Patent application number | Description | Published |
20140027908 | Integrated Circuit Interconnects and Methods of Making Same - A copper alloy layer is blanket deposited over a low k dielectric layer and in via openings within the low k dielectric layer. The blanket deposited layer is then anisotropically etch to form horizontal interconnects. The interconnects are annealed to form a metal oxide barrier lining. A second low k dielectric layer is then depositing over the horizontal interconnects. Air gaps can be formed between adjacent interconnects to lower parasitic capacitance therebetween. | 01-30-2014 |
20140065816 | DIELECTRIC FORMATION - Among other things, one or more techniques for forming a low k dielectric around a metal line during an integrated circuit (IC) fabrication process are provided. In an embodiment, a metal line is formed prior to forming a surrounding low k dielectric layer around the metal line. In an embodiment, the metal line is formed by filling a trench space in a skeleton layer with metal. In this embodiment, the skeleton layer is removed to form a dielectric space in a different location than the trench space. The dielectric space is then filled with a low k dielectric material to form a surrounding low k dielectric layer around the metal line. In this manner, damage to the surrounding low k dielectric layer, that would otherwise occur if the surrounding low k dielectric layer was etched, for example, is mitigated. | 03-06-2014 |
20140131312 | Lithography Process Using Directed Self Assembly - A method includes forming a patterned hard mask layer, with a trench formed in the patterned hard mask layer. A Bulk Co-Polymer (BCP) coating is dispensed in the trench, wherein the BCP coating includes Poly-Styrele (PS) and Poly Methyl Metha Crylate (PMMA). An annealing is performed on the BCP coating to form a plurality of PS strips and a plurality of PMMA strips allocated in an alternating layout. The PMMA strips are selectively etched, with the PS strips left in the trench. | 05-15-2014 |
20140138801 | SEMICONDUCTOR PATTERNING - One or more techniques or systems for forming a pattern during semiconductor fabrication are provided herein. In some embodiments, a photo resist (PR) region is patterned and a spacer region is formed above or surrounding at least a portion of the patterned PR region. Additionally, at least some of the spacer region and the patterned PR region are removed to form one or more spacers. Additionally, a block co-polymer (BCP) is filled between the spacers. In some embodiments, the BCP comprises a first polymer and a second polymer. In some embodiments, the second polymer is removed, thus forming a pattern comprising the first polymer and the spacers. In this manner, a method for forming a pattern during semiconductor fabrication is provided, such that a width of the spacer or the first polymer is controlled. | 05-22-2014 |
20140252628 | INTERCONNECT STRUCTURE AND METHODS OF MAKING SAME - A method for forming a semiconductor interconnect structure comprises forming a dielectric layer on a substrate and patterning the dielectric layer to form an opening therein. The opening is filled and the dielectric layer is covered with a metal layer having a first etch rate. The metal layer is thereafter planarized so that the metal layer is co-planar with the top of the dielectric layer. The metal layer is annealed to change the first etch rate into a second etch rate, the second etch rate being lower than the first etch rate. A copper-containing layer is formed over the annealed metal layer and the dielectric layer. The copper-containing layer has an etch rate greater than the second etch rate of the annealed metal layer. The copper-containing layer is etched to form interconnect features, wherein the etching stops at the top of the annealed metal layer and does not etch thereunder. | 09-11-2014 |
20150155184 | SEMICONDUCTOR PATTERNING - One or more techniques or systems for forming a pattern during semiconductor fabrication are provided herein. In some embodiments, a photo resist (PR) region is patterned and a spacer region is formed above or surrounding at least a portion of the patterned PR region. Additionally, at least some of the spacer region and the patterned PR region are removed to form one or more spacers. Additionally, a block co-polymer (BCP) is filled between the spacers. In some embodiments, the BCP comprises a first polymer and a second polymer. In some embodiments, the second polymer is removed, thus forming a pattern comprising the first polymer and the spacers. In this manner, a method for forming a pattern during semiconductor fabrication is provided, such that a width of the spacer or the first polymer is controlled. | 06-04-2015 |
20150255389 | Integrated Circuit Interconnects and Methods of Making Same - A copper alloy layer is blanket deposited over a low k dielectric layer and in via openings within the low k dielectric layer. The blanket deposited layer is then anisotropically etch to form horizontal interconnects. The interconnects are annealed to form a metal oxide barrier lining. A second low k dielectric layer is then depositing over the horizontal interconnects. Air gaps can be formed between adjacent interconnects to lower parasitic capacitance therebetween. | 09-10-2015 |
20150340283 | INTERCONNECT STRUCTURE AND METHODS OF MAKING SAME - A method of manufacturing a semiconductor interconnect structure may include forming a low-k dielectric layer over a substrate and forming an opening in the low-k dielectric layer, where the opening exposes a portion of the substrate. The method may also include filling the opening with a copper alloy and forming a copper-containing layer over the copper alloy and the low-k dielectric layer. An etch rate of the copper-containing layer may be greater than an etch rate of the copper alloy. The method may additionally include patterning the copper-containing layer to form interconnect features over the low-k dielectric layer and the copper alloy. | 11-26-2015 |