Patent application number | Description | Published |
20080232541 | CT SCAN SECURITY CHECK DEVICE AND METHOD - A check process may be performed without rotation of a radiation source or detector. A CT scan security check device may include a radiation source and a detector forming a radiation detection area, a conveyer mechanism conveying an article along a path, and a multidimensional movement mechanism causing a relative displacement between the article and the radiation detection area in a vertical direction and causing the article to rotate about a vertical axis. A CT scan security check method may include: 1) displacing the article relative to the radiation detection area in the vertical direction; 2) rotating the article; 3) during the checked article passing through the radiation detection area, obtaining data regarding a radiation ray that passes through the article; and 4) transmitting the data for a CT arithmetic reconstruction. | 09-25-2008 |
20080310598 | Method for calibrating dual-energy CT system and method of image reconstruction - A method for calibrating a dual-energy CT system and an image reconstruction method are disclosed to calculate images of atomic number and density of a scanned object as well as its attenuation coefficient images at any energy level. The present invention removes the effect from a cupping artifact due to X-ray beam hardening. The method for calibrating a dual-energy CT system is provided comprising steps of selecting at least two different materials, detecting penetrative rays from dual-energy rays penetrating said at least two different materials under different combinations of thickness to acquire projection values, and creating a lookup table in a form of correspondence between said different combinations of thickness and said projection values. The image reconstruction method is provided comprising steps of scanning an object with dual-energy rays to acquire dual-energy projection values, calculating projection values of base material coefficients corresponding to said dual-energy projection values based on a pre-created lookup table, and reconstructing an image of base material coefficient distribution based on said projection values of base material coefficients. In this way, images of atomic number and density of an object as well as its attenuation coefficient images can be calculated from the images of the distribution of base material coefficients. Compared with the prior art technique, the method proposed in the present invention has advantages of simple calibration procedure, high calculation precision and invulnerability to X-ray beam hardening. | 12-18-2008 |
20090003516 | X-Ct Scan System - An X-CT scan system includes a base, an object rotary support, an X-ray generation device and a data acquisition system, wherein one side of the detector is leveled to or beyond the prolong line of the connecting line between the X-ray source of the X-ray generation device and the center of the object rotary support, the length of the beyond portion is less than the radius of the imaging field. The advantage of the invention is in that the invention can reconstruct the entire image of the object by means of X-ray projection data which only covers half of the area of the object. Compared with the traditional CT scan system, half of the detector size can be saved at most. The X-CT scan system is simplified and the projection data amount for scan and computation amount for image reconstruction are also reduced with the reconstructed image quality guaranteed. | 01-01-2009 |
20090060128 | DEVICE AND METHOD FOR INSPECTING CONTRABAND IN AVIATION CARGO CONTAINER - A device for inspecting contraband in an aviation cargo containers includes: a turntable located at an object inspecting position and configured to carry the object to be inspected and bring the object into rotation; an object conveying system; a scanning system including a radiation source and a detector which can synchronously move in the vertical direction; a turntable drive/control system which drives and controls rotation of said turntable so that the turntable can continuously rotate about its rotation axis or rotate to any predetermined angular position; a scanning drive/control system which drives and controls the radiation source and the detector into synchronous movement in the vertical direction so that the radiation source and the detector can continuously move in the vertical direction or move to any predetermined vertical position. The device of the present invention can scan the object and form images in various scanning modes to meet different needs. | 03-05-2009 |
20090060129 | DEVICE FOR INSPECTING CONTRABAND IN AVIATION CARGO CONTAINER - A device for inspecting contraband in an aviation cargo container includes: a turntable and a scanning system, the scanning system including a radiation source; a detector; a radiation source mounting structure; and a detector mounting structure for mounting the detector. Each of said radiation source mounting structure and said detector mounting structure includes at least one column assembly. The radiation source and the detector are mounted on the column assembly and allowed to synchronously ascend and descend along said column assembly. By combining different movement modes of the turntable and the scanning system, the device of the present invention can scan the object in various scanning modes. The device is stable in structure, convenient in installation, and occupies a small space. The device can inspect aviation containers over two meters long and/or over two meters wide and achieve a relatively high passing rate of the objects. | 03-05-2009 |
20090092220 | METHOD AND DEVICE FOR INSPECTION OF LIQUID ARTICLES - Disclosed are a method and a device for security-inspection of liquid articles with dual-energy CT imaging. The method comprises the steps of obtaining one or more CT images including physical attributes of liquid article to be inspected by CT scanning and a dual-energy reconstruction method; acquiring the physical attributes of each liquid article from the CT image; and determining whether there are drugs concealed in the inspected liquid article based on the difference between the acquired physical attributes and reference physical attributes of the inspected liquid article. The CT scanning can be implemented by a normal CT scanning technique, or a spiral CT scanning technique. In the normal CT scanning technique, the scan position can be preset, or set by the operator with a DR image, or set by automatic analysis of the DR image. | 04-09-2009 |
20090129544 | METHOD AND APPARATUS FOR SUBSTANCE IDENTIFICATION - A method for substance identification and an apparatus thereof are disclosed. The method comprises comprising steps of: transmitting an object under inspection using high-energy rays and low-energy rays, so as to obtain a high-energy transmission image and a low-energy transmission image for the object, wherein a value of each pixel in the high-energy image indicates a high-energy transparency of the high-energy rays with respect to corresponding parts of the object, and a value of each pixel in the low-energy image indicates a low-energy transparency of the low-energy rays with respect to corresponding parts of the object; calculating a value of a first function for the high-energy transparency and a value of a second function for the high-energy transparency and the low-energy transparency, for each pixel; and classifying locations determined by the value of the first function and the value of the second function using a pre-created classification curve, so as to identify the type of the substance of a part of the object corresponding to each pixel. With the present invention, it is possible to not only obtain a transmission image of the object, but also obtain material information in the object. | 05-21-2009 |
20090168948 | Detector device and CT inspection system having the same - Disclosed is a detector device, comprising: an adjustable positioning base and a detector module. The adjustable positioning base includes: a horizontal plate being able to fixedly connect onto an annular rotation table or disk; and a vertical plate extending from the horizontal plate and generally perpendicular to the horizontal plate. A horizontal through long groove is provided at one side of the vertical plate, and the detector module is able to fixedly installed in said horizontal through long groove of the adjustable positioning base. By employing the technical solution defined in the present invention, the detector device has a compact structure, and precision adjustment and positioning for the detector device can be achieved. In addition, the present invention also provides a CT inspection system having the above detector device. | 07-02-2009 |
20090180593 | RADIATION DEVICE FOR HUMAN BODY INSPECTION - Disclosed is a radiation device for the human body inspection. The device includes a X-ray generator for radiating radiation; a detector for receiving the radiation radiated from the X-ray generator; a first flexible member connected with the X-ray generator for hoisting the X-ray generator; a second flexible member connected with the detector for hosing the detector; and a driving device for synchronically driving the X-ray generator and the detector through the first and second flexible members, and at the same time, the X-ray generator and the detector are spaced from each other a predetermined distance in a horizontal direction. The radiation device for the human body inspection according to the present invention can ensure that the radiation source and the detector can be operated synchronically during the whole inspection process; thereby the quality of radiation imaging is increased. Furthermore, the radiation device for the human body inspection according to the present invention is allowed to save cost and reduce noise. | 07-16-2009 |
20090262891 | LINEAR TRACK SCANNING IMAGING SYSTEM AND METHOD - In a linear track scanning imaging system and method, the imaging system may include: a ray generating unit having a plurality of ray sources that emit beams alternately, only one ray source at a time; an actuating arrangement causing an object under examination to move with respect to the linear track scanning imaging system along a linear track, leading the object to pass through a scanning area of the linear track scanning imaging system; a data collecting unit that collects projection data of the object for each ray source; an imaging unit that reconstructs an image of the object under examination based on the projection data collected for each ray source; and a display unit for displaying the reconstructed image. | 10-22-2009 |
20090310751 | ADJUSTING POSITIONER FOR RADIATION DEVICE - The present invention relates to an adjusting positioner for a radiation device, comprising: a clamping device detachably connected to the radiation device to clamp said radiation device; a supporter to which said clamping device is connected and a slide path is defined therebetween, wherein the clamping device clamping said radiation device is movable along said slide path in a predetermined direction; and an adjusting device coupled with said clamping device so as to drive said clamping device to move along said slide path. Since the present invention employs above technical solution, it is easy to adjust the position of the radiation device for example, X-ray device, so that the precisely positioning for the radiation device is achieved and a satisfying positioning accuracy is able to obtain. | 12-17-2009 |
20090323057 | RAMAN SPECTROSCOPY SYSTEM AND RAMAN SPECTROSCOPY DETECTION METHOD - The present invention relates to a Raman spectroscopy system that includes a detection center. The detection center includes at least one light source for outputting exciting light which excites a detected object to generate Raman scattered light, and an analysis device for obtaining the Raman spectroscopy of the detected object. The Raman spectroscopy system further includes at least one detection terminal, each of which includes at least one Raman probe that each introduces the exciting light to the detected object, collects the Raman scattered light generated by the detected object, and returns said Raman scattered light to the detection center. The present invention also relates to a method for detecting Raman spectroscopy. | 12-31-2009 |
20090323894 | DEVICE AND METHOD FOR REAL-TIME MARK OF SUBSTANCE IDENTIFICATION SYSTEM - Disclosed are a method and a device for real-time mark for a high-energy X-ray dual-energy imaging container inspection system in the radiation imaging field. The method comprises the steps of emitting a first main beam of rays and a first auxiliary beam of rays having a first energy, and a second main beam of rays and a second auxiliary beam of rays having a second energy; causing the first and second main beams of rays transmitting through the article to be inspected; causing the first and second auxiliary beams of rays transmitting through at least one real-time mark material block; collecting values of the first and second main beams of rays that have transmitted through the article to be inspected as dual-energy data; collecting values of the first and second auxiliary beams of rays that have transmitted through the real-time mark material block as adjustment parameters; adjusting the set of classification parameters based on the adjustment parameters; and identifying the substance according to the dual-energy data based on adjusted classification parameters. The method according to the invention simplifies the mark procedure for a substance identification subsystem in a high-energy dual-energy system while improves the stability of the material differentiation result of the system. | 12-31-2009 |
20100072361 | SECURITY INSPECTION SYSTEM FOR PERSONS - The invention provides a security inspection system for inspecting persons, characterized in that it comprises: a passageway which provides an inspection space isolated or partially isolated from an ambient environment, in which at least one sub-passageway allowing persons to be inspected to pass is provided in the inspection space, and each of the sub-passageways is provided with at least one millimeter wave imaging device for millimeter wave imaging of persons being inspected; and an ion mobility spectrometer for ionizing particles of substance or gases that are released or volatilized from the inspected persons into the air in the passageway and then measuring a mobility rate thereof under the action of the electric field to effect identification of substances. At least one radioactive substance inspection device may also be provided in the passageway to detect whether the person being inspected carries radioactive substances. | 03-25-2010 |
20100243874 | PHOTONEUTRON CONVERSION TARGET - A photoneutron conversion target for generating photoneutrons by directing an x-ray beam at the photoneutron conversion target includes an elongated body having a first end and a second end. When the photoneutron conversion target is in use, the x-ray beam enters the body and propagates in a direction from the first end to the second end. The body of the photoneutron conversion target is shaped such that propagation of the x-ray beam is substantially proportionate to an intensity distribution of the x-ray beam, so that the greater an intensity of x-rays of the x-ray beam, the greater the propagation distance of the x-rays within the body of the photoneutron conversion target. The photoneutron conversion target according to the invention can make full use of the x-ray beam so as to increase a yield of photoneutrons. | 09-30-2010 |
20100266103 | PHOTONEUTRON CONVERSION TARGET AND PHOTONEUTRON - X RAY SOURCE - A photoneutron-x ray source includes a photoneutron conversion target, which outputs both photoneutrons and x-rays simultaneously. The photoneutron-x ray source includes an x-ray generator for generating an x-ray main beam that is applied to the photoneutron conversion target. The photoneutron conversion target generates photoneutrons upon the application of the x-ray main beam to the photoneutron conversion target. The photoneutron conversion target has a body that defines a passageway extending through the body and that is structured such that a first x-ray beam of the x-ray main beam can pass through the passageway without any reaction with the body, while a second x-ray beam of the x-ray main beam can enter the body and react with the body to emit the photoneutrons. | 10-21-2010 |
20100284514 | METHOD AND DEVICE FOR INSPECTION OF LIQUID ARTICLES - Disclosed are a method and a device for security-inspection of liquid articles with dual-energy CT imaging. The method comprises the steps of obtaining one or more CT images including physical attributes of liquid article to be inspected by CT scanning and a dual-energy reconstruction method; acquiring the physical attributes of each liquid article from the CT image; and determining whether the inspected liquid article is dangerous based on the physical attributes. The CT scanning can be implemented by a normal CT scanning technique, or a spiral CT scanning technique. In the normal CT scanning technique, the scan position can be preset, or set by the operator with a DR image, or set by automatic analysis of the DR image. | 11-11-2010 |
20110024624 | PHASE CONTRAST IMAGING METHOD AND APPARATUS - A method for phase contrast imaging comprises: illuminating an object by terahertz radiation such that the terahertz radiation interacts with the object; illuminating a diffraction grating by the terahertz radiation that has interacted with the object; translating the diffraction grating along the direction of the grating wave vector, to measure, for each of different grating positions, an intensity distribution of the terahertz radiation that has interacted with the object and with the grating in a diffraction field; and retrieving a phase contrast image of the object from the intensity distributions. An apparatus for phase contrast imaging comprises: a terahertz radiation emitter for generating terahertz radiation, which illuminates an object to interact with the object; a diffraction grating, which is illuminated by the terahertz radiation that has interacted with the object; a terahertz radiation detector for measuring, for each of different grating positions, an intensity distribution of the terahertz radiation that has interacted with the object and with the grating in a diffraction field; and a data collecting and processing system for retrieving a phase contrast image of the object from the intensity distributions. | 02-03-2011 |
20110211671 | METHOD AND DEVICE FOR INSPECTION OF LIQUID ARTICLES - Disclosed are a method and a device for security-inspection of liquid articles with dual-energy CT imaging. The method comprises the steps of obtaining one or more CT images including physical attributes of liquid article to be inspected by CT scanning and a dual-energy reconstruction method; acquiring the physical attributes of each liquid article from the CT image; and determining whether there are drugs concealed in the inspected liquid article based on the difference between the acquired physical attributes and reference physical attributes of the inspected liquid article. The CT scanning can be implemented by a normal CT scanning technique, or a spiral CT scanning technique. In the normal CT scanning technique, the scan position can be preset, or set by the operator with a DR image, or set by automatic analysis of the DR image. | 09-01-2011 |
20110261922 | METHOD AND DEVICE FOR INSPECTION OF LIQUID ARTICLES - Disclosed are a method and a device for security-inspection of liquid articles with dual-energy CT imaging. The method comprises the steps of obtaining one or more CT images including physical attributes of liquid article to be inspected by CT scanning and a dual-energy reconstruction method; acquiring the physical attributes of each liquid article from the CT image; and determining whether the inspected liquid article is dangerous based on the physical attributes. The CT scanning can be implemented by a normal CT scanning technique, or a spiral CT scanning technique. In the normal CT scanning technique, the scan position can be preset, or set by the operator with a DR image, or set by automatic analysis of the DR image. | 10-27-2011 |
20110293064 | X-RAY DARK-FIELD IMAGING SYSTEM AND METHOD - An x-ray imaging technology, performing an x-ray dark-field CT imaging of an examined object using an imaging system which comprises an x-ray source, two absorbing gratings G | 12-01-2011 |
20120011947 | MILLIMETER-WAVE RECEIVING DEVICE - Disclosed is a millimeter-wave receiving device. The device includes at least one radiometer; and a positioning assembly for holding the radiometer, wherein the positioning assembly comprises: a first positioning member having a first surface; a second positioning member having a second surface, the first surface of the first positioning member and the second surface of the second positioning member holding the radiometer in opposite to each other. With the configuration according to the present invention, the at least one radiometer in the millimeter-wave receiving device can be located in all of freedoms on basis of various design requirements of the radiation path to ensure that the radiometer can be arranged in desired receiving positions. | 01-19-2012 |
20120014579 | CT DEVICE AND METHOD BASED ON MOTION COMPENSATION - A CT device and method based on motion compensation are proposed. The present invention obtains motion parameters of a target object by using a stereo-vision-based motion measurement system, and then implements motion compensation through the technology based on reconstructed image matrix transformation, thereby obtaining a clear 2D/3D CT image while eliminating motion artifacts. The present invention can effectively eliminate motion artifacts caused by the scanned object's own motions in the CT scanning, and can be easily embedded into the existing CT scanning equipments. The present invention can improve quality of the CT images, and is especially important for CT imaging of some special groups of people that can not control their own motions, such as Parkinson's patients, infants, living mouse and so on. It can also improve ultra-high-resolution imaging of human body. | 01-19-2012 |
20120068078 | RADIATION DETECTOR, IMAGING DEVICE AND ELECTRODE STRUCTURE THEREOF, AND METHOD FOR ACQUIRING AN IMAGE - The present invention discloses a radiation detector, an imaging device and an electrode structure thereof, and a method for acquiring an image. The radiation detector comprises: a radiation sensitive film, a top electrode on the radiation sensitive film, and an array of pixel units electrically coupled to the radiation sensitive film, wherein each pixel unit comprises: a pixel electrode, which is configured to collect a charge signal in a pixel area of the radiation sensitive film; a storage capacitor, which is connected to the pixel electrode, and is configured to store the charge signal collected by the pixel electrode; a reset transistor, which is connected to the pixel electrode, and is configured to clear the charge in the storage capacitor; a buffer transistor, which is connected to the pixel electrode, and is configured to convert the charge signal on the pixel electrode into a voltage signal and transfer the voltage signal to a signal line; a column strobe transistor, which is configured to select a predetermined column of pixel electrodes; and a row strobe transistor, which is configured to select a predetermined row of pixel electrodes, wherein, the column strobe transistor and the row strobe transistor are connected in series between the buffer transistor and the signal line, and transfer the voltage signal of the corresponding pixel unit in response to a column strobe signal and a row strobe signal. The radiation detector may be used for, for example, X-ray digital imaging. | 03-22-2012 |
20120085909 | MILLIMETER-WAVE INSPECTION APPARATUS - The present invention discloses a millimeter-wave inspection apparatus. The millimeter-wave inspection apparatus comprises: optics devices, configured to receive millimeter-wave energy radiated from an object to be inspected and focus the received millimeter-wave energy; a radiometer receiving device configured to receive the focused millimeter-wave energy and transform the millimeter-wave energy into electrical signal; and an imaging device configured to generate a temperature image of the object to be inspected based on the electrical signal. Compared with the prior art, the millimeter-wave inspection apparatus of the present invention has a simple and compact structure; it would not be harmful to the human health by employing the passive millimeter-wave human body security inspection technology. With the above configuration, the contraband items to be concealed within the human clothing can be efficiently and effectively detected. | 04-12-2012 |
20120106832 | METHOD AND APPARATUS FOR CT IMAGE RECONSTRUCTION - A method and apparatus for CT image reconstruction may include selecting, by a unit, projection data of the same height on a curve having a curvature approximate to that of the scanning circular orbit, implementing, by a unit, a weighting processing on the selected projection data, filtering, by a unit, the weighting processed projection data along a horizontal direction, implementing, by a unit, three-dimensional back projection on the filtered projection data along the direction of ray. The method and apparatus can effectively eliminate cone beam artifact under a large cone angle. | 05-03-2012 |
20120134531 | Pseudo Dual-Energy Material Identification System And Method With Undersampling - Pseudo dual-energy material identification systems and methods with under-sampling are disclosed. The system comprises a ray generating device, a mechanic rotation control section, a data collecting subsystem comprising a first tier of detectors and a second tier of detectors, and a master control and data processing computer. The system utilizes a CT-imaging-based material identification method with under-sampled dual-energy projection data, in which only a few detectors at the second tier are used to perform dual-energy projection data sampling, and optimization is made on the procedure of solving an equation system. | 05-31-2012 |
20120140874 | Computer Tomography Imaging Device and Method - The present invention discloses a method for performing CT imaging on a region of interest of an object under examination, comprising: acquiring the CT projection data of the region of interest; acquiring the CT projection data of region B; selecting a group of PI line segments covering the region of interest, and calculating the reconstruction image value for each PI line segment in the group; and combining the reconstruction image values in all the PI line segments to obtain the image of the region of interest. The present invention further discloses a CT imaging device using this method and a data processor therein. Since the 2D/3D slice image of the region of interest can be exactly reconstructed and obtained as long as the X-ray beam covers the region of interest and the region B, it is possible to use a small-sized detector to perform CT imaging on the region of interest at any position of a large-sized object, which reduces to a great extent the radiation dose of the X-ray during the CT scanning. | 06-07-2012 |
20120148133 | Dual-Energy Material Identification Method and Apparatus with Undersampling - A dual-energy material identification method and system with under-sampling is disclosed. A CT image of the object is obtained by using the CT image reconstruction method, while the dual-energy projections are under-sampled to obtain a few samples. Photoelectric coefficient integral and Compton coefficient integral are computed from these dual-energy projection data. The CT image is segmented into regions with image processing technique, and the regions are labeled. The length by which a few dual-energy rays crosses each labeled region is computed, and an equation system is established with dual-energy preprocessing dual-effect decomposition reconstruction method to compute Photoelectric coefficient and Compton coefficient, and then atomic number and electron density of material in each region are computed. The material of the object can be identified with the atomic number. | 06-14-2012 |
20120168616 | SAMPLE FEEDING DEVICE FOR ION MOBILITY SPECTROMETER, METHOD OF USING THE SAME AND ION MOBILITY SPECTROMETER - The present invention discloses a sample feeding device for an ion mobility spectrometer, which is adapted to guide a sample to be detected into an inlet of a drift tube of the ion mobility spectrometer. The sample feeding device comprises a solid sample feeding component; a sample inlet component; a attachment component, wherein the solid sample feeding component has an internal cavity defined therein, one end of the solid sample feeding component is communicated with the sample inlet component through the internal cavity, while the other end is communicated with the inlet of the ion drift tube through the attachment component; and a gaseous sample feeding component, comprising a body and an external attachment component, the body has a gas channel therein, and the external attachment component includes an inlet hole which is communicated with the gas channel, wherein when the external attachment component is fitted with the sample inlet component, the body is inserted into the internal cavity, so that a channel of the solid sample feeding component is closed, and only the gas channel of the gaseous sample feeding component is communicated with the inlet of the drift tube of the ion mobility spectrometer. | 07-05-2012 |
20120168620 | SAMPLE FEEDING DEVICE FOR TRACE DETECTOR AND TRACE DETECTOR WITH SAMPLE FEEDING DEVICE - A sample feeding device for a trace detector is disclosed. The sample feeding device comprises: a sample feeding chamber disposed in the sample feeding device to desorb a sample from a sample feeding member; and a valve assembly configured to fluidly communicate the sample feeding chamber with a drift tube of the trace detector during feeding sample. With the above configuration of the present invention, for example, the sensitivity of the detector can be increased by improving the permeation ratio of the sample. In addition, interior environment of the drift tube is isolated from exterior environment to avoid a drift region of the drift tube from being polluted. The important parameters, such as sensitivity, a position of a peak of a substance, a resolution, of the detector can be kept constant. As a result, operation reliability and consistency of the detector can be achieved. | 07-05-2012 |
20120170716 | SCANNING DEVICE AND METHOD FOR BACK-SCATTER IMAGING WITH A RADIATION BEAM - The present invention discloses a scanning device of back-scatter imaging with a radiation beam, comprising: a radiation source; a fixed shield plate and a rotatable shield body disposed between the radiation source and a object to be scanned respectively, wherein the fixed shield plate is stationary with respect to the radiation source and the rotatable shield body is rotatable with respect to the fixed shield plate. The fixed shield plate is provided with a ray passing-through region thereon, which allows for a radiation beam from the radiation source to pass through the fixed shield plate, a ray incidence region and a ray emergence region are arranged on the rotatable shield body respectively, during the rotatable scanning of the rotatable shield body, the ray passing-through region of the fixed shield plate continuously intersects with the ray incidence region and the ray emergence region of the rotatable shield body to generate collimated holes for scanning. The ray passing-through region of the fixed shield plate is a rectilinear slit, the rotatable shield body is a cylinder, and the ray incidence and emergence regions are configured to be a series of small discrete holes disposed along a spiral line respectively. In addition, the present invention discloses a scanning method for back-scatter imaging with a radiation beam. | 07-05-2012 |
20120224671 | RADIATION INSPECTION APPARATUS AND INSPECTION METHOD FOR OBJECT SECURITY INSPECTION - The present invention relates to a radiation inspection apparatus for object security inspection, comprising: a ray generator configured to emit a ray, a collimator configured to collimate the ray emitted from the ray generator, and a detector configured to receive the collimated ray collimated by the collimator, wherein the collimated ray forms an irradiated area on the detector included by an effective detect area of the detector. The present invention also relates to a method of performing a security inspection to a body using a radiation inspection apparatus. With the above technical solutions, the present invention can achieve a low single inspection absorptive dose and a micro dose inspection while meeting inspection requirements to improve public radiation security. | 09-06-2012 |
20120288066 | SCANNING DEVICE USING RADIATION BEAM FOR BACKSCATTER IMAGING AND METHOD THEREOF - Disclosed is a scanning device using radiation beam for backscatter imaging. The scanning device includes a radiation source; a stationary shield plate and a rotary shield body positioned respectively between the radiation source and the subject to be scanned, wherein the stationary shield plate is fixed relative to the radiation source, and the rotary shield body is rotatable relative to the stationary shield plate. The ray passing area permitting the rays from the radiation source to pass through the stationary shield plate is provided on the stationary shield plate, and ray incidence area and ray exit area are respectively provided on the rotary shield body. During the process of the rotating and scanning of the rotary shield body, the ray passing area of the stationary shield plate intersects consecutively with the ray incidence area and the ray exit area of the rotary shield body to form scanning collimation holes. Further, a scanning method using radiation beam for backscatter imaging is also provided. | 11-15-2012 |
20130009068 | RADIATION DETECTOR, IMAGING DEVICE AND ELECTRODE STRUCTURE THEREOF, AND METHOD FOR ACQUIRING AN IMAGE - The present invention discloses a radiation detector, an imaging device and an electrode structure thereof, and a method for acquiring an image. The radiation detector comprises: a radiation sensitive film, a top electrode on the radiation sensitive film, and an array of pixel units electrically coupled to the radiation sensitive film. Each pixel unit comprises: a pixel electrode (which is configured to collect a charge signal in a pixel area of the radiation sensitive film), a storage capacitor, a reset transistor, a buffer transistor, a column strobe transistor, and a row strobe transistor. The column strobe transistor and the row strobe transistor are connected in series between the buffer transistor and the signal line, and transfer the voltage signal of the corresponding pixel unit in response to a column strobe signal and a row strobe signal. The radiation detector may be used for, for example, X-ray digital imaging. | 01-10-2013 |
20130094625 | X RAY SOURCE GRATING STEPPING IMAGING SYSTEM AND IMAGE METHOD - An X-ray imaging system comprising: an X-ray source, a source grating, a fixed grating module and an X-ray detector, which are successively positioned in the propagation direction of X-ray; an object to be detected is positioned between the source grating and the fixed gating module; said source grating can perform stepping movement in a direction perpendicular to the optical path and grating stripes; wherein the system further comprises a computer workstation for controlling said X-ray source, source grating and X-ray detector so as to perform the following processes: the source grating performs stepping movement in at least one period thereof; at each stepping step, the X-ray source emits X-ray to the object to be detected, and the detector receives the X-ray at the same time; wherein after at least one period of stepping and data acquisition, the light intensity of X-ray at each pixel point on the detector is represented as a light intensity curve; the light intensity curve at each pixel point on the detector is compared with a light intensity curve in the absence of the object to be detected, a pixel value of each pixel point is calculated from change in said light intensity curve; an image of the detected object is reconstructed according to the calculated pixel value. | 04-18-2013 |
20130162989 | Method for Automatically Calibrating a Raman Spectrum Detection System and Raman Spectrum Detection System - The present disclosure relates to a Raman spectrum detection system, which comprises a light source for emitting excitation light that excites a detected object to emit Raman light; an external light path system for irradiating light emitted from the light source on the detected object and collecting the Raman light emitted by the detected object; a light detection device for receiving the Raman light collected by the external light path system and detecting said Raman light to obtain spectrum data thereof; a control device for controlling the excitation light source to provide the excitation light, controlling the light detection device to detect the Raman light, receiving the spectrum data output from the light detection device, and analyzing said spectrum data to identify the detected object; and an automatic calibration device for holding the standard sample and for automatically calibrating the system. The present disclosure also relates to a method for detecting an object using the Raman spectrum detection system, and a method for automatically calibrating the Raman spectrum detection system. | 06-27-2013 |
20130313426 | SIGNAL EXTRACTION CIRCUITS AND METHODS FOR ION MOBILITY TUBE, AND ION MOBILITY DETECTORS - Embodiments of the present disclosure relate to substance detection technology, and to signal extraction circuits and methods for ion mobility tubes, and ion mobility detectors, which can solve the problem with the conventional technologies that it is difficult to design and manufacture the leadout circuit for the pulsed voltage on the Faraday plates. A signal extraction circuit for an ion mobility tube includes an DC-blocking module configured to remove a DC voltage contained in a voltage extracted, by a signal leadin terminal, from the Faraday plate, and to output, by a signal leadout terminal, a pulsed voltage contained in the voltage extracted from the Faraday plate. An ion mobility detector includes the signal extraction circuit for an ion mobility tube according to the present invention. A signal extraction method for an ion mobility tube includes extracting a voltage on a Faraday plate in the ion mobility tube, removing a DC voltage contained in the voltage extracted from the Faraday plate, and outputting a pulsed voltage contained in the voltage extracted from the Faraday plate. The present invention is used to extract a pulsed voltage from the Faraday plate. | 11-28-2013 |
20140050305 | RADIATION DEVICE INSTALLATION HOUSING AND X-RAY GENERATOR - Embodiments include an X-ray generator including a radiation device installation housing and an X-ray generator. In various embodiments, the radiation device installation housing comprises a housing body, a flange fixedly provided on an inner wall of the housing body and shaped in circular and a compensation device fixedly or movably connected with the flange in a liquid tight manner; a liquid receiving cavity for receiving an insulating liquid formed between one side of two opposite sides of the compensation device and the inner wall of the housing body as well as the flange; a compensation device moving space formed between another side of the two opposite sides of the compensation device opposed to the inner wall of the housing body and an inner wall of the flange. | 02-20-2014 |
20140056410 | BACK-SCATTER HUMAN BODY SECURITY INSPECTION SYSTEM AND SCANNING METHOD THEREOF TO DETECT RADIOACTIVE MATTER - The present invention discloses a back-scatter human body security inspection system, capable of detecting a radioactive matter carried by the human body, comprising: a radiation source configured to generate radiation rays, a flying spot forming device, configured to modulate the radiation rays from the radiation source, so as to form flying spot scanning beams for scanning the human body to be detected, a detector configured to detect radiation rays from the human body to be detected and output a signal characterizing a dose of the radiation rays, a control and data processing device, configured to process the signal outputted from the detector to obtain a radiation image of the human body to be detected. The detector detects the radiation rays from the radiation source scattered by the human body to be detected, separately at different times, and the radiation rays from the radioactive matter carried by the human body to be detected. In the present invention, the application ranges of the back-scatter human body scanning apparatus can be effectively expanded, without adding and modifying the hardware therein, thereby increasing the monitoring function to the radioactive matter carried by the human body and further improving the effects of the human body security inspection. | 02-27-2014 |
20140056412 | INTEGRATED FLYING-SPOT X-RAY APPARATUS - Disclosed is an integrated flying-spot X-ray apparatus comprising a ray generator configured to generate the X-ray, a revolving collimator device provided thereon with at least one aperture and arranged to be rotatable about the ray generator, a frameless torque motor configured to drive the revolving collimator device to rotate about the ray generator, and a cooling device configured to cool the ray generator, wherein the ray generator, the revolving collimator device, the frameless torque motor and the cooling device are mounted on an integrated mounting frame. Compared with the prior art, the integrated flying-spot X-ray apparatus according to the present disclosure has a simple and compact structure and is used as a kernel apparatus for fields of safety inspection and medical treatment. | 02-27-2014 |
20140061490 | BORON-COATED NEUTRON DETECTOR AND METHOD FOR MANUFACTURING THE SAME - A boron-coated neutron detector, comprising a cathode tube with a plurality of passages formed therein along its longitudinal direction, the inner wall of each passage being coated with boron material; an electrode wire serving as an anode and arranged longitudinally in each of the passages, the electrode wire adapted to be applied with high voltage; and an insulating end plate to which each end of the cathode tube is fixed, the electrode wire being fixed to the cathode tube via the insulating end plate. Preferably, the cathode tube is formed by jointing a plurality of boron-coated substrates. The boron-coated neutron detector increases the detection efficiency of the neutron detector, which may reach or even exceed the detection efficiency of the | 03-06-2014 |
20140093152 | METHODS AND DEVICES FOR LOCATING OBJECT IN CT IMAGING - The present disclosure provides methods and devices for locating a plurality of interested objects in CT imaging. Location of the interested objects in the three-dimensional space can be determined by using three projection images that are substantially perpendicular to each other. The method can rapidly locate interested objects in a CT image without pre-reconstruction of the CT image even if there are a plurality of interested objects in the field of view. The algorithm does not involve interactive steps. The method is rapid and effective, and thus applicable to industrial applications. | 04-03-2014 |
20140177802 | RAY EMISSION DEVICE AND IMAGING SYSTEM HAVING THE SAME - A ray emission device and an imaging system with the ray emission device are disclosed. The ray emission device comprises: a cylinder; a ray source disposed in the cylinder for emitting a ray; and a collimator disposed in the cylinder. The collimator enables the ray emitted by the ray source to form sectorial ray beams at a plurality of positions in an axial direction of the cylinder. The cylinder has a pencil beam forming part arranged over an axial length of the cylinder corresponding to the plurality of positions. The sectorial ray beams form pencil beams through the pencil beam forming part when the cylinder rotates around a rotation axis. | 06-26-2014 |
20140185742 | 3-DIMENSIONAL MODEL CREATION METHODS AND APPARATUSES - Disclosed are methods and apparatuses for creating a 3-Dimensional model for objects in an inspected luggage in a CT system. The method includes acquiring slice data of the luggage with the CT system; interpolating the slice data to generate 3D volume data of the luggage; performing unsupervised segmentation on the 3D volume data of the luggage to obtain a plurality of segmental regions; performing isosurface extraction on the plurality of segmental regions to obtain corresponding isosurfaces; and performing 3D surface segmentation on the isosurfaces to form a 3D model for the objects in the luggage. The above solutions can create a 3D model for objects in the inspected luggage in a relatively accurate manner, and thus provide better basis for subsequent shape feature extraction and security inspection, and reduce omission factor. | 07-03-2014 |
20140185743 | STATIONARY CT APPARATUS - A stationary CT apparatus and a method of controlling the same. The stationary CT apparatus includes: a scanning passage; a stationary carbon nanotube X-ray source arranged around the scanning passage and comprising a plurality of ray emission focal spots; and a plurality of stationary detector modules arranged around the scanning passage and disposed opposite the X-ray source. At least some of the plurality of detector modules are arranged in a substantially L shape or a substantially Π shape when viewed in a plane intersecting the scanning passage. Reconstruction of the CT apparatus without a rotary gantry is achieved and special substances in an object under inspection is identified by optimizing design of the carbon nanotube X-ray source and the detector device. The invention ensures that the stationary gantry type CT system has a small size and a high accuracy and is particularly suitable for safety inspection of baggage. | 07-03-2014 |
20140185744 | CT APPARATUS WITHOUT GANTRY - A CT apparatus without a gantry. The CT apparatus includes a scanning passage; a stationary X-ray source arranged around the scanning passage and including a plurality of ray emission focal spots; and a plurality of stationary detector modules arranged around the scanning passage and disposed opposite the X-ray source. At least some of the plurality of detector modules may be arranged substantially in an L shape, a semicircular shape, a U shape, an arc shape, a parabolic shape, or a curve shape when viewed in a plane intersecting the scanning passage. The invention ensures that the stationary gantry type CT system has a small size, and a high data identification accuracy. | 07-03-2014 |
20140185754 | GOODS INSPECTION APPARATUS USING DISTRIBUTED X-RAY SOURCE - This invention relates to an X-ray goods inspection apparatus, and in particular to a goods inspection apparatus using distributed X-ray source. | 07-03-2014 |
20140185763 | INSPECTION SYSTEM AND INSPECTION METHOD - An inspection system included a ray source to emit a ray, a detector to receive the ray, a detection region for placing an object under inspection, and a moving device to move the ray source and the detector around the detection region. Conventional scanning blind zones such as both sides of a human body, both sides of arms and both sides of legs can be completely eliminated. In addition, it is not necessary for a human body under inspection to carry out an action such as turning around to change his or her posture. Therefore, ineffective time can be minimized in the entire detection and a passing rate of persons under inspection can be improved. Furthermore, an inspected person's mental feeling of being controlled due to change of posture can be greatly improved, and his or her mental discomfort and conflicted moods can be reduced. | 07-03-2014 |
20140185769 | BACK SCATTERNING INSPECTION SYSTEMS FOR HUMAN BODY - A human body back-scattering inspection system is disclosed. The system comprises a flying-spot forming unit configured to output beams of X-rays, a plurality of discrete detectors which are arranged vertically along a human body to be inspected, and a controlling unit coupled to the flying-spot forming unit and the plurality of detectors, and configured to generate a control signal to control the flying-spot forming unit and the plurality of detectors to perform a partition synchronous scan on the human body to be inspected vertically. The present disclosure utilizes the geometry property of the human body back-scattering inspection system, and proposes a multiple-point synchronous scan mechanism which largely accelerates the inspection of human body. | 07-03-2014 |
20140185770 | BACK-SCATTERING INSPECTION SYSTEMS AND METHODS FOR HUMAN BODY - Human body back-scattering inspection systems and methods are disclosed. In the invention, X-rays modulated by the flying-spot forming unit having spirally distributed flying-spots have a distribution having alternating peaks and valleys on the irradiated surface. In this way, scanning starting times can be precisely controlled to cause two devices to have scanning starting times that are different by a half of a cycle. That is, the beams outputted from one device are at maximum when the beams outputted from the other device are at minimum. In other words, even if the ray source of one device emits rays, it will not significantly affect imaging result of the other device. In such way, the two devices may emit rays and perform scanning at the same time, and thus the total scanning time is reduced. | 07-03-2014 |
20140185772 | HUMAN BODY INSPECTION SYSTEM - The invention discloses a human body inspection system comprising: an X-rays source for emitting X-rays to a human body to be inspected; a modulation and collimation device for modulating and collimating the X-rays from the X-rays source; a detector that receives X-rays scattered from the human body to be inspected; a guiding rail forming an enclosed detection region, wherein the human body to be inspected is in the detection region, and the X-rays source, the modulation and collimation device and the detector are positioned in a same side relative to the human body, and the X-rays source, the modulation and collimation device and the detector together move along the guiding rail in whole so that the X-rays can scan all over the human body. | 07-03-2014 |
20140185773 | HUMAN BODY SECURITY INSPECTION SYSTEM - A human body security inspection system including a plurality of ray emitting-detecting modules, which are configured to emit X-rays to the object to be inspected and to receive X-rays scattered from the object to be inspected, wherein the ray emitting-detecting modules form an enclosed region with respect to the object to be inspected and security inspection is implemented on the object in the enclosed region. | 07-03-2014 |
20140185923 | METHODS FOR EXTRACTING SHAPE FEATURE, INSPECTION METHODS AND APPARATUSES - Methods for extracting a shape feature of an object and security inspection methods and apparatuses. Use is made of CT's capability of obtaining a 3D structure. The shape of an object in an inspected luggage is used as a feature of a suspicious object in combination with a material property of the object. For example, a false alarm rate in detection of suspicious explosives may be reduced. | 07-03-2014 |
20140211917 | APPARATUS AND METHOD FOR RAY SCANNING IMAGING - The present invention discloses apparatus and method for ray scanning imaging. The apparatus comprises a plurality of ray generators and a ray detection device. The plurality of ray generators are arranged uniformly along a circular arc and emit ray beams in sequence or simultaneously to an object to be inspected within a single scanning period. The ray detection device may be either in a multi-segmental semi-closed configuration composed of a plurality of linear arrays of ray detectors or in a circular arc configuration where a plurality of ray detection units arranged uniformly along a circular arc. During the inspection, the apparatus is advantageous in obtaining the complete ray projection values without rotation thereof, so as to effectively shorten the inspection time. | 07-31-2014 |
20140231649 | CONCEALED DANGEROUS ARTICLES DETECTION METHOD AND DEVICE - A method and an apparatus for detecting hidden hazardous substance including the steps of: performing terahertz imaging for a detected object; judging whether there is a suspicious area containing the hidden hazardous substance in a terahertz image of the detected object obtained by the terahertz imaging; performing a multi-wavelength spectroscopy measurement to the suspicious area, determining whether the hazardous substance is contained in the suspicious area according to results of multi-wavelength spectroscopy measurement; and outputting the image of the detected object and hazardous substance detecting result. Also disclosed is an apparatus for implementing the method for detecting the hidden hazardous substance according to the present invention. Determination of the hidden hazardous substance can be performed from the perspectives of shape features and substance composition, thus the accuracy of detection is greatly increased. | 08-21-2014 |
20140299758 | CORONA DISCHARGING DEVICE AND ION MIGRATION SPECTROMETER HAVING SAME - The present invention provides a corona discharge device, comprising a first electrode including: a first substantially cylindrical inner chamber portion and a second substantially conical inner chamber portion in communication with the first inner chamber portion, wherein the second inner chamber portion has a cross sectional area that gradually enlarges in a direction away from the first inner chamber portion. The present invention also provides an ion mobility spectrometer comprising: an ionization region; and the corona discharge device disposed in the ionization region. With the above construction and structure, the ion mobility spectrometer of the present invention has the advantages that extraction of ions is facilitated and a life time of the corona electrode is lengthened. In addition, the focusing and storing electrode is used to effectively shield interference of a corona discharge pulse, and to push and focus sample ions. A designed voltage control solution is used to achieve mobility differentiating of ions, while a corona pulse is shielded to prevent variation in an ion quantity due to the corona pulse, thereby achieving an effect of stabilizing mobility spectrum lines. | 10-09-2014 |
20140314201 | METHODS AND APPARATUSES FOR MEASURING EFFECTIVE ATOMIC NUMBER OF AN OBJECT - Methods and apparatuses for measuring an effective atomic number of an object are disclosed. The apparatus includes: a ray source configured to product a first X-ray beam having a first energy and a second X-ray beam having a second energy; a Cherenkov detector configured to receive the first X-ray beam and the second X-ray beam that pass through an object under detection, and to generate a first detection value and a second detection value; and a data processing device configured to obtain an effective atomic number of the object based on the first detection value and the second detection value. The Cherenkov detector can eliminate disturbance of X-rays below certain energy threshold with respect to the object identification, and thus accuracy can be improved for object identification. | 10-23-2014 |
20140319337 | ASYMMETRIC FIELD ION MOBILITY SPECTROMETER - The present invention discloses an asymmetric field ion mobility spectrometer. It comprises an ionization source, for generating ions; an electrode plate; a plurality of electrode filaments, arranged in opposite to and spaced apart from the electrode plate by an analysis gap, wherein a high voltage of electrical field is applied between the electrode plate and the electrode filaments to form an ion migration area, the electrode filaments used to collect the ions that do not pass through the ion migration area; and a collection electrode, disposed at a rear end of the ion migration area, and collecting the ions that have passed through the ion migration area. The present asymmetric field ion mobility spectrometer is capable of improving accuracy of identifying peak positions of the ions, reducing scanning time of DC voltage and types of compensation voltage, thereby increasing ion detection efficiency. | 10-30-2014 |
20140320855 | RAMAN SPECTROSCOPY METHOD OF MEASURING MELAMINE CONTENTS IN DAIRY PRODUCTS HAVING DIFFERENT MATRIXES - A raman spectroscopy method of measuring melamine contents in dairy products having different matrixes. The method includes: (a) establishing a database of characteristic curves of dairy products having different matrixes; (b) taking several copies of the dairy products having one certain unknown matrix and adding melamine standard solutions having different concentrations therein, to obtain a series of dairy product samples in which the relative concentrations of the melamine are known; (c) performing raman spectrum testing analysis and obtaining corresponding characteristic peak intensities to obtain a slope of the characteristic curve showing variation of the characteristic peak intensities with the relative concentrations of the melamine; (d) searching the database of step (a) using the slope of the characteristic curve of the dairy product samples to find a matching characteristic curve, and (e) calculating concentration of melamine in the dairy products by using the matched characteristic curve and the characteristic peak intensity. | 10-30-2014 |
20140341431 | PASSABLE SECURITY INSPECTION SYSTEM FOR PERSON - The present invention discloses a through-type of millimetre wave person body security inspection system, wherein a person to be inspected passes through an inspect passage therein for performing a security inspection. The through-type of millimetre wave person body security inspection system provided in accordance with the present invention can make a total body dynamic scanning to the person to be inspected, and obtain millimetre wave images and optical images with respect to the person body, thereby achieving the inspection of prohibited articles hidden within clothing of the person body and an automatic alarm thereof. | 11-20-2014 |
20150030205 | HUMAN BODY SECURITY INSPECTION METHOD AND SYSTEM - The present invention provides a human body security inspection method and system. The method comprises: retrieving in real-time scanning row or column image data of a personal to be inspected; transmitting in real-time the image data to an algorithm processing module and processing these image data by the module; automatically recognizing a suspicious matter by a suspicious matter automatic target recognition technique, after retrieving an image data of an entire scanning image of the personal; any of the following three inspection modes is selected, so as to perform a further processing on basis of the recognition result of the suspicious matter, (1) in a manner of automatic target recognition technique, (2) in a combination manner of the automatic target recognition technique and a privacy protection image; and (3) a combination manner of the automatic target recognition technique, a privacy protection image and human intervention. | 01-29-2015 |
20150048251 | MILLIMETER WAVE HOLOGRAPHIC SCAN IMAGING APPARATUS FOR HUMAN BODY SECURITY INSPECTION - The present invention discloses a millimeter wave holographic scan imaging apparatus for inspecting a human body. The apparatus includes a first millimeter wave transceiver device ( | 02-19-2015 |
20150048253 | MILLIMETRE WAVE THREE DIMENSIONAL HOLOGRAPHIC SCAN IMAGING APPARATUS AND METHOD FOR INSPECTING A HUMAN BODY OR AN ARTICLE - The present invention discloses a millimetre wave three dimensional holographic scan imaging apparatus and a method for inspecting a human body or an article. The apparatus comprises a first millimetre wave transceiver module, a second millimetre wave transceiver module, a first guide rail device to which the first millimetre wave transceiver module is connected in slidable form, a second guide rail device to which the second millimetre wave transceiver module is connected in slidable form, a driver configured to drive the first/second millimetre wave transceiver module to move along the first/second guide rail device, and a constrainer configured to constrain kinematic relation between the first and the second millimetre wave transceiver modules such that they only move in directions opposed to each other. They may increase scan speeds, improve scan stability, reduce scan operations and enhance the reliability of the apparatus. | 02-19-2015 |
20150048868 | CIRCUITS FOR GENERATING SWEEP FREQUENCY SIGNAL - A circuit to generate a sweep frequency signal that includes a reference frequency source to generate a reference frequency signal, a first frequency combination circuit coupled to the reference frequency source, and operative to generate a sweep frequency signal in a first frequency band based on the reference frequency signal, a second frequency combination circuit coupled to the reference frequency source, and operative to generate a sweep frequency signal in a second frequency band different from the first frequency band based on the reference frequency signal, a multiple-level switch coupled to outputs of the first frequency combination circuit and the second frequency combination circuit, and a control circuit controlling the first and second frequency combination circuits and the multiple-level switch to output the sweep frequency signal in the first frequency band and the sweep frequency signal in the second frequency band at an output of the multiple-level switch alternately. | 02-19-2015 |
20150048964 | MILLIMETER WAVE THREE DIMENSIONAL HOLOGRAPHIC SCAN IMAGING APPARATUS AND INSPECTING METHOD THEREOF - A millimeter wave three dimensional holographic scan imaging apparatus and a method for inspecting an object to be inspected using the same are disclosed. The apparatus includes a millimeter wave transceiver module with a millimeter wave transceiver antenna array for transmitting and receiving a millimeter wave signal. The apparatus also includes a guide rail device, to which the millimeter wave transceiver module is connected in slidable form. The millimeter wave transceiver module is moveable along the guide rail device to perform a plane scan on an object to be inspected. A data processing device generates a millimeter wave holographic image from the plane scan. | 02-19-2015 |
20150048984 | WAVEGUIDE HORN ARRAYS, METHODS FOR FORMING THE SAME AND ANTENNA SYSTEMS - There is provided a waveguide horn array, a method for forming the waveguide horn array, and an antenna system. The array includes a rectangular metal plate which is processed to have a cross section comprised of a plurality of rectangular holes arranged in the length direction of the rectangular metal plate, the lower part of each hole being formed as a rectangular waveguide, and the upper part of each hole being formed as a horn; and a groove extending in the direction along which the plurality of holes are arranged and having a predetermined depth, which is formed at two sides of the holes on the top surface of the rectangular metal plate. According to the embodiments, it is possible to maintain the good properties of the antenna in terms of bandwidth and directivity, while enhancing the isolation between the transmitting antenna and the receiving antenna in the system. | 02-19-2015 |
20150085278 | RAMAN SPECTRUM MEASURING METHOD FOR DRUG INSPECTION - A raman spectrum measuring method for drug inspection is provided, comprising: measuring raman spectrum of a sample to be inspected to acquire an original raman spectrum curve of the sample; determining whether the original raman spectrum curve has a characterizing portion, and if not, measuring a mixture of the sample and an enhancing agent to acquire an enhanced raman spectrum curve of the sample; and if the original raman spectrum curve of the sample to be inspected has a characterizing portion, comparing the original raman spectrum curve of the sample with data in an original raman spectrum database of a drug to determine whether the sample contains the drug, otherwise, comparing the enhanced raman spectrum curve of the sample with data in an enhanced raman spectrum database of the drug to determine whether the sample to be inspected contains the drug. | 03-26-2015 |