Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Zhang, SE

Guoqiang Zhang, Solna SE

Patent application numberDescriptionPublished
20140077977Method and Decoder for Reconstructing a Source Signal - In a method for reconstructing a source signal, which is encoded by a set of at least two descriptions, the method comprises: receiving a subset of the set of descriptions; reconstructing a reconstructed signal at an operating bitrate of a set of operating bitrates upon the basis of the subset of descriptions, the reconstructed signal having a second probability density, wherein the second probability density comprises a first statistical moment and a second statistical moment; and manipulating the reconstructed signal, wherein the reconstructed signal is manipulated such that, irrespective of the operating bitrate, a predetermined minimum similarity between the first statistical moment of the third probability density and the first statistical moment of the first probability density and between the second statistical moment of the third probability density and the second statistical moment of the first probability density is maintained.03-20-2014
20150295590Method and Decoder for Reconstructing a Source Signal - In a method for reconstructing a source signal, which is encoded by a set of at least two descriptions, the method comprises: receiving a subset of the set of descriptions; reconstructing a reconstructed signal at an operating bitrate of a set of operating bitrates upon the basis of the subset of descriptions, the reconstructed signal having a second probability density, wherein the second probability density comprises a first statistical moment and a second statistical moment; and manipulating the reconstructed signal, wherein the reconstructed signal is manipulated such that, irrespective of the operating bitrate, a predetermined minimum similarity between a first statistical moment of a third probability density and a first statistical moment of a first probability density and between a second statistical moment of the third probability density and a second statistical moment of the first probability density is maintained.10-15-2015

Hongyang Zhang, Vasteras SE

Patent application numberDescriptionPublished
20140232317System And Method For Controlling A Synchronous Motor - A synchronous electrical motor includes a rotor with a DC field winding. An exciter is configured to energize the DC field winding by generating a DC current in a first direction across the DC field winding when activated. A control system is configured to control a current flow across the DC field winding, the control system including a field discharge resistor and a by-passing circuitry. The by-passing circuitry is configured to implement a first by-passing to electrically by-pass the field discharge resistor during a current flow in the first direction across the DC field winding, and to implement a second by-passing to electrically by-pass the field discharge resistor during a current flow in a second direction across the DC field winding. The control system is able to direct all the DC current generated by the exciter to flow across the DC field winding.08-21-2014

Jianwei Zhang, Stockholm SE

Patent application numberDescriptionPublished
20160057768METHOD AND NETWORK NODE FOR DOWNLINK SCHEDULING IN A MOBILE COMMUNICATION NETWORK - The present disclosure relates to a method in a scheduling node for selecting a downlink resource allocation scheme in a mobile communication network including a plurality of at least partially overlapping sectors. The selected downlink resource allocation scheme is applicable to downlink transmission in at least a current transmission time interval to user equipments located in a one or more of the plurality of at least partially overlapping sectors. The disclosed method comprises the step of selecting a set of user equipments connected to the scheduling node. For each user equipment in the selected set of user equipments, the method further comprises the step of determining sector isolation properties of each sector. A downlink resource allocation scheme is selected wherein at least one sector is disabled for downlink transmission to user equipment in the set of user equipments based on determined sector isolation properties. The disclosure also relates to a method of allocating downlink data transmission resources in a mobile communication network, a scheduling node and a computer program comprising computer program code executed in the scheduling node.02-25-2016

Lidong Zhang, Vasteras SE

Patent application numberDescriptionPublished
20140002943DC GRID AND A METHOD OF LIMITING THE EFFECTS OF A FAULT IN A DC GRID01-02-2014
20140022680CURRENT LIMITATION SYSTEM FOR LIMITING THE EFFECTS OF A FAULT IN A DC GRID AND A METHOD OF OPERATING A CURRENT LIMITATION SYSTEM - A current-limitation system for limiting a current through an DC connection in case of a fault occurring in a DC grid of which the DC connection forms a part is provided, as well as a method of operating a current-limitation system for limiting a current through an DC connection in case of a fault occurring in a DC grid of which the DC connection forms a part.01-23-2014

Shili Zhang, Stockholm SE

Patent application numberDescriptionPublished
20130295732METHOD FOR MAKING FIELD EFFECT TRANSISTOR - The present invention provides a method for making a field effect transistor, comprising of the following steps: providing a silicon substrate with a first type, forming a shallow trench by photolithography and etching processes, and forming silicon dioxide shallow trench isolations inside the shallow trench; forming by deposition a high-K gate dielectric layer and a metal gate electrode layer on the substrate and the shallow trench isolations; forming a gate structure by photolithography and etching processes; forming source/drain extension regions by ion implantation of dopants of a second type; depositing an insulating layer to form sidewalls tightly adhered to the sides of the gate; forming source/drain regions and PN junction interfaces between the source/drain region and the silicon substrate by ion implantation of dopants of the second type; and performing microwave annealing to activate implanted ions. The novel process of making a field effect transistor in the present invention can achieve impurity activation in the source/drain area at a low temperature and can reduce the influence of source/drain annealing on high-K gate dielectric and metal gate electrode.11-07-2013

Shili Zhang, Uppsala SE

Patent application numberDescriptionPublished
20130026573BODY CONTACT SOI TRANSISTOR STRUCTURE AND METHOD OF MAKING - The present invention puts forward a body-contact SOI transistor structure and method of making. The method comprises: forming a hard mask layer on the SOI; etching an opening exposing SOI bottom silicon; wet etching an SOI oxide layer through the opening; depositing a polysilicon layer at the opening followed by anisotropic dry etching; depositing an insulating dielectric layer at the opening followed by planarization; forming a gate stack structure by deposition and etching, and forming source/drain junctions of the transistor using ion implantation. By using the present invention, body contact for SOI field-effect transistors can be effectively formed, thereby eliminating floating-body effect in the SOI field-effect transistors, and improving heat dissipation capability of the SOI transistors and associated integrated circuits.01-31-2013
20130032881Asymmetric Source-Drain Field Effect Transistor and Method of Making - The present invention is related to microelectronic device technologies. A method for making an asymmetric source-drain field-effect transistor is disclosed. A unique asymmetric source-drain field-effect transistor structure is formed by changing ion implantation tilt angles to control the locations of doped regions formed by two ion implantation processes. The asymmetric source-drain field-effect transistor has structurally asymmetric source/drain regions, one of which is formed of a P-N junction while the other one being formed of a mixed junction, the mixed junction being a mixture of a Schottky junction and a P-N junction.02-07-2013
20130270615METHOD FOR MAKING TRANSISTORS - A method of making a transistor, comprising: providing a semiconductor substrate; forming a gate stack over the semiconductor substrate; forming an insulating layer over the semiconductor substrate; forming a depleting layer over the insulating layer; etching the depleting layer and the insulating layer; forming a metal layer over the semiconductor substrate; performing thermal annealing; and removing the metal layer. As advantages of the present invention, an upper outside part of each of the sidewalls include a material that can react with the metal layer, so that metal on two sides of the sidewalls is absorbed during the annealing process, preventing the metal from diffusing toward the semiconductor layer, and ensuring that the formed Schottky junctions can be ultra-thin and uniform, and have controllable and suppressed lateral growth.10-17-2013
20140034955Nano-MOS Devices and Method of Making - The present invention discloses a method of making nano-MOS devices having a metal gate, thereby avoiding the poly depletion effect, and enhancing the MOS device's performance. The method forms metal gates by depositing a metal film over sidewall surfaces on two sides of a polycrystalline semiconductor layer. The metal in the metal film diffuses toward the sidewall surfaces of the polycrystalline semiconductor layer and forms, after annealing, metal-semiconductor compound nanowires (i.e., metal gates) on the sidewall surfaces of the polycrystalline semiconductor layer. Thus, high-resolution lithography is not required to form metal compound semiconductor nanowires, resulting in significant cost saving. At the same time, a nano-MOS device is also disclosed, which includes a metal gate, thereby avoiding the poly depletion effect, and resulting in enhanced MOS device performance.02-06-2014
20140034956Asymmetric Gate MOS Device and Method of Making - An asymetric gate MOS device is disclosed. The gate is a metal gate, and the metal gate has a different work function on the source side from that on the drain side of the MOS device, so that the overall performance parameters of the MOS device are more optimized. A method of making an asymetric gate MOS device is also disclosed. In the method, dopant ions are implanted into the gate of the MOS device, so as to cause the gate to have a different work function on the source side from that on the drain side of the MOS device. As a result, the overall performance parameters of the MOS device are more optimized. The method can be easily implemented.02-06-2014
20140048875Asymmetrical Gate MOS Device and Method of Making - An asymetric gate MOS device is disclosed. The gate is a metal gate, and the metal gate has a different work function on the source side from that on the drain side of the MOS device, so that the overall performance parameters of the MOS device are more optimized. A method of making an asymetric gate MOS device is also disclosed. In the method, dopant ions are implanted into the gate of the MOS device, so as to cause the gate to have a different work function on the source side from that on the drain side of the MOS device. As a result, the overall performance parameters of the MOS device are more optimized. The method can be easily implemented.02-20-2014

Shi-Li Zhang, Stockholm SE

Patent application numberDescriptionPublished
20110316070CHARGE TRAPPING NON-VOLATILE SEMICONDUCTOR MEMORY DEVICE AND METHOD OF MAKING - The present invention provides a charge trapping non-volatile semiconductor memory device and a method of making the device. The charge trapping non-volatile semiconductor memory device comprises a semiconductor substrate, a source region, a drain region, and, consecutively formed over the semiconductor substrate, a channel insulation layer, a charge trapping layer, a blocking insulation layer, and a gate electrode. The drain region includes a P-N junction, and the source region includes a metal-semiconductor junction formed between the semiconductor substrate and a metal including titanium, cobalt, nickel, platinum or one of their various combinations. The charge trapping non-volatile semiconductor memory device according to the present disclosure has low programming voltage, fast programming speed, low energy consumption, and relatively high device reliability.12-29-2011
20120119268Mixed Junction Source/Drain Field-Effect-Transistor and Method of Making the Same - The present invention is related to microelectronic technologies, and discloses specifically a mixed junction source/drain field-effect-transistor and methods of making the same. The field-effect-transistor with mixed junction source/drain comprises a semiconductor substrate, a gate structure, sidewalls, and source and drain regions having mixed junction structures, which are combinations of Schottky and P-N junctions. Compared with Schottky junction field-effect-transistors, the mixed junction source/drain field-effect-transistor described in the present invention has the characteristics of relatively low source/drain leakage. At the same time, this field-effect-transistor has lower source/drain series resistances than that associated with P-N junction field-effect-transistors.05-17-2012
20120267698FLOATING-GATE NONVOLATILE SEMICONDUCTOR MEMORY DEVICE AND METHOD OF MAKING - The present invention provides a floating-gate non-volatile semiconductor memory device and a method of making the same. The floating-gate non-volatile semiconductor memory device comprises a semiconductor substrate, a source, a drain, a first insulator layer, a first polysilicon layer, a second insulator layer, a second polysilicon layer, a protective layer and sidewalls. The source and drain are disposed on the semiconductor substrate. The first insulator layer is disposed over a region of the semiconductor substrate other than regions corresponding to the source and drain. The first polysilicon layer is disposed over the first insulator layer, forming a floating gate. The second insulator layer is disposed over the first polysilicon layer. The second polysilicon layer is disposed over the second insulator layer, forming a control gate and a wordline. The sidewalls are disposed on two sides of the wordline, and the protective layer is disposed over the second polysilicon layer. A semiconductor junction at a drain region is a P-N junction, while a semiconductor junction at a source region is a metal-semiconductor junction.10-25-2012
20120292733Mixed Schottky/P-N Junction Diode and Method of Making - The present invention relates to the field of microelectronic technology. It discloses a mixed Schottky/P-N junction diode and a method of making the same. The mixed Schottky/P-N junction diode comprises a semiconductor substrate having a bulk region and a doped region, and a conductive layer on the semiconductor substrate. The doped region has opposite doping from that of the bulk region. A P-N junction is formed between the bulk region and the doped region, a Schottky junction is formed between the conductive layer and the semiconductor substrate, and an ohmic contact is formed between the conductive layer and the doped region. The mixed Schottky/P-N junction diode of the present invention has high operating current, fast switching speed, small leakage current, high breakdown voltage, ease of fabrication and other advantages.11-22-2012
20130126954Dynamic Random Access Memory Array and Method of Making - The present invention is related to microelectronic technologies, and discloses specifically a dynamic random access memory (DRAM) array and methods of making the same. The DRAM array uses vertical MOS field effect transistors as array devices for the DRAM, and a buried metal silicide layer as buried bit lines for connecting multiple consecutive vertical MOS field effect transistor array devices. Each of the vertical MOS field-effect-transistor array devices includes a double gate structure with a buried layer of metal, which acts at the same time as buried word lines for the DRAM array. The DRAM array according to the present invention provides increased DRAM integration density, reduced buried bit line resistivity, and improved memory performance of the array devices. The present invention also provides a method of making a DRAM array.05-23-2013
20140284728Metal Silicide Thin Film, Ultra-Shallow Junctions, Semiconductor Device and Method of Making - A metal silicide thin film and ultra-shallow junctions and methods of making are disclosed. In the present disclosure, by using a metal and semiconductor dopant mixture as a target, a mixture film is formed on a semiconductor substrate using a physical vapor deposition (PVD) process. The mixture film is removed afterwards by wet etching, which is followed by annealing to form metal silicide thin film and ultra-shallow junctions. Because the metal and semiconductor dopant mixture is used as a target to deposit the mixture film, and the mixture film is removed by wet etching before annealing, self-limiting, ultra-thin, and uniform metal silicide film and ultra-shallow junctions are formed concurrently in semiconductor field-effect transistor fabrication processes, which are suitable for field-effect transistors at the 14 nm, 11 nm, or even further technology node.09-25-2014
20140315366Semiconductor Device and Method of Making - The present disclosure is related to semiconductor technologies and discloses a semiconductor device and its method of making. In the present disclosure, a transistor's source and drain are led out by concurrently formed metal-semiconductor compound contact regions at the source and drain and metal-semiconductor compounds in vias formed at positions corresponding to the source and drain. Because the metal-semiconductor compound has relatively low resistivity, the resistance of the metal-semiconductor compounds in the vias can be minimized. Also, because the material used to fill the vias and the material forming the source/drain contact regions are both metal-semiconductor compound, contact resistance between the material filling the vias and the metal-semiconductor compound source/drain contact regions can be minimized. Furthermore, because the material filling the vias is metal-semiconductor compound, the conducting material in the vias and dielectric material in the insulator layer can form good interface and have good adhesion properties, and the conducting material would not cause structural damage in the dielectric material. Thus, there is no need to form a barrier layer between the insulator layer and the material filling the vias.10-23-2014

Patent applications by Shi-Li Zhang, Stockholm SE

Shi-Li Zhang, Uppsala SE

Patent application numberDescriptionPublished
20130140625Field-Effect Transistor and Method of Making - The present invention belongs to the field of microelectronic device technologies. Specifically, an asymmetric source/drain field-effect transistor and its methods of making are disclosed. A structure of the field-effect transistor comprises: a semiconductor substrate, a gate structure, and a source region and a drain region having a mixed junction and a P-N junction, respectively. The source region and the drain region are asymmetrical structured with respect to each other, one of which comprises a P-N junction, and the other of which comprises a mixed junction, the mixed junction being a combination of a Schottky junction and a P-N junction. According to the present disclosure, a location of a doped region formed by ion implantation is controlled by adjusting an implantation angle, and a unique structure is formed for the asymmetric source/drain field-effect transistor.06-06-2013

Shuai Zhang, Stockholm SE

Patent application numberDescriptionPublished
20130076580Multi-Band Wireless Terminals With A Hybrid Antenna Along An End Portion, And Related Multi-Band Antenna Systems - An antenna system may include a backplate that includes an end portion. The antenna system may also include a hybrid antenna that includes first and second antenna elements spaced apart from each other along the end portion of the backplate. The first antenna element may include a type of antenna element that is structurally different from the second antenna element. Additionally, the antenna system may further include a parasitic element between the first and second antenna elements along the end portion of the backplate.03-28-2013

Shuai Zhang, Solna SE

Patent application numberDescriptionPublished
20130315076Electronic Devices, Methods, and Computer Program Products for Selecting an Antenna Element Based on a Wireless Communication Performance Criterion - A method of operating an electronic device includes providing a plurality of antenna elements, evaluating a wireless communication performance criterion to obtain a performance evaluation, and assigning a first one of the plurality of antenna elements to a main wireless signal reception and transmission path and a second one of the plurality of antenna elements to a diversity wireless signal reception path based on the performance evaluation.11-28-2013
20150147984Double Ring Antenna With Integrated Non-Cellular Antennas - Wireless electronic devices may include a ground plane, a double ring antenna and non-cellular antennas integrated within the double ring antenna. The double ring antenna may comprise first and second metal rings around the perimeter of a ground plane to operate as MIMO cellular antennas. At least one non-cellular antenna, such as a MIMO Wi-Fi antenna, may be integrated between the first and second metals rings on one or more sides of the wireless electronic device.05-28-2015

Shuai Zhang, Lund SE

Patent application numberDescriptionPublished
20130076579Multi-Band Wireless Terminals With Multiple Antennas Along An End Portion, And Related Multi-Band Antenna Systems - An antenna system may include a backplate that includes an end portion. The antenna system may also include first and second antennas spaced apart from each other along the end portion of the backplate. The antenna system may additionally include a parasitic element between the first and second antennas along the end portion of the backplate.03-28-2013

Tingting Zhang, Sundsvall SE

Patent application numberDescriptionPublished
20130142180Wireless Communication Method And System With Collision Avoidance Protocol - A method for providing wireless communication between a source node and a destination node in a wireless network wherein the wireless network uses a time division multiple access (TDMA) protocol. One or more dedicated TDMA transaction timeslots are arranged in a superframe. The superframe includes at least one dedicated transaction slot forming a hybrid protocol with two or more shared transaction slots per superframe. The method is of particular advantage when practised with a WirelessHART protocol wireless sensor network and when used for monitoring and control equipment and processes in an industrial installation. A computer program, and a wireless node and a wireless network using the inventive method are also disclosed.06-06-2013

Wilson (qiang) Zhang, Taby SE

Patent application numberDescriptionPublished
20150181534METHOD AND BASE STATION FOR LINK ADAPTATION OF PDCCH IN A RADIO COMMUNICATION SYSTEM - The present disclosure relates to a method and a serving radio base station (RBS) for link adaptation (LA) of PDCCH. The method includes obtaining information about a reduced power subframe (RPS) pattern used by a neighbouring RBS. An indication of a reception quality of the PDCCH at a user equipment (UE) is obtained. A determination is made whether the obtained indication relates to an RPS or a non-RPS according to the obtained information. A first LA loop for a PDCCH to the first UE is controlled. The first LA loop relates to non-RPS. A second LA loop for the PDCCH to the UE is controlled. The second LA loop relates to RPS. At least one of the first and second LA algorithms, depending on the determining, is controlled based on the obtained indication of a reception quality.06-25-2015

Xiaojing Zhang, Vasteras SE

Patent application numberDescriptionPublished
20130269483Apparatus And Method For Electromagnetic Stirring In An Electrical Arc Furnace - An apparatus for electromagnetic stirring of the steel melt in an electrical arc furnace includes two electromagnetic stirrer units, a current supply, and a control unit. The two stirrers are mounted on an outer bottom surface of the electrical arc furnace at opposites sides of a central position of the bottom surface, the current supply is operatively connected to the two electromagnetic stirrer units, and the control unit is operatively connected to the current supply to control the operation of the two electromagnetic stirrer units.10-17-2013
20140130636Method And A Control System For Controlling A Melting Process - A method of controlling a melting process in an electric arc furnace for melting a metallic material. By means of the present disclosure it is possible to minimize desired process properties such as the melting time or the total power consumption of the melting process. The method includes the steps of receiving or collecting measured data of at least one process variable, determining the current state of the process, performing an optimization of the melting process, determining a process input based on the result of the optimization, and controlling the melting process by means of the process input. A control system is also presented herein.05-15-2014
20140175715Method And Arrangement For Vortex Reduction In A Metal Making Process - A method for reducing vortex formation in molten metal when bottom tapping the molten metal from a metallurgical vessel in a metal making process. The method includes the steps of tapping the molten metal via a tapping hole in the metallurgical vessel, and providing a flow of the molten metal in the metallurgical vessel while tapping via a time-varying electromagnetic field applied to the metallurgical vessel, the flow of the molten metal being such that it constantly moves vortices in the molten metal away from a tapping hole region during the tapping to thereby prevent accumulation of the vortices for vortex formation over the tapping hole. It is also presented an arrangement for carrying out the method.06-26-2014
20140305261Method And A Control System For Controlling A Melting And Refining Process - A method and device for controlling a melting and refining process in an electric arc furnace for melting a metal, wherein the electric arc furnace includes molten and solid metal and a slag layer on the surface of the molten metal, wherein an electromagnetic stirrer is arranged for stirring the molten metal. The method includes calculating/determining masses of the molten and solid metal at a point of time, wherein the calculation is based on initial values of the molten and solid metal, an arc power supplied to the electric arc furnace, and temperatures of the molten and solid metal, determining a stirring power based on the calculated/determined masses, and supplying the determined stirring power to the electromagnetic stirrer.10-16-2014
20140318314Method For Melting Steel - A method for melting steel in an electric arc furnace (EAF). A hot heel is provided in the EAF. Metal scrap is loaded into the EAF. The metal scrap is melted in the EAF. The mass of the hot heel in relation to the mass of the metal scrap that is initially beyond the surface of the hot heel is a certain minimum. This minimum is 0.75 times the relation between the heat required to melt the metal scrap beyond the surface of the hot heel and the heat that can be taken from the hot heel without it being solidified when a theoretical heat balance calculation is applied as defined in a formula.10-30-2014

Xuanjun Zhang, Linkoping SE

Patent application numberDescriptionPublished
20130234067CHROMOPHORIC POLYMER DOTS - The present invention provides, among other aspects, stabilized chromophoric nanoparticles. In certain embodiments, the chromophoric nanoparticles provided herein are rationally functionalized with a pre-determined number of functional groups. In certain embodiments, the stable chromophoric nanoparticles provided herein are modified with a low density of functional groups. In yet other embodiments, the chromophoric nanoparticles provided herein are conjugated to one or more molecules. Also provided herein are methods for making rationally functionalized chromophoric nanoparticles.09-12-2013
20130234068CHROMOPHORIC POLYMER DOTS - The present invention provides, among other aspects, stabilized chromophoric nanoparticles. In certain embodiments, the chromophoric nanoparticles provided herein are rationally functionalized with a pre-determined number of functional groups. In certain embodiments, the stable chromophoric nanoparticles provided herein are modified with a low density of functional groups. In yet other embodiments, the chromophoric nanoparticles provided herein are conjugated to one or more molecules. Also provided herein are methods for making rationally functionalized chromophoric nanoparticles.09-12-2013
20140350183CHROMOPHORIC POLYMER DOTS WITH NARROW-BAND EMISSION - Polymers, monomers, chromophoric polymer dots and related methods are provided. Highly fluorescent chromophoric polymer dots with narrow-band emissions are provided. Methods for synthesizing the chromophoric polymers, preparation methods for forming the chromophoric polymer dots, and biological applications using the unique properties of narrow-band emissions are also provided.11-27-2014
Website © 2016 Advameg, Inc.