Patent application number | Description | Published |
20090212229 | PROJECTION LENS ARRANGEMENT - A charged particle multi-beamlet system for exposing a target using a plurality of beamlets. The system comprises a first plate having a plurality of holes formed in it, with a plurality of electrostatic projection lens systems formed at the location of each hole so that each electron beamlet passes through a corresponding projection lens system. The holes have sufficiently uniform placement and dimensions to enable focusing of the beamlets onto the surface of the target using a common control voltage. Preferably the electrostatic projection lens systems are controlled by a common electrical signal to focus the electron beamlets on the surface without correction of the focus or path of individual electron beamlets. | 08-27-2009 |
20090261267 | PROJECTION LENS ARRANGEMENT - A projection lens arrangement for a charged particle multi-beamlet system, the projection lens arrangement including one or more plates and one or more arrays of projection lenses. Each plate has an array of apertures formed in it, with projection lenses formed at the locations of the apertures. The arrays of projection lenses form an array of projection lens systems, each projection lens system comprising one or more of the projection lenses formed at corresponding points of the one or more arrays of projection lenses. The projection lens systems are arranged at a pitch in the range of about 1 to 3 times the diameter of the plate apertures, and each projection lens system is for demagnifying and focusing one or more of the charged particle beamlets on to the target plane, each projection lens system has an effective focal length in the range of about 1 to 5 times the pitch, and demagnifies the charged particle beamlets by at least 25 times. | 10-22-2009 |
20120061583 | PROJECTION LENS ARRANGEMENT - The invention relates to a charged particle optical system comprising a beamlet generator for generating a plurality of charged particle beamlets, an electrostatic deflection system for deflecting the beamlets, and a projection lens system for directing the beamlets from the beamlet generator towards the target. The electrostatic deflection system comprises a first electrostatic deflector and a second electrostatic deflector for scanning charged particle beamlets over the target. The second electrostatic deflector is located behind the first electrostatic deflector so that, during operation of the system, a beamlet generated by the beamlet generator passes both of the electrostatic deflectors. During operation of the first and second electrostatic deflectors the system is adapted to apply voltages on the first electrostatic deflector and the second electrostatic deflector of opposite sign. | 03-15-2012 |
20140014852 | PROJECTION LENS ARRANGEMENT - A projection lens arrangement for a charged particle multi-beamlet system, the projection lens arrangement including one or more plates and one or more arrays of projection lenses. Each plate has an array of apertures formed in it, with projection lenses formed at the locations of the apertures. The arrays of projection lenses form an array of projection lens systems, each projection lens system comprising one or more of the projection lenses formed at corresponding points of the one or more arrays of projection lenses. | 01-16-2014 |
Patent application number | Description | Published |
20110042579 | CHARGED PARTICLE LITHOGRAPHY APPARATUS AND METHOD OF GENERATING VACUUM IN A VACUUM CHAMBER - The invention relates to a charged particle lithography apparatus with a charged particle source for creating one or more charged particle beams, a charged particle projector for projecting the beams onto a wafer; and a moveable wafer stage for carrying the wafer. The charged particle source, charged particle projector, and moveable wafer stage are disposed in a common vacuum chamber forming a vacuum environment. The vacuum chamber further has an opening for loading wafers into the chamber and a door. | 02-24-2011 |
20110260040 | Charged particle multi-beamlet lithography system with modulation device - A charged particle lithography system for transferring a pattern onto the surface of a target. The system comprises a beam generator for generating a plurality of charged particle beamlets, the plurality of beamlets defining a column, a beam stop array having a surface for blocking beamlets from reaching the target surface and an array of apertures in the surface for allowing the beamlets to reach the target surface, and a modulation device for modulating the beamlets to prevent one or more of the beamlets from reaching the target surface or allow one or more of the beamlets to reach the target surface, by deflecting or not deflecting the beamlets so that the beamlets are blocked or not blocked by the beam stop array. The modulation device comprises a plurality of apertures arranged in arrays for letting the beamlets pass through the modulation device, a plurality of modulators arranged in arrays, each modulator provided with electrodes extending on opposing sides of an aperture for generating a voltage difference across the aperture, and a plurality of light sensitive elements arranged in arrays, for receiving modulated light beams and converting the light beams into electric signals for actuating the modulators, wherein the light sensitive elements are located within the column, wherein the modulation device is subdivided into a plurality of alternating beam areas and non-beam areas, the arrays of modulators are located in the beam areas, and the arrays of light sensitive elements are located in the non-beam areas and are in communication with the modulators in an adjacent beam area. | 10-27-2011 |
20110261340 | Modulation device and charged particle multi-beamlet lithography system using the same - The invention relates to a charged-particle multi-beamlet lithography system for transferring a pattern onto the surface of a target using a plurality of charged particle beamlets. The system includes a beam generator, a beamlet blanker array, a shielding structure and a projection system. The beam generator is arranged for generating a plurality of charged particle beamlets. The beamlet blanker array is arranged for patterning the plurality of beamlets in accordance with a pattern. The beamlet blanker array comprises a plurality of modulators and a plurality of light sensitive elements, a light sensitive element being arranged to receive pattern data carrying light beams and to convert the light beams into electrical signals. The light sensitive elements are electrically connected to one or more modulators for providing the received pattern data. The shielding structure is of an electrically conductive material for substantially shielding electric fields generated in proximity of the light sensitive elements from the modulators, wherein the shielding structure is arranged to be set at a predetermined potential. The projection system is arranged for projecting the patterned beamlets onto the target surface. | 10-27-2011 |
20120091318 | BEAMLET BLANKER ARRANGEMENT - The invention relates to a charged particle multi-beamlet lithography system for exposing a target using a plurality of beamlets. The system has a beam generator, a beamlet blanker, and a beamlet projector. The beam generator is configured to generate a plurality of charged particle beamlets. The beamlet blanker is configured to pattern the beamlets. The beamlet projector is configured to project the patterned beamlets onto the target surface. The system further has a deflection device. The deflection device has a plurality of memory cells. Each memory cell is provided with a storage element and is connected to a switching electrode of a deflector. | 04-19-2012 |
20120091358 | PROJECTION LENS ARRANGEMENT - The invention relates to a charged particle multi-beamlet system for exposing a target using a plurality of beamlets. The system has a charged particle source, an aperture array, a beamlet manipulator, a beamlet blanker, and an array of projection lens systems. The charged particle source is configured to generate a charged particle beam. The aperture array is configured to define separate beamlets from the generated beam. The beamlet manipulator is configured to converge groups of the beamlets towards a common point of convergence for each group. The beamlet blanker is configured to controllably blank beamlets in the groups of beamlets. Finally, the array of projection lens systems is configured to project unblanked beamlets of the groups of beamlets on to the surface of the target. The beamlet manipulator is further adapted to converge each of the groups of beamlets towards a point corresponding to one of the projection lens systems. | 04-19-2012 |
20120145915 | Lithography system and method of refracting - A charged particle lithography system for transferring a pattern onto the surface of a target, such as a wafer, comprising a charged particle source adapted for generating a diverging charged particle beam, a converging means for refracting said diverging charged particle beam, the converging means comprising a first electrode, and an aperture array element comprising a plurality of apertures, the aperture array element forming a second electrode, wherein the system is adapted for creating an electric field between the first electrode and the second electrode. | 06-14-2012 |
20120145916 | PROJECTION LENS ARRANGEMENT - The invention relates to a charged particle multi-beamlet lithographic system for exposing a target using a plurality of beamlets. The system comprises a beamlet generator for generating a plurality of beamlets, a beamlet blanker for controllably blanking beamlets, and an array of projection lens systems for projecting unblanked beamlets on to the surface of the target. The beamlet generator comprises at least one charged particle source for generating a charged particle beam, a sub-beam generator for defining a plurality of sub-beams from the charged particle beam, a sub-beam manipulator array for influencing the sub-beams, and an aperture array for defining beamlets from the sub-beams. | 06-14-2012 |
20120273658 | MODULATION DEVICE AND CHARGED PARTICLE MULTI-BEAMLET LITHOGRAPHY SYSTEM USING THE SAME - The invention relates to a charged-particle multi-beamlet lithography system. The system comprises a beam generator for generating a plurality of beamlets, a beamlet blanker array for patterning the plurality of beamlets, an optical fiber arrangement, and a projection system. The beamlet blanker array comprises a substrate provided with a first area comprising one or more modulators and a second area free of modulators. The beamlet blanker array comprises one or more light sensitive elements, electrically connected to the one or more modulators, and arranged to receive light beams carrying pattern data. The optical fiber arrangement comprises a plurality of optical fibers for guiding the light beams carrying pattern data towards the one or more light sensitive elements. The projection of the optical fiber arrangement onto a surface of the beamlet blanker array in a direction perpendicular to the surface falls entirely within the second area. | 11-01-2012 |
20120273690 | CHARGED PARTICLE SYSTEM COMPRISING A MANIPULATOR DEVICE FOR MANIPULATION OF ONE OR MORE CHARGED PARTICLE BEAMS - The invention relates to a charged particle system such as a multi beam lithography system, comprising a manipulator device for manipulation of one or more charged particle beams, wherein the manipulator device comprises at least one through opening in the plane of the planar substrate for passing at least one charged particle beam there through. Each through opening is provided with electrodes arranged in a first set of multiple first electrodes along a first part of a perimeter of said through opening and in a second set of multiple second electrodes along a second part of said perimeter. An electronic control circuit is arranged for providing voltage differences the electrodes in dependence of a position of the first and second electrode along the perimeter of the through opening. | 11-01-2012 |
20120292491 | CHARGED PARTICLE BEAM MODULATOR - The invention relates to a charged particle lithography system comprising a beam generator for generating a plurality of charged particle beamlets, a beam stop array and a modulation device. The beam stop array has a surface for blocking beamlets from reaching a target surface and an aperture array in the surface for allowing beamlets to reach the target surface. The modulation device is arranged for modulating the beamlets by deflecting or not deflecting the beamlets so that the beamlets are blocked or not blocked by the beam stop array. A surface area of the modulation device comprises an elongated beam area comprising an array of apertures and associated modulators, and a power interface area for accommodating a power arrangement for powering elements within the modulation device. The power interface area is located alongside a long side of the elongated beam area and extending in a direction substantially parallel thereto. | 11-22-2012 |
20120292524 | CHARGED PARTICLE LITHOGRAPHY SYSTEM WITH APERTURE ARRAY COOLING - A charged particle lithography system for pattern transfer onto a target surface, comprising a beam generator for generating a plurality of beamlets, and a plurality of aperture array elements comprising a first aperture array, a blanker array, a beam stop array, and a projection lens array. Each aperture array element comprises a plurality of apertures arranged in a plurality of groups, wherein the aperture groups of each aperture array element form beam areas distinct and separate from non-beam areas formed between the beam areas and containing no apertures for beamlet passage. The beam areas are aligned to form beam shafts, each comprising a plurality of beamlets, and the non-beam areas are aligned to form non-beam shafts not having beamlets present therein. The first aperture array element is provided with cooling channels in the non-beam areas for transmission of a cooling medium for cooling the array element. | 11-22-2012 |
20140014850 | Charged particle multi-beamlet lithography system with modulation device - The invention relates to a charged particle lithography system for patterning a target. The lithography system has a beam generator for generating a plurality of charged particle beamlets, a beam stop array with a beam-blocking surface provided with an array of apertures; and a modulation device for modulating the beamlets by deflection. The modulation device has a substrate provided with a plurality of modulators arranged in arrays, each modulator being provided with electrodes extending on opposing sides of a corresponding aperture. The modulators are arranged in groups for directing a group of beamlets towards a single aperture in the beam stop array. Individual modulators within each group have an orientation such that a passing beamlet, if blocking is desired, is directed to a blocking position onto the beam stop array. Beamlet blocking positions for different beamlets are substantially homogeneously spread around the corresponding single aperture in the beam stop array. | 01-16-2014 |
20150124229 | Charged particle lithography system and beam generator - The invention relates to a charged particle lithography system for exposing a target. The system includes a charged particle beam generator for generating a charged particle beam; an aperture array ( | 05-07-2015 |
Patent application number | Description | Published |
20100258721 | DARK FIELD DETECTOR FOR USE IN AN ELECTRON MICROSCOPE - The invention relates to a dark-field detector for an electron microscope. The detector comprises a photodiode for detecting the scattered electrons, with an inner electrode and an outer electrode. As a result of the resistive behaviour of the surface layer the current induced by a scattered electron, e.g. holes, are divided over the electrodes, so that a current I | 10-14-2010 |
20130099114 | DETECTOR FOR USE IN A CHARGED PARTICLE APPARATUS - A detector with a Silicon Diode and an amplifier, and a feedback element in the form of, for example, a resistor or a diode, switchably connected to the output of the amplifier. When the feedback element is selected via a switch, the detector operates in a Current Measurement Mode for determining electron current, and when the element is not selected the detector operates in its well-known Pulse Height Measurement Mode for determining the energy of X-ray quanta. | 04-25-2013 |
20130213439 | Holder Assembly for Cooperating with an Environmental Cell and an Electron Microscope - A holder assembly comprises a first and a separable second part, the first part detachable from the second part, the first part comprising a tube and an environmental cell interface and the second part comprising an electron microscope interface, as a result of which the first part can be cleaned at high temperatures without exposing the second part to said high temperature. | 08-22-2013 |
20140084157 | System and Method for Ex Situ Analysis of a Substrate - A method and system for creating an asymmetrical lamella for use in an ex situ TEM, SEM, or STEM procedure is disclosed. The shape of the lamella provides for easy orientation such that a region of interest in the lamella can be placed over a hole in a carbon film providing minimal optical and spectral interference from the carbon film during TEM, SEM, or STEM procedure of chemical analysis. | 03-27-2014 |
20150279615 | Imaging a Sample with Multiple Beams and Multiple Detectors - A multi-beam apparatus for inspecting or processing a sample with a multitude of focused beams uses a multitude of detectors for detecting secondary radiation emitted by the sample when is irradiated by the multitude of beams. Each detector signal comprises information caused by multiple beams, the apparatus equipped with a programmable controller for processing the multitude of detector signals to a multitude of output signals, using weight factors so that each output signal represents information caused by a single beam. The weight factors are dynamic weight factors depending on the scan position of the beams with respect to the detectors and the distance between sample and detectors. | 10-01-2015 |
Patent application number | Description | Published |
20090062115 | AMORPHOUS SILICA-ALUMINA COMPOSITION AND A METHOD OF MAKING AND USING SUCH COMPOSITION - Described is a novel amorphous silica-alumina composition having a high ratio of pore volume contained in large pores to pore volume contained in medium to small pores. The amorphous silica-alumina composition also may have the characteristic of a strong aluminum-NMR penta-coordinated peak representing greater than 30% of the total aluminum and a method of making such novel amorphous silica-alumina composition using a pH swing preparation method. | 03-05-2009 |
20100152033 | AMORPHOUS SILICA-ALUMINA COMPOSITION AND A METHOD OF MAKING AND USING SUCH COMPOSITION - Described is a novel amorphous silica-alumina composition having a high ratio of pore volume contained in large pores to pore volume contained in medium to small pores. The amorphous silica-alumina composition also may have the characteristic of a strong aluminum-NMR penta-coordinated peak representing greater than 30% of the total aluminum and a method of making such novel amorphous silica-alumina composition using a pH swing preparation method. | 06-17-2010 |
20100200462 | SULFUR TOLERANT NOBLE METAL CONTAINING AROMATICS HYDROGENATION CATALYST AND A METHOD OF MAKING AND USING SUCH CATALYST - An aromatics hydrogenation catalyst composition which comprises a noble metal component and a support comprising zirconia, silica, and, optionally, alumina. The catalyst composition is manufactured by co-mulling silica, a zirconium compound, and, optionally, alumina to form a mixture that is formed into a shape, such as by extrusion to form an extrudate, with the shape being calcined and noble metal being incorporated into the shape. The catalyst composition may be used in the saturation of aromatic compounds. | 08-12-2010 |
20110139678 | PROCESS FOR CONVERSION OF PARAFFINIC FEEDSTOCK - The present invention provides a process for the conversion of a paraffinic feedstock that comprises at least 50 wt % of compounds boiling above 370° C. and which has a paraffin content of at least 60 wt %, an aromatics content of below 1 wt %, a naphthenic content below 2 wt % a nitrogen content of below 0.1 wt %, and a sulphur content of below 0.1 wt %, which process comprises the steps of: (a) providing the feedstock to a reaction zone, where it is contacted with hydrogen at a temperature in the range of 175 to 400° C. and a pressure in the range of 20 to 100 bar in the presence of a catalyst comprising 0.005 to 5.0 wt % of a Group 8 noble metal on a carrier, the carrier comprising 0.1-15 wt % of a zeolite beta and at least 40 wt % of an amorphous silica-alumina, calculated on the weight of the catalyst, said zeolite beta having a silica:alumina molar ratio of at least 50, and said amorphous silica-alumina having an alumina content, calculated as Al | 06-16-2011 |
20120065056 | CATALYST COMPOSITION PREPARATION AND USE - A bulk metal oxide catalyst composition of the general formula | 03-15-2012 |