Patent application number | Description | Published |
20120137119 | Disabling Communication in a Multiprocessor System - Disabling communication in a multiprocessor fabric. The multiprocessor fabric may include a plurality of processors and a plurality of communication elements and each of the plurality of communication elements may include a memory. A configuration may be received for the multiprocessor fabric, which specifies disabling of communication paths between one or more of: one or more processors and one or more communication elements; one or more processors and one or more other processors; or one or more communication elements and one or more other communication elements. Accordingly, the multiprocessor fabric may be automatically configured in hardware to disable the communication paths specified by the configuration. The multiprocessor fabric may be operated to execute a software application according to the configuration. | 05-31-2012 |
20140143470 | Processing System With Interspersed Processors DMA-FIFO - Embodiments of a multi-processor array are disclosed that may include a plurality of processors, local memories, configurable communication elements, and direct memory access (DMA) engines, and a DMA controller. Each processor may be coupled to one of the local memories, and the plurality of processors, local memories, and configurable communication elements may be coupled together in an interspersed arrangement. The DMA controller may be configured to control the operation of the plurality of DMA engines. | 05-22-2014 |
20140143520 | Processing System With Interspersed Processors With Multi-Layer Interconnect - Embodiments of a multi-processor array are disclosed that may include a plurality of processors and configurable communication elements coupled together in a interspersed arrangement. Each configurable communication element may include a local memory and a plurality of routing engines. The local memory may be coupled to a subset of the plurality of processors. Each routing engine may be configured to receive one or more messages from a plurality of sources, assign each received message to a given destination of a plurality of destinations dependent upon configuration information, and forward each message to assigned destination. The plurality of destinations may include the local memory, and routing engines included in a subset of the plurality of configurable communication elements. | 05-22-2014 |
20140167825 | MULTI-FREQUENCY CLOCK SKEW CONTROL FOR INTER-CHIP COMMUNICATION IN SYNCHRONOUS DIGITAL SYSTEMS - Embodiments are disclosed of a multi-chip apparatus capable of performing multi-rate synchronous communication between component chips. Each chip may receive a common clock reference signal, and may generate an internal clock signal dependent on the clock reference signal. A clock distribution tree and phase-locked loop may be used to minimize internal clock skew at I/O circuitry at the chip perimeter. Each chip may also generate an internal synchronizing signal that is phase-aligned to the received clock reference signal. Each chip may use its respective synchronizing signal to synchronize multiple clock dividers that provide software-selectable reduced-frequency clock signals to the I/O cells of the chip. In this way, the reduced-frequency clock signals of the multiple chips are edge-aligned to the low-skew internal clock signals, and phase-aligned to the common clock reference signal, allowing the I/O cells of the multiple chips to perform synchronous communication at multiple rates with low clock skew. | 06-19-2014 |
20140173161 | MULTIPROCESSOR SYSTEM WITH IMPROVED SECONDARY INTERCONNECTION NETWORK - Embodiments of a multiprocessor system are disclosed that may include a plurality of processors interspersed with a plurality of data memory routers, a plurality of bus interface units, a bus control circuit, and a processor interface circuit. The data memory routers may be coupled together to form a primary interconnection network. The bus interface units and the bus control circuit may be coupled together in a daisy-chain fashion to form a secondary interconnection network. Each of the bus interface units may be configured to read or write data or instructions to a respective one of the plurality of data memory routers and a respective processor. The bus control circuit coupled with the processor interface circuit may be configured to function as a bidirectional bridge between the primary and secondary networks. The bus control circuit may also couple to other interface circuits and arbitrate their access to the secondary network. | 06-19-2014 |
20140173321 | CLOCK DISTRIBUTION NETWORK FOR MULTI-FREQUENCY MULTI-PROCESSOR SYSTEMS - Embodiments of a synchronous digital system are disclosed that may include generation of clock and synchronization signals. Any of a plurality of available clock signals may be selected for use as a primary clock, without causing clock-induced errors in the synchronous digital system. The clock signals may be selected automatically or programmatically. Clock generation circuitry may generate a clock signal that is initially used as the primary clock. The clock generation circuitry may be dynamically reconfigured without interrupting operation of the synchronous digital system, by first selecting another of the available clock signals for use as the primary clock. | 06-19-2014 |
20140173324 | AUTOMATIC SELECTION OF ON-CHIP CLOCK IN SYNCHRONOUS DIGITAL SYSTEMS - Embodiments of a synchronous digital system are disclosed that may include generation of clock and synchronization signals. Any of a plurality of available clock signals may be selected for use as a primary clock, without causing clock-induced errors in the synchronous digital system. A clock signal generated on-chip with the synchronous digital system may be automatically selected in response to detecting a condition indicating that use of a local clock may be necessary. Such conditions may include detection of tampering with the synchronous digital system. If an indication of tampering is detected, security measures may be performed. | 06-19-2014 |
20140351551 | MEMORY-NETWORK PROCESSOR WITH PROGRAMMABLE OPTIMIZATIONS - Various embodiments are disclosed of a multiprocessor system with processing elements optimized for high performance and low power dissipation and an associated method of programming the processing elements. Each processing element may comprise a fetch unit and a plurality of address generator units and a plurality of pipelined datapaths. The fetch unit may be configured to receive a multi-part instruction, wherein the multi-part instruction includes a plurality of fields. A first address generator unit may be configured to perform an arithmetic operation dependent upon a first field of the plurality of fields. A second address generator unit may be configured to generate at least one address of a plurality of addresses, wherein each address is dependent upon a respective field of the plurality of fields. A parallel assembly language may be used to control the plurality of address generator units and the plurality of pipelined datapaths. | 11-27-2014 |
20150026451 | Multiprocessor Fabric Having Configurable Communication that is Selectively Disabled for Secure Processing - Disabling communication in a multiprocessor fabric. The multiprocessor fabric may include a plurality of processors and a plurality of communication elements and each of the plurality of communication elements may include a memory. A configuration may be received for the multiprocessor fabric, which specifies disabling of communication paths between one or more of: one or more processors and one or more communication elements; one or more processors and one or more other processors; or one or more communication elements and one or more other communication elements. Accordingly, the multiprocessor fabric may be automatically configured in hardware to disable the communication paths specified by the configuration. The multiprocessor fabric may be operated to execute a software application according to the configuration. | 01-22-2015 |
20150162920 | MULTI-FREQUENCY CLOCK SKEW CONTROL FOR INTER-CHIP COMMUNICATION IN SYNCHRONOUS DIGITAL SYSTEMS - Embodiments are disclosed of an apparatus capable of performing multi-rate synchronous communication between component chips. Each chip may receive a common clock reference signal, and may generate an internal clock signal dependent on the clock reference signal. A clock distribution tree and phase-locked loop may be used to minimize internal clock skew at I/O circuitry at the chip perimeter. Each chip may also generate an internal synchronizing signal that is phase-aligned to the received clock reference signal. Each chip may use its respective synchronizing signal to synchronize multiple clock dividers that provide software-selectable adjusted-frequency clock signals to the I/O cells of the chip. In this way, the adjusted-frequency clock signals of the multiple chips are edge-aligned to the low-skew internal clock signals, and phase-aligned to the common clock reference signal, allowing the I/O cells of the multiple chips to perform synchronous communication at multiple rates with low clock skew. | 06-11-2015 |