Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Wayne H. Woods, Jr., Burlington US

Wayne H. Woods, Jr., Burlington, VT US

Patent application numberDescriptionPublished
20090204367METHODS FOR DISTRIBUTING A RANDOM VARIABLE USING STATISTICALLY-CORRECT SPATIAL INTERPOLATION - Methods for distributing a random variable by spatial interpolation with statistical corrections. The method includes assigning a numerical value of the random variable at each vertex of an array of equilateral triangles formed in a planar coordinate frame and defining a plurality of test points at respective spatial locations in the planar coordinate frame that are bounded by the array of equilateral triangles. A numerical value of the random variable is distributed at each of the test points by spatial interpolation from one or more of the numerical values of the random variable assigned at each vertex of the array of equilateral triangles. The method further includes adjusting the numerical value of the random variable distributed at each of the test points with a respective correction factor.08-13-2009
20090309675Structure for a Through-Silicon-Via On-Chip Passive MMW Bandpass Filter - A design structure is embodied in a machine readable medium for designing, manufacturing, or testing a design. The design structure includes a substrate including a silicon layer. Furthermore, the design structure includes a metal layer on a bottom side of the silicon layer and a dielectric layer on a top side of the silicon layer. Additionally, the design structure includes a top-side interconnect of the through-silicon via bandpass filter on a surface of the dielectric layer and a plurality of contacts in the dielectric layer in contact with the top-side interconnect. Further, the design structure includes a plurality of through-silicon vias through the substrate and in contact with the plurality of contacts, respectively, and the metal layer.12-17-2009
20090311841Method of Manufacturing a Through-Silicon-Via On-Chip Passive MMW Bandpass Filter - A method for forming a through-silicon via bandpass filter includes forming a substrate comprising a silicon layer and providing a metal layer on a bottom side of the silicon layer. Additionally, the method includes providing a dielectric layer on a top side of the silicon layer and forming a top-side interconnect of the through-silicon via bandpass filter on a surface of the dielectric layer. Further, the method includes forming a plurality of contacts in the dielectric layer in contact with the top-side interconnect and forming a plurality through-silicon vias through the substrate and in contact with the plurality of contacts, respectively, and the metal layer.12-17-2009
20090315633Design Structure, Structure and Method for Providing an On-Chip Variable Delay Transmission Line With Fixed Characteristic Impedance - A design structure, structure, and method for providing an on-chip variable delay transmission line with a fixed characteristic impedance. A method of manufacturing a transmission line structure includes forming a signal line of the transmission line structure, forming a first ground return structure that causes a first delay and a first characteristic impedance in the transmission line structure, and forming a second ground return structure that causes a second delay and a second characteristic impedance in the transmission line structure. The first delay is different from the second delay, and the first characteristic impedance is substantially the same as the second characteristic impedance.12-24-2009
20090315641Design Structure, Structure and Method for Providing an On-Chip Variable Delay Transmission Line With Fixed Characteristic Impedance - A design structure, structure, and method for providing an on-chip variable delay transmission line with a fixed characteristic impedance. A method of manufacturing a transmission line structure includes forming a signal line of the transmission line structure, forming a first ground return structure that causes a first delay and a first characteristic impedance in the transmission line structure, and forming a second ground return structure that causes a second delay and a second characteristic impedance in the transmission line structure. The first delay is different from the second delay, and the first characteristic impedance is substantially the same as the second characteristic impedance.12-24-2009
20100237464Chip Inductor With Frequency Dependent Inductance - A set of metal line structures including a signal transmission metal line and a capacitively-grounded inductively-signal-coupled metal line is embedded in a dielectric material layer. A capacitor is serially connected between the capacitively-grounded inductively-signal-coupled metal line and a local electrical ground, which may be on the input side or on the output side. The set of metal line structures and the capacitor collective provide a frequency dependent inductor. The Q factor of the frequency dependent inductor has multiple peaks that enable the operation of the frequency dependent inductor at multiple frequencies. Multiple capacitively-grounded inductively-signal-coupled metal lines may be provided in the frequency-dependent inductor, each of which is connected to the local electrical ground through a capacitor. By selecting different capacitance values for the capacitors, multiple values of the Q-factor may be obtained in the frequency dependent inductor at different signal frequencies.09-23-2010
20100265007ON CHIP SLOW-WAVE STRUCTURE, METHOD OF MANUFACTURE AND DESIGN STRUCTURE - An on-chip slow-wave structure that uses multiple parallel signal paths with grounded capacitance structures, method of manufacturing and design structure thereof is provided. The slow wave structure includes a plurality of conductor signal paths arranged in a substantial parallel arrangement. The structure further includes a first grounded capacitance line or lines positioned below the plurality of conductor signal paths and arranged substantially orthogonal to the plurality of conductor signal paths. A second grounded capacitance line or lines is positioned above the plurality of conductor signal paths and arranged substantially orthogonal to the plurality of conductor signal paths. A grounded plane grounds the first and second grounded capacitance line or lines.10-21-2010
20100265011CIRCUIT STRUCTURE AND DESIGN STRUCTURE FOR AN OPTIONALLY SWITCHABLE ON-CHIP SLOW WAVE TRANSMISSION LINE BAND-STOP FILTER AND A METHOD OF MANUFACTURE - The present invention generally relates to a circuit structure, design structure and method of manufacturing a circuit, and more specifically to a circuit structure and design structure for an on-chip slow wave transmission line band-stop filter and a method of manufacture. A structure includes an on-chip transmission line stub comprising a conditionally floating structure structured to provide increased capacitance to the on-chip transmission line stub when the conditionally floating structure is connected to ground.10-21-2010
20110037533METHOD, STRUCTURE, AND DESIGN STRUCTURE FOR AN IMPEDANCE-OPTIMIZED MICROSTRIP TRANSMISSION LINE FOR MULTI-BAND AND ULTRA-WIDE BAND APPLICATIONS - A method, structure, and design structure for an impedance-optimized microstrip transmission line for multi-band and ultra-wide band applications. A method includes: forming a plurality of openings in a ground plane associated with a signal line; forming a plurality of capacitance plates in the plurality of openings; and connecting the plurality of capacitance plates to the signal line with a plurality of posts extending between the signal line and the plurality of capacitance plates.02-17-2011
20110049676METHOD, STRUCTURE, AND DESIGN STRUCTURE FOR A THROUGH-SILICON-VIA WILKINSON POWER DIVIDER - A method, structure, and design structure for a through-silicon-via Wilkinson power divider. A method includes: forming an input on a first side of a substrate; forming a first leg comprising a first through-silicon-via formed in the substrate, wherein the first leg electrically connects the input and a first output; forming a second leg comprising a second through-silicon-via formed in the substrate, wherein the second leg electrically connects the input and a second output, and forming a resistor electrically connected between the first output and the second output.03-03-2011
20120019313MILLIMETER-WAVE ON-CHIP SWITCH EMPLOYING FREQUENCY-DEPENDENT INDUCTANCE FOR CANCELLATION OF OFF-STATE CAPACITANCE - A semiconductor switching device includes a field effect transistor and an inductor structure that provides a frequency dependent inductance in a parallel connection. During the off-state of the semiconductor switching device, the frequency dependent impedance component due to the off-state parasitic capacitance of the switching device is cancelled by the frequency dependent inductance component of the inductor structure, which provides a non-linear impedance as a function of frequency. The inductor structure provides less inductance at a higher operating frequency than at a lower operating frequency to provide more effective cancellation of two impedance components of the parasitic capacitance and the inductance. Thus, the semiconductor switching device can provide low parasitic coupling at multiple operating frequencies. The operating frequencies of the semiconductor switching device can be at gigahertz ranges for millimeter wave applications.01-26-2012
20120102444ON-CHIP TUNABLE TRANSMISSION LINES, METHODS OF MANUFACTURE AND DESIGN STRUCTURES - An on-chip tunable transmission line (t-line), methods of manufacture and design structures are provided. The structure includes a tunable transmission line (t-line) with fixed characteristic impedance comprising functionally-differentiated switches used for inductance and capacitance, respectively.04-26-2012
20120131776DESIGN STRUCTURE, STRUCTURE AND METHOD FOR PROVIDING AN ON-CHIP VARIABLE DELAY TRANSMISSION LINE WITH FIXED CHARACTERISTIC IMPEDANCE - A design structure, structure, and method for providing an on-chip variable delay transmission line with a fixed characteristic impedance. A method of manufacturing a transmission line structure includes forming a signal line of the transmission line structure, forming a first ground return structure that causes a first delay and a first characteristic impedance in the transmission line structure, and forming a second ground return structure that causes a second delay and a second characteristic impedance in the transmission line structure. The first delay is different from the second delay, and the first characteristic impedance is substantially the same as the second characteristic impedance.05-31-2012
20120139667ON-CHIP HIGH PERFORMANCE SLOW-WAVE COPLANAR WAVEGUIDE STRUCTURES, METHOD OF MANUFACTURE AND DESIGN STRUCTURE - On-chip high performance slow-wave coplanar waveguide structures, method of manufacture and design structures for integrated circuits are provided herein. The structure includes at least one ground and signal layer provided in a same plane as the at least one ground. The signal layer has at least one alternating wide portion and narrow portion with an alternating thickness. The wide portion extends toward the at least one ground.06-07-2012
20120139668ON-CHIP HIGH PERFORMANCE SLOW-WAVE MICROSTRIP LINE STRUCTURES, METHODS OF MANUFACTURE AND DESIGN STRUCTURES - On-chip high performance slow-wave microstrip line structures, methods of manufacture and design structures for integrated circuits are provided herein. The structure includes at least one ground and a signal layer provided in a different plane than the at least one ground. The signal layer has at least one alternating wide portion and narrow portion with an alternating thickness such that a height of the wide portion is different than a height of the narrow portion with respect to the at least one ground.06-07-2012
20120194302STRUCTURE, STRUCTURE AND METHOD FOR PROVIDING AN ON-CHIP VARIABLE DELAY TRANSMISSION LINE WITH FIXED CHARACTERISTIC IMPEDANCE - A design structure, structure, and method for providing an on-chip variable delay transmission line with a fixed characteristic impedance. A method of manufacturing a transmission line structure includes forming a signal line of the transmission line structure, forming a first ground return structure that causes a first delay and a first characteristic impedance in the transmission line structure, and forming a second ground return structure that causes a second delay and a second characteristic impedance in the transmission line structure. The first delay is different from the second delay, and the first characteristic impedance is substantially the same as the second characteristic impedance.08-02-2012
20120212303METHOD, STRUCTURE, AND DESIGN STRUCTURE FOR A THROUGH-SILICON-VIA WILKINSON POWER DIVIDER - A method, structure, and design structure for a through-silicon-via Wilkinson power divider. A method includes: forming an input on a first side of a substrate; forming a first leg comprising a first through-silicon-via formed in the substrate, wherein the first leg electrically connects the input and a first output; forming a second leg comprising a second through-silicon-via formed in the substrate, wherein the second leg electrically connects the input and a second output, and forming a resistor electrically connected between the first output and the second output.08-23-2012
20120313736ON-CHIP SLOW-WAVE THROUGH-SILICON VIA COPLANAR WAVEGUIDE STRUCTURES, METHOD OF MANUFACTURE AND DESIGN STRUCTURE - On-chip high performance slow-wave coplanar waveguide through-silicon via structures, method of manufacture and design structures for integrated circuits are provided herein. The method includes forming at least one ground plane layer in a substrate and forming a signal layer in the substrate, in a same plane layer as the at least one ground. The method further includes forming at least one metal filled through-silicon via between the at least one ground plane layer and the signal layer.12-13-2012
20120317530SOLUTIONS FOR ON-CHIP MODELING OF OPEN TERMINATION OF FRINGE CAPACITANCE - A computer-implemented method of generating a library object for an integrated circuit design is disclosed. In one embodiment, the method includes: analyzing a pair of integrated circuit design objects for fringe capacitance effects between the pair of integrated circuit design objects; and generating the library object accounting for the fringe capacitance effects prior to completion of a layout design for the integrated circuit design.12-13-2012
20130088403Low Phase Variation CMOS Digital Attenuator - A low phase variation attenuator uses a combined attenuation path and a phase network to significantly reduce a phase error between a reference signal and an attenuated signal without degrading the insertion loss. A grounded parallel connection of a resistor and a capacitor is employed in series with an attenuation transistor, which is connected to a middle of a two resistor voltage divider. The two resistor voltage divider includes two resistors of equal resistance that are connected in a series connection. The two resistor voltage divider is connected in a parallel connection with a reference transistor, which functions as a main switch for the transmission or attenuation of a radio frequency (RF) signal.04-11-2013
20130125079ON CHIP INDUCTOR WITH FREQUENCY DEPENDENT INDUCTANCE - A set of metal line structures including a signal transmission metal line and a capacitively-grounded inductively-signal-coupled metal line is embedded in a dielectric material layer. A capacitor is serially connected between the capacitively-grounded inductively-signal-coupled metal line and a local electrical ground, which may be on the input side or on the output side. The set of metal line structures and the capacitor collective provide a frequency dependent inductor. The Q factor of the frequency dependent inductor has multiple peaks that enable the operation of the frequency dependent inductor at multiple frequencies. Multiple capacitively-grounded inductively-signal-coupled metal lines may be provided in the frequency-dependent inductor, each of which is connected to the local electrical ground through a capacitor. By selecting different capacitance values for the capacitors, multiple values of the Q-factor may be obtained in the frequency dependent inductor at different signal frequencies.05-16-2013
20130127564RECONFIGURABLE WILKINSON POWER DIVIDER AND DESIGN STRUCTURE THEREOF - A reconfigurable Wilkinson power divider, methods of manufacture and design structures are provided. The structure includes a first port, and a first arm and a second arm connected to the first port. The first arm and the second arm each include one or more tunable t-line circuits. The structure also includes a second port and a third port connected to the first port via the first arm and second arm, respectively.05-23-2013
20130159957METHOD, STRUCTURE, AND DESIGN STRUCTURE FOR A THROUGH-SILICON-VIA WILKINSON POWER DIVIDER - A method, structure, and design structure for a through-silicon-via Wilkinson power divider. A method includes: forming an input on a first side of a substrate; forming a first leg comprising a first through-silicon-via formed in the substrate, wherein the first leg electrically connects the input and a first output; forming a second leg comprising a second through-silicon-via formed in the substrate, wherein the second leg electrically connects the input and a second output, and forming a resistor electrically connected between the first output and the second output.06-20-2013
20130193584ON-CHIP RADIAL CAVITY POWER DIVIDER/COMBINER - Disclosed is a chip with a power divider/combiner, a module incorporating the chip and associated methods. The divider/combiner comprises first and second metal layers on opposite sides of a substrate. Interconnects extend through the substrate and comprise: a first interconnect, second interconnects annularly arranged about the first interconnect and third interconnects annularly arranged about the second interconnects. Each interconnect comprises one or more through silicon vias lined/filled with a conductor. For a power divider, an opening in the first metal layer at the first interconnect comprises an input port for receiving power and openings in the first or second metal layer at the second interconnects comprise output ports for applying power to other devices. For a power combiner, openings in the first or second metal layer at the second interconnects comprise the input ports and an opening in the first metal layer at the first interconnect comprises an output port.08-01-2013
20140065817HIGH PERFORMANCE ON-CHIP VERTICAL COAXIAL CABLE, METHOD OF MANUFACTURE AND DESIGN STRUCTURE - A high performance on-chip vertical coaxial cable structure, method of manufacturing and design structure thereof is provided. The coaxial cable structure includes an inner conductor and an insulating material that coaxially surrounds the inner conductor. The structure further includes an outer conductor which surrounds the insulating material. Both the inner and outer conductors comprise a plurality of metal layers formed on different wiring levels and interconnected between the different wiring levels by conductors. The coaxial cable structure is formed upon a surface of a semiconductor substrate and is oriented in substantially perpendicular alignment with the surface.03-06-2014
20140097524COPLANAR WAVEGUIDE FOR STACKED MULTI-CHIP SYSTEMS - An approach for a coplanar waveguide structure in stacked multi-chip systems is provided. A method of manufacturing a semiconductor structure includes forming a first coplanar waveguide in a first chip. The method also includes forming a second coplanar waveguide in a second chip. The method further includes directly connecting the first coplanar waveguide to the second coplanar waveguide using a plurality of chip-to-chip connections.04-10-2014
20140231992MILLIMETER WAVE WAFER LEVEL CHIP SCALE PACKAGING (WLCSP) DEVICE AND RELATED METHOD - Various embodiments include wafer level chip scale package (WLCSP) structures and methods of tuning such structures. In some embodiments, the WLCSP structure includes: a printed circuit board (PCB) trace connection including at least one PCB ground connection connected with a PCB ground plane; a set of ground solder balls each contacting the printed circuit board trace connection; a set of chip pads contacting each of the ground solder balls in the set of ground solder balls; a chip ground plane connecting the set of chip pads; and a signal interconnect interposed between two of the set of ground solder balls, the signal interconnect including: a signal trace connection electrically isolated from the PCB ground plane; a signal ball contacting the signal PCB trace connection; a chip pad contacting the signal ball, and a signal trace connection on a chip contacting the chip pad.08-21-2014
20140312986TUNABLE INTERCONNECT STRUCTURES, AND INTEGRATED CIRCUIT CONTAINING THE SAME - Tunable interconnect structures, integrated circuits containing the tunable interconnect structures and methods of manufacturing the same are disclosed. The interconnect transmission line structure includes a signal conductor and a plurality of conductors in proximity to the signal conductor. The structure further includes one or more switchable conductors in proximity to at least the signal conductor. The one or more switchable conductors has a programmable wiring switch with a terminal connected to the one or more switchable conductors and another terminal connected to ground.10-23-2014
20140315500MILLIMETER WAVE PHASE SHIFTERS USING TUNABLE TRANSMISSION LINES - Tunable phase shifters and methods for using the same include a signal line; one or more grounding lines; one or more crossing lines below the signal line in proximity to the signal line and substantially perpendicular to a longitudinal direction of the signal line, where the crossing lines conform to the shape of the signal line along at least three surfaces of the signal line and where the crossing lines have a tunable capacitance; and an inductance return line below the crossing lines substantially parallel to the longitudinal direction of the signal line, where the inductance return line provides a tunable inductance.10-23-2014
20140376595THERMORESISTANCE SENSOR STRUCTURE FOR INTEGRATED CIRCUITS AND METHOD OF MAKING - A first pair of resistors formed in a first layer of material, and a second pair of resistors formed in the first layer or in a second layer can be wired into a Wheatstone bridge to form a temperature sensor. Either layer can include a semiconductor or a dielectric. In a semiconductor layer, a pair of resistors can be doped areas of the layer, while in a dielectric, a pair of resistors can be material deposited in cavities in the layer, such as material from an added “middle-of-line” (MOL) metallization layer.12-25-2014
20150035145MILLIMETER WAVE WAFER LEVEL CHIP SCALE PACKAGING (WLCSP) DEVICE - Various embodiments include wafer level chip scale package (WLCSP) structures and methods of tuning such structures. In some embodiments, the WLCSP structure includes: a printed circuit board (PCB) trace connection including at least one PCB ground connection connected with a PCB ground plane; a set of ground solder balls each contacting the printed circuit board trace connection; a set of chip pads contacting each of the ground solder balls in the set of ground solder balls; a chip ground plane connecting the set of chip pads; and a signal interconnect interposed between two of the set of ground solder balls, the signal interconnect including: a signal trace connection electrically isolated from the PCB ground plane; a signal ball contacting the signal PCB trace connection; a chip pad contacting the signal ball, and a signal trace connection on a chip contacting the chip pad.02-05-2015
20150037913MILLIMETER WAVE WAFER LEVEL CHIP SCALE PACKAGING (WLCSP) DEVICE AND RELATED METHOD - Various embodiments include wafer level chip scale package (WLCSP) structures and methods of tuning such structures. In some embodiments, the WLCSP structure includes: a printed circuit board (PCB) trace connection including at least one PCB ground connection connected with a PCB ground plane; a set of ground solder balls each contacting the printed circuit board trace connection; a set of chip pads contacting each of the ground solder balls in the set of ground solder balls; a chip ground plane connecting the set of chip pads; and a signal interconnect interposed between two of the set of ground solder balls, the signal interconnect including: a signal trace connection electrically isolated from the PCB ground plane; a signal ball contacting the signal PCB trace connection; a chip pad contacting the signal ball, and a signal trace connection on a chip contacting the chip pad.02-05-2015
20150054595THREE DIMENSIONAL BRANCHLINE COUPLER USING THROUGH SILICON VIAS AND DESIGN STRUCTURES - A three dimensional (3D) branchline coupler using through silicon vias (TSV), methods of manufacturing the same and design structures are disclosed. The method includes forming a first waveguide structure in a first dielectric material. The method further includes forming a second waveguide structure in a second dielectric material. The method further includes forming through silicon vias through a substrate formed between the first dielectric material and the second dielectric material, which connects the first waveguide structure to the second waveguide structure.02-26-2015
20150084091TUNNEL FIELD-EFFECT TRANSISTORS WITH A GATE-SWING BROKEN-GAP HETEROSTRUCTURE - Device structures, fabrication methods, and design structures for tunnel field-effect transistors. A drain comprised of a first semiconductor material having a first band gap and a source comprised of a second semiconductor material having a second band gap are formed. A tunnel barrier is formed between the source and the drain. The second semiconductor material exhibits a broken-gap energy band alignment with the first semiconductor material. The tunnel barrier is comprised of a third semiconductor material with a third band gap larger than the first band gap and larger than the second band gap. The third band gap is configured to bend under an external bias to assist in aligning a first energy band of the first semiconductor material with a second energy band of the second semiconductor material03-26-2015

Patent applications by Wayne H. Woods, Jr., Burlington, VT US

Website © 2015 Advameg, Inc.