Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Trawick

John D. Trawick, San Diego, CA US

Patent application numberDescriptionPublished
20110003344METHODS AND ORGANISMS FOR UTILIZING SYNTHESIS GAS OR OTHER GASEOUS CARBON SOURCES AND METHANOL - The invention provides a non-naturally occurring microbial organism having an acetyl-CoA pathway and the capability of utilizing syngas or syngas and methanol. In one embodiment, the invention provides a non-naturally occurring microorganism, comprising one or more exogenous proteins conferring to the microorganism a pathway to convert CO, CO01-06-2011
20110045575MICROORGANISMS FOR THE PRODUCTION OF 1,4-BUTANEDIOL AND RELATED METHODS - The invention provides non-naturally occurring microbial organisms comprising a 1,4-butanediol (BDO) pathway comprising at least one exogenous nucleic acid encoding a BDO pathway enzyme expressed in a sufficient amount to produce BDO and further optimized for expression of BDO. The invention additionally provides methods of using such microbial organisms to produce BDO.02-24-2011
20110195461METHODS AND ORGANISMS FOR UTILIZING SYNTHESIS GAS OR OTHER GASEOUS CARBON SOURCES AND METHANOL - The invention provides a non-naturally occurring microbial organism having an acetyl-CoA pathway and the capability of utilizing syngas or syngas and methanol. In one embodiment, the invention provides a non-naturally occurring microorganism, comprising one or more exogenous proteins conferring to the microorganism a pathway to convert CO, CO08-11-2011
20110223637METHODS AND ORGANISMS FOR UTILIZING SYNTHESIS GAS OR OTHER GASEOUS CARBON SOURCES AND METHANOL - The invention provides a non-naturally occurring microbial organism having an acetyl-CoA pathway and the capability of utilizing syngas or syngas and methanol. In one embodiment, the invention provides a non-naturally occurring microorganism, comprising one or more exogenous proteins conferring to the microorganism a pathway to convert CO, CO09-15-2011
20120225463MICROORGANISMS FOR THE PRODUCTION OF 1,4-BUTANEDIOL AND RELATED METHODS - The invention provides non-naturally occurring microbial organisms comprising a 1,4-butanediol (BDO) pathway comprising at least one exogenous nucleic acid encoding a BDO pathway enzyme expressed in a sufficient amount to produce BDO and further optimized for expression of BDO. The invention additionally provides methods of using such microbial organisms to produce BDO.09-06-2012
20130071883METHODS AND ORGANISMS FOR UTILIZING SYNTHESIS GAS OR OTHER GASEOUS CARBON SOURCES AND METHANOL - The invention provides a non-naturally occurring microbial organism having an acetyl-CoA pathway and the capability of utilizing syngas or syngas and methanol. In one embodiment, the invention provides a non-naturally occurring microorganism, comprising one or more exogenous proteins conferring to the microorganism a pathway to convert CO, CO03-21-2013
20150024468METHODS AND ORGANISMS FOR UTILIZING SYNTHESIS GAS OR OTHER GASEOUS CARBON SOURCES AND METHANOL - The invention provides a non-naturally occurring microbial organism having an acetyl-CoA pathway and the capability of utilizing syngas or syngas and methanol. In one embodiment, the invention provides a non-naturally occurring microorganism, comprising one or more exogenous proteins conferring to the microorganism a pathway to convert CO, CO01-22-2015

Patent applications by John D. Trawick, San Diego, CA US

John D. Trawick, La Mesa, CA US

Patent application numberDescriptionPublished
20090191593METHODS AND ORGANISMS FOR UTILIZING SYNTHESIS GAS OR OTHER GASEOUS CARBON SOURCES AND METHANOL - The invention provides a non-naturally occurring microbial organism having an acetyl-CoA pathway and the capability of utilizing syngas or syngas and methanol. In one embodiment, the invention provides a non-naturally occurring microorganism, comprising one or more exogenous proteins conferring to the microorganism a pathway to convert CO, CO07-30-2009
20100304453MICROORGANISMS AND METHODS FOR CONVERSION OF SYNGAS AND OTHER CARBON SOURCES TO USEFUL PRODUCTS - A non-naturally occurring microbial organism having an isopropanol, 4-hydroxybutryate, or 1,4-butanediol pathway includes at least one exogenous nucleic acid encoding an isopropanol, 4-hydroxybutryate, or 1,4-butanediol pathway enzyme expressed in a sufficient amount to produce isopropanol, 4-hydroxybutryate, or 1,4-butanediol. The aforementioned organisms are cultured to produce isopropanol, 4-hydroxybutryate, or 1,4-butanediol.12-02-2010
20110129899MICROORGANISMS FOR THE PRODUCTION OF 1,4-BUTANEDIOL, 4-HYDROXYBUTANAL, 4-HYDROXYBUTYRYL-COA, PUTRESCINE AND RELATED COMPOUNDS, AND METHODS RELATED THERETO - The invention provides non-naturally occurring microbial organisms comprising a 1,4-butanediol (BDO), 4-hydroxybutyryl-CoA, 4-hydroxybutanal or putrescine pathway comprising at least one exogenous nucleic acid encoding a BDO, 4-hydroxybutyryl-CoA, 4-hydroxybutanal or putrescine pathway enzyme expressed in a sufficient amount to produce BDO, 4-hydroxybutyryl-CoA, 4-hydroxybutanal or putrescine and further optimized for expression of BDO. The invention additionally provides methods of using such microbial organisms to produce BDO, 4-hydroxybutyryl-CoA, 4-hydroxybutanal or putrescine.06-02-2011
20110217742MICROORGANISMS AND METHODS FOR THE COPRODUCTION 1,4-BUTANEDIOL AND GAMMA-BUTYROLACTONE - The invention provides non-naturally occurring microbial organisms comprising 1,4-butanediol (14-BDO) and gamma-butyrolactone (GBL) pathways comprising at least one exogenous nucleic acid encoding a 14-BDO and GBL pathway enzyme expressed in a sufficient amount to produce 14-BDO and GBL. The invention additionally provides methods of using such microbial organisms to produce 14-BDO and GBL.09-08-2011
20110229946MICROORGANISMS FOR THE PRODUCTION OF 1,4-BUTANEDIOL, 4-HYDROXYBUTANAL, 4-HYDROXYBUTYRYL-COA, PUTRESCINE AND RELATED COMPOUNDS, AND METHODS RELATED THERETO - The invention provides non-naturally occurring microbial organisms comprising a 1,4-butanediol (BDO), 4-hydroxybutyryl-CoA, 4-hydroxybutanal or putrescine pathway comprising at least one exogenous nucleic acid encoding a BDO, 4-hydroxybutyryl-CoA, 4-hydroxybutanal or putrescine pathway enzyme expressed in a sufficient amount to produce BDO, 4-hydroxybutyryl-CoA, 4-hydroxybutanal or putrescine and further optimized for expression of BDO. The invention additionally provides methods of using such microbial organisms to produce BDO, 4-hydroxybutyryl-CoA, 4-hydroxybutanal or putrescine.09-22-2011
20120208249MICROORGANISMS AND METHODS FOR CONVERSION OF SYNGAS AND OTHER CARBON SOURCES TO USEFUL PRODUCTS - A non-naturally occurring microbial organism having an isopropanol, 4-hydroxybutryate, or 1,4-butanediol pathway includes at least one exogenous nucleic acid encoding an isopropanol, 4-hydroxybutryate, or 1,4-butanediol pathway enzyme expressed in a sufficient amount to produce isopropanol, 4-hydroxybutryate, or 1,4-butanediol. The aforementioned organisms are cultured to produce isopropanol, 4-hydroxybutryate, or 1,4-butanediol.08-16-2012
20130029381MICROORGANISMS FOR THE PRODUCTION OF 1,4-BUTANEDIOL, 4-HYDROXYBUTANAL, 4-HYDROXYBUTYRYL-COA, PUTRESCINE AND RELATED COMPOUNDS, AND METHODS RELATED THERETO - The invention provides non-naturally occurring microbial organisms comprising a 1,4-butanediol (BDO), 4-hydroxybutyryl-CoA, 4-hydroxybutanal or putrescine pathway comprising at least one exogenous nucleic acid encoding a BDO, 4-hydroxybutyryl-CoA, 4-hydroxybutanal or putrescine pathway enzyme expressed in a sufficient amount to produce BDO, 4-hydroxybutyryl-CoA, 4-hydroxybutanal or putrescine and further optimized for expression of BDO. The invention additionally provides methods of using such microbial organisms to produce BDO, 4-hydroxybutyryl-CoA, 4-hydroxybutanal or putrescine.01-31-2013
20130189751MICROORGANISMS FOR THE PRODUCTION OF 1,4-BUTANEDIOL, 4-HYDROXYBUTANAL, 4-HYDROXYBUTYRYL-COA, PUTRESCINE AND RELATED COMPOUNDS, AND METHODS RELATED THERETO - The invention provides non-naturally occurring microbial organisms comprising a 1,4-butanediol (BDO), 4-hydroxybutyryl-CoA, 4-hydroxybutanal or putrescine pathway comprising at least one exogenous nucleic acid encoding a BDO, 4-hydroxybutyryl-CoA, 4-hydroxybutanal or putrescine pathway enzyme expressed in a sufficient amount to produce BDO, 4-hydroxybutyryl-CoA, 4-hydroxybutanal or putrescine and further optimized for expression of BDO. The invention additionally provides methods of using such microbial organisms to produce BDO, 4-hydroxybutyryl-CoA, 4-hydroxybutanal or putrescine.07-25-2013
20140030779MICROORGANISMS AND METHODS FOR PRODUCTION OF 4-HYDROXYBUTYRATE, 1,4-BUTANEDIOL AND RELATED COMPOUNDS - The invention provides non-naturally occurring microbial organisms having a 4-hydroxybutyrate pathway and being capable of producing 4-hydroxybutyrate, wherein the microbial organism comprises one or more genetic modifications. The invention additionally provides methods of producing 4-hydroxybutyrate or related products using the microbial organisms.01-30-2014
20140147900MICROORGANISMS AND METHODS FOR CONVERSION OF SYNGAS AND OTHER CARBON SOURCES TO USEFUL PRODUCTS - A non-naturally occurring microbial organism having an isopropanol, 4-hydroxybutryate, or 1,4-butanediol pathway includes at least one exogenous nucleic acid encoding an isopropanol, 4-hydroxybutryate, or 1,4-butanediol pathway enzyme expressed in a sufficient amount to produce isopropanol, 4-hydroxybutryate, or 1,4-butanediol. The aforementioned organisms are cultured to produce isopropanol, 4-hydroxybutryate, or 1,4-butanediol.05-29-2014
20140162327MICROORGANISMS AND METHODS FOR THE COPRODUCTION 1,4-BUTANEDIOL AND GAMMA-BUTYROLACTONE - The invention provides non-naturally occurring microbial organisms comprising 1,4-butanediol (14-BDO) and gamma-butyrolactone (GBL) pathways comprising at least one exogenous nucleic acid encoding a 14-BDO and GBL pathway enzyme expressed in a sufficient amount to produce 14-BDO and GBL. The invention additionally provides methods of using such microbial organisms to produce 14-BDO and GBL.06-12-2014
20140371417MICROORGANISMS AND METHODS FOR PRODUCTION OF 4-HYDROXYBUTYRATE, 1,4-BUTANEDIOL AND RELATED COMPOUNDS - The invention provides non-naturally occurring microbial organisms having a 4-hydroxybutyrate, gamma-butyrolactone, 1,4-butanediol, 4-hydroxybutanal, 4-hydroxybutyryl-CoA and/or putrescine pathway and being capable of producing 4-hydroxybutyrate, wherein the microbial organism comprises one or more genetic modifications. The invention additionally provides methods of producing 4-hydroxybutyrate, gamma-butyrolactone, 1,4-butanediol, 4-hydroxybutanal, 4-hydroxybutyryl-CoA and/or putrescine or related products using the microbial organisms.12-18-2014
20150148513MICROORGANISMS AND METHODS FOR PRODUCTION OF 4-HYDROXYBUTYRATE, 1,4-BUTANEDIOL AND RELATED COMPOUNDS - The invention provides non-naturally occurring microbial organisms having a 4-hydroxybutyrate, 1,4-butanediol, or other product pathway and being capable of producing 4-hydroxybutyrate, 1,4-butanediol, or other product, wherein the microbial organism comprises one or more genetic modifications. The invention additionally provides methods of producing 4-hydroxybutyrate, 1,4-butanediol, or other product or related products using the microbial organisms.05-28-2015

Patent applications by John D. Trawick, La Mesa, CA US

Julius C. Trawick, Pensacola, FL US

Patent application numberDescriptionPublished
20150159455System and method to stop underwater oil well leaks - System for stopping underwater oil leaks, in which the leaking oil may be stopped by a magnetic material/electromagnet plate through which there is an opening connected to a hose or pressurized line through which a gas or liquid is forced. The magnetic material/electromagnet plate is adhered to a caisson, charged electrically if need be, and a gas or liquid, under pressure, is used to force expansion of the closed-end of the bladder/ballon to form a rigid inflated balloon/bladder that plugs the opening, thereby shutting off the leak until the caisson break can be repaired.06-11-2015

Mary L. Trawick, Woodway, TX US

Patent application numberDescriptionPublished
20130296605Compositions and Methods for Inhibition of Cathepsins - This invention is directed to compound of Formula I and methods of using these compounds in the treatment of conditions in which modulation of a cathepsin, particularly cathepsin K or cathepsin L, will be therapeutically useful.11-07-2013
20150031915Compositions and Methods for Inhibition of Cathepsins - This invention is directed to compound of Formula I and methods of using these compounds in the treatment of conditions in which modulation of a cathepsin, particularly cathepsin K or cathepsin L, will be therapeutically useful.01-29-2015

Mary Lynn Trawick, Woodway, TX US

Patent application numberDescriptionPublished
20090076076INHIBITORS OF CYSTEINE PROTEASES AND METHODS OF USE THEREOF - The present invention relates to semicarbazone or thiosemicarbazone inhibitors of cysteine proteases and methods of using such compounds to prevent and treat protozoan infections such as trypanosomiasis, malaria and leishmaniasis. The compounds also find use in inhibiting cysteine proteases associated with carcinogenesis, including cathepsins B and L.03-19-2009

Roy H. Trawick, Murray, UT US

Patent application numberDescriptionPublished
20150223803MENISCAL REPAIR DEVICE - An implant for repairing tears in soft tissue, such as a meniscus, may include a lead anchoring member and a trailing anchoring member interlaced by a looped strand member. The lead anchoring member and the trailing anchoring member may be formed of a suture material having a diameter greater than a diameter of the strand member. The lead anchoring member and the trailing anchoring member may deform into a suture mass in response to a lead of the strand member being placed under tension to thereby cinch the looped portion. A self-locking locking knot may prevent loosening of the looped portion.08-13-2015
Website © 2015 Advameg, Inc.