Patent application number | Description | Published |
20080286722 | Method for selecting implant components - Methods of selecting or designing an implant to be used in a patient are provided. A CT scan of a patient's mouth is performed. A 3D CAD model of the patient's mouth is created utilizing data generated by the CT scan. Properties of the patient's mouth are determined based upon CT scan data and assigned to the 3D CAD model. A desired location for an implant is selected. A FEA simulation is performed on the 3D CAD model to choose an implant or to design an implant that optimizes a selected variable. | 11-20-2008 |
20090263764 | METHOD FOR PRE-OPERATIVE VISUALIZATION OF INSTRUMENTATION USED WITH A SURGICAL GUIDE FOR DENTAL IMPLANT PLACEMENT - The invention relates to manufacturing a surgical guide to be placed in a patient's mouth. The patient's mouth is scanned to obtain surgical-region scan data at a region where an implant is to be located. The patient's mouth is also scanned in the opened position to acquire dental conditions opposite from the surgical region so as to obtain opposing-condition scan data. A virtual model is developed using the surgical-region scan data and the opposing-condition scan data. Using the virtual model, a surgical plan is developed that includes the location of the implant to be installed in the patient. A virtual surgical guide is also developed based on the surgical plan. The dimensions of instrumentation to be used with the surgical guide are checked to ensure they will fit within the mouth by use of the opposing-condition scan data. After checking, final surgical-guide manufacturing information is obtained for manufacturing the surgical guide. | 10-22-2009 |
20110129792 | METHOD OF CREATING AN ACCURATE BONE AND SOFT-TISSUE DIGITAL DENTAL MODEL - A method of creating a 3-D anatomic digital model for determining a desired location for placing at least one dental implant in a patient's mouth. The method comprises the act of obtaining a first dataset associated with hard tissue of the patient's mouth. The method further comprises the act of obtaining a second dataset associated with soft tissue of the patient's mouth. The method further comprises the act of combining the first dataset and the second dataset to create a detailed structure of hard tissue and soft tissue having variable dimensions over the hard tissue. | 06-02-2011 |
20110200970 | METHODS FOR PLACING AN IMPLANT ANALOG IN A PHYSICAL MODEL OF THE PATIENT'S MOUTH - A method of placing a dental implant analog in a physical model for use in creating a dental prosthesis is provided. The physical model, which is usually based on an impression of the patient's mouth or a scan of the patient's mouth, is prepared. The model is scanned. A three-dimensional computer model of the physical model is created and is used to develop the location of the dental implant. A robot then modifies the physical model to create an opening for the implant analog. The robot then places the implant analog within the opening at the location dictated by the three-dimensional computer model. | 08-18-2011 |
20110269104 | Method For Pre-Operative Visualization Of Instrumentation Used With A Surgical Guide For Dental Implant Placement - The invention relates to manufacturing a surgical guide to be placed in a patient's mouth. The patient's mouth is scanned to obtain surgical-region scan data at a region where an implant is to be located. The patient's mouth is also scanned in the opened position to acquire dental conditions opposite from the surgical region so as to obtain opposing-condition scan data. A virtual model is developed using the surgical-region scan data and the opposing-condition scan data. Using the virtual model, a surgical plan is developed that includes the location of the implant to be installed in the patient. A virtual surgical guide is also developed based on the surgical plan. The dimensions of instrumentation to be used with the surgical guide are checked to ensure they will fit within the mouth by use of the opposing-condition scan data. After checking, final surgical-guide manufacturing information is obtained for manufacturing the surgical guide. | 11-03-2011 |
20110306008 | Components For Use With A Surgical Guide For Dental Implant Placement - The present invention is a surgical guide for guiding the insertion of a dental implant into a desired location in a patient's mouth. The implant includes a non-rotational structure. The surgical guide includes a structure and a master tube. The structure has a negative impression surface to be fitted on and placed over gingival tissue, bone, and/or teeth in the patient's mouth. The structure includes an opening through which the dental implant is placed. The master tube is located at the opening. The master tube includes indicia for alignment with the non-rotational structure on the implant such that the non-rotational structure of the implant is at a known angular orientation with respect to the master tube. The present invention includes kits of various components used with the surgical guide and with the dental surgery using the surgical guide. | 12-15-2011 |
20110306009 | Components For Use With A Surgical Guide For Dental Implant Placement - The present invention is a surgical guide for guiding the insertion of a dental implant into a desired location in a patient's mouth. The implant includes a non-rotational structure. The surgical guide includes a structure and a master tube. The structure has a negative impression surface to be fitted on and placed over gingival tissue, bone, and/or teeth in the patient's mouth. The structure includes an opening through which the dental implant is placed. The master tube is located at the opening. The master tube includes indicia for alignment with the non-rotational structure on the implant such that the non-rotational structure of the implant is at a known angular orientation with respect to the master tube. The present invention includes kits of various components used with the surgical guide and with the dental surgery using the surgical guide. | 12-15-2011 |
20120077150 | DENTAL ABUTMENT SYSTEM - A dental implant screw for holding an abutment on a dental implant includes a head and a shaft. A proximal end of the shaft is coupled to the head. The shaft includes a threaded section, an outwardly tapered section leading into a recessed section, and a stop section directly between the outwardly tapered section and the recessed section. The recessed section is directly between the head and the stop section. The threaded section is directly adjacent a distal end of the shaft and is configured to engage threads of an internally threaded bore in the dental implant to hold the abutment on the dental implant. | 03-29-2012 |
20120189981 | Method For Manufacturing Dental Implant Components - A method for making a rapid prototype of a patient's mouth to be used in the design and fabrication of a dental prosthesis. The method takes an impression of a mouth including a first installation site having a dental implant installed in the first installation site and a gingival healing abutment having at least one informational marker attached to the dental implant. A stone model is prepared based on the impression. The model is scanned. The scan data is transferred to a CAD program. A three-dimensional model of the installation site is created in the CAD program. The at least one informational marker is determined to gather information for manufacturing the rapid prototype. Rapid prototype dimensional information is developed. The rapid prototype dimensional information is transferred to a rapid prototyping machine which fabricate a rapid prototype of the patient's dentition as well as a dental implant analog position. | 07-26-2012 |
20120189982 | Method For Manufacturing Dental Implant Components - A method for making a rapid prototype of a patient's mouth to be used in the design and fabrication of a dental prosthesis. The method takes an impression of a mouth including a first installation site having a dental implant installed in the first installation site and a gingival healing abutment having at least one informational marker attached to the dental implant. A stone model is prepared based on the impression. The model is scanned. The scan data is transferred to a CAD program. A three-dimensional model of the installation site is created in the CAD program. The at least one informational marker is determined to gather information for manufacturing the rapid prototype. Rapid prototype dimensional information is developed. The rapid prototype dimensional information is transferred to a rapid prototyping machine which fabricate a rapid prototype of the patient's dentition as well as a dental implant analog position. | 07-26-2012 |
20120259597 | Method for Selecting Implant Components - Methods of selecting or designing an implant to be used in a patient are provided. A CT scan of a patient's mouth is performed. A 3D CAD model of the patient's mouth is created utilizing data generated by the CT scan. Properties of the patient's mouth are determined based upon CT scan data and assigned to the 3D CAD model. A desired location for an implant is selected. A FEA simulation is performed on the 3D CAD model to choose an implant or to design an implant that optimizes a selected variable. | 10-11-2012 |
20120283866 | METHODS FOR PLACING AN IMPLANT ANALOG IN A PHYSICAL MODEL OF THE PATIENT'S MOUTH - A method of placing a dental implant analog in a physical model for use in creating a dental prosthesis is provided. The physical model, which is usually based on an impression of the patient's mouth or a scan of the patient's mouth, is prepared. The model is scanned. A three-dimensional computer model of the physical model is created and is used to develop the location of the dental implant. A robot then modifies the physical model to create an opening for the implant analog. The robot then places the implant analog within the opening at the location dictated by the three-dimensional computer model. | 11-08-2012 |
20120295223 | TEMPORARY ABUTMENT WITH COMBINATION OF SCANNING FEATURES AND PROVISIONALIZATION FEATURES - A lower region of a temporary abutment includes an anti-rotational feature for non-rotationally mating with a dental implant. An upper region of the temporary abutment includes a first anti-rotational structure and at least one retention groove. A top surface of the temporary abutment includes one or more informational markers that provide information concerning the dental implant. A temporary abutment cap is configured to be coupled to the upper region of the temporary abutment. The temporary abutment cap has at least one projection configured to mate with the at least one retention groove of the temporary abutment. The temporary abutment cap has a second anti-rotational structure that is configured to slidably engage the first anti-rotational structure of the temporary abutment. The temporary abutment cap is configured to be coupled with a temporary prosthesis such that the temporary prosthesis and the temporary abutment cap are removable from the temporary abutment. | 11-22-2012 |
20120295226 | TEMPORARY ABUTMENT WITH COMBINATION OF SCANNING FEATURES AND PROVISIONALIZATION FEATURES - A lower region of a temporary abutment includes an anti-rotational feature for non-rotationally mating with a dental implant. An upper region of the temporary abutment includes a first anti-rotational structure and at least one retention groove. A top surface of the temporary abutment includes one or more informational markers that provide information concerning the dental implant. A temporary abutment cap is configured to be coupled to the upper region of the temporary abutment. The temporary abutment cap has at least one projection configured to mate with the at least one retention groove of the temporary abutment. The temporary abutment cap has a second anti-rotational structure that is configured to slideably engage the first anti-rotational structure of the temporary abutment. The temporary abutment cap is configured to be coupled with a temporary prosthesis such that the temporary prosthesis and the temporary abutment cap are removable from the temporary abutment. | 11-22-2012 |
20120323546 | Method For Pre-Operative Visualization Of Instrumentation Used With A Surgical Guide For Dental Implant Placement - A surgical guide to be placed in a patient's mouth. The patient's mouth is scanned to obtain surgical-region scan data at a region where an implant is to be located. The patient's mouth is also scanned in the opened position to acquire dental conditions opposite from the surgical region so as to obtain opposing-condition scan data. A virtual model is developed using the surgical-region scan data and the opposing-condition scan data. Using the virtual model, a surgical plan is developed that includes the location of the implant to be installed in the patient. A virtual surgical guide is also developed based on the surgical plan. The dimensions of instrumentation to be used with the surgical guide are checked to ensure they will fit within the mouth by use of the opposing-condition scan data. After checking, final surgical-guide manufacturing information is obtained for manufacturing the surgical guide. | 12-20-2012 |
20130196290 | Healing Abutment Assembly With Combination Of Scanning Features - An abutment system is for attachment to a dental implant having a threaded bore and for engaging the surrounding gingival tissue. The abutment system includes a base and a polymeric abutment cap. The base includes a lower region and an upper region. The lower region includes an anti-rotational feature for non-rotationally mating with one of the dental implants. The upper region includes a first anti-rotational structure and a first axial retention structure. The polymeric abutment cap has a second anti-rotational structure for mating with the first anti-rotational structure and a second axial retention structure for mating with the first axial retention structure. The abutment cap has an upper surface that includes information markers. The information markers define a unique code that provides information concerning the abutment cap and the underlying dental implant. | 08-01-2013 |
20130244205 | Method For Pre-Operative Visualization Of Instrumentation Used With A Surgical Guide For Dental Implant Placement - The invention relates to manufacturing a surgical guide to be placed in a patient's mouth. The patient's mouth is scanned to obtain surgical-region scan data at a region where an implant is to be located. The patient's mouth is also scanned in the opened position to acquire dental conditions opposite from the surgical region so as to obtain opposing-condition scan data. A virtual model is developed using the surgical-region scan data and the opposing-condition scan data. Using the virtual model, a surgical plan is developed that includes the location of the implant to be installed in the patient. A virtual surgical guide is also developed based on the surgical plan. The dimensions of instrumentation to be used with the surgical guide are checked to ensure they will fit within the mouth by use of the opposing-condition scan data. After checking, final surgical-guide manufacturing information is obtained for manufacturing the surgical guide. | 09-19-2013 |
20130323678 | DENTAL IMPLANT SYSTEM HAVING ENHANCED SOFT-TISSUE GROWTH FEATURES - A dental implant system including an implant and an abutment is disclosed. The implant includes a generally cylindrical body, a central axis, a distal end for anchoring in a patient's bone and a proximal end opposing the distal end. The proximal end includes a roughened lateralized surface that surrounds an abutment-engaging region. The lateralized surface is disposed at a negative slope relative to the central axis. The abutment includes an upper portion for supporting a tooth-like prosthesis and a lower portion for engaging the abutment-engaging region of the dental implant. The diameter of the lower portion of the abutment is smaller than the diameter of the implant at its proximal end. The lower portion includes a first surface with a soft-tissue enhancing material. The first surface and the lateralized surface defining a circumferentially extending recess having a V-shaped cross-section for receiving and attachment to the soft tissue. | 12-05-2013 |
20140080092 | TEMPORARY DENTAL PROSTHESIS FOR USE IN DEVELOPING FINAL DENTAL PROSTHESIS - A method of manufacturing a permanent prosthesis for attachment to a dental implant installed in a mouth of a patient includes scanning a patient specific temporary prosthesis (PSTP) to obtain scan data. The PSTP is attached to the dental implant in the mouth of the patient. Gingival tissue surrounding the PSTP is permitted to heal in the mouth of the patient. In response to aesthetics of the healed gingival tissue surrounding the PSTP in the mouth of the patient not being acceptable, the PSTP is physically modified by (i) removing material from the PSTP, (ii) adding material to the PSTP, or (iii) both. The modified PSTP is scanned and a permanent prosthesis is fabricated as a replica of the modified PSTP using scan data generated from the scan of the modified PSTP. | 03-20-2014 |
20140080095 | TEMPORARY DENTAL PROSTHESIS FOR USE IN DEVELOPING FINAL DENTAL PROSTHESIS - A method of manufacturing a permanent prosthesis for attachment to a dental implant installed in a mouth of a patient includes scanning a patient specific temporary prosthesis (PSTP) to obtain scan data. The PSTP is attached to the dental implant in the mouth of the patient. Gingival tissue surrounding the PSTP is permitted to heal in the mouth of the patient. In response to aesthetics of the healed gingival tissue surrounding the PSTP in the mouth of the patient not being acceptable, the PSTP is physically modified by (i) removing material from the PSTP, (ii) adding material to the PSTP, or (iii) both. The modified PSTP is scanned and a permanent prosthesis is fabricated as a replica of the modified PSTP using scan data generated from the scan of the modified PSTP. | 03-20-2014 |
20140186796 | JIGS FOR PLACING DENTAL IMPLANT ANALOGS IN MODELS AND METHODS OF DOING THE SAME - A placement jig for locating a dental implant analog in a physical model of a patient's mouth includes a base, a guide-strut receiving feature, a throughbore, and an angled receiving feature. The guide-strut receiving feature is positioned within the base and is configured to receive a guide-strut of the physical model thereby positioning a lower surface of the placement jig at a desired distance from an opening of a bore in the physical model. The throughbore receives a screw therethrough that engages the dental implant analog such that the dental implant analog, is removably coupled to the base. The angled receiving, feature is positioned about the throughbore on the lower surface of the base. The angled receiving feature includes a mating surface that is configured to abut a custom abutment positioned between the mating surface and the dental implant analog. | 07-03-2014 |
20140234801 | Patient-Specific Dental Prosthesis And Gingival Contouring Developed By Predictive Modeling - A method of designing a patient-specific prosthesis for a current patient includes receiving scan data of a mouth of the current patient to identify conditions at a location at which the patient-specific prosthesis is to be placed on a dental implant, and determining at least two clinical factors for the current patient. The method further includes identifying a desired outcome for soft tissue for the current patient at the location, and accessing a database having soft-tissue-outcome information for each of a plurality of previous patients. The database further includes clinical-factor information for each of the plurality of previous patients. Based on the soft-tissue-outcome information and the clinical-factor information for at least one of the plurality of previous patients being related to the current patient's desired outcome and the current patient's at least two clinical factors, the method includes developing a design for the patient-specific prosthesis for the current patient. | 08-21-2014 |