Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Waniuk

Theodore A. Waniuk, Lake Forest, CA US

Patent application numberDescriptionPublished
20130133787TIN-CONTAINING AMORPHOUS ALLOY - One embodiment provides a composition, the composition comprising: an alloy that is at least partially amorphous and is represented by a chemical formula: (Zr, Ti)05-30-2013
20130340897HIGH THERMAL STABILITY BULK METALLIC GLASS IN THE ZR-NB-CU-NI-AL SYSTEM - Disclosed is an improved bulk metallic glass alloy and methods of making the alloy in which the alloy has the structure Zr12-26-2013
20140008999BULK AMORPHOUS ALLOY PRESSURE SENSOR - Pressure sensing systems comprising bulk-solidifying amorphous alloys and pressure-sensitive switches containing bulk-solidifying amorphous alloys. The bulk-solidifying amorphous alloys are capable of repeated deformation upon application of pressure, and change their electrical resistivity upon deformation, thereby enabling measurement of the change in resistivity and consequently, measuring the deformation and amount of pressure applied.01-09-2014
20140010259TEMPERATURE TUNED FAILURE DETECTION DEVICE - The embodiments described herein relate to BMG parts and related failure detection devices. The BMG parts can be formed of a material including at least one or more amorphous alloys having binary physical properties in response to a temperature. The BMG parts can be configured in failure detection devices, which can be used for controlling and detecting failures, determining mechanical and temperature parameters, and/or providing protection and switching functions to an electronic system that contains the BMG parts and/or the failure detection devices.01-09-2014
20140012534NON-DESTRUCTIVE METHOD TO DETERMINE CRYSTALLINITY IN AMORPHOUS ALLOY USING SPECIFIC HEAT CAPACITY - One embodiment provides a method and apparatus for determining an unknown degree of crystallinity of a bulk-solidifying amorphous alloy specimen based on the heat capacity of the specimen. The method and apparatus make use of the different heat capacities of alloys having differing degrees of crystallinity.01-09-2014
20140083638TEMPERATURE REGULATED MELT CRUCIBLE FOR COLD CHAMBER DIE CASTING - Disclosed is a vessel for melting and casting meltable materials. The vessel may be a surface temperature regulated vessel for providing a substantially non-wetting interface with the molten materials. In one embodiment, the vessel may include one or more temperature regulating channels configured to flow a fluid therein for regulating a surface temperature of the vessel such that molten materials are substantially non-wetting at the interface with the vessel. Disclosed also includes systems and methods for melting and casting meltable materials using the vessel.03-27-2014
20140083640INJECTION COMPRESSION MOLDING OF AMORPHOUS ALLOYS - Various embodiments provide methods and apparatus for forming bulk metallic glass (BMG) articles using a mold having a stationary mold part and a movable mold part paired to form a mold cavity. A molten material can be injected to fill the mold cavity. The molten material can then be cooled into a BMG article at a desired cooling rate. While injecting and/or cooling the molten material, the movement of the movable mold part can be controlled, such that a thermal contact between the molten material and the mold can be maintained. BMG articles can be formed without forming an underfilled part. Additional structural features can be imparted in the BMG article during formation. At least a portion of the formed BMG article can have an aspect ratio (first dimension/second dimension) of at least 10 or less than 0.1.03-27-2014
20140083641METHODS OF MELTING AND INTRODUCING AMORPHOUS ALLOY FEEDSTOCK FOR CASTING OR PROCESSING - Various embodiments provide apparatus and methods for melting and introducing alloy feedstock for molding by using a hollow branch having a constraint mechanism therein. In one embodiment, a hollow branch can extend upward from a cold chamber that is substantially horizontally configured. The hollow branch including a constraint mechanism can be capable of containing an alloy feedstock for melting into the molten alloy in the hollow branch and introducing the molten alloy to the cold chamber for molding.03-27-2014
20140083645COLD CHAMBER DIE CASTING WITH MELT CRUCIBLE UNDER VACUUM ENVIRONMENT - Exemplary embodiments described herein relate to methods and systems for casting metal alloys into articles such as BMG articles. In one embodiment, processes involved for storing, pre-treating, alloying, melting, injecting, molding, etc. can be combined as desired and conducted in different chambers. During these processes, each chamber can be independently, separately controlled to have desired chamber environment, e.g., under vacuum, in an inert gas environment, or open to the surrounding environment. Due to the flexible, independent control of each chamber, the casting cycle time can be reduced and the production throughput can be increased. Contaminations of the molten materials and thus the final products are reduced or eliminated.03-27-2014
20140083646COUNTER-GRAVITY CASTING OF HOLLOW SHAPES - The embodiments described herein relate to methods and apparatus for counter-gravity formation of BMG-containing hollow parts. In one embodiment, the BMG-containing hollow parts may be formed by first feeding a molten metal alloy in a counter-gravity direction into a mold cavity to deposit the molten metal alloy on a surface of the mold cavity and then solidifying the deposited molten metal alloy.03-27-2014
20140087321ACTIVE COOLING REGULATION OF INDUCTION MELT PROCESS - Various embodiments provide methods and apparatus for active cooling regulation of a melting process. In one embodiment, a meltable material can be melted in a vessel that includes cooling channel(s) configured therein. A contact temperature T03-27-2014
20140090752COATING OF BULK METALLIC GLASS (BMG) ARTICLES - Exemplary embodiments described herein relate to methods and apparatus for forming a coating layer at least partially on surface of a BMG article formed of bulk solidifying amorphous alloys. In embodiments, the coating layer may be formed in situ during formation of a BMG article and/or post formation of a BMG article. The coating layer may provide the BMG article with surface hardness, wear resistance, surface activity, corrosion resistance, etc.04-03-2014
20140090793COLD CHAMBER DIE CASTING OF AMORPHOUS ALLOYS USING COLD CRUCIBLE INDUCTION MELTING TECHNIQUES - Various embodiments provide systems and methods for casting amorphous alloys. Exemplary casting system may include an insertable and rotatable vessel configured in a non-movable induction heating structure for melting amorphous alloys to form molten materials in the vessel. While the molten materials remain heated, the vessel may be rotated to pour the molten materials into a casting device for casting them into articles.04-03-2014
20140090796CONTINUOUS AMORPHOUS FEEDSTOCK SKULL MELTING - Described herein is a method of melting a bulk metallic glass (BMG) feedstock, comprising: feeding the BMG feedstock into a crucible; melting a first portion of the BMG feedstock to form molten BMG, while maintaining a second portion of the BMG feedstock solid; wherein the second portion and the crucible hold the molten BMG.04-03-2014
20140090797VERTICAL SKULL MELT INJECTION CASTING - Described herein is a device comprising a crucible, a movable base and a heater; wherein the heater is configured to melt BMG to form molten BMG feedstock in the crucible; wherein the movable base configured to slide along a length of the crucible; wherein the movable base and the crucible are configured to hold the molten BMG feedstock.04-03-2014
20140090798OPTIMIZED MULTI-STAGE INDUCTIVE MELTING OF AMORPHOUS ALLOYS - Described herein is a method of melting a bulk metallic glass (BMG) feedstock, comprising: heating at least a portion of the BMG feedstock to temperatures slightly below a solidus temperature of the BMG, wherein the portion remains a solid at the temperatures slightly below the solidus temperature and wherein a temperature distribution of the portion is essentially uniform; heating the portion of the BMG feedstock to temperatures above a liquidus point.04-03-2014
20140090799MELT-CONTAINMENT PLUNGER TIP FOR HORIZONTAL METAL DIE CASTING - Various embodiments provide apparatus and methods for injection molding. In one embodiment, a constraining plunger may be configured in-line with an injection plunger to transfer a molten material from a melt zone and into a mold. The constraining and injection plungers are configured to constrain the molten material there-between while moving. The constrained molten material can be controlled to have an optimum surface area to volume ratio to provide minimized heat loss during the injection molding process. The system can be configured in a longitudinal direction (e.g., horizontally) for movement between the melt zone and mold along a longitudinal axis. A molded bulk amorphous object can be ejected from the mold.04-03-2014
20140102661INLINE MELT CONTROL VIA RF POWER - Various embodiments provide apparatus and methods for melting materials and for containing the molten materials within melt zone during melting. Exemplary apparatus may include a vessel configured to receive a material for melting therein; a load induction coil positioned adjacent to the vessel to melt the material therein; and a containment induction coil positioned in line with the load induction coil. The material in the vessel can be heated by operating the load induction coil at a first RF frequency to form a molten material. The containment induction coil can be operated at a second RF frequency to contain the molten material within the load induction coil. Once the desired temperature is achieved and maintained for the molten material, operation of the containment induction coil can be stopped and the molten material can be ejected from the vessel into a mold through an ejection path.04-17-2014
20140182804COUNTER-GRAVITY CASTING OF HOLLOW SHAPES - The embodiments described herein relate to methods and apparatus for counter-gravity formation of BMG-containing hollow parts. In one embodiment, the BMG-containing hollow parts may be formed by first feeding a molten metal alloy in a counter-gravity direction into a mold cavity to deposit the molten metal alloy on a surface of the mold cavity and then solidifying the deposited molten metal alloy.07-03-2014
20140202597CRUCIBLE MATERIALS - One embodiment provides an article, comprising: an inner container having a cavity, the inner container comprising a ceramic; and an outer container, the outer container comprising a susceptor; wherein at least a portion of an outer surface of the inner container is in contact with an inner surface of the outer container, and wherein the inner container is removable from the mold. Methods of melting using the present article are also provided.07-24-2014
20140251568METHODS OF MELTING AND INTRODUCING AMORPHOUS ALLOY FEEDSTOCK FOR CASTING OR PROCESSING - Various embodiments provide apparatus and methods for melting and introducing alloy feedstock for molding by using a hollow branch having a constraint mechanism therein. In one embodiment, a hollow branch can extend upward from a cold chamber that is substantially horizontally configured. The hollow branch including a constraint mechanism can be capable of containing an alloy feedstock for melting into the molten alloy in the hollow branch and introducing the molten alloy to the cold chamber for molding.09-11-2014
20140261898BULK METALLIC GLASSES WITH LOW CONCENTRATION OF BERYLLIUM - Disclosed herein is a bulk metallic glasses (BMG) comprising 0.0001 wt % to 0.7 wt % of Be, 0.0001 wt % to 0.2 wt % of Be, or 0.06 wt % to 0.08 wt % of Be. Be may have the effect of reducing a liquidus temperature of the BMG relative to melting temperatures of individual alloying elements of the BMG.09-18-2014
20140297202NONDESTRUCTIVE METHOD TO DETERMINE CRYSTALLINITY IN AMORPHOUS ALLOY - One embodiment provides a method of determining an unknown degree of crystallinity, the method comprising: constructing a master curve plot comprising a plurality of reference curves, each reference curve representing a relationship between electrical resistivity and temperature for one of a plurality of reference alloy samples having a chemical composition and various pre-determined degrees of crystallinity; for an alloy specimen having the chemical composition and the unknown degree of crystallinity, obtaining a curve representing the electrical resistivity and temperature thereof; and determining the unknown degree of crystallinity by comparing the curve to the master curve plot.10-02-2014
20140305932OPTIMIZED MULTI-STAGE INDUCTIVE MELTING OF AMORPHOUS ALLOYS - Described herein is a method of melting a bulk metallic glass (BMG) feedstock, comprising: heating at least a portion of the BMG feedstock to temperatures slightly below a solidus temperature of the BMG, wherein the portion remains a solid at the temperatures slightly below the solidus temperature and wherein a temperature distribution of the portion is essentially uniform; heating the portion of the BMG feedstock to temperatures above a liquidus point.10-16-2014
20140318730COLD CHAMBER DIE CASTING OF AMORPHOUS ALLOYS USING COLD CRUCIBLE INDUCTION MELTING TECHNIQUES - Various embodiments provide systems and methods for casting amorphous alloys. Exemplary casting system may include an insertable and rotatable vessel configured in a non-movable induction heating structure for melting amorphous alloys to form molten materials in the vessel. While the molten materials remain heated, the vessel may be rotated to pour the molten materials into a casting device for casting them into articles.10-30-2014
20140332176INLINE MELT CONTROL VIA RF POWER - Various embodiments provide apparatus and methods for melting materials and for containing the molten materials within melt zone during melting. Exemplary apparatus may include a vessel configured to receive a material for melting therein; a load induction coil positioned adjacent to the vessel to melt the material therein; and a containment induction coil positioned in line with the load induction coil. The material in the vessel can be heated by operating the load induction coil at a first RF frequency to form a molten material. The containment induction coil can be operated at a second RF frequency to contain the molten material within the load induction coil. Once the desired temperature is achieved and maintained for the molten material, operation of the containment induction coil can be stopped and the molten material can be ejected from the vessel into a mold through an ejection path.11-13-2014
20140360695MELT-CONTAINMENT PLUNGER TIP FOR HORIZONTAL METAL DIE CASTING - Various embodiments provide apparatus and methods for injection molding. In one embodiment, a constraining plunger may be configured in-line with an injection plunger to transfer a molten material from a melt zone and into a mold. The constraining and injection plungers are configured to constrain the molten material there-between while moving. The constrained molten material can be controlled to have an optimum surface area to volume ratio to provide minimized heat loss during the injection molding process. The system can be configured in a longitudinal direction (e.g., horizontally) for movement between the melt zone and mold along a longitudinal axis. A molded bulk amorphous object can be ejected from the mold.12-11-2014
20140361670METHOD AND APPARATUS FOR FORMING A GOLD METAL MATRIX COMPOSITE - A metal matrix composite using as one of the components a precious metal is described. In one embodiment, the precious metal takes the form of gold and the metal matrix composite has a gold mass fraction in accordance with 18 k. The metal matrix composite can be formed by blending a precious metal (e.g., gold) powder and a ceramic powder, forming a mixture that is then compressed within a die having a near net shape of the metal matrix composite. The compressed mixture in the die is then heated to sinter the precious metal and ceramic powder. Other techniques for forming the precious metal matrix composite using HIP, and a diamond powder are also disclosed.12-11-2014
20140369375BOAT AND COIL DESIGNS - Disclosed are vessels used for melting material to be injection molded to form a part. One vessel has a body formed from a plurality of elongate segments configured to be electrically isolated from each other and with a melting portion for melting meltable material therein. Material can be provided between adjacent segments. An induction coil can be used to melt the material in the body. Other vessels have a body with an embedded induction coil therein. The embedded coil can be configured to surround the melting portion, or can be positioned below and/or adjacent the melting portion, so that meltable material is melted. The vessels can be used to melt amorphous alloys, for example.12-18-2014
20150090421COLD CHAMBER DIE CASTING WITH MELT CRUCIBLE UNDER VACUUM ENVIRONMENT - Exemplary embodiments described herein related to methods and systems for casting metal alloys into articles such as BMG articles. In one embodiment, processes involved for storing, pre-treating, alloying, melting, injecting, molding, etc. can be combined as desired and conducted in different chambers. During these processes, each chamber can be independently, separately controlled to have desired chamber environment, e.g., under vacuum, in an inert gas environment, or open to the surrounding environment. Due to the flexible, independent control of each chamber, the casting cycle time can be reduced and the production throughput can be increased. Contaminations of the molten materials and thus the final products are reduced or eliminated.04-02-2015
20150107730CONTINUOUS ALLOY FEEDSTOCK PRODUCTION MOLD - Embodiments herein relate to a process for semi-continuous or continuous production of a solid object from a molten metal, with the potential of being a cleaner and less expensive alternative to complicated split mold processes currently used. The embodiments can be used to perform multiple melt/pour cycles without breaking vacuum, with the system only opened to remove the solid object via an air lock, e.g., a separate chamber or load lock, which will be periodically opened to remove feedstock without breaking the vacuum of the process chamber. Embodiments also relate to an apparatus for semi-continuous or continuous production of a solid object from a molten metal.04-23-2015
20150131694INDUCTION SHIELD AND ITS METHOD OF USE IN A SYSTEM - Disclosed is an induction shield configured to substantially reduce emissions emitted from an induction heat source (e.g., coil) during use. The shield is positioned adjacent to a vessel (e.g., in an injection system) having a melting portion configured to receive meltable material to be melted therein and an induction heat source positioned adjacent the vessel configured to melt the meltable material received in the melting portion of the vessel. The shield may include a tube configuration configured to flow liquid therein to absorb heat emitted from the heat source. The tube configuration can comprise a single tube or multiple tubes. The shield can be positioned adjacent the induction source in a helical manner, for example, or at ends of the vessel. The shield can be used during melting of amorphous alloy and for forming a part.05-14-2015
20150144292CONTAINMENT GATE FOR INLINE TEMPERATURE CONTROL MELTING - Disclosed is an apparatus comprising at least one gate and a vessel, the gate being configured to move between a first position to restrict entry into an ejection path of the vessel and contain a material in a meltable form within the vessel during melting of the material, and a second position to allow movement of the material in a molten form through the ejection path. The gate can move linearly or rotate between its first and second positions, for example. The apparatus is configured to melt the material and the at least one gate is configured to allow the apparatus to be maintained under vacuum during the melting of the material. Melting can be performed using an induction source. The apparatus may also include a mold configured to receive molten material and for molding a molded part, such as a bulk amorphous alloy part.05-28-2015

Patent applications by Theodore A. Waniuk, Lake Forest, CA US

Theodore A. Waniuk US

Patent application numberDescriptionPublished
20140083638TEMPERATURE REGULATED MELT CRUCIBLE FOR COLD CHAMBER DIE CASTING - Disclosed is a vessel for melting and casting meltable materials. The vessel may be a surface temperature regulated vessel for providing a substantially non-wetting interface with the molten materials. In one embodiment, the vessel may include one or more temperature regulating channels configured to flow a fluid therein for regulating a surface temperature of the vessel such that molten materials are substantially non-wetting at the interface with the vessel. Disclosed also includes systems and methods for melting and casting meltable materials using the vessel.03-27-2014
20140090752COATING OF BULK METALLIC GLASS (BMG) ARTICLES - Exemplary embodiments described herein relate to methods and apparatus for forming a coating layer at least partially on surface of a BMG article formed of bulk solidifying amorphous alloys. In embodiments, the coating layer may be formed in situ during formation of a BMG article and/or post formation of a BMG article. The coating layer may provide the BMG article with surface hardness, wear resistance, surface activity, corrosion resistance, etc.04-03-2014
20140090796CONTINUOUS AMORPHOUS FEEDSTOCK SKULL MELTING - Described herein is a method of melting a bulk metallic glass (BMG) feedstock, comprising: feeding the BMG feedstock into a crucible; melting a first portion of the BMG feedstock to form molten BMG, while maintaining a second portion of the BMG feedstock solid; wherein the second portion and the crucible hold the molten BMG.04-03-2014

Theodore A. Waniuk, Cupertino, CA US

Patent application numberDescriptionPublished
20150089792ACOUSTIC TESTING OF SAPPHIRE COMPONENTS FOR ELECTRONIC DEVICES - In some embodiments, processes for testing for structural flaws in sapphire parts such as display cover plates used in the manufacturing of electronic devices are disclosed. A process may include transmitting a destructive acoustic signal onto a sapphire part, and determining whether the sapphire part failed in response to the destructive signal. The destructive acoustic signal may include a Rayleigh acoustic wave, wherein the destructive acoustic signal breaks the sapphire part if the sapphire part has a surface flaw larger than a specified size. In this manner, only sapphire parts that can withstand the destructive acoustic signal are used in manufacturing of the electronic device.04-02-2015
20150217368Temperature Regulated Melt Crucible for Cold Chamber Die Casting - Disclosed is a vessel for melting and casting meltable materials. The vessel may be a surface temperature regulated vessel for providing a substantially non-wetting interface with the molten materials. In one embodiment, the vessel may include one or more temperature regulating channels configured to flow a fluid therein for regulating a surface temperature of the vessel such that molten materials are substantially non-wetting at the interface with the vessel. Disclosed also includes systems and methods for melting and casting meltable materials using the vessel.08-06-2015

Theodore Andrew Waniuk, Lake Forest, CA US

Patent application numberDescriptionPublished
20130032254Crucible Materials For Alloy Melting - One embodiment provides a method of melting, comprising: providing a mixture of alloy elements that are at least partially crystalline; and heating the mixture in a container to a temperature above a melting temperature of the alloy elements to form an alloy, wherein the container comprises silica, and wherein the mixture comprising Zr and is free of Ti and Be.02-07-2013
20130037999TEMPERATURE REGULATED VESSEL - Disclosed is a temperature regulated vessel, and method for using the same, having a body configured to melt meltable material received therein, and one or more temperature regulating lines within the body configured to flow a liquid therein for regulating a temperature of the meltable material received in the melting portion. The vessel has a poor or low thermally conductive material on one or more of its parts, such as on the melting portion, on exterior surfaces of the body, and/or surrounding the temperature regulating lines to increase melt temperature of the material. The melting portion can also have indentations in its surface, and low thermally conductive material can be provided in the indentations. The vessel can be used to melt amorphous alloys, for example.02-14-2013
20130306196MANIPULATING SURFACE TOPOLOGY OF BMG FEEDSTOCK - Described herein is a feedstock comprising BMG. The feedstock has a surface with an average roughness of at least 200 microns. Also described herein is a feedstock comprising BMG. The feedstock, when supported on a support during a melting process of the feedstock, has a contact area between the feedstock and the support up to 50% of a total area of the support. These feedstocks can be made by molding ingots of BMG into a mole with surface patterns, enclosing one or more cores into a sheath with a roughened surface, chemical etching, laser ablating, machining, grinding, sandblasting, or shot peening. The feedstocks can be used as starting materials in an injection molding process.11-21-2013
20130306197AMORPHOUS ALLOY COMPONENT OR FEEDSTOCK AND METHODS OF MAKING THE SAME - Described herein is a method of combining discrete pieces of BMG in to a BMG feedstock that has at least one dimension greater than a critical dimension of the BMG, by methods such as thermoplastic forming, pressing, extruding, folding or forging. Other embodiments relate to a bulk metallic glass (BMG) component or feedstock having discrete pieces of a BMG, wherein the BMG component or feedstock has at least one dimension greater than a critical dimension of the BMG.11-21-2013
20130306198LAYER-BY-LAYER CONSTRUCTION WITH BULK METALLIC GLASSES - Described herein is a method of selectively depositing molten bulk metallic glass (BMG). In one embodiment, a continuous stream or discrete droplets of molten BMG is deposited to selected positions. The deposition can be repeated as needed layer by layer. One or more layers of non-BMG can be used as needed.11-21-2013
20130306199BULK METALLIC GLASS FEEDSTOCK WITH A DISSIMILAR SHEATH - Described herein is a feedstock including a core comprising BMG and a sheath attached the core. The sheath has a different physical property, a different chemical property or both from the core. Alternatively, the feedstock can include a sheath that encloses one or more core comprising BMG. The feedstock can be manufactured by attaching the sheath to the core, shot peening the core, etching the core, ion implanting the core, or applying a coating to the core, etc. The feedstock can be used to make a part by injection molding. The sheath can be used to adjust the composition of the core to reach the composition of the part.11-21-2013
20130306201BULK AMORPHOUS ALLOY SHEET FORMING PROCESSES - Embodiments herein relate to a method for forming a bulk solidifying amorphous alloy sheets have different surface finish including a “fire” polish surface like that of a float glass. In one embodiment, a first molten metal alloy is poured on a second molten metal of higher density in a float chamber to form a sheet of the first molten that floats on the second molten metal and cooled to form a bulk solidifying amorphous alloy sheet. In another embodiment, a molten metal is poured on a conveyor conveying the sheet of the first molten metal on a conveyor and cooled to form a bulk solidifying amorphous alloy sheet. The cooling rate such that a time-temperature profile during the cooling does not traverse through a region bounding a crystalline region of the metal alloy in a time-temperature-transformation (TTT) diagram.11-21-2013
20130309121LAYER-BY-LAYER CONSTRUCTION WITH BULK METALLIC GLASSES - Described herein are methods of constructing a part using BMG layer by layer. In one embodiment, a layer of BMG powder is deposited to selected positions and then fused to a layer below by suitable methods such as laser heating or electron beam heating. The deposition and fusing are then repeated as need to construct the part layer by layer. One or more layers of non-BMG can be used as needed. In one embodiment, layers of BMG can be cut from one or more sheets of BMG to desired shapes, stacked and fused to form the part.11-21-2013
20130319090TESTING OF SURFACE CRYSTALLINE CONTENT IN BULK AMORPHOUS ALLOY - Provided in one embodiment is a method, comprising: forming a part comprising a bulk amorphous alloy, wherein the part comprises a sampling portion; determining a parameter related to the part by detecting by imaging on a surface of the sampling portion presence of crystals of the alloy; and evaluating the part based on the parameter.12-05-2013
20140283959TAMPER RESISTANT AMORPHOUS ALLOY JOINING - A method to form an enclosure or assembly which is fitted together and joined via a thermoplastic forming operation in order to seal the enclosure and hinder attempts to tamper with the contents.09-25-2014
20140284019INJECTION MOLDING OF AMORPHOUS ALLOY USING AN INJECTION MOLDING SYSTEM - Disclosed is an injection molding system including a plunger rod and a melt zone that are provided in-line and on a horizontal axis. The plunger rod is moved in a horizontal direction through the melt zone to move molten material into a mold. The melt zone can have a vessel that is configured to receive the plunger therethrough. A transfer sleeve provided between the vessel and the mold and/or an inlet into a mold can also be horizontally in line with the plunger. The injection molding system can perform the melting and molding processes under a vacuum.09-25-2014
20140284503RADIATION SHIELDING STRUCTURES - Radiation shielding structures comprising bulk-solidifying amorphous alloys and methods of making radiation shielding structures and components in near-to-net shaped forms are provided.09-25-2014
20140293384NANO- AND MICRO-REPLICATION FOR AUTHENTICATION AND TEXTURIZATION - Embodiments herein relate to forming nano- and/or micro-replication directly embossed in a bulk solidifying amorphous alloy comprising a metal alloy by superplastic forming of the bulk solidifying amorphous alloy at a temperature greater than a glass transition temperature (Tg) of the metal alloy.10-02-2014
20140328714ALLOYING TECHNIQUE FOR FE-BASED BULK AMORPHOUS ALLOY - One embodiment provides a method of making an alloy feedstock, comprising: forming a first composition by combining Fe with a first nonmetal element; forming a second composition by combining Fe with a plurality of transition metal elements; forming a third composition by combining the second composition with a second nonmetal element; and combining the first composition with the third composition to form an alloy feedstock.11-06-2014
20140334106BULK AMORPHOUS ALLOY HEAT SINK - Embodiments herein relate to a heat sink having nano- and/or micro-replication directly embossed in a bulk solidifying amorphous alloy comprising a metal alloy, wherein the heat sink is configured to transfer heat out of the heat sink by natural convection by air or forced convection by air, or by fluid phase change of a fluid and/or liquid cooling by a liquid. Other embodiments relate apparatus having the heat sink. Yet other embodiments relate to methods of manufacturing the heat sink and apparatus having the heat sink.11-13-2014
20140345754MOLDING AND SEPARATING OF BULK-SOLIDIFYING AMORPHOUS ALLOYS AND COMPOSITE CONTAINING AMORPHOUS ALLOY - A method to form and to separate bulk solidifying amorphous alloy or composite containing amorphous alloy where the forming and separating takes place at a temperature around the glass transition temperature or within the super cooled liquid region are provided.11-27-2014
20150139270NON-DESTRUCTIVE DETERMINATION OF VOLUMETRIC CRYSTALLINITY OF BULK AMORPHOUS ALLOY - A method comprising: constructing a master curve plot comprising a plurality of reference curves, each reference curve representing a relationship between volume and temperature for one of a plurality of reference alloy samples having a chemical composition and various predetermined degrees of crystallinity; for an alloy specimen having the chemical composition and an unknown degree of crystallinity, obtaining a curve representing a relationship between volume and temperature thereof; and determining the unknown degree of crystallinity by comparing the curve to the master curve plot.05-21-2015
20150158080MATERIAL CONTAINING VESSELS FOR MELTING MATERIAL - Disclosed is a vessel for melting meltable material having a body with a melting portion configured to receive meltable material to be melted therein and an injection path for injecting the meltable material in molten form after melting (e.g., into a mold). The body has a recess configured to contain the meltable material within the vessel during melting of the material. The vessel is configured for movement between in a first position to restrict entry of molten material into an injection path of the vessel and to contain the material in the recess during melting, and a second position to allow movement of the material in a molten form through the injection path and into the mold (e.g., using a plunger). The vessel can be used in an injection molding system for molding bulk amorphous alloys.06-11-2015

Patent applications by Theodore Andrew Waniuk, Lake Forest, CA US

Theodore Andrew Waniuk, Cupertino, CA US

Patent application numberDescriptionPublished
20150258607Layer-by-Layer Construction with Bulk Metallic Glasses - Described herein is a method of selectively depositing molten bulk metallic glass (BMG). In one embodiment, a continuous stream or discrete droplets of molten BMG is deposited to selected positions. The deposition can be repeated as needed layer by layer. One or more layers of non-BMG can be used as needed.09-17-2015

Theodore Andy Waniuk, Lake Forest, CA US

Patent application numberDescriptionPublished
20110162795AMORPHOUS ALLOY BONDING - Provided in one embodiment is a method of forming an interfacial layer or a seal, the method comprising: providing a composition that is at least partially amorphous, the composition having a glass transition temperature Tg and a crystallization temperature Tx; heating the composition to a first temperature that is below Tx; disposing the heated composition to form the interfacial layer or the seal; and cooling the interfacial layer or the seal to a second temperature that is below Tg.07-07-2011
20110163509AMORPHOUS ALLOY SEAL - Provided in one embodiment is an article, comprising a first part having a first surface and a hermetic seal disposed over a portion of the first surface, wherein the hermetic seal comprises a composition that is at least partially amorphous.07-07-2011
20120312061THERMOPLASTIC FORMING METHODS FOR AMORPHOUS ALLOY - Provided herein include methods of molding a parison comprising an amorphous alloy and or an amorphous alloy composites, where the molding takes place within the supercooled liquid region or around the glass transition temperature of the amorphous alloy. In one embodiment, the foπning can be carried out with two fluids at different temperatures. The molded article can have a very high aspect ratio or a three-dimensional hollow shape with a desirable surface finish.12-13-2012
Website © 2015 Advameg, Inc.