Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


William Soltmann, The Woodlands US

William Soltmann, The Woodlands, TX US

Patent application numberDescriptionPublished
20130284894Devices Having One or More Integrated Computational Elements and Methods for Determining a Characteristic of a Sample by Computationally Combining Signals Produced Therewith - Optical computing devices containing one or more integrated computational elements may be used to produce two or more detector output signals that are computationally combinable to determine a characteristic of a sample. The devices may comprise a first integrated computational element and a second integrated computational element, each integrated computational element having an optical function associated therewith, and the optical function of the second integrated computational element being at least partially offset in wavelength space relative to that of the first integrated computational element; an optional electromagnetic radiation source; at least one detector configured to receive electromagnetic radiation that has optically interacted with each integrated computational element and produce a first signal and a second signal associated therewith; and a signal processing unit operable for computationally combining the first signal and the second signal to determine a characteristic of a sample.10-31-2013
20130284895Methods and Devices for Optically Determining A Characteristic of a Substance - Optical computing devices are disclosed. One exemplary optical computing device includes an electromagnetic radiation source configured to optically interact with a sample and at least two integrated computational elements. The at least two integrated computational elements are configured to produce optically interacted light and further configured to be associated with a characteristic of the sample. The optical computing device further includes a first detector arranged to receive the optically interacted light from the at least two integrated computational elements and thereby generate a first signal corresponding to the characteristic of the sample.10-31-2013
20130284896Methods and Devices for Optically Determining A Characteristic of a Substance - Optical computing devices are disclosed. One exemplary optical computing device includes an electromagnetic radiation source configured to optically interact with a sample and at least two integrated computational elements. The at least two integrated computational elements may be configured to produce optically interacted light, and at least one of the at least two integrated computational elements may be configured to be disassociated with a characteristic of the sample. The optical computing device further includes a first detector arranged to receive the optically interacted light from the at least two integrated computational elements and thereby generate a first signal corresponding to the characteristic of the sample.10-31-2013
20130284897Methods and Devices for Optically Determining A Characteristic of a Substance - Optical computing devices are disclosed. One exemplary optical computing device includes an electromagnetic radiation source configured to optically interact with a sample and at least two integrated computational elements. The at least two integrated computational elements are configured to produce optically interacted light and further configured to be associated with a characteristic of the sample. The optical computing device further includes a first detector arranged to receive the optically interacted light from the at least two integrated computational elements and thereby generate a first signal corresponding to the characteristic of the sample.10-31-2013
20130284898Methods and Devices for Optically Determining A Characteristic of a Substance - Optical computing devices are disclosed. One exemplary optical computing device includes an electromagnetic radiation source configured to optically interact with a sample and at least two integrated computational elements. The at least two integrated computational elements may be configured to produce optically interacted light, and at least one of the at least two integrated computational elements may be configured to be disassociated with a characteristic of the sample. The optical computing device further includes a first detector arranged to receive the optically interacted light from the at least two integrated computational elements and thereby generate a first signal corresponding to the characteristic of the sample.10-31-2013
20130284899Methods and Devices for Optically Determining A Characteristic of a Substance - Optical computing devices are disclosed. One exemplary optical computing device includes an electromagnetic radiation source configured to optically interact with a sample and first and second integrated computational elements arranged in primary and reference channels, respectively. The first and second integrated computational elements produce first and second modified electromagnetic radiations, and a detector is arranged to receive the first and second modified electromagnetic radiations and generate an output signal corresponding to the characteristic of the sample.10-31-2013
20130284901Methods and Devices for Optically Determining A Characteristic of a Substance - Optical computing devices are disclosed. One exemplary optical computing device includes an electromagnetic radiation source configured to optically interact with a sample and first and second integrated computational elements arranged in primary and reference channels, respectively, the first and second computational elements are configured to be either positively or negatively correlated to the characteristic of the sample. The first and second integrated computational elements produce first and second modified electromagnetic radiations, and a detector is arranged to receive the first and second modified electromagnetic radiations and generate an output signal corresponding to the characteristic of the sample.10-31-2013
20130284904Methods and Devices for Optically Determining A Characteristic of a Substance - Optical computing devices are disclosed. One exemplary optical computing device includes an electromagnetic radiation source configured to optically interact with a sample and first and second integrated computational elements arranged in primary and reference channels, respectively, the first and second computational elements are configured to be either positively or negatively correlated to the characteristic of the sample. The first and second integrated computational elements produce first and second modified electromagnetic radiations, and a detector is arranged to receive the first and second modified electromagnetic radiations and generate an output signal corresponding to the characteristic of the sample.10-31-2013
20130286398Imaging Systems for Optical Computing Devices - Optical computing devices are disclosed. One optical computing device includes an electromagnetic radiation source that emits electromagnetic radiation into an optical train to optically interact with a sample and at least one integrated computational element, the sample being configured to generate optically interacted radiation. A sampling window is arranged adjacent the sample and configured to allow transmission of the electromagnetic radiation therethrough and has one or more surfaces that generate one or more stray signals. A first focal lens is arranged to receive the optically interacted radiation and the one or more stray signals and generate a primary focal point from the optically interacted radiation. A structural element defines a spatial aperture aligned with the primary focal point such that the optically interacted radiation is able to pass therethrough while transmission of the one or more stray signals is substantially blocked by the structural element.10-31-2013
20130286399Imaging Systems for Optical Computing Devices - Optical computing devices are disclosed. One optical computing device includes an electromagnetic radiation source that emits electromagnetic radiation into an optical train to optically interact with a sample and at least one integrated computational element, the sample being configured to generate optically interacted radiation. A sampling window is arranged adjacent the sample and configured to allow transmission of the electromagnetic radiation therethrough and has one or more surfaces that generate one or more stray signals. A first focal lens is arranged to receive the optically interacted radiation and the one or more stray signals and generate a primary focal point from the optically interacted radiation. A structural element defines a spatial aperture aligned with the primary focal point such that the optically interacted radiation is able to pass therethrough while transmission of the one or more stray signals is substantially blocked by the structural element.10-31-2013
20140306096METHODS AND DEVICES FOR OPTICALLY DETERMINING A CHARACTERISTIC OF A SUBSTANCE - An exemplary optical computing device includes an electromagnetic radiation source that optically interacts with a sample having a characteristic of interest, a first integrated computational element arranged within a primary channel to optically interact with the electromagnetic radiation source and produce a first modified electromagnetic radiation, wherein the first integrated computational element is configured to be positively or negatively correlated to the characteristic of interest, a second integrated computational element arranged within a reference channel to optically interact with the electromagnetic radiation source and produce a second modified electromagnetic radiation, wherein the second integrated computational element is configured to correlated to the characteristic of interest with an opposite sign relative to the first integrated computational element, and a first detector arranged to generate a first signal from the first modified electromagnetic radiation and a second signal from the second modified electromagnetic radiation.10-16-2014
Website © 2015 Advameg, Inc.