The electrophoresis profile indicates purification of a disulphide-bonded di-chain species of the expected molecular mass of CPOPv-A. Lane 1=benchmark molecular mass markers; Lane 2=total E. coli protein soluble fraction; Lane 3=purified material following initial capture on Ni2+-charged Sepharose; Lane 4=Factor Xa treated material prior to final capture on Ni2+-charged Sepharose; Lane 5=purified final material post activation with Factor Xa (5 μl); Lane 6=purified final material post activation with Factor Xa (10 μl); Lane 7=purified final material post activation with Factor Xa (20 μl); Lane 8=purified final material post activation with Factor Xa+DTT (5 μl); Lane 9=purified final material post activation with Factor Xa+DTT (10 μl); Lane 10=purified final material post activation with Factor Xa+DTT (20 μl).
FIG. 26--In Vitro SNAP-25 Cleavage in a DRG Cell Model
[0304]Primary cultures of dorsal root ganglia (DRG) were exposed to varying concentrations of CPOPv-A for 24 hours. Cellular proteins were separated by SDS-PAGE, Western blotted, and probed with anti-SNAP-25 to facilitate an assessment of SNAP-25 cleavage. The percentage of cleaved SNAP-25 was calculated by densitometric analysis.
FIG. 27--Expressed/Purified CPNv-A-FXa-HT (Removable His-Tag)
[0305]Proteins were subjected to SDS-PAGE prior to staining with Coomassie Blue. The electrophoresis profile indicates purification of a disulphide-bonded di-chain species of the expected molecular mass of CPNv-A-FXa-HT. Lane 1=benchmark molecular mass markers; Lane 2=total E. coli protein soluble fraction; Lane 3=Factor Xa treated material prior to final capture on Ni2+-charged Sepharose; Lane 4=purified final material post activation with Factor Xa; Lane 5=purified final material post activation with Factor Xa+DTT.
FIG. 28--In Vitro Efficacy of LC/A-Nociceptin-HN/A Fusion Proteins with Variable Spacer Length, as Assessed by Ligand Competition Assay
[0306]The ability of LC/A-nociceptin-HN/A fusions of variable spacer length to bind to the ORL1 receptor was assessed using a simple competition-based assay.
[0307]Primary cultures of dorsal root ganglia (DRG) were exposed to varying concentrations of test material in the presence of 1 nM [3H]-nociceptin. The reduction in specific binding of the radiolabelled ligand was assessed by scintillation counting, and plotted in comparison to the efficacy of unlabelled ligand (Tocris nociceptin). The upper panel illustrates the displacement characteristics of the GS0, GS20, GS30 and Hx27 spacers, whilst the lower panel illustrates the displacement achieved by the GS10, GS15 and GS25 spaced fusion proteins. It is concluded that the GS0 and GS30 spacers are ineffective, and the GS10 is poorly effective, at displacing nociceptin from the ORL1 receptor.
FIG. 29--In Vitro Efficacy of LC/A-Nociceptin-HN/A Fusion Proteins with Variable Spacer Length, as Assessed by In Vitro SNAP-25 Cleavage
[0308]Primary cultures of dorsal root ganglia (DRG) were exposed to varying concentrations of CPN-A (of variable spacer length) for 24 hours. Cellular proteins were separated by SDS-PAGE, Western blotted, and probed with anti-SNAP-25 to facilitate an assessment of SNAP-25 cleavage. The percentage of cleaved SNAP-25 was calculated by densitometric analysis. The poorly effective binding characteristics of the GS10 spaced fusion protein (see FIG. 28) are reflected in the higher concentrations of fusion required to achieve cleavage of intracellular SNAP-25. GS0 and GS30 spaced fusion proteins were completely ineffective (date not shown). GS15, 20 and 25 spaced fusion proteins were similarly effective.
SEQ ID NOs
[0309]SEQ ID1 DNA sequence of the LC/ASEQ ID2 DNA sequence of the HN/ASEQ ID3 DNA sequence of the LC/BSEQ ID4 DNA sequence of the HN/BSEQ ID5 DNA sequence of the LC/CSEQ ID6 DNA sequence of the HN/CSEQ ID7 DNA sequence of the CPN-A linkerSEQ ID8 DNA sequence of the A linkerSEQ ID9 DNA sequence of the N-terminal presentation nociceptin insertSEQ ID10 DNA sequence of the CPN-C linkerSEQ ID11 DNA sequence of the CPBE-A linkerSEQ ID12 DNA sequence of the CPNvar-A linkerSEQ ID13 DNA sequence of the LC/A-CPN-HN/A fusionSEQ ID14 Protein sequence of the LC/A-CPN-HN/A fusionSEQ ID15 DNA sequence of the N-LC/A-HN/A fusionSEQ ID16 Protein sequence of the N-LC/A-HN/A fusionSEQ ID17 DNA sequence of the LC/C-CPN-HN/C fusionSEQ ID18 Protein sequence of the LC/C-CPN-HN/C fusionSEQ ID19 DNA sequence of the LC/C-CPN-HN/C (A-linker) fusionSEQ ID20 Protein sequence of the LC/C-CPN-HN/C (A-linker) fusionSEQ ID21 DNA sequence of the LC/A-CPME-HN/A fusionSEQ ID22 Protein sequence of the LC/A-CPME-HN/A fusionSEQ ID23 DNA sequence of the LC/A-CPBE-HN/A fusionSEQ ID24 Protein sequence of the LC/A-CPBE-HN/A fusionSEQ ID25 DNA sequence of the LC/A-CPNv-HN/A fusionSEQ ID26 Protein sequence of the LC/A-CPNv-HN/A fusionSEQ ID27 DNA sequence of the LC/A-CPN[1-11]-HN/A fusionSEQ ID28 Protein sequence of the LC/A-CPN[1-11]-HN/A fusionSEQ ID29 DNA sequence of the LC/A-CPN[[Y10]1-11]-HN/A fusionSEQ ID30 Protein sequence of the LC/A-CPN[[Y10]1-11]-HN/A fusionSEQ ID31 DNA sequence of the LC/A-CPN[[Y11]1-11]-HN/A fusionSEQ ID32 Protein sequence of the LC/A-CPN[[Y11]1-11]-HN/A fusionSEQ ID33 DNA sequence of the LC/A-CPN[[Y14]1-17]-HN/A fusionSEQ ID34 Protein sequence of the LC/A-CPN[[Y14]1-17]-HN/A fusionSEQ ID35 DNA sequence of the LC/A-CPN[1-13]-HN/A fusionSEQ ID36 Protein sequence of the LC/A-CPN[1-13]-HN/A fusionSEQ ID37 DNA sequence of CPN[1-17]
SEQ ID38 Protein Sequence of CPN[1-17]
[0310]SEQ ID39 DNA sequence of CPN[1-11]SEQ ID40 Protein sequence of CPN[1-11]SEQ ID41 DNA sequence of CPN[[Y10]1-11]SEQ ID42 Protein sequence of CPN[[Y10]1-11]SEQ ID43 DNA sequence of CPN[[Y1]1-11]SEQ ID44 Protein sequence of CPN[[Y11]1-11]SEQ ID45 DNA sequence of CPN[[Y14]1-17]SEQ ID46 Protein sequence of CPN[[Y14]1-17]SEQ ID47 DNA sequence of CPN[1-13]SEQ ID48 Protein sequence of CPN[1-13]SEQ ID49 DNA sequence of CPNv (also known as N[[R14K15]1-17])SEQ ID50 Protein sequence of CPNv (also known as N[[R14K15]1-17])SEQ ID51 DNA sequence of the nociceptin-spacer-LC/A-HN/A fusionSEQ ID52 Protein sequence of the nociceptin-spacer-LC/A-HN/A fusionSEQ ID53 DNA sequence of the CPN-A GS10 linkerSEQ ID54 DNA sequence of the CPN-A GS15 linkerSEQ ID55 DNA sequence of the CPN-A GS25 linkerSEQ ID56 DNA sequence of the CPN-A GS30 linkerSEQ ID57 DNA sequence of the CPN-A HX27 linkerSEQ ID58 DNA sequence of the LC/A-CPN(GS15)-HN/A fusionSEQ ID59 Protein sequence of the LC/A-CPN(GS15)-HN/A fusionSEQ ID60 DNA sequence of the LC/A-CPN(GS25)-HN/A fusionSEQ ID61 Protein sequence of the LC/A-CPN(GS25)-HN/A fusionSEQ ID62 DNA sequence of the CPNvar-A Enterokinase activatable linkerSEQ ID63 DNA sequence of the LC/A-CPNv(Ek)-HN/A fusionSEQ ID64 Protein sequence of the LC/A-CPNv(Ek)-HN/A fusionSEQ ID65 DNA sequence of the CPNvar-A linkerSEQ ID66 DNA sequence of the LC/C-CPNv-HN/C fusion (act. A)SEQ ID67 Protein sequence of the LC/C-CPNv-HN/C fusion (act. A)SEQ ID68 DNA sequence of the LC/A-CPLE-HN/A fusionSEQ ID69 Protein sequence of the LC/A-CPLE-HN/A fusionSEQ ID70 DNA sequence of the LC/A-CPOP-HN/A fusionSEQ ID71 Protein sequence of the LC/A-CPOP-HN/A fusionSEQ ID72 DNA sequence of the LC/A-CPOPv-HN/A fusionSEQ ID73 Protein sequence of the LC/A-CPOPv-HN/A fusionSEQ ID74 DNA sequence of the IgA proteaseSEQ ID75 DNA sequence of the IgA-CPNv-HN/A fusionSEQ ID76 Protein sequence of the IgA-CPNv-HN/A fusionSEQ ID77 DNA sequence of the FXa-HTSEQ ID78 DNA sequence of the CPNv-A-FXa-HTSEQ ID79 Protein sequence of the CPNv-A-FXa-HT fusionSEQ ID80 DNA sequence of the DT translocation domainSEQ ID81 DNA sequence of the CPLE-DT-ASEQ ID82 Protein sequence of the CPLE-DT-A fusionSEQ ID83 DNA sequence of the TeNT LCSEQ ID84 DNA sequence of the CPNv-TENT LCSEQ ID85 Protein sequence of the CPNv-TeNT LC fusionSEQ ID86 DNA sequence of the CPNvar-C linkerSEQ ID87 DNA sequence of the LC/C-CPNv-HN/C fusion (act. C)SEQ ID88 Protein sequence of the LC/C-CPNv-HN/C fusion (act. C)
EXAMPLES
Example 1
Preparation of a LC/A and HN/A Backbone Clones
[0311]The following procedure creates the LC and HN fragments for use as the component backbone for multidomain fusion expression. This example is based on preparation of a serotype A based clone (SEQ ID1 and SEQ ID2), though the procedures and methods are equally applicable to the other serotypes [illustrated by the sequence listing for serotype B (SEQ ID3 and SEQ ID4) and serotype C (SEQ ID5 and SEQ ID6)].
Preparation of Cloning and Expression Vectors
[0312]pCR 4 (Invitrogen) is the chosen standard cloning vector, selected due to the lack of restriction sequences within the vector and adjacent sequencing primer sites for easy construct confirmation. The expression vector is based on the pMAL (NEB) expression vector, which has the desired restriction sequences within the multiple cloning site in the correct orientation for construct insertion (BamHI-SalI-PstI-HindIII). A fragment of the expression vector has been removed to create a non-mobilisable plasmid and a variety of different fusion tags have been inserted to increase purification options.
Preparation of Protease (e.g. LC/A) Insert
[0313]The LC/A (SEQ ID1) is created by one of two ways:
[0314]The DNA sequence is designed by back translation of the LC/A amino acid sequence [obtained from freely available database sources such as GenBank (accession number P10845) or Swissprot (accession locus BXA1_CLOBO) using one of a variety of reverse translation software tools (for example EditSeq best E. coli reverse translation (DNASTAR Inc.), or Backtranslation tool v2.0 (Entelechon)]. BamHI/SalI recognition sequences are incorporated at the 5' and 3' ends respectively of the sequence, maintaining the correct reading frame. The DNA sequence is screened (using software such as MapDraw, DNASTAR Inc.) for restriction enzyme cleavage sequences incorporated during the back translation. Any cleavage sequences that are found to be common to those required by the cloning system are removed manually from the proposed coding sequence ensuring common E. coli codon usage is maintained. E. coli codon usage is assessed by reference to software programs such as Graphical Codon Usage Analyser (Geneart), and the % GC content and codon usage ratio assessed by reference to published codon usage tables (for example GenBank Release 143, 13 Sep. 2004). This optimised DNA sequence containing the LC/A open reading frame (ORF) is then commercially synthesized (for example by Entelechon, Geneart or Sigma-Genosys) and is provided in the pCR 4 vector.
[0315]The alternative method is to use PCR amplification from an existing DNA sequence with BamHI and SalI restriction enzyme sequences incorporated into the 5' and 3' PCR primers respectively. Complementary oligonucleotide primers are chemically synthesised by a supplier (for example MWG or Sigma-Genosys), so that each pair has the ability to hybridize to the opposite strands (3' ends pointing "towards" each other) flanking the stretch of Clostridium target DNA, one oligonucleotide for each of the two DNA strands. To generate a PCR product the pair of short oligonucleotide primers specific for the Clostridium DNA sequence are mixed with the Clostridium DNA template and other reaction components and placed in a machine (the `PCR machine`) that can change the incubation temperature of the reaction tube automatically, cycling between approximately 94° C. (for denaturation), 55° C. (for oligonucleotide annealing), and 72° C. (for synthesis). Other reagents required for amplification of a PCR product include a DNA polymerase (such as Taq or Pfu polymerase), each of the four nucleotide dNTP building blocks of DNA in equimolar amounts (50-200 μM) and a buffer appropriate for the enzyme optimised for Mg2+ concentration (0.5-5 mM).
[0316]The amplification product is cloned into pCR 4 using either, TOPO TA cloning for Taq PCR products or Zero Blunt TOPO cloning for Pfu PCR products (both kits commercially available from Invitrogen). The resultant clone is checked by sequencing. Any additional restriction sequences which are not compatible with the cloning system are then removed using site directed mutagenesis [for example, using Quickchange (Stratagene Inc.)].
Preparation of Translocation (e.g. HN) Insert
[0317]The HN/A (SEQ ID2) is created by one of two ways:
[0318]The DNA sequence is designed by back translation of the HN/A amino acid sequence [obtained from freely available database sources such as GenBank (accession number P10845) or Swissprot (accession locus BXA1_CLOBO)] using one of a variety of reverse translation software tools [for example EditSeq best E. coli reverse translation (DNASTAR Inc.), or Backtranslation tool v2.0 (Entelechon)]. A PstI restriction sequence added to the N-terminus and XbaI-stop codon-HindIII to the C-terminus ensuring the correct reading frame is maintained. The DNA sequence is screened (using software such as MapDraw, DNASTAR Inc.) for restriction enzyme cleavage sequences incorporated during the back translation. Any sequences that are found to be common to those required by the cloning system are removed manually from the proposed coding sequence ensuring common E. coli codon usage is maintained. E. coli codon usage is assessed by reference to software programs such as Graphical Codon Usage Analyser (Geneart), and the % GC content and codon usage ratio assessed by reference to published codon usage tables (for example GenBank Release 143, 13 Sep. 2004). This optimised DNA sequence is then commercially synthesized (for example by Entelechon, Geneart or Sigma-Genosys) and is provided in the pCR 4 vector.
[0319]The alternative method is to use PCR amplification from an existing DNA sequence with PstI and XbaI-stop codon-HindIII restriction enzyme sequences incorporated into the 5' and 3' PCR primers respectively. The PCR amplification is performed as described above. The PCR product is inserted into pCR 4 vector and checked by sequencing. Any additional restriction sequences which are not compatible with the cloning system are then removed using site directed mutagenesis [for example using Quickchange (Stratagene Inc.)].
Example 2
Preparation of a LC/A-Nociceptin-HN/a Fusion Protein (Nociceptin is N-Terminal of the HN-Chain)
Preparation of Linker-Nociceptin-Spacer Insert
[0320]The LC-HN linker can be designed from first principle, using the existing sequence information for the linker as the template. For example, the serotype A linker (in this case defined as the inter-domain polypeptide region that exists between the cysteines of the disulphide bridge between LC and HN) is 23 amino acids long and has the sequence VRGIITSKTKSLDKGYNKALNDL. Within this sequence, it is understood that proteolytic activation in nature leads to an HN domain that has an N-terminus of the sequence ALNDL. This sequence information is freely available from available database sources such as GenBank (accession number P10845) or Swissprot (accession locus BXA1_CLOBO). Into this linker a Factor Xa site, nociceptin and spacer are incorporated; and using one of a variety of reverse translation software tools [for example EditSeq best E. coli reverse translation (DNASTAR Inc.), or Backtranslation tool v2.0 (Entelechon)], the DNA sequence encoding the linker-ligand-spacer region is determined. Restriction sites are then incorporated into the DNA sequence and can be arranged as BamHI-SalI-linker-protease site-nociceptin-NheI-spacer-SpeI-PstI-XbaI-stop codon-HindIII (SEQ ID7). It is important to ensure the correct reading frame is maintained for the spacer, nociceptin and restriction sequences and that the XbaI sequence is not preceded by the bases, TC, which would result on DAM methylation. The DNA sequence is screened for restriction sequence incorporation, and any additional sequences are removed manually from the remaining sequence ensuring common E. coli codon usage is maintained. E. coli codon usage is assessed by reference to software programs such as Graphical Codon Usage Analyser (Geneart), and the % GC content and codon usage ratio assessed by reference to published codon usage tables (for example, GenBank Release 143, 13 Sep. 2004). This optimised DNA sequence is then commercially synthesized (for example by Entelechon, Geneart or Sigma-Genosys) and is provided in the pCR 4 vector.
Preparation of the LC/A-Nociceptin-HN/A Fusion
[0321]In order to create the LC-linker-nociceptin-spacer-HN construct (SEQ ID13), the pCR 4 vector encoding the linker (SEQ ID7) is cleaved with BamHI+SalI restriction enzymes. This cleaved vector then serves as the recipient vector for insertion and ligation of the LC/A DNA (SEQ ID1) cleaved with BamHI+SalI. The resulting plasmid DNA is then cleaved with PstI+XbaI restriction enzymes and serves as the recipient vector for the insertion and ligation of the HN/A DNA (SEQ ID2) cleaved with PstI+XbaI. The final construct contains the LC-linker-nociceptin-spacer-HN ORF (SEQ ID13) for transfer into expression vectors for expression to result in a fusion protein of the sequence illustrated in SEQ ID14.
Example 3
Preparation of a Nociceptin-LC/A-HN/A Fusion Protein (Nociceptin is N-Terminal of the LC-Chain)
[0322]The LC/A-HN/A backbone is constructed as described in Example 2 using the synthesised A serotype linker with the addition of a Factor Xa site for activation, arranged as BamHI-SalI-linker-protease site-linker-PstI-XbaI-stop codon-Hind III (SEQ ID8). The LC/A-HN/A backbone and the synthesised N-terminal presentation nociceptin insert (SEQ ID9) are cleaved with BamHI+HindIII restriction enzymes, gel purified and ligated together to create a nociceptin-spacer-LC-linker-HN. The ORF (SEQ ID15) is then cut out using restriction enzymes AvaI+XbaI for transfer into expression vectors for expression to result in a fusion protein of the sequence illustrated in SEQ ID16.
Example 4
Preparation of a LC/C-Nociceptin-HN/C Fusion Protein
[0323]Following the methods, used in Examples 1 and 2, the LC/C (SEQ ID5) and HN/C (SEQ ID6) are created and inserted into the C serotype linker arranged as BamHI-SalI-linker-protease site-nociceptin-NheI-spacer-SpeI-PstI-XbaI-stop codon-HindIII (SEQ ID10). The final construct contains the LC-linker-nociceptin-spacer-HN ORF (SEQ ID17) for expression as a protein of the sequence illustrated in SEQ ID18.
Example 5
Preparation of a LC/C-Nociceptin-HN/C Fusion Protein with a Serotype A Activation Sequence
[0324]Following the methods used in Examples 1 and 2, the LC/C (SEQ ID5) and HN/C (SEQ ID6) are created and inserted into the A serotype linker arranged as BamHI-SalI-linker-protease site-nociceptin-NheI-spacer-SpeI-PstI-XbaI-stop codon-HindIII (SEQ ID7). The final construct contains the LC-linker-nociceptin-spacer-HN ORF (SEQ ID19) for expression as a protein of the sequence illustrated in SEQ ID20.
Example 6
Preparation of a LC/A-met Enkephalin-HN/A Fusion Protein
[0325]Due to the small, five-amino acid, size of the met-enkephalin ligand the LC/A-met enkephalin-HN/A fusion is created by site directed mutagenesis [for example using Quickchange (Stratagene Inc.)] using the LC/A-nociceptin-HN/A fusion (SEQ ID13) as a template. Oligonucleotides are designed encoding the YGGFM met-enkephalin peptide, ensuring standard E. coli codon usage is maintained and no additional restriction sites are incorporated, flanked by sequences complimentary to the linker region of the LC/A-nociceptin-HN/A fusion (SEQ ID13) either side on the nociceptin section. The SDM product is checked by sequencing and the final construct containing the LC-linker-met enkephalin-spacer-HN ORF (SEQ ID21) for expression as a protein of the sequence illustrated in SEQ ID22.
Example 7
Preparation of a LC/A-β Endorphin-HN/A Fusion Protein
[0326]Following the methods used in Examples 1 and 2, the LC/A (SEQ ID1) and HN/A (SEQ ID2) are created and inserted into the A serotype β endorphin linker arranged as BamHI-Sa/1-linker-protease site-β endorphin-NheI-spacer-SpeI-PstI-XbaI-stop codon-HindIII (SEQ ID11). The final construct contains the LC-linker-β endorphin-spacer-HN ORF (SEQ ID23) for expression as a protein of the sequence illustrated in SEQ ID24.
Example 8
Preparation of a LC/A-Nociceptin Variant-HN/A Fusion Protein
[0327]Following the methods used in Examples 1 and 2, the LC/A (SEQ ID1) and HN/A (SEQ ID2) are created and inserted into the A serotype nociceptin variant linker arranged as BamHI-SalI-linker-protease site-nociceptin variant-NheI-spacer-SpeI-PstI-XbaI-stop codon-HindIII (SEQ ID12). The final construct contains the LC-linker-nociceptin variant-spacer-HN ORF (SEQ ID25) for expression as a protein of the sequence illustrated in SEQ ID26.
Example 9
Purification Method for LC/A-Nociceptin-HN/A Fusion Protein
[0328]Defrost falcon tube containing 25 ml 50 mM HEPES pH 7.2, 200 mM NaCl and approximately 10 g of E. coli BL21 cell paste. Make the thawed cell paste up to 80 ml with 50 mM HEPES pH 7.2, 200 mM NaCl and sonicate on ice 30 seconds on, 30 seconds off for 10 cycles at a power of 22 microns ensuring the sample remains cool. Spin the lysed cells at 18 000 rpm, 4° C. for 30 minutes. Load the supernatant onto a 0.1 M NiSO4 charged Chelating column (20-30 ml column is sufficient) equilibrated with 50 mM HEPES pH 7.2, 200 mM NaCl. Using a step gradient of 10 and 40 mM imidazol, wash away the non-specific bound protein and elute the fusion protein with 100 mM imidazol. Dialyse the eluted fusion protein against 5 L of 50 mM HEPES pH 7.2, 200 mM NaCl at 4° C. overnight and measure the OD of the dialysed fusion protein. Add 1 unit of factor Xa per 100 μg fusion protein and Incubate at 25° C. static overnight. Load onto a 0.1 M NiSO4 charged Chelating column (20-30 ml column is sufficient) equilibrated with 50 mM HEPES pH 7.2, 200 mM NaCl. Wash column to baseline with 50 mM HEPES pH 7.2, 200 mM NaCl. Using a step gradient of 10 and 40 mM imidazol, wash away the non-specific bound protein and elute the fusion protein with 100 mM imidazol. Dialyse the eluted fusion protein against 5 L of 50 mM HEPES pH 7.2, 200 mM NaCl at 4° C. overnight and concentrate the fusion to about 2 mg/ml, aliquot sample and freeze at -20° C. Test purified protein using OD, BCA, purity analysis and SNAP-25 assessments.
Example 10
Confirmation of TM Agonist Activity by Measuring Release of Substance P from Neuronal Cell Cultures
Materials
[0329]Substance P EIA is obtained from R&D Systems, UK.
Methods
[0330]Primary neuronal cultures of eDRG are established as described previously (Duggan et al., 2002). Substance P release from the cultures is assessed by EIA, essentially as described previously (Duggan et al., 2002). The TM of interest is added to the neuronal cultures (established for at least 2 weeks prior to treatment); control cultures are performed in parallel by addition of vehicle in place of TM. Stimulated (100 mM KCl) and basal release, together with total cell lysate content, of substance P are obtained for both control and TM treated cultures. Substance P immunoreactivity is measured using Substance P Enzyme Immunoassay Kits (Cayman Chemical Company, USA or R&D Systems, UK) according to manufacturers' instructions.
[0331]The amount of Substance P released by the neuronal cells in the presence of the TM of interest is compared to the release obtained in the presence and absence of 100 mM KCl. Stimulation of Substance P release by the TM of interest above the basal release, establishes that the TM of interest is an "agonist ligand" as defined in this specification. If desired the stimulation of Substance P release by the TM of interest can be compared to a standard Substance P release-curve produced using the natural ORL-1 receptor ligand, nociceptin (Tocris).
Example 11
Confirmation of ORL1 Receptor Activation by Measuring Forskolin-Stimulated cAMP Production
[0332]Confirmation that a given TM is acting via the ORL1 receptor is provided by the following test, in which the TMs ability to inhibit forskolin-stimulated cAMP production is assessed.
Materials
[0333][3H]adenine and [14C]cAMP are obtained from GE Healthcare
Methods
[0334]The test is conducted essentially as described previously by Meunier et al. [Isolation and structure of the endogenous agonist of opioid receptor-like ORL1 receptor. Nature 377: 532-535, 1995] in intact transfected-CHO cells plated on 24-well plastic plates.
[0335]To the cells is added [3H]adenine (1.0 μCi) in 0.4 ml of culture medium. The cells remain at 37° C. for 2 h to allow the adenine to incorporate into the intracellular ATP pool. After 2 h, the cells are washed once with incubation buffer containing: 130 mM NaCl, 4.8 mM KCl, 1.2 mM KH2PO4, 1.3 mM CaCl2, 1.2 mM MgSO4, 10 mM glucose, 1 mg/ml bovine serum albumin and 25 mM HEPES pH 7.4, and replaced with buffer containing forskolin (10 μM) and isobutylmethylxanthine (50 μM) with or without the TM of interest. After 10 min, the medium is aspirated and replaced with 0.5 ml, 0.2 M HCl. Approximately 1000 cpm of [14C]cAMP is added to each well and used as an internal standard. The contents of the wells are then transferred to columns of 0.65 g dry alumina powder. The columns are eluted with 4 ml of 5 mM HCl, 0.5 ml of 0.1 M ammonium acetate, then two additional millilitres of ammonium acetate. The final eluate is collected into scintillation vials and counted for 14C and tritium. Amounts collected are corrected for recovery of [14C]cAMP. TMs that are agonists at the ORL1 receptor cause a reduction in the level of cAMP produced in response to forskolin.
Example 12
Confirmation of ORL1 Receptor Activation Using a GTPγS Binding Functional Assay
[0336]Confirmation that a given TM is acting via the ORL1 receptor is also provided by the following test, a GTPγS binding functional assay.
Materials
[0337][35S]GTPγS is obtained from GE Healthcare
[0338]Wheatgerm agglutinin-coated (SPA) beads are obtained from GE Healthcare
Methods
[0339]This assay is carried out essentially as described by Traynor and Nahorski [Modulation by μ-opioid agonists of guanosine-5-O-(3-[35S]thio)triphosphate binding to membranes from human neuroblastoma SH-SY5Y cells. Mol. Pharmacol. 47: 848-854, 1995].
[0340]Cells are scraped from tissue culture dishes into 20 mM HEPES, 1 mM ethylenediaminetetraacetic acid, then centrifuged at 500×g for 10 min. Cells are resuspended in this buffer and homogenized with a Polytron Homogenizer.
[0341]The homogenate is centrifuged at 27,000×g for 15 min, and the pellet resuspended in buffer A, containing: 20 mM HEPES, 10 mM MgCl2, 100 mM NaCl, pH 7.4. The suspension is recentrifuged at 20,000×g and suspended once more in buffer A. For the binding assay, membranes (8-15 μg protein) are incubated with [35S]GTP S (50 pM), GDP (10 μM), with and without the TM of interest, in a total volume of 1.0 ml, for 60 min at 25° C. Samples are filtered over glass fibre filters and counted as described for the binding assays.
Example 13
Preparation of a LC/A-Nociceptin-HN/A Fusion Protein (Nociceptin is N-Terminal of the HN-Chain)
[0342]The linker-nociceptin-spacer insert is prepared as described in Example 2.
Preparation of the LC/A-Nociceptin-HN/A Fusion
[0343]In order to create the LC-linker-nociceptin-spacer-HN construct (SEQ ID13), the pCR 4 vector encoding the linker (SEQ ID7) is cleaved with BamHI+SalI restriction enzymes. This cleaved vector then serves as the recipient for insertion and ligation of the LC/A DNA (SEQ ID1) also cleaved with BamHI+SalI. The resulting plasmid DNA is then cleaved with BamHI+HindIII restriction enzymes and the LC/A-linker fragment inserted into a similarly cleaved vector containing a unique multiple cloning site for BamHI, SalI, PstI, and HindIII such as the pMAL vector (NEB). The HN/A DNA (SEQ ID2) is then cleaved with PstI+HindIII restriction enzymes and inserted into the similarly cleaved pMAL-LC/A-linker construct. The final construct contains the LC-linker-nociceptin-spacer-HN ORF (SEQ ID13) for expression as a protein of the sequence illustrated in SEQ ID14.
Example 14
Preparation of a Nociceptin-LC/A-HN/A Fusion Protein (Nociceptin is N-Terminal of the LC-Chain)
[0344]In order to create the nociceptin-spacer-LC/A-HN/A construct, an A serotype linker with the addition of a Factor Xa site for activation, arranged as BamHI-SalI-linker-protease site-linker-PstI-XbaI-stop codon-HindIII (SEQ ID8) is synthesised as described in Example 13. The pCR 4 vector encoding the linker is cleaved with BamHI+SalI restriction enzymes. This cleaved vector then serves as the recipient for insertion and ligation of the LC/A DNA (SEQ ID1) also cleaved with BamHI+SalI. The resulting plasmid DNA is then cleaved with BamHI+HindIII restriction enzymes and the LC/A-linker fragment inserted into a similarly cleaved vector containing the synthesised N-terminal presentation nociceptin insert (SEQ ID9). This construct is then cleaved with AvaI+HindIII and inserted into an expression vector such as the pMAL plasmid (NEB). The HN/A DNA (SEQ ID2) is then cleaved with PstI+HindIII restriction enzymes and inserted into the similarly cleaved pMAL-nociceptin-LC/A-linker construct. The final construct contains the nociceptin-spacer-LC/A-HN/A ORF (SEQ ID51) for expression as a protein of the sequence illustrated in SEQ ID52.
Example 15
Preparation and Purification of an LC/A-Nociceptin-HN/A Fusion Protein Family with Variable Spacer Length
[0345]Using the same strategy as employed in Example 2, a range of DNA linkers were prepared that encoded nociceptin and variable spacer content. Using one of a variety of reverse translation software tools [for example EditSeq best E. coli reverse translation (DNASTAR Inc.), or Backtranslation tool v2.0 (Entelechon)], the DNA sequence encoding the linker-ligand-spacer region is determined.
[0346]Restriction sites are then incorporated into the DNA sequence and can be arranged as BamHI-SalI-linker-protease site-nociceptin-NheI-spacer-SpeI-PstI-XbaI-stop codon-HindIII (SEQ ID53 to SEQ ID57). It is important to ensure the correct reading frame is maintained for the spacer, nociceptin and restriction sequences and that the XbaI sequence is not preceded by the bases, TC which would result on DAM methylation. The DNA sequence is screened for restriction sequence incorporation and any additional sequences are removed manually from the remaining sequence ensuring common E. coli codon usage is maintained. E. coli codon usage is assessed by reference to software programs such as Graphical Codon Usage Analyser (Geneart), and the % GC content and codon usage ratio assessed by reference to published codon usage tables (for example GenBank Release 143, 13 Sep. 2004). This optimised DNA sequence is then commercially synthesized (for example by Entelechon, Geneart or Sigma-Genosys) and is provided in the pCR 4 vector.
TABLE-US-00006 TABLE 1 The spacers that were created included: SEQ ID of the Code Protein sequence of the linker linker DNA GS10 ALAGGGGSALVLQ 53 GS15 ALAGGGGSGGGGSALVLQ 54 GS25 ALAGGGGSGGGGSGGGGSGGGGSALVLQ 55 GS30 ALAGGGGSGGGGSGGGGSGGGGSGGGGSALVLQ 56 HX27 ALAAEAAAKEAAAKEAAAKAGGGGSALVLQ 57
[0347]By way of example, in order to create the LC/A-CPN(GS15)-HN/A fusion construct (SEQ ID58), the pCR 4 vector encoding the linker (SEQ ID54) is cleaved with BamHI+SalI restriction enzymes. This cleaved vector then serves as the recipient vector for insertion and ligation of the LC/A DNA (SEQ ID1) also cleaved with BamHI+SalI. The resulting plasmid DNA is then cleaved with BamHI+HindIII restriction enzymes and the LC/A-linker fragment inserted into a similarly cleaved vector containing a unique multiple cloning site for BamHI, SalI, PstI, and HindIII such as the pMAL vector (NEB). The HN/A DNA (SEQ ID2) is then cleaved with PstI+HindIII restriction enzymes and inserted into the similarly cleaved pMAL-LC/A-linker construct. The final construct contains the LC/A-CPN(GS15)-HN/A ORF (SEQ ID58) for expression as a protein of the sequence illustrated in SEQ ID59.
[0348]As a further example, to create the LC/A-CPN(GS25)-HN/A fusion construct (SEQ ID60), the pCR 4 vector encoding the linker (SEQ ID55) is cleaved with BamHI+SalI restriction enzymes. This cleaved vector then serves as the recipient vector for insertion and ligation of the LC/A DNA (SEQ ID1) cleaved with BamHI+SalI. The resulting plasmid DNA is then cleaved with BamHI+HindIII restriction enzymes and the LC/A-linker fragment inserted into a similarly cleaved vector containing a unique multiple cloning site for BamHI, SalI, PstI, and HindIII such as the pMAL vector (NEB). The HN/A DNA (SEQ ID2) is then cleaved with PstI+HindIII restriction enzymes and inserted into the similarly cleaved pMAL-LC/A-linker construct. The final construct contains the LC/A-CPN(GS25)-HN/A ORF (SEQ ID60) for expression as a protein of the sequence illustrated in SEQ ID61.
[0349]Variants of the LC/A-CPN-HN/A fusion consisting of GS10, GS30 and HX27 are similarly created. Using the purification methodology described in Example 9, fusion protein is purified from E. coli cell paste. FIG. 9 illustrates the purified product obtained in the case of LC/A-CPN(GS10)-HN/A, LC/A-CPN(GS15)-HN/A, LC/A-CPN(GS25)-HN/A, LC/A-CPN(GS30)-HN/A and LC/A-CPN(HX27)-HN/A.
Example 16
Assessment of In Vitro Efficacy of an LC/A-Nociceptin-HN/A Fusion
[0350]Fusion protein prepared according to Examples 2 and 9 was assessed in the eDRG neuronal cell model.
[0351]Assays for the inhibition of substance P release and cleavage of SNAP-25 have been previously reported (Duggan et al., 2002, J. Biol. Chem., 277, 34846-34852). Briefly, dorsal root ganglia neurons are harvested from 15-day-old fetal Sprague-Dawley rats and dissociated cells plated onto 24-well plates coated with Matrigel at a density of 1×106 cells/well. One day post-plating the cells are treated with 10 μM cytosine β-D-arabinofuranoside for 48 h. Cells are maintained in Dulbecco's minimal essential medium supplemented with 5% heat-inactivated fetal bovine serum, 5 mM L-glutamine, 0.6% D-glucose, 2% B27 supplement, and 100 ng/ml 2.5 S mouse nerve growth factor. Cultures are maintained for 2 weeks at 37° C. in 95% air/5% CO2 before addition of test materials.
[0352]Release of substance P from eDRG is assessed by enzyme-linked immunosorbent assay. Briefly, eDRG cells are washed twice with low potassium-balanced salt solution (BSS: 5 mM KCl, 137 mM NaCl, 1.2 mM MgCl2, 5 mM glucose, 0.44 mM KH2PO4, 20 mM HEPES, pH 7.4, 2 mM CaCl2). Basal samples are obtained by incubating each well for 5 min. with 1 ml of low potassium BSS. After removal of this buffer, the cells are stimulated to release by incubation with 1 ml of high potassium buffer (BSS as above with modification to include 100 mM KCl isotonically balanced with NaCl) for 5 min. All samples are removed to tubes on ice prior to assay of substance P. Total cell lysates are prepared by addition of 250 μl of 2 M acetic acid/0.1% trifluoroacetic acid to lyse the cells, centrifugal evaporation, and resuspension in 500 μl of assay buffer. Diluted samples are assessed for substance P content. Substance P immunoreactivity is measured using Substance P Enzyme Immunoassay Kits (Cayman Chemical Company or R&D Systems) according to manufacturers' instructions. Substance P is expressed in pg/ml relative to a standard substance P curve run in parallel.
[0353]SDS-PAGE and Western blot analysis were performed using standard protocols (Novex). SNAP-25 proteins were resolved on a 12% Tris/glycine polyacrylamide gel (Novex) and subsequently transferred to nitrocellulose membrane. The membranes were probed with a monoclonal antibody (SMI-81) that recognises cleaved and intact SNAP-25. Specific binding was visualised using peroxidase-conjugated secondary antibodies and a chemiluminescent detection system. Cleavage of SNAP-25 was quantified by scanning densitometry (Molecular Dynamics Personal SI, ImageQuant data analysis software). Percent SNAP-25 cleavage was calculated according to the formula: (Cleaved SNAP-25/(Cleaved+Intact SNAP-25))×100.
[0354]Following exposure of eDRG neurons to an LC/A-nociceptin-HN/A fusion (termed CPN-A), both inhibition of substance P release and cleavage of SNAP-25 are observed (FIG. 10). After 24 h exposure to the fusion, 50% of maximal SNAP-25 cleavage is achieved by a fusion concentration of 6.3±2.5 nM.
[0355]The effect of the fusion is also assessed at defined time points following a 16 h exposure of eDRG to CPN-A. FIG. 11 illustrates the prolonged duration of action of the CPN-A fusion protein, with measurable activity still being observed at 28 days post exposure.
Example 17
Assessment of In Vitro Efficacy of an LC/A-Nociceptin Variant-HN/A Fusion
[0356]Fusion protein prepared according to Examples 8 and 9 was assessed in the eDRG neuronal cell mode using the method described in Example 16.
[0357]Following exposure of eDRG neurons to an LC/A-nociceptin variant-HN/A fusion (termed CPNv-A), both inhibition of substance P release and cleavage of SNAP-25 are observed. After 24 h exposure to the fusion, 50% of maximal SNAP-25 cleavage is achieved by a fusion concentration of 1.4±0.4 nM (FIG. 12).
[0358]The effect of the fusion is also assessed at defined time points following a 16 h exposure of eDRG to CPN-A. FIG. 13 illustrates the prolonged duration of action of the CPN-A fusion protein, with measurable activity still being observed at 24 days post exposure.
[0359]The binding capability of the CPNv-A fusion protein is also assessed in comparison to the CPN-A fusion. FIG. 14 illustrates the results of a competition experiment to determine binding efficacy at the ORL-1 receptor. CPNv-A is demonstrated to displace [3H]-nociceptin, thereby confirming that access to the receptor is possible with the ligand in the central presentation format.
Example 18
Preparation of an LC/A-Nociceptin Variant-HN/A Fusion Protein that is Activated by Treatment with Enterokinase
[0360]Following the methods used in Examples 1 and 2, the LC/A (SEQ ID1) and HN/A (SEQ ID2) are created and inserted into the A serotype nociceptin variant linker arranged as BamHI-Sa/1-linker-enterokinase protease site-nociceptin variant-NheI-spacer-SpeI-PstI-XbaI-stop codon-HindIII (SEQ ID62). The final construct contains the LC-linker-nociceptin variant-spacer-HN ORF sequences (SEQ ID63) for expression as a protein of the sequence illustrated in SEQ ID64. The fusion protein is termed CPNv(Ek)-A. FIG. 15 illustrates the purification of CPNv(Ek)-A from E. coli following the methods used in Example 9 but using Enterokinase for activation at 0.00064 μg per 100 μg of fusion protein.
Example 19
Assessment of In Vitro Efficacy of a LC/A-Nociceptin Variant-HN/A Fusion that has been Activated by Treatment with Enterokinase
[0361]The CPNv(Ek)-A prepared in Example 18 is obtained in a purified form and applied to the eDRG cell model to assess cleavage of SNAP-25 (using methodology from Example 16). FIG. 16 illustrates the cleavage of SNAP-25 following 24 h exposure of eDRG to CPNv(Ek)-A. The efficiency of cleavage is observed to be similar to that achieved with the Factor Xa-cleaved material, as recorded in Example 17.
Example 20
Preparation of an LC/C-Nociceptin Variant-HN/A Fusion Protein with a Factor Xa Activation Linker Derived from Serotype A
[0362]Following the methods used in Example 4, the LC/C (SEQ ID5) and HN/C (SEQ ID6) are created and inserted into the A serotype nociceptin variant linker arranged as BamHI-SalI-linker-nociceptin variant-NheI-spacer-SpeI-PstI-XbaI-stop codon-HindIII (SEQ ID65). The final construct contains the LC-linker-nociceptin variant-spacer-HN ORF sequences (SEQ ID66) for expression as a protein of the sequence illustrated in SEQ ID67. The fusion protein is termed CPNv-C (act. A). FIG. 17 illustrates the purification of CPNv-C (act. A) from E. coli following the methods used in Example 9.
Example 21
Assessment of In Vitro Efficacy of an LC/C-Nociceptin Variant-HN/C Fusion Protein
[0363]Following the methods used in Example 9, the CPNv-C (act. A) prepared in Example 20 is obtained in a purified form and applied to the eDRG cell model to assess cleavage of SNAP-25 (using methodology from Example 16). After 24 h exposure to the fusion, 50% of maximal syntaxin cleavage is achieved by a fusion concentration of 3.1±2.0 nM. FIG. 18 illustrates the cleavage of syntaxin following 24 h exposure of eDRG to CPNv-C (act. A).
Example 22
Assessment of In Vivo Efficacy of an LC/A-Nociceptin-HN/A Fusion
[0364]The ability of an LC/A-nociceptin-HN/A fusion (CPN/A) to inhibit acute capsaicin-induced mechanical allodynia is evaluated following subcutaneous intraplantar injection in the rat hind paw. Test animals are evaluated for paw withdrawal frequency (PWF %) in response to a 10 g Von Frey filament stimulus series (10 stimuli×3 trials) prior to recruitment into the study, after subcutaneous treatment with CPN/A but before capsaicin, and following capsaicin challenge post-injection of CPN/A (average of responses at 15' and 30'). Capsaicin challenge is achieved by injection of 10 μL of a 0.3% solution. Sample dilutions are prepared in 0.5% BSA/saline. FIG. 19 illustrates the reversal of mechanical allodynia that is achieved by pre-treatment of the animals with a range of concentrations of LC/A-nociceptin-HN/A fusion.
[0365]The ability of an LC/A-nociceptin-HN/A fusion (CPN/A) to inhibit streptozotocin (STZ)-induced mechanical (tactile) allodynia in rats is evaluated. STZ-induced mechanical allodynia in rats is achieved by injection of streptozotocin (i.p. or i.v.) which yields destruction of pancreatic β-cells leading to loss of insulin production, with concomitant metabolic stress (hyperglycemia and hyperlipidemia). As such, STZ induces Type I diabetes. In addition, STZ treatment leads to progressive development of neuropathy, which serves as a model of chronic pain with hyperalgesia and allodynia that may reflect signs observed in diabetic humans (peripheral diabetic neuropathy).
[0366]Male Sprague-Dawley rats (250-300 g) are treated with 65 mg/kg STZ in citrate buffer (I.V.) and blood glucose and lipid are measured weekly to define the readiness of the model. Paw Withdrawal Threshold (PWT) is measured in response to a Von Frey filament stimulus series over a period of time. Allodynia is said to be established when the PWT on two consecutive test dates (separated by 1 week) measures below 6 g on the scale. At this point, rats are randomized to either a saline group (negative efficacy control), gabapentin group (positive efficacy control) or a test group (CPN/A). Test materials (20-25 μl) are injected subcutaneously as a single injection (except gabapentin) and the PWT is measured at 1 day post-treatment and periodically thereafter over a 2-week period. Gabapentin (30 mg/kg i.p. @ 3 ml/kg injection volume) is injected daily, 2 hours prior to the start of PWT testing. FIG. 20 illustrates the reversal of allodynia achieved by pre-treatment of the animals with 750 ng of CPN/A. Data were obtained over a 2-week period after a single injection of CPN/A
Example 23
Assessment of In Vivo Efficacy of an LC/A-Nociceptin Variant-HN/A Fusion
[0367]The ability of an LC/A-nociceptin variant-HN/A fusion (CPNv/A) to inhibit capsaicin-induced mechanical allodynia is evaluated following subcutaneous intraplantar injection in the rat hind paw. Test animals are evaluated for paw withdrawal frequency (PWF %) in response to a 10 g Von Frey filament stimulus series (10 stimuli×3 trials) prior to recruitment into the study (Pre-Treat); after subcutaneous intraplantar treatment with CPNv/A but before capsaicin (Pre-CAP); and following capsaicin challenge post-injection of CPNv/A (average of responses at 15' and 30'; CAP). Capsaicin challenge is achieved by injection of 10 μL of a 0.3% solution. Sample dilutions are prepared in 0.5% BSA/saline.
[0368]FIG. 21 illustrates the reversal of allodynia that is achieved by pre-treatment of the animals with a range of concentrations of LC/A-nociceptin variant-HN/A fusion in comparison to the reversal achieved with the addition of LC/A-nociceptin-HN/A fusion. These data are expressed as a normalized paw withdrawal frequency differential, in which the difference between the peak response (post-capsaicin) and the baseline response (pre-capsaicin) is expressed as a percentage. With this analysis, it can be seen that CPNv/A is more potent than CPN/A since a lower dose of CPNv/A is required to achieve similar analgesic effect to that seen with CPN/A.
Example 24
Preparation of an LC/A-leu Enkephalin-HN/A Fusion Protein
[0369]Due to the small, five-amino acid, size of the leu-enkephalin ligand the LC/A-leu enkephalin-HN/A fusion is created by site directed mutagenesis [for example using Quickchange (Stratagene Inc.)] using the LC/A-nociceptin-HN/A fusion (SEQ ID13) as a template. Oligonucleotides are designed encoding the YGGFL leu-enkephalin peptide, ensuring standard E. coli codon usage is maintained and no additional restriction sites are incorporated, flanked by sequences complimentary to the linker region of the LC/A-nociceptin-HN/A fusion (SEQ ID13) either side on the nociceptin section. The SDM product is checked by sequencing and the final construct containing the LC-linker-leu enkephalin-spacer-HN ORF (SEQ ID68) for expression as a protein of the sequence illustrated in SEQ ID69. The fusion protein is termed CPLE-A. FIG. 22 illustrates the purification of CPLE-A from E. coli following the methods used in Example 9.
Example 25
Expression and Purification of an LC/A-beta-endorphin-HN/A Fusion Protein
[0370]Following the methods used in Example 9, and with the LC/A-beta-endorphin-HN/A fusion protein (termed CPBE-A) created in Example 7, the CPBE-A is purified from E. coli. FIG. 23 illustrates the purified protein as analysed by SDS-PAGE.
Example 26
Preparation of an LC/A-Nociceptin Mutant-HN/a Fusion Protein
[0371]Due to the single amino acid modification necessary to mutate the nociceptin sequence at position 1 from a Phe to a Tyr, the LC/A-nociceptin mutant-HN/A fusion is created by site directed mutagenesis [for example using Quickchange (Stratagene Inc.)] using the LC/A-nociceptin-HN/A fusion (SEQ ID13) as a template. Oligonucleotides are designed encoding tyrosine at position 1 of the nociceptin sequence, ensuring standard E. coli codon usage is maintained and no additional restriction sites are incorporated, flanked by sequences complimentary to the linker region of the LC/A-nociceptin-HN/A fusion (SEQ ID13) either side on the nociceptin section. The SDM product is checked by sequencing and the final construct containing the LC/A-nociceptin mutant-spacer-HN/A fusion ORF (SEQ ID70) for expression as a protein of the sequence illustrated in SEQ ID71. The fusion protein is termed CPOP-A. FIG. 24 illustrates the purification of CPOP-A from E. coli following the methods used in Example 9.
Example 27
Preparation and Assessment of an LC/A-Nociceptin Variant Mutant-HN/A Fusion Protein
[0372]Due to the single amino acid modification necessary to mutate the nociceptin sequence at position 1 from a Phe to a Tyr, the LC/A-nociceptin variant mutant-HN/A fusion is created by site directed mutagenesis [for example using Quickchange (Stratagene Inc.)] using the LC/A-nociceptin variant-HN/A fusion (SEQ ID25) as a template. Oligonucleotides are designed encoding tyrosine at position 1 of the nociceptin sequence, ensuring standard E. coli codon usage is maintained and no additional restriction sites are incorporated, flanked by sequences complimentary to the linker region of the LC/A-nociceptin variant-HN/A fusion (SEQ ID25) either side on the nociceptin section. The SDM product is checked by sequencing and the final construct containing the LC/A-nociceptin mutant-spacer-HN/A fusion ORF (SEQ ID72) for expression as a protein of the sequence illustrated in SEQ ID73. The fusion protein is termed CPOPv-A. FIG. 25 illustrates the purification of CPOPv-A from E. coli following the methods used in Example 9.
[0373]Using methodology described in Example 16, CPOPv-A is assessed for its ability to cleave SNAP-25 in the eDRG cell model. FIG. 26 illustrates that CPOPv-A is able to cleave SNAP-25 in the eDRG model, achieving cleavage of 50% of the maximal SNAP-25 after exposure of the cells to approximately 5.9 nM fusion for 24 h.
Example 28
Preparation of an IgA Protease-Nociceptin Variant-HN/A Fusion Protein
[0374]The IgA protease amino acid sequence was obtained from freely available database sources such as GenBank (accession number P09790). Information regarding the structure of the N. Gonorrhoeae IgA protease gene is available in the literature (Pohlner et al., Gene structure and extracellular secretion of Neisseria gonorrhoeae IgA protease, Nature, 1987, 325(6103), 458-62). Using Backtranslation tool v2.0 (Entelechon), the DNA sequence encoding the IgA protease modified for E. coli expression was determined. A BamHI recognition sequence was incorporated at the 5' end and a codon encoding a cysteine amino acid and SalI recognition sequence were incorporated at the 3' end of the IgA DNA. The DNA sequence was screened using MapDraw, (DNASTAR Inc.) for restriction enzyme cleavage sequences incorporated during the back translation. Any cleavage sequences that are found to be common to those required for cloning were removed manually from the proposed coding sequence ensuring common E. coli codon usage is maintained. E. coli codon usage was assessed Graphical Codon Usage Analyser (Geneart), and the % GC content and codon usage ratio assessed by reference to published codon usage tables. This optimised DNA sequence (SEQ ID74) containing the IgA open reading frame (ORF) is then commercially synthesized.
[0375]The IgA (SEQ ID74) is inserted into the LC-linker-nociceptin variant-spacer-HN ORF (SEQ ID25) using BamHI and SalI restriction enzymes to replace the LC with the IgA protease DNA. The final construct contains the IgA-linker-nociceptin variant-spacer-HN ORF (SEQ ID75) for expression as a protein of the sequence illustrated in SEQ ID76.
Example 29
Preparation and Assessment of a Nociceptin Targeted Endopeptidase Fusion Protein with a Removable Histidine Purification Tag
[0376]DNA was prepared that encoded a Factor Xa removable his-tag (his6), although it is clear that alternative proteases site such as Enterokinase and alternative purification tags such as longer histidine tags are also possible. Using one of a variety of reverse translation software tools [for example EditSeq best E. coli reverse translation (DNASTAR Inc.), or Backtranslation tool v2.0 (Entelechon)], the DNA sequence encoding the Factor Xa removable his-tag region is determined. Restriction sites are then incorporated into the DNA sequence and can be arranged as NheI-linker-SpeI-PstI-HN/A-XbaI-LEIEGRSGHHHHHHStop codon-HindIII (SEQ ID77). The DNA sequence is screened for restriction sequence incorporated and any additional sequences are removed manually from the remaining sequence ensuring common E. coli codon usage is maintained. E. coli codon usage is assessed by reference to software programs such as Graphical Codon Usage Analyser (Geneart), and the % GC content and codon usage ratio assessed by reference to published codon usage tables (for example GenBank Release 143, 13 Sep. 2004). This optimised DNA sequence is then commercially synthesized (for example by Entelechon, Geneart or Sigma-Genosys) and is provided in the pCR 4 vector. In order to create CPNv-A-FXa-HT (SEQ ID78, removable his-tag construct) the pCR 4 vector encoding the removable his-tag is cleaved with NheI and HindIII. The NheI-HindIII fragment is then inserted into the LC/A-CPNv-HN/A vector (SEQ ID25) that has also been cleaved by NheI and HindIII. The final construct contains the LC/A-linker-nociceptin variant-spacer-HN-FXa-Histag-HindIII ORF sequences (SEQ ID78) for expression as a protein of the sequence illustrated in SEQ ID79. FIG. 27 illustrates the purification of CPNv-A-FXa-HT from E. coli following the methods used in Example 9.
Example 30
Preparation of a Leu-Enkephalin Targeted Endopeptidase Fusion Protein Containing a Translocation Domain Derived from Diphtheria Toxin
[0377]The DNA sequence is designed by back translation of the amino acid sequence of the translocation domain of the diphtheria toxin (obtained from freely available database sources such as GenBank (accession number 1XDTT) using one of a variety of reverse translation software tools [for example EditSeq best E. coli reverse translation (DNASTAR Inc.), or Backtranslation tool v2.0 (Entelechon)]. Restriction sites are then incorporated into the DNA sequence and can be arranged as NheI-Linker-SpeI-PstI-diphtheria translocation domain-XbaI-stop codon-HindIII (SEQ ID80). PstI/XbaI recognition sequences are incorporated at the 5' and 3' ends of the translocation domain respectively of the sequence maintaining the correct reading frame. The DNA sequence is screened (using software such as MapDraw, DNASTAR Inc.) for restriction enzyme cleavage sequences incorporated during the back translation. Any cleavage sequences that are found to be common to those required by the cloning system are removed manually from the proposed coding sequence ensuring common E. coli codon usage is maintained. E. coli codon usage is assessed by reference to software programs such as Graphical Codon Usage Analyser (Geneart), and the % GC content and codon usage ratio assessed by reference to published codon usage tables (for example GenBank Release 143, 13 Sep. 2004). This optimised DNA sequence containing the diphtheria translocation domain is then commercially synthesized as NheI-Linker-SpeI-PstI-diphtheria translocation domain-XbaI-stop codon-HindIII (for example by Entelechon, Geneart or Sigma-Genosys) and is provided in the pCR 4 vector (Invitrogen). The pCR 4 vector encoding the diphtheria translocation domain is cleaved with NheI and XbaI. The NheI-XbaI fragment is then inserted into the LC/A-CPLE-HN/A vector (SEQ ID68) that has also been cleaved by NheI and XbaI. The final construct contains the LC/A-leu-enkephalin-spacer-diphtheria translocation domain ORF sequences (SEQ ID81) for expression as a protein of the sequence illustrated in SEQ ID82.
Example 31
Preparation of a Nociceptin Variant Targeted Endopeptidase Fusion Protein Containing a LC Domain Derived from Tetanus Toxin
[0378]The DNA sequence is designed by back translation of the tetanus toxin LC amino acid sequence (obtained from freely available database sources such as GenBank (accession number X04436) using one of a variety of reverse translation software tools [for example EditSeq best E. coli reverse translation (DNASTAR Inc.), or Backtranslation tool v2.0 (Entelechon)]. BamHI/SalI recognition sequences are incorporated at the 5' and 3' ends respectively of the sequence maintaining the correct reading frame (SEQ ID83). The DNA sequence is screened (using software such as MapDraw, DNASTAR Inc.) for restriction enzyme cleavage sequences incorporated during the back translation. Any cleavage sequences that are found to be common to those required by the cloning system are removed manually from the proposed coding sequence ensuring common E. coli codon usage is maintained. E. coli codon usage is assessed by reference to software programs such as Graphical Codon Usage Analyser (Geneart), and the % GC content and codon usage ratio assessed by reference to published codon usage tables (for example GenBank Release 143, 13 Sep. 2004). This optimised DNA sequence containing the tetanus toxin LC open reading frame (ORF) is then commercially synthesized (for example by Entelechon, Geneart or Sigma-Genosys) and is provided in the pCR 4 vector (invitrogen). The pCR 4 vector encoding the TeNT LC is cleaved with BamHI and SalI. The BamHI-SalI fragment is then inserted into the LC/A-CPNv-HN/A vector (SEQ ID25) that has also been cleaved by BamHI and SalI. The final construct contains the TeNT LC-linker-nociceptin variant-spacer-HN ORF sequences (SEQ ID84) for expression as a protein of the sequence illustrated in SEQ ID85.
Example 32
Preparation of an LC/C-Nociceptin Variant-HN/C Fusion Protein with a Native Serotype C Linker that is Susceptible to Factor Xa Cleavage
[0379]Following the methods used in Example 4, the LC/C (SEQ ID5) and HN/C (SEQ ID6) are created and inserted into the C serotype nociceptin variant linker arranged as BamHI-SalI-linker-nociceptin variant-NheI-spacer-SpeI-PstI-XbaI-stop codon-HindIII (SEQ ID86). The final construct contains the LC-linker-nociceptin variant-spacer-HN ORF sequences (SEQ ID87) for expression as a protein of the sequence illustrated in SEQ ID88. The fusion protein is termed CPNv-C (act. C).
Sequence CWU
1
SEQUENCE LISTING
<160> NUMBER OF SEQ ID NOS: 88
<210> SEQ ID NO 1
<211> LENGTH: 1302
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 1
ggatccatgg agttcgttaa caaacagttc aactataaag acccagttaa cggtgttgac 60
attgcttaca tcaaaatccc gaacgctggc cagatgcagc cggtaaaggc attcaaaatc 120
cacaacaaaa tctgggttat cccggaacgt gataccttta ctaacccgga agaaggtgac 180
ctgaacccgc caccggaagc gaaacaggtg ccggtatctt actatgactc cacctacctg 240
tctaccgata acgaaaagga caactacctg aaaggtgtta ctaaactgtt cgagcgtatt 300
tactccaccg acctgggccg tatgctgctg actagcatcg ttcgcggtat cccgttctgg 360
ggcggttcta ccatcgatac cgaactgaaa gtaatcgaca ctaactgcat caacgttatt 420
cagccggacg gttcctatcg ttccgaagaa ctgaacctgg tgatcatcgg cccgtctgct 480
gatatcatcc agttcgagtg taagagcttt ggtcacgaag ttctgaacct cacccgtaac 540
ggctacggtt ccactcagta catccgtttc tctccggact tcaccttcgg ttttgaagaa 600
tccctggaag tagacacgaa cccactgctg ggcgctggta aattcgcaac tgatcctgcg 660
gttaccctgg ctcacgaact gattcatgca ggccaccgcc tgtacggtat cgccatcaat 720
ccgaaccgtg tcttcaaagt taacaccaac gcgtattacg agatgtccgg tctggaagtt 780
agcttcgaag aactgcgtac ttttggcggt cacgacgcta aattcatcga ctctctgcaa 840
gaaaacgagt tccgtctgta ctactataac aagttcaaag atatcgcatc caccctgaac 900
aaagcgaaat ccatcgtggg taccactgct tctctccagt acatgaagaa cgtttttaaa 960
gaaaaatacc tgctcagcga agacacctcc ggcaaattct ctgtagacaa gttgaaattc 1020
gataaacttt acaaaatgct gactgaaatt tacaccgaag acaacttcgt taagttcttt 1080
aaagttctga accgcaaaac ctatctgaac ttcgacaagg cagtattcaa aatcaacatc 1140
gtgccgaaag ttaactacac tatctacgat ggtttcaacc tgcgtaacac caacctggct 1200
gctaatttta acggccagaa cacggaaatc aacaacatga acttcacaaa actgaaaaac 1260
ttcactggtc tgttcgagtt ttacaagctg ctgtgcgtcg ac 1302
<210> SEQ ID NO 2
<211> LENGTH: 1257
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 2
ctgcagtgta tcaaggttaa caactgggat ttattcttca gcccgagtga agacaacttc 60
accaacgacc tgaacaaagg tgaagaaatc acctcagata ctaacatcga agcagccgaa 120
gaaaacatct cgctggacct gatccagcag tactacctga cctttaattt cgacaacgag 180
ccggaaaaca tttctatcga aaacctgagc tctgatatca tcggccagct ggaactgatg 240
ccgaacatcg aacgtttccc aaacggtaaa aagtacgagc tggacaaata taccatgttc 300
cactacctgc gcgcgcagga atttgaacac ggcaaatccc gtatcgcact gactaactcc 360
gttaacgaag ctctgctcaa cccgtcccgt gtatacacct tcttctctag cgactacgtg 420
aaaaaggtca acaaagcgac tgaagctgca atgttcttgg gttgggttga acagcttgtt 480
tatgatttta ccgacgagac gtccgaagta tctactaccg acaaaattgc ggatatcact 540
atcatcatcc cgtacatcgg tccggctctg aacattggca acatgctgta caaagacgac 600
ttcgttggcg cactgatctt ctccggtgcg gtgatcctgc tggagttcat cccggaaatc 660
gccatcccgg tactgggcac ctttgctctg gtttcttaca ttgcaaacaa ggttctgact 720
gtacaaacca tcgacaacgc gctgagcaaa cgtaacgaaa aatgggatga agtttacaaa 780
tatatcgtga ccaactggct ggctaaggtt aatactcaga tcgacctcat ccgcaaaaaa 840
atgaaagaag cactggaaaa ccaggcggaa gctaccaagg caatcattaa ctaccagtac 900
aaccagtaca ccgaggaaga aaaaaacaac atcaacttca acatcgacga tctgtcctct 960
aaactgaacg aatccatcaa caaagctatg atcaacatca acaagttcct gaaccagtgc 1020
tctgtaagct atctgatgaa ctccatgatc ccgtacggtg ttaaacgtct ggaggacttc 1080
gatgcgtctc tgaaagacgc cctgctgaaa tacatttacg acaaccgtgg cactctgatc 1140
ggtcaggttg atcgtctgaa ggacaaagtg aacaatacct tatcgaccga catccctttt 1200
cagctcagta aatatgtcga taaccaacgc cttttgtcca ctctagacta gaagctt 1257
<210> SEQ ID NO 3
<211> LENGTH: 1323
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 3
ggatccatgc cggttaccat caacaacttc aactacaacg acccgatcga caacaacaac 60
atcattatga tggaaccgcc gttcgcacgt ggtaccggac gttactacaa ggcttttaag 120
atcaccgacc gtatctggat catcccggaa cgttacacct tcggttacaa acctgaggac 180
ttcaacaaga gtagcgggat tttcaatcgt gacgtctgcg agtactatga tccagattat 240
ctgaatacca acgataagaa gaacatattc cttcagacta tgattaaact cttcaaccgt 300
atcaaaagca aaccgctcgg tgaaaaactc ctcgaaatga ttatcaacgg tatcccgtac 360
ctcggtgacc gtcgtgtccc gcttgaagag ttcaacacca acatcgcaag cgtcaccgtc 420
aacaaactca tcagcaaccc aggtgaagtc gaacgtaaaa aaggtatctt cgcaaacctc 480
atcatcttcg gtccgggtcc ggtcctcaac gaaaacgaaa ccatcgacat cggtatccag 540
aaccacttcg caagccgtga aggtttcggt ggtatcatgc agatgaaatt ctgcccggaa 600
tacgtcagtg tcttcaacaa cgtccaggaa aacaaaggtg caagcatctt caaccgtcgt 660
ggttacttca gcgacccggc actcatcctc atgcatgaac tcatccacgt cctccacggt 720
ctctacggta tcaaagttga cgacctcccg atcgtcccga acgagaagaa attcttcatg 780
cagagcaccg acgcaatcca ggctgaggaa ctctacacct tcggtggcca agacccaagt 840
atcataaccc cgtccaccga caaaagcatc tacgacaaag tcctccagaa cttcaggggt 900
atcgtggaca gactcaacaa agtcctcgtc tgcatcagcg acccgaacat caatatcaac 960
atatacaaga acaagttcaa agacaagtac aaattcgtcg aggacagcga aggcaaatac 1020
agcatcgacg tagaaagttt cgacaagctc tacaaaagcc tcatgttcgg tttcaccgaa 1080
accaacatcg ccgagaacta caagatcaag acaagggcaa gttacttcag cgacagcctc 1140
ccgcctgtca aaatcaagaa cctcttagac aacgagattt acacaattga agagggcttc 1200
aacatcagtg acaaagacat ggagaaggaa tacagaggtc agaacaaggc tatcaacaaa 1260
caggcatacg aggagatcag caaagaacac ctcgcagtct acaagatcca gatgtgcgtc 1320
gac 1323
<210> SEQ ID NO 4
<211> LENGTH: 1260
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 4
ctgcagtgca tcgacgttga caacgaagac ctgttcttca tcgctgacaa aaacagcttc 60
agtgacgacc tgagcaaaaa cgaacgtatc gaatacaaca cccagagcaa ctacatcgaa 120
aacgacttcc cgatcaacga actgatcctg gacaccgacc tgataagtaa aatcgaactg 180
ccgagcgaaa acaccgaaag tctgaccgac ttcaacgttg acgttccggt ttacgaaaaa 240
cagccggcta tcaagaaaat cttcaccgac gaaaacacca tcttccagta cctgtacagc 300
cagaccttcc cgctggacat ccgtgacatc agtctgacca gcagtttcga cgacgctctg 360
ctgttcagca acaaagttta cagtttcttc agcatggact acatcaaaac cgctaacaaa 420
gttgttgaag cagggctgtt cgctggttgg gttaaacaga tcgttaacga cttcgttatc 480
gaagctaaca aaagcaacac tatggacaaa atcgctgaca tcagtctgat cgttccgtac 540
atcggtctgg ctctgaacgt tggtaacgaa accgctaaag gtaactttga aaacgctttc 600
gagatcgctg gtgcaagcat cctgctggag ttcatcccgg aactgctgat cccggttgtt 660
ggtgctttcc tgctggaaag ttacatcgac aacaaaaaca agatcatcaa aaccatcgac 720
aacgctctga ccaaacgtaa cgaaaaatgg agtgatatgt acggtctgat cgttgctcag 780
tggctgagca ccgtcaacac ccagttctac accatcaaag aaggtatgta caaagctctg 840
aactaccagg ctcaggctct ggaagagatc atcaaatacc gttacaacat ctacagtgag 900
aaggaaaaga gtaacatcaa catcgacttc aacgacatca acagcaaact gaacgaaggt 960
atcaaccagg ctatcgacaa catcaacaac ttcatcaacg gttgcagtgt tagctacctg 1020
atgaagaaga tgatcccgct ggctgttgaa aaactgctgg acttcgacaa caccctgaaa 1080
aagaacctgc tgaactacat cgacgaaaac aagctgtacc tgatcggtag tgctgaatac 1140
gaaaaaagta aagtgaacaa atacctgaag accatcatgc cgttcgacct gagtatctac 1200
accaacgaca ccatcctgat cgaaatgttc aacaaataca actctctaga ctagaagctt 1260
<210> SEQ ID NO 5
<211> LENGTH: 1329
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 5
ggatccgaat tcatgccgat caccatcaac aacttcaact acagcgatcc ggtggataac 60
aaaaacatcc tgtacctgga tacccatctg aataccctgg cgaacgaacc ggaaaaagcg 120
tttcgtatca ccggcaacat ttgggttatt ccggatcgtt ttagccgtaa cagcaacccg 180
aatctgaata aaccgccgcg tgttaccagc ccgaaaagcg gttattacga tccgaactat 240
ctgagcaccg atagcgataa agataccttc ctgaaagaaa tcatcaaact gttcaaacgc 300
atcaacagcc gtgaaattgg cgaagaactg atctatcgcc tgagcaccga tattccgttt 360
ccgggcaaca acaacacccc gatcaacacc tttgatttcg atgtggattt caacagcgtt 420
gatgttaaaa cccgccaggg taacaattgg gtgaaaaccg gcagcattaa cccgagcgtg 480
attattaccg gtccgcgcga aaacattatt gatccggaaa ccagcacctt taaactgacc 540
aacaacacct ttgcggcgca ggaaggtttt ggcgcgctga gcattattag cattagcccg 600
cgctttatgc tgacctatag caacgcgacc aacgatgttg gtgaaggccg tttcagcaaa 660
agcgaatttt gcatggaccc gatcctgatc ctgatgcatg aactgaacca tgcgatgcat 720
aacctgtatg gcatcgcgat tccgaacgat cagaccatta gcagcgtgac cagcaacatc 780
ttttacagcc agtacaacgt gaaactggaa tatgcggaaa tctatgcgtt tggcggtccg 840
accattgatc tgattccgaa aagcgcgcgc aaatacttcg aagaaaaagc gctggattac 900
tatcgcagca ttgcgaaacg tctgaacagc attaccaccg cgaatccgag cagcttcaac 960
aaatatatcg gcgaatataa acagaaactg atccgcaaat atcgctttgt ggtggaaagc 1020
agcggcgaag ttaccgttaa ccgcaataaa ttcgtggaac tgtacaacga actgacccag 1080
atcttcaccg aatttaacta tgcgaaaatc tataacgtgc agaaccgtaa aatctacctg 1140
agcaacgtgt ataccccggt gaccgcgaat attctggatg ataacgtgta cgatatccag 1200
aacggcttta acatcccgaa aagcaacctg aacgttctgt ttatgggcca gaacctgagc 1260
cgtaatccgg cgctgcgtaa agtgaacccg gaaaacatgc tgtacctgtt caccaaattt 1320
tgcgtcgac 1329
<210> SEQ ID NO 6
<211> LENGTH: 1263
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 6
ctgcagtgtc gtgaactgct ggtgaaaaac accgatctgc cgtttattgg cgatatcagc 60
gatgtgaaaa ccgatatctt cctgcgcaaa gatatcaacg aagaaaccga agtgatctac 120
tacccggata acgtgagcgt tgatcaggtg atcctgagca aaaacaccag cgaacatggt 180
cagctggatc tgctgtatcc gagcattgat agcgaaagcg aaattctgcc gggcgaaaac 240
caggtgtttt acgataaccg tacccagaac gtggattacc tgaacagcta ttactacctg 300
gaaagccaga aactgagcga taacgtggaa gattttacct ttacccgcag cattgaagaa 360
gcgctggata acagcgcgaa agtttacacc tattttccga ccctggcgaa caaagttaat 420
gcgggtgttc agggcggtct gtttctgatg tgggcgaacg atgtggtgga agatttcacc 480
accaacatcc tgcgtaaaga taccctggat aaaatcagcg atgttagcgc gattattccg 540
tatattggtc cggcgctgaa cattagcaat agcgtgcgtc gtggcaattt taccgaagcg 600
tttgcggtta ccggtgtgac cattctgctg gaagcgtttc cggaatttac cattccggcg 660
ctgggtgcgt ttgtgatcta tagcaaagtg caggaacgca acgaaatcat caaaaccatc 720
gataactgcc tggaacagcg tattaaacgc tggaaagata gctatgaatg gatgatgggc 780
acctggctga gccgtattat cacccagttc aacaacatca gctaccagat gtacgatagc 840
ctgaactatc aggcgggtgc gattaaagcg aaaatcgatc tggaatacaa aaaatacagc 900
ggcagcgata aagaaaacat caaaagccag gttgaaaacc tgaaaaacag cctggatgtg 960
aaaattagcg aagcgatgaa taacatcaac aaattcatcc gcgaatgcag cgtgacctac 1020
ctgttcaaaa acatgctgcc gaaagtgatc gatgaactga acgaatttga tcgcaacacc 1080
aaagcgaaac tgatcaacct gatcgatagc cacaacatta ttctggtggg cgaagtggat 1140
aaactgaaag cgaaagttaa caacagcttc cagaacacca tcccgtttaa catcttcagc 1200
tataccaaca acagcctgct gaaagatatc atcaacgaat acttcaatct agactagaag 1260
ctt 1263
<210> SEQ ID NO 7
<211> LENGTH: 207
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 7
ggatccacgc acgtcgacgg catcattacc tccaaaacta aatctctgat cgaaggtcgt 60
tttggcggtt tcacgggcgc acgcaaatca gcgcgtaaat tagctaacca ggcgctagcg 120
ggcggtggcg gtagcggcgg tggcggtagc ggcggtggcg gtagcgcact agtgctgcag 180
acgcacggtc tagaatgata aaagctt 207
<210> SEQ ID NO 8
<211> LENGTH: 108
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 8
ggatccacgc acgtcgacgg catcattacc tccaaaacta aatctctgat agaaggtaga 60
aacaaagcgc tgaacctgca gacgcacggt ctagaatgat aaaagctt 108
<210> SEQ ID NO 9
<211> LENGTH: 186
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 9
catatgaata acctcgggat tgagggtcgt tttggcggtt tcacgggcgc acgcaaatca 60
gcgcgtaaat tagctaacca gactagtggc ggtgggggta gtggcggtgg cggttcgggc 120
gggggtggga gccctagggg atccgtcgac ctgcagggtc tagaagcgct agcgtgataa 180
aagctt 186
<210> SEQ ID NO 10
<211> LENGTH: 180
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 10
ggatccacgc acgtcgacgc gattgatggt cgttttggcg gtttcacggg cgcacgcaaa 60
tcagcgcgta aattagctaa ccaggcgcta gcgggcggtg gcggtagcgg cggtggcggt 120
agcggcggtg gcggtagcgc actagtgctg cagacgcacg gtctagaatg ataaaagctt 180
<210> SEQ ID NO 11
<211> LENGTH: 249
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 11
ggatccacgc acgtcgacgg catcattacc tccaaaacta aatctctgat cgaaggtcgt 60
tacggtggtt tcatgacctc tgaaaaatct cagaccccgc tggttaccct gttcaaaaac 120
gctatcatca aaaacgctta caaaaaaggt gaagcgctag cgggtggtgg tggttctggt 180
ggtggtggtt ctggtggtgg tggttctgca ctagtgctgc agacgcacgg tctagaatga 240
taaaagctt 249
<210> SEQ ID NO 12
<211> LENGTH: 207
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 12
ggatccacgc acgtcgacgg catcattacc tccaaaacta aatctctgat cgaaggtcgt 60
tttggcggtt tcacgggcgc acgcaaatca gcgcgtaaac gtaagaacca ggcgctagcg 120
ggcggtggcg gtagcggcgg tggcggtagc ggcggtggcg gtagcgcact agtgctgcag 180
acgcacggtc tagaatgata aaagctt 207
<210> SEQ ID NO 13
<211> LENGTH: 2709
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 13
ggatccatgg agttcgttaa caaacagttc aactataaag acccagttaa cggtgttgac 60
attgcttaca tcaaaatccc gaacgctggc cagatgcagc cggtaaaggc attcaaaatc 120
cacaacaaaa tctgggttat cccggaacgt gataccttta ctaacccgga agaaggtgac 180
ctgaacccgc caccggaagc gaaacaggtg ccggtatctt actatgactc cacctacctg 240
tctaccgata acgaaaagga caactacctg aaaggtgtta ctaaactgtt cgagcgtatt 300
tactccaccg acctgggccg tatgctgctg actagcatcg ttcgcggtat cccgttctgg 360
ggcggttcta ccatcgatac cgaactgaaa gtaatcgaca ctaactgcat caacgttatt 420
cagccggacg gttcctatcg ttccgaagaa ctgaacctgg tgatcatcgg cccgtctgct 480
gatatcatcc agttcgagtg taagagcttt ggtcacgaag ttctgaacct cacccgtaac 540
ggctacggtt ccactcagta catccgtttc tctccggact tcaccttcgg ttttgaagaa 600
tccctggaag tagacacgaa cccactgctg ggcgctggta aattcgcaac tgatcctgcg 660
gttaccctgg ctcacgaact gattcatgca ggccaccgcc tgtacggtat cgccatcaat 720
ccgaaccgtg tcttcaaagt taacaccaac gcgtattacg agatgtccgg tctggaagtt 780
agcttcgaag aactgcgtac ttttggcggt cacgacgcta aattcatcga ctctctgcaa 840
gaaaacgagt tccgtctgta ctactataac aagttcaaag atatcgcatc caccctgaac 900
aaagcgaaat ccatcgtggg taccactgct tctctccagt acatgaagaa cgtttttaaa 960
gaaaaatacc tgctcagcga agacacctcc ggcaaattct ctgtagacaa gttgaaattc 1020
gataaacttt acaaaatgct gactgaaatt tacaccgaag acaacttcgt taagttcttt 1080
aaagttctga accgcaaaac ctatctgaac ttcgacaagg cagtattcaa aatcaacatc 1140
gtgccgaaag ttaactacac tatctacgat ggtttcaacc tgcgtaacac caacctggct 1200
gctaatttta acggccagaa cacggaaatc aacaacatga acttcacaaa actgaaaaac 1260
ttcactggtc tgttcgagtt ttacaagctg ctgtgcgtcg acggcatcat tacctccaaa 1320
actaaatctc tgatagaagg tagatttggc ggtttcacgg gcgcacgcaa atcagcgcgt 1380
aaattagcta accaggcgct agcgggcggt ggcggtagcg gcggtggcgg tagcggcggt 1440
ggcggtagcg cactagtgct gcagtgtatc aaggttaaca actgggattt attcttcagc 1500
ccgagtgaag acaacttcac caacgacctg aacaaaggtg aagaaatcac ctcagatact 1560
aacatcgaag cagccgaaga aaacatctcg ctggacctga tccagcagta ctacctgacc 1620
tttaatttcg acaacgagcc ggaaaacatt tctatcgaaa acctgagctc tgatatcatc 1680
ggccagctgg aactgatgcc gaacatcgaa cgtttcccaa acggtaaaaa gtacgagctg 1740
gacaaatata ccatgttcca ctacctgcgc gcgcaggaat ttgaacacgg caaatcccgt 1800
atcgcactga ctaactccgt taacgaagct ctgctcaacc cgtcccgtgt atacaccttc 1860
ttctctagcg actacgtgaa aaaggtcaac aaagcgactg aagctgcaat gttcttgggt 1920
tgggttgaac agcttgttta tgattttacc gacgagacgt ccgaagtatc tactaccgac 1980
aaaattgcgg atatcactat catcatcccg tacatcggtc cggctctgaa cattggcaac 2040
atgctgtaca aagacgactt cgttggcgca ctgatcttct ccggtgcggt gatcctgctg 2100
gagttcatcc cggaaatcgc catcccggta ctgggcacct ttgctctggt ttcttacatt 2160
gcaaacaagg ttctgactgt acaaaccatc gacaacgcgc tgagcaaacg taacgaaaaa 2220
tgggatgaag tttacaaata tatcgtgacc aactggctgg ctaaggttaa tactcagatc 2280
gacctcatcc gcaaaaaaat gaaagaagca ctggaaaacc aggcggaagc taccaaggca 2340
atcattaact accagtacaa ccagtacacc gaggaagaaa aaaacaacat caacttcaac 2400
atcgacgatc tgtcctctaa actgaacgaa tccatcaaca aagctatgat caacatcaac 2460
aagttcctga accagtgctc tgtaagctat ctgatgaact ccatgatccc gtacggtgtt 2520
aaacgtctgg aggacttcga tgcgtctctg aaagacgccc tgctgaaata catttacgac 2580
aaccgtggca ctctgatcgg tcaggttgat cgtctgaagg acaaagtgaa caatacctta 2640
tcgaccgaca tcccttttca gctcagtaaa tatgtcgata accaacgcct tttgtccact 2700
ctagactag 2709
<210> SEQ ID NO 14
<211> LENGTH: 902
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 14
Gly Ser Met Glu Phe Val Asn Lys Gln Phe Asn Tyr Lys Asp Pro Val
1 5 10 15
Asn Gly Val Asp Ile Ala Tyr Ile Lys Ile Pro Asn Ala Gly Gln Met
20 25 30
Gln Pro Val Lys Ala Phe Lys Ile His Asn Lys Ile Trp Val Ile Pro
35 40 45
Glu Arg Asp Thr Phe Thr Asn Pro Glu Glu Gly Asp Leu Asn Pro Pro
50 55 60
Pro Glu Ala Lys Gln Val Pro Val Ser Tyr Tyr Asp Ser Thr Tyr Leu
65 70 75 80
Ser Thr Asp Asn Glu Lys Asp Asn Tyr Leu Lys Gly Val Thr Lys Leu
85 90 95
Phe Glu Arg Ile Tyr Ser Thr Asp Leu Gly Arg Met Leu Leu Thr Ser
100 105 110
Ile Val Arg Gly Ile Pro Phe Trp Gly Gly Ser Thr Ile Asp Thr Glu
115 120 125
Leu Lys Val Ile Asp Thr Asn Cys Ile Asn Val Ile Gln Pro Asp Gly
130 135 140
Ser Tyr Arg Ser Glu Glu Leu Asn Leu Val Ile Ile Gly Pro Ser Ala
145 150 155 160
Asp Ile Ile Gln Phe Glu Cys Lys Ser Phe Gly His Glu Val Leu Asn
165 170 175
Leu Thr Arg Asn Gly Tyr Gly Ser Thr Gln Tyr Ile Arg Phe Ser Pro
180 185 190
Asp Phe Thr Phe Gly Phe Glu Glu Ser Leu Glu Val Asp Thr Asn Pro
195 200 205
Leu Leu Gly Ala Gly Lys Phe Ala Thr Asp Pro Ala Val Thr Leu Ala
210 215 220
His Glu Leu Ile His Ala Gly His Arg Leu Tyr Gly Ile Ala Ile Asn
225 230 235 240
Pro Asn Arg Val Phe Lys Val Asn Thr Asn Ala Tyr Tyr Glu Met Ser
245 250 255
Gly Leu Glu Val Ser Phe Glu Glu Leu Arg Thr Phe Gly Gly His Asp
260 265 270
Ala Lys Phe Ile Asp Ser Leu Gln Glu Asn Glu Phe Arg Leu Tyr Tyr
275 280 285
Tyr Asn Lys Phe Lys Asp Ile Ala Ser Thr Leu Asn Lys Ala Lys Ser
290 295 300
Ile Val Gly Thr Thr Ala Ser Leu Gln Tyr Met Lys Asn Val Phe Lys
305 310 315 320
Glu Lys Tyr Leu Leu Ser Glu Asp Thr Ser Gly Lys Phe Ser Val Asp
325 330 335
Lys Leu Lys Phe Asp Lys Leu Tyr Lys Met Leu Thr Glu Ile Tyr Thr
340 345 350
Glu Asp Asn Phe Val Lys Phe Phe Lys Val Leu Asn Arg Lys Thr Tyr
355 360 365
Leu Asn Phe Asp Lys Ala Val Phe Lys Ile Asn Ile Val Pro Lys Val
370 375 380
Asn Tyr Thr Ile Tyr Asp Gly Phe Asn Leu Arg Asn Thr Asn Leu Ala
385 390 395 400
Ala Asn Phe Asn Gly Gln Asn Thr Glu Ile Asn Asn Met Asn Phe Thr
405 410 415
Lys Leu Lys Asn Phe Thr Gly Leu Phe Glu Phe Tyr Lys Leu Leu Cys
420 425 430
Val Asp Gly Ile Ile Thr Ser Lys Thr Lys Ser Leu Ile Glu Gly Arg
435 440 445
Phe Gly Gly Phe Thr Gly Ala Arg Lys Ser Ala Arg Lys Leu Ala Asn
450 455 460
Gln Ala Leu Ala Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly
465 470 475 480
Gly Gly Ser Ala Leu Val Leu Gln Cys Ile Lys Val Asn Asn Trp Asp
485 490 495
Leu Phe Phe Ser Pro Ser Glu Asp Asn Phe Thr Asn Asp Leu Asn Lys
500 505 510
Gly Glu Glu Ile Thr Ser Asp Thr Asn Ile Glu Ala Ala Glu Glu Asn
515 520 525
Ile Ser Leu Asp Leu Ile Gln Gln Tyr Tyr Leu Thr Phe Asn Phe Asp
530 535 540
Asn Glu Pro Glu Asn Ile Ser Ile Glu Asn Leu Ser Ser Asp Ile Ile
545 550 555 560
Gly Gln Leu Glu Leu Met Pro Asn Ile Glu Arg Phe Pro Asn Gly Lys
565 570 575
Lys Tyr Glu Leu Asp Lys Tyr Thr Met Phe His Tyr Leu Arg Ala Gln
580 585 590
Glu Phe Glu His Gly Lys Ser Arg Ile Ala Leu Thr Asn Ser Val Asn
595 600 605
Glu Ala Leu Leu Asn Pro Ser Arg Val Tyr Thr Phe Phe Ser Ser Asp
610 615 620
Tyr Val Lys Lys Val Asn Lys Ala Thr Glu Ala Ala Met Phe Leu Gly
625 630 635 640
Trp Val Glu Gln Leu Val Tyr Asp Phe Thr Asp Glu Thr Ser Glu Val
645 650 655
Ser Thr Thr Asp Lys Ile Ala Asp Ile Thr Ile Ile Ile Pro Tyr Ile
660 665 670
Gly Pro Ala Leu Asn Ile Gly Asn Met Leu Tyr Lys Asp Asp Phe Val
675 680 685
Gly Ala Leu Ile Phe Ser Gly Ala Val Ile Leu Leu Glu Phe Ile Pro
690 695 700
Glu Ile Ala Ile Pro Val Leu Gly Thr Phe Ala Leu Val Ser Tyr Ile
705 710 715 720
Ala Asn Lys Val Leu Thr Val Gln Thr Ile Asp Asn Ala Leu Ser Lys
725 730 735
Arg Asn Glu Lys Trp Asp Glu Val Tyr Lys Tyr Ile Val Thr Asn Trp
740 745 750
Leu Ala Lys Val Asn Thr Gln Ile Asp Leu Ile Arg Lys Lys Met Lys
755 760 765
Glu Ala Leu Glu Asn Gln Ala Glu Ala Thr Lys Ala Ile Ile Asn Tyr
770 775 780
Gln Tyr Asn Gln Tyr Thr Glu Glu Glu Lys Asn Asn Ile Asn Phe Asn
785 790 795 800
Ile Asp Asp Leu Ser Ser Lys Leu Asn Glu Ser Ile Asn Lys Ala Met
805 810 815
Ile Asn Ile Asn Lys Phe Leu Asn Gln Cys Ser Val Ser Tyr Leu Met
820 825 830
Asn Ser Met Ile Pro Tyr Gly Val Lys Arg Leu Glu Asp Phe Asp Ala
835 840 845
Ser Leu Lys Asp Ala Leu Leu Lys Tyr Ile Tyr Asp Asn Arg Gly Thr
850 855 860
Leu Ile Gly Gln Val Asp Arg Leu Lys Asp Lys Val Asn Asn Thr Leu
865 870 875 880
Ser Thr Asp Ile Pro Phe Gln Leu Ser Lys Tyr Val Asp Asn Gln Arg
885 890 895
Leu Leu Ser Thr Leu Asp
900
<210> SEQ ID NO 15
<211> LENGTH: 2736
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 15
ctcgggattg agggtcgttt tggcggtttc acgggcgcac gcaaatcagc gcgtaaatta 60
gctaaccaga ctagtggcgg tgggggtagt ggcggtggcg gttcgggcgg gggtgggagc 120
cctaggggat ccatggagtt cgttaacaaa cagttcaact ataaagaccc agttaacggt 180
gttgacattg cttacatcaa aatcccgaac gctggccaga tgcagccggt aaaggcattc 240
aaaatccaca acaaaatctg ggttatcccg gaacgtgata cctttactaa cccggaagaa 300
ggtgacctga acccgccacc ggaagcgaaa caggtgccgg tatcttacta tgactccacc 360
tacctgtcta ccgataacga aaaggacaac tacctgaaag gtgttactaa actgttcgag 420
cgtatttact ccaccgacct gggccgtatg ctgctgacta gcatcgttcg cggtatcccg 480
ttctggggcg gttctaccat cgataccgaa ctgaaagtaa tcgacactaa ctgcatcaac 540
gttattcagc cggacggttc ctatcgttcc gaagaactga acctggtgat catcggcccg 600
tctgctgata tcatccagtt cgagtgtaag agctttggtc acgaagttct gaacctcacc 660
cgtaacggct acggttccac tcagtacatc cgtttctctc cggacttcac cttcggtttt 720
gaagaatccc tggaagtaga cacgaaccca ctgctgggcg ctggtaaatt cgcaactgat 780
cctgcggtta ccctggctca cgaactgatt catgcaggcc accgcctgta cggtatcgcc 840
atcaatccga accgtgtctt caaagttaac accaacgcgt attacgagat gtccggtctg 900
gaagttagct tcgaagaact gcgtactttt ggcggtcacg acgctaaatt catcgactct 960
ctgcaagaaa acgagttccg tctgtactac tataacaagt tcaaagatat cgcatccacc 1020
ctgaacaaag cgaaatccat cgtgggtacc actgcttctc tccagtacat gaagaacgtt 1080
tttaaagaaa aatacctgct cagcgaagac acctccggca aattctctgt agacaagttg 1140
aaattcgata aactttacaa aatgctgact gaaatttaca ccgaagacaa cttcgttaag 1200
ttctttaaag ttctgaaccg caaaacctat ctgaacttcg acaaggcagt attcaaaatc 1260
aacatcgtgc cgaaagttaa ctacactatc tacgatggtt tcaacctgcg taacaccaac 1320
ctggctgcta attttaacgg ccagaacacg gaaatcaaca acatgaactt cacaaaactg 1380
aaaaacttca ctggtctgtt cgagttttac aagctgctgt gcgtcgacgg catcattacc 1440
tccaaaacta aatctctgat agaaggtaga aacaaagcgc tgaacgacct ctgtatcaag 1500
gttaacaact gggatttatt cttcagcccg agtgaagaca acttcaccaa cgacctgaac 1560
aaaggtgaag aaatcacctc agatactaac atcgaagcag ccgaagaaaa catctcgctg 1620
gacctgatcc agcagtacta cctgaccttt aatttcgaca acgagccgga aaacatttct 1680
atcgaaaacc tgagctctga tatcatcggc cagctggaac tgatgccgaa catcgaacgt 1740
ttcccaaacg gtaaaaagta cgagctggac aaatatacca tgttccacta cctgcgcgcg 1800
caggaatttg aacacggcaa atcccgtatc gcactgacta actccgttaa cgaagctctg 1860
ctcaacccgt cccgtgtata caccttcttc tctagcgact acgtgaaaaa ggtcaacaaa 1920
gcgactgaag ctgcaatgtt cttgggttgg gttgaacagc ttgtttatga ttttaccgac 1980
gagacgtccg aagtatctac taccgacaaa attgcggata tcactatcat catcccgtac 2040
atcggtccgg ctctgaacat tggcaacatg ctgtacaaag acgacttcgt tggcgcactg 2100
atcttctccg gtgcggtgat cctgctggag ttcatcccgg aaatcgccat cccggtactg 2160
ggcacctttg ctctggtttc ttacattgca aacaaggttc tgactgtaca aaccatcgac 2220
aacgcgctga gcaaacgtaa cgaaaaatgg gatgaagttt acaaatatat cgtgaccaac 2280
tggctggcta aggttaatac tcagatcgac ctcatccgca aaaaaatgaa agaagcactg 2340
gaaaaccagg cggaagctac caaggcaatc attaactacc agtacaacca gtacaccgag 2400
gaagaaaaaa acaacatcaa cttcaacatc gacgatctgt cctctaaact gaacgaatcc 2460
atcaacaaag ctatgatcaa catcaacaag ttcctgaacc agtgctctgt aagctatctg 2520
atgaactcca tgatcccgta cggtgttaaa cgtctggagg acttcgatgc gtctctgaaa 2580
gacgccctgc tgaaatacat ttacgacaac cgtggcactc tgatcggtca ggttgatcgt 2640
ctgaaggaca aagtgaacaa taccttatcg accgacatcc cttttcagct cagtaaatat 2700
gtcgataacc aacgcctttt gtccactcta gactag 2736
<210> SEQ ID NO 16
<211> LENGTH: 911
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 16
Leu Gly Ile Glu Gly Arg Phe Gly Gly Phe Thr Gly Ala Arg Lys Ser
1 5 10 15
Ala Arg Lys Leu Ala Asn Gln Thr Ser Gly Gly Gly Gly Ser Gly Gly
20 25 30
Gly Gly Ser Gly Gly Gly Gly Ser Pro Arg Gly Ser Met Glu Phe Val
35 40 45
Asn Lys Gln Phe Asn Tyr Lys Asp Pro Val Asn Gly Val Asp Ile Ala
50 55 60
Tyr Ile Lys Ile Pro Asn Ala Gly Gln Met Gln Pro Val Lys Ala Phe
65 70 75 80
Lys Ile His Asn Lys Ile Trp Val Ile Pro Glu Arg Asp Thr Phe Thr
85 90 95
Asn Pro Glu Glu Gly Asp Leu Asn Pro Pro Pro Glu Ala Lys Gln Val
100 105 110
Pro Val Ser Tyr Tyr Asp Ser Thr Tyr Leu Ser Thr Asp Asn Glu Lys
115 120 125
Asp Asn Tyr Leu Lys Gly Val Thr Lys Leu Phe Glu Arg Ile Tyr Ser
130 135 140
Thr Asp Leu Gly Arg Met Leu Leu Thr Ser Ile Val Arg Gly Ile Pro
145 150 155 160
Phe Trp Gly Gly Ser Thr Ile Asp Thr Glu Leu Lys Val Ile Asp Thr
165 170 175
Asn Cys Ile Asn Val Ile Gln Pro Asp Gly Ser Tyr Arg Ser Glu Glu
180 185 190
Leu Asn Leu Val Ile Ile Gly Pro Ser Ala Asp Ile Ile Gln Phe Glu
195 200 205
Cys Lys Ser Phe Gly His Glu Val Leu Asn Leu Thr Arg Asn Gly Tyr
210 215 220
Gly Ser Thr Gln Tyr Ile Arg Phe Ser Pro Asp Phe Thr Phe Gly Phe
225 230 235 240
Glu Glu Ser Leu Glu Val Asp Thr Asn Pro Leu Leu Gly Ala Gly Lys
245 250 255
Phe Ala Thr Asp Pro Ala Val Thr Leu Ala His Glu Leu Ile His Ala
260 265 270
Gly His Arg Leu Tyr Gly Ile Ala Ile Asn Pro Asn Arg Val Phe Lys
275 280 285
Val Asn Thr Asn Ala Tyr Tyr Glu Met Ser Gly Leu Glu Val Ser Phe
290 295 300
Glu Glu Leu Arg Thr Phe Gly Gly His Asp Ala Lys Phe Ile Asp Ser
305 310 315 320
Leu Gln Glu Asn Glu Phe Arg Leu Tyr Tyr Tyr Asn Lys Phe Lys Asp
325 330 335
Ile Ala Ser Thr Leu Asn Lys Ala Lys Ser Ile Val Gly Thr Thr Ala
340 345 350
Ser Leu Gln Tyr Met Lys Asn Val Phe Lys Glu Lys Tyr Leu Leu Ser
355 360 365
Glu Asp Thr Ser Gly Lys Phe Ser Val Asp Lys Leu Lys Phe Asp Lys
370 375 380
Leu Tyr Lys Met Leu Thr Glu Ile Tyr Thr Glu Asp Asn Phe Val Lys
385 390 395 400
Phe Phe Lys Val Leu Asn Arg Lys Thr Tyr Leu Asn Phe Asp Lys Ala
405 410 415
Val Phe Lys Ile Asn Ile Val Pro Lys Val Asn Tyr Thr Ile Tyr Asp
420 425 430
Gly Phe Asn Leu Arg Asn Thr Asn Leu Ala Ala Asn Phe Asn Gly Gln
435 440 445
Asn Thr Glu Ile Asn Asn Met Asn Phe Thr Lys Leu Lys Asn Phe Thr
450 455 460
Gly Leu Phe Glu Phe Tyr Lys Leu Leu Cys Val Asp Gly Ile Ile Thr
465 470 475 480
Ser Lys Thr Lys Ser Leu Ile Glu Gly Arg Asn Lys Ala Leu Asn Asp
485 490 495
Leu Cys Ile Lys Val Asn Asn Trp Asp Leu Phe Phe Ser Pro Ser Glu
500 505 510
Asp Asn Phe Thr Asn Asp Leu Asn Lys Gly Glu Glu Ile Thr Ser Asp
515 520 525
Thr Asn Ile Glu Ala Ala Glu Glu Asn Ile Ser Leu Asp Leu Ile Gln
530 535 540
Gln Tyr Tyr Leu Thr Phe Asn Phe Asp Asn Glu Pro Glu Asn Ile Ser
545 550 555 560
Ile Glu Asn Leu Ser Ser Asp Ile Ile Gly Gln Leu Glu Leu Met Pro
565 570 575
Asn Ile Glu Arg Phe Pro Asn Gly Lys Lys Tyr Glu Leu Asp Lys Tyr
580 585 590
Thr Met Phe His Tyr Leu Arg Ala Gln Glu Phe Glu His Gly Lys Ser
595 600 605
Arg Ile Ala Leu Thr Asn Ser Val Asn Glu Ala Leu Leu Asn Pro Ser
610 615 620
Arg Val Tyr Thr Phe Phe Ser Ser Asp Tyr Val Lys Lys Val Asn Lys
625 630 635 640
Ala Thr Glu Ala Ala Met Phe Leu Gly Trp Val Glu Gln Leu Val Tyr
645 650 655
Asp Phe Thr Asp Glu Thr Ser Glu Val Ser Thr Thr Asp Lys Ile Ala
660 665 670
Asp Ile Thr Ile Ile Ile Pro Tyr Ile Gly Pro Ala Leu Asn Ile Gly
675 680 685
Asn Met Leu Tyr Lys Asp Asp Phe Val Gly Ala Leu Ile Phe Ser Gly
690 695 700
Ala Val Ile Leu Leu Glu Phe Ile Pro Glu Ile Ala Ile Pro Val Leu
705 710 715 720
Gly Thr Phe Ala Leu Val Ser Tyr Ile Ala Asn Lys Val Leu Thr Val
725 730 735
Gln Thr Ile Asp Asn Ala Leu Ser Lys Arg Asn Glu Lys Trp Asp Glu
740 745 750
Val Tyr Lys Tyr Ile Val Thr Asn Trp Leu Ala Lys Val Asn Thr Gln
755 760 765
Ile Asp Leu Ile Arg Lys Lys Met Lys Glu Ala Leu Glu Asn Gln Ala
770 775 780
Glu Ala Thr Lys Ala Ile Ile Asn Tyr Gln Tyr Asn Gln Tyr Thr Glu
785 790 795 800
Glu Glu Lys Asn Asn Ile Asn Phe Asn Ile Asp Asp Leu Ser Ser Lys
805 810 815
Leu Asn Glu Ser Ile Asn Lys Ala Met Ile Asn Ile Asn Lys Phe Leu
820 825 830
Asn Gln Cys Ser Val Ser Tyr Leu Met Asn Ser Met Ile Pro Tyr Gly
835 840 845
Val Lys Arg Leu Glu Asp Phe Asp Ala Ser Leu Lys Asp Ala Leu Leu
850 855 860
Lys Tyr Ile Tyr Asp Asn Arg Gly Thr Leu Ile Gly Gln Val Asp Arg
865 870 875 880
Leu Lys Asp Lys Val Asn Asn Thr Leu Ser Thr Asp Ile Pro Phe Gln
885 890 895
Leu Ser Lys Tyr Val Asp Asn Gln Arg Leu Leu Ser Thr Leu Asp
900 905 910
<210> SEQ ID NO 17
<211> LENGTH: 2715
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 17
ggatccgaat tcatgccgat caccatcaac aacttcaact acagcgatcc ggtggataac 60
aaaaacatcc tgtacctgga tacccatctg aataccctgg cgaacgaacc ggaaaaagcg 120
tttcgtatca ccggcaacat ttgggttatt ccggatcgtt ttagccgtaa cagcaacccg 180
aatctgaata aaccgccgcg tgttaccagc ccgaaaagcg gttattacga tccgaactat 240
ctgagcaccg atagcgataa agataccttc ctgaaagaaa tcatcaaact gttcaaacgc 300
atcaacagcc gtgaaattgg cgaagaactg atctatcgcc tgagcaccga tattccgttt 360
ccgggcaaca acaacacccc gatcaacacc tttgatttcg atgtggattt caacagcgtt 420
gatgttaaaa cccgccaggg taacaattgg gtgaaaaccg gcagcattaa cccgagcgtg 480
attattaccg gtccgcgcga aaacattatt gatccggaaa ccagcacctt taaactgacc 540
aacaacacct ttgcggcgca ggaaggtttt ggcgcgctga gcattattag cattagcccg 600
cgctttatgc tgacctatag caacgcgacc aacgatgttg gtgaaggccg tttcagcaaa 660
agcgaatttt gcatggaccc gatcctgatc ctgatgcatg aactgaacca tgcgatgcat 720
aacctgtatg gcatcgcgat tccgaacgat cagaccatta gcagcgtgac cagcaacatc 780
ttttacagcc agtacaacgt gaaactggaa tatgcggaaa tctatgcgtt tggcggtccg 840
accattgatc tgattccgaa aagcgcgcgc aaatacttcg aagaaaaagc gctggattac 900
tatcgcagca ttgcgaaacg tctgaacagc attaccaccg cgaatccgag cagcttcaac 960
aaatatatcg gcgaatataa acagaaactg atccgcaaat atcgctttgt ggtggaaagc 1020
agcggcgaag ttaccgttaa ccgcaataaa ttcgtggaac tgtacaacga actgacccag 1080
atcttcaccg aatttaacta tgcgaaaatc tataacgtgc agaaccgtaa aatctacctg 1140
agcaacgtgt ataccccggt gaccgcgaat attctggatg ataacgtgta cgatatccag 1200
aacggcttta acatcccgaa aagcaacctg aacgttctgt ttatgggcca gaacctgagc 1260
cgtaatccgg cgctgcgtaa agtgaacccg gaaaacatgc tgtacctgtt caccaaattt 1320
tgcgtcgacg cgatagatgg tagatttggc ggtttcacgg gcgcacgcaa atcagcgcgt 1380
aaattagcta accaggcgct agcgggcggt ggcggtagcg gcggtggcgg tagcggcggt 1440
ggcggtagcg cactagtgct gcagtgtcgt gaactgctgg tgaaaaacac cgatctgccg 1500
tttattggcg atatcagcga tgtgaaaacc gatatcttcc tgcgcaaaga tatcaacgaa 1560
gaaaccgaag tgatctacta cccggataac gtgagcgttg atcaggtgat cctgagcaaa 1620
aacaccagcg aacatggtca gctggatctg ctgtatccga gcattgatag cgaaagcgaa 1680
attctgccgg gcgaaaacca ggtgttttac gataaccgta cccagaacgt ggattacctg 1740
aacagctatt actacctgga aagccagaaa ctgagcgata acgtggaaga ttttaccttt 1800
acccgcagca ttgaagaagc gctggataac agcgcgaaag tttacaccta ttttccgacc 1860
ctggcgaaca aagttaatgc gggtgttcag ggcggtctgt ttctgatgtg ggcgaacgat 1920
gtggtggaag atttcaccac caacatcctg cgtaaagata ccctggataa aatcagcgat 1980
gttagcgcga ttattccgta tattggtccg gcgctgaaca ttagcaatag cgtgcgtcgt 2040
ggcaatttta ccgaagcgtt tgcggttacc ggtgtgacca ttctgctgga agcgtttccg 2100
gaatttacca ttccggcgct gggtgcgttt gtgatctata gcaaagtgca ggaacgcaac 2160
gaaatcatca aaaccatcga taactgcctg gaacagcgta ttaaacgctg gaaagatagc 2220
tatgaatgga tgatgggcac ctggctgagc cgtattatca cccagttcaa caacatcagc 2280
taccagatgt acgatagcct gaactatcag gcgggtgcga ttaaagcgaa aatcgatctg 2340
gaatacaaaa aatacagcgg cagcgataaa gaaaacatca aaagccaggt tgaaaacctg 2400
aaaaacagcc tggatgtgaa aattagcgaa gcgatgaata acatcaacaa attcatccgc 2460
gaatgcagcg tgacctacct gttcaaaaac atgctgccga aagtgatcga tgaactgaac 2520
gaatttgatc gcaacaccaa agcgaaactg atcaacctga tcgatagcca caacattatt 2580
ctggtgggcg aagtggataa actgaaagcg aaagttaaca acagcttcca gaacaccatc 2640
ccgtttaaca tcttcagcta taccaacaac agcctgctga aagatatcat caacgaatac 2700
ttcaatctag actag 2715
<210> SEQ ID NO 18
<211> LENGTH: 904
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 18
Gly Ser Glu Phe Met Pro Ile Thr Ile Asn Asn Phe Asn Tyr Ser Asp
1 5 10 15
Pro Val Asp Asn Lys Asn Ile Leu Tyr Leu Asp Thr His Leu Asn Thr
20 25 30
Leu Ala Asn Glu Pro Glu Lys Ala Phe Arg Ile Thr Gly Asn Ile Trp
35 40 45
Val Ile Pro Asp Arg Phe Ser Arg Asn Ser Asn Pro Asn Leu Asn Lys
50 55 60
Pro Pro Arg Val Thr Ser Pro Lys Ser Gly Tyr Tyr Asp Pro Asn Tyr
65 70 75 80
Leu Ser Thr Asp Ser Asp Lys Asp Thr Phe Leu Lys Glu Ile Ile Lys
85 90 95
Leu Phe Lys Arg Ile Asn Ser Arg Glu Ile Gly Glu Glu Leu Ile Tyr
100 105 110
Arg Leu Ser Thr Asp Ile Pro Phe Pro Gly Asn Asn Asn Thr Pro Ile
115 120 125
Asn Thr Phe Asp Phe Asp Val Asp Phe Asn Ser Val Asp Val Lys Thr
130 135 140
Arg Gln Gly Asn Asn Trp Val Lys Thr Gly Ser Ile Asn Pro Ser Val
145 150 155 160
Ile Ile Thr Gly Pro Arg Glu Asn Ile Ile Asp Pro Glu Thr Ser Thr
165 170 175
Phe Lys Leu Thr Asn Asn Thr Phe Ala Ala Gln Glu Gly Phe Gly Ala
180 185 190
Leu Ser Ile Ile Ser Ile Ser Pro Arg Phe Met Leu Thr Tyr Ser Asn
195 200 205
Ala Thr Asn Asp Val Gly Glu Gly Arg Phe Ser Lys Ser Glu Phe Cys
210 215 220
Met Asp Pro Ile Leu Ile Leu Met His Glu Leu Asn His Ala Met His
225 230 235 240
Asn Leu Tyr Gly Ile Ala Ile Pro Asn Asp Gln Thr Ile Ser Ser Val
245 250 255
Thr Ser Asn Ile Phe Tyr Ser Gln Tyr Asn Val Lys Leu Glu Tyr Ala
260 265 270
Glu Ile Tyr Ala Phe Gly Gly Pro Thr Ile Asp Leu Ile Pro Lys Ser
275 280 285
Ala Arg Lys Tyr Phe Glu Glu Lys Ala Leu Asp Tyr Tyr Arg Ser Ile
290 295 300
Ala Lys Arg Leu Asn Ser Ile Thr Thr Ala Asn Pro Ser Ser Phe Asn
305 310 315 320
Lys Tyr Ile Gly Glu Tyr Lys Gln Lys Leu Ile Arg Lys Tyr Arg Phe
325 330 335
Val Val Glu Ser Ser Gly Glu Val Thr Val Asn Arg Asn Lys Phe Val
340 345 350
Glu Leu Tyr Asn Glu Leu Thr Gln Ile Phe Thr Glu Phe Asn Tyr Ala
355 360 365
Lys Ile Tyr Asn Val Gln Asn Arg Lys Ile Tyr Leu Ser Asn Val Tyr
370 375 380
Thr Pro Val Thr Ala Asn Ile Leu Asp Asp Asn Val Tyr Asp Ile Gln
385 390 395 400
Asn Gly Phe Asn Ile Pro Lys Ser Asn Leu Asn Val Leu Phe Met Gly
405 410 415
Gln Asn Leu Ser Arg Asn Pro Ala Leu Arg Lys Val Asn Pro Glu Asn
420 425 430
Met Leu Tyr Leu Phe Thr Lys Phe Cys Val Asp Ala Ile Asp Gly Arg
435 440 445
Phe Gly Gly Phe Thr Gly Ala Arg Lys Ser Ala Arg Lys Leu Ala Asn
450 455 460
Gln Ala Leu Ala Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly
465 470 475 480
Gly Gly Ser Ala Leu Val Leu Gln Cys Arg Glu Leu Leu Val Lys Asn
485 490 495
Thr Asp Leu Pro Phe Ile Gly Asp Ile Ser Asp Val Lys Thr Asp Ile
500 505 510
Phe Leu Arg Lys Asp Ile Asn Glu Glu Thr Glu Val Ile Tyr Tyr Pro
515 520 525
Asp Asn Val Ser Val Asp Gln Val Ile Leu Ser Lys Asn Thr Ser Glu
530 535 540
His Gly Gln Leu Asp Leu Leu Tyr Pro Ser Ile Asp Ser Glu Ser Glu
545 550 555 560
Ile Leu Pro Gly Glu Asn Gln Val Phe Tyr Asp Asn Arg Thr Gln Asn
565 570 575
Val Asp Tyr Leu Asn Ser Tyr Tyr Tyr Leu Glu Ser Gln Lys Leu Ser
580 585 590
Asp Asn Val Glu Asp Phe Thr Phe Thr Arg Ser Ile Glu Glu Ala Leu
595 600 605
Asp Asn Ser Ala Lys Val Tyr Thr Tyr Phe Pro Thr Leu Ala Asn Lys
610 615 620
Val Asn Ala Gly Val Gln Gly Gly Leu Phe Leu Met Trp Ala Asn Asp
625 630 635 640
Val Val Glu Asp Phe Thr Thr Asn Ile Leu Arg Lys Asp Thr Leu Asp
645 650 655
Lys Ile Ser Asp Val Ser Ala Ile Ile Pro Tyr Ile Gly Pro Ala Leu
660 665 670
Asn Ile Ser Asn Ser Val Arg Arg Gly Asn Phe Thr Glu Ala Phe Ala
675 680 685
Val Thr Gly Val Thr Ile Leu Leu Glu Ala Phe Pro Glu Phe Thr Ile
690 695 700
Pro Ala Leu Gly Ala Phe Val Ile Tyr Ser Lys Val Gln Glu Arg Asn
705 710 715 720
Glu Ile Ile Lys Thr Ile Asp Asn Cys Leu Glu Gln Arg Ile Lys Arg
725 730 735
Trp Lys Asp Ser Tyr Glu Trp Met Met Gly Thr Trp Leu Ser Arg Ile
740 745 750
Ile Thr Gln Phe Asn Asn Ile Ser Tyr Gln Met Tyr Asp Ser Leu Asn
755 760 765
Tyr Gln Ala Gly Ala Ile Lys Ala Lys Ile Asp Leu Glu Tyr Lys Lys
770 775 780
Tyr Ser Gly Ser Asp Lys Glu Asn Ile Lys Ser Gln Val Glu Asn Leu
785 790 795 800
Lys Asn Ser Leu Asp Val Lys Ile Ser Glu Ala Met Asn Asn Ile Asn
805 810 815
Lys Phe Ile Arg Glu Cys Ser Val Thr Tyr Leu Phe Lys Asn Met Leu
820 825 830
Pro Lys Val Ile Asp Glu Leu Asn Glu Phe Asp Arg Asn Thr Lys Ala
835 840 845
Lys Leu Ile Asn Leu Ile Asp Ser His Asn Ile Ile Leu Val Gly Glu
850 855 860
Val Asp Lys Leu Lys Ala Lys Val Asn Asn Ser Phe Gln Asn Thr Ile
865 870 875 880
Pro Phe Asn Ile Phe Ser Tyr Thr Asn Asn Ser Leu Leu Lys Asp Ile
885 890 895
Ile Asn Glu Tyr Phe Asn Leu Asp
900
<210> SEQ ID NO 19
<211> LENGTH: 2742
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 19
ggatccgaat tcatgccgat caccatcaac aacttcaact acagcgatcc ggtggataac 60
aaaaacatcc tgtacctgga tacccatctg aataccctgg cgaacgaacc ggaaaaagcg 120
tttcgtatca ccggcaacat ttgggttatt ccggatcgtt ttagccgtaa cagcaacccg 180
aatctgaata aaccgccgcg tgttaccagc ccgaaaagcg gttattacga tccgaactat 240
ctgagcaccg atagcgataa agataccttc ctgaaagaaa tcatcaaact gttcaaacgc 300
atcaacagcc gtgaaattgg cgaagaactg atctatcgcc tgagcaccga tattccgttt 360
ccgggcaaca acaacacccc gatcaacacc tttgatttcg atgtggattt caacagcgtt 420
gatgttaaaa cccgccaggg taacaattgg gtgaaaaccg gcagcattaa cccgagcgtg 480
attattaccg gtccgcgcga aaacattatt gatccggaaa ccagcacctt taaactgacc 540
aacaacacct ttgcggcgca ggaaggtttt ggcgcgctga gcattattag cattagcccg 600
cgctttatgc tgacctatag caacgcgacc aacgatgttg gtgaaggccg tttcagcaaa 660
agcgaatttt gcatggaccc gatcctgatc ctgatgcatg aactgaacca tgcgatgcat 720
aacctgtatg gcatcgcgat tccgaacgat cagaccatta gcagcgtgac cagcaacatc 780
ttttacagcc agtacaacgt gaaactggaa tatgcggaaa tctatgcgtt tggcggtccg 840
accattgatc tgattccgaa aagcgcgcgc aaatacttcg aagaaaaagc gctggattac 900
tatcgcagca ttgcgaaacg tctgaacagc attaccaccg cgaatccgag cagcttcaac 960
aaatatatcg gcgaatataa acagaaactg atccgcaaat atcgctttgt ggtggaaagc 1020
agcggcgaag ttaccgttaa ccgcaataaa ttcgtggaac tgtacaacga actgacccag 1080
atcttcaccg aatttaacta tgcgaaaatc tataacgtgc agaaccgtaa aatctacctg 1140
agcaacgtgt ataccccggt gaccgcgaat attctggatg ataacgtgta cgatatccag 1200
aacggcttta acatcccgaa aagcaacctg aacgttctgt ttatgggcca gaacctgagc 1260
cgtaatccgg cgctgcgtaa agtgaacccg gaaaacatgc tgtacctgtt caccaaattt 1320
tgcgtcgacg gcatcattac ctccaaaact aaatctctga tagaaggtag atttggcggt 1380
ttcacgggcg cacgcaaatc agcgcgtaaa ttagctaacc aggcgctagc gggcggtggc 1440
ggtagcggcg gtggcggtag cggcggtggc ggtagcgcac tagtgctgca gtgtcgtgaa 1500
ctgctggtga aaaacaccga tctgccgttt attggcgata tcagcgatgt gaaaaccgat 1560
atcttcctgc gcaaagatat caacgaagaa accgaagtga tctactaccc ggataacgtg 1620
agcgttgatc aggtgatcct gagcaaaaac accagcgaac atggtcagct ggatctgctg 1680
tatccgagca ttgatagcga aagcgaaatt ctgccgggcg aaaaccaggt gttttacgat 1740
aaccgtaccc agaacgtgga ttacctgaac agctattact acctggaaag ccagaaactg 1800
agcgataacg tggaagattt tacctttacc cgcagcattg aagaagcgct ggataacagc 1860
gcgaaagttt acacctattt tccgaccctg gcgaacaaag ttaatgcggg tgttcagggc 1920
ggtctgtttc tgatgtgggc gaacgatgtg gtggaagatt tcaccaccaa catcctgcgt 1980
aaagataccc tggataaaat cagcgatgtt agcgcgatta ttccgtatat tggtccggcg 2040
ctgaacatta gcaatagcgt gcgtcgtggc aattttaccg aagcgtttgc ggttaccggt 2100
gtgaccattc tgctggaagc gtttccggaa tttaccattc cggcgctggg tgcgtttgtg 2160
atctatagca aagtgcagga acgcaacgaa atcatcaaaa ccatcgataa ctgcctggaa 2220
cagcgtatta aacgctggaa agatagctat gaatggatga tgggcacctg gctgagccgt 2280
attatcaccc agttcaacaa catcagctac cagatgtacg atagcctgaa ctatcaggcg 2340
ggtgcgatta aagcgaaaat cgatctggaa tacaaaaaat acagcggcag cgataaagaa 2400
aacatcaaaa gccaggttga aaacctgaaa aacagcctgg atgtgaaaat tagcgaagcg 2460
atgaataaca tcaacaaatt catccgcgaa tgcagcgtga cctacctgtt caaaaacatg 2520
ctgccgaaag tgatcgatga actgaacgaa tttgatcgca acaccaaagc gaaactgatc 2580
aacctgatcg atagccacaa cattattctg gtgggcgaag tggataaact gaaagcgaaa 2640
gttaacaaca gcttccagaa caccatcccg tttaacatct tcagctatac caacaacagc 2700
ctgctgaaag atatcatcaa cgaatacttc aatctagact ag 2742
<210> SEQ ID NO 20
<211> LENGTH: 913
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 20
Gly Ser Glu Phe Met Pro Ile Thr Ile Asn Asn Phe Asn Tyr Ser Asp
1 5 10 15
Pro Val Asp Asn Lys Asn Ile Leu Tyr Leu Asp Thr His Leu Asn Thr
20 25 30
Leu Ala Asn Glu Pro Glu Lys Ala Phe Arg Ile Thr Gly Asn Ile Trp
35 40 45
Val Ile Pro Asp Arg Phe Ser Arg Asn Ser Asn Pro Asn Leu Asn Lys
50 55 60
Pro Pro Arg Val Thr Ser Pro Lys Ser Gly Tyr Tyr Asp Pro Asn Tyr
65 70 75 80
Leu Ser Thr Asp Ser Asp Lys Asp Thr Phe Leu Lys Glu Ile Ile Lys
85 90 95
Leu Phe Lys Arg Ile Asn Ser Arg Glu Ile Gly Glu Glu Leu Ile Tyr
100 105 110
Arg Leu Ser Thr Asp Ile Pro Phe Pro Gly Asn Asn Asn Thr Pro Ile
115 120 125
Asn Thr Phe Asp Phe Asp Val Asp Phe Asn Ser Val Asp Val Lys Thr
130 135 140
Arg Gln Gly Asn Asn Trp Val Lys Thr Gly Ser Ile Asn Pro Ser Val
145 150 155 160
Ile Ile Thr Gly Pro Arg Glu Asn Ile Ile Asp Pro Glu Thr Ser Thr
165 170 175
Phe Lys Leu Thr Asn Asn Thr Phe Ala Ala Gln Glu Gly Phe Gly Ala
180 185 190
Leu Ser Ile Ile Ser Ile Ser Pro Arg Phe Met Leu Thr Tyr Ser Asn
195 200 205
Ala Thr Asn Asp Val Gly Glu Gly Arg Phe Ser Lys Ser Glu Phe Cys
210 215 220
Met Asp Pro Ile Leu Ile Leu Met His Glu Leu Asn His Ala Met His
225 230 235 240
Asn Leu Tyr Gly Ile Ala Ile Pro Asn Asp Gln Thr Ile Ser Ser Val
245 250 255
Thr Ser Asn Ile Phe Tyr Ser Gln Tyr Asn Val Lys Leu Glu Tyr Ala
260 265 270
Glu Ile Tyr Ala Phe Gly Gly Pro Thr Ile Asp Leu Ile Pro Lys Ser
275 280 285
Ala Arg Lys Tyr Phe Glu Glu Lys Ala Leu Asp Tyr Tyr Arg Ser Ile
290 295 300
Ala Lys Arg Leu Asn Ser Ile Thr Thr Ala Asn Pro Ser Ser Phe Asn
305 310 315 320
Lys Tyr Ile Gly Glu Tyr Lys Gln Lys Leu Ile Arg Lys Tyr Arg Phe
325 330 335
Val Val Glu Ser Ser Gly Glu Val Thr Val Asn Arg Asn Lys Phe Val
340 345 350
Glu Leu Tyr Asn Glu Leu Thr Gln Ile Phe Thr Glu Phe Asn Tyr Ala
355 360 365
Lys Ile Tyr Asn Val Gln Asn Arg Lys Ile Tyr Leu Ser Asn Val Tyr
370 375 380
Thr Pro Val Thr Ala Asn Ile Leu Asp Asp Asn Val Tyr Asp Ile Gln
385 390 395 400
Asn Gly Phe Asn Ile Pro Lys Ser Asn Leu Asn Val Leu Phe Met Gly
405 410 415
Gln Asn Leu Ser Arg Asn Pro Ala Leu Arg Lys Val Asn Pro Glu Asn
420 425 430
Met Leu Tyr Leu Phe Thr Lys Phe Cys Val Asp Gly Ile Ile Thr Ser
435 440 445
Lys Thr Lys Ser Leu Ile Glu Gly Arg Phe Gly Gly Phe Thr Gly Ala
450 455 460
Arg Lys Ser Ala Arg Lys Leu Ala Asn Gln Ala Leu Ala Gly Gly Gly
465 470 475 480
Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Ala Leu Val Leu
485 490 495
Gln Cys Arg Glu Leu Leu Val Lys Asn Thr Asp Leu Pro Phe Ile Gly
500 505 510
Asp Ile Ser Asp Val Lys Thr Asp Ile Phe Leu Arg Lys Asp Ile Asn
515 520 525
Glu Glu Thr Glu Val Ile Tyr Tyr Pro Asp Asn Val Ser Val Asp Gln
530 535 540
Val Ile Leu Ser Lys Asn Thr Ser Glu His Gly Gln Leu Asp Leu Leu
545 550 555 560
Tyr Pro Ser Ile Asp Ser Glu Ser Glu Ile Leu Pro Gly Glu Asn Gln
565 570 575
Val Phe Tyr Asp Asn Arg Thr Gln Asn Val Asp Tyr Leu Asn Ser Tyr
580 585 590
Tyr Tyr Leu Glu Ser Gln Lys Leu Ser Asp Asn Val Glu Asp Phe Thr
595 600 605
Phe Thr Arg Ser Ile Glu Glu Ala Leu Asp Asn Ser Ala Lys Val Tyr
610 615 620
Thr Tyr Phe Pro Thr Leu Ala Asn Lys Val Asn Ala Gly Val Gln Gly
625 630 635 640
Gly Leu Phe Leu Met Trp Ala Asn Asp Val Val Glu Asp Phe Thr Thr
645 650 655
Asn Ile Leu Arg Lys Asp Thr Leu Asp Lys Ile Ser Asp Val Ser Ala
660 665 670
Ile Ile Pro Tyr Ile Gly Pro Ala Leu Asn Ile Ser Asn Ser Val Arg
675 680 685
Arg Gly Asn Phe Thr Glu Ala Phe Ala Val Thr Gly Val Thr Ile Leu
690 695 700
Leu Glu Ala Phe Pro Glu Phe Thr Ile Pro Ala Leu Gly Ala Phe Val
705 710 715 720
Ile Tyr Ser Lys Val Gln Glu Arg Asn Glu Ile Ile Lys Thr Ile Asp
725 730 735
Asn Cys Leu Glu Gln Arg Ile Lys Arg Trp Lys Asp Ser Tyr Glu Trp
740 745 750
Met Met Gly Thr Trp Leu Ser Arg Ile Ile Thr Gln Phe Asn Asn Ile
755 760 765
Ser Tyr Gln Met Tyr Asp Ser Leu Asn Tyr Gln Ala Gly Ala Ile Lys
770 775 780
Ala Lys Ile Asp Leu Glu Tyr Lys Lys Tyr Ser Gly Ser Asp Lys Glu
785 790 795 800
Asn Ile Lys Ser Gln Val Glu Asn Leu Lys Asn Ser Leu Asp Val Lys
805 810 815
Ile Ser Glu Ala Met Asn Asn Ile Asn Lys Phe Ile Arg Glu Cys Ser
820 825 830
Val Thr Tyr Leu Phe Lys Asn Met Leu Pro Lys Val Ile Asp Glu Leu
835 840 845
Asn Glu Phe Asp Arg Asn Thr Lys Ala Lys Leu Ile Asn Leu Ile Asp
850 855 860
Ser His Asn Ile Ile Leu Val Gly Glu Val Asp Lys Leu Lys Ala Lys
865 870 875 880
Val Asn Asn Ser Phe Gln Asn Thr Ile Pro Phe Asn Ile Phe Ser Tyr
885 890 895
Thr Asn Asn Ser Leu Leu Lys Asp Ile Ile Asn Glu Tyr Phe Asn Leu
900 905 910
Asp
<210> SEQ ID NO 21
<211> LENGTH: 2673
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 21
ggatccatgg agttcgttaa caaacagttc aactataaag acccagttaa cggtgttgac 60
attgcttaca tcaaaatccc gaacgctggc cagatgcagc cggtaaaggc attcaaaatc 120
cacaacaaaa tctgggttat cccggaacgt gataccttta ctaacccgga agaaggtgac 180
ctgaacccgc caccggaagc gaaacaggtg ccggtatctt actatgactc cacctacctg 240
tctaccgata acgaaaagga caactacctg aaaggtgtta ctaaactgtt cgagcgtatt 300
tactccaccg acctgggccg tatgctgctg actagcatcg ttcgcggtat cccgttctgg 360
ggcggttcta ccatcgatac cgaactgaaa gtaatcgaca ctaactgcat caacgttatt 420
cagccggacg gttcctatcg ttccgaagaa ctgaacctgg tgatcatcgg cccgtctgct 480
gatatcatcc agttcgagtg taagagcttt ggtcacgaag ttctgaacct cacccgtaac 540
ggctacggtt ccactcagta catccgtttc tctccggact tcaccttcgg ttttgaagaa 600
tccctggaag tagacacgaa cccactgctg ggcgctggta aattcgcaac tgatcctgcg 660
gttaccctgg ctcacgaact gattcatgca ggccaccgcc tgtacggtat cgccatcaat 720
ccgaaccgtg tcttcaaagt taacaccaac gcgtattacg agatgtccgg tctggaagtt 780
agcttcgaag aactgcgtac ttttggcggt cacgacgcta aattcatcga ctctctgcaa 840
gaaaacgagt tccgtctgta ctactataac aagttcaaag atatcgcatc caccctgaac 900
aaagcgaaat ccatcgtggg taccactgct tctctccagt acatgaagaa cgtttttaaa 960
gaaaaatacc tgctcagcga agacacctcc ggcaaattct ctgtagacaa gttgaaattc 1020
gataaacttt acaaaatgct gactgaaatt tacaccgaag acaacttcgt taagttcttt 1080
aaagttctga accgcaaaac ctatctgaac ttcgacaagg cagtattcaa aatcaacatc 1140
gtgccgaaag ttaactacac tatctacgat ggtttcaacc tgcgtaacac caacctggct 1200
gctaatttta acggccagaa cacggaaatc aacaacatga acttcacaaa actgaaaaac 1260
ttcactggtc tgttcgagtt ttacaagctg ctgtgcgtcg acggcatcat tacctccaaa 1320
actaaatctc tgatagaagg tagatacggt ggtttcatgg cgctagcggg cggtggcggt 1380
agcggcggtg gcggtagcgg cggtggcggt agcgcactag tgctgcagtg tatcaaggtt 1440
aacaactggg atttattctt cagcccgagt gaagacaact tcaccaacga cctgaacaaa 1500
ggtgaagaaa tcacctcaga tactaacatc gaagcagccg aagaaaacat ctcgctggac 1560
ctgatccagc agtactacct gacctttaat ttcgacaacg agccggaaaa catttctatc 1620
gaaaacctga gctctgatat catcggccag ctggaactga tgccgaacat cgaacgtttc 1680
ccaaacggta aaaagtacga gctggacaaa tataccatgt tccactacct gcgcgcgcag 1740
gaatttgaac acggcaaatc ccgtatcgca ctgactaact ccgttaacga agctctgctc 1800
aacccgtccc gtgtatacac cttcttctct agcgactacg tgaaaaaggt caacaaagcg 1860
actgaagctg caatgttctt gggttgggtt gaacagcttg tttatgattt taccgacgag 1920
acgtccgaag tatctactac cgacaaaatt gcggatatca ctatcatcat cccgtacatc 1980
ggtccggctc tgaacattgg caacatgctg tacaaagacg acttcgttgg cgcactgatc 2040
ttctccggtg cggtgatcct gctggagttc atcccggaaa tcgccatccc ggtactgggc 2100
acctttgctc tggtttctta cattgcaaac aaggttctga ctgtacaaac catcgacaac 2160
gcgctgagca aacgtaacga aaaatgggat gaagtttaca aatatatcgt gaccaactgg 2220
ctggctaagg ttaatactca gatcgacctc atccgcaaaa aaatgaaaga agcactggaa 2280
aaccaggcgg aagctaccaa ggcaatcatt aactaccagt acaaccagta caccgaggaa 2340
gaaaaaaaca acatcaactt caacatcgac gatctgtcct ctaaactgaa cgaatccatc 2400
aacaaagcta tgatcaacat caacaagttc ctgaaccagt gctctgtaag ctatctgatg 2460
aactccatga tcccgtacgg tgttaaacgt ctggaggact tcgatgcgtc tctgaaagac 2520
gccctgctga aatacattta cgacaaccgt ggcactctga tcggtcaggt tgatcgtctg 2580
aaggacaaag tgaacaatac cttatcgacc gacatccctt ttcagctcag taaatatgtc 2640
gataaccaac gccttttgtc cactctagac tag 2673
<210> SEQ ID NO 22
<211> LENGTH: 890
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 22
Gly Ser Met Glu Phe Val Asn Lys Gln Phe Asn Tyr Lys Asp Pro Val
1 5 10 15
Asn Gly Val Asp Ile Ala Tyr Ile Lys Ile Pro Asn Ala Gly Gln Met
20 25 30
Gln Pro Val Lys Ala Phe Lys Ile His Asn Lys Ile Trp Val Ile Pro
35 40 45
Glu Arg Asp Thr Phe Thr Asn Pro Glu Glu Gly Asp Leu Asn Pro Pro
50 55 60
Pro Glu Ala Lys Gln Val Pro Val Ser Tyr Tyr Asp Ser Thr Tyr Leu
65 70 75 80
Ser Thr Asp Asn Glu Lys Asp Asn Tyr Leu Lys Gly Val Thr Lys Leu
85 90 95
Phe Glu Arg Ile Tyr Ser Thr Asp Leu Gly Arg Met Leu Leu Thr Ser
100 105 110
Ile Val Arg Gly Ile Pro Phe Trp Gly Gly Ser Thr Ile Asp Thr Glu
115 120 125
Leu Lys Val Ile Asp Thr Asn Cys Ile Asn Val Ile Gln Pro Asp Gly
130 135 140
Ser Tyr Arg Ser Glu Glu Leu Asn Leu Val Ile Ile Gly Pro Ser Ala
145 150 155 160
Asp Ile Ile Gln Phe Glu Cys Lys Ser Phe Gly His Glu Val Leu Asn
165 170 175
Leu Thr Arg Asn Gly Tyr Gly Ser Thr Gln Tyr Ile Arg Phe Ser Pro
180 185 190
Asp Phe Thr Phe Gly Phe Glu Glu Ser Leu Glu Val Asp Thr Asn Pro
195 200 205
Leu Leu Gly Ala Gly Lys Phe Ala Thr Asp Pro Ala Val Thr Leu Ala
210 215 220
His Glu Leu Ile His Ala Gly His Arg Leu Tyr Gly Ile Ala Ile Asn
225 230 235 240
Pro Asn Arg Val Phe Lys Val Asn Thr Asn Ala Tyr Tyr Glu Met Ser
245 250 255
Gly Leu Glu Val Ser Phe Glu Glu Leu Arg Thr Phe Gly Gly His Asp
260 265 270
Ala Lys Phe Ile Asp Ser Leu Gln Glu Asn Glu Phe Arg Leu Tyr Tyr
275 280 285
Tyr Asn Lys Phe Lys Asp Ile Ala Ser Thr Leu Asn Lys Ala Lys Ser
290 295 300
Ile Val Gly Thr Thr Ala Ser Leu Gln Tyr Met Lys Asn Val Phe Lys
305 310 315 320
Glu Lys Tyr Leu Leu Ser Glu Asp Thr Ser Gly Lys Phe Ser Val Asp
325 330 335
Lys Leu Lys Phe Asp Lys Leu Tyr Lys Met Leu Thr Glu Ile Tyr Thr
340 345 350
Glu Asp Asn Phe Val Lys Phe Phe Lys Val Leu Asn Arg Lys Thr Tyr
355 360 365
Leu Asn Phe Asp Lys Ala Val Phe Lys Ile Asn Ile Val Pro Lys Val
370 375 380
Asn Tyr Thr Ile Tyr Asp Gly Phe Asn Leu Arg Asn Thr Asn Leu Ala
385 390 395 400
Ala Asn Phe Asn Gly Gln Asn Thr Glu Ile Asn Asn Met Asn Phe Thr
405 410 415
Lys Leu Lys Asn Phe Thr Gly Leu Phe Glu Phe Tyr Lys Leu Leu Cys
420 425 430
Val Asp Gly Ile Ile Thr Ser Lys Thr Lys Ser Leu Ile Glu Gly Arg
435 440 445
Tyr Gly Gly Phe Met Ala Leu Ala Gly Gly Gly Gly Ser Gly Gly Gly
450 455 460
Gly Ser Gly Gly Gly Gly Ser Ala Leu Val Leu Gln Cys Ile Lys Val
465 470 475 480
Asn Asn Trp Asp Leu Phe Phe Ser Pro Ser Glu Asp Asn Phe Thr Asn
485 490 495
Asp Leu Asn Lys Gly Glu Glu Ile Thr Ser Asp Thr Asn Ile Glu Ala
500 505 510
Ala Glu Glu Asn Ile Ser Leu Asp Leu Ile Gln Gln Tyr Tyr Leu Thr
515 520 525
Phe Asn Phe Asp Asn Glu Pro Glu Asn Ile Ser Ile Glu Asn Leu Ser
530 535 540
Ser Asp Ile Ile Gly Gln Leu Glu Leu Met Pro Asn Ile Glu Arg Phe
545 550 555 560
Pro Asn Gly Lys Lys Tyr Glu Leu Asp Lys Tyr Thr Met Phe His Tyr
565 570 575
Leu Arg Ala Gln Glu Phe Glu His Gly Lys Ser Arg Ile Ala Leu Thr
580 585 590
Asn Ser Val Asn Glu Ala Leu Leu Asn Pro Ser Arg Val Tyr Thr Phe
595 600 605
Phe Ser Ser Asp Tyr Val Lys Lys Val Asn Lys Ala Thr Glu Ala Ala
610 615 620
Met Phe Leu Gly Trp Val Glu Gln Leu Val Tyr Asp Phe Thr Asp Glu
625 630 635 640
Thr Ser Glu Val Ser Thr Thr Asp Lys Ile Ala Asp Ile Thr Ile Ile
645 650 655
Ile Pro Tyr Ile Gly Pro Ala Leu Asn Ile Gly Asn Met Leu Tyr Lys
660 665 670
Asp Asp Phe Val Gly Ala Leu Ile Phe Ser Gly Ala Val Ile Leu Leu
675 680 685
Glu Phe Ile Pro Glu Ile Ala Ile Pro Val Leu Gly Thr Phe Ala Leu
690 695 700
Val Ser Tyr Ile Ala Asn Lys Val Leu Thr Val Gln Thr Ile Asp Asn
705 710 715 720
Ala Leu Ser Lys Arg Asn Glu Lys Trp Asp Glu Val Tyr Lys Tyr Ile
725 730 735
Val Thr Asn Trp Leu Ala Lys Val Asn Thr Gln Ile Asp Leu Ile Arg
740 745 750
Lys Lys Met Lys Glu Ala Leu Glu Asn Gln Ala Glu Ala Thr Lys Ala
755 760 765
Ile Ile Asn Tyr Gln Tyr Asn Gln Tyr Thr Glu Glu Glu Lys Asn Asn
770 775 780
Ile Asn Phe Asn Ile Asp Asp Leu Ser Ser Lys Leu Asn Glu Ser Ile
785 790 795 800
Asn Lys Ala Met Ile Asn Ile Asn Lys Phe Leu Asn Gln Cys Ser Val
805 810 815
Ser Tyr Leu Met Asn Ser Met Ile Pro Tyr Gly Val Lys Arg Leu Glu
820 825 830
Asp Phe Asp Ala Ser Leu Lys Asp Ala Leu Leu Lys Tyr Ile Tyr Asp
835 840 845
Asn Arg Gly Thr Leu Ile Gly Gln Val Asp Arg Leu Lys Asp Lys Val
850 855 860
Asn Asn Thr Leu Ser Thr Asp Ile Pro Phe Gln Leu Ser Lys Tyr Val
865 870 875 880
Asp Asn Gln Arg Leu Leu Ser Thr Leu Asp
885 890
<210> SEQ ID NO 23
<211> LENGTH: 2751
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 23
ggatccatgg agttcgttaa caaacagttc aactataaag acccagttaa cggtgttgac 60
attgcttaca tcaaaatccc gaacgctggc cagatgcagc cggtaaaggc attcaaaatc 120
cacaacaaaa tctgggttat cccggaacgt gataccttta ctaacccgga agaaggtgac 180
ctgaacccgc caccggaagc gaaacaggtg ccggtatctt actatgactc cacctacctg 240
tctaccgata acgaaaagga caactacctg aaaggtgtta ctaaactgtt cgagcgtatt 300
tactccaccg acctgggccg tatgctgctg actagcatcg ttcgcggtat cccgttctgg 360
ggcggttcta ccatcgatac cgaactgaaa gtaatcgaca ctaactgcat caacgttatt 420
cagccggacg gttcctatcg ttccgaagaa ctgaacctgg tgatcatcgg cccgtctgct 480
gatatcatcc agttcgagtg taagagcttt ggtcacgaag ttctgaacct cacccgtaac 540
ggctacggtt ccactcagta catccgtttc tctccggact tcaccttcgg ttttgaagaa 600
tccctggaag tagacacgaa cccactgctg ggcgctggta aattcgcaac tgatcctgcg 660
gttaccctgg ctcacgaact gattcatgca ggccaccgcc tgtacggtat cgccatcaat 720
ccgaaccgtg tcttcaaagt taacaccaac gcgtattacg agatgtccgg tctggaagtt 780
agcttcgaag aactgcgtac ttttggcggt cacgacgcta aattcatcga ctctctgcaa 840
gaaaacgagt tccgtctgta ctactataac aagttcaaag atatcgcatc caccctgaac 900
aaagcgaaat ccatcgtggg taccactgct tctctccagt acatgaagaa cgtttttaaa 960
gaaaaatacc tgctcagcga agacacctcc ggcaaattct ctgtagacaa gttgaaattc 1020
gataaacttt acaaaatgct gactgaaatt tacaccgaag acaacttcgt taagttcttt 1080
aaagttctga accgcaaaac ctatctgaac ttcgacaagg cagtattcaa aatcaacatc 1140
gtgccgaaag ttaactacac tatctacgat ggtttcaacc tgcgtaacac caacctggct 1200
gctaatttta acggccagaa cacggaaatc aacaacatga acttcacaaa actgaaaaac 1260
ttcactggtc tgttcgagtt ttacaagctg ctgtgcgtcg acggcatcat tacctccaaa 1320
actaaatctc tgatcgaagg tcgttacggt ggtttcatga cctctgaaaa atctcagacc 1380
ccgctggtta ccctgttcaa aaacgctatc atcaaaaacg cttacaaaaa aggtgaagcg 1440
ctagcgggtg gtggtggttc tggtggtggt ggttctggtg gtggtggttc tgcactagtg 1500
ctgcagtgta tcaaggttaa caactgggat ttattcttca gcccgagtga agacaacttc 1560
accaacgacc tgaacaaagg tgaagaaatc acctcagata ctaacatcga agcagccgaa 1620
gaaaacatct cgctggacct gatccagcag tactacctga cctttaattt cgacaacgag 1680
ccggaaaaca tttctatcga aaacctgagc tctgatatca tcggccagct ggaactgatg 1740
ccgaacatcg aacgtttccc aaacggtaaa aagtacgagc tggacaaata taccatgttc 1800
cactacctgc gcgcgcagga atttgaacac ggcaaatccc gtatcgcact gactaactcc 1860
gttaacgaag ctctgctcaa cccgtcccgt gtatacacct tcttctctag cgactacgtg 1920
aaaaaggtca acaaagcgac tgaagctgca atgttcttgg gttgggttga acagcttgtt 1980
tatgatttta ccgacgagac gtccgaagta tctactaccg acaaaattgc ggatatcact 2040
atcatcatcc cgtacatcgg tccggctctg aacattggca acatgctgta caaagacgac 2100
ttcgttggcg cactgatctt ctccggtgcg gtgatcctgc tggagttcat cccggaaatc 2160
gccatcccgg tactgggcac ctttgctctg gtttcttaca ttgcaaacaa ggttctgact 2220
gtacaaacca tcgacaacgc gctgagcaaa cgtaacgaaa aatgggatga agtttacaaa 2280
tatatcgtga ccaactggct ggctaaggtt aatactcaga tcgacctcat ccgcaaaaaa 2340
atgaaagaag cactggaaaa ccaggcggaa gctaccaagg caatcattaa ctaccagtac 2400
aaccagtaca ccgaggaaga aaaaaacaac atcaacttca acatcgacga tctgtcctct 2460
aaactgaacg aatccatcaa caaagctatg atcaacatca acaagttcct gaaccagtgc 2520
tctgtaagct atctgatgaa ctccatgatc ccgtacggtg ttaaacgtct ggaggacttc 2580
gatgcgtctc tgaaagacgc cctgctgaaa tacatttacg acaaccgtgg cactctgatc 2640
ggtcaggttg atcgtctgaa ggacaaagtg aacaatacct tatcgaccga catccctttt 2700
cagctcagta aatatgtcga taaccaacgc cttttgtcca ctctagacta g 2751
<210> SEQ ID NO 24
<211> LENGTH: 916
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 24
Gly Ser Met Glu Phe Val Asn Lys Gln Phe Asn Tyr Lys Asp Pro Val
1 5 10 15
Asn Gly Val Asp Ile Ala Tyr Ile Lys Ile Pro Asn Ala Gly Gln Met
20 25 30
Gln Pro Val Lys Ala Phe Lys Ile His Asn Lys Ile Trp Val Ile Pro
35 40 45
Glu Arg Asp Thr Phe Thr Asn Pro Glu Glu Gly Asp Leu Asn Pro Pro
50 55 60
Pro Glu Ala Lys Gln Val Pro Val Ser Tyr Tyr Asp Ser Thr Tyr Leu
65 70 75 80
Ser Thr Asp Asn Glu Lys Asp Asn Tyr Leu Lys Gly Val Thr Lys Leu
85 90 95
Phe Glu Arg Ile Tyr Ser Thr Asp Leu Gly Arg Met Leu Leu Thr Ser
100 105 110
Ile Val Arg Gly Ile Pro Phe Trp Gly Gly Ser Thr Ile Asp Thr Glu
115 120 125
Leu Lys Val Ile Asp Thr Asn Cys Ile Asn Val Ile Gln Pro Asp Gly
130 135 140
Ser Tyr Arg Ser Glu Glu Leu Asn Leu Val Ile Ile Gly Pro Ser Ala
145 150 155 160
Asp Ile Ile Gln Phe Glu Cys Lys Ser Phe Gly His Glu Val Leu Asn
165 170 175
Leu Thr Arg Asn Gly Tyr Gly Ser Thr Gln Tyr Ile Arg Phe Ser Pro
180 185 190
Asp Phe Thr Phe Gly Phe Glu Glu Ser Leu Glu Val Asp Thr Asn Pro
195 200 205
Leu Leu Gly Ala Gly Lys Phe Ala Thr Asp Pro Ala Val Thr Leu Ala
210 215 220
His Glu Leu Ile His Ala Gly His Arg Leu Tyr Gly Ile Ala Ile Asn
225 230 235 240
Pro Asn Arg Val Phe Lys Val Asn Thr Asn Ala Tyr Tyr Glu Met Ser
245 250 255
Gly Leu Glu Val Ser Phe Glu Glu Leu Arg Thr Phe Gly Gly His Asp
260 265 270
Ala Lys Phe Ile Asp Ser Leu Gln Glu Asn Glu Phe Arg Leu Tyr Tyr
275 280 285
Tyr Asn Lys Phe Lys Asp Ile Ala Ser Thr Leu Asn Lys Ala Lys Ser
290 295 300
Ile Val Gly Thr Thr Ala Ser Leu Gln Tyr Met Lys Asn Val Phe Lys
305 310 315 320
Glu Lys Tyr Leu Leu Ser Glu Asp Thr Ser Gly Lys Phe Ser Val Asp
325 330 335
Lys Leu Lys Phe Asp Lys Leu Tyr Lys Met Leu Thr Glu Ile Tyr Thr
340 345 350
Glu Asp Asn Phe Val Lys Phe Phe Lys Val Leu Asn Arg Lys Thr Tyr
355 360 365
Leu Asn Phe Asp Lys Ala Val Phe Lys Ile Asn Ile Val Pro Lys Val
370 375 380
Asn Tyr Thr Ile Tyr Asp Gly Phe Asn Leu Arg Asn Thr Asn Leu Ala
385 390 395 400
Ala Asn Phe Asn Gly Gln Asn Thr Glu Ile Asn Asn Met Asn Phe Thr
405 410 415
Lys Leu Lys Asn Phe Thr Gly Leu Phe Glu Phe Tyr Lys Leu Leu Cys
420 425 430
Val Asp Gly Ile Ile Thr Ser Lys Thr Lys Ser Leu Ile Glu Gly Arg
435 440 445
Tyr Gly Gly Phe Met Thr Ser Glu Lys Ser Gln Thr Pro Leu Val Thr
450 455 460
Leu Phe Lys Asn Ala Ile Ile Lys Asn Ala Tyr Lys Lys Gly Glu Ala
465 470 475 480
Leu Ala Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly
485 490 495
Ser Ala Leu Val Leu Gln Cys Ile Lys Val Asn Asn Trp Asp Leu Phe
500 505 510
Phe Ser Pro Ser Glu Asp Asn Phe Thr Asn Asp Leu Asn Lys Gly Glu
515 520 525
Glu Ile Thr Ser Asp Thr Asn Ile Glu Ala Ala Glu Glu Asn Ile Ser
530 535 540
Leu Asp Leu Ile Gln Gln Tyr Tyr Leu Thr Phe Asn Phe Asp Asn Glu
545 550 555 560
Pro Glu Asn Ile Ser Ile Glu Asn Leu Ser Ser Asp Ile Ile Gly Gln
565 570 575
Leu Glu Leu Met Pro Asn Ile Glu Arg Phe Pro Asn Gly Lys Lys Tyr
580 585 590
Glu Leu Asp Lys Tyr Thr Met Phe His Tyr Leu Arg Ala Gln Glu Phe
595 600 605
Glu His Gly Lys Ser Arg Ile Ala Leu Thr Asn Ser Val Asn Glu Ala
610 615 620
Leu Leu Asn Pro Ser Arg Val Tyr Thr Phe Phe Ser Ser Asp Tyr Val
625 630 635 640
Lys Lys Val Asn Lys Ala Thr Glu Ala Ala Met Phe Leu Gly Trp Val
645 650 655
Glu Gln Leu Val Tyr Asp Phe Thr Asp Glu Thr Ser Glu Val Ser Thr
660 665 670
Thr Asp Lys Ile Ala Asp Ile Thr Ile Ile Ile Pro Tyr Ile Gly Pro
675 680 685
Ala Leu Asn Ile Gly Asn Met Leu Tyr Lys Asp Asp Phe Val Gly Ala
690 695 700
Leu Ile Phe Ser Gly Ala Val Ile Leu Leu Glu Phe Ile Pro Glu Ile
705 710 715 720
Ala Ile Pro Val Leu Gly Thr Phe Ala Leu Val Ser Tyr Ile Ala Asn
725 730 735
Lys Val Leu Thr Val Gln Thr Ile Asp Asn Ala Leu Ser Lys Arg Asn
740 745 750
Glu Lys Trp Asp Glu Val Tyr Lys Tyr Ile Val Thr Asn Trp Leu Ala
755 760 765
Lys Val Asn Thr Gln Ile Asp Leu Ile Arg Lys Lys Met Lys Glu Ala
770 775 780
Leu Glu Asn Gln Ala Glu Ala Thr Lys Ala Ile Ile Asn Tyr Gln Tyr
785 790 795 800
Asn Gln Tyr Thr Glu Glu Glu Lys Asn Asn Ile Asn Phe Asn Ile Asp
805 810 815
Asp Leu Ser Ser Lys Leu Asn Glu Ser Ile Asn Lys Ala Met Ile Asn
820 825 830
Ile Asn Lys Phe Leu Asn Gln Cys Ser Val Ser Tyr Leu Met Asn Ser
835 840 845
Met Ile Pro Tyr Gly Val Lys Arg Leu Glu Asp Phe Asp Ala Ser Leu
850 855 860
Lys Asp Ala Leu Leu Lys Tyr Ile Tyr Asp Asn Arg Gly Thr Leu Ile
865 870 875 880
Gly Gln Val Asp Arg Leu Lys Asp Lys Val Asn Asn Thr Leu Ser Thr
885 890 895
Asp Ile Pro Phe Gln Leu Ser Lys Tyr Val Asp Asn Gln Arg Leu Leu
900 905 910
Ser Thr Leu Asp
915
<210> SEQ ID NO 25
<211> LENGTH: 2709
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 25
ggatccatgg agttcgttaa caaacagttc aactataaag acccagttaa cggtgttgac 60
attgcttaca tcaaaatccc gaacgctggc cagatgcagc cggtaaaggc attcaaaatc 120
cacaacaaaa tctgggttat cccggaacgt gataccttta ctaacccgga agaaggtgac 180
ctgaacccgc caccggaagc gaaacaggtg ccggtatctt actatgactc cacctacctg 240
tctaccgata acgaaaagga caactacctg aaaggtgtta ctaaactgtt cgagcgtatt 300
tactccaccg acctgggccg tatgctgctg actagcatcg ttcgcggtat cccgttctgg 360
ggcggttcta ccatcgatac cgaactgaaa gtaatcgaca ctaactgcat caacgttatt 420
cagccggacg gttcctatcg ttccgaagaa ctgaacctgg tgatcatcgg cccgtctgct 480
gatatcatcc agttcgagtg taagagcttt ggtcacgaag ttctgaacct cacccgtaac 540
ggctacggtt ccactcagta catccgtttc tctccggact tcaccttcgg ttttgaagaa 600
tccctggaag tagacacgaa cccactgctg ggcgctggta aattcgcaac tgatcctgcg 660
gttaccctgg ctcacgaact gattcatgca ggccaccgcc tgtacggtat cgccatcaat 720
ccgaaccgtg tcttcaaagt taacaccaac gcgtattacg agatgtccgg tctggaagtt 780
agcttcgaag aactgcgtac ttttggcggt cacgacgcta aattcatcga ctctctgcaa 840
gaaaacgagt tccgtctgta ctactataac aagttcaaag atatcgcatc caccctgaac 900
aaagcgaaat ccatcgtggg taccactgct tctctccagt acatgaagaa cgtttttaaa 960
gaaaaatacc tgctcagcga agacacctcc ggcaaattct ctgtagacaa gttgaaattc 1020
gataaacttt acaaaatgct gactgaaatt tacaccgaag acaacttcgt taagttcttt 1080
aaagttctga accgcaaaac ctatctgaac ttcgacaagg cagtattcaa aatcaacatc 1140
gtgccgaaag ttaactacac tatctacgat ggtttcaacc tgcgtaacac caacctggct 1200
gctaatttta acggccagaa cacggaaatc aacaacatga acttcacaaa actgaaaaac 1260
ttcactggtc tgttcgagtt ttacaagctg ctgtgcgtcg acggcatcat tacctccaaa 1320
actaaatctc tgatagaagg tagatttggc ggtttcacgg gcgcacgcaa atcagcgcgt 1380
aaacgtaaga accaggcgct agcgggcggt ggcggtagcg gcggtggcgg tagcggcggt 1440
ggcggtagcg cactagtgct gcagtgtatc aaggttaaca actgggattt attcttcagc 1500
ccgagtgaag acaacttcac caacgacctg aacaaaggtg aagaaatcac ctcagatact 1560
aacatcgaag cagccgaaga aaacatctcg ctggacctga tccagcagta ctacctgacc 1620
tttaatttcg acaacgagcc ggaaaacatt tctatcgaaa acctgagctc tgatatcatc 1680
ggccagctgg aactgatgcc gaacatcgaa cgtttcccaa acggtaaaaa gtacgagctg 1740
gacaaatata ccatgttcca ctacctgcgc gcgcaggaat ttgaacacgg caaatcccgt 1800
atcgcactga ctaactccgt taacgaagct ctgctcaacc cgtcccgtgt atacaccttc 1860
ttctctagcg actacgtgaa aaaggtcaac aaagcgactg aagctgcaat gttcttgggt 1920
tgggttgaac agcttgttta tgattttacc gacgagacgt ccgaagtatc tactaccgac 1980
aaaattgcgg atatcactat catcatcccg tacatcggtc cggctctgaa cattggcaac 2040
atgctgtaca aagacgactt cgttggcgca ctgatcttct ccggtgcggt gatcctgctg 2100
gagttcatcc cggaaatcgc catcccggta ctgggcacct ttgctctggt ttcttacatt 2160
gcaaacaagg ttctgactgt acaaaccatc gacaacgcgc tgagcaaacg taacgaaaaa 2220
tgggatgaag tttacaaata tatcgtgacc aactggctgg ctaaggttaa tactcagatc 2280
gacctcatcc gcaaaaaaat gaaagaagca ctggaaaacc aggcggaagc taccaaggca 2340
atcattaact accagtacaa ccagtacacc gaggaagaaa aaaacaacat caacttcaac 2400
atcgacgatc tgtcctctaa actgaacgaa tccatcaaca aagctatgat caacatcaac 2460
aagttcctga accagtgctc tgtaagctat ctgatgaact ccatgatccc gtacggtgtt 2520
aaacgtctgg aggacttcga tgcgtctctg aaagacgccc tgctgaaata catttacgac 2580
aaccgtggca ctctgatcgg tcaggttgat cgtctgaagg acaaagtgaa caatacctta 2640
tcgaccgaca tcccttttca gctcagtaaa tatgtcgata accaacgcct tttgtccact 2700
ctagactag 2709
<210> SEQ ID NO 26
<211> LENGTH: 902
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 26
Gly Ser Met Glu Phe Val Asn Lys Gln Phe Asn Tyr Lys Asp Pro Val
1 5 10 15
Asn Gly Val Asp Ile Ala Tyr Ile Lys Ile Pro Asn Ala Gly Gln Met
20 25 30
Gln Pro Val Lys Ala Phe Lys Ile His Asn Lys Ile Trp Val Ile Pro
35 40 45
Glu Arg Asp Thr Phe Thr Asn Pro Glu Glu Gly Asp Leu Asn Pro Pro
50 55 60
Pro Glu Ala Lys Gln Val Pro Val Ser Tyr Tyr Asp Ser Thr Tyr Leu
65 70 75 80
Ser Thr Asp Asn Glu Lys Asp Asn Tyr Leu Lys Gly Val Thr Lys Leu
85 90 95
Phe Glu Arg Ile Tyr Ser Thr Asp Leu Gly Arg Met Leu Leu Thr Ser
100 105 110
Ile Val Arg Gly Ile Pro Phe Trp Gly Gly Ser Thr Ile Asp Thr Glu
115 120 125
Leu Lys Val Ile Asp Thr Asn Cys Ile Asn Val Ile Gln Pro Asp Gly
130 135 140
Ser Tyr Arg Ser Glu Glu Leu Asn Leu Val Ile Ile Gly Pro Ser Ala
145 150 155 160
Asp Ile Ile Gln Phe Glu Cys Lys Ser Phe Gly His Glu Val Leu Asn
165 170 175
Leu Thr Arg Asn Gly Tyr Gly Ser Thr Gln Tyr Ile Arg Phe Ser Pro
180 185 190
Asp Phe Thr Phe Gly Phe Glu Glu Ser Leu Glu Val Asp Thr Asn Pro
195 200 205
Leu Leu Gly Ala Gly Lys Phe Ala Thr Asp Pro Ala Val Thr Leu Ala
210 215 220
His Glu Leu Ile His Ala Gly His Arg Leu Tyr Gly Ile Ala Ile Asn
225 230 235 240
Pro Asn Arg Val Phe Lys Val Asn Thr Asn Ala Tyr Tyr Glu Met Ser
245 250 255
Gly Leu Glu Val Ser Phe Glu Glu Leu Arg Thr Phe Gly Gly His Asp
260 265 270
Ala Lys Phe Ile Asp Ser Leu Gln Glu Asn Glu Phe Arg Leu Tyr Tyr
275 280 285
Tyr Asn Lys Phe Lys Asp Ile Ala Ser Thr Leu Asn Lys Ala Lys Ser
290 295 300
Ile Val Gly Thr Thr Ala Ser Leu Gln Tyr Met Lys Asn Val Phe Lys
305 310 315 320
Glu Lys Tyr Leu Leu Ser Glu Asp Thr Ser Gly Lys Phe Ser Val Asp
325 330 335
Lys Leu Lys Phe Asp Lys Leu Tyr Lys Met Leu Thr Glu Ile Tyr Thr
340 345 350
Glu Asp Asn Phe Val Lys Phe Phe Lys Val Leu Asn Arg Lys Thr Tyr
355 360 365
Leu Asn Phe Asp Lys Ala Val Phe Lys Ile Asn Ile Val Pro Lys Val
370 375 380
Asn Tyr Thr Ile Tyr Asp Gly Phe Asn Leu Arg Asn Thr Asn Leu Ala
385 390 395 400
Ala Asn Phe Asn Gly Gln Asn Thr Glu Ile Asn Asn Met Asn Phe Thr
405 410 415
Lys Leu Lys Asn Phe Thr Gly Leu Phe Glu Phe Tyr Lys Leu Leu Cys
420 425 430
Val Asp Gly Ile Ile Thr Ser Lys Thr Lys Ser Leu Ile Glu Gly Arg
435 440 445
Phe Gly Gly Phe Thr Gly Ala Arg Lys Ser Ala Arg Lys Arg Lys Asn
450 455 460
Gln Ala Leu Ala Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly
465 470 475 480
Gly Gly Ser Ala Leu Val Leu Gln Cys Ile Lys Val Asn Asn Trp Asp
485 490 495
Leu Phe Phe Ser Pro Ser Glu Asp Asn Phe Thr Asn Asp Leu Asn Lys
500 505 510
Gly Glu Glu Ile Thr Ser Asp Thr Asn Ile Glu Ala Ala Glu Glu Asn
515 520 525
Ile Ser Leu Asp Leu Ile Gln Gln Tyr Tyr Leu Thr Phe Asn Phe Asp
530 535 540
Asn Glu Pro Glu Asn Ile Ser Ile Glu Asn Leu Ser Ser Asp Ile Ile
545 550 555 560
Gly Gln Leu Glu Leu Met Pro Asn Ile Glu Arg Phe Pro Asn Gly Lys
565 570 575
Lys Tyr Glu Leu Asp Lys Tyr Thr Met Phe His Tyr Leu Arg Ala Gln
580 585 590
Glu Phe Glu His Gly Lys Ser Arg Ile Ala Leu Thr Asn Ser Val Asn
595 600 605
Glu Ala Leu Leu Asn Pro Ser Arg Val Tyr Thr Phe Phe Ser Ser Asp
610 615 620
Tyr Val Lys Lys Val Asn Lys Ala Thr Glu Ala Ala Met Phe Leu Gly
625 630 635 640
Trp Val Glu Gln Leu Val Tyr Asp Phe Thr Asp Glu Thr Ser Glu Val
645 650 655
Ser Thr Thr Asp Lys Ile Ala Asp Ile Thr Ile Ile Ile Pro Tyr Ile
660 665 670
Gly Pro Ala Leu Asn Ile Gly Asn Met Leu Tyr Lys Asp Asp Phe Val
675 680 685
Gly Ala Leu Ile Phe Ser Gly Ala Val Ile Leu Leu Glu Phe Ile Pro
690 695 700
Glu Ile Ala Ile Pro Val Leu Gly Thr Phe Ala Leu Val Ser Tyr Ile
705 710 715 720
Ala Asn Lys Val Leu Thr Val Gln Thr Ile Asp Asn Ala Leu Ser Lys
725 730 735
Arg Asn Glu Lys Trp Asp Glu Val Tyr Lys Tyr Ile Val Thr Asn Trp
740 745 750
Leu Ala Lys Val Asn Thr Gln Ile Asp Leu Ile Arg Lys Lys Met Lys
755 760 765
Glu Ala Leu Glu Asn Gln Ala Glu Ala Thr Lys Ala Ile Ile Asn Tyr
770 775 780
Gln Tyr Asn Gln Tyr Thr Glu Glu Glu Lys Asn Asn Ile Asn Phe Asn
785 790 795 800
Ile Asp Asp Leu Ser Ser Lys Leu Asn Glu Ser Ile Asn Lys Ala Met
805 810 815
Ile Asn Ile Asn Lys Phe Leu Asn Gln Cys Ser Val Ser Tyr Leu Met
820 825 830
Asn Ser Met Ile Pro Tyr Gly Val Lys Arg Leu Glu Asp Phe Asp Ala
835 840 845
Ser Leu Lys Asp Ala Leu Leu Lys Tyr Ile Tyr Asp Asn Arg Gly Thr
850 855 860
Leu Ile Gly Gln Val Asp Arg Leu Lys Asp Lys Val Asn Asn Thr Leu
865 870 875 880
Ser Thr Asp Ile Pro Phe Gln Leu Ser Lys Tyr Val Asp Asn Gln Arg
885 890 895
Leu Leu Ser Thr Leu Asp
900
<210> SEQ ID NO 27
<211> LENGTH: 2691
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 27
ggatccatgg agttcgttaa caaacagttc aactataaag acccagttaa cggtgttgac 60
attgcttaca tcaaaatccc gaacgctggc cagatgcagc cggtaaaggc attcaaaatc 120
cacaacaaaa tctgggttat cccggaacgt gataccttta ctaacccgga agaaggtgac 180
ctgaacccgc caccggaagc gaaacaggtg ccggtatctt actatgactc cacctacctg 240
tctaccgata acgaaaagga caactacctg aaaggtgtta ctaaactgtt cgagcgtatt 300
tactccaccg acctgggccg tatgctgctg actagcatcg ttcgcggtat cccgttctgg 360
ggcggttcta ccatcgatac cgaactgaaa gtaatcgaca ctaactgcat caacgttatt 420
cagccggacg gttcctatcg ttccgaagaa ctgaacctgg tgatcatcgg cccgtctgct 480
gatatcatcc agttcgagtg taagagcttt ggtcacgaag ttctgaacct cacccgtaac 540
ggctacggtt ccactcagta catccgtttc tctccggact tcaccttcgg ttttgaagaa 600
tccctggaag tagacacgaa cccactgctg ggcgctggta aattcgcaac tgatcctgcg 660
gttaccctgg ctcacgaact gattcatgca ggccaccgcc tgtacggtat cgccatcaat 720
ccgaaccgtg tcttcaaagt taacaccaac gcgtattacg agatgtccgg tctggaagtt 780
agcttcgaag aactgcgtac ttttggcggt cacgacgcta aattcatcga ctctctgcaa 840
gaaaacgagt tccgtctgta ctactataac aagttcaaag atatcgcatc caccctgaac 900
aaagcgaaat ccatcgtggg taccactgct tctctccagt acatgaagaa cgtttttaaa 960
gaaaaatacc tgctcagcga agacacctcc ggcaaattct ctgtagacaa gttgaaattc 1020
gataaacttt acaaaatgct gactgaaatt tacaccgaag acaacttcgt taagttcttt 1080
aaagttctga accgcaaaac ctatctgaac ttcgacaagg cagtattcaa aatcaacatc 1140
gtgccgaaag ttaactacac tatctacgat ggtttcaacc tgcgtaacac caacctggct 1200
gctaatttta acggccagaa cacggaaatc aacaacatga acttcacaaa actgaaaaac 1260
ttcactggtc tgttcgagtt ttacaagctg ctgtgcgtcg acggcatcat tacctccaaa 1320
actaaatctc tgatagaagg tagatttggc ggtttcacgg gcgcacgcaa atcagcggcg 1380
ctagcgggcg gtggcggtag cggcggtggc ggtagcggcg gtggcggtag cgcactagtg 1440
ctgcagtgta tcaaggttaa caactgggat ttattcttca gcccgagtga agacaacttc 1500
accaacgacc tgaacaaagg tgaagaaatc acctcagata ctaacatcga agcagccgaa 1560
gaaaacatct cgctggacct gatccagcag tactacctga cctttaattt cgacaacgag 1620
ccggaaaaca tttctatcga aaacctgagc tctgatatca tcggccagct ggaactgatg 1680
ccgaacatcg aacgtttccc aaacggtaaa aagtacgagc tggacaaata taccatgttc 1740
cactacctgc gcgcgcagga atttgaacac ggcaaatccc gtatcgcact gactaactcc 1800
gttaacgaag ctctgctcaa cccgtcccgt gtatacacct tcttctctag cgactacgtg 1860
aaaaaggtca acaaagcgac tgaagctgca atgttcttgg gttgggttga acagcttgtt 1920
tatgatttta ccgacgagac gtccgaagta tctactaccg acaaaattgc ggatatcact 1980
atcatcatcc cgtacatcgg tccggctctg aacattggca acatgctgta caaagacgac 2040
ttcgttggcg cactgatctt ctccggtgcg gtgatcctgc tggagttcat cccggaaatc 2100
gccatcccgg tactgggcac ctttgctctg gtttcttaca ttgcaaacaa ggttctgact 2160
gtacaaacca tcgacaacgc gctgagcaaa cgtaacgaaa aatgggatga agtttacaaa 2220
tatatcgtga ccaactggct ggctaaggtt aatactcaga tcgacctcat ccgcaaaaaa 2280
atgaaagaag cactggaaaa ccaggcggaa gctaccaagg caatcattaa ctaccagtac 2340
aaccagtaca ccgaggaaga aaaaaacaac atcaacttca acatcgacga tctgtcctct 2400
aaactgaacg aatccatcaa caaagctatg atcaacatca acaagttcct gaaccagtgc 2460
tctgtaagct atctgatgaa ctccatgatc ccgtacggtg ttaaacgtct ggaggacttc 2520
gatgcgtctc tgaaagacgc cctgctgaaa tacatttacg acaaccgtgg cactctgatc 2580
ggtcaggttg atcgtctgaa ggacaaagtg aacaatacct tatcgaccga catccctttt 2640
cagctcagta aatatgtcga taaccaacgc cttttgtcca ctctagacta g 2691
<210> SEQ ID NO 28
<211> LENGTH: 896
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 28
Gly Ser Met Glu Phe Val Asn Lys Gln Phe Asn Tyr Lys Asp Pro Val
1 5 10 15
Asn Gly Val Asp Ile Ala Tyr Ile Lys Ile Pro Asn Ala Gly Gln Met
20 25 30
Gln Pro Val Lys Ala Phe Lys Ile His Asn Lys Ile Trp Val Ile Pro
35 40 45
Glu Arg Asp Thr Phe Thr Asn Pro Glu Glu Gly Asp Leu Asn Pro Pro
50 55 60
Pro Glu Ala Lys Gln Val Pro Val Ser Tyr Tyr Asp Ser Thr Tyr Leu
65 70 75 80
Ser Thr Asp Asn Glu Lys Asp Asn Tyr Leu Lys Gly Val Thr Lys Leu
85 90 95
Phe Glu Arg Ile Tyr Ser Thr Asp Leu Gly Arg Met Leu Leu Thr Ser
100 105 110
Ile Val Arg Gly Ile Pro Phe Trp Gly Gly Ser Thr Ile Asp Thr Glu
115 120 125
Leu Lys Val Ile Asp Thr Asn Cys Ile Asn Val Ile Gln Pro Asp Gly
130 135 140
Ser Tyr Arg Ser Glu Glu Leu Asn Leu Val Ile Ile Gly Pro Ser Ala
145 150 155 160
Asp Ile Ile Gln Phe Glu Cys Lys Ser Phe Gly His Glu Val Leu Asn
165 170 175
Leu Thr Arg Asn Gly Tyr Gly Ser Thr Gln Tyr Ile Arg Phe Ser Pro
180 185 190
Asp Phe Thr Phe Gly Phe Glu Glu Ser Leu Glu Val Asp Thr Asn Pro
195 200 205
Leu Leu Gly Ala Gly Lys Phe Ala Thr Asp Pro Ala Val Thr Leu Ala
210 215 220
His Glu Leu Ile His Ala Gly His Arg Leu Tyr Gly Ile Ala Ile Asn
225 230 235 240
Pro Asn Arg Val Phe Lys Val Asn Thr Asn Ala Tyr Tyr Glu Met Ser
245 250 255
Gly Leu Glu Val Ser Phe Glu Glu Leu Arg Thr Phe Gly Gly His Asp
260 265 270
Ala Lys Phe Ile Asp Ser Leu Gln Glu Asn Glu Phe Arg Leu Tyr Tyr
275 280 285
Tyr Asn Lys Phe Lys Asp Ile Ala Ser Thr Leu Asn Lys Ala Lys Ser
290 295 300
Ile Val Gly Thr Thr Ala Ser Leu Gln Tyr Met Lys Asn Val Phe Lys
305 310 315 320
Glu Lys Tyr Leu Leu Ser Glu Asp Thr Ser Gly Lys Phe Ser Val Asp
325 330 335
Lys Leu Lys Phe Asp Lys Leu Tyr Lys Met Leu Thr Glu Ile Tyr Thr
340 345 350
Glu Asp Asn Phe Val Lys Phe Phe Lys Val Leu Asn Arg Lys Thr Tyr
355 360 365
Leu Asn Phe Asp Lys Ala Val Phe Lys Ile Asn Ile Val Pro Lys Val
370 375 380
Asn Tyr Thr Ile Tyr Asp Gly Phe Asn Leu Arg Asn Thr Asn Leu Ala
385 390 395 400
Ala Asn Phe Asn Gly Gln Asn Thr Glu Ile Asn Asn Met Asn Phe Thr
405 410 415
Lys Leu Lys Asn Phe Thr Gly Leu Phe Glu Phe Tyr Lys Leu Leu Cys
420 425 430
Val Asp Gly Ile Ile Thr Ser Lys Thr Lys Ser Leu Ile Glu Gly Arg
435 440 445
Phe Gly Gly Phe Thr Gly Ala Arg Lys Ser Ala Ala Leu Ala Gly Gly
450 455 460
Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Ala Leu Val
465 470 475 480
Leu Gln Cys Ile Lys Val Asn Asn Trp Asp Leu Phe Phe Ser Pro Ser
485 490 495
Glu Asp Asn Phe Thr Asn Asp Leu Asn Lys Gly Glu Glu Ile Thr Ser
500 505 510
Asp Thr Asn Ile Glu Ala Ala Glu Glu Asn Ile Ser Leu Asp Leu Ile
515 520 525
Gln Gln Tyr Tyr Leu Thr Phe Asn Phe Asp Asn Glu Pro Glu Asn Ile
530 535 540
Ser Ile Glu Asn Leu Ser Ser Asp Ile Ile Gly Gln Leu Glu Leu Met
545 550 555 560
Pro Asn Ile Glu Arg Phe Pro Asn Gly Lys Lys Tyr Glu Leu Asp Lys
565 570 575
Tyr Thr Met Phe His Tyr Leu Arg Ala Gln Glu Phe Glu His Gly Lys
580 585 590
Ser Arg Ile Ala Leu Thr Asn Ser Val Asn Glu Ala Leu Leu Asn Pro
595 600 605
Ser Arg Val Tyr Thr Phe Phe Ser Ser Asp Tyr Val Lys Lys Val Asn
610 615 620
Lys Ala Thr Glu Ala Ala Met Phe Leu Gly Trp Val Glu Gln Leu Val
625 630 635 640
Tyr Asp Phe Thr Asp Glu Thr Ser Glu Val Ser Thr Thr Asp Lys Ile
645 650 655
Ala Asp Ile Thr Ile Ile Ile Pro Tyr Ile Gly Pro Ala Leu Asn Ile
660 665 670
Gly Asn Met Leu Tyr Lys Asp Asp Phe Val Gly Ala Leu Ile Phe Ser
675 680 685
Gly Ala Val Ile Leu Leu Glu Phe Ile Pro Glu Ile Ala Ile Pro Val
690 695 700
Leu Gly Thr Phe Ala Leu Val Ser Tyr Ile Ala Asn Lys Val Leu Thr
705 710 715 720
Val Gln Thr Ile Asp Asn Ala Leu Ser Lys Arg Asn Glu Lys Trp Asp
725 730 735
Glu Val Tyr Lys Tyr Ile Val Thr Asn Trp Leu Ala Lys Val Asn Thr
740 745 750
Gln Ile Asp Leu Ile Arg Lys Lys Met Lys Glu Ala Leu Glu Asn Gln
755 760 765
Ala Glu Ala Thr Lys Ala Ile Ile Asn Tyr Gln Tyr Asn Gln Tyr Thr
770 775 780
Glu Glu Glu Lys Asn Asn Ile Asn Phe Asn Ile Asp Asp Leu Ser Ser
785 790 795 800
Lys Leu Asn Glu Ser Ile Asn Lys Ala Met Ile Asn Ile Asn Lys Phe
805 810 815
Leu Asn Gln Cys Ser Val Ser Tyr Leu Met Asn Ser Met Ile Pro Tyr
820 825 830
Gly Val Lys Arg Leu Glu Asp Phe Asp Ala Ser Leu Lys Asp Ala Leu
835 840 845
Leu Lys Tyr Ile Tyr Asp Asn Arg Gly Thr Leu Ile Gly Gln Val Asp
850 855 860
Arg Leu Lys Asp Lys Val Asn Asn Thr Leu Ser Thr Asp Ile Pro Phe
865 870 875 880
Gln Leu Ser Lys Tyr Val Asp Asn Gln Arg Leu Leu Ser Thr Leu Asp
885 890 895
<210> SEQ ID NO 29
<211> LENGTH: 2691
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 29
ggatccatgg agttcgttaa caaacagttc aactataaag acccagttaa cggtgttgac 60
attgcttaca tcaaaatccc gaacgctggc cagatgcagc cggtaaaggc attcaaaatc 120
cacaacaaaa tctgggttat cccggaacgt gataccttta ctaacccgga agaaggtgac 180
ctgaacccgc caccggaagc gaaacaggtg ccggtatctt actatgactc cacctacctg 240
tctaccgata acgaaaagga caactacctg aaaggtgtta ctaaactgtt cgagcgtatt 300
tactccaccg acctgggccg tatgctgctg actagcatcg ttcgcggtat cccgttctgg 360
ggcggttcta ccatcgatac cgaactgaaa gtaatcgaca ctaactgcat caacgttatt 420
cagccggacg gttcctatcg ttccgaagaa ctgaacctgg tgatcatcgg cccgtctgct 480
gatatcatcc agttcgagtg taagagcttt ggtcacgaag ttctgaacct cacccgtaac 540
ggctacggtt ccactcagta catccgtttc tctccggact tcaccttcgg ttttgaagaa 600
tccctggaag tagacacgaa cccactgctg ggcgctggta aattcgcaac tgatcctgcg 660
gttaccctgg ctcacgaact gattcatgca ggccaccgcc tgtacggtat cgccatcaat 720
ccgaaccgtg tcttcaaagt taacaccaac gcgtattacg agatgtccgg tctggaagtt 780
agcttcgaag aactgcgtac ttttggcggt cacgacgcta aattcatcga ctctctgcaa 840
gaaaacgagt tccgtctgta ctactataac aagttcaaag atatcgcatc caccctgaac 900
aaagcgaaat ccatcgtggg taccactgct tctctccagt acatgaagaa cgtttttaaa 960
gaaaaatacc tgctcagcga agacacctcc ggcaaattct ctgtagacaa gttgaaattc 1020
gataaacttt acaaaatgct gactgaaatt tacaccgaag acaacttcgt taagttcttt 1080
aaagttctga accgcaaaac ctatctgaac ttcgacaagg cagtattcaa aatcaacatc 1140
gtgccgaaag ttaactacac tatctacgat ggtttcaacc tgcgtaacac caacctggct 1200
gctaatttta acggccagaa cacggaaatc aacaacatga acttcacaaa actgaaaaac 1260
ttcactggtc tgttcgagtt ttacaagctg ctgtgcgtcg acggcatcat tacctccaaa 1320
actaaatctc tgatagaagg tagatttggc ggtttcacgg gcgcacgcaa atatgcggcg 1380
ctagcgggcg gtggcggtag cggcggtggc ggtagcggcg gtggcggtag cgcactagtg 1440
ctgcagtgta tcaaggttaa caactgggat ttattcttca gcccgagtga agacaacttc 1500
accaacgacc tgaacaaagg tgaagaaatc acctcagata ctaacatcga agcagccgaa 1560
gaaaacatct cgctggacct gatccagcag tactacctga cctttaattt cgacaacgag 1620
ccggaaaaca tttctatcga aaacctgagc tctgatatca tcggccagct ggaactgatg 1680
ccgaacatcg aacgtttccc aaacggtaaa aagtacgagc tggacaaata taccatgttc 1740
cactacctgc gcgcgcagga atttgaacac ggcaaatccc gtatcgcact gactaactcc 1800
gttaacgaag ctctgctcaa cccgtcccgt gtatacacct tcttctctag cgactacgtg 1860
aaaaaggtca acaaagcgac tgaagctgca atgttcttgg gttgggttga acagcttgtt 1920
tatgatttta ccgacgagac gtccgaagta tctactaccg acaaaattgc ggatatcact 1980
atcatcatcc cgtacatcgg tccggctctg aacattggca acatgctgta caaagacgac 2040
ttcgttggcg cactgatctt ctccggtgcg gtgatcctgc tggagttcat cccggaaatc 2100
gccatcccgg tactgggcac ctttgctctg gtttcttaca ttgcaaacaa ggttctgact 2160
gtacaaacca tcgacaacgc gctgagcaaa cgtaacgaaa aatgggatga agtttacaaa 2220
tatatcgtga ccaactggct ggctaaggtt aatactcaga tcgacctcat ccgcaaaaaa 2280
atgaaagaag cactggaaaa ccaggcggaa gctaccaagg caatcattaa ctaccagtac 2340
aaccagtaca ccgaggaaga aaaaaacaac atcaacttca acatcgacga tctgtcctct 2400
aaactgaacg aatccatcaa caaagctatg atcaacatca acaagttcct gaaccagtgc 2460
tctgtaagct atctgatgaa ctccatgatc ccgtacggtg ttaaacgtct ggaggacttc 2520
gatgcgtctc tgaaagacgc cctgctgaaa tacatttacg acaaccgtgg cactctgatc 2580
ggtcaggttg atcgtctgaa ggacaaagtg aacaatacct tatcgaccga catccctttt 2640
cagctcagta aatatgtcga taaccaacgc cttttgtcca ctctagacta g 2691
<210> SEQ ID NO 30
<211> LENGTH: 896
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 30
Gly Ser Met Glu Phe Val Asn Lys Gln Phe Asn Tyr Lys Asp Pro Val
1 5 10 15
Asn Gly Val Asp Ile Ala Tyr Ile Lys Ile Pro Asn Ala Gly Gln Met
20 25 30
Gln Pro Val Lys Ala Phe Lys Ile His Asn Lys Ile Trp Val Ile Pro
35 40 45
Glu Arg Asp Thr Phe Thr Asn Pro Glu Glu Gly Asp Leu Asn Pro Pro
50 55 60
Pro Glu Ala Lys Gln Val Pro Val Ser Tyr Tyr Asp Ser Thr Tyr Leu
65 70 75 80
Ser Thr Asp Asn Glu Lys Asp Asn Tyr Leu Lys Gly Val Thr Lys Leu
85 90 95
Phe Glu Arg Ile Tyr Ser Thr Asp Leu Gly Arg Met Leu Leu Thr Ser
100 105 110
Ile Val Arg Gly Ile Pro Phe Trp Gly Gly Ser Thr Ile Asp Thr Glu
115 120 125
Leu Lys Val Ile Asp Thr Asn Cys Ile Asn Val Ile Gln Pro Asp Gly
130 135 140
Ser Tyr Arg Ser Glu Glu Leu Asn Leu Val Ile Ile Gly Pro Ser Ala
145 150 155 160
Asp Ile Ile Gln Phe Glu Cys Lys Ser Phe Gly His Glu Val Leu Asn
165 170 175
Leu Thr Arg Asn Gly Tyr Gly Ser Thr Gln Tyr Ile Arg Phe Ser Pro
180 185 190
Asp Phe Thr Phe Gly Phe Glu Glu Ser Leu Glu Val Asp Thr Asn Pro
195 200 205
Leu Leu Gly Ala Gly Lys Phe Ala Thr Asp Pro Ala Val Thr Leu Ala
210 215 220
His Glu Leu Ile His Ala Gly His Arg Leu Tyr Gly Ile Ala Ile Asn
225 230 235 240
Pro Asn Arg Val Phe Lys Val Asn Thr Asn Ala Tyr Tyr Glu Met Ser
245 250 255
Gly Leu Glu Val Ser Phe Glu Glu Leu Arg Thr Phe Gly Gly His Asp
260 265 270
Ala Lys Phe Ile Asp Ser Leu Gln Glu Asn Glu Phe Arg Leu Tyr Tyr
275 280 285
Tyr Asn Lys Phe Lys Asp Ile Ala Ser Thr Leu Asn Lys Ala Lys Ser
290 295 300
Ile Val Gly Thr Thr Ala Ser Leu Gln Tyr Met Lys Asn Val Phe Lys
305 310 315 320
Glu Lys Tyr Leu Leu Ser Glu Asp Thr Ser Gly Lys Phe Ser Val Asp
325 330 335
Lys Leu Lys Phe Asp Lys Leu Tyr Lys Met Leu Thr Glu Ile Tyr Thr
340 345 350
Glu Asp Asn Phe Val Lys Phe Phe Lys Val Leu Asn Arg Lys Thr Tyr
355 360 365
Leu Asn Phe Asp Lys Ala Val Phe Lys Ile Asn Ile Val Pro Lys Val
370 375 380
Asn Tyr Thr Ile Tyr Asp Gly Phe Asn Leu Arg Asn Thr Asn Leu Ala
385 390 395 400
Ala Asn Phe Asn Gly Gln Asn Thr Glu Ile Asn Asn Met Asn Phe Thr
405 410 415
Lys Leu Lys Asn Phe Thr Gly Leu Phe Glu Phe Tyr Lys Leu Leu Cys
420 425 430
Val Asp Gly Ile Ile Thr Ser Lys Thr Lys Ser Leu Ile Glu Gly Arg
435 440 445
Phe Gly Gly Phe Thr Gly Ala Arg Lys Tyr Ala Ala Leu Ala Gly Gly
450 455 460
Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Ala Leu Val
465 470 475 480
Leu Gln Cys Ile Lys Val Asn Asn Trp Asp Leu Phe Phe Ser Pro Ser
485 490 495
Glu Asp Asn Phe Thr Asn Asp Leu Asn Lys Gly Glu Glu Ile Thr Ser
500 505 510
Asp Thr Asn Ile Glu Ala Ala Glu Glu Asn Ile Ser Leu Asp Leu Ile
515 520 525
Gln Gln Tyr Tyr Leu Thr Phe Asn Phe Asp Asn Glu Pro Glu Asn Ile
530 535 540
Ser Ile Glu Asn Leu Ser Ser Asp Ile Ile Gly Gln Leu Glu Leu Met
545 550 555 560
Pro Asn Ile Glu Arg Phe Pro Asn Gly Lys Lys Tyr Glu Leu Asp Lys
565 570 575
Tyr Thr Met Phe His Tyr Leu Arg Ala Gln Glu Phe Glu His Gly Lys
580 585 590
Ser Arg Ile Ala Leu Thr Asn Ser Val Asn Glu Ala Leu Leu Asn Pro
595 600 605
Ser Arg Val Tyr Thr Phe Phe Ser Ser Asp Tyr Val Lys Lys Val Asn
610 615 620
Lys Ala Thr Glu Ala Ala Met Phe Leu Gly Trp Val Glu Gln Leu Val
625 630 635 640
Tyr Asp Phe Thr Asp Glu Thr Ser Glu Val Ser Thr Thr Asp Lys Ile
645 650 655
Ala Asp Ile Thr Ile Ile Ile Pro Tyr Ile Gly Pro Ala Leu Asn Ile
660 665 670
Gly Asn Met Leu Tyr Lys Asp Asp Phe Val Gly Ala Leu Ile Phe Ser
675 680 685
Gly Ala Val Ile Leu Leu Glu Phe Ile Pro Glu Ile Ala Ile Pro Val
690 695 700
Leu Gly Thr Phe Ala Leu Val Ser Tyr Ile Ala Asn Lys Val Leu Thr
705 710 715 720
Val Gln Thr Ile Asp Asn Ala Leu Ser Lys Arg Asn Glu Lys Trp Asp
725 730 735
Glu Val Tyr Lys Tyr Ile Val Thr Asn Trp Leu Ala Lys Val Asn Thr
740 745 750
Gln Ile Asp Leu Ile Arg Lys Lys Met Lys Glu Ala Leu Glu Asn Gln
755 760 765
Ala Glu Ala Thr Lys Ala Ile Ile Asn Tyr Gln Tyr Asn Gln Tyr Thr
770 775 780
Glu Glu Glu Lys Asn Asn Ile Asn Phe Asn Ile Asp Asp Leu Ser Ser
785 790 795 800
Lys Leu Asn Glu Ser Ile Asn Lys Ala Met Ile Asn Ile Asn Lys Phe
805 810 815
Leu Asn Gln Cys Ser Val Ser Tyr Leu Met Asn Ser Met Ile Pro Tyr
820 825 830
Gly Val Lys Arg Leu Glu Asp Phe Asp Ala Ser Leu Lys Asp Ala Leu
835 840 845
Leu Lys Tyr Ile Tyr Asp Asn Arg Gly Thr Leu Ile Gly Gln Val Asp
850 855 860
Arg Leu Lys Asp Lys Val Asn Asn Thr Leu Ser Thr Asp Ile Pro Phe
865 870 875 880
Gln Leu Ser Lys Tyr Val Asp Asn Gln Arg Leu Leu Ser Thr Leu Asp
885 890 895
<210> SEQ ID NO 31
<211> LENGTH: 2691
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 31
ggatccatgg agttcgttaa caaacagttc aactataaag acccagttaa cggtgttgac 60
attgcttaca tcaaaatccc gaacgctggc cagatgcagc cggtaaaggc attcaaaatc 120
cacaacaaaa tctgggttat cccggaacgt gataccttta ctaacccgga agaaggtgac 180
ctgaacccgc caccggaagc gaaacaggtg ccggtatctt actatgactc cacctacctg 240
tctaccgata acgaaaagga caactacctg aaaggtgtta ctaaactgtt cgagcgtatt 300
tactccaccg acctgggccg tatgctgctg actagcatcg ttcgcggtat cccgttctgg 360
ggcggttcta ccatcgatac cgaactgaaa gtaatcgaca ctaactgcat caacgttatt 420
cagccggacg gttcctatcg ttccgaagaa ctgaacctgg tgatcatcgg cccgtctgct 480
gatatcatcc agttcgagtg taagagcttt ggtcacgaag ttctgaacct cacccgtaac 540
ggctacggtt ccactcagta catccgtttc tctccggact tcaccttcgg ttttgaagaa 600
tccctggaag tagacacgaa cccactgctg ggcgctggta aattcgcaac tgatcctgcg 660
gttaccctgg ctcacgaact gattcatgca ggccaccgcc tgtacggtat cgccatcaat 720
ccgaaccgtg tcttcaaagt taacaccaac gcgtattacg agatgtccgg tctggaagtt 780
agcttcgaag aactgcgtac ttttggcggt cacgacgcta aattcatcga ctctctgcaa 840
gaaaacgagt tccgtctgta ctactataac aagttcaaag atatcgcatc caccctgaac 900
aaagcgaaat ccatcgtggg taccactgct tctctccagt acatgaagaa cgtttttaaa 960
gaaaaatacc tgctcagcga agacacctcc ggcaaattct ctgtagacaa gttgaaattc 1020
gataaacttt acaaaatgct gactgaaatt tacaccgaag acaacttcgt taagttcttt 1080
aaagttctga accgcaaaac ctatctgaac ttcgacaagg cagtattcaa aatcaacatc 1140
gtgccgaaag ttaactacac tatctacgat ggtttcaacc tgcgtaacac caacctggct 1200
gctaatttta acggccagaa cacggaaatc aacaacatga acttcacaaa actgaaaaac 1260
ttcactggtc tgttcgagtt ttacaagctg ctgtgcgtcg acggcatcat tacctccaaa 1320
actaaatctc tgatagaagg tagatttggc ggtttcacgg gcgcacgcaa atcatatgcg 1380
ctagcgggcg gtggcggtag cggcggtggc ggtagcggcg gtggcggtag cgcactagtg 1440
ctgcagtgta tcaaggttaa caactgggat ttattcttca gcccgagtga agacaacttc 1500
accaacgacc tgaacaaagg tgaagaaatc acctcagata ctaacatcga agcagccgaa 1560
gaaaacatct cgctggacct gatccagcag tactacctga cctttaattt cgacaacgag 1620
ccggaaaaca tttctatcga aaacctgagc tctgatatca tcggccagct ggaactgatg 1680
ccgaacatcg aacgtttccc aaacggtaaa aagtacgagc tggacaaata taccatgttc 1740
cactacctgc gcgcgcagga atttgaacac ggcaaatccc gtatcgcact gactaactcc 1800
gttaacgaag ctctgctcaa cccgtcccgt gtatacacct tcttctctag cgactacgtg 1860
aaaaaggtca acaaagcgac tgaagctgca atgttcttgg gttgggttga acagcttgtt 1920
tatgatttta ccgacgagac gtccgaagta tctactaccg acaaaattgc ggatatcact 1980
atcatcatcc cgtacatcgg tccggctctg aacattggca acatgctgta caaagacgac 2040
ttcgttggcg cactgatctt ctccggtgcg gtgatcctgc tggagttcat cccggaaatc 2100
gccatcccgg tactgggcac ctttgctctg gtttcttaca ttgcaaacaa ggttctgact 2160
gtacaaacca tcgacaacgc gctgagcaaa cgtaacgaaa aatgggatga agtttacaaa 2220
tatatcgtga ccaactggct ggctaaggtt aatactcaga tcgacctcat ccgcaaaaaa 2280
atgaaagaag cactggaaaa ccaggcggaa gctaccaagg caatcattaa ctaccagtac 2340
aaccagtaca ccgaggaaga aaaaaacaac atcaacttca acatcgacga tctgtcctct 2400
aaactgaacg aatccatcaa caaagctatg atcaacatca acaagttcct gaaccagtgc 2460
tctgtaagct atctgatgaa ctccatgatc ccgtacggtg ttaaacgtct ggaggacttc 2520
gatgcgtctc tgaaagacgc cctgctgaaa tacatttacg acaaccgtgg cactctgatc 2580
ggtcaggttg atcgtctgaa ggacaaagtg aacaatacct tatcgaccga catccctttt 2640
cagctcagta aatatgtcga taaccaacgc cttttgtcca ctctagacta g 2691
<210> SEQ ID NO 32
<211> LENGTH: 896
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 32
Gly Ser Met Glu Phe Val Asn Lys Gln Phe Asn Tyr Lys Asp Pro Val
1 5 10 15
Asn Gly Val Asp Ile Ala Tyr Ile Lys Ile Pro Asn Ala Gly Gln Met
20 25 30
Gln Pro Val Lys Ala Phe Lys Ile His Asn Lys Ile Trp Val Ile Pro
35 40 45
Glu Arg Asp Thr Phe Thr Asn Pro Glu Glu Gly Asp Leu Asn Pro Pro
50 55 60
Pro Glu Ala Lys Gln Val Pro Val Ser Tyr Tyr Asp Ser Thr Tyr Leu
65 70 75 80
Ser Thr Asp Asn Glu Lys Asp Asn Tyr Leu Lys Gly Val Thr Lys Leu
85 90 95
Phe Glu Arg Ile Tyr Ser Thr Asp Leu Gly Arg Met Leu Leu Thr Ser
100 105 110
Ile Val Arg Gly Ile Pro Phe Trp Gly Gly Ser Thr Ile Asp Thr Glu
115 120 125
Leu Lys Val Ile Asp Thr Asn Cys Ile Asn Val Ile Gln Pro Asp Gly
130 135 140
Ser Tyr Arg Ser Glu Glu Leu Asn Leu Val Ile Ile Gly Pro Ser Ala
145 150 155 160
Asp Ile Ile Gln Phe Glu Cys Lys Ser Phe Gly His Glu Val Leu Asn
165 170 175
Leu Thr Arg Asn Gly Tyr Gly Ser Thr Gln Tyr Ile Arg Phe Ser Pro
180 185 190
Asp Phe Thr Phe Gly Phe Glu Glu Ser Leu Glu Val Asp Thr Asn Pro
195 200 205
Leu Leu Gly Ala Gly Lys Phe Ala Thr Asp Pro Ala Val Thr Leu Ala
210 215 220
His Glu Leu Ile His Ala Gly His Arg Leu Tyr Gly Ile Ala Ile Asn
225 230 235 240
Pro Asn Arg Val Phe Lys Val Asn Thr Asn Ala Tyr Tyr Glu Met Ser
245 250 255
Gly Leu Glu Val Ser Phe Glu Glu Leu Arg Thr Phe Gly Gly His Asp
260 265 270
Ala Lys Phe Ile Asp Ser Leu Gln Glu Asn Glu Phe Arg Leu Tyr Tyr
275 280 285
Tyr Asn Lys Phe Lys Asp Ile Ala Ser Thr Leu Asn Lys Ala Lys Ser
290 295 300
Ile Val Gly Thr Thr Ala Ser Leu Gln Tyr Met Lys Asn Val Phe Lys
305 310 315 320
Glu Lys Tyr Leu Leu Ser Glu Asp Thr Ser Gly Lys Phe Ser Val Asp
325 330 335
Lys Leu Lys Phe Asp Lys Leu Tyr Lys Met Leu Thr Glu Ile Tyr Thr
340 345 350
Glu Asp Asn Phe Val Lys Phe Phe Lys Val Leu Asn Arg Lys Thr Tyr
355 360 365
Leu Asn Phe Asp Lys Ala Val Phe Lys Ile Asn Ile Val Pro Lys Val
370 375 380
Asn Tyr Thr Ile Tyr Asp Gly Phe Asn Leu Arg Asn Thr Asn Leu Ala
385 390 395 400
Ala Asn Phe Asn Gly Gln Asn Thr Glu Ile Asn Asn Met Asn Phe Thr
405 410 415
Lys Leu Lys Asn Phe Thr Gly Leu Phe Glu Phe Tyr Lys Leu Leu Cys
420 425 430
Val Asp Gly Ile Ile Thr Ser Lys Thr Lys Ser Leu Ile Glu Gly Arg
435 440 445
Phe Gly Gly Phe Thr Gly Ala Arg Lys Ser Tyr Ala Leu Ala Gly Gly
450 455 460
Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Ala Leu Val
465 470 475 480
Leu Gln Cys Ile Lys Val Asn Asn Trp Asp Leu Phe Phe Ser Pro Ser
485 490 495
Glu Asp Asn Phe Thr Asn Asp Leu Asn Lys Gly Glu Glu Ile Thr Ser
500 505 510
Asp Thr Asn Ile Glu Ala Ala Glu Glu Asn Ile Ser Leu Asp Leu Ile
515 520 525
Gln Gln Tyr Tyr Leu Thr Phe Asn Phe Asp Asn Glu Pro Glu Asn Ile
530 535 540
Ser Ile Glu Asn Leu Ser Ser Asp Ile Ile Gly Gln Leu Glu Leu Met
545 550 555 560
Pro Asn Ile Glu Arg Phe Pro Asn Gly Lys Lys Tyr Glu Leu Asp Lys
565 570 575
Tyr Thr Met Phe His Tyr Leu Arg Ala Gln Glu Phe Glu His Gly Lys
580 585 590
Ser Arg Ile Ala Leu Thr Asn Ser Val Asn Glu Ala Leu Leu Asn Pro
595 600 605
Ser Arg Val Tyr Thr Phe Phe Ser Ser Asp Tyr Val Lys Lys Val Asn
610 615 620
Lys Ala Thr Glu Ala Ala Met Phe Leu Gly Trp Val Glu Gln Leu Val
625 630 635 640
Tyr Asp Phe Thr Asp Glu Thr Ser Glu Val Ser Thr Thr Asp Lys Ile
645 650 655
Ala Asp Ile Thr Ile Ile Ile Pro Tyr Ile Gly Pro Ala Leu Asn Ile
660 665 670
Gly Asn Met Leu Tyr Lys Asp Asp Phe Val Gly Ala Leu Ile Phe Ser
675 680 685
Gly Ala Val Ile Leu Leu Glu Phe Ile Pro Glu Ile Ala Ile Pro Val
690 695 700
Leu Gly Thr Phe Ala Leu Val Ser Tyr Ile Ala Asn Lys Val Leu Thr
705 710 715 720
Val Gln Thr Ile Asp Asn Ala Leu Ser Lys Arg Asn Glu Lys Trp Asp
725 730 735
Glu Val Tyr Lys Tyr Ile Val Thr Asn Trp Leu Ala Lys Val Asn Thr
740 745 750
Gln Ile Asp Leu Ile Arg Lys Lys Met Lys Glu Ala Leu Glu Asn Gln
755 760 765
Ala Glu Ala Thr Lys Ala Ile Ile Asn Tyr Gln Tyr Asn Gln Tyr Thr
770 775 780
Glu Glu Glu Lys Asn Asn Ile Asn Phe Asn Ile Asp Asp Leu Ser Ser
785 790 795 800
Lys Leu Asn Glu Ser Ile Asn Lys Ala Met Ile Asn Ile Asn Lys Phe
805 810 815
Leu Asn Gln Cys Ser Val Ser Tyr Leu Met Asn Ser Met Ile Pro Tyr
820 825 830
Gly Val Lys Arg Leu Glu Asp Phe Asp Ala Ser Leu Lys Asp Ala Leu
835 840 845
Leu Lys Tyr Ile Tyr Asp Asn Arg Gly Thr Leu Ile Gly Gln Val Asp
850 855 860
Arg Leu Lys Asp Lys Val Asn Asn Thr Leu Ser Thr Asp Ile Pro Phe
865 870 875 880
Gln Leu Ser Lys Tyr Val Asp Asn Gln Arg Leu Leu Ser Thr Leu Asp
885 890 895
<210> SEQ ID NO 33
<211> LENGTH: 2709
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 33
ggatccatgg agttcgttaa caaacagttc aactataaag acccagttaa cggtgttgac 60
attgcttaca tcaaaatccc gaacgctggc cagatgcagc cggtaaaggc attcaaaatc 120
cacaacaaaa tctgggttat cccggaacgt gataccttta ctaacccgga agaaggtgac 180
ctgaacccgc caccggaagc gaaacaggtg ccggtatctt actatgactc cacctacctg 240
tctaccgata acgaaaagga caactacctg aaaggtgtta ctaaactgtt cgagcgtatt 300
tactccaccg acctgggccg tatgctgctg actagcatcg ttcgcggtat cccgttctgg 360
ggcggttcta ccatcgatac cgaactgaaa gtaatcgaca ctaactgcat caacgttatt 420
cagccggacg gttcctatcg ttccgaagaa ctgaacctgg tgatcatcgg cccgtctgct 480
gatatcatcc agttcgagtg taagagcttt ggtcacgaag ttctgaacct cacccgtaac 540
ggctacggtt ccactcagta catccgtttc tctccggact tcaccttcgg ttttgaagaa 600
tccctggaag tagacacgaa cccactgctg ggcgctggta aattcgcaac tgatcctgcg 660
gttaccctgg ctcacgaact gattcatgca ggccaccgcc tgtacggtat cgccatcaat 720
ccgaaccgtg tcttcaaagt taacaccaac gcgtattacg agatgtccgg tctggaagtt 780
agcttcgaag aactgcgtac ttttggcggt cacgacgcta aattcatcga ctctctgcaa 840
gaaaacgagt tccgtctgta ctactataac aagttcaaag atatcgcatc caccctgaac 900
aaagcgaaat ccatcgtggg taccactgct tctctccagt acatgaagaa cgtttttaaa 960
gaaaaatacc tgctcagcga agacacctcc ggcaaattct ctgtagacaa gttgaaattc 1020
gataaacttt acaaaatgct gactgaaatt tacaccgaag acaacttcgt taagttcttt 1080
aaagttctga accgcaaaac ctatctgaac ttcgacaagg cagtattcaa aatcaacatc 1140
gtgccgaaag ttaactacac tatctacgat ggtttcaacc tgcgtaacac caacctggct 1200
gctaatttta acggccagaa cacggaaatc aacaacatga acttcacaaa actgaaaaac 1260
ttcactggtc tgttcgagtt ttacaagctg ctgtgcgtcg acggcatcat tacctccaaa 1320
actaaatctc tgatagaagg tagatttggc ggtttcacgg gcgcacgcaa atcagcgcgt 1380
aaatatgcta accaggcgct agcgggcggt ggcggtagcg gcggtggcgg tagcggcggt 1440
ggcggtagcg cactagtgct gcagtgtatc aaggttaaca actgggattt attcttcagc 1500
ccgagtgaag acaacttcac caacgacctg aacaaaggtg aagaaatcac ctcagatact 1560
aacatcgaag cagccgaaga aaacatctcg ctggacctga tccagcagta ctacctgacc 1620
tttaatttcg acaacgagcc ggaaaacatt tctatcgaaa acctgagctc tgatatcatc 1680
ggccagctgg aactgatgcc gaacatcgaa cgtttcccaa acggtaaaaa gtacgagctg 1740
gacaaatata ccatgttcca ctacctgcgc gcgcaggaat ttgaacacgg caaatcccgt 1800
atcgcactga ctaactccgt taacgaagct ctgctcaacc cgtcccgtgt atacaccttc 1860
ttctctagcg actacgtgaa aaaggtcaac aaagcgactg aagctgcaat gttcttgggt 1920
tgggttgaac agcttgttta tgattttacc gacgagacgt ccgaagtatc tactaccgac 1980
aaaattgcgg atatcactat catcatcccg tacatcggtc cggctctgaa cattggcaac 2040
atgctgtaca aagacgactt cgttggcgca ctgatcttct ccggtgcggt gatcctgctg 2100
gagttcatcc cggaaatcgc catcccggta ctgggcacct ttgctctggt ttcttacatt 2160
gcaaacaagg ttctgactgt acaaaccatc gacaacgcgc tgagcaaacg taacgaaaaa 2220
tgggatgaag tttacaaata tatcgtgacc aactggctgg ctaaggttaa tactcagatc 2280
gacctcatcc gcaaaaaaat gaaagaagca ctggaaaacc aggcggaagc taccaaggca 2340
atcattaact accagtacaa ccagtacacc gaggaagaaa aaaacaacat caacttcaac 2400
atcgacgatc tgtcctctaa actgaacgaa tccatcaaca aagctatgat caacatcaac 2460
aagttcctga accagtgctc tgtaagctat ctgatgaact ccatgatccc gtacggtgtt 2520
aaacgtctgg aggacttcga tgcgtctctg aaagacgccc tgctgaaata catttacgac 2580
aaccgtggca ctctgatcgg tcaggttgat cgtctgaagg acaaagtgaa caatacctta 2640
tcgaccgaca tcccttttca gctcagtaaa tatgtcgata accaacgcct tttgtccact 2700
ctagactag 2709
<210> SEQ ID NO 34
<211> LENGTH: 902
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 34
Gly Ser Met Glu Phe Val Asn Lys Gln Phe Asn Tyr Lys Asp Pro Val
1 5 10 15
Asn Gly Val Asp Ile Ala Tyr Ile Lys Ile Pro Asn Ala Gly Gln Met
20 25 30
Gln Pro Val Lys Ala Phe Lys Ile His Asn Lys Ile Trp Val Ile Pro
35 40 45
Glu Arg Asp Thr Phe Thr Asn Pro Glu Glu Gly Asp Leu Asn Pro Pro
50 55 60
Pro Glu Ala Lys Gln Val Pro Val Ser Tyr Tyr Asp Ser Thr Tyr Leu
65 70 75 80
Ser Thr Asp Asn Glu Lys Asp Asn Tyr Leu Lys Gly Val Thr Lys Leu
85 90 95
Phe Glu Arg Ile Tyr Ser Thr Asp Leu Gly Arg Met Leu Leu Thr Ser
100 105 110
Ile Val Arg Gly Ile Pro Phe Trp Gly Gly Ser Thr Ile Asp Thr Glu
115 120 125
Leu Lys Val Ile Asp Thr Asn Cys Ile Asn Val Ile Gln Pro Asp Gly
130 135 140
Ser Tyr Arg Ser Glu Glu Leu Asn Leu Val Ile Ile Gly Pro Ser Ala
145 150 155 160
Asp Ile Ile Gln Phe Glu Cys Lys Ser Phe Gly His Glu Val Leu Asn
165 170 175
Leu Thr Arg Asn Gly Tyr Gly Ser Thr Gln Tyr Ile Arg Phe Ser Pro
180 185 190
Asp Phe Thr Phe Gly Phe Glu Glu Ser Leu Glu Val Asp Thr Asn Pro
195 200 205
Leu Leu Gly Ala Gly Lys Phe Ala Thr Asp Pro Ala Val Thr Leu Ala
210 215 220
His Glu Leu Ile His Ala Gly His Arg Leu Tyr Gly Ile Ala Ile Asn
225 230 235 240
Pro Asn Arg Val Phe Lys Val Asn Thr Asn Ala Tyr Tyr Glu Met Ser
245 250 255
Gly Leu Glu Val Ser Phe Glu Glu Leu Arg Thr Phe Gly Gly His Asp
260 265 270
Ala Lys Phe Ile Asp Ser Leu Gln Glu Asn Glu Phe Arg Leu Tyr Tyr
275 280 285
Tyr Asn Lys Phe Lys Asp Ile Ala Ser Thr Leu Asn Lys Ala Lys Ser
290 295 300
Ile Val Gly Thr Thr Ala Ser Leu Gln Tyr Met Lys Asn Val Phe Lys
305 310 315 320
Glu Lys Tyr Leu Leu Ser Glu Asp Thr Ser Gly Lys Phe Ser Val Asp
325 330 335
Lys Leu Lys Phe Asp Lys Leu Tyr Lys Met Leu Thr Glu Ile Tyr Thr
340 345 350
Glu Asp Asn Phe Val Lys Phe Phe Lys Val Leu Asn Arg Lys Thr Tyr
355 360 365
Leu Asn Phe Asp Lys Ala Val Phe Lys Ile Asn Ile Val Pro Lys Val
370 375 380
Asn Tyr Thr Ile Tyr Asp Gly Phe Asn Leu Arg Asn Thr Asn Leu Ala
385 390 395 400
Ala Asn Phe Asn Gly Gln Asn Thr Glu Ile Asn Asn Met Asn Phe Thr
405 410 415
Lys Leu Lys Asn Phe Thr Gly Leu Phe Glu Phe Tyr Lys Leu Leu Cys
420 425 430
Val Asp Gly Ile Ile Thr Ser Lys Thr Lys Ser Leu Ile Glu Gly Arg
435 440 445
Phe Gly Gly Phe Thr Gly Ala Arg Lys Ser Ala Arg Lys Tyr Ala Asn
450 455 460
Gln Ala Leu Ala Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly
465 470 475 480
Gly Gly Ser Ala Leu Val Leu Gln Cys Ile Lys Val Asn Asn Trp Asp
485 490 495
Leu Phe Phe Ser Pro Ser Glu Asp Asn Phe Thr Asn Asp Leu Asn Lys
500 505 510
Gly Glu Glu Ile Thr Ser Asp Thr Asn Ile Glu Ala Ala Glu Glu Asn
515 520 525
Ile Ser Leu Asp Leu Ile Gln Gln Tyr Tyr Leu Thr Phe Asn Phe Asp
530 535 540
Asn Glu Pro Glu Asn Ile Ser Ile Glu Asn Leu Ser Ser Asp Ile Ile
545 550 555 560
Gly Gln Leu Glu Leu Met Pro Asn Ile Glu Arg Phe Pro Asn Gly Lys
565 570 575
Lys Tyr Glu Leu Asp Lys Tyr Thr Met Phe His Tyr Leu Arg Ala Gln
580 585 590
Glu Phe Glu His Gly Lys Ser Arg Ile Ala Leu Thr Asn Ser Val Asn
595 600 605
Glu Ala Leu Leu Asn Pro Ser Arg Val Tyr Thr Phe Phe Ser Ser Asp
610 615 620
Tyr Val Lys Lys Val Asn Lys Ala Thr Glu Ala Ala Met Phe Leu Gly
625 630 635 640
Trp Val Glu Gln Leu Val Tyr Asp Phe Thr Asp Glu Thr Ser Glu Val
645 650 655
Ser Thr Thr Asp Lys Ile Ala Asp Ile Thr Ile Ile Ile Pro Tyr Ile
660 665 670
Gly Pro Ala Leu Asn Ile Gly Asn Met Leu Tyr Lys Asp Asp Phe Val
675 680 685
Gly Ala Leu Ile Phe Ser Gly Ala Val Ile Leu Leu Glu Phe Ile Pro
690 695 700
Glu Ile Ala Ile Pro Val Leu Gly Thr Phe Ala Leu Val Ser Tyr Ile
705 710 715 720
Ala Asn Lys Val Leu Thr Val Gln Thr Ile Asp Asn Ala Leu Ser Lys
725 730 735
Arg Asn Glu Lys Trp Asp Glu Val Tyr Lys Tyr Ile Val Thr Asn Trp
740 745 750
Leu Ala Lys Val Asn Thr Gln Ile Asp Leu Ile Arg Lys Lys Met Lys
755 760 765
Glu Ala Leu Glu Asn Gln Ala Glu Ala Thr Lys Ala Ile Ile Asn Tyr
770 775 780
Gln Tyr Asn Gln Tyr Thr Glu Glu Glu Lys Asn Asn Ile Asn Phe Asn
785 790 795 800
Ile Asp Asp Leu Ser Ser Lys Leu Asn Glu Ser Ile Asn Lys Ala Met
805 810 815
Ile Asn Ile Asn Lys Phe Leu Asn Gln Cys Ser Val Ser Tyr Leu Met
820 825 830
Asn Ser Met Ile Pro Tyr Gly Val Lys Arg Leu Glu Asp Phe Asp Ala
835 840 845
Ser Leu Lys Asp Ala Leu Leu Lys Tyr Ile Tyr Asp Asn Arg Gly Thr
850 855 860
Leu Ile Gly Gln Val Asp Arg Leu Lys Asp Lys Val Asn Asn Thr Leu
865 870 875 880
Ser Thr Asp Ile Pro Phe Gln Leu Ser Lys Tyr Val Asp Asn Gln Arg
885 890 895
Leu Leu Ser Thr Leu Asp
900
<210> SEQ ID NO 35
<211> LENGTH: 2697
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 35
ggatccatgg agttcgttaa caaacagttc aactataaag acccagttaa cggtgttgac 60
attgcttaca tcaaaatccc gaacgctggc cagatgcagc cggtaaaggc attcaaaatc 120
cacaacaaaa tctgggttat cccggaacgt gataccttta ctaacccgga agaaggtgac 180
ctgaacccgc caccggaagc gaaacaggtg ccggtatctt actatgactc cacctacctg 240
tctaccgata acgaaaagga caactacctg aaaggtgtta ctaaactgtt cgagcgtatt 300
tactccaccg acctgggccg tatgctgctg actagcatcg ttcgcggtat cccgttctgg 360
ggcggttcta ccatcgatac cgaactgaaa gtaatcgaca ctaactgcat caacgttatt 420
cagccggacg gttcctatcg ttccgaagaa ctgaacctgg tgatcatcgg cccgtctgct 480
gatatcatcc agttcgagtg taagagcttt ggtcacgaag ttctgaacct cacccgtaac 540
ggctacggtt ccactcagta catccgtttc tctccggact tcaccttcgg ttttgaagaa 600
tccctggaag tagacacgaa cccactgctg ggcgctggta aattcgcaac tgatcctgcg 660
gttaccctgg ctcacgaact gattcatgca ggccaccgcc tgtacggtat cgccatcaat 720
ccgaaccgtg tcttcaaagt taacaccaac gcgtattacg agatgtccgg tctggaagtt 780
agcttcgaag aactgcgtac ttttggcggt cacgacgcta aattcatcga ctctctgcaa 840
gaaaacgagt tccgtctgta ctactataac aagttcaaag atatcgcatc caccctgaac 900
aaagcgaaat ccatcgtggg taccactgct tctctccagt acatgaagaa cgtttttaaa 960
gaaaaatacc tgctcagcga agacacctcc ggcaaattct ctgtagacaa gttgaaattc 1020
gataaacttt acaaaatgct gactgaaatt tacaccgaag acaacttcgt taagttcttt 1080
aaagttctga accgcaaaac ctatctgaac ttcgacaagg cagtattcaa aatcaacatc 1140
gtgccgaaag ttaactacac tatctacgat ggtttcaacc tgcgtaacac caacctggct 1200
gctaatttta acggccagaa cacggaaatc aacaacatga acttcacaaa actgaaaaac 1260
ttcactggtc tgttcgagtt ttacaagctg ctgtgcgtcg acggcatcat tacctccaaa 1320
actaaatctc tgatagaagg tagatttggc ggtttcacgg gcgcacgcaa atcagcgcgt 1380
aaagcgctag cgggcggtgg cggtagcggc ggtggcggta gcggcggtgg cggtagcgca 1440
ctagtgctgc agtgtatcaa ggttaacaac tgggatttat tcttcagccc gagtgaagac 1500
aacttcacca acgacctgaa caaaggtgaa gaaatcacct cagatactaa catcgaagca 1560
gccgaagaaa acatctcgct ggacctgatc cagcagtact acctgacctt taatttcgac 1620
aacgagccgg aaaacatttc tatcgaaaac ctgagctctg atatcatcgg ccagctggaa 1680
ctgatgccga acatcgaacg tttcccaaac ggtaaaaagt acgagctgga caaatatacc 1740
atgttccact acctgcgcgc gcaggaattt gaacacggca aatcccgtat cgcactgact 1800
aactccgtta acgaagctct gctcaacccg tcccgtgtat acaccttctt ctctagcgac 1860
tacgtgaaaa aggtcaacaa agcgactgaa gctgcaatgt tcttgggttg ggttgaacag 1920
cttgtttatg attttaccga cgagacgtcc gaagtatcta ctaccgacaa aattgcggat 1980
atcactatca tcatcccgta catcggtccg gctctgaaca ttggcaacat gctgtacaaa 2040
gacgacttcg ttggcgcact gatcttctcc ggtgcggtga tcctgctgga gttcatcccg 2100
gaaatcgcca tcccggtact gggcaccttt gctctggttt cttacattgc aaacaaggtt 2160
ctgactgtac aaaccatcga caacgcgctg agcaaacgta acgaaaaatg ggatgaagtt 2220
tacaaatata tcgtgaccaa ctggctggct aaggttaata ctcagatcga cctcatccgc 2280
aaaaaaatga aagaagcact ggaaaaccag gcggaagcta ccaaggcaat cattaactac 2340
cagtacaacc agtacaccga ggaagaaaaa aacaacatca acttcaacat cgacgatctg 2400
tcctctaaac tgaacgaatc catcaacaaa gctatgatca acatcaacaa gttcctgaac 2460
cagtgctctg taagctatct gatgaactcc atgatcccgt acggtgttaa acgtctggag 2520
gacttcgatg cgtctctgaa agacgccctg ctgaaataca tttacgacaa ccgtggcact 2580
ctgatcggtc aggttgatcg tctgaaggac aaagtgaaca ataccttatc gaccgacatc 2640
ccttttcagc tcagtaaata tgtcgataac caacgccttt tgtccactct agactag 2697
<210> SEQ ID NO 36
<211> LENGTH: 898
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 36
Gly Ser Met Glu Phe Val Asn Lys Gln Phe Asn Tyr Lys Asp Pro Val
1 5 10 15
Asn Gly Val Asp Ile Ala Tyr Ile Lys Ile Pro Asn Ala Gly Gln Met
20 25 30
Gln Pro Val Lys Ala Phe Lys Ile His Asn Lys Ile Trp Val Ile Pro
35 40 45
Glu Arg Asp Thr Phe Thr Asn Pro Glu Glu Gly Asp Leu Asn Pro Pro
50 55 60
Pro Glu Ala Lys Gln Val Pro Val Ser Tyr Tyr Asp Ser Thr Tyr Leu
65 70 75 80
Ser Thr Asp Asn Glu Lys Asp Asn Tyr Leu Lys Gly Val Thr Lys Leu
85 90 95
Phe Glu Arg Ile Tyr Ser Thr Asp Leu Gly Arg Met Leu Leu Thr Ser
100 105 110
Ile Val Arg Gly Ile Pro Phe Trp Gly Gly Ser Thr Ile Asp Thr Glu
115 120 125
Leu Lys Val Ile Asp Thr Asn Cys Ile Asn Val Ile Gln Pro Asp Gly
130 135 140
Ser Tyr Arg Ser Glu Glu Leu Asn Leu Val Ile Ile Gly Pro Ser Ala
145 150 155 160
Asp Ile Ile Gln Phe Glu Cys Lys Ser Phe Gly His Glu Val Leu Asn
165 170 175
Leu Thr Arg Asn Gly Tyr Gly Ser Thr Gln Tyr Ile Arg Phe Ser Pro
180 185 190
Asp Phe Thr Phe Gly Phe Glu Glu Ser Leu Glu Val Asp Thr Asn Pro
195 200 205
Leu Leu Gly Ala Gly Lys Phe Ala Thr Asp Pro Ala Val Thr Leu Ala
210 215 220
His Glu Leu Ile His Ala Gly His Arg Leu Tyr Gly Ile Ala Ile Asn
225 230 235 240
Pro Asn Arg Val Phe Lys Val Asn Thr Asn Ala Tyr Tyr Glu Met Ser
245 250 255
Gly Leu Glu Val Ser Phe Glu Glu Leu Arg Thr Phe Gly Gly His Asp
260 265 270
Ala Lys Phe Ile Asp Ser Leu Gln Glu Asn Glu Phe Arg Leu Tyr Tyr
275 280 285
Tyr Asn Lys Phe Lys Asp Ile Ala Ser Thr Leu Asn Lys Ala Lys Ser
290 295 300
Ile Val Gly Thr Thr Ala Ser Leu Gln Tyr Met Lys Asn Val Phe Lys
305 310 315 320
Glu Lys Tyr Leu Leu Ser Glu Asp Thr Ser Gly Lys Phe Ser Val Asp
325 330 335
Lys Leu Lys Phe Asp Lys Leu Tyr Lys Met Leu Thr Glu Ile Tyr Thr
340 345 350
Glu Asp Asn Phe Val Lys Phe Phe Lys Val Leu Asn Arg Lys Thr Tyr
355 360 365
Leu Asn Phe Asp Lys Ala Val Phe Lys Ile Asn Ile Val Pro Lys Val
370 375 380
Asn Tyr Thr Ile Tyr Asp Gly Phe Asn Leu Arg Asn Thr Asn Leu Ala
385 390 395 400
Ala Asn Phe Asn Gly Gln Asn Thr Glu Ile Asn Asn Met Asn Phe Thr
405 410 415
Lys Leu Lys Asn Phe Thr Gly Leu Phe Glu Phe Tyr Lys Leu Leu Cys
420 425 430
Val Asp Gly Ile Ile Thr Ser Lys Thr Lys Ser Leu Ile Glu Gly Arg
435 440 445
Phe Gly Gly Phe Thr Gly Ala Arg Lys Ser Ala Arg Lys Ala Leu Ala
450 455 460
Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Ala
465 470 475 480
Leu Val Leu Gln Cys Ile Lys Val Asn Asn Trp Asp Leu Phe Phe Ser
485 490 495
Pro Ser Glu Asp Asn Phe Thr Asn Asp Leu Asn Lys Gly Glu Glu Ile
500 505 510
Thr Ser Asp Thr Asn Ile Glu Ala Ala Glu Glu Asn Ile Ser Leu Asp
515 520 525
Leu Ile Gln Gln Tyr Tyr Leu Thr Phe Asn Phe Asp Asn Glu Pro Glu
530 535 540
Asn Ile Ser Ile Glu Asn Leu Ser Ser Asp Ile Ile Gly Gln Leu Glu
545 550 555 560
Leu Met Pro Asn Ile Glu Arg Phe Pro Asn Gly Lys Lys Tyr Glu Leu
565 570 575
Asp Lys Tyr Thr Met Phe His Tyr Leu Arg Ala Gln Glu Phe Glu His
580 585 590
Gly Lys Ser Arg Ile Ala Leu Thr Asn Ser Val Asn Glu Ala Leu Leu
595 600 605
Asn Pro Ser Arg Val Tyr Thr Phe Phe Ser Ser Asp Tyr Val Lys Lys
610 615 620
Val Asn Lys Ala Thr Glu Ala Ala Met Phe Leu Gly Trp Val Glu Gln
625 630 635 640
Leu Val Tyr Asp Phe Thr Asp Glu Thr Ser Glu Val Ser Thr Thr Asp
645 650 655
Lys Ile Ala Asp Ile Thr Ile Ile Ile Pro Tyr Ile Gly Pro Ala Leu
660 665 670
Asn Ile Gly Asn Met Leu Tyr Lys Asp Asp Phe Val Gly Ala Leu Ile
675 680 685
Phe Ser Gly Ala Val Ile Leu Leu Glu Phe Ile Pro Glu Ile Ala Ile
690 695 700
Pro Val Leu Gly Thr Phe Ala Leu Val Ser Tyr Ile Ala Asn Lys Val
705 710 715 720
Leu Thr Val Gln Thr Ile Asp Asn Ala Leu Ser Lys Arg Asn Glu Lys
725 730 735
Trp Asp Glu Val Tyr Lys Tyr Ile Val Thr Asn Trp Leu Ala Lys Val
740 745 750
Asn Thr Gln Ile Asp Leu Ile Arg Lys Lys Met Lys Glu Ala Leu Glu
755 760 765
Asn Gln Ala Glu Ala Thr Lys Ala Ile Ile Asn Tyr Gln Tyr Asn Gln
770 775 780
Tyr Thr Glu Glu Glu Lys Asn Asn Ile Asn Phe Asn Ile Asp Asp Leu
785 790 795 800
Ser Ser Lys Leu Asn Glu Ser Ile Asn Lys Ala Met Ile Asn Ile Asn
805 810 815
Lys Phe Leu Asn Gln Cys Ser Val Ser Tyr Leu Met Asn Ser Met Ile
820 825 830
Pro Tyr Gly Val Lys Arg Leu Glu Asp Phe Asp Ala Ser Leu Lys Asp
835 840 845
Ala Leu Leu Lys Tyr Ile Tyr Asp Asn Arg Gly Thr Leu Ile Gly Gln
850 855 860
Val Asp Arg Leu Lys Asp Lys Val Asn Asn Thr Leu Ser Thr Asp Ile
865 870 875 880
Pro Phe Gln Leu Ser Lys Tyr Val Asp Asn Gln Arg Leu Leu Ser Thr
885 890 895
Leu Asp
<210> SEQ ID NO 37
<211> LENGTH: 51
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 37
tttggcggtt tcacgggcgc acgcaaatca gcgcgtaaat tagctaacca g 51
<210> SEQ ID NO 38
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 38
Phe Gly Gly Phe Thr Gly Ala Arg Lys Ser Ala Arg Lys Leu Ala Asn
1 5 10 15
Gln
<210> SEQ ID NO 39
<211> LENGTH: 33
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 39
tttggcggtt tcacgggcgc acgcaaatca gcg 33
<210> SEQ ID NO 40
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 40
Phe Gly Gly Phe Thr Gly Ala Arg Lys Ser Ala
1 5 10
<210> SEQ ID NO 41
<211> LENGTH: 33
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 41
tttggcggtt tcacgggcgc acgcaaatat gcg 33
<210> SEQ ID NO 42
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 42
Phe Gly Gly Phe Thr Gly Ala Arg Lys Tyr Ala
1 5 10
<210> SEQ ID NO 43
<211> LENGTH: 33
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 43
tttggcggtt tcacgggcgc acgcaaatca tat 33
<210> SEQ ID NO 44
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 44
Phe Gly Gly Phe Thr Gly Ala Arg Lys Ser Tyr
1 5 10
<210> SEQ ID NO 45
<211> LENGTH: 51
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 45
tttggcggtt tcacgggcgc acgcaaatca gcgcgtaaat atgctaacca g 51
<210> SEQ ID NO 46
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 46
Phe Gly Gly Phe Thr Gly Ala Arg Lys Ser Ala Arg Lys Tyr Ala Asn
1 5 10 15
Gln
<210> SEQ ID NO 47
<211> LENGTH: 39
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 47
tttggcggtt tcacgggcgc acgcaaatca gcgcgtaaa 39
<210> SEQ ID NO 48
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 48
Phe Gly Gly Phe Thr Gly Ala Arg Lys Ser Ala Arg Lys
1 5 10
<210> SEQ ID NO 49
<211> LENGTH: 51
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 49
tttggcggtt tcacgggcgc acgcaaatca gcgcgtaaac gcaaaaacca g 51
<210> SEQ ID NO 50
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 50
Phe Gly Gly Phe Thr Gly Ala Arg Lys Ser Ala Arg Lys Arg Lys Asn
1 5 10 15
Gln
<210> SEQ ID NO 51
<211> LENGTH: 2736
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 51
ctcgggattg agggtcgttt tggcggtttc acgggcgcac gcaaatcagc gcgtaaatta 60
gctaaccaga ctagtggcgg tgggggtagt ggcggtggcg gttcgggcgg gggtgggagc 120
cctaggggat ccatggagtt cgttaacaaa cagttcaact ataaagaccc agttaacggt 180
gttgacattg cttacatcaa aatcccgaac gctggccaga tgcagccggt aaaggcattc 240
aaaatccaca acaaaatctg ggttatcccg gaacgtgata cctttactaa cccggaagaa 300
ggtgacctga acccgccacc ggaagcgaaa caggtgccgg tatcttacta tgactccacc 360
tacctgtcta ccgataacga aaaggacaac tacctgaaag gtgttactaa actgttcgag 420
cgtatttact ccaccgacct gggccgtatg ctgctgacta gcatcgttcg cggtatcccg 480
ttctggggcg gttctaccat cgataccgaa ctgaaagtaa tcgacactaa ctgcatcaac 540
gttattcagc cggacggttc ctatcgttcc gaagaactga acctggtgat catcggcccg 600
tctgctgata tcatccagtt cgagtgtaag agctttggtc acgaagttct gaacctcacc 660
cgtaacggct acggttccac tcagtacatc cgtttctctc cggacttcac cttcggtttt 720
gaagaatccc tggaagtaga cacgaaccca ctgctgggcg ctggtaaatt cgcaactgat 780
cctgcggtta ccctggctca cgaactgatt catgcaggcc accgcctgta cggtatcgcc 840
atcaatccga accgtgtctt caaagttaac accaacgcgt attacgagat gtccggtctg 900
gaagttagct tcgaagaact gcgtactttt ggcggtcacg acgctaaatt catcgactct 960
ctgcaagaaa acgagttccg tctgtactac tataacaagt tcaaagatat cgcatccacc 1020
ctgaacaaag cgaaatccat cgtgggtacc actgcttctc tccagtacat gaagaacgtt 1080
tttaaagaaa aatacctgct cagcgaagac acctccggca aattctctgt agacaagttg 1140
aaattcgata aactttacaa aatgctgact gaaatttaca ccgaagacaa cttcgttaag 1200
ttctttaaag ttctgaaccg caaaacctat ctgaacttcg acaaggcagt attcaaaatc 1260
aacatcgtgc cgaaagttaa ctacactatc tacgatggtt tcaacctgcg taacaccaac 1320
ctggctgcta attttaacgg ccagaacacg gaaatcaaca acatgaactt cacaaaactg 1380
aaaaacttca ctggtctgtt cgagttttac aagctgctgt gcgtcgacgg catcattacc 1440
tccaaaacta aatctctgat agaaggtaga aacaaagcgc tgaacctgca gtgtatcaag 1500
gttaacaact gggatttatt cttcagcccg agtgaagaca acttcaccaa cgacctgaac 1560
aaaggtgaag aaatcacctc agatactaac atcgaagcag ccgaagaaaa catctcgctg 1620
gacctgatcc agcagtacta cctgaccttt aatttcgaca acgagccgga aaacatttct 1680
atcgaaaacc tgagctctga tatcatcggc cagctggaac tgatgccgaa catcgaacgt 1740
ttcccaaacg gtaaaaagta cgagctggac aaatatacca tgttccacta cctgcgcgcg 1800
caggaatttg aacacggcaa atcccgtatc gcactgacta actccgttaa cgaagctctg 1860
ctcaacccgt cccgtgtata caccttcttc tctagcgact acgtgaaaaa ggtcaacaaa 1920
gcgactgaag ctgcaatgtt cttgggttgg gttgaacagc ttgtttatga ttttaccgac 1980
gagacgtccg aagtatctac taccgacaaa attgcggata tcactatcat catcccgtac 2040
atcggtccgg ctctgaacat tggcaacatg ctgtacaaag acgacttcgt tggcgcactg 2100
atcttctccg gtgcggtgat cctgctggag ttcatcccgg aaatcgccat cccggtactg 2160
ggcacctttg ctctggtttc ttacattgca aacaaggttc tgactgtaca aaccatcgac 2220
aacgcgctga gcaaacgtaa cgaaaaatgg gatgaagttt acaaatatat cgtgaccaac 2280
tggctggcta aggttaatac tcagatcgac ctcatccgca aaaaaatgaa agaagcactg 2340
gaaaaccagg cggaagctac caaggcaatc attaactacc agtacaacca gtacaccgag 2400
gaagaaaaaa acaacatcaa cttcaacatc gacgatctgt cctctaaact gaacgaatcc 2460
atcaacaaag ctatgatcaa catcaacaag ttcctgaacc agtgctctgt aagctatctg 2520
atgaactcca tgatcccgta cggtgttaaa cgtctggagg acttcgatgc gtctctgaaa 2580
gacgccctgc tgaaatacat ttacgacaac cgtggcactc tgatcggtca ggttgatcgt 2640
ctgaaggaca aagtgaacaa taccttatcg accgacatcc cttttcagct cagtaaatat 2700
gtcgataacc aacgcctttt gtccactcta gactag 2736
<210> SEQ ID NO 52
<211> LENGTH: 911
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 52
Leu Gly Ile Glu Gly Arg Phe Gly Gly Phe Thr Gly Ala Arg Lys Ser
1 5 10 15
Ala Arg Lys Leu Ala Asn Gln Thr Ser Gly Gly Gly Gly Ser Gly Gly
20 25 30
Gly Gly Ser Gly Gly Gly Gly Ser Pro Arg Gly Ser Met Glu Phe Val
35 40 45
Asn Lys Gln Phe Asn Tyr Lys Asp Pro Val Asn Gly Val Asp Ile Ala
50 55 60
Tyr Ile Lys Ile Pro Asn Ala Gly Gln Met Gln Pro Val Lys Ala Phe
65 70 75 80
Lys Ile His Asn Lys Ile Trp Val Ile Pro Glu Arg Asp Thr Phe Thr
85 90 95
Asn Pro Glu Glu Gly Asp Leu Asn Pro Pro Pro Glu Ala Lys Gln Val
100 105 110
Pro Val Ser Tyr Tyr Asp Ser Thr Tyr Leu Ser Thr Asp Asn Glu Lys
115 120 125
Asp Asn Tyr Leu Lys Gly Val Thr Lys Leu Phe Glu Arg Ile Tyr Ser
130 135 140
Thr Asp Leu Gly Arg Met Leu Leu Thr Ser Ile Val Arg Gly Ile Pro
145 150 155 160
Phe Trp Gly Gly Ser Thr Ile Asp Thr Glu Leu Lys Val Ile Asp Thr
165 170 175
Asn Cys Ile Asn Val Ile Gln Pro Asp Gly Ser Tyr Arg Ser Glu Glu
180 185 190
Leu Asn Leu Val Ile Ile Gly Pro Ser Ala Asp Ile Ile Gln Phe Glu
195 200 205
Cys Lys Ser Phe Gly His Glu Val Leu Asn Leu Thr Arg Asn Gly Tyr
210 215 220
Gly Ser Thr Gln Tyr Ile Arg Phe Ser Pro Asp Phe Thr Phe Gly Phe
225 230 235 240
Glu Glu Ser Leu Glu Val Asp Thr Asn Pro Leu Leu Gly Ala Gly Lys
245 250 255
Phe Ala Thr Asp Pro Ala Val Thr Leu Ala His Glu Leu Ile His Ala
260 265 270
Gly His Arg Leu Tyr Gly Ile Ala Ile Asn Pro Asn Arg Val Phe Lys
275 280 285
Val Asn Thr Asn Ala Tyr Tyr Glu Met Ser Gly Leu Glu Val Ser Phe
290 295 300
Glu Glu Leu Arg Thr Phe Gly Gly His Asp Ala Lys Phe Ile Asp Ser
305 310 315 320
Leu Gln Glu Asn Glu Phe Arg Leu Tyr Tyr Tyr Asn Lys Phe Lys Asp
325 330 335
Ile Ala Ser Thr Leu Asn Lys Ala Lys Ser Ile Val Gly Thr Thr Ala
340 345 350
Ser Leu Gln Tyr Met Lys Asn Val Phe Lys Glu Lys Tyr Leu Leu Ser
355 360 365
Glu Asp Thr Ser Gly Lys Phe Ser Val Asp Lys Leu Lys Phe Asp Lys
370 375 380
Leu Tyr Lys Met Leu Thr Glu Ile Tyr Thr Glu Asp Asn Phe Val Lys
385 390 395 400
Phe Phe Lys Val Leu Asn Arg Lys Thr Tyr Leu Asn Phe Asp Lys Ala
405 410 415
Val Phe Lys Ile Asn Ile Val Pro Lys Val Asn Tyr Thr Ile Tyr Asp
420 425 430
Gly Phe Asn Leu Arg Asn Thr Asn Leu Ala Ala Asn Phe Asn Gly Gln
435 440 445
Asn Thr Glu Ile Asn Asn Met Asn Phe Thr Lys Leu Lys Asn Phe Thr
450 455 460
Gly Leu Phe Glu Phe Tyr Lys Leu Leu Cys Val Asp Gly Ile Ile Thr
465 470 475 480
Ser Lys Thr Lys Ser Leu Ile Glu Gly Arg Asn Lys Ala Leu Asn Leu
485 490 495
Gln Cys Ile Lys Val Asn Asn Trp Asp Leu Phe Phe Ser Pro Ser Glu
500 505 510
Asp Asn Phe Thr Asn Asp Leu Asn Lys Gly Glu Glu Ile Thr Ser Asp
515 520 525
Thr Asn Ile Glu Ala Ala Glu Glu Asn Ile Ser Leu Asp Leu Ile Gln
530 535 540
Gln Tyr Tyr Leu Thr Phe Asn Phe Asp Asn Glu Pro Glu Asn Ile Ser
545 550 555 560
Ile Glu Asn Leu Ser Ser Asp Ile Ile Gly Gln Leu Glu Leu Met Pro
565 570 575
Asn Ile Glu Arg Phe Pro Asn Gly Lys Lys Tyr Glu Leu Asp Lys Tyr
580 585 590
Thr Met Phe His Tyr Leu Arg Ala Gln Glu Phe Glu His Gly Lys Ser
595 600 605
Arg Ile Ala Leu Thr Asn Ser Val Asn Glu Ala Leu Leu Asn Pro Ser
610 615 620
Arg Val Tyr Thr Phe Phe Ser Ser Asp Tyr Val Lys Lys Val Asn Lys
625 630 635 640
Ala Thr Glu Ala Ala Met Phe Leu Gly Trp Val Glu Gln Leu Val Tyr
645 650 655
Asp Phe Thr Asp Glu Thr Ser Glu Val Ser Thr Thr Asp Lys Ile Ala
660 665 670
Asp Ile Thr Ile Ile Ile Pro Tyr Ile Gly Pro Ala Leu Asn Ile Gly
675 680 685
Asn Met Leu Tyr Lys Asp Asp Phe Val Gly Ala Leu Ile Phe Ser Gly
690 695 700
Ala Val Ile Leu Leu Glu Phe Ile Pro Glu Ile Ala Ile Pro Val Leu
705 710 715 720
Gly Thr Phe Ala Leu Val Ser Tyr Ile Ala Asn Lys Val Leu Thr Val
725 730 735
Gln Thr Ile Asp Asn Ala Leu Ser Lys Arg Asn Glu Lys Trp Asp Glu
740 745 750
Val Tyr Lys Tyr Ile Val Thr Asn Trp Leu Ala Lys Val Asn Thr Gln
755 760 765
Ile Asp Leu Ile Arg Lys Lys Met Lys Glu Ala Leu Glu Asn Gln Ala
770 775 780
Glu Ala Thr Lys Ala Ile Ile Asn Tyr Gln Tyr Asn Gln Tyr Thr Glu
785 790 795 800
Glu Glu Lys Asn Asn Ile Asn Phe Asn Ile Asp Asp Leu Ser Ser Lys
805 810 815
Leu Asn Glu Ser Ile Asn Lys Ala Met Ile Asn Ile Asn Lys Phe Leu
820 825 830
Asn Gln Cys Ser Val Ser Tyr Leu Met Asn Ser Met Ile Pro Tyr Gly
835 840 845
Val Lys Arg Leu Glu Asp Phe Asp Ala Ser Leu Lys Asp Ala Leu Leu
850 855 860
Lys Tyr Ile Tyr Asp Asn Arg Gly Thr Leu Ile Gly Gln Val Asp Arg
865 870 875 880
Leu Lys Asp Lys Val Asn Asn Thr Leu Ser Thr Asp Ile Pro Phe Gln
885 890 895
Leu Ser Lys Tyr Val Asp Asn Gln Arg Leu Leu Ser Thr Leu Asp
900 905 910
<210> SEQ ID NO 53
<211> LENGTH: 177
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 53
ggatccacgc acgtcgacgg catcattacc tccaaaacta aatctctgat agaaggtaga 60
tttggcggtt tcacgggcgc acgcaaatca gcgcgtaaat tagctaacca ggcgctagcg 120
ggtggtggtg gttctgcact agtgctgcag acgcacggtc tagaatgata aaagctt 177
<210> SEQ ID NO 54
<211> LENGTH: 192
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 54
ggatccacgc acgtcgacgg catcattacc tccaaaacta aatctctgat agaaggtaga 60
tttggcggtt tcacgggcgc acgcaaatca gcgcgtaaat tagctaacca ggcgctagcg 120
ggtggtggtg gttctggtgg tggtggttct gcactagtgc tgcagacgca cggtctagaa 180
tgataaaagc tt 192
<210> SEQ ID NO 55
<211> LENGTH: 222
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 55
ggatccacgc acgtcgacgg catcattacc tccaaaacta aatctctgat agaaggtaga 60
tttggcggtt tcacgggcgc acgcaaatca gcgcgtaaat tagctaacca ggcgctagcg 120
ggtggtggtg gttctggtgg tggtggttct ggtggtggtg gttctggtgg tggtggttct 180
gcactagtgc tgcagacgca cggtctagaa tgataaaagc tt 222
<210> SEQ ID NO 56
<211> LENGTH: 237
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 56
ggatccacgc acgtcgacgg catcattacc tccaaaacta aatctctgat agaaggtaga 60
tttggcggtt tcacgggcgc acgcaaatca gcgcgtaaat tagctaacca ggcgctagcg 120
ggtggtggtg gttctggtgg tggtggttct ggtggtggtg gttctggtgg tggtggttct 180
ggtggtggtg gttctgcact agtgctgcag acgcacggtc tagaatgata aaagctt 237
<210> SEQ ID NO 57
<211> LENGTH: 228
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 57
ggatccacgc acgtcgacgg catcattacc tccaaaacta aatctctgat agaaggtaga 60
tttggcggtt tcacgggcgc acgcaaatca gcgcgtaaat tagctaacca ggcgctagcg 120
gctgaagctg ctgctaaaga agctgctgct aaagaagctg ctgctaaagc tggtggcggt 180
ggttccgcac tagtgctgca gacgcacggt ctagaatgat aaaagctt 228
<210> SEQ ID NO 58
<211> LENGTH: 2694
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 58
ggatccatgg agttcgttaa caaacagttc aactataaag acccagttaa cggtgttgac 60
attgcttaca tcaaaatccc gaacgctggc cagatgcagc cggtaaaggc attcaaaatc 120
cacaacaaaa tctgggttat cccggaacgt gataccttta ctaacccgga agaaggtgac 180
ctgaacccgc caccggaagc gaaacaggtg ccggtatctt actatgactc cacctacctg 240
tctaccgata acgaaaagga caactacctg aaaggtgtta ctaaactgtt cgagcgtatt 300
tactccaccg acctgggccg tatgctgctg actagcatcg ttcgcggtat cccgttctgg 360
ggcggttcta ccatcgatac cgaactgaaa gtaatcgaca ctaactgcat caacgttatt 420
cagccggacg gttcctatcg ttccgaagaa ctgaacctgg tgatcatcgg cccgtctgct 480
gatatcatcc agttcgagtg taagagcttt ggtcacgaag ttctgaacct cacccgtaac 540
ggctacggtt ccactcagta catccgtttc tctccggact tcaccttcgg ttttgaagaa 600
tccctggaag tagacacgaa cccactgctg ggcgctggta aattcgcaac tgatcctgcg 660
gttaccctgg ctcacgaact gattcatgca ggccaccgcc tgtacggtat cgccatcaat 720
ccgaaccgtg tcttcaaagt taacaccaac gcgtattacg agatgtccgg tctggaagtt 780
agcttcgaag aactgcgtac ttttggcggt cacgacgcta aattcatcga ctctctgcaa 840
gaaaacgagt tccgtctgta ctactataac aagttcaaag atatcgcatc caccctgaac 900
aaagcgaaat ccatcgtggg taccactgct tctctccagt acatgaagaa cgtttttaaa 960
gaaaaatacc tgctcagcga agacacctcc ggcaaattct ctgtagacaa gttgaaattc 1020
gataaacttt acaaaatgct gactgaaatt tacaccgaag acaacttcgt taagttcttt 1080
aaagttctga accgcaaaac ctatctgaac ttcgacaagg cagtattcaa aatcaacatc 1140
gtgccgaaag ttaactacac tatctacgat ggtttcaacc tgcgtaacac caacctggct 1200
gctaatttta acggccagaa cacggaaatc aacaacatga acttcacaaa actgaaaaac 1260
ttcactggtc tgttcgagtt ttacaagctg ctgtgcgtcg acggcatcat tacctccaaa 1320
actaaatctc tgatagaagg tagatttggc ggtttcacgg gcgcacgcaa atcagcgcgt 1380
aaattagcta accaggcgct agcgggtggt ggtggttctg gtggtggtgg ttctgcacta 1440
gtgctgcagt gtatcaaggt taacaactgg gatttattct tcagcccgag tgaagacaac 1500
ttcaccaacg acctgaacaa aggtgaagaa atcacctcag atactaacat cgaagcagcc 1560
gaagaaaaca tctcgctgga cctgatccag cagtactacc tgacctttaa tttcgacaac 1620
gagccggaaa acatttctat cgaaaacctg agctctgata tcatcggcca gctggaactg 1680
atgccgaaca tcgaacgttt cccaaacggt aaaaagtacg agctggacaa atataccatg 1740
ttccactacc tgcgcgcgca ggaatttgaa cacggcaaat cccgtatcgc actgactaac 1800
tccgttaacg aagctctgct caacccgtcc cgtgtataca ccttcttctc tagcgactac 1860
gtgaaaaagg tcaacaaagc gactgaagct gcaatgttct tgggttgggt tgaacagctt 1920
gtttatgatt ttaccgacga gacgtccgaa gtatctacta ccgacaaaat tgcggatatc 1980
actatcatca tcccgtacat cggtccggct ctgaacattg gcaacatgct gtacaaagac 2040
gacttcgttg gcgcactgat cttctccggt gcggtgatcc tgctggagtt catcccggaa 2100
atcgccatcc cggtactggg cacctttgct ctggtttctt acattgcaaa caaggttctg 2160
actgtacaaa ccatcgacaa cgcgctgagc aaacgtaacg aaaaatggga tgaagtttac 2220
aaatatatcg tgaccaactg gctggctaag gttaatactc agatcgacct catccgcaaa 2280
aaaatgaaag aagcactgga aaaccaggcg gaagctacca aggcaatcat taactaccag 2340
tacaaccagt acaccgagga agaaaaaaac aacatcaact tcaacatcga cgatctgtcc 2400
tctaaactga acgaatccat caacaaagct atgatcaaca tcaacaagtt cctgaaccag 2460
tgctctgtaa gctatctgat gaactccatg atcccgtacg gtgttaaacg tctggaggac 2520
ttcgatgcgt ctctgaaaga cgccctgctg aaatacattt acgacaaccg tggcactctg 2580
atcggtcagg ttgatcgtct gaaggacaaa gtgaacaata ccttatcgac cgacatccct 2640
tttcagctca gtaaatatgt cgataaccaa cgccttttgt ccactctaga ctag 2694
<210> SEQ ID NO 59
<211> LENGTH: 897
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 59
Gly Ser Met Glu Phe Val Asn Lys Gln Phe Asn Tyr Lys Asp Pro Val
1 5 10 15
Asn Gly Val Asp Ile Ala Tyr Ile Lys Ile Pro Asn Ala Gly Gln Met
20 25 30
Gln Pro Val Lys Ala Phe Lys Ile His Asn Lys Ile Trp Val Ile Pro
35 40 45
Glu Arg Asp Thr Phe Thr Asn Pro Glu Glu Gly Asp Leu Asn Pro Pro
50 55 60
Pro Glu Ala Lys Gln Val Pro Val Ser Tyr Tyr Asp Ser Thr Tyr Leu
65 70 75 80
Ser Thr Asp Asn Glu Lys Asp Asn Tyr Leu Lys Gly Val Thr Lys Leu
85 90 95
Phe Glu Arg Ile Tyr Ser Thr Asp Leu Gly Arg Met Leu Leu Thr Ser
100 105 110
Ile Val Arg Gly Ile Pro Phe Trp Gly Gly Ser Thr Ile Asp Thr Glu
115 120 125
Leu Lys Val Ile Asp Thr Asn Cys Ile Asn Val Ile Gln Pro Asp Gly
130 135 140
Ser Tyr Arg Ser Glu Glu Leu Asn Leu Val Ile Ile Gly Pro Ser Ala
145 150 155 160
Asp Ile Ile Gln Phe Glu Cys Lys Ser Phe Gly His Glu Val Leu Asn
165 170 175
Leu Thr Arg Asn Gly Tyr Gly Ser Thr Gln Tyr Ile Arg Phe Ser Pro
180 185 190
Asp Phe Thr Phe Gly Phe Glu Glu Ser Leu Glu Val Asp Thr Asn Pro
195 200 205
Leu Leu Gly Ala Gly Lys Phe Ala Thr Asp Pro Ala Val Thr Leu Ala
210 215 220
His Glu Leu Ile His Ala Gly His Arg Leu Tyr Gly Ile Ala Ile Asn
225 230 235 240
Pro Asn Arg Val Phe Lys Val Asn Thr Asn Ala Tyr Tyr Glu Met Ser
245 250 255
Gly Leu Glu Val Ser Phe Glu Glu Leu Arg Thr Phe Gly Gly His Asp
260 265 270
Ala Lys Phe Ile Asp Ser Leu Gln Glu Asn Glu Phe Arg Leu Tyr Tyr
275 280 285
Tyr Asn Lys Phe Lys Asp Ile Ala Ser Thr Leu Asn Lys Ala Lys Ser
290 295 300
Ile Val Gly Thr Thr Ala Ser Leu Gln Tyr Met Lys Asn Val Phe Lys
305 310 315 320
Glu Lys Tyr Leu Leu Ser Glu Asp Thr Ser Gly Lys Phe Ser Val Asp
325 330 335
Lys Leu Lys Phe Asp Lys Leu Tyr Lys Met Leu Thr Glu Ile Tyr Thr
340 345 350
Glu Asp Asn Phe Val Lys Phe Phe Lys Val Leu Asn Arg Lys Thr Tyr
355 360 365
Leu Asn Phe Asp Lys Ala Val Phe Lys Ile Asn Ile Val Pro Lys Val
370 375 380
Asn Tyr Thr Ile Tyr Asp Gly Phe Asn Leu Arg Asn Thr Asn Leu Ala
385 390 395 400
Ala Asn Phe Asn Gly Gln Asn Thr Glu Ile Asn Asn Met Asn Phe Thr
405 410 415
Lys Leu Lys Asn Phe Thr Gly Leu Phe Glu Phe Tyr Lys Leu Leu Cys
420 425 430
Val Asp Gly Ile Ile Thr Ser Lys Thr Lys Ser Leu Ile Glu Gly Arg
435 440 445
Phe Gly Gly Phe Thr Gly Ala Arg Lys Ser Ala Arg Lys Leu Ala Asn
450 455 460
Gln Ala Leu Ala Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Ala Leu
465 470 475 480
Val Leu Gln Cys Ile Lys Val Asn Asn Trp Asp Leu Phe Phe Ser Pro
485 490 495
Ser Glu Asp Asn Phe Thr Asn Asp Leu Asn Lys Gly Glu Glu Ile Thr
500 505 510
Ser Asp Thr Asn Ile Glu Ala Ala Glu Glu Asn Ile Ser Leu Asp Leu
515 520 525
Ile Gln Gln Tyr Tyr Leu Thr Phe Asn Phe Asp Asn Glu Pro Glu Asn
530 535 540
Ile Ser Ile Glu Asn Leu Ser Ser Asp Ile Ile Gly Gln Leu Glu Leu
545 550 555 560
Met Pro Asn Ile Glu Arg Phe Pro Asn Gly Lys Lys Tyr Glu Leu Asp
565 570 575
Lys Tyr Thr Met Phe His Tyr Leu Arg Ala Gln Glu Phe Glu His Gly
580 585 590
Lys Ser Arg Ile Ala Leu Thr Asn Ser Val Asn Glu Ala Leu Leu Asn
595 600 605
Pro Ser Arg Val Tyr Thr Phe Phe Ser Ser Asp Tyr Val Lys Lys Val
610 615 620
Asn Lys Ala Thr Glu Ala Ala Met Phe Leu Gly Trp Val Glu Gln Leu
625 630 635 640
Val Tyr Asp Phe Thr Asp Glu Thr Ser Glu Val Ser Thr Thr Asp Lys
645 650 655
Ile Ala Asp Ile Thr Ile Ile Ile Pro Tyr Ile Gly Pro Ala Leu Asn
660 665 670
Ile Gly Asn Met Leu Tyr Lys Asp Asp Phe Val Gly Ala Leu Ile Phe
675 680 685
Ser Gly Ala Val Ile Leu Leu Glu Phe Ile Pro Glu Ile Ala Ile Pro
690 695 700
Val Leu Gly Thr Phe Ala Leu Val Ser Tyr Ile Ala Asn Lys Val Leu
705 710 715 720
Thr Val Gln Thr Ile Asp Asn Ala Leu Ser Lys Arg Asn Glu Lys Trp
725 730 735
Asp Glu Val Tyr Lys Tyr Ile Val Thr Asn Trp Leu Ala Lys Val Asn
740 745 750
Thr Gln Ile Asp Leu Ile Arg Lys Lys Met Lys Glu Ala Leu Glu Asn
755 760 765
Gln Ala Glu Ala Thr Lys Ala Ile Ile Asn Tyr Gln Tyr Asn Gln Tyr
770 775 780
Thr Glu Glu Glu Lys Asn Asn Ile Asn Phe Asn Ile Asp Asp Leu Ser
785 790 795 800
Ser Lys Leu Asn Glu Ser Ile Asn Lys Ala Met Ile Asn Ile Asn Lys
805 810 815
Phe Leu Asn Gln Cys Ser Val Ser Tyr Leu Met Asn Ser Met Ile Pro
820 825 830
Tyr Gly Val Lys Arg Leu Glu Asp Phe Asp Ala Ser Leu Lys Asp Ala
835 840 845
Leu Leu Lys Tyr Ile Tyr Asp Asn Arg Gly Thr Leu Ile Gly Gln Val
850 855 860
Asp Arg Leu Lys Asp Lys Val Asn Asn Thr Leu Ser Thr Asp Ile Pro
865 870 875 880
Phe Gln Leu Ser Lys Tyr Val Asp Asn Gln Arg Leu Leu Ser Thr Leu
885 890 895
Asp
<210> SEQ ID NO 60
<211> LENGTH: 2724
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 60
ggatccatgg agttcgttaa caaacagttc aactataaag acccagttaa cggtgttgac 60
attgcttaca tcaaaatccc gaacgctggc cagatgcagc cggtaaaggc attcaaaatc 120
cacaacaaaa tctgggttat cccggaacgt gataccttta ctaacccgga agaaggtgac 180
ctgaacccgc caccggaagc gaaacaggtg ccggtatctt actatgactc cacctacctg 240
tctaccgata acgaaaagga caactacctg aaaggtgtta ctaaactgtt cgagcgtatt 300
tactccaccg acctgggccg tatgctgctg actagcatcg ttcgcggtat cccgttctgg 360
ggcggttcta ccatcgatac cgaactgaaa gtaatcgaca ctaactgcat caacgttatt 420
cagccggacg gttcctatcg ttccgaagaa ctgaacctgg tgatcatcgg cccgtctgct 480
gatatcatcc agttcgagtg taagagcttt ggtcacgaag ttctgaacct cacccgtaac 540
ggctacggtt ccactcagta catccgtttc tctccggact tcaccttcgg ttttgaagaa 600
tccctggaag tagacacgaa cccactgctg ggcgctggta aattcgcaac tgatcctgcg 660
gttaccctgg ctcacgaact gattcatgca ggccaccgcc tgtacggtat cgccatcaat 720
ccgaaccgtg tcttcaaagt taacaccaac gcgtattacg agatgtccgg tctggaagtt 780
agcttcgaag aactgcgtac ttttggcggt cacgacgcta aattcatcga ctctctgcaa 840
gaaaacgagt tccgtctgta ctactataac aagttcaaag atatcgcatc caccctgaac 900
aaagcgaaat ccatcgtggg taccactgct tctctccagt acatgaagaa cgtttttaaa 960
gaaaaatacc tgctcagcga agacacctcc ggcaaattct ctgtagacaa gttgaaattc 1020
gataaacttt acaaaatgct gactgaaatt tacaccgaag acaacttcgt taagttcttt 1080
aaagttctga accgcaaaac ctatctgaac ttcgacaagg cagtattcaa aatcaacatc 1140
gtgccgaaag ttaactacac tatctacgat ggtttcaacc tgcgtaacac caacctggct 1200
gctaatttta acggccagaa cacggaaatc aacaacatga acttcacaaa actgaaaaac 1260
ttcactggtc tgttcgagtt ttacaagctg ctgtgcgtcg acggcatcat tacctccaaa 1320
actaaatctc tgatagaagg tagatttggc ggtttcacgg gcgcacgcaa atcagcgcgt 1380
aaattagcta accaggcgct agcgggtggt ggtggttctg gtggtggtgg ttctggtggt 1440
ggtggttctg gtggtggtgg ttctgcacta gtgctgcagt gtatcaaggt taacaactgg 1500
gatttattct tcagcccgag tgaagacaac ttcaccaacg acctgaacaa aggtgaagaa 1560
atcacctcag atactaacat cgaagcagcc gaagaaaaca tctcgctgga cctgatccag 1620
cagtactacc tgacctttaa tttcgacaac gagccggaaa acatttctat cgaaaacctg 1680
agctctgata tcatcggcca gctggaactg atgccgaaca tcgaacgttt cccaaacggt 1740
aaaaagtacg agctggacaa atataccatg ttccactacc tgcgcgcgca ggaatttgaa 1800
cacggcaaat cccgtatcgc actgactaac tccgttaacg aagctctgct caacccgtcc 1860
cgtgtataca ccttcttctc tagcgactac gtgaaaaagg tcaacaaagc gactgaagct 1920
gcaatgttct tgggttgggt tgaacagctt gtttatgatt ttaccgacga gacgtccgaa 1980
gtatctacta ccgacaaaat tgcggatatc actatcatca tcccgtacat cggtccggct 2040
ctgaacattg gcaacatgct gtacaaagac gacttcgttg gcgcactgat cttctccggt 2100
gcggtgatcc tgctggagtt catcccggaa atcgccatcc cggtactggg cacctttgct 2160
ctggtttctt acattgcaaa caaggttctg actgtacaaa ccatcgacaa cgcgctgagc 2220
aaacgtaacg aaaaatggga tgaagtttac aaatatatcg tgaccaactg gctggctaag 2280
gttaatactc agatcgacct catccgcaaa aaaatgaaag aagcactgga aaaccaggcg 2340
gaagctacca aggcaatcat taactaccag tacaaccagt acaccgagga agaaaaaaac 2400
aacatcaact tcaacatcga cgatctgtcc tctaaactga acgaatccat caacaaagct 2460
atgatcaaca tcaacaagtt cctgaaccag tgctctgtaa gctatctgat gaactccatg 2520
atcccgtacg gtgttaaacg tctggaggac ttcgatgcgt ctctgaaaga cgccctgctg 2580
aaatacattt acgacaaccg tggcactctg atcggtcagg ttgatcgtct gaaggacaaa 2640
gtgaacaata ccttatcgac cgacatccct tttcagctca gtaaatatgt cgataaccaa 2700
cgccttttgt ccactctaga ctag 2724
<210> SEQ ID NO 61
<211> LENGTH: 907
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 61
Gly Ser Met Glu Phe Val Asn Lys Gln Phe Asn Tyr Lys Asp Pro Val
1 5 10 15
Asn Gly Val Asp Ile Ala Tyr Ile Lys Ile Pro Asn Ala Gly Gln Met
20 25 30
Gln Pro Val Lys Ala Phe Lys Ile His Asn Lys Ile Trp Val Ile Pro
35 40 45
Glu Arg Asp Thr Phe Thr Asn Pro Glu Glu Gly Asp Leu Asn Pro Pro
50 55 60
Pro Glu Ala Lys Gln Val Pro Val Ser Tyr Tyr Asp Ser Thr Tyr Leu
65 70 75 80
Ser Thr Asp Asn Glu Lys Asp Asn Tyr Leu Lys Gly Val Thr Lys Leu
85 90 95
Phe Glu Arg Ile Tyr Ser Thr Asp Leu Gly Arg Met Leu Leu Thr Ser
100 105 110
Ile Val Arg Gly Ile Pro Phe Trp Gly Gly Ser Thr Ile Asp Thr Glu
115 120 125
Leu Lys Val Ile Asp Thr Asn Cys Ile Asn Val Ile Gln Pro Asp Gly
130 135 140
Ser Tyr Arg Ser Glu Glu Leu Asn Leu Val Ile Ile Gly Pro Ser Ala
145 150 155 160
Asp Ile Ile Gln Phe Glu Cys Lys Ser Phe Gly His Glu Val Leu Asn
165 170 175
Leu Thr Arg Asn Gly Tyr Gly Ser Thr Gln Tyr Ile Arg Phe Ser Pro
180 185 190
Asp Phe Thr Phe Gly Phe Glu Glu Ser Leu Glu Val Asp Thr Asn Pro
195 200 205
Leu Leu Gly Ala Gly Lys Phe Ala Thr Asp Pro Ala Val Thr Leu Ala
210 215 220
His Glu Leu Ile His Ala Gly His Arg Leu Tyr Gly Ile Ala Ile Asn
225 230 235 240
Pro Asn Arg Val Phe Lys Val Asn Thr Asn Ala Tyr Tyr Glu Met Ser
245 250 255
Gly Leu Glu Val Ser Phe Glu Glu Leu Arg Thr Phe Gly Gly His Asp
260 265 270
Ala Lys Phe Ile Asp Ser Leu Gln Glu Asn Glu Phe Arg Leu Tyr Tyr
275 280 285
Tyr Asn Lys Phe Lys Asp Ile Ala Ser Thr Leu Asn Lys Ala Lys Ser
290 295 300
Ile Val Gly Thr Thr Ala Ser Leu Gln Tyr Met Lys Asn Val Phe Lys
305 310 315 320
Glu Lys Tyr Leu Leu Ser Glu Asp Thr Ser Gly Lys Phe Ser Val Asp
325 330 335
Lys Leu Lys Phe Asp Lys Leu Tyr Lys Met Leu Thr Glu Ile Tyr Thr
340 345 350
Glu Asp Asn Phe Val Lys Phe Phe Lys Val Leu Asn Arg Lys Thr Tyr
355 360 365
Leu Asn Phe Asp Lys Ala Val Phe Lys Ile Asn Ile Val Pro Lys Val
370 375 380
Asn Tyr Thr Ile Tyr Asp Gly Phe Asn Leu Arg Asn Thr Asn Leu Ala
385 390 395 400
Ala Asn Phe Asn Gly Gln Asn Thr Glu Ile Asn Asn Met Asn Phe Thr
405 410 415
Lys Leu Lys Asn Phe Thr Gly Leu Phe Glu Phe Tyr Lys Leu Leu Cys
420 425 430
Val Asp Gly Ile Ile Thr Ser Lys Thr Lys Ser Leu Ile Glu Gly Arg
435 440 445
Phe Gly Gly Phe Thr Gly Ala Arg Lys Ser Ala Arg Lys Leu Ala Asn
450 455 460
Gln Ala Leu Ala Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly
465 470 475 480
Gly Gly Ser Gly Gly Gly Gly Ser Ala Leu Val Leu Gln Cys Ile Lys
485 490 495
Val Asn Asn Trp Asp Leu Phe Phe Ser Pro Ser Glu Asp Asn Phe Thr
500 505 510
Asn Asp Leu Asn Lys Gly Glu Glu Ile Thr Ser Asp Thr Asn Ile Glu
515 520 525
Ala Ala Glu Glu Asn Ile Ser Leu Asp Leu Ile Gln Gln Tyr Tyr Leu
530 535 540
Thr Phe Asn Phe Asp Asn Glu Pro Glu Asn Ile Ser Ile Glu Asn Leu
545 550 555 560
Ser Ser Asp Ile Ile Gly Gln Leu Glu Leu Met Pro Asn Ile Glu Arg
565 570 575
Phe Pro Asn Gly Lys Lys Tyr Glu Leu Asp Lys Tyr Thr Met Phe His
580 585 590
Tyr Leu Arg Ala Gln Glu Phe Glu His Gly Lys Ser Arg Ile Ala Leu
595 600 605
Thr Asn Ser Val Asn Glu Ala Leu Leu Asn Pro Ser Arg Val Tyr Thr
610 615 620
Phe Phe Ser Ser Asp Tyr Val Lys Lys Val Asn Lys Ala Thr Glu Ala
625 630 635 640
Ala Met Phe Leu Gly Trp Val Glu Gln Leu Val Tyr Asp Phe Thr Asp
645 650 655
Glu Thr Ser Glu Val Ser Thr Thr Asp Lys Ile Ala Asp Ile Thr Ile
660 665 670
Ile Ile Pro Tyr Ile Gly Pro Ala Leu Asn Ile Gly Asn Met Leu Tyr
675 680 685
Lys Asp Asp Phe Val Gly Ala Leu Ile Phe Ser Gly Ala Val Ile Leu
690 695 700
Leu Glu Phe Ile Pro Glu Ile Ala Ile Pro Val Leu Gly Thr Phe Ala
705 710 715 720
Leu Val Ser Tyr Ile Ala Asn Lys Val Leu Thr Val Gln Thr Ile Asp
725 730 735
Asn Ala Leu Ser Lys Arg Asn Glu Lys Trp Asp Glu Val Tyr Lys Tyr
740 745 750
Ile Val Thr Asn Trp Leu Ala Lys Val Asn Thr Gln Ile Asp Leu Ile
755 760 765
Arg Lys Lys Met Lys Glu Ala Leu Glu Asn Gln Ala Glu Ala Thr Lys
770 775 780
Ala Ile Ile Asn Tyr Gln Tyr Asn Gln Tyr Thr Glu Glu Glu Lys Asn
785 790 795 800
Asn Ile Asn Phe Asn Ile Asp Asp Leu Ser Ser Lys Leu Asn Glu Ser
805 810 815
Ile Asn Lys Ala Met Ile Asn Ile Asn Lys Phe Leu Asn Gln Cys Ser
820 825 830
Val Ser Tyr Leu Met Asn Ser Met Ile Pro Tyr Gly Val Lys Arg Leu
835 840 845
Glu Asp Phe Asp Ala Ser Leu Lys Asp Ala Leu Leu Lys Tyr Ile Tyr
850 855 860
Asp Asn Arg Gly Thr Leu Ile Gly Gln Val Asp Arg Leu Lys Asp Lys
865 870 875 880
Val Asn Asn Thr Leu Ser Thr Asp Ile Pro Phe Gln Leu Ser Lys Tyr
885 890 895
Val Asp Asn Gln Arg Leu Leu Ser Thr Leu Asp
900 905
<210> SEQ ID NO 62
<211> LENGTH: 207
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 62
ggatccacgc acgtcgacgg catcattacc tccaaaacta aatctgacga tgacgataaa 60
tttggcggtt tcacgggcgc acgcaaatca gcgcgtaaac gtaagaacca ggcgctagcg 120
ggcggtggcg gtagcggcgg tggcggtagc ggcggtggcg gtagcgcact agtgctgcag 180
acgcacggtc tagaatgata aaagctt 207
<210> SEQ ID NO 63
<211> LENGTH: 2709
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 63
ggatccatgg agttcgttaa caaacagttc aactataaag acccagttaa cggtgttgac 60
attgcttaca tcaaaatccc gaacgctggc cagatgcagc cggtaaaggc attcaaaatc 120
cacaacaaaa tctgggttat cccggaacgt gataccttta ctaacccgga agaaggtgac 180
ctgaacccgc caccggaagc gaaacaggtg ccggtatctt actatgactc cacctacctg 240
tctaccgata acgaaaagga caactacctg aaaggtgtta ctaaactgtt cgagcgtatt 300
tactccaccg acctgggccg tatgctgctg actagcatcg ttcgcggtat cccgttctgg 360
ggcggttcta ccatcgatac cgaactgaaa gtaatcgaca ctaactgcat caacgttatt 420
cagccggacg gttcctatcg ttccgaagaa ctgaacctgg tgatcatcgg cccgtctgct 480
gatatcatcc agttcgagtg taagagcttt ggtcacgaag ttctgaacct cacccgtaac 540
ggctacggtt ccactcagta catccgtttc tctccggact tcaccttcgg ttttgaagaa 600
tccctggaag tagacacgaa cccactgctg ggcgctggta aattcgcaac tgatcctgcg 660
gttaccctgg ctcacgaact gattcatgca ggccaccgcc tgtacggtat cgccatcaat 720
ccgaaccgtg tcttcaaagt taacaccaac gcgtattacg agatgtccgg tctggaagtt 780
agcttcgaag aactgcgtac ttttggcggt cacgacgcta aattcatcga ctctctgcaa 840
gaaaacgagt tccgtctgta ctactataac aagttcaaag atatcgcatc caccctgaac 900
aaagcgaaat ccatcgtggg taccactgct tctctccagt acatgaagaa cgtttttaaa 960
gaaaaatacc tgctcagcga agacacctcc ggcaaattct ctgtagacaa gttgaaattc 1020
gataaacttt acaaaatgct gactgaaatt tacaccgaag acaacttcgt taagttcttt 1080
aaagttctga accgcaaaac ctatctgaac ttcgacaagg cagtattcaa aatcaacatc 1140
gtgccgaaag ttaactacac tatctacgat ggtttcaacc tgcgtaacac caacctggct 1200
gctaatttta acggccagaa cacggaaatc aacaacatga acttcacaaa actgaaaaac 1260
ttcactggtc tgttcgagtt ttacaagctg ctgtgcgtcg acggcatcat tacctccaaa 1320
actaaatctg acgatgacga taaatttggc ggtttcacgg gcgcacgcaa atcagcgcgt 1380
aaacgtaaga accaggcgct agcgggcggt ggcggtagcg gcggtggcgg tagcggcggt 1440
ggcggtagcg cactagtgct gcagtgtatc aaggttaaca actgggattt attcttcagc 1500
ccgagtgaag acaacttcac caacgacctg aacaaaggtg aagaaatcac ctcagatact 1560
aacatcgaag cagccgaaga aaacatctcg ctggacctga tccagcagta ctacctgacc 1620
tttaatttcg acaacgagcc ggaaaacatt tctatcgaaa acctgagctc tgatatcatc 1680
ggccagctgg aactgatgcc gaacatcgaa cgtttcccaa acggtaaaaa gtacgagctg 1740
gacaaatata ccatgttcca ctacctgcgc gcgcaggaat ttgaacacgg caaatcccgt 1800
atcgcactga ctaactccgt taacgaagct ctgctcaacc cgtcccgtgt atacaccttc 1860
ttctctagcg actacgtgaa aaaggtcaac aaagcgactg aagctgcaat gttcttgggt 1920
tgggttgaac agcttgttta tgattttacc gacgagacgt ccgaagtatc tactaccgac 1980
aaaattgcgg atatcactat catcatcccg tacatcggtc cggctctgaa cattggcaac 2040
atgctgtaca aagacgactt cgttggcgca ctgatcttct ccggtgcggt gatcctgctg 2100
gagttcatcc cggaaatcgc catcccggta ctgggcacct ttgctctggt ttcttacatt 2160
gcaaacaagg ttctgactgt acaaaccatc gacaacgcgc tgagcaaacg taacgaaaaa 2220
tgggatgaag tttacaaata tatcgtgacc aactggctgg ctaaggttaa tactcagatc 2280
gacctcatcc gcaaaaaaat gaaagaagca ctggaaaacc aggcggaagc taccaaggca 2340
atcattaact accagtacaa ccagtacacc gaggaagaaa aaaacaacat caacttcaac 2400
atcgacgatc tgtcctctaa actgaacgaa tccatcaaca aagctatgat caacatcaac 2460
aagttcctga accagtgctc tgtaagctat ctgatgaact ccatgatccc gtacggtgtt 2520
aaacgtctgg aggacttcga tgcgtctctg aaagacgccc tgctgaaata catttacgac 2580
aaccgtggca ctctgatcgg tcaggttgat cgtctgaagg acaaagtgaa caatacctta 2640
tcgaccgaca tcccttttca gctcagtaaa tatgtcgata accaacgcct tttgtccact 2700
ctagactag 2709
<210> SEQ ID NO 64
<211> LENGTH: 902
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 64
Gly Ser Met Glu Phe Val Asn Lys Gln Phe Asn Tyr Lys Asp Pro Val
1 5 10 15
Asn Gly Val Asp Ile Ala Tyr Ile Lys Ile Pro Asn Ala Gly Gln Met
20 25 30
Gln Pro Val Lys Ala Phe Lys Ile His Asn Lys Ile Trp Val Ile Pro
35 40 45
Glu Arg Asp Thr Phe Thr Asn Pro Glu Glu Gly Asp Leu Asn Pro Pro
50 55 60
Pro Glu Ala Lys Gln Val Pro Val Ser Tyr Tyr Asp Ser Thr Tyr Leu
65 70 75 80
Ser Thr Asp Asn Glu Lys Asp Asn Tyr Leu Lys Gly Val Thr Lys Leu
85 90 95
Phe Glu Arg Ile Tyr Ser Thr Asp Leu Gly Arg Met Leu Leu Thr Ser
100 105 110
Ile Val Arg Gly Ile Pro Phe Trp Gly Gly Ser Thr Ile Asp Thr Glu
115 120 125
Leu Lys Val Ile Asp Thr Asn Cys Ile Asn Val Ile Gln Pro Asp Gly
130 135 140
Ser Tyr Arg Ser Glu Glu Leu Asn Leu Val Ile Ile Gly Pro Ser Ala
145 150 155 160
Asp Ile Ile Gln Phe Glu Cys Lys Ser Phe Gly His Glu Val Leu Asn
165 170 175
Leu Thr Arg Asn Gly Tyr Gly Ser Thr Gln Tyr Ile Arg Phe Ser Pro
180 185 190
Asp Phe Thr Phe Gly Phe Glu Glu Ser Leu Glu Val Asp Thr Asn Pro
195 200 205
Leu Leu Gly Ala Gly Lys Phe Ala Thr Asp Pro Ala Val Thr Leu Ala
210 215 220
His Glu Leu Ile His Ala Gly His Arg Leu Tyr Gly Ile Ala Ile Asn
225 230 235 240
Pro Asn Arg Val Phe Lys Val Asn Thr Asn Ala Tyr Tyr Glu Met Ser
245 250 255
Gly Leu Glu Val Ser Phe Glu Glu Leu Arg Thr Phe Gly Gly His Asp
260 265 270
Ala Lys Phe Ile Asp Ser Leu Gln Glu Asn Glu Phe Arg Leu Tyr Tyr
275 280 285
Tyr Asn Lys Phe Lys Asp Ile Ala Ser Thr Leu Asn Lys Ala Lys Ser
290 295 300
Ile Val Gly Thr Thr Ala Ser Leu Gln Tyr Met Lys Asn Val Phe Lys
305 310 315 320
Glu Lys Tyr Leu Leu Ser Glu Asp Thr Ser Gly Lys Phe Ser Val Asp
325 330 335
Lys Leu Lys Phe Asp Lys Leu Tyr Lys Met Leu Thr Glu Ile Tyr Thr
340 345 350
Glu Asp Asn Phe Val Lys Phe Phe Lys Val Leu Asn Arg Lys Thr Tyr
355 360 365
Leu Asn Phe Asp Lys Ala Val Phe Lys Ile Asn Ile Val Pro Lys Val
370 375 380
Asn Tyr Thr Ile Tyr Asp Gly Phe Asn Leu Arg Asn Thr Asn Leu Ala
385 390 395 400
Ala Asn Phe Asn Gly Gln Asn Thr Glu Ile Asn Asn Met Asn Phe Thr
405 410 415
Lys Leu Lys Asn Phe Thr Gly Leu Phe Glu Phe Tyr Lys Leu Leu Cys
420 425 430
Val Asp Gly Ile Ile Thr Ser Lys Thr Lys Ser Asp Asp Asp Asp Lys
435 440 445
Phe Gly Gly Phe Thr Gly Ala Arg Lys Ser Ala Arg Lys Arg Lys Asn
450 455 460
Gln Ala Leu Ala Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly
465 470 475 480
Gly Gly Ser Ala Leu Val Leu Gln Cys Ile Lys Val Asn Asn Trp Asp
485 490 495
Leu Phe Phe Ser Pro Ser Glu Asp Asn Phe Thr Asn Asp Leu Asn Lys
500 505 510
Gly Glu Glu Ile Thr Ser Asp Thr Asn Ile Glu Ala Ala Glu Glu Asn
515 520 525
Ile Ser Leu Asp Leu Ile Gln Gln Tyr Tyr Leu Thr Phe Asn Phe Asp
530 535 540
Asn Glu Pro Glu Asn Ile Ser Ile Glu Asn Leu Ser Ser Asp Ile Ile
545 550 555 560
Gly Gln Leu Glu Leu Met Pro Asn Ile Glu Arg Phe Pro Asn Gly Lys
565 570 575
Lys Tyr Glu Leu Asp Lys Tyr Thr Met Phe His Tyr Leu Arg Ala Gln
580 585 590
Glu Phe Glu His Gly Lys Ser Arg Ile Ala Leu Thr Asn Ser Val Asn
595 600 605
Glu Ala Leu Leu Asn Pro Ser Arg Val Tyr Thr Phe Phe Ser Ser Asp
610 615 620
Tyr Val Lys Lys Val Asn Lys Ala Thr Glu Ala Ala Met Phe Leu Gly
625 630 635 640
Trp Val Glu Gln Leu Val Tyr Asp Phe Thr Asp Glu Thr Ser Glu Val
645 650 655
Ser Thr Thr Asp Lys Ile Ala Asp Ile Thr Ile Ile Ile Pro Tyr Ile
660 665 670
Gly Pro Ala Leu Asn Ile Gly Asn Met Leu Tyr Lys Asp Asp Phe Val
675 680 685
Gly Ala Leu Ile Phe Ser Gly Ala Val Ile Leu Leu Glu Phe Ile Pro
690 695 700
Glu Ile Ala Ile Pro Val Leu Gly Thr Phe Ala Leu Val Ser Tyr Ile
705 710 715 720
Ala Asn Lys Val Leu Thr Val Gln Thr Ile Asp Asn Ala Leu Ser Lys
725 730 735
Arg Asn Glu Lys Trp Asp Glu Val Tyr Lys Tyr Ile Val Thr Asn Trp
740 745 750
Leu Ala Lys Val Asn Thr Gln Ile Asp Leu Ile Arg Lys Lys Met Lys
755 760 765
Glu Ala Leu Glu Asn Gln Ala Glu Ala Thr Lys Ala Ile Ile Asn Tyr
770 775 780
Gln Tyr Asn Gln Tyr Thr Glu Glu Glu Lys Asn Asn Ile Asn Phe Asn
785 790 795 800
Ile Asp Asp Leu Ser Ser Lys Leu Asn Glu Ser Ile Asn Lys Ala Met
805 810 815
Ile Asn Ile Asn Lys Phe Leu Asn Gln Cys Ser Val Ser Tyr Leu Met
820 825 830
Asn Ser Met Ile Pro Tyr Gly Val Lys Arg Leu Glu Asp Phe Asp Ala
835 840 845
Ser Leu Lys Asp Ala Leu Leu Lys Tyr Ile Tyr Asp Asn Arg Gly Thr
850 855 860
Leu Ile Gly Gln Val Asp Arg Leu Lys Asp Lys Val Asn Asn Thr Leu
865 870 875 880
Ser Thr Asp Ile Pro Phe Gln Leu Ser Lys Tyr Val Asp Asn Gln Arg
885 890 895
Leu Leu Ser Thr Leu Asp
900
<210> SEQ ID NO 65
<211> LENGTH: 207
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 65
ggatccacgc acgtcgacgg catcattacc tccaaaacta aatctctgat agaaggtaga 60
tttggcggtt tcacgggcgc acgcaaatca gcgcgtaaac gtaagaacca ggcgctagcg 120
ggcggtggcg gtagcggcgg tggcggtagc ggcggtggcg gtagcgcact agtgctgcag 180
acgcacggtc tagaatgata aaagctt 207
<210> SEQ ID NO 66
<211> LENGTH: 2742
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 66
ggatccgaat tcatgccgat caccatcaac aacttcaact acagcgatcc ggtggataac 60
aaaaacatcc tgtacctgga tacccatctg aataccctgg cgaacgaacc ggaaaaagcg 120
tttcgtatca ccggcaacat ttgggttatt ccggatcgtt ttagccgtaa cagcaacccg 180
aatctgaata aaccgccgcg tgttaccagc ccgaaaagcg gttattacga tccgaactat 240
ctgagcaccg atagcgataa agataccttc ctgaaagaaa tcatcaaact gttcaaacgc 300
atcaacagcc gtgaaattgg cgaagaactg atctatcgcc tgagcaccga tattccgttt 360
ccgggcaaca acaacacccc gatcaacacc tttgatttcg atgtggattt caacagcgtt 420
gatgttaaaa cccgccaggg taacaattgg gtgaaaaccg gcagcattaa cccgagcgtg 480
attattaccg gtccgcgcga aaacattatt gatccggaaa ccagcacctt taaactgacc 540
aacaacacct ttgcggcgca ggaaggtttt ggcgcgctga gcattattag cattagcccg 600
cgctttatgc tgacctatag caacgcgacc aacgatgttg gtgaaggccg tttcagcaaa 660
agcgaatttt gcatggaccc gatcctgatc ctgatgcatg aactgaacca tgcgatgcat 720
aacctgtatg gcatcgcgat tccgaacgat cagaccatta gcagcgtgac cagcaacatc 780
ttttacagcc agtacaacgt gaaactggaa tatgcggaaa tctatgcgtt tggcggtccg 840
accattgatc tgattccgaa aagcgcgcgc aaatacttcg aagaaaaagc gctggattac 900
tatcgcagca ttgcgaaacg tctgaacagc attaccaccg cgaatccgag cagcttcaac 960
aaatatatcg gcgaatataa acagaaactg atccgcaaat atcgctttgt ggtggaaagc 1020
agcggcgaag ttaccgttaa ccgcaataaa ttcgtggaac tgtacaacga actgacccag 1080
atcttcaccg aatttaacta tgcgaaaatc tataacgtgc agaaccgtaa aatctacctg 1140
agcaacgtgt ataccccggt gaccgcgaat attctggatg ataacgtgta cgatatccag 1200
aacggcttta acatcccgaa aagcaacctg aacgttctgt ttatgggcca gaacctgagc 1260
cgtaatccgg cgctgcgtaa agtgaacccg gaaaacatgc tgtacctgtt caccaaattt 1320
tgcgtcgacg gcatcattac ctccaaaact aaatctctga tagaaggtag atttggcggt 1380
ttcacgggcg cacgcaaatc agcgcgtaaa cgtaagaacc aggcgctagc gggcggtggc 1440
ggtagcggcg gtggcggtag cggcggtggc ggtagcgcac tagtgctgca gtgtcgtgaa 1500
ctgctggtga aaaacaccga tctgccgttt attggcgata tcagcgatgt gaaaaccgat 1560
atcttcctgc gcaaagatat caacgaagaa accgaagtga tctactaccc ggataacgtg 1620
agcgttgatc aggtgatcct gagcaaaaac accagcgaac atggtcagct ggatctgctg 1680
tatccgagca ttgatagcga aagcgaaatt ctgccgggcg aaaaccaggt gttttacgat 1740
aaccgtaccc agaacgtgga ttacctgaac agctattact acctggaaag ccagaaactg 1800
agcgataacg tggaagattt tacctttacc cgcagcattg aagaagcgct ggataacagc 1860
gcgaaagttt acacctattt tccgaccctg gcgaacaaag ttaatgcggg tgttcagggc 1920
ggtctgtttc tgatgtgggc gaacgatgtg gtggaagatt tcaccaccaa catcctgcgt 1980
aaagataccc tggataaaat cagcgatgtt agcgcgatta ttccgtatat tggtccggcg 2040
ctgaacatta gcaatagcgt gcgtcgtggc aattttaccg aagcgtttgc ggttaccggt 2100
gtgaccattc tgctggaagc gtttccggaa tttaccattc cggcgctggg tgcgtttgtg 2160
atctatagca aagtgcagga acgcaacgaa atcatcaaaa ccatcgataa ctgcctggaa 2220
cagcgtatta aacgctggaa agatagctat gaatggatga tgggcacctg gctgagccgt 2280
attatcaccc agttcaacaa catcagctac cagatgtacg atagcctgaa ctatcaggcg 2340
ggtgcgatta aagcgaaaat cgatctggaa tacaaaaaat acagcggcag cgataaagaa 2400
aacatcaaaa gccaggttga aaacctgaaa aacagcctgg atgtgaaaat tagcgaagcg 2460
atgaataaca tcaacaaatt catccgcgaa tgcagcgtga cctacctgtt caaaaacatg 2520
ctgccgaaag tgatcgatga actgaacgaa tttgatcgca acaccaaagc gaaactgatc 2580
aacctgatcg atagccacaa cattattctg gtgggcgaag tggataaact gaaagcgaaa 2640
gttaacaaca gcttccagaa caccatcccg tttaacatct tcagctatac caacaacagc 2700
ctgctgaaag atatcatcaa cgaatacttc aatctagact ag 2742
<210> SEQ ID NO 67
<211> LENGTH: 913
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 67
Gly Ser Glu Phe Met Pro Ile Thr Ile Asn Asn Phe Asn Tyr Ser Asp
1 5 10 15
Pro Val Asp Asn Lys Asn Ile Leu Tyr Leu Asp Thr His Leu Asn Thr
20 25 30
Leu Ala Asn Glu Pro Glu Lys Ala Phe Arg Ile Thr Gly Asn Ile Trp
35 40 45
Val Ile Pro Asp Arg Phe Ser Arg Asn Ser Asn Pro Asn Leu Asn Lys
50 55 60
Pro Pro Arg Val Thr Ser Pro Lys Ser Gly Tyr Tyr Asp Pro Asn Tyr
65 70 75 80
Leu Ser Thr Asp Ser Asp Lys Asp Thr Phe Leu Lys Glu Ile Ile Lys
85 90 95
Leu Phe Lys Arg Ile Asn Ser Arg Glu Ile Gly Glu Glu Leu Ile Tyr
100 105 110
Arg Leu Ser Thr Asp Ile Pro Phe Pro Gly Asn Asn Asn Thr Pro Ile
115 120 125
Asn Thr Phe Asp Phe Asp Val Asp Phe Asn Ser Val Asp Val Lys Thr
130 135 140
Arg Gln Gly Asn Asn Trp Val Lys Thr Gly Ser Ile Asn Pro Ser Val
145 150 155 160
Ile Ile Thr Gly Pro Arg Glu Asn Ile Ile Asp Pro Glu Thr Ser Thr
165 170 175
Phe Lys Leu Thr Asn Asn Thr Phe Ala Ala Gln Glu Gly Phe Gly Ala
180 185 190
Leu Ser Ile Ile Ser Ile Ser Pro Arg Phe Met Leu Thr Tyr Ser Asn
195 200 205
Ala Thr Asn Asp Val Gly Glu Gly Arg Phe Ser Lys Ser Glu Phe Cys
210 215 220
Met Asp Pro Ile Leu Ile Leu Met His Glu Leu Asn His Ala Met His
225 230 235 240
Asn Leu Tyr Gly Ile Ala Ile Pro Asn Asp Gln Thr Ile Ser Ser Val
245 250 255
Thr Ser Asn Ile Phe Tyr Ser Gln Tyr Asn Val Lys Leu Glu Tyr Ala
260 265 270
Glu Ile Tyr Ala Phe Gly Gly Pro Thr Ile Asp Leu Ile Pro Lys Ser
275 280 285
Ala Arg Lys Tyr Phe Glu Glu Lys Ala Leu Asp Tyr Tyr Arg Ser Ile
290 295 300
Ala Lys Arg Leu Asn Ser Ile Thr Thr Ala Asn Pro Ser Ser Phe Asn
305 310 315 320
Lys Tyr Ile Gly Glu Tyr Lys Gln Lys Leu Ile Arg Lys Tyr Arg Phe
325 330 335
Val Val Glu Ser Ser Gly Glu Val Thr Val Asn Arg Asn Lys Phe Val
340 345 350
Glu Leu Tyr Asn Glu Leu Thr Gln Ile Phe Thr Glu Phe Asn Tyr Ala
355 360 365
Lys Ile Tyr Asn Val Gln Asn Arg Lys Ile Tyr Leu Ser Asn Val Tyr
370 375 380
Thr Pro Val Thr Ala Asn Ile Leu Asp Asp Asn Val Tyr Asp Ile Gln
385 390 395 400
Asn Gly Phe Asn Ile Pro Lys Ser Asn Leu Asn Val Leu Phe Met Gly
405 410 415
Gln Asn Leu Ser Arg Asn Pro Ala Leu Arg Lys Val Asn Pro Glu Asn
420 425 430
Met Leu Tyr Leu Phe Thr Lys Phe Cys Val Asp Gly Ile Ile Thr Ser
435 440 445
Lys Thr Lys Ser Leu Ile Glu Gly Arg Phe Gly Gly Phe Thr Gly Ala
450 455 460
Arg Lys Ser Ala Arg Lys Arg Lys Asn Gln Ala Leu Ala Gly Gly Gly
465 470 475 480
Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Ala Leu Val Leu
485 490 495
Gln Cys Arg Glu Leu Leu Val Lys Asn Thr Asp Leu Pro Phe Ile Gly
500 505 510
Asp Ile Ser Asp Val Lys Thr Asp Ile Phe Leu Arg Lys Asp Ile Asn
515 520 525
Glu Glu Thr Glu Val Ile Tyr Tyr Pro Asp Asn Val Ser Val Asp Gln
530 535 540
Val Ile Leu Ser Lys Asn Thr Ser Glu His Gly Gln Leu Asp Leu Leu
545 550 555 560
Tyr Pro Ser Ile Asp Ser Glu Ser Glu Ile Leu Pro Gly Glu Asn Gln
565 570 575
Val Phe Tyr Asp Asn Arg Thr Gln Asn Val Asp Tyr Leu Asn Ser Tyr
580 585 590
Tyr Tyr Leu Glu Ser Gln Lys Leu Ser Asp Asn Val Glu Asp Phe Thr
595 600 605
Phe Thr Arg Ser Ile Glu Glu Ala Leu Asp Asn Ser Ala Lys Val Tyr
610 615 620
Thr Tyr Phe Pro Thr Leu Ala Asn Lys Val Asn Ala Gly Val Gln Gly
625 630 635 640
Gly Leu Phe Leu Met Trp Ala Asn Asp Val Val Glu Asp Phe Thr Thr
645 650 655
Asn Ile Leu Arg Lys Asp Thr Leu Asp Lys Ile Ser Asp Val Ser Ala
660 665 670
Ile Ile Pro Tyr Ile Gly Pro Ala Leu Asn Ile Ser Asn Ser Val Arg
675 680 685
Arg Gly Asn Phe Thr Glu Ala Phe Ala Val Thr Gly Val Thr Ile Leu
690 695 700
Leu Glu Ala Phe Pro Glu Phe Thr Ile Pro Ala Leu Gly Ala Phe Val
705 710 715 720
Ile Tyr Ser Lys Val Gln Glu Arg Asn Glu Ile Ile Lys Thr Ile Asp
725 730 735
Asn Cys Leu Glu Gln Arg Ile Lys Arg Trp Lys Asp Ser Tyr Glu Trp
740 745 750
Met Met Gly Thr Trp Leu Ser Arg Ile Ile Thr Gln Phe Asn Asn Ile
755 760 765
Ser Tyr Gln Met Tyr Asp Ser Leu Asn Tyr Gln Ala Gly Ala Ile Lys
770 775 780
Ala Lys Ile Asp Leu Glu Tyr Lys Lys Tyr Ser Gly Ser Asp Lys Glu
785 790 795 800
Asn Ile Lys Ser Gln Val Glu Asn Leu Lys Asn Ser Leu Asp Val Lys
805 810 815
Ile Ser Glu Ala Met Asn Asn Ile Asn Lys Phe Ile Arg Glu Cys Ser
820 825 830
Val Thr Tyr Leu Phe Lys Asn Met Leu Pro Lys Val Ile Asp Glu Leu
835 840 845
Asn Glu Phe Asp Arg Asn Thr Lys Ala Lys Leu Ile Asn Leu Ile Asp
850 855 860
Ser His Asn Ile Ile Leu Val Gly Glu Val Asp Lys Leu Lys Ala Lys
865 870 875 880
Val Asn Asn Ser Phe Gln Asn Thr Ile Pro Phe Asn Ile Phe Ser Tyr
885 890 895
Thr Asn Asn Ser Leu Leu Lys Asp Ile Ile Asn Glu Tyr Phe Asn Leu
900 905 910
Asp
<210> SEQ ID NO 68
<211> LENGTH: 2673
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 68
ggatccatgg agttcgttaa caaacagttc aactataaag acccagttaa cggtgttgac 60
attgcttaca tcaaaatccc gaacgctggc cagatgcagc cggtaaaggc attcaaaatc 120
cacaacaaaa tctgggttat cccggaacgt gataccttta ctaacccgga agaaggtgac 180
ctgaacccgc caccggaagc gaaacaggtg ccggtatctt actatgactc cacctacctg 240
tctaccgata acgaaaagga caactacctg aaaggtgtta ctaaactgtt cgagcgtatt 300
tactccaccg acctgggccg tatgctgctg actagcatcg ttcgcggtat cccgttctgg 360
ggcggttcta ccatcgatac cgaactgaaa gtaatcgaca ctaactgcat caacgttatt 420
cagccggacg gttcctatcg ttccgaagaa ctgaacctgg tgatcatcgg cccgtctgct 480
gatatcatcc agttcgagtg taagagcttt ggtcacgaag ttctgaacct cacccgtaac 540
ggctacggtt ccactcagta catccgtttc tctccggact tcaccttcgg ttttgaagaa 600
tccctggaag tagacacgaa cccactgctg ggcgctggta aattcgcaac tgatcctgcg 660
gttaccctgg ctcacgaact gattcatgca ggccaccgcc tgtacggtat cgccatcaat 720
ccgaaccgtg tcttcaaagt taacaccaac gcgtattacg agatgtccgg tctggaagtt 780
agcttcgaag aactgcgtac ttttggcggt cacgacgcta aattcatcga ctctctgcaa 840
gaaaacgagt tccgtctgta ctactataac aagttcaaag atatcgcatc caccctgaac 900
aaagcgaaat ccatcgtggg taccactgct tctctccagt acatgaagaa cgtttttaaa 960
gaaaaatacc tgctcagcga agacacctcc ggcaaattct ctgtagacaa gttgaaattc 1020
gataaacttt acaaaatgct gactgaaatt tacaccgaag acaacttcgt taagttcttt 1080
aaagttctga accgcaaaac ctatctgaac ttcgacaagg cagtattcaa aatcaacatc 1140
gtgccgaaag ttaactacac tatctacgat ggtttcaacc tgcgtaacac caacctggct 1200
gctaatttta acggccagaa cacggaaatc aacaacatga acttcacaaa actgaaaaac 1260
ttcactggtc tgttcgagtt ttacaagctg ctgtgcgtcg acggcatcat tacctccaaa 1320
actaaatctc tgatagaagg tagatacggt ggtttcctgg cgctagcggg cggtggcggt 1380
agcggcggtg gcggtagcgg cggtggcggt agcgcactag tgctgcagtg tatcaaggtt 1440
aacaactggg atttattctt cagcccgagt gaagacaact tcaccaacga cctgaacaaa 1500
ggtgaagaaa tcacctcaga tactaacatc gaagcagccg aagaaaacat ctcgctggac 1560
ctgatccagc agtactacct gacctttaat ttcgacaacg agccggaaaa catttctatc 1620
gaaaacctga gctctgatat catcggccag ctggaactga tgccgaacat cgaacgtttc 1680
ccaaacggta aaaagtacga gctggacaaa tataccatgt tccactacct gcgcgcgcag 1740
gaatttgaac acggcaaatc ccgtatcgca ctgactaact ccgttaacga agctctgctc 1800
aacccgtccc gtgtatacac cttcttctct agcgactacg tgaaaaaggt caacaaagcg 1860
actgaagctg caatgttctt gggttgggtt gaacagcttg tttatgattt taccgacgag 1920
acgtccgaag tatctactac cgacaaaatt gcggatatca ctatcatcat cccgtacatc 1980
ggtccggctc tgaacattgg caacatgctg tacaaagacg acttcgttgg cgcactgatc 2040
ttctccggtg cggtgatcct gctggagttc atcccggaaa tcgccatccc ggtactgggc 2100
acctttgctc tggtttctta cattgcaaac aaggttctga ctgtacaaac catcgacaac 2160
gcgctgagca aacgtaacga aaaatgggat gaagtttaca aatatatcgt gaccaactgg 2220
ctggctaagg ttaatactca gatcgacctc atccgcaaaa aaatgaaaga agcactggaa 2280
aaccaggcgg aagctaccaa ggcaatcatt aactaccagt acaaccagta caccgaggaa 2340
gaaaaaaaca acatcaactt caacatcgac gatctgtcct ctaaactgaa cgaatccatc 2400
aacaaagcta tgatcaacat caacaagttc ctgaaccagt gctctgtaag ctatctgatg 2460
aactccatga tcccgtacgg tgttaaacgt ctggaggact tcgatgcgtc tctgaaagac 2520
gccctgctga aatacattta cgacaaccgt ggcactctga tcggtcaggt tgatcgtctg 2580
aaggacaaag tgaacaatac cttatcgacc gacatccctt ttcagctcag taaatatgtc 2640
gataaccaac gccttttgtc cactctagac tag 2673
<210> SEQ ID NO 69
<211> LENGTH: 890
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 69
Gly Ser Met Glu Phe Val Asn Lys Gln Phe Asn Tyr Lys Asp Pro Val
1 5 10 15
Asn Gly Val Asp Ile Ala Tyr Ile Lys Ile Pro Asn Ala Gly Gln Met
20 25 30
Gln Pro Val Lys Ala Phe Lys Ile His Asn Lys Ile Trp Val Ile Pro
35 40 45
Glu Arg Asp Thr Phe Thr Asn Pro Glu Glu Gly Asp Leu Asn Pro Pro
50 55 60
Pro Glu Ala Lys Gln Val Pro Val Ser Tyr Tyr Asp Ser Thr Tyr Leu
65 70 75 80
Ser Thr Asp Asn Glu Lys Asp Asn Tyr Leu Lys Gly Val Thr Lys Leu
85 90 95
Phe Glu Arg Ile Tyr Ser Thr Asp Leu Gly Arg Met Leu Leu Thr Ser
100 105 110
Ile Val Arg Gly Ile Pro Phe Trp Gly Gly Ser Thr Ile Asp Thr Glu
115 120 125
Leu Lys Val Ile Asp Thr Asn Cys Ile Asn Val Ile Gln Pro Asp Gly
130 135 140
Ser Tyr Arg Ser Glu Glu Leu Asn Leu Val Ile Ile Gly Pro Ser Ala
145 150 155 160
Asp Ile Ile Gln Phe Glu Cys Lys Ser Phe Gly His Glu Val Leu Asn
165 170 175
Leu Thr Arg Asn Gly Tyr Gly Ser Thr Gln Tyr Ile Arg Phe Ser Pro
180 185 190
Asp Phe Thr Phe Gly Phe Glu Glu Ser Leu Glu Val Asp Thr Asn Pro
195 200 205
Leu Leu Gly Ala Gly Lys Phe Ala Thr Asp Pro Ala Val Thr Leu Ala
210 215 220
His Glu Leu Ile His Ala Gly His Arg Leu Tyr Gly Ile Ala Ile Asn
225 230 235 240
Pro Asn Arg Val Phe Lys Val Asn Thr Asn Ala Tyr Tyr Glu Met Ser
245 250 255
Gly Leu Glu Val Ser Phe Glu Glu Leu Arg Thr Phe Gly Gly His Asp
260 265 270
Ala Lys Phe Ile Asp Ser Leu Gln Glu Asn Glu Phe Arg Leu Tyr Tyr
275 280 285
Tyr Asn Lys Phe Lys Asp Ile Ala Ser Thr Leu Asn Lys Ala Lys Ser
290 295 300
Ile Val Gly Thr Thr Ala Ser Leu Gln Tyr Met Lys Asn Val Phe Lys
305 310 315 320
Glu Lys Tyr Leu Leu Ser Glu Asp Thr Ser Gly Lys Phe Ser Val Asp
325 330 335
Lys Leu Lys Phe Asp Lys Leu Tyr Lys Met Leu Thr Glu Ile Tyr Thr
340 345 350
Glu Asp Asn Phe Val Lys Phe Phe Lys Val Leu Asn Arg Lys Thr Tyr
355 360 365
Leu Asn Phe Asp Lys Ala Val Phe Lys Ile Asn Ile Val Pro Lys Val
370 375 380
Asn Tyr Thr Ile Tyr Asp Gly Phe Asn Leu Arg Asn Thr Asn Leu Ala
385 390 395 400
Ala Asn Phe Asn Gly Gln Asn Thr Glu Ile Asn Asn Met Asn Phe Thr
405 410 415
Lys Leu Lys Asn Phe Thr Gly Leu Phe Glu Phe Tyr Lys Leu Leu Cys
420 425 430
Val Asp Gly Ile Ile Thr Ser Lys Thr Lys Ser Leu Ile Glu Gly Arg
435 440 445
Tyr Gly Gly Phe Leu Ala Leu Ala Gly Gly Gly Gly Ser Gly Gly Gly
450 455 460
Gly Ser Gly Gly Gly Gly Ser Ala Leu Val Leu Gln Cys Ile Lys Val
465 470 475 480
Asn Asn Trp Asp Leu Phe Phe Ser Pro Ser Glu Asp Asn Phe Thr Asn
485 490 495
Asp Leu Asn Lys Gly Glu Glu Ile Thr Ser Asp Thr Asn Ile Glu Ala
500 505 510
Ala Glu Glu Asn Ile Ser Leu Asp Leu Ile Gln Gln Tyr Tyr Leu Thr
515 520 525
Phe Asn Phe Asp Asn Glu Pro Glu Asn Ile Ser Ile Glu Asn Leu Ser
530 535 540
Ser Asp Ile Ile Gly Gln Leu Glu Leu Met Pro Asn Ile Glu Arg Phe
545 550 555 560
Pro Asn Gly Lys Lys Tyr Glu Leu Asp Lys Tyr Thr Met Phe His Tyr
565 570 575
Leu Arg Ala Gln Glu Phe Glu His Gly Lys Ser Arg Ile Ala Leu Thr
580 585 590
Asn Ser Val Asn Glu Ala Leu Leu Asn Pro Ser Arg Val Tyr Thr Phe
595 600 605
Phe Ser Ser Asp Tyr Val Lys Lys Val Asn Lys Ala Thr Glu Ala Ala
610 615 620
Met Phe Leu Gly Trp Val Glu Gln Leu Val Tyr Asp Phe Thr Asp Glu
625 630 635 640
Thr Ser Glu Val Ser Thr Thr Asp Lys Ile Ala Asp Ile Thr Ile Ile
645 650 655
Ile Pro Tyr Ile Gly Pro Ala Leu Asn Ile Gly Asn Met Leu Tyr Lys
660 665 670
Asp Asp Phe Val Gly Ala Leu Ile Phe Ser Gly Ala Val Ile Leu Leu
675 680 685
Glu Phe Ile Pro Glu Ile Ala Ile Pro Val Leu Gly Thr Phe Ala Leu
690 695 700
Val Ser Tyr Ile Ala Asn Lys Val Leu Thr Val Gln Thr Ile Asp Asn
705 710 715 720
Ala Leu Ser Lys Arg Asn Glu Lys Trp Asp Glu Val Tyr Lys Tyr Ile
725 730 735
Val Thr Asn Trp Leu Ala Lys Val Asn Thr Gln Ile Asp Leu Ile Arg
740 745 750
Lys Lys Met Lys Glu Ala Leu Glu Asn Gln Ala Glu Ala Thr Lys Ala
755 760 765
Ile Ile Asn Tyr Gln Tyr Asn Gln Tyr Thr Glu Glu Glu Lys Asn Asn
770 775 780
Ile Asn Phe Asn Ile Asp Asp Leu Ser Ser Lys Leu Asn Glu Ser Ile
785 790 795 800
Asn Lys Ala Met Ile Asn Ile Asn Lys Phe Leu Asn Gln Cys Ser Val
805 810 815
Ser Tyr Leu Met Asn Ser Met Ile Pro Tyr Gly Val Lys Arg Leu Glu
820 825 830
Asp Phe Asp Ala Ser Leu Lys Asp Ala Leu Leu Lys Tyr Ile Tyr Asp
835 840 845
Asn Arg Gly Thr Leu Ile Gly Gln Val Asp Arg Leu Lys Asp Lys Val
850 855 860
Asn Asn Thr Leu Ser Thr Asp Ile Pro Phe Gln Leu Ser Lys Tyr Val
865 870 875 880
Asp Asn Gln Arg Leu Leu Ser Thr Leu Asp
885 890
<210> SEQ ID NO 70
<211> LENGTH: 2709
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 70
ggatccatgg agttcgttaa caaacagttc aactataaag acccagttaa cggtgttgac 60
attgcttaca tcaaaatccc gaacgctggc cagatgcagc cggtaaaggc attcaaaatc 120
cacaacaaaa tctgggttat cccggaacgt gataccttta ctaacccgga agaaggtgac 180
ctgaacccgc caccggaagc gaaacaggtg ccggtatctt actatgactc cacctacctg 240
tctaccgata acgaaaagga caactacctg aaaggtgtta ctaaactgtt cgagcgtatt 300
tactccaccg acctgggccg tatgctgctg actagcatcg ttcgcggtat cccgttctgg 360
ggcggttcta ccatcgatac cgaactgaaa gtaatcgaca ctaactgcat caacgttatt 420
cagccggacg gttcctatcg ttccgaagaa ctgaacctgg tgatcatcgg cccgtctgct 480
gatatcatcc agttcgagtg taagagcttt ggtcacgaag ttctgaacct cacccgtaac 540
ggctacggtt ccactcagta catccgtttc tctccggact tcaccttcgg ttttgaagaa 600
tccctggaag tagacacgaa cccactgctg ggcgctggta aattcgcaac tgatcctgcg 660
gttaccctgg ctcacgaact gattcatgca ggccaccgcc tgtacggtat cgccatcaat 720
ccgaaccgtg tcttcaaagt taacaccaac gcgtattacg agatgtccgg tctggaagtt 780
agcttcgaag aactgcgtac ttttggcggt cacgacgcta aattcatcga ctctctgcaa 840
gaaaacgagt tccgtctgta ctactataac aagttcaaag atatcgcatc caccctgaac 900
aaagcgaaat ccatcgtggg taccactgct tctctccagt acatgaagaa cgtttttaaa 960
gaaaaatacc tgctcagcga agacacctcc ggcaaattct ctgtagacaa gttgaaattc 1020
gataaacttt acaaaatgct gactgaaatt tacaccgaag acaacttcgt taagttcttt 1080
aaagttctga accgcaaaac ctatctgaac ttcgacaagg cagtattcaa aatcaacatc 1140
gtgccgaaag ttaactacac tatctacgat ggtttcaacc tgcgtaacac caacctggct 1200
gctaatttta acggccagaa cacggaaatc aacaacatga acttcacaaa actgaaaaac 1260
ttcactggtc tgttcgagtt ttacaagctg ctgtgcgtcg acggcatcat tacctccaaa 1320
actaaatctc tgatagaagg tagatatggc ggtttcacgg gcgcacgcaa atcagcgcgt 1380
aaattagcta accaggcgct agcgggcggt ggcggtagcg gcggtggcgg tagcggcggt 1440
ggcggtagcg cactagtgct gcagtgtatc aaggttaaca actgggattt attcttcagc 1500
ccgagtgaag acaacttcac caacgacctg aacaaaggtg aagaaatcac ctcagatact 1560
aacatcgaag cagccgaaga aaacatctcg ctggacctga tccagcagta ctacctgacc 1620
tttaatttcg acaacgagcc ggaaaacatt tctatcgaaa acctgagctc tgatatcatc 1680
ggccagctgg aactgatgcc gaacatcgaa cgtttcccaa acggtaaaaa gtacgagctg 1740
gacaaatata ccatgttcca ctacctgcgc gcgcaggaat ttgaacacgg caaatcccgt 1800
atcgcactga ctaactccgt taacgaagct ctgctcaacc cgtcccgtgt atacaccttc 1860
ttctctagcg actacgtgaa aaaggtcaac aaagcgactg aagctgcaat gttcttgggt 1920
tgggttgaac agcttgttta tgattttacc gacgagacgt ccgaagtatc tactaccgac 1980
aaaattgcgg atatcactat catcatcccg tacatcggtc cggctctgaa cattggcaac 2040
atgctgtaca aagacgactt cgttggcgca ctgatcttct ccggtgcggt gatcctgctg 2100
gagttcatcc cggaaatcgc catcccggta ctgggcacct ttgctctggt ttcttacatt 2160
gcaaacaagg ttctgactgt acaaaccatc gacaacgcgc tgagcaaacg taacgaaaaa 2220
tgggatgaag tttacaaata tatcgtgacc aactggctgg ctaaggttaa tactcagatc 2280
gacctcatcc gcaaaaaaat gaaagaagca ctggaaaacc aggcggaagc taccaaggca 2340
atcattaact accagtacaa ccagtacacc gaggaagaaa aaaacaacat caacttcaac 2400
atcgacgatc tgtcctctaa actgaacgaa tccatcaaca aagctatgat caacatcaac 2460
aagttcctga accagtgctc tgtaagctat ctgatgaact ccatgatccc gtacggtgtt 2520
aaacgtctgg aggacttcga tgcgtctctg aaagacgccc tgctgaaata catttacgac 2580
aaccgtggca ctctgatcgg tcaggttgat cgtctgaagg acaaagtgaa caatacctta 2640
tcgaccgaca tcccttttca gctcagtaaa tatgtcgata accaacgcct tttgtccact 2700
ctagactag 2709
<210> SEQ ID NO 71
<211> LENGTH: 902
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 71
Gly Ser Met Glu Phe Val Asn Lys Gln Phe Asn Tyr Lys Asp Pro Val
1 5 10 15
Asn Gly Val Asp Ile Ala Tyr Ile Lys Ile Pro Asn Ala Gly Gln Met
20 25 30
Gln Pro Val Lys Ala Phe Lys Ile His Asn Lys Ile Trp Val Ile Pro
35 40 45
Glu Arg Asp Thr Phe Thr Asn Pro Glu Glu Gly Asp Leu Asn Pro Pro
50 55 60
Pro Glu Ala Lys Gln Val Pro Val Ser Tyr Tyr Asp Ser Thr Tyr Leu
65 70 75 80
Ser Thr Asp Asn Glu Lys Asp Asn Tyr Leu Lys Gly Val Thr Lys Leu
85 90 95
Phe Glu Arg Ile Tyr Ser Thr Asp Leu Gly Arg Met Leu Leu Thr Ser
100 105 110
Ile Val Arg Gly Ile Pro Phe Trp Gly Gly Ser Thr Ile Asp Thr Glu
115 120 125
Leu Lys Val Ile Asp Thr Asn Cys Ile Asn Val Ile Gln Pro Asp Gly
130 135 140
Ser Tyr Arg Ser Glu Glu Leu Asn Leu Val Ile Ile Gly Pro Ser Ala
145 150 155 160
Asp Ile Ile Gln Phe Glu Cys Lys Ser Phe Gly His Glu Val Leu Asn
165 170 175
Leu Thr Arg Asn Gly Tyr Gly Ser Thr Gln Tyr Ile Arg Phe Ser Pro
180 185 190
Asp Phe Thr Phe Gly Phe Glu Glu Ser Leu Glu Val Asp Thr Asn Pro
195 200 205
Leu Leu Gly Ala Gly Lys Phe Ala Thr Asp Pro Ala Val Thr Leu Ala
210 215 220
His Glu Leu Ile His Ala Gly His Arg Leu Tyr Gly Ile Ala Ile Asn
225 230 235 240
Pro Asn Arg Val Phe Lys Val Asn Thr Asn Ala Tyr Tyr Glu Met Ser
245 250 255
Gly Leu Glu Val Ser Phe Glu Glu Leu Arg Thr Phe Gly Gly His Asp
260 265 270
Ala Lys Phe Ile Asp Ser Leu Gln Glu Asn Glu Phe Arg Leu Tyr Tyr
275 280 285
Tyr Asn Lys Phe Lys Asp Ile Ala Ser Thr Leu Asn Lys Ala Lys Ser
290 295 300
Ile Val Gly Thr Thr Ala Ser Leu Gln Tyr Met Lys Asn Val Phe Lys
305 310 315 320
Glu Lys Tyr Leu Leu Ser Glu Asp Thr Ser Gly Lys Phe Ser Val Asp
325 330 335
Lys Leu Lys Phe Asp Lys Leu Tyr Lys Met Leu Thr Glu Ile Tyr Thr
340 345 350
Glu Asp Asn Phe Val Lys Phe Phe Lys Val Leu Asn Arg Lys Thr Tyr
355 360 365
Leu Asn Phe Asp Lys Ala Val Phe Lys Ile Asn Ile Val Pro Lys Val
370 375 380
Asn Tyr Thr Ile Tyr Asp Gly Phe Asn Leu Arg Asn Thr Asn Leu Ala
385 390 395 400
Ala Asn Phe Asn Gly Gln Asn Thr Glu Ile Asn Asn Met Asn Phe Thr
405 410 415
Lys Leu Lys Asn Phe Thr Gly Leu Phe Glu Phe Tyr Lys Leu Leu Cys
420 425 430
Val Asp Gly Ile Ile Thr Ser Lys Thr Lys Ser Leu Ile Glu Gly Arg
435 440 445
Tyr Gly Gly Phe Thr Gly Ala Arg Lys Ser Ala Arg Lys Leu Ala Asn
450 455 460
Gln Ala Leu Ala Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly
465 470 475 480
Gly Gly Ser Ala Leu Val Leu Gln Cys Ile Lys Val Asn Asn Trp Asp
485 490 495
Leu Phe Phe Ser Pro Ser Glu Asp Asn Phe Thr Asn Asp Leu Asn Lys
500 505 510
Gly Glu Glu Ile Thr Ser Asp Thr Asn Ile Glu Ala Ala Glu Glu Asn
515 520 525
Ile Ser Leu Asp Leu Ile Gln Gln Tyr Tyr Leu Thr Phe Asn Phe Asp
530 535 540
Asn Glu Pro Glu Asn Ile Ser Ile Glu Asn Leu Ser Ser Asp Ile Ile
545 550 555 560
Gly Gln Leu Glu Leu Met Pro Asn Ile Glu Arg Phe Pro Asn Gly Lys
565 570 575
Lys Tyr Glu Leu Asp Lys Tyr Thr Met Phe His Tyr Leu Arg Ala Gln
580 585 590
Glu Phe Glu His Gly Lys Ser Arg Ile Ala Leu Thr Asn Ser Val Asn
595 600 605
Glu Ala Leu Leu Asn Pro Ser Arg Val Tyr Thr Phe Phe Ser Ser Asp
610 615 620
Tyr Val Lys Lys Val Asn Lys Ala Thr Glu Ala Ala Met Phe Leu Gly
625 630 635 640
Trp Val Glu Gln Leu Val Tyr Asp Phe Thr Asp Glu Thr Ser Glu Val
645 650 655
Ser Thr Thr Asp Lys Ile Ala Asp Ile Thr Ile Ile Ile Pro Tyr Ile
660 665 670
Gly Pro Ala Leu Asn Ile Gly Asn Met Leu Tyr Lys Asp Asp Phe Val
675 680 685
Gly Ala Leu Ile Phe Ser Gly Ala Val Ile Leu Leu Glu Phe Ile Pro
690 695 700
Glu Ile Ala Ile Pro Val Leu Gly Thr Phe Ala Leu Val Ser Tyr Ile
705 710 715 720
Ala Asn Lys Val Leu Thr Val Gln Thr Ile Asp Asn Ala Leu Ser Lys
725 730 735
Arg Asn Glu Lys Trp Asp Glu Val Tyr Lys Tyr Ile Val Thr Asn Trp
740 745 750
Leu Ala Lys Val Asn Thr Gln Ile Asp Leu Ile Arg Lys Lys Met Lys
755 760 765
Glu Ala Leu Glu Asn Gln Ala Glu Ala Thr Lys Ala Ile Ile Asn Tyr
770 775 780
Gln Tyr Asn Gln Tyr Thr Glu Glu Glu Lys Asn Asn Ile Asn Phe Asn
785 790 795 800
Ile Asp Asp Leu Ser Ser Lys Leu Asn Glu Ser Ile Asn Lys Ala Met
805 810 815
Ile Asn Ile Asn Lys Phe Leu Asn Gln Cys Ser Val Ser Tyr Leu Met
820 825 830
Asn Ser Met Ile Pro Tyr Gly Val Lys Arg Leu Glu Asp Phe Asp Ala
835 840 845
Ser Leu Lys Asp Ala Leu Leu Lys Tyr Ile Tyr Asp Asn Arg Gly Thr
850 855 860
Leu Ile Gly Gln Val Asp Arg Leu Lys Asp Lys Val Asn Asn Thr Leu
865 870 875 880
Ser Thr Asp Ile Pro Phe Gln Leu Ser Lys Tyr Val Asp Asn Gln Arg
885 890 895
Leu Leu Ser Thr Leu Asp
900
<210> SEQ ID NO 72
<211> LENGTH: 2709
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 72
ggatccatgg agttcgttaa caaacagttc aactataaag acccagttaa cggtgttgac 60
attgcttaca tcaaaatccc gaacgctggc cagatgcagc cggtaaaggc attcaaaatc 120
cacaacaaaa tctgggttat cccggaacgt gataccttta ctaacccgga agaaggtgac 180
ctgaacccgc caccggaagc gaaacaggtg ccggtatctt actatgactc cacctacctg 240
tctaccgata acgaaaagga caactacctg aaaggtgtta ctaaactgtt cgagcgtatt 300
tactccaccg acctgggccg tatgctgctg actagcatcg ttcgcggtat cccgttctgg 360
ggcggttcta ccatcgatac cgaactgaaa gtaatcgaca ctaactgcat caacgttatt 420
cagccggacg gttcctatcg ttccgaagaa ctgaacctgg tgatcatcgg cccgtctgct 480
gatatcatcc agttcgagtg taagagcttt ggtcacgaag ttctgaacct cacccgtaac 540
ggctacggtt ccactcagta catccgtttc tctccggact tcaccttcgg ttttgaagaa 600
tccctggaag tagacacgaa cccactgctg ggcgctggta aattcgcaac tgatcctgcg 660
gttaccctgg ctcacgaact gattcatgca ggccaccgcc tgtacggtat cgccatcaat 720
ccgaaccgtg tcttcaaagt taacaccaac gcgtattacg agatgtccgg tctggaagtt 780
agcttcgaag aactgcgtac ttttggcggt cacgacgcta aattcatcga ctctctgcaa 840
gaaaacgagt tccgtctgta ctactataac aagttcaaag atatcgcatc caccctgaac 900
aaagcgaaat ccatcgtggg taccactgct tctctccagt acatgaagaa cgtttttaaa 960
gaaaaatacc tgctcagcga agacacctcc ggcaaattct ctgtagacaa gttgaaattc 1020
gataaacttt acaaaatgct gactgaaatt tacaccgaag acaacttcgt taagttcttt 1080
aaagttctga accgcaaaac ctatctgaac ttcgacaagg cagtattcaa aatcaacatc 1140
gtgccgaaag ttaactacac tatctacgat ggtttcaacc tgcgtaacac caacctggct 1200
gctaatttta acggccagaa cacggaaatc aacaacatga acttcacaaa actgaaaaac 1260
ttcactggtc tgttcgagtt ttacaagctg ctgtgcgtcg acggcatcat tacctccaaa 1320
actaaatctc tgatagaagg tagatatggc ggtttcacgg gcgcacgcaa atcagcgcgt 1380
aaacgtaaga accaggcgct agcgggcggt ggcggtagcg gcggtggcgg tagcggcggt 1440
ggcggtagcg cactagtgct gcagtgtatc aaggttaaca actgggattt attcttcagc 1500
ccgagtgaag acaacttcac caacgacctg aacaaaggtg aagaaatcac ctcagatact 1560
aacatcgaag cagccgaaga aaacatctcg ctggacctga tccagcagta ctacctgacc 1620
tttaatttcg acaacgagcc ggaaaacatt tctatcgaaa acctgagctc tgatatcatc 1680
ggccagctgg aactgatgcc gaacatcgaa cgtttcccaa acggtaaaaa gtacgagctg 1740
gacaaatata ccatgttcca ctacctgcgc gcgcaggaat ttgaacacgg caaatcccgt 1800
atcgcactga ctaactccgt taacgaagct ctgctcaacc cgtcccgtgt atacaccttc 1860
ttctctagcg actacgtgaa aaaggtcaac aaagcgactg aagctgcaat gttcttgggt 1920
tgggttgaac agcttgttta tgattttacc gacgagacgt ccgaagtatc tactaccgac 1980
aaaattgcgg atatcactat catcatcccg tacatcggtc cggctctgaa cattggcaac 2040
atgctgtaca aagacgactt cgttggcgca ctgatcttct ccggtgcggt gatcctgctg 2100
gagttcatcc cggaaatcgc catcccggta ctgggcacct ttgctctggt ttcttacatt 2160
gcaaacaagg ttctgactgt acaaaccatc gacaacgcgc tgagcaaacg taacgaaaaa 2220
tgggatgaag tttacaaata tatcgtgacc aactggctgg ctaaggttaa tactcagatc 2280
gacctcatcc gcaaaaaaat gaaagaagca ctggaaaacc aggcggaagc taccaaggca 2340
atcattaact accagtacaa ccagtacacc gaggaagaaa aaaacaacat caacttcaac 2400
atcgacgatc tgtcctctaa actgaacgaa tccatcaaca aagctatgat caacatcaac 2460
aagttcctga accagtgctc tgtaagctat ctgatgaact ccatgatccc gtacggtgtt 2520
aaacgtctgg aggacttcga tgcgtctctg aaagacgccc tgctgaaata catttacgac 2580
aaccgtggca ctctgatcgg tcaggttgat cgtctgaagg acaaagtgaa caatacctta 2640
tcgaccgaca tcccttttca gctcagtaaa tatgtcgata accaacgcct tttgtccact 2700
ctagactag 2709
<210> SEQ ID NO 73
<211> LENGTH: 902
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 73
Gly Ser Met Glu Phe Val Asn Lys Gln Phe Asn Tyr Lys Asp Pro Val
1 5 10 15
Asn Gly Val Asp Ile Ala Tyr Ile Lys Ile Pro Asn Ala Gly Gln Met
20 25 30
Gln Pro Val Lys Ala Phe Lys Ile His Asn Lys Ile Trp Val Ile Pro
35 40 45
Glu Arg Asp Thr Phe Thr Asn Pro Glu Glu Gly Asp Leu Asn Pro Pro
50 55 60
Pro Glu Ala Lys Gln Val Pro Val Ser Tyr Tyr Asp Ser Thr Tyr Leu
65 70 75 80
Ser Thr Asp Asn Glu Lys Asp Asn Tyr Leu Lys Gly Val Thr Lys Leu
85 90 95
Phe Glu Arg Ile Tyr Ser Thr Asp Leu Gly Arg Met Leu Leu Thr Ser
100 105 110
Ile Val Arg Gly Ile Pro Phe Trp Gly Gly Ser Thr Ile Asp Thr Glu
115 120 125
Leu Lys Val Ile Asp Thr Asn Cys Ile Asn Val Ile Gln Pro Asp Gly
130 135 140
Ser Tyr Arg Ser Glu Glu Leu Asn Leu Val Ile Ile Gly Pro Ser Ala
145 150 155 160
Asp Ile Ile Gln Phe Glu Cys Lys Ser Phe Gly His Glu Val Leu Asn
165 170 175
Leu Thr Arg Asn Gly Tyr Gly Ser Thr Gln Tyr Ile Arg Phe Ser Pro
180 185 190
Asp Phe Thr Phe Gly Phe Glu Glu Ser Leu Glu Val Asp Thr Asn Pro
195 200 205
Leu Leu Gly Ala Gly Lys Phe Ala Thr Asp Pro Ala Val Thr Leu Ala
210 215 220
His Glu Leu Ile His Ala Gly His Arg Leu Tyr Gly Ile Ala Ile Asn
225 230 235 240
Pro Asn Arg Val Phe Lys Val Asn Thr Asn Ala Tyr Tyr Glu Met Ser
245 250 255
Gly Leu Glu Val Ser Phe Glu Glu Leu Arg Thr Phe Gly Gly His Asp
260 265 270
Ala Lys Phe Ile Asp Ser Leu Gln Glu Asn Glu Phe Arg Leu Tyr Tyr
275 280 285
Tyr Asn Lys Phe Lys Asp Ile Ala Ser Thr Leu Asn Lys Ala Lys Ser
290 295 300
Ile Val Gly Thr Thr Ala Ser Leu Gln Tyr Met Lys Asn Val Phe Lys
305 310 315 320
Glu Lys Tyr Leu Leu Ser Glu Asp Thr Ser Gly Lys Phe Ser Val Asp
325 330 335
Lys Leu Lys Phe Asp Lys Leu Tyr Lys Met Leu Thr Glu Ile Tyr Thr
340 345 350
Glu Asp Asn Phe Val Lys Phe Phe Lys Val Leu Asn Arg Lys Thr Tyr
355 360 365
Leu Asn Phe Asp Lys Ala Val Phe Lys Ile Asn Ile Val Pro Lys Val
370 375 380
Asn Tyr Thr Ile Tyr Asp Gly Phe Asn Leu Arg Asn Thr Asn Leu Ala
385 390 395 400
Ala Asn Phe Asn Gly Gln Asn Thr Glu Ile Asn Asn Met Asn Phe Thr
405 410 415
Lys Leu Lys Asn Phe Thr Gly Leu Phe Glu Phe Tyr Lys Leu Leu Cys
420 425 430
Val Asp Gly Ile Ile Thr Ser Lys Thr Lys Ser Leu Ile Glu Gly Arg
435 440 445
Tyr Gly Gly Phe Thr Gly Ala Arg Lys Ser Ala Arg Lys Arg Lys Asn
450 455 460
Gln Ala Leu Ala Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly
465 470 475 480
Gly Gly Ser Ala Leu Val Leu Gln Cys Ile Lys Val Asn Asn Trp Asp
485 490 495
Leu Phe Phe Ser Pro Ser Glu Asp Asn Phe Thr Asn Asp Leu Asn Lys
500 505 510
Gly Glu Glu Ile Thr Ser Asp Thr Asn Ile Glu Ala Ala Glu Glu Asn
515 520 525
Ile Ser Leu Asp Leu Ile Gln Gln Tyr Tyr Leu Thr Phe Asn Phe Asp
530 535 540
Asn Glu Pro Glu Asn Ile Ser Ile Glu Asn Leu Ser Ser Asp Ile Ile
545 550 555 560
Gly Gln Leu Glu Leu Met Pro Asn Ile Glu Arg Phe Pro Asn Gly Lys
565 570 575
Lys Tyr Glu Leu Asp Lys Tyr Thr Met Phe His Tyr Leu Arg Ala Gln
580 585 590
Glu Phe Glu His Gly Lys Ser Arg Ile Ala Leu Thr Asn Ser Val Asn
595 600 605
Glu Ala Leu Leu Asn Pro Ser Arg Val Tyr Thr Phe Phe Ser Ser Asp
610 615 620
Tyr Val Lys Lys Val Asn Lys Ala Thr Glu Ala Ala Met Phe Leu Gly
625 630 635 640
Trp Val Glu Gln Leu Val Tyr Asp Phe Thr Asp Glu Thr Ser Glu Val
645 650 655
Ser Thr Thr Asp Lys Ile Ala Asp Ile Thr Ile Ile Ile Pro Tyr Ile
660 665 670
Gly Pro Ala Leu Asn Ile Gly Asn Met Leu Tyr Lys Asp Asp Phe Val
675 680 685
Gly Ala Leu Ile Phe Ser Gly Ala Val Ile Leu Leu Glu Phe Ile Pro
690 695 700
Glu Ile Ala Ile Pro Val Leu Gly Thr Phe Ala Leu Val Ser Tyr Ile
705 710 715 720
Ala Asn Lys Val Leu Thr Val Gln Thr Ile Asp Asn Ala Leu Ser Lys
725 730 735
Arg Asn Glu Lys Trp Asp Glu Val Tyr Lys Tyr Ile Val Thr Asn Trp
740 745 750
Leu Ala Lys Val Asn Thr Gln Ile Asp Leu Ile Arg Lys Lys Met Lys
755 760 765
Glu Ala Leu Glu Asn Gln Ala Glu Ala Thr Lys Ala Ile Ile Asn Tyr
770 775 780
Gln Tyr Asn Gln Tyr Thr Glu Glu Glu Lys Asn Asn Ile Asn Phe Asn
785 790 795 800
Ile Asp Asp Leu Ser Ser Lys Leu Asn Glu Ser Ile Asn Lys Ala Met
805 810 815
Ile Asn Ile Asn Lys Phe Leu Asn Gln Cys Ser Val Ser Tyr Leu Met
820 825 830
Asn Ser Met Ile Pro Tyr Gly Val Lys Arg Leu Glu Asp Phe Asp Ala
835 840 845
Ser Leu Lys Asp Ala Leu Leu Lys Tyr Ile Tyr Asp Asn Arg Gly Thr
850 855 860
Leu Ile Gly Gln Val Asp Arg Leu Lys Asp Lys Val Asn Asn Thr Leu
865 870 875 880
Ser Thr Asp Ile Pro Phe Gln Leu Ser Lys Tyr Val Asp Asn Gln Arg
885 890 895
Leu Leu Ser Thr Leu Asp
900
<210> SEQ ID NO 74
<211> LENGTH: 2889
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 74
ggatccttgg tacgagatga cgttgactat caaattttcc gcgactttgc ggaaaataaa 60
ggtaagtttt tcgtcggcgc cacagacctg tccgtcaaaa ataagagagg ccagaacatc 120
ggtaacgcac tgagcaacgt ccctatgatt gattttagtg tagcggacgt taataaacgg 180
attgcaaccg tcgttgatcc gcagtatgct gtcagcgtca aacatgctaa agcggaagtt 240
catacgttct attacgggca atataacggc cataacgatg tggctgataa agaaaatgaa 300
tatcgcgtgg tcgagcagaa caattacgaa ccgcacaaag cgtggggcgc gagtaattta 360
ggccgcctgg aggactataa catggcccgt ttcaataaat tcgtgaccga ggtagcaccg 420
atcgccccca cagatgctgg tgggggcctg gatacctaca aagataaaaa ccgcttctct 480
agcttcgtgc gcattggcgc cggtcgtcag ctcgtgtacg agaagggtgt ctatcaccag 540
gaaggtaatg aaaaggggta cgacctccgt gatttgtccc aggcgtatcg ctacgctatt 600
gccggaaccc cgtataaaga tattaatatc gatcaaacca tgaataccga aggcctaatt 660
ggtttcggga atcataataa gcaatatagc gcagaagagc taaagcaggc cctcagccaa 720
gatgcgttaa ccaattacgg agtgttaggc gatagcggca gtccgctgtt tgccttcgat 780
aaacagaaaa atcaatgggt gtttctgggc acttatgatt attgggccgg atatggtaaa 840
aagagctggc aggaatggaa tatttataaa aaggaattcg cagacaaaat caagcagcat 900
gacaacgcag gtacggtgaa ggggaacggc gaacatcact ggaagacgac cggcacgaat 960
agtcatatcg gatcgacggc cgttcgcctg gcgaacaatg agggcgatgc aaacaatggg 1020
caaaacgtga cctttgagga caacggtacc ctggtcctta accagaacat aaatcagggc 1080
gcgggaggct tgttctttaa aggcgactat actgttaagg gagcaaacaa tgacatcacc 1140
tggttagggg ccggtattga cgttgcggat ggaaaaaagg tggtttggca ggttaaaaac 1200
cctaacgggg accggctggc aaaaatcggc aaagggacat tggaaattaa tggtaccggt 1260
gtgaatcagg gtcagctgaa agtgggagat gggaccgtga ttctgaacca gaaagcagac 1320
gctgacaaaa aggtgcaagc ctttagccaa gtaggaattg ttagtggtcg tggcacactc 1380
gtcttgaact caagcaacca aataaatccg gataacctgt actttggatt tcgtggcgga 1440
cgcctggatg ctaacgggaa tgatctgacc tttgaacata tccgtaacgt tgacgagggt 1500
gcgcgcatag ttaatcataa tactgaccat gcatcaacta tcaccttgac cgggaaaagt 1560
ctgattacaa acccaaactc tctgtcagta cattccatcc agaatgatta tgatgaagac 1620
gattactcat actattaccg gccgcgtaga ccaattccac aaggtaaaga tctttattac 1680
aaaaattacc gttattacgc attaaaatcc ggagggcggc tgaatgcacc tatgccggaa 1740
aatggcgtgg ccgaaaacaa tgactggatt tttatgggtt atactcaaga agaggctcgc 1800
aaaaatgcaa tgaaccataa aaataaccga aggatcggtg atttcggcgg atttttcgat 1860
gaggaaaatg gtaaaggtca caatggtgcg ctgaatctaa attttaacgg caaaagtgcc 1920
cagaaacgtt tccttctgac tggtggcgct aatctgaatg gtaaaatcag tgtgacgcag 1980
ggtaacgtgc tgctttctgg ccggccaact ccgcatgcac gtgattttgt aaataaatcg 2040
agcgctcgta aagatgcgca tttttctaaa aataacgagg tcgtgtttga agatgactgg 2100
ataaatcgca cctttaaagc ggcagaaatc gcggttaatc agagtgcgag cttttcatcg 2160
ggtaggaatg tatctgatat tacagcaaac attacagcca ctgataatgc gaaggtcaac 2220
ctgggttata aaaacggtga tgaagtttgt gttcgatcgg attacacggg ctatgttacc 2280
tgcaacactg gcaatctgtc tgataaagcg cttaactctt ttgacgccac gcgcattaac 2340
gggaatgtga acctgaacca aaacgctgcc ttggtacttg gtaaggccgc gttgtggggt 2400
aaaattcagg gccagggcaa ctcccgtgtg tctctgaacc agcactcgaa gtggcacctg 2460
acgggggact cgcaggtgca caacttgtcc ctggccgata gccatattca ccttaacaat 2520
gcgtccgatg cccagtcagc taataaatat catacgatca aaatcaatca cctctctggc 2580
aacggtcact ttcactactt aacggattta gcaaaaaact taggggataa agtcctggta 2640
aaagaatcag cgagcggaca ttatcagtta catgtacaga acaaaacagg cgagccaaat 2700
caggaaggcc ttgacttatt tgatgcttca tcggtacaag atcgttccag actgttcgtt 2760
tcactcgcga atcactacgt tgatctgggt gcgctgcgct atactataaa gacggaaaat 2820
ggcataacac gcctctataa tccctatgcc ggtaacggcc gtccggtgaa acctgctccc 2880
tgcgtcgac 2889
<210> SEQ ID NO 75
<211> LENGTH: 4296
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 75
ggatccttgg tacgagatga cgttgactat caaattttcc gcgactttgc ggaaaataaa 60
ggtaagtttt tcgtcggcgc cacagacctg tccgtcaaaa ataagagagg ccagaacatc 120
ggtaacgcac tgagcaacgt ccctatgatt gattttagtg tagcggacgt taataaacgg 180
attgcaaccg tcgttgatcc gcagtatgct gtcagcgtca aacatgctaa agcggaagtt 240
catacgttct attacgggca atataacggc cataacgatg tggctgataa agaaaatgaa 300
tatcgcgtgg tcgagcagaa caattacgaa ccgcacaaag cgtggggcgc gagtaattta 360
ggccgcctgg aggactataa catggcccgt ttcaataaat tcgtgaccga ggtagcaccg 420
atcgccccca cagatgctgg tgggggcctg gatacctaca aagataaaaa ccgcttctct 480
agcttcgtgc gcattggcgc cggtcgtcag ctcgtgtacg agaagggtgt ctatcaccag 540
gaaggtaatg aaaaggggta cgacctccgt gatttgtccc aggcgtatcg ctacgctatt 600
gccggaaccc cgtataaaga tattaatatc gatcaaacca tgaataccga aggcctaatt 660
ggtttcggga atcataataa gcaatatagc gcagaagagc taaagcaggc cctcagccaa 720
gatgcgttaa ccaattacgg agtgttaggc gatagcggca gtccgctgtt tgccttcgat 780
aaacagaaaa atcaatgggt gtttctgggc acttatgatt attgggccgg atatggtaaa 840
aagagctggc aggaatggaa tatttataaa aaggaattcg cagacaaaat caagcagcat 900
gacaacgcag gtacggtgaa ggggaacggc gaacatcact ggaagacgac cggcacgaat 960
agtcatatcg gatcgacggc cgttcgcctg gcgaacaatg agggcgatgc aaacaatggg 1020
caaaacgtga cctttgagga caacggtacc ctggtcctta accagaacat aaatcagggc 1080
gcgggaggct tgttctttaa aggcgactat actgttaagg gagcaaacaa tgacatcacc 1140
tggttagggg ccggtattga cgttgcggat ggaaaaaagg tggtttggca ggttaaaaac 1200
cctaacgggg accggctggc aaaaatcggc aaagggacat tggaaattaa tggtaccggt 1260
gtgaatcagg gtcagctgaa agtgggagat gggaccgtga ttctgaacca gaaagcagac 1320
gctgacaaaa aggtgcaagc ctttagccaa gtaggaattg ttagtggtcg tggcacactc 1380
gtcttgaact caagcaacca aataaatccg gataacctgt actttggatt tcgtggcgga 1440
cgcctggatg ctaacgggaa tgatctgacc tttgaacata tccgtaacgt tgacgagggt 1500
gcgcgcatag ttaatcataa tactgaccat gcatcaacta tcaccttgac cgggaaaagt 1560
ctgattacaa acccaaactc tctgtcagta cattccatcc agaatgatta tgatgaagac 1620
gattactcat actattaccg gccgcgtaga ccaattccac aaggtaaaga tctttattac 1680
aaaaattacc gttattacgc attaaaatcc ggagggcggc tgaatgcacc tatgccggaa 1740
aatggcgtgg ccgaaaacaa tgactggatt tttatgggtt atactcaaga agaggctcgc 1800
aaaaatgcaa tgaaccataa aaataaccga aggatcggtg atttcggcgg atttttcgat 1860
gaggaaaatg gtaaaggtca caatggtgcg ctgaatctaa attttaacgg caaaagtgcc 1920
cagaaacgtt tccttctgac tggtggcgct aatctgaatg gtaaaatcag tgtgacgcag 1980
ggtaacgtgc tgctttctgg ccggccaact ccgcatgcac gtgattttgt aaataaatcg 2040
agcgctcgta aagatgcgca tttttctaaa aataacgagg tcgtgtttga agatgactgg 2100
ataaatcgca cctttaaagc ggcagaaatc gcggttaatc agagtgcgag cttttcatcg 2160
ggtaggaatg tatctgatat tacagcaaac attacagcca ctgataatgc gaaggtcaac 2220
ctgggttata aaaacggtga tgaagtttgt gttcgatcgg attacacggg ctatgttacc 2280
tgcaacactg gcaatctgtc tgataaagcg cttaactctt ttgacgccac gcgcattaac 2340
gggaatgtga acctgaacca aaacgctgcc ttggtacttg gtaaggccgc gttgtggggt 2400
aaaattcagg gccagggcaa ctcccgtgtg tctctgaacc agcactcgaa gtggcacctg 2460
acgggggact cgcaggtgca caacttgtcc ctggccgata gccatattca ccttaacaat 2520
gcgtccgatg cccagtcagc taataaatat catacgatca aaatcaatca cctctctggc 2580
aacggtcact ttcactactt aacggattta gcaaaaaact taggggataa agtcctggta 2640
aaagaatcag cgagcggaca ttatcagtta catgtacaga acaaaacagg cgagccaaat 2700
caggaaggcc ttgacttatt tgatgcttca tcggtacaag atcgttccag actgttcgtt 2760
tcactcgcga atcactacgt tgatctgggt gcgctgcgct atactataaa gacggaaaat 2820
ggcataacac gcctctataa tccctatgcc ggtaacggcc gtccggtgaa acctgctccc 2880
tgcgtcgacg gcatcattac ctccaaaact aaatctctga tagaaggtag atttggcggt 2940
ttcacgggcg cacgcaaatc agcgcgtaaa cgtaagaacc aggcgctagc gggcggtggc 3000
ggtagcggcg gtggcggtag cggcggtggc ggtagcgcac tagtgctgca gtgtatcaag 3060
gttaacaact gggatttatt cttcagcccg agtgaagaca acttcaccaa cgacctgaac 3120
aaaggtgaag aaatcacctc agatactaac atcgaagcag ccgaagaaaa catctcgctg 3180
gacctgatcc agcagtacta cctgaccttt aatttcgaca acgagccgga aaacatttct 3240
atcgaaaacc tgagctctga tatcatcggc cagctggaac tgatgccgaa catcgaacgt 3300
ttcccaaacg gtaaaaagta cgagctggac aaatatacca tgttccacta cctgcgcgcg 3360
caggaatttg aacacggcaa atcccgtatc gcactgacta actccgttaa cgaagctctg 3420
ctcaacccgt cccgtgtata caccttcttc tctagcgact acgtgaaaaa ggtcaacaaa 3480
gcgactgaag ctgcaatgtt cttgggttgg gttgaacagc ttgtttatga ttttaccgac 3540
gagacgtccg aagtatctac taccgacaaa attgcggata tcactatcat catcccgtac 3600
atcggtccgg ctctgaacat tggcaacatg ctgtacaaag acgacttcgt tggcgcactg 3660
atcttctccg gtgcggtgat cctgctggag ttcatcccgg aaatcgccat cccggtactg 3720
ggcacctttg ctctggtttc ttacattgca aacaaggttc tgactgtaca aaccatcgac 3780
aacgcgctga gcaaacgtaa cgaaaaatgg gatgaagttt acaaatatat cgtgaccaac 3840
tggctggcta aggttaatac tcagatcgac ctcatccgca aaaaaatgaa agaagcactg 3900
gaaaaccagg cggaagctac caaggcaatc attaactacc agtacaacca gtacaccgag 3960
gaagaaaaaa acaacatcaa cttcaacatc gacgatctgt cctctaaact gaacgaatcc 4020
atcaacaaag ctatgatcaa catcaacaag ttcctgaacc agtgctctgt aagctatctg 4080
atgaactcca tgatcccgta cggtgttaaa cgtctggagg acttcgatgc gtctctgaaa 4140
gacgccctgc tgaaatacat ttacgacaac cgtggcactc tgatcggtca ggttgatcgt 4200
ctgaaggaca aagtgaacaa taccttatcg accgacatcc cttttcagct cagtaaatat 4260
gtcgataacc aacgcctttt gtccactcta gactag 4296
<210> SEQ ID NO 76
<211> LENGTH: 1431
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 76
Gly Ser Leu Val Arg Asp Asp Val Asp Tyr Gln Ile Phe Arg Asp Phe
1 5 10 15
Ala Glu Asn Lys Gly Lys Phe Phe Val Gly Ala Thr Asp Leu Ser Val
20 25 30
Lys Asn Lys Arg Gly Gln Asn Ile Gly Asn Ala Leu Ser Asn Val Pro
35 40 45
Met Ile Asp Phe Ser Val Ala Asp Val Asn Lys Arg Ile Ala Thr Val
50 55 60
Val Asp Pro Gln Tyr Ala Val Ser Val Lys His Ala Lys Ala Glu Val
65 70 75 80
His Thr Phe Tyr Tyr Gly Gln Tyr Asn Gly His Asn Asp Val Ala Asp
85 90 95
Lys Glu Asn Glu Tyr Arg Val Val Glu Gln Asn Asn Tyr Glu Pro His
100 105 110
Lys Ala Trp Gly Ala Ser Asn Leu Gly Arg Leu Glu Asp Tyr Asn Met
115 120 125
Ala Arg Phe Asn Lys Phe Val Thr Glu Val Ala Pro Ile Ala Pro Thr
130 135 140
Asp Ala Gly Gly Gly Leu Asp Thr Tyr Lys Asp Lys Asn Arg Phe Ser
145 150 155 160
Ser Phe Val Arg Ile Gly Ala Gly Arg Gln Leu Val Tyr Glu Lys Gly
165 170 175
Val Tyr His Gln Glu Gly Asn Glu Lys Gly Tyr Asp Leu Arg Asp Leu
180 185 190
Ser Gln Ala Tyr Arg Tyr Ala Ile Ala Gly Thr Pro Tyr Lys Asp Ile
195 200 205
Asn Ile Asp Gln Thr Met Asn Thr Glu Gly Leu Ile Gly Phe Gly Asn
210 215 220
His Asn Lys Gln Tyr Ser Ala Glu Glu Leu Lys Gln Ala Leu Ser Gln
225 230 235 240
Asp Ala Leu Thr Asn Tyr Gly Val Leu Gly Asp Ser Gly Ser Pro Leu
245 250 255
Phe Ala Phe Asp Lys Gln Lys Asn Gln Trp Val Phe Leu Gly Thr Tyr
260 265 270
Asp Tyr Trp Ala Gly Tyr Gly Lys Lys Ser Trp Gln Glu Trp Asn Ile
275 280 285
Tyr Lys Lys Glu Phe Ala Asp Lys Ile Lys Gln His Asp Asn Ala Gly
290 295 300
Thr Val Lys Gly Asn Gly Glu His His Trp Lys Thr Thr Gly Thr Asn
305 310 315 320
Ser His Ile Gly Ser Thr Ala Val Arg Leu Ala Asn Asn Glu Gly Asp
325 330 335
Ala Asn Asn Gly Gln Asn Val Thr Phe Glu Asp Asn Gly Thr Leu Val
340 345 350
Leu Asn Gln Asn Ile Asn Gln Gly Ala Gly Gly Leu Phe Phe Lys Gly
355 360 365
Asp Tyr Thr Val Lys Gly Ala Asn Asn Asp Ile Thr Trp Leu Gly Ala
370 375 380
Gly Ile Asp Val Ala Asp Gly Lys Lys Val Val Trp Gln Val Lys Asn
385 390 395 400
Pro Asn Gly Asp Arg Leu Ala Lys Ile Gly Lys Gly Thr Leu Glu Ile
405 410 415
Asn Gly Thr Gly Val Asn Gln Gly Gln Leu Lys Val Gly Asp Gly Thr
420 425 430
Val Ile Leu Asn Gln Lys Ala Asp Ala Asp Lys Lys Val Gln Ala Phe
435 440 445
Ser Gln Val Gly Ile Val Ser Gly Arg Gly Thr Leu Val Leu Asn Ser
450 455 460
Ser Asn Gln Ile Asn Pro Asp Asn Leu Tyr Phe Gly Phe Arg Gly Gly
465 470 475 480
Arg Leu Asp Ala Asn Gly Asn Asp Leu Thr Phe Glu His Ile Arg Asn
485 490 495
Val Asp Glu Gly Ala Arg Ile Val Asn His Asn Thr Asp His Ala Ser
500 505 510
Thr Ile Thr Leu Thr Gly Lys Ser Leu Ile Thr Asn Pro Asn Ser Leu
515 520 525
Ser Val His Ser Ile Gln Asn Asp Tyr Asp Glu Asp Asp Tyr Ser Tyr
530 535 540
Tyr Tyr Arg Pro Arg Arg Pro Ile Pro Gln Gly Lys Asp Leu Tyr Tyr
545 550 555 560
Lys Asn Tyr Arg Tyr Tyr Ala Leu Lys Ser Gly Gly Arg Leu Asn Ala
565 570 575
Pro Met Pro Glu Asn Gly Val Ala Glu Asn Asn Asp Trp Ile Phe Met
580 585 590
Gly Tyr Thr Gln Glu Glu Ala Arg Lys Asn Ala Met Asn His Lys Asn
595 600 605
Asn Arg Arg Ile Gly Asp Phe Gly Gly Phe Phe Asp Glu Glu Asn Gly
610 615 620
Lys Gly His Asn Gly Ala Leu Asn Leu Asn Phe Asn Gly Lys Ser Ala
625 630 635 640
Gln Lys Arg Phe Leu Leu Thr Gly Gly Ala Asn Leu Asn Gly Lys Ile
645 650 655
Ser Val Thr Gln Gly Asn Val Leu Leu Ser Gly Arg Pro Thr Pro His
660 665 670
Ala Arg Asp Phe Val Asn Lys Ser Ser Ala Arg Lys Asp Ala His Phe
675 680 685
Ser Lys Asn Asn Glu Val Val Phe Glu Asp Asp Trp Ile Asn Arg Thr
690 695 700
Phe Lys Ala Ala Glu Ile Ala Val Asn Gln Ser Ala Ser Phe Ser Ser
705 710 715 720
Gly Arg Asn Val Ser Asp Ile Thr Ala Asn Ile Thr Ala Thr Asp Asn
725 730 735
Ala Lys Val Asn Leu Gly Tyr Lys Asn Gly Asp Glu Val Cys Val Arg
740 745 750
Ser Asp Tyr Thr Gly Tyr Val Thr Cys Asn Thr Gly Asn Leu Ser Asp
755 760 765
Lys Ala Leu Asn Ser Phe Asp Ala Thr Arg Ile Asn Gly Asn Val Asn
770 775 780
Leu Asn Gln Asn Ala Ala Leu Val Leu Gly Lys Ala Ala Leu Trp Gly
785 790 795 800
Lys Ile Gln Gly Gln Gly Asn Ser Arg Val Ser Leu Asn Gln His Ser
805 810 815
Lys Trp His Leu Thr Gly Asp Ser Gln Val His Asn Leu Ser Leu Ala
820 825 830
Asp Ser His Ile His Leu Asn Asn Ala Ser Asp Ala Gln Ser Ala Asn
835 840 845
Lys Tyr His Thr Ile Lys Ile Asn His Leu Ser Gly Asn Gly His Phe
850 855 860
His Tyr Leu Thr Asp Leu Ala Lys Asn Leu Gly Asp Lys Val Leu Val
865 870 875 880
Lys Glu Ser Ala Ser Gly His Tyr Gln Leu His Val Gln Asn Lys Thr
885 890 895
Gly Glu Pro Asn Gln Glu Gly Leu Asp Leu Phe Asp Ala Ser Ser Val
900 905 910
Gln Asp Arg Ser Arg Leu Phe Val Ser Leu Ala Asn His Tyr Val Asp
915 920 925
Leu Gly Ala Leu Arg Tyr Thr Ile Lys Thr Glu Asn Gly Ile Thr Arg
930 935 940
Leu Tyr Asn Pro Tyr Ala Gly Asn Gly Arg Pro Val Lys Pro Ala Pro
945 950 955 960
Cys Val Asp Gly Ile Ile Thr Ser Lys Thr Lys Ser Leu Ile Glu Gly
965 970 975
Arg Phe Gly Gly Phe Thr Gly Ala Arg Lys Ser Ala Arg Lys Arg Lys
980 985 990
Asn Gln Ala Leu Ala Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly
995 1000 1005
Gly Gly Gly Ser Ala Leu Val Leu Gln Cys Ile Lys Val Asn Asn
1010 1015 1020
Trp Asp Leu Phe Phe Ser Pro Ser Glu Asp Asn Phe Thr Asn Asp
1025 1030 1035
Leu Asn Lys Gly Glu Glu Ile Thr Ser Asp Thr Asn Ile Glu Ala
1040 1045 1050
Ala Glu Glu Asn Ile Ser Leu Asp Leu Ile Gln Gln Tyr Tyr Leu
1055 1060 1065
Thr Phe Asn Phe Asp Asn Glu Pro Glu Asn Ile Ser Ile Glu Asn
1070 1075 1080
Leu Ser Ser Asp Ile Ile Gly Gln Leu Glu Leu Met Pro Asn Ile
1085 1090 1095
Glu Arg Phe Pro Asn Gly Lys Lys Tyr Glu Leu Asp Lys Tyr Thr
1100 1105 1110
Met Phe His Tyr Leu Arg Ala Gln Glu Phe Glu His Gly Lys Ser
1115 1120 1125
Arg Ile Ala Leu Thr Asn Ser Val Asn Glu Ala Leu Leu Asn Pro
1130 1135 1140
Ser Arg Val Tyr Thr Phe Phe Ser Ser Asp Tyr Val Lys Lys Val
1145 1150 1155
Asn Lys Ala Thr Glu Ala Ala Met Phe Leu Gly Trp Val Glu Gln
1160 1165 1170
Leu Val Tyr Asp Phe Thr Asp Glu Thr Ser Glu Val Ser Thr Thr
1175 1180 1185
Asp Lys Ile Ala Asp Ile Thr Ile Ile Ile Pro Tyr Ile Gly Pro
1190 1195 1200
Ala Leu Asn Ile Gly Asn Met Leu Tyr Lys Asp Asp Phe Val Gly
1205 1210 1215
Ala Leu Ile Phe Ser Gly Ala Val Ile Leu Leu Glu Phe Ile Pro
1220 1225 1230
Glu Ile Ala Ile Pro Val Leu Gly Thr Phe Ala Leu Val Ser Tyr
1235 1240 1245
Ile Ala Asn Lys Val Leu Thr Val Gln Thr Ile Asp Asn Ala Leu
1250 1255 1260
Ser Lys Arg Asn Glu Lys Trp Asp Glu Val Tyr Lys Tyr Ile Val
1265 1270 1275
Thr Asn Trp Leu Ala Lys Val Asn Thr Gln Ile Asp Leu Ile Arg
1280 1285 1290
Lys Lys Met Lys Glu Ala Leu Glu Asn Gln Ala Glu Ala Thr Lys
1295 1300 1305
Ala Ile Ile Asn Tyr Gln Tyr Asn Gln Tyr Thr Glu Glu Glu Lys
1310 1315 1320
Asn Asn Ile Asn Phe Asn Ile Asp Asp Leu Ser Ser Lys Leu Asn
1325 1330 1335
Glu Ser Ile Asn Lys Ala Met Ile Asn Ile Asn Lys Phe Leu Asn
1340 1345 1350
Gln Cys Ser Val Ser Tyr Leu Met Asn Ser Met Ile Pro Tyr Gly
1355 1360 1365
Val Lys Arg Leu Glu Asp Phe Asp Ala Ser Leu Lys Asp Ala Leu
1370 1375 1380
Leu Lys Tyr Ile Tyr Asp Asn Arg Gly Thr Leu Ile Gly Gln Val
1385 1390 1395
Asp Arg Leu Lys Asp Lys Val Asn Asn Thr Leu Ser Thr Asp Ile
1400 1405 1410
Pro Phe Gln Leu Ser Lys Tyr Val Asp Asn Gln Arg Leu Leu Ser
1415 1420 1425
Thr Leu Asp
1430
<210> SEQ ID NO 77
<211> LENGTH: 1357
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 77
gctagcgggc ggtggcggta gcggcggtgg cggtagcggc ggtggcggta gcgcactagt 60
gctgcagtgt atcaaggtta acaactggga tttattcttc agcccgagtg aagacaactt 120
caccaacgac ctgaacaaag gtgaagaaat cacctcagat actaacatcg aagcagccga 180
agaaaacatc tcgctggacc tgatccagca gtactacctg acctttaatt tcgacaacga 240
gccggaaaac atttctatcg aaaacctgag ctctgatatc atcggccagc tggaactgat 300
gccgaacatc gaacgtttcc caaacggtaa aaagtacgag ctggacaaat ataccatgtt 360
ccactacctg cgcgcgcagg aatttgaaca cggcaaatcc cgtatcgcac tgactaactc 420
cgttaacgaa gctctgctca acccgtcccg tgtatacacc ttcttctcta gcgactacgt 480
gaaaaaggtc aacaaagcga ctgaagctgc aatgttcttg ggttgggttg aacagcttgt 540
ttatgatttt accgacgaga cgtccgaagt atctactacc gacaaaattg cggatatcac 600
tatcatcatc ccgtacatcg gtccggctct gaacattggc aacatgctgt acaaagacga 660
cttcgttggc gcactgatct tctccggtgc ggtgatcctg ctggagttca tcccggaaat 720
cgccatcccg gtactgggca cctttgctct ggtttcttac attgcaaaca aggttctgac 780
tgtacaaacc atcgacaacg cgctgagcaa acgtaacgaa aaatgggatg aagtttacaa 840
atatatcgtg accaactggc tggctaaggt taatactcag atcgacctca tccgcaaaaa 900
aatgaaagaa gcactggaaa accaggcgga agctaccaag gcaatcatta actaccagta 960
caaccagtac accgaggaag aaaaaaacaa catcaacttc aacatcgacg atctgtcctc 1020
taaactgaac gaatccatca acaaagctat gatcaacatc aacaagttcc tgaaccagtg 1080
ctctgtaagc tatctgatga actccatgat cccgtacggt gttaaacgtc tggaggactt 1140
cgatgcgtct ctgaaagacg ccctgctgaa atacatttac gacaaccgtg gcactctgat 1200
cggtcaggtt gatcgtctga aggacaaagt gaacaatacc ttatcgaccg acatcccttt 1260
tcagctcagt aaatatgtcg ataaccaacg ccttttgtcc actctagaaa tagaaggtag 1320
aagtgggcac catcaccatc accattaatg aaagctt 1357
<210> SEQ ID NO 78
<211> LENGTH: 2745
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 78
ggatccatgg agttcgttaa caaacagttc aactataaag acccagttaa cggtgttgac 60
attgcttaca tcaaaatccc gaacgctggc cagatgcagc cggtaaaggc attcaaaatc 120
cacaacaaaa tctgggttat cccggaacgt gataccttta ctaacccgga agaaggtgac 180
ctgaacccgc caccggaagc gaaacaggtg ccggtatctt actatgactc cacctacctg 240
tctaccgata acgaaaagga caactacctg aaaggtgtta ctaaactgtt cgagcgtatt 300
tactccaccg acctgggccg tatgctgctg actagcatcg ttcgcggtat cccgttctgg 360
ggcggttcta ccatcgatac cgaactgaaa gtaatcgaca ctaactgcat caacgttatt 420
cagccggacg gttcctatcg ttccgaagaa ctgaacctgg tgatcatcgg cccgtctgct 480
gatatcatcc agttcgagtg taagagcttt ggtcacgaag ttctgaacct cacccgtaac 540
ggctacggtt ccactcagta catccgtttc tctccggact tcaccttcgg ttttgaagaa 600
tccctggaag tagacacgaa cccactgctg ggcgctggta aattcgcaac tgatcctgcg 660
gttaccctgg ctcacgaact gattcatgca ggccaccgcc tgtacggtat cgccatcaat 720
ccgaaccgtg tcttcaaagt taacaccaac gcgtattacg agatgtccgg tctggaagtt 780
agcttcgaag aactgcgtac ttttggcggt cacgacgcta aattcatcga ctctctgcaa 840
gaaaacgagt tccgtctgta ctactataac aagttcaaag atatcgcatc caccctgaac 900
aaagcgaaat ccatcgtggg taccactgct tctctccagt acatgaagaa cgtttttaaa 960
gaaaaatacc tgctcagcga agacacctcc ggcaaattct ctgtagacaa gttgaaattc 1020
gataaacttt acaaaatgct gactgaaatt tacaccgaag acaacttcgt taagttcttt 1080
aaagttctga accgcaaaac ctatctgaac ttcgacaagg cagtattcaa aatcaacatc 1140
gtgccgaaag ttaactacac tatctacgat ggtttcaacc tgcgtaacac caacctggct 1200
gctaatttta acggccagaa cacggaaatc aacaacatga acttcacaaa actgaaaaac 1260
ttcactggtc tgttcgagtt ttacaagctg ctgtgcgtcg acggcatcat tacctccaaa 1320
actaaatctc tgatagaagg tagatttggc ggtttcacgg gcgcacgcaa atcagcgcgt 1380
aaacgtaaga accaggcgct agcgggcggt ggcggtagcg gcggtggcgg tagcggcggt 1440
ggcggtagcg cactagtgct gcagtgtatc aaggttaaca actgggattt attcttcagc 1500
ccgagtgaag acaacttcac caacgacctg aacaaaggtg aagaaatcac ctcagatact 1560
aacatcgaag cagccgaaga aaacatctcg ctggacctga tccagcagta ctacctgacc 1620
tttaatttcg acaacgagcc ggaaaacatt tctatcgaaa acctgagctc tgatatcatc 1680
ggccagctgg aactgatgcc gaacatcgaa cgtttcccaa acggtaaaaa gtacgagctg 1740
gacaaatata ccatgttcca ctacctgcgc gcgcaggaat ttgaacacgg caaatcccgt 1800
atcgcactga ctaactccgt taacgaagct ctgctcaacc cgtcccgtgt atacaccttc 1860
ttctctagcg actacgtgaa aaaggtcaac aaagcgactg aagctgcaat gttcttgggt 1920
tgggttgaac agcttgttta tgattttacc gacgagacgt ccgaagtatc tactaccgac 1980
aaaattgcgg atatcactat catcatcccg tacatcggtc cggctctgaa cattggcaac 2040
atgctgtaca aagacgactt cgttggcgca ctgatcttct ccggtgcggt gatcctgctg 2100
gagttcatcc cggaaatcgc catcccggta ctgggcacct ttgctctggt ttcttacatt 2160
gcaaacaagg ttctgactgt acaaaccatc gacaacgcgc tgagcaaacg taacgaaaaa 2220
tgggatgaag tttacaaata tatcgtgacc aactggctgg ctaaggttaa tactcagatc 2280
gacctcatcc gcaaaaaaat gaaagaagca ctggaaaacc aggcggaagc taccaaggca 2340
atcattaact accagtacaa ccagtacacc gaggaagaaa aaaacaacat caacttcaac 2400
atcgacgatc tgtcctctaa actgaacgaa tccatcaaca aagctatgat caacatcaac 2460
aagttcctga accagtgctc tgtaagctat ctgatgaact ccatgatccc gtacggtgtt 2520
aaacgtctgg aggacttcga tgcgtctctg aaagacgccc tgctgaaata catttacgac 2580
aaccgtggca ctctgatcgg tcaggttgat cgtctgaagg acaaagtgaa caatacctta 2640
tcgaccgaca tcccttttca gctcagtaaa tatgtcgata accaacgcct tttgtccact 2700
ctagaaatag aaggtagaag tgggcaccat caccatcacc attaa 2745
<210> SEQ ID NO 79
<211> LENGTH: 914
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 79
Gly Ser Met Glu Phe Val Asn Lys Gln Phe Asn Tyr Lys Asp Pro Val
1 5 10 15
Asn Gly Val Asp Ile Ala Tyr Ile Lys Ile Pro Asn Ala Gly Gln Met
20 25 30
Gln Pro Val Lys Ala Phe Lys Ile His Asn Lys Ile Trp Val Ile Pro
35 40 45
Glu Arg Asp Thr Phe Thr Asn Pro Glu Glu Gly Asp Leu Asn Pro Pro
50 55 60
Pro Glu Ala Lys Gln Val Pro Val Ser Tyr Tyr Asp Ser Thr Tyr Leu
65 70 75 80
Ser Thr Asp Asn Glu Lys Asp Asn Tyr Leu Lys Gly Val Thr Lys Leu
85 90 95
Phe Glu Arg Ile Tyr Ser Thr Asp Leu Gly Arg Met Leu Leu Thr Ser
100 105 110
Ile Val Arg Gly Ile Pro Phe Trp Gly Gly Ser Thr Ile Asp Thr Glu
115 120 125
Leu Lys Val Ile Asp Thr Asn Cys Ile Asn Val Ile Gln Pro Asp Gly
130 135 140
Ser Tyr Arg Ser Glu Glu Leu Asn Leu Val Ile Ile Gly Pro Ser Ala
145 150 155 160
Asp Ile Ile Gln Phe Glu Cys Lys Ser Phe Gly His Glu Val Leu Asn
165 170 175
Leu Thr Arg Asn Gly Tyr Gly Ser Thr Gln Tyr Ile Arg Phe Ser Pro
180 185 190
Asp Phe Thr Phe Gly Phe Glu Glu Ser Leu Glu Val Asp Thr Asn Pro
195 200 205
Leu Leu Gly Ala Gly Lys Phe Ala Thr Asp Pro Ala Val Thr Leu Ala
210 215 220
His Glu Leu Ile His Ala Gly His Arg Leu Tyr Gly Ile Ala Ile Asn
225 230 235 240
Pro Asn Arg Val Phe Lys Val Asn Thr Asn Ala Tyr Tyr Glu Met Ser
245 250 255
Gly Leu Glu Val Ser Phe Glu Glu Leu Arg Thr Phe Gly Gly His Asp
260 265 270
Ala Lys Phe Ile Asp Ser Leu Gln Glu Asn Glu Phe Arg Leu Tyr Tyr
275 280 285
Tyr Asn Lys Phe Lys Asp Ile Ala Ser Thr Leu Asn Lys Ala Lys Ser
290 295 300
Ile Val Gly Thr Thr Ala Ser Leu Gln Tyr Met Lys Asn Val Phe Lys
305 310 315 320
Glu Lys Tyr Leu Leu Ser Glu Asp Thr Ser Gly Lys Phe Ser Val Asp
325 330 335
Lys Leu Lys Phe Asp Lys Leu Tyr Lys Met Leu Thr Glu Ile Tyr Thr
340 345 350
Glu Asp Asn Phe Val Lys Phe Phe Lys Val Leu Asn Arg Lys Thr Tyr
355 360 365
Leu Asn Phe Asp Lys Ala Val Phe Lys Ile Asn Ile Val Pro Lys Val
370 375 380
Asn Tyr Thr Ile Tyr Asp Gly Phe Asn Leu Arg Asn Thr Asn Leu Ala
385 390 395 400
Ala Asn Phe Asn Gly Gln Asn Thr Glu Ile Asn Asn Met Asn Phe Thr
405 410 415
Lys Leu Lys Asn Phe Thr Gly Leu Phe Glu Phe Tyr Lys Leu Leu Cys
420 425 430
Val Asp Gly Ile Ile Thr Ser Lys Thr Lys Ser Leu Ile Glu Gly Arg
435 440 445
Phe Gly Gly Phe Thr Gly Ala Arg Lys Ser Ala Arg Lys Arg Lys Asn
450 455 460
Gln Ala Leu Ala Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly
465 470 475 480
Gly Gly Ser Ala Leu Val Leu Gln Cys Ile Lys Val Asn Asn Trp Asp
485 490 495
Leu Phe Phe Ser Pro Ser Glu Asp Asn Phe Thr Asn Asp Leu Asn Lys
500 505 510
Gly Glu Glu Ile Thr Ser Asp Thr Asn Ile Glu Ala Ala Glu Glu Asn
515 520 525
Ile Ser Leu Asp Leu Ile Gln Gln Tyr Tyr Leu Thr Phe Asn Phe Asp
530 535 540
Asn Glu Pro Glu Asn Ile Ser Ile Glu Asn Leu Ser Ser Asp Ile Ile
545 550 555 560
Gly Gln Leu Glu Leu Met Pro Asn Ile Glu Arg Phe Pro Asn Gly Lys
565 570 575
Lys Tyr Glu Leu Asp Lys Tyr Thr Met Phe His Tyr Leu Arg Ala Gln
580 585 590
Glu Phe Glu His Gly Lys Ser Arg Ile Ala Leu Thr Asn Ser Val Asn
595 600 605
Glu Ala Leu Leu Asn Pro Ser Arg Val Tyr Thr Phe Phe Ser Ser Asp
610 615 620
Tyr Val Lys Lys Val Asn Lys Ala Thr Glu Ala Ala Met Phe Leu Gly
625 630 635 640
Trp Val Glu Gln Leu Val Tyr Asp Phe Thr Asp Glu Thr Ser Glu Val
645 650 655
Ser Thr Thr Asp Lys Ile Ala Asp Ile Thr Ile Ile Ile Pro Tyr Ile
660 665 670
Gly Pro Ala Leu Asn Ile Gly Asn Met Leu Tyr Lys Asp Asp Phe Val
675 680 685
Gly Ala Leu Ile Phe Ser Gly Ala Val Ile Leu Leu Glu Phe Ile Pro
690 695 700
Glu Ile Ala Ile Pro Val Leu Gly Thr Phe Ala Leu Val Ser Tyr Ile
705 710 715 720
Ala Asn Lys Val Leu Thr Val Gln Thr Ile Asp Asn Ala Leu Ser Lys
725 730 735
Arg Asn Glu Lys Trp Asp Glu Val Tyr Lys Tyr Ile Val Thr Asn Trp
740 745 750
Leu Ala Lys Val Asn Thr Gln Ile Asp Leu Ile Arg Lys Lys Met Lys
755 760 765
Glu Ala Leu Glu Asn Gln Ala Glu Ala Thr Lys Ala Ile Ile Asn Tyr
770 775 780
Gln Tyr Asn Gln Tyr Thr Glu Glu Glu Lys Asn Asn Ile Asn Phe Asn
785 790 795 800
Ile Asp Asp Leu Ser Ser Lys Leu Asn Glu Ser Ile Asn Lys Ala Met
805 810 815
Ile Asn Ile Asn Lys Phe Leu Asn Gln Cys Ser Val Ser Tyr Leu Met
820 825 830
Asn Ser Met Ile Pro Tyr Gly Val Lys Arg Leu Glu Asp Phe Asp Ala
835 840 845
Ser Leu Lys Asp Ala Leu Leu Lys Tyr Ile Tyr Asp Asn Arg Gly Thr
850 855 860
Leu Ile Gly Gln Val Asp Arg Leu Lys Asp Lys Val Asn Asn Thr Leu
865 870 875 880
Ser Thr Asp Ile Pro Phe Gln Leu Ser Lys Tyr Val Asp Asn Gln Arg
885 890 895
Leu Leu Ser Thr Leu Glu Ile Glu Gly Arg Ser Gly His His His His
900 905 910
His His
<210> SEQ ID NO 80
<211> LENGTH: 619
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 80
gctagcgggc ggtggcggta gcggcggtgg cggtagcggc ggtggcggta gcgcactagt 60
gctgcagtgt atcaatctgg attgggacgt aatccgtgat aagaccaaaa caaaaatcga 120
gtctttgaaa gaacacggcc cgatcaaaaa taagatgtct gaatcaccca ataaaactgt 180
ttcggaggaa aaagcgaaac agtatttgga agagtttcat caaaccgcgc ttgaacatcc 240
ggagctcagt gaactgaaaa cagtgacggg aacgaatcct gtttttgcag gcgcaaacta 300
tgcggcttgg gccgtgaatg ttgcccaagt aattgatagt gagaccgcag acaacctgga 360
aaagacgacc gcagcgttaa gcattttacc ggggattggt tccgtgatgg gtatagcgga 420
tggagcggtc caccataaca ctgaggaaat tgtcgcccag tcaatcgctc tgagttccct 480
gatggttgca caggctatcc cactcgtggg ggaactggtt gacataggtt tcgccgccta 540
caacttcgta gaaagcatta ttaatctttt tcaggtggtg cataacagct acaaccgccc 600
tctagaatga taaaagctt 619
<210> SEQ ID NO 81
<211> LENGTH: 1971
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 81
ggatccatgg agttcgttaa caaacagttc aactataaag acccagttaa cggtgttgac 60
attgcttaca tcaaaatccc gaacgctggc cagatgcagc cggtaaaggc attcaaaatc 120
cacaacaaaa tctgggttat cccggaacgt gataccttta ctaacccgga agaaggtgac 180
ctgaacccgc caccggaagc gaaacaggtg ccggtatctt actatgactc cacctacctg 240
tctaccgata acgaaaagga caactacctg aaaggtgtta ctaaactgtt cgagcgtatt 300
tactccaccg acctgggccg tatgctgctg actagcatcg ttcgcggtat cccgttctgg 360
ggcggttcta ccatcgatac cgaactgaaa gtaatcgaca ctaactgcat caacgttatt 420
cagccggacg gttcctatcg ttccgaagaa ctgaacctgg tgatcatcgg cccgtctgct 480
gatatcatcc agttcgagtg taagagcttt ggtcacgaag ttctgaacct cacccgtaac 540
ggctacggtt ccactcagta catccgtttc tctccggact tcaccttcgg ttttgaagaa 600
tccctggaag tagacacgaa cccactgctg ggcgctggta aattcgcaac tgatcctgcg 660
gttaccctgg ctcacgaact gattcatgca ggccaccgcc tgtacggtat cgccatcaat 720
ccgaaccgtg tcttcaaagt taacaccaac gcgtattacg agatgtccgg tctggaagtt 780
agcttcgaag aactgcgtac ttttggcggt cacgacgcta aattcatcga ctctctgcaa 840
gaaaacgagt tccgtctgta ctactataac aagttcaaag atatcgcatc caccctgaac 900
aaagcgaaat ccatcgtggg taccactgct tctctccagt acatgaagaa cgtttttaaa 960
gaaaaatacc tgctcagcga agacacctcc ggcaaattct ctgtagacaa gttgaaattc 1020
gataaacttt acaaaatgct gactgaaatt tacaccgaag acaacttcgt taagttcttt 1080
aaagttctga accgcaaaac ctatctgaac ttcgacaagg cagtattcaa aatcaacatc 1140
gtgccgaaag ttaactacac tatctacgat ggtttcaacc tgcgtaacac caacctggct 1200
gctaatttta acggccagaa cacggaaatc aacaacatga acttcacaaa actgaaaaac 1260
ttcactggtc tgttcgagtt ttacaagctg ctgtgcgtcg acggcatcat tacctccaaa 1320
actaaatctc tgatagaagg tagatacggt ggtttcctgg cgctagcggg cggtggcggt 1380
agcggcggtg gcggtagcgg cggtggcggt agcgcactag tgctgcagtg tatcaatctg 1440
gattgggacg taatccgtga taagaccaaa acaaaaatcg agtctttgaa agaacacggc 1500
ccgatcaaaa ataagatgtc tgaatcaccc aataaaactg tttcggagga aaaagcgaaa 1560
cagtatttgg aagagtttca tcaaaccgcg cttgaacatc cggagctcag tgaactgaaa 1620
acagtgacgg gaacgaatcc tgtttttgca ggcgcaaact atgcggcttg ggccgtgaat 1680
gttgcccaag taattgatag tgagaccgca gacaacctgg aaaagacgac cgcagcgtta 1740
agcattttac cggggattgg ttccgtgatg ggtatagcgg atggagcggt ccaccataac 1800
actgaggaaa ttgtcgccca gtcaatcgct ctgagttccc tgatggttgc acaggctatc 1860
ccactcgtgg gggaactggt tgacataggt ttcgccgcct acaacttcgt agaaagcatt 1920
attaatcttt ttcaggtggt gcataacagc tacaaccgcc ctctagaatg a 1971
<210> SEQ ID NO 82
<211> LENGTH: 656
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 82
Gly Ser Met Glu Phe Val Asn Lys Gln Phe Asn Tyr Lys Asp Pro Val
1 5 10 15
Asn Gly Val Asp Ile Ala Tyr Ile Lys Ile Pro Asn Ala Gly Gln Met
20 25 30
Gln Pro Val Lys Ala Phe Lys Ile His Asn Lys Ile Trp Val Ile Pro
35 40 45
Glu Arg Asp Thr Phe Thr Asn Pro Glu Glu Gly Asp Leu Asn Pro Pro
50 55 60
Pro Glu Ala Lys Gln Val Pro Val Ser Tyr Tyr Asp Ser Thr Tyr Leu
65 70 75 80
Ser Thr Asp Asn Glu Lys Asp Asn Tyr Leu Lys Gly Val Thr Lys Leu
85 90 95
Phe Glu Arg Ile Tyr Ser Thr Asp Leu Gly Arg Met Leu Leu Thr Ser
100 105 110
Ile Val Arg Gly Ile Pro Phe Trp Gly Gly Ser Thr Ile Asp Thr Glu
115 120 125
Leu Lys Val Ile Asp Thr Asn Cys Ile Asn Val Ile Gln Pro Asp Gly
130 135 140
Ser Tyr Arg Ser Glu Glu Leu Asn Leu Val Ile Ile Gly Pro Ser Ala
145 150 155 160
Asp Ile Ile Gln Phe Glu Cys Lys Ser Phe Gly His Glu Val Leu Asn
165 170 175
Leu Thr Arg Asn Gly Tyr Gly Ser Thr Gln Tyr Ile Arg Phe Ser Pro
180 185 190
Asp Phe Thr Phe Gly Phe Glu Glu Ser Leu Glu Val Asp Thr Asn Pro
195 200 205
Leu Leu Gly Ala Gly Lys Phe Ala Thr Asp Pro Ala Val Thr Leu Ala
210 215 220
His Glu Leu Ile His Ala Gly His Arg Leu Tyr Gly Ile Ala Ile Asn
225 230 235 240
Pro Asn Arg Val Phe Lys Val Asn Thr Asn Ala Tyr Tyr Glu Met Ser
245 250 255
Gly Leu Glu Val Ser Phe Glu Glu Leu Arg Thr Phe Gly Gly His Asp
260 265 270
Ala Lys Phe Ile Asp Ser Leu Gln Glu Asn Glu Phe Arg Leu Tyr Tyr
275 280 285
Tyr Asn Lys Phe Lys Asp Ile Ala Ser Thr Leu Asn Lys Ala Lys Ser
290 295 300
Ile Val Gly Thr Thr Ala Ser Leu Gln Tyr Met Lys Asn Val Phe Lys
305 310 315 320
Glu Lys Tyr Leu Leu Ser Glu Asp Thr Ser Gly Lys Phe Ser Val Asp
325 330 335
Lys Leu Lys Phe Asp Lys Leu Tyr Lys Met Leu Thr Glu Ile Tyr Thr
340 345 350
Glu Asp Asn Phe Val Lys Phe Phe Lys Val Leu Asn Arg Lys Thr Tyr
355 360 365
Leu Asn Phe Asp Lys Ala Val Phe Lys Ile Asn Ile Val Pro Lys Val
370 375 380
Asn Tyr Thr Ile Tyr Asp Gly Phe Asn Leu Arg Asn Thr Asn Leu Ala
385 390 395 400
Ala Asn Phe Asn Gly Gln Asn Thr Glu Ile Asn Asn Met Asn Phe Thr
405 410 415
Lys Leu Lys Asn Phe Thr Gly Leu Phe Glu Phe Tyr Lys Leu Leu Cys
420 425 430
Val Asp Gly Ile Ile Thr Ser Lys Thr Lys Ser Leu Ile Glu Gly Arg
435 440 445
Tyr Gly Gly Phe Leu Ala Leu Ala Gly Gly Gly Gly Ser Gly Gly Gly
450 455 460
Gly Ser Gly Gly Gly Gly Ser Ala Leu Val Leu Gln Cys Ile Asn Leu
465 470 475 480
Asp Trp Asp Val Ile Arg Asp Lys Thr Lys Thr Lys Ile Glu Ser Leu
485 490 495
Lys Glu His Gly Pro Ile Lys Asn Lys Met Ser Glu Ser Pro Asn Lys
500 505 510
Thr Val Ser Glu Glu Lys Ala Lys Gln Tyr Leu Glu Glu Phe His Gln
515 520 525
Thr Ala Leu Glu His Pro Glu Leu Ser Glu Leu Lys Thr Val Thr Gly
530 535 540
Thr Asn Pro Val Phe Ala Gly Ala Asn Tyr Ala Ala Trp Ala Val Asn
545 550 555 560
Val Ala Gln Val Ile Asp Ser Glu Thr Ala Asp Asn Leu Glu Lys Thr
565 570 575
Thr Ala Ala Leu Ser Ile Leu Pro Gly Ile Gly Ser Val Met Gly Ile
580 585 590
Ala Asp Gly Ala Val His His Asn Thr Glu Glu Ile Val Ala Gln Ser
595 600 605
Ile Ala Leu Ser Ser Leu Met Val Ala Gln Ala Ile Pro Leu Val Gly
610 615 620
Glu Leu Val Asp Ile Gly Phe Ala Ala Tyr Asn Phe Val Glu Ser Ile
625 630 635 640
Ile Asn Leu Phe Gln Val Val His Asn Ser Tyr Asn Arg Pro Leu Glu
645 650 655
<210> SEQ ID NO 83
<211> LENGTH: 1329
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 83
ggatccatgc ctattactat taacaatttt cgttatagcg atcccgtcaa caatgacacc 60
attatcatga tggaaccgcc atattgcaaa ggactggaca tttactataa agccttcaag 120
attactgacc gcatttggat tgttccagag cgttacgagt tcgggacgaa accagaagat 180
tttaacccgc cttcatcgct gatcgaagga gcatcagagt attacgatcc gaactatctg 240
cgtacggaca gcgataaaga ccgcttctta cagaccatgg tcaaactttt taaccgtatt 300
aagaacaatg tggccggaga agcactcttg gataagatta tcaacgcgat tccatacctg 360
ggcaattctt acagcctgct ggataaattt gacacaaata gtaattcagt cagctttaac 420
ctgttagaac aagatccgag tggcgcaacc acgaagtctg ccatgctgac aaatctgatc 480
atttttggtc caggtcctgt actgaataaa aatgaagtac gcggcatcgt tctccgcgtg 540
gacaataaga actacttccc atgccgtgac ggcttcggtt cgatcatgca gatggctttc 600
tgtccggagt acgttccgac gtttgataat gttattgaga atatcacgag tttaacaatc 660
ggtaagtcaa aatattttca agatccggcc cttctcctta tgcatgaact gattcacgtg 720
ctgcacggct tatatggtat gcaagtgtcc tcgcatgaaa tcattccgtc caaacaggaa 780
atttatatgc agcataccta cccgatttca gctgaagagt tgtttacgtt tggtggccag 840
gacgcgaatt tgatctccat cgacatcaaa aacgatctgt atgagaaaac attaaatgac 900
tataaagcga ttgcgaacaa actgtctcag gtgactagct gcaacgatcc taacattgat 960
attgattcct acaaacaaat ttatcaacag aaataccagt tcgataaaga cagcaatggt 1020
cagtatatcg taaacgaaga taaatttcag atcctgtata acagcattat gtatggcttt 1080
accgaaattg agttggggaa gaaatttaac attaaaaccc gtctgtctta ttttagtatg 1140
aaccatgatc cggtgaaaat ccccaatctg cttgatgata ccatttataa tgataccgaa 1200
gggttcaaca ttgaatctaa ggatctgaaa tccgaataca aaggccaaaa tatgcgtgtt 1260
aatactaacg ctttccgtaa tgttgatggt agtggactcg tctcgaaact gattgggttg 1320
tgtgtcgac 1329
<210> SEQ ID NO 84
<211> LENGTH: 2736
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 84
ggatccatgc ctattactat taacaatttt cgttatagcg atcccgtcaa caatgacacc 60
attatcatga tggaaccgcc atattgcaaa ggactggaca tttactataa agccttcaag 120
attactgacc gcatttggat tgttccagag cgttacgagt tcgggacgaa accagaagat 180
tttaacccgc cttcatcgct gatcgaagga gcatcagagt attacgatcc gaactatctg 240
cgtacggaca gcgataaaga ccgcttctta cagaccatgg tcaaactttt taaccgtatt 300
aagaacaatg tggccggaga agcactcttg gataagatta tcaacgcgat tccatacctg 360
ggcaattctt acagcctgct ggataaattt gacacaaata gtaattcagt cagctttaac 420
ctgttagaac aagatccgag tggcgcaacc acgaagtctg ccatgctgac aaatctgatc 480
atttttggtc caggtcctgt actgaataaa aatgaagtac gcggcatcgt tctccgcgtg 540
gacaataaga actacttccc atgccgtgac ggcttcggtt cgatcatgca gatggctttc 600
tgtccggagt acgttccgac gtttgataat gttattgaga atatcacgag tttaacaatc 660
ggtaagtcaa aatattttca agatccggcc cttctcctta tgcatgaact gattcacgtg 720
ctgcacggct tatatggtat gcaagtgtcc tcgcatgaaa tcattccgtc caaacaggaa 780
atttatatgc agcataccta cccgatttca gctgaagagt tgtttacgtt tggtggccag 840
gacgcgaatt tgatctccat cgacatcaaa aacgatctgt atgagaaaac attaaatgac 900
tataaagcga ttgcgaacaa actgtctcag gtgactagct gcaacgatcc taacattgat 960
attgattcct acaaacaaat ttatcaacag aaataccagt tcgataaaga cagcaatggt 1020
cagtatatcg taaacgaaga taaatttcag atcctgtata acagcattat gtatggcttt 1080
accgaaattg agttggggaa gaaatttaac attaaaaccc gtctgtctta ttttagtatg 1140
aaccatgatc cggtgaaaat ccccaatctg cttgatgata ccatttataa tgataccgaa 1200
gggttcaaca ttgaatctaa ggatctgaaa tccgaataca aaggccaaaa tatgcgtgtt 1260
aatactaacg ctttccgtaa tgttgatggt agtggactcg tctcgaaact gattgggttg 1320
tgtgtcgacg gcatcattac ctccaaaact aaatctctga tagaaggtag atttggcggt 1380
ttcacgggcg cacgcaaatc agcgcgtaaa cgtaagaacc aggcgctagc gggcggtggc 1440
ggtagcggcg gtggcggtag cggcggtggc ggtagcgcac tagtgctgca gtgtatcaag 1500
gttaacaact gggatttatt cttcagcccg agtgaagaca acttcaccaa cgacctgaac 1560
aaaggtgaag aaatcacctc agatactaac atcgaagcag ccgaagaaaa catctcgctg 1620
gacctgatcc agcagtacta cctgaccttt aatttcgaca acgagccgga aaacatttct 1680
atcgaaaacc tgagctctga tatcatcggc cagctggaac tgatgccgaa catcgaacgt 1740
ttcccaaacg gtaaaaagta cgagctggac aaatatacca tgttccacta cctgcgcgcg 1800
caggaatttg aacacggcaa atcccgtatc gcactgacta actccgttaa cgaagctctg 1860
ctcaacccgt cccgtgtata caccttcttc tctagcgact acgtgaaaaa ggtcaacaaa 1920
gcgactgaag ctgcaatgtt cttgggttgg gttgaacagc ttgtttatga ttttaccgac 1980
gagacgtccg aagtatctac taccgacaaa attgcggata tcactatcat catcccgtac 2040
atcggtccgg ctctgaacat tggcaacatg ctgtacaaag acgacttcgt tggcgcactg 2100
atcttctccg gtgcggtgat cctgctggag ttcatcccgg aaatcgccat cccggtactg 2160
ggcacctttg ctctggtttc ttacattgca aacaaggttc tgactgtaca aaccatcgac 2220
aacgcgctga gcaaacgtaa cgaaaaatgg gatgaagttt acaaatatat cgtgaccaac 2280
tggctggcta aggttaatac tcagatcgac ctcatccgca aaaaaatgaa agaagcactg 2340
gaaaaccagg cggaagctac caaggcaatc attaactacc agtacaacca gtacaccgag 2400
gaagaaaaaa acaacatcaa cttcaacatc gacgatctgt cctctaaact gaacgaatcc 2460
atcaacaaag ctatgatcaa catcaacaag ttcctgaacc agtgctctgt aagctatctg 2520
atgaactcca tgatcccgta cggtgttaaa cgtctggagg acttcgatgc gtctctgaaa 2580
gacgccctgc tgaaatacat ttacgacaac cgtggcactc tgatcggtca ggttgatcgt 2640
ctgaaggaca aagtgaacaa taccttatcg accgacatcc cttttcagct cagtaaatat 2700
gtcgataacc aacgcctttt gtccactcta gactag 2736
<210> SEQ ID NO 85
<211> LENGTH: 911
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 85
Gly Ser Met Pro Ile Thr Ile Asn Asn Phe Arg Tyr Ser Asp Pro Val
1 5 10 15
Asn Asn Asp Thr Ile Ile Met Met Glu Pro Pro Tyr Cys Lys Gly Leu
20 25 30
Asp Ile Tyr Tyr Lys Ala Phe Lys Ile Thr Asp Arg Ile Trp Ile Val
35 40 45
Pro Glu Arg Tyr Glu Phe Gly Thr Lys Pro Glu Asp Phe Asn Pro Pro
50 55 60
Ser Ser Leu Ile Glu Gly Ala Ser Glu Tyr Tyr Asp Pro Asn Tyr Leu
65 70 75 80
Arg Thr Asp Ser Asp Lys Asp Arg Phe Leu Gln Thr Met Val Lys Leu
85 90 95
Phe Asn Arg Ile Lys Asn Asn Val Ala Gly Glu Ala Leu Leu Asp Lys
100 105 110
Ile Ile Asn Ala Ile Pro Tyr Leu Gly Asn Ser Tyr Ser Leu Leu Asp
115 120 125
Lys Phe Asp Thr Asn Ser Asn Ser Val Ser Phe Asn Leu Leu Glu Gln
130 135 140
Asp Pro Ser Gly Ala Thr Thr Lys Ser Ala Met Leu Thr Asn Leu Ile
145 150 155 160
Ile Phe Gly Pro Gly Pro Val Leu Asn Lys Asn Glu Val Arg Gly Ile
165 170 175
Val Leu Arg Val Asp Asn Lys Asn Tyr Phe Pro Cys Arg Asp Gly Phe
180 185 190
Gly Ser Ile Met Gln Met Ala Phe Cys Pro Glu Tyr Val Pro Thr Phe
195 200 205
Asp Asn Val Ile Glu Asn Ile Thr Ser Leu Thr Ile Gly Lys Ser Lys
210 215 220
Tyr Phe Gln Asp Pro Ala Leu Leu Leu Met His Glu Leu Ile His Val
225 230 235 240
Leu His Gly Leu Tyr Gly Met Gln Val Ser Ser His Glu Ile Ile Pro
245 250 255
Ser Lys Gln Glu Ile Tyr Met Gln His Thr Tyr Pro Ile Ser Ala Glu
260 265 270
Glu Leu Phe Thr Phe Gly Gly Gln Asp Ala Asn Leu Ile Ser Ile Asp
275 280 285
Ile Lys Asn Asp Leu Tyr Glu Lys Thr Leu Asn Asp Tyr Lys Ala Ile
290 295 300
Ala Asn Lys Leu Ser Gln Val Thr Ser Cys Asn Asp Pro Asn Ile Asp
305 310 315 320
Ile Asp Ser Tyr Lys Gln Ile Tyr Gln Gln Lys Tyr Gln Phe Asp Lys
325 330 335
Asp Ser Asn Gly Gln Tyr Ile Val Asn Glu Asp Lys Phe Gln Ile Leu
340 345 350
Tyr Asn Ser Ile Met Tyr Gly Phe Thr Glu Ile Glu Leu Gly Lys Lys
355 360 365
Phe Asn Ile Lys Thr Arg Leu Ser Tyr Phe Ser Met Asn His Asp Pro
370 375 380
Val Lys Ile Pro Asn Leu Leu Asp Asp Thr Ile Tyr Asn Asp Thr Glu
385 390 395 400
Gly Phe Asn Ile Glu Ser Lys Asp Leu Lys Ser Glu Tyr Lys Gly Gln
405 410 415
Asn Met Arg Val Asn Thr Asn Ala Phe Arg Asn Val Asp Gly Ser Gly
420 425 430
Leu Val Ser Lys Leu Ile Gly Leu Cys Val Asp Gly Ile Ile Thr Ser
435 440 445
Lys Thr Lys Ser Leu Ile Glu Gly Arg Phe Gly Gly Phe Thr Gly Ala
450 455 460
Arg Lys Ser Ala Arg Lys Arg Lys Asn Gln Ala Leu Ala Gly Gly Gly
465 470 475 480
Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Ala Leu Val Leu
485 490 495
Gln Cys Ile Lys Val Asn Asn Trp Asp Leu Phe Phe Ser Pro Ser Glu
500 505 510
Asp Asn Phe Thr Asn Asp Leu Asn Lys Gly Glu Glu Ile Thr Ser Asp
515 520 525
Thr Asn Ile Glu Ala Ala Glu Glu Asn Ile Ser Leu Asp Leu Ile Gln
530 535 540
Gln Tyr Tyr Leu Thr Phe Asn Phe Asp Asn Glu Pro Glu Asn Ile Ser
545 550 555 560
Ile Glu Asn Leu Ser Ser Asp Ile Ile Gly Gln Leu Glu Leu Met Pro
565 570 575
Asn Ile Glu Arg Phe Pro Asn Gly Lys Lys Tyr Glu Leu Asp Lys Tyr
580 585 590
Thr Met Phe His Tyr Leu Arg Ala Gln Glu Phe Glu His Gly Lys Ser
595 600 605
Arg Ile Ala Leu Thr Asn Ser Val Asn Glu Ala Leu Leu Asn Pro Ser
610 615 620
Arg Val Tyr Thr Phe Phe Ser Ser Asp Tyr Val Lys Lys Val Asn Lys
625 630 635 640
Ala Thr Glu Ala Ala Met Phe Leu Gly Trp Val Glu Gln Leu Val Tyr
645 650 655
Asp Phe Thr Asp Glu Thr Ser Glu Val Ser Thr Thr Asp Lys Ile Ala
660 665 670
Asp Ile Thr Ile Ile Ile Pro Tyr Ile Gly Pro Ala Leu Asn Ile Gly
675 680 685
Asn Met Leu Tyr Lys Asp Asp Phe Val Gly Ala Leu Ile Phe Ser Gly
690 695 700
Ala Val Ile Leu Leu Glu Phe Ile Pro Glu Ile Ala Ile Pro Val Leu
705 710 715 720
Gly Thr Phe Ala Leu Val Ser Tyr Ile Ala Asn Lys Val Leu Thr Val
725 730 735
Gln Thr Ile Asp Asn Ala Leu Ser Lys Arg Asn Glu Lys Trp Asp Glu
740 745 750
Val Tyr Lys Tyr Ile Val Thr Asn Trp Leu Ala Lys Val Asn Thr Gln
755 760 765
Ile Asp Leu Ile Arg Lys Lys Met Lys Glu Ala Leu Glu Asn Gln Ala
770 775 780
Glu Ala Thr Lys Ala Ile Ile Asn Tyr Gln Tyr Asn Gln Tyr Thr Glu
785 790 795 800
Glu Glu Lys Asn Asn Ile Asn Phe Asn Ile Asp Asp Leu Ser Ser Lys
805 810 815
Leu Asn Glu Ser Ile Asn Lys Ala Met Ile Asn Ile Asn Lys Phe Leu
820 825 830
Asn Gln Cys Ser Val Ser Tyr Leu Met Asn Ser Met Ile Pro Tyr Gly
835 840 845
Val Lys Arg Leu Glu Asp Phe Asp Ala Ser Leu Lys Asp Ala Leu Leu
850 855 860
Lys Tyr Ile Tyr Asp Asn Arg Gly Thr Leu Ile Gly Gln Val Asp Arg
865 870 875 880
Leu Lys Asp Lys Val Asn Asn Thr Leu Ser Thr Asp Ile Pro Phe Gln
885 890 895
Leu Ser Lys Tyr Val Asp Asn Gln Arg Leu Leu Ser Thr Leu Asp
900 905 910
<210> SEQ ID NO 86
<211> LENGTH: 180
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 86
ggatccacgc acgtcgacgc gattgatggt cgttttggcg gtttcacggg cgcacgcaaa 60
tcagcgcgta aacgtaagaa ccaggcgcta gcgggcggtg gcggtagcgg cggtggcggt 120
agcggcggtg gcggtagcgc actagtgctg cagacgcacg gtctagaatg ataaaagctt 180
<210> SEQ ID NO 87
<211> LENGTH: 2715
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 87
ggatccgaat tcatgccgat caccatcaac aacttcaact acagcgatcc ggtggataac 60
aaaaacatcc tgtacctgga tacccatctg aataccctgg cgaacgaacc ggaaaaagcg 120
tttcgtatca ccggcaacat ttgggttatt ccggatcgtt ttagccgtaa cagcaacccg 180
aatctgaata aaccgccgcg tgttaccagc ccgaaaagcg gttattacga tccgaactat 240
ctgagcaccg atagcgataa agataccttc ctgaaagaaa tcatcaaact gttcaaacgc 300
atcaacagcc gtgaaattgg cgaagaactg atctatcgcc tgagcaccga tattccgttt 360
ccgggcaaca acaacacccc gatcaacacc tttgatttcg atgtggattt caacagcgtt 420
gatgttaaaa cccgccaggg taacaattgg gtgaaaaccg gcagcattaa cccgagcgtg 480
attattaccg gtccgcgcga aaacattatt gatccggaaa ccagcacctt taaactgacc 540
aacaacacct ttgcggcgca ggaaggtttt ggcgcgctga gcattattag cattagcccg 600
cgctttatgc tgacctatag caacgcgacc aacgatgttg gtgaaggccg tttcagcaaa 660
agcgaatttt gcatggaccc gatcctgatc ctgatgcatg aactgaacca tgcgatgcat 720
aacctgtatg gcatcgcgat tccgaacgat cagaccatta gcagcgtgac cagcaacatc 780
ttttacagcc agtacaacgt gaaactggaa tatgcggaaa tctatgcgtt tggcggtccg 840
accattgatc tgattccgaa aagcgcgcgc aaatacttcg aagaaaaagc gctggattac 900
tatcgcagca ttgcgaaacg tctgaacagc attaccaccg cgaatccgag cagcttcaac 960
aaatatatcg gcgaatataa acagaaactg atccgcaaat atcgctttgt ggtggaaagc 1020
agcggcgaag ttaccgttaa ccgcaataaa ttcgtggaac tgtacaacga actgacccag 1080
atcttcaccg aatttaacta tgcgaaaatc tataacgtgc agaaccgtaa aatctacctg 1140
agcaacgtgt ataccccggt gaccgcgaat attctggatg ataacgtgta cgatatccag 1200
aacggcttta acatcccgaa aagcaacctg aacgttctgt ttatgggcca gaacctgagc 1260
cgtaatccgg cgctgcgtaa agtgaacccg gaaaacatgc tgtacctgtt caccaaattt 1320
tgcgtcgacg cgattgatgg tcgttttggc ggtttcacgg gcgcacgcaa atcagcgcgt 1380
aaacgtaaga accaggcgct agcgggcggt ggcggtagcg gcggtggcgg tagcggcggt 1440
ggcggtagcg cactagtgct gcagtgtcgt gaactgctgg tgaaaaacac cgatctgccg 1500
tttattggcg atatcagcga tgtgaaaacc gatatcttcc tgcgcaaaga tatcaacgaa 1560
gaaaccgaag tgatctacta cccggataac gtgagcgttg atcaggtgat cctgagcaaa 1620
aacaccagcg aacatggtca gctggatctg ctgtatccga gcattgatag cgaaagcgaa 1680
attctgccgg gcgaaaacca ggtgttttac gataaccgta cccagaacgt ggattacctg 1740
aacagctatt actacctgga aagccagaaa ctgagcgata acgtggaaga ttttaccttt 1800
acccgcagca ttgaagaagc gctggataac agcgcgaaag tttacaccta ttttccgacc 1860
ctggcgaaca aagttaatgc gggtgttcag ggcggtctgt ttctgatgtg ggcgaacgat 1920
gtggtggaag atttcaccac caacatcctg cgtaaagata ccctggataa aatcagcgat 1980
gttagcgcga ttattccgta tattggtccg gcgctgaaca ttagcaatag cgtgcgtcgt 2040
ggcaatttta ccgaagcgtt tgcggttacc ggtgtgacca ttctgctgga agcgtttccg 2100
gaatttacca ttccggcgct gggtgcgttt gtgatctata gcaaagtgca ggaacgcaac 2160
gaaatcatca aaaccatcga taactgcctg gaacagcgta ttaaacgctg gaaagatagc 2220
tatgaatgga tgatgggcac ctggctgagc cgtattatca cccagttcaa caacatcagc 2280
taccagatgt acgatagcct gaactatcag gcgggtgcga ttaaagcgaa aatcgatctg 2340
gaatacaaaa aatacagcgg cagcgataaa gaaaacatca aaagccaggt tgaaaacctg 2400
aaaaacagcc tggatgtgaa aattagcgaa gcgatgaata acatcaacaa attcatccgc 2460
gaatgcagcg tgacctacct gttcaaaaac atgctgccga aagtgatcga tgaactgaac 2520
gaatttgatc gcaacaccaa agcgaaactg atcaacctga tcgatagcca caacattatt 2580
ctggtgggcg aagtggataa actgaaagcg aaagttaaca acagcttcca gaacaccatc 2640
ccgtttaaca tcttcagcta taccaacaac agcctgctga aagatatcat caacgaatac 2700
ttcaatctag actag 2715
<210> SEQ ID NO 88
<211> LENGTH: 904
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 88
Gly Ser Glu Phe Met Pro Ile Thr Ile Asn Asn Phe Asn Tyr Ser Asp
1 5 10 15
Pro Val Asp Asn Lys Asn Ile Leu Tyr Leu Asp Thr His Leu Asn Thr
20 25 30
Leu Ala Asn Glu Pro Glu Lys Ala Phe Arg Ile Thr Gly Asn Ile Trp
35 40 45
Val Ile Pro Asp Arg Phe Ser Arg Asn Ser Asn Pro Asn Leu Asn Lys
50 55 60
Pro Pro Arg Val Thr Ser Pro Lys Ser Gly Tyr Tyr Asp Pro Asn Tyr
65 70 75 80
Leu Ser Thr Asp Ser Asp Lys Asp Thr Phe Leu Lys Glu Ile Ile Lys
85 90 95
Leu Phe Lys Arg Ile Asn Ser Arg Glu Ile Gly Glu Glu Leu Ile Tyr
100 105 110
Arg Leu Ser Thr Asp Ile Pro Phe Pro Gly Asn Asn Asn Thr Pro Ile
115 120 125
Asn Thr Phe Asp Phe Asp Val Asp Phe Asn Ser Val Asp Val Lys Thr
130 135 140
Arg Gln Gly Asn Asn Trp Val Lys Thr Gly Ser Ile Asn Pro Ser Val
145 150 155 160
Ile Ile Thr Gly Pro Arg Glu Asn Ile Ile Asp Pro Glu Thr Ser Thr
165 170 175
Phe Lys Leu Thr Asn Asn Thr Phe Ala Ala Gln Glu Gly Phe Gly Ala
180 185 190
Leu Ser Ile Ile Ser Ile Ser Pro Arg Phe Met Leu Thr Tyr Ser Asn
195 200 205
Ala Thr Asn Asp Val Gly Glu Gly Arg Phe Ser Lys Ser Glu Phe Cys
210 215 220
Met Asp Pro Ile Leu Ile Leu Met His Glu Leu Asn His Ala Met His
225 230 235 240
Asn Leu Tyr Gly Ile Ala Ile Pro Asn Asp Gln Thr Ile Ser Ser Val
245 250 255
Thr Ser Asn Ile Phe Tyr Ser Gln Tyr Asn Val Lys Leu Glu Tyr Ala
260 265 270
Glu Ile Tyr Ala Phe Gly Gly Pro Thr Ile Asp Leu Ile Pro Lys Ser
275 280 285
Ala Arg Lys Tyr Phe Glu Glu Lys Ala Leu Asp Tyr Tyr Arg Ser Ile
290 295 300
Ala Lys Arg Leu Asn Ser Ile Thr Thr Ala Asn Pro Ser Ser Phe Asn
305 310 315 320
Lys Tyr Ile Gly Glu Tyr Lys Gln Lys Leu Ile Arg Lys Tyr Arg Phe
325 330 335
Val Val Glu Ser Ser Gly Glu Val Thr Val Asn Arg Asn Lys Phe Val
340 345 350
Glu Leu Tyr Asn Glu Leu Thr Gln Ile Phe Thr Glu Phe Asn Tyr Ala
355 360 365
Lys Ile Tyr Asn Val Gln Asn Arg Lys Ile Tyr Leu Ser Asn Val Tyr
370 375 380
Thr Pro Val Thr Ala Asn Ile Leu Asp Asp Asn Val Tyr Asp Ile Gln
385 390 395 400
Asn Gly Phe Asn Ile Pro Lys Ser Asn Leu Asn Val Leu Phe Met Gly
405 410 415
Gln Asn Leu Ser Arg Asn Pro Ala Leu Arg Lys Val Asn Pro Glu Asn
420 425 430
Met Leu Tyr Leu Phe Thr Lys Phe Cys Val Asp Ala Ile Asp Gly Arg
435 440 445
Phe Gly Gly Phe Thr Gly Ala Arg Lys Ser Ala Arg Lys Arg Lys Asn
450 455 460
Gln Ala Leu Ala Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly
465 470 475 480
Gly Gly Ser Ala Leu Val Leu Gln Cys Arg Glu Leu Leu Val Lys Asn
485 490 495
Thr Asp Leu Pro Phe Ile Gly Asp Ile Ser Asp Val Lys Thr Asp Ile
500 505 510
Phe Leu Arg Lys Asp Ile Asn Glu Glu Thr Glu Val Ile Tyr Tyr Pro
515 520 525
Asp Asn Val Ser Val Asp Gln Val Ile Leu Ser Lys Asn Thr Ser Glu
530 535 540
His Gly Gln Leu Asp Leu Leu Tyr Pro Ser Ile Asp Ser Glu Ser Glu
545 550 555 560
Ile Leu Pro Gly Glu Asn Gln Val Phe Tyr Asp Asn Arg Thr Gln Asn
565 570 575
Val Asp Tyr Leu Asn Ser Tyr Tyr Tyr Leu Glu Ser Gln Lys Leu Ser
580 585 590
Asp Asn Val Glu Asp Phe Thr Phe Thr Arg Ser Ile Glu Glu Ala Leu
595 600 605
Asp Asn Ser Ala Lys Val Tyr Thr Tyr Phe Pro Thr Leu Ala Asn Lys
610 615 620
Val Asn Ala Gly Val Gln Gly Gly Leu Phe Leu Met Trp Ala Asn Asp
625 630 635 640
Val Val Glu Asp Phe Thr Thr Asn Ile Leu Arg Lys Asp Thr Leu Asp
645 650 655
Lys Ile Ser Asp Val Ser Ala Ile Ile Pro Tyr Ile Gly Pro Ala Leu
660 665 670
Asn Ile Ser Asn Ser Val Arg Arg Gly Asn Phe Thr Glu Ala Phe Ala
675 680 685
Val Thr Gly Val Thr Ile Leu Leu Glu Ala Phe Pro Glu Phe Thr Ile
690 695 700
Pro Ala Leu Gly Ala Phe Val Ile Tyr Ser Lys Val Gln Glu Arg Asn
705 710 715 720
Glu Ile Ile Lys Thr Ile Asp Asn Cys Leu Glu Gln Arg Ile Lys Arg
725 730 735
Trp Lys Asp Ser Tyr Glu Trp Met Met Gly Thr Trp Leu Ser Arg Ile
740 745 750
Ile Thr Gln Phe Asn Asn Ile Ser Tyr Gln Met Tyr Asp Ser Leu Asn
755 760 765
Tyr Gln Ala Gly Ala Ile Lys Ala Lys Ile Asp Leu Glu Tyr Lys Lys
770 775 780
Tyr Ser Gly Ser Asp Lys Glu Asn Ile Lys Ser Gln Val Glu Asn Leu
785 790 795 800
Lys Asn Ser Leu Asp Val Lys Ile Ser Glu Ala Met Asn Asn Ile Asn
805 810 815
Lys Phe Ile Arg Glu Cys Ser Val Thr Tyr Leu Phe Lys Asn Met Leu
820 825 830
Pro Lys Val Ile Asp Glu Leu Asn Glu Phe Asp Arg Asn Thr Lys Ala
835 840 845
Lys Leu Ile Asn Leu Ile Asp Ser His Asn Ile Ile Leu Val Gly Glu
850 855 860
Val Asp Lys Leu Lys Ala Lys Val Asn Asn Ser Phe Gln Asn Thr Ile
865 870 875 880
Pro Phe Asn Ile Phe Ser Tyr Thr Asn Asn Ser Leu Leu Lys Asp Ile
885 890 895
Ile Asn Glu Tyr Phe Asn Leu Asp
900
User Contributions:
Comment about this patent or add new information about this topic: