Patent application number | Description | Published |
20150187827 | SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - A semiconductor device includes an epitaxial layer including a first surface and a silicon layer disposed on the first surface and including a second surface opposite to the first surface, wherein the silicon layer includes a plurality of pillars on the second surface, a portion of the plurality of pillars on a predetermined portion of the second surface are in substantially same dimension, each of the plurality of pillars on the predetermined portion of the second surface stands substantially orthogonal to the second surface, the plurality of pillars are configured for absorbing an electromagnetic radiation of a predetermined wavelength projected from the epitaxial layer and generating an electrical energy in response to the absorption of the electromagnetic radiation. | 07-02-2015 |
20150206915 | IMAGE-SENSOR DEVICE AND METHOD OF MANUFACTURING THE SAME - An image-sensor device includes a first semiconductor substrate. The image-sensor device further includes a second semiconductor substrate under the first semiconductor substrate. The first semiconductor substrate has a first dopant concentration less than a second dopant concentration of the second semiconductor substrate. A ratio of a first resistance of the first semiconductor substrate to a second resistance of the second semiconductor substrate is larger than or equal to about 100. The image-sensor device also includes a diffusion layer positioned between the first semiconductor substrate and the second semiconductor substrate. A ratio of a first thickness of the diffusion layer to a second thickness of the first semiconductor substrate ranges from about 0.1 to about 1. | 07-23-2015 |
20150279885 | CMOS IMAGE SENSOR STRUCTURE - A semiconductor device is operated for sensing incident light and includes a substrate, a device layer, a semiconductor layer and a color filter layer. The device layer is disposed on the substrate and includes light-sensing regions. The semiconductor layer overlies the device layer and has a first surface and a second surface opposite to the first surface. The first surface is adjacent to the device layer. The semiconductor layer includes microstructures on the second surface. The color filter layer is disposed on the second surface of the semiconductor layer. | 10-01-2015 |
20150287761 | SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - A semiconductor device includes a substrate including a front side, a back side opposite to the front side, and a high absorption structure disposed over the back side of the substrate and configured to absorb an electromagnetic radiation in a predetermined wavelength; and a dielectric layer including a high dielectric constant (high k) dielectric material, wherein the dielectric layer is disposed on the high absorption structure. | 10-08-2015 |
Patent application number | Description | Published |
20140164770 | ADVANCED METERING INFRASTRUCTURE NETWORK SYSTEM AND MESSAGE BROADCASTING METHOD - An advanced metering infrastructure (AMI) server, an AMI network node, an AMI network system and a message broadcasting method thereof are provided. The AMI server generates a broadcasting key from a broadcasting message through a hash function, encrypts the broadcasting message into an encrypted broadcasting message via the broadcasting key, encrypts the broadcasting key into an encrypted key via a symmetric key, and transmits the encrypted broadcasting message and the encrypted key to the AMI network node. The AMI network node decrypts the encrypted key into the broadcasting key via the symmetric key, decrypts the encrypted broadcasting message into the broadcasting message via the broadcasting key, and processes the broadcasting message after determining that the broadcasting message corresponds to the broadcasting key through the hash function. | 06-12-2014 |
20150149771 | BLOCK ENCRYPTION METHOD AND BLOCK DECRYPTION METHOD HAVING INTEGRITY VERIFICATION - An encryption method and decryption method are provided. The encryption method divides an electronic file into a plurality of message blocks, wherein the message blocks have a sequence. The encryption method sets a checking vector as the last message block. The encryption method performs the following steps on each message block according to the sequence: generating an input block, deriving an output block by encrypting the input block by an encryption key, and deriving an encrypted block by applying XOR operation to the output block and the previous message block, wherein the input block is equivalent to applying XOR operation to the message block, the output block corresponding to the previous message block, and the message block before the previous one. The encryption method generates an electronic encrypted file by concatenating the encrypted blocks. The decryption method performs a series of operations corresponding to the above operations. | 05-28-2015 |