Patent application number | Description | Published |
20080242226 | Repeater for providing coverage within a wireless communications network and methods thereof - A repeater and methods thereof are provided. The example repeater first receives a donor signal (e.g., from a base station for repeating in a downlink direction, from a mobile station for repeating in an uplink direction, etc.) and a transmitted version of an internally generated pilot signal. The repeater configures an adaptive filter signal to cancel the received transmitted version of the internally generated pilot signal. In an example, the first receiving and configuring steps may be performed during a first mode of operation (e.g., a “training” mode). The repeater second receives the donor signal and a retransmitted version of the donor signal (e.g., retransmitted from the repeater). The repeater cancels the retransmitted donor signal based on the configured adaptive filter signal. | 10-02-2008 |
20090061771 | Methods of reconfiguring sector coverage in in-building communications system - In an in-building wireless communications network, a weighted sum of a downlink signal from two relevant base station interfaces (BSIs) is transmitted by a radio transceiver transitioning between two sectors. During a transition period, the weight of the combined downlink signal is adjusted gradually to simulate a smooth shift in the coverage of the sectors and transition the radio transceiver from a first sector to a second sector. This allows a base station to hand over users from a first sector to a second sector while suppressing any disruption in service. | 03-05-2009 |
20090191891 | Method to support user location in in-structure coverage systems - In an example embodiment of the present invention, the method includes creating a plurality of data packets. Each data packet in the plurality of data packets includes a plurality of coded cellular signals. The plurality of data packets are sent over a data network associated with at least one sector served by a plurality of transceivers, and at least one of the plurality of transceivers broadcasts the data packets. A location of a mobile station is determined based on received multi-paths associated with response from the mobile station to broadcast of at least one of the plurality of data packets. | 07-30-2009 |
20110103504 | System and Method for User Specific Antenna Down Tilt in Wireless Cellular Networks - Systems and methods for user specific antenna down tilt in wireless cellular networks are disclosed. A preferred embodiment method comprises synthesizing a plurality of virtual antennas from a single physical antenna, wherein a total number of virtual antennas is less than a total number of antenna elements in the physical antenna, transmitting pilot signals on the plurality of virtual antennas, receiving, from a user equipment, a pre-coding control indicator based on the transmitted pilot signals, determining a multiple-input multiple output pre-coding vector based on the pre-coding control indicator, and transmitting user data modulated by the pre-coding vector to the user equipment via the plurality of virtual antennas. | 05-05-2011 |
20110194548 | Method And Apparatus For Cellular Communication Over Data Networks - Cellular signals or other wireless signals/messages are introduced into a building or to an outside location by transmitting packets corresponding to those signals over a data network and low cost cables to designated locations within the data network. Once the designated packets containing the signals reach the destination, they are then broadcast over the air to a terminal capable of receiving the wireless message. In a first embodiment, an in-building gigabit Ethernet network, such as that currently existing presently in many buildings, is used to distribute radio signals indoors. Instead of transmitting the radio signals over the air from a repeater connected to a base station, coded baseband signals generated by the coding processor (e.g., a CDMA Modem Unit) in the base station are packetized and sent over the Ethernet network to radio processing equipment and antennas distributed throughout the building. The radio processing equipment strips the packet headers from the baseband signal packets so those signals can be broadcast via the antennas to one or more mobile terminals. | 08-11-2011 |
20130222201 | Active Antenna System (AAS) Radio Frequency (RF) Module with Heat Sink Integrated Antenna Reflector - On-board heat dissipation can be achieved in radio frequency (RF) modules by integrating a heat sink into the RF module's antenna reflector. Said integration achieves a compact and aesthetically pleasing RF module design that reduces the overall footprint of modular active antenna systems (AASs). Embodiment antenna reflectors include portions that are perforated and/or exposed to free flowing air to provide enhanced heat dissipation capability. | 08-29-2013 |
20130225222 | Apparatus and Method for Modular Multi-Sector Active Antenna System - Multiple radio frequency (RF) modules can be arranged in a multi-sector configuration. Each RF modules may have a wedge-like shape such that the RF modules may be adjacently affixed to one another in spherical cluster, thereby providing multi-sector coverage while maintaining a relatively compact active antenna installation. Additionally, multiple clusters of RF modules can be arranged in an array to provide beamforming and/or other advances antenna functionality. | 08-29-2013 |
20130234883 | Apparatus and Method for an Active Antenna System with Near-field Radio Frequency Probes - Field-serviceable radio frequency modules can be achieved by replacing hard-wired radio frequency (RF) feedback paths with external near-field RF probes. Notably, the near-field RF probes may allow for the RF module to be installed/re-installed on a backplane or other support structure without fowling factory calibration settings. Multiple near-field RF probes can monitor a single RF module. Additionally, a single near-field RF probe can monitor multiple RF modules. | 09-12-2013 |
20140266464 | Apparatus and Method for Asymmetrically Driven Partial Outphasing Power Amplifier - Apparatus and method embodiments are provided for improving power efficiency in an outphasing amplifier with a non-isolating combiner. The embodiments include reducing the driving power to two power amplifiers (PAs) of the amplifier circuit in the low input signal power region in an asymmetric manner between the two PAs. An embodiment method includes receiving, at a signal decomposer, an input signal, detecting a power amplitude of the input signal, and determining whether the input signal corresponds to one of a plurality of operation modes according to the detected power amplitude of the input signal and a plurality of power thresholds corresponding to the operation modes. Upon determining that the power amplitude of the input signal corresponds to a first mode from the operation modes, the input signal is decomposed into two component signals including at least one signal that has a reduced and scaled amplitude proportional to the input signal. | 09-18-2014 |
20140269892 | Apparatus and Method for a Digital Transmitter Architecture with Outphasing Power Amplifier - System and method embodiments are provided for improving power efficiency in an outphasing amplifier with a non-isolating combiner. Some embodiments include a circuit comprising a signal decomposer configured to receive an input signal, a non-isolating combiner coupled to the signal decomposer and configured to provide an amplified output signal corresponding to the input signal, a first power amplifiers (PA) on a first branch between the signal decomposer and the non-isolating combiner, a second PA on a second branch between the signal decomposer and the non-isolating combiner, and a switch on the second branch between the signal decomposer and the second PA. The switch is configured to disconnect the second PA from the signal decomposer upon determining that the input signal is in a first condition, and further configured to connect the second PA to the signal decomposer upon determining otherwise. | 09-18-2014 |
20140269984 | METHODS AND SYSTEMS FOR CREST FACTOR REDUCTION IN MULTI-CARRIER MULTI-CHANNEL ARCHITECTURES - Crest factor reduction (CFR) can be performed on the various carriers of a multi-carrier multi-channel signal prior to modulation and/or beamforming operations in order to improve signal-to-noise ratios (SNRs) in the resulting wireless communication. More specifically, clipping noise is introduced into each of the individual carrier signals prior to application of the beamforming weight vectors, as well as prior to carrier modulation, thereby causing the beamforming weight vectors to be applied to both the signal and the clipping noise. As a result, variations between the signal antenna pattern and the clipping noise antenna pattern are reduced, which mitigates and/or reduces low SNR spatial locations in which the signal would have been drowned out by the clipping noise under conventional CFR. | 09-18-2014 |
20140270016 | METHODS AND SYSTEMS FOR BEAM STEERING CREST FACTOR REDUCTION (CFR) CLIP NOISE - Signal-to-noise ratios (SNRs) and/or amplifier performance can be improved in crest factor reduction (CFR) applications by steering clipping noise in a different direction than the data signal achieving upon reception. Indeed, using clipping noise signals that have a different amplitude-phase relationship than the input/baseline signal causes the clipping noise signal and data signal to exhibit different antenna patterns, effectively steering the clipping noise in a different direction than the data signal. For instance, clipping noise can be steered away from potential receivers to improve received signal quality. In addition, higher magnitude clipping noise can be used to achieve improved power amplifier performance without increasing received SNR. | 09-18-2014 |