Patent application number | Description | Published |
20090054561 | POLYMER-BINDER COMPOSITE AND METHODS OF MAKING AND USING SAME - A method of making a polymer-binder composite, and the composite thus created. The method employs a high shear device that mixes together polymer with binder, and optionally with additive. The mixing is accomplished in less than one hour, less than 30 minutes or less than 3 minutes, and done at high shear rates. The shear conditions are defined by scalar shear quantity greater than 250, 1,000 or 1,500, resident time of greater than 0.05, 0.10 or 0.20 seconds, and energy utilized per unit mass of greater than 0.05, 0.10 or 0.20 kW/kg. The composite thus produced can be made with a high percentage of polymers. It can be cooled and cut into pellets that are dry and stable at normal temperatures and which can be stored or transported without heating to secondary mixing locations. The composite pellets are quickly soluble in the additional binder. | 02-26-2009 |
20100081738 | SUPER CONCENTRATED POLYMER-BINDER COMPOSITE - A pre-processed polymer concentrate in binder comprising a binder and at least one polymer where the polymer comprises greater than 26% by weight of the pre-processed polymer concentrate in binder, where the pre-processed polymer concentrate in binder is capable of incorporating quickly into diluent binder under low shear conditions. | 04-01-2010 |
Patent application number | Description | Published |
20100314559 | IMPLANT MASK WITH MOVEABLE MASK SEGMENTS - This apparatus has two mask segments. Each mask segment has apertures that an ion beam may pass through. These mask segments can move between a first and second position using hinges. One or more workpieces are disposed behind the mask segments when these mask segments are in a second position. The two mask segments are configured to cover the one or more workpieces in one instance. Ions are implanted into the one or more workpieces through the apertures in the mask segments. | 12-16-2010 |
20110108742 | SYSTEM AND METHOD FOR HANDLING MULTIPLE WORKPIECES FOR MATRIX CONFIGURATION PROCESSING - A system for loading workpieces into a process chamber for processing in a matrix configuration includes a conveyor configured to transport multiple workpieces in a linear fashion. A workpiece hotel is configured to receive the multiple workpieces from the conveyor. The workpiece hotel comprises a matrix of cells arranged in N columns and M floors. A pick blade is configured to insert into the hotel and retract from the hotel in order to unload a plurality of substrates from a first floor into a single row of the pick blade, and to repeat the unloading operation to form a matrix comprising a plurality of rows of substrates disposed on the pick blade. In one example, the workpiece hotel has a staggered configuration that provides individual accessibility of each hotel cell. | 05-12-2011 |
20140165906 | MAGNETIC MASKS FOR AN ION IMPLANT APPARATUS - An ion implant apparatus configured to measure the temperature or monitor the degradation of components in the apparatus is provided. The ion implant apparatus may include a platen configured to move in a first direction, a mask frame to hold one or more masks disposed on the platen, a first optical sensor configured to project an optical beam to a second optical sensor, and a measurement bar disposed on the mask frame, the measurement bar raised above the surface of the mask frame to interrupt the optical beam when the platen moves in the first direction. | 06-19-2014 |
20140271050 | WAFER HANDLING SYSTEMS AND METHODS - A wafer handling system may include upper and lower linked robot arms that may move a wafer along a nonlinear trajectory between chambers of a semiconductor processing system. These features may result in a smaller footprint in which the semiconductor processing system may operate, smaller transfer chambers, smaller openings in process chambers, and smaller slit valves, while maintaining high wafer throughput. In some embodiments, simultaneous fast wafer swaps between two separate chambers, such as load locks and ALD (atomic layer deposition) carousels, may be provided. Methods of wafer handling are also provided, as are other aspects. | 09-18-2014 |
20140271054 | MULTI-POSITION BATCH LOAD LOCK APPARATUS AND SYSTEMS AND METHODS INCLUDING SAME - Various embodiments of batch load lock apparatus are disclosed. The batch load lock apparatus includes a load lock body including first and second load lock openings, a lift assembly within the load lock body, the lift assembly including multiple wafer stations, each of the multiple wafer stations adapted to provide access to wafers through the first and second load lock openings, wherein the batch load lock apparatus includes temperature control capability (e.g., heating or cooling). Batch load lock apparatus is capable of transferring batches of wafers into and out of various processing chambers. Systems including the batch load lock apparatus and methods of operating the batch load lock apparatus are also provided, as are numerous other aspects. | 09-18-2014 |
20140271055 | SUBSTRATE DEPOSITION SYSTEMS, ROBOT TRANSFER APPARATUS, AND METHODS FOR ELECTRONIC DEVICE MANUFACTURING - Electronic device processing systems are described. The system includes a mainframe housing having a transfer chamber, a first facet, a second facet opposite the first facet, a third facet, and a fourth facet opposite the third facet, a first carousel assembly coupled to a first facet, a second carousel assembly coupled to the third facet, a first load lock coupled to the second facet, a second load lock coupled to the fourth facet, and a robot adapted to operate in the transfer chamber to exchange substrates from the first and second carousels. Methods and multi-axis robots for transporting substrates are described, as are numerous other aspects. | 09-18-2014 |
20140271057 | TEMPERATURE CONTROL SYSTEMS AND METHODS FOR SMALL BATCH SUBSTRATE HANDLING SYSTEMS - Embodiments of substrate handling systems capable of heating and/or cooling batches of substrates being transferred into and out of various substrate processing chambers are provided. Methods of substrate handling are also provided, as are numerous other aspects. | 09-18-2014 |
Patent application number | Description | Published |
20130108401 | WORKPIECE HANDLING SYSTEM AND METHODS OF WORKPIECE HANDLING | 05-02-2013 |
20130277999 | VENTURI ASSISTED GRIPPER - A gripper system which utilizes two different suction systems is disclosed. This gripper system utilizes one suction system to pick up an item, while using the second suction system to hold the item. In some embodiments, a Venturi device based suction system is used as the first suction system to pick up the item, as this type of system is proficient at picking up items without requiring initial contact to create a seal. In some embodiments, a vacuum based system is used as the second suction system, as this type of system is able to hold items cost effectively. | 10-24-2013 |
20140023461 | ELECTROSTATIC CHARGE REMOVAL FOR SOLAR CELL GRIPPERS - A manufacturing system includes a gantry module, having an end effector, for moving workpieces from a conveyor system to a working area, such as a swap module. The swap module removes a matrix of processed workpieces from a load lock and place a matrix of unprocessed workpieces in its place. The processed workpieces are then moved by the gantry module back to the conveyor. Due to the speed of operation, the end effector may build up excessive electrostatic charge. To remove this built up charge, grounded electrically-conductive brushes are strategically positioned so that, as the end effector moves during normal operation, it comes in contact with these brushes. This removes this built up charge on the end effector, without affecting throughput. In another embodiment, the end effector moves over the brushes while the swap module is moving matrix to and from the load lock. | 01-23-2014 |
20140076688 | OPTIMIZATION OF CONVEYOR BELTS USED FOR WORKPIECE PROCESSING - A system and method for the handling of workpieces in a workpiece processing system is disclosed. The system utilizes three conveyor belts, where one may be a loading belt, feeding unprocessed workpieces from its associated workpiece carrier to a processing system. A second conveyor belt may be an unloading belt, receiving processed workpieces from the processing system and filling its associated workpiece carrier. The third conveyor belt may be exchanging its workpiece carrier during this time, so that it is available to start operating as the loading belt once all of the workpieces have been removed from the workpiece carrier associated with the first conveyor belt. | 03-20-2014 |
20140081456 | ROBOT CALIBRATION METHOD - A robot calibration method which aligns the coordinate system of a gantry module with the coordinate system of a camera system is disclosed. The method includes using an alignment tool, which allows the operator to place workpieces in locations known by the gantry module. An image is then captured of these workpieces by the camera system. A controller uses the information from the gantry module and the camera system to determine the relationship between the two coordinate systems. It then determines a transformation equation to convert from one coordinate system to the other. | 03-20-2014 |
20140165908 | TRANSFER CHAMBER AND METHOD OF USING A TRANSFER CHAMBER - An ion implanter and method for facilitating expeditious performance of maintenance on a component of the ion implanter in a manner that reduces downtime while increasing throughput of the ion implanter. The ion implanter includes a process chamber, a transfer chamber connected to the process chamber, a first isolation gate configured to controllably seal the transfer chamber from the process chamber, and a second isolation gate configured to controllably seal the transfer chamber from an atmospheric environment, wherein a component of the ion implanter can be transferred between the process chamber and the transfer chamber for performing maintenance on the component outside of the process chamber. Performing maintenance on a component of the ion implanter includes the steps of transferring the component from the process chamber to the transfer chamber, sealing the transfer chamber, venting the transfer chamber to atmospheric pressure, an opening the transfer chamber to an atmospheric environment. | 06-19-2014 |
20140241848 | ELECTRIC SWITCHABLE MAGNET SLITVALVE - A slitvalve that uses magnetic energy to move a door in a direction normal to the plane of the wall is disclosed. An electrically switchable magnet is used to draw the door toward the wall to seal an aperture in the wall. Compressed Dry Air or other mechanisms may be employed to move the door between a first open position and a second closed position. A method of passing a workpiece between two different environments utilizing this magnetic slitvalve is also disclosed. | 08-28-2014 |
20140252787 | Venturi Assisted Gripper - A gripper system which utilizes two different suction systems is disclosed. This gripper system utilizes one suction system to pick up an item, while using the second suction system to hold the item. In some embodiments, a Venturi device based suction system is used as the first suction system to pick up the item, as this type of system is proficient at picking up items without requiring initial contact to create a seal. In some embodiments, a vacuum based system is used as the second suction system, as this type of system is able to hold items cost effectively. | 09-11-2014 |
20140271048 | High Throughput, Low Volume Clamshell Load Lock - A load lock having a reduced volume, thereby allowing faster pumping and venting, is disclosed. The load lock uses a movable bottom wall to modify the volume of the chamber to be pumped. In a first position, the movable wall is disposed so as to create a small internal volume. In a second position, the bottom wall is moved downward, allowing the workpiece to be in contact with a process chamber or an exit aperture. The bottom wall may be sealed in the first position through the use of a sealing mechanism, such as a magnetic clamp. The bottom wall may also include a workpiece holding mechanism. The top wall may be a removable cover, which is moved by an actuator. A robotic mechanism may supply workpieces to the load lock while the top wall is in the open position. | 09-18-2014 |
20140341700 | SYSTEM AND METHOD FOR QUICK-SWAP OF MULTIPLE SUBSTRATES - A system and method are disclosed for substrate handling. The system can include a robot adapter configured to connect to a robot, and first and second end effectors connected to the robot adapter. The robot adapter is configured to move the first and second end effectors from a first, retracted, position to a second, extended, position. In the extended position, the first or second end effector is disposed within a top entry load lock for picking or dropping a plurality of substrates therein. The first and second end effectors can be selectively and independently movable. The robot adapter can be rotatable so as to selectively position one of the end effectors over the top entry load lock. Methods for quickly swapping processed and unprocessed substrates in the top entry load lock are also disclosed and claimed. | 11-20-2014 |
Patent application number | Description | Published |
20100222466 | CRACK RESISTANT LAYER WITH GOOD BEAM FATIGUE PROPERTIES MADE FROM AN EMULSION OF A POLYMER MODIFIED BITUMINOUS BINDER AND METHOD OF SELECTING SAME - A method of selecting a crack resistant layer to be applied to an existing surface, the method comprising the steps of: selecting at least one emulsified bituminous binder to examine, where the emulsified bituminous binder comprises bitumen, one or more emulsifier, and one or more polymers, where the one or more polymers, the one or more emulsifier, or both include a sufficient amount of conjugated diene such that at least 2.5% of the weight of the emulsified bituminous binder residuum comprises conjugated diene, preferably at least 3.0%, more preferably at least 3.5%, and most preferably 4.0%; forming at least one bituminous mixture comprising the emulsified bituminous binder and an aggregate; testing each bituminous mixture for fatigue properties; and selecting a bituminous binder for use in the crack resistant layer. The method may further comprise the steps of testing the bituminous mixture for fracture energy and selecting the emulsified bituminous binder for use in the crack resistant layer based on fatigue properties and fracture energy properties, and/or testing the emulsified bituminous binder residuum for fracture energy and selecting the emulsified bituminous binder for use in the crack resistant layer based on fatigue properties and bituminous binder residuum fracture energy properties. | 09-02-2010 |
20100222467 | CRACK RESISTENT LAYER WITH GOOD MIXTURE FRACTURE ENERGY MADE FROM AN EMULSION OF A POLYMER MODIFIED BITUMINOUS BINDER AND METHOD OF SELECTING SAME - A method of selecting a crack resistant layer to be applied to an existing surface, the method comprising the steps of: selecting at least one emulsified bituminous binder to examine, where the emulsified bituminous binder comprises bitumen, one or more emulsifier, and one or more polymers, where the one or more polymers, the one or more emulsifier, or both include a sufficient amount of conjugated diene such that at least 2.5% of the emulsified bituminous binder residuum weight comprises conjugated diene, preferably at least 3.0%, more preferably at least 3.5%, and most preferably 4.0%; forming at least one bituminous mixture comprising the emulsified bituminous binder and an aggregate; testing each bituminous mixture for mixture fracture energy properties; and selecting a emulsified bituminous binder for use in the crack resistant layer. The method may further comprise the steps of testing the bituminous mixture for fatigue properties and selecting the emulsified bituminous binder for use in the crack resistant layer based on fatigue properties and mixture fracture energy properties, and/or testing the emulsified bituminous binder residuum for fracture energy and selecting the emulsified bituminous binder for use in the crack resistant layer based on mixture fracture energy properties and bituminous binder fracture residuum energy properties. | 09-02-2010 |