Patent application number | Description | Published |
20080220805 | POWER CONTROL MESSAGING SCHEME - In a power control messaging scheme for wireless communication, a wireless node sends vectorized information to another wireless node that uses the information to control its transmit power. In some aspects, the vectorized information may relate to interference observed at a wireless node. In some aspects, the vectorized information may relate to power adjustment offsets. In some aspects, the information may be vectorized based on one or more of different quality of service classes, different assignments within a frame, different permutation zones, different channel differences, different locations of a wireless node, different channel types, different other sector interference values, and different assignment sizes. In some aspects, a wireless node transmits a power control message via an uplink map in an assignment message. | 09-11-2008 |
20080225792 | MULTIPLEXING OF FEEDBACK CHANNELS IN A WIRELESS COMMUNICATION SYSTEM - Techniques for sending signaling in a wireless communication system are described. Multiple feedback channels may be multiplexed such that they can share time frequency resources. Each feedback channel may be allocated a different subset of subcarriers in each of at least one tile. In one design, a subscriber station may determine time frequency resources including first and second portions of time frequency resources for first and second feedback channels, respectively. The subscriber station may send vectors of modulation symbols of a first length on the first feedback channel and/or vectors of modulation symbols of a second length on the second feedback channel. A base station may receive the first and second feedback channels and may perform detection on vectors of received symbols for each feedback channel to recover the signaling sent on that feedback channel. | 09-18-2008 |
20080227386 | PILOT TRANSMISSION BY RELAY STATIONS IN A MULTIHOP RELAY COMMUNICATION SYSTEM - Techniques to support multihop relay in a wireless communication system are described. In an aspect, a relay station receives data and a first pilot from an upstream station, e.g., a base station or another relay station. The relay station derives a channel estimate based on the first pilot and performs detection for the data based on the channel estimate. The relay station resends the data and sends a second pilot to a downstream station, e.g., a subscriber station or another relay station. Each pilot may be sent in accordance with a pilot format selected for that pilot. The first and second pilots may be sent using the same or different pilot formats. The relay station may receive channel information from the second station and may forward the channel information to the first station and/or select a rate for data transmission to the second station based on the channel information. | 09-18-2008 |
20080227461 | DATA TRANSMISSION AND POWER CONTROL IN A MULTIHOP RELAY COMMUNICATION SYSTEM - Techniques for transmitting data with distributed and centralized scheduling in a multihop relay communication system are described. For distributed scheduling, a relay station may generate and send first channel quality information (CQI) to a base station and receive second CQI from a subscriber station. The relay station may receive data sent by the base station based on the first CQI and may resend the data to the subscriber station based on the second CQI. For centralized scheduling, the relay station may generate first CQI for the base station, receive second CQI from the subscriber station, and send both CQIs to the base station. The relay station may receive data sent by the base station based on the first CQI and may resend the data to the subscriber station based on a scheduling decision determined based on the second CQI. Techniques for distributed and centralized power control are also described. | 09-18-2008 |
20080227477 | POWER CONTROL METHOD AND APPARATUS - Power control for wireless communication may involve determining the transmit power to be used by a wireless device. A wireless device using open loop power control may select a transmit power based on an open loop power equation where a parameter of the power equation may be based on one or more power control messages received from another wireless device. In some aspects, path loss may be estimated for open loop power control and a value for Offset_BS | 09-18-2008 |
20080227481 | SIGNALING TRANSMISSION AND RECEPTION IN WIRELESS COMMUNICATION SYSTEMS - Techniques for sending and receiving signaling in a wireless communication system are described. Multiple (e.g., eight) vectors of modulation symbols may be defined and may be orthogonal to one another. Multiple subscriber stations may share transmission resources and may simultaneously send different vectors of modulation symbols in the same tile. Each subscriber station may be assigned multiple sets of at least one vector of modulation symbols usable by that subscriber station to convey signaling, e.g., one set of three vectors for acknowledgement (ACK) and another set of three vectors for negative acknowledgement (NAK). Each subscriber station may send one set of at least one vector in at least one tile to convey a signaling value. Different subscriber stations may simultaneously send different sets of at least one vector in the at least one tile to convey their signaling values. | 09-18-2008 |
20080253319 | RESTRICTIVE REUSE FOR A WIRELESS COMMUNICATION SYSTEM - For restrictive reuse, each cell (or each sector) is assigned (1) a set of usable subbands that may be allocated to users in the cell and (2) a set of forbidden subbands that is not used. The usable and forbidden sets for each cell are orthogonal to one other. The usable set for each cell also overlaps the forbidden set for each neighboring cell. A user u in a cell x may be allocated subbands in the usable set for that cell. If user u observes/causes high level of interference from/to a neighboring cell y, then user u may be allocated subbands from a “restricted” set containing subbands included in both the usable set for cell x and the forbidden set for cell y. User u would then observe/cause no interference from/to cell y. The subband restriction may be extended to avoid interference from multiple neighboring cells. | 10-16-2008 |
20090022178 | METHODS AND SYSTEMS FOR ADAPTIVE TRANSMISSION OF CONTROL INFORMATION IN A WIRELESS COMMUNICATION SYSTEM - A method for adaptive transmission of control information in a wireless communication system may include generating a control segment carrying control information. The control segment may have a configurable size. The method may also include generating a pointer for the control segment. The pointer may indicate a location of the control segment in a downlink subframe. The pointer may also indicate a size of the control segment. The method may also include sending the pointer and the control segment. | 01-22-2009 |
20090075596 | ADAPTIVE DISTRIBUTED FREQUENCY PLANNING - Systems and methodologies are described that facilitate employing distributed frequency planning and reuse factor optimization based upon forward link and/or reverse link interference management techniques. An optimal reuse factor for a base station can be determined based upon a metric that evaluates levels of service associated with neighboring base stations. Moreover, a subset of available resource sets can be selected for use by the base station; thus, a base station specific collection of resource sets can be formed through such selection. Further, mappings of each resource set to a set of physical resources can be disseminated in a network or portion thereof. According to another example, frequency hopping can be constrained to use of resources within a resource set (rather than across more than one resource set) as provided in a base station specific hopping pattern. | 03-19-2009 |
20090116389 | RESOURCE SCALING IN WIRELESS COMMUNICATION SYSTEMS - Systems and methodologies are described that facilitate resource scaling for inter-access point fairness in a wireless communication system. As described herein, an offered load of an access point can be determined based on one or more loading metrics relating to associated terminals, throughput, data rate, quality of service (QoS), or the like. Based on the determined offered load of an access point, resources used by the access point and/or power utilized for communication over those resources can be scaled based on a comparison of the offered load of the access point to a nominal or default offered load. Centralized techniques for resource scaling are described herein, wherein one or more centralized controllers coordinate resource scaling with respective access points via backhaul messaging. In addition, distributed techniques for resource scaling are described herein, wherein neighboring access points communicate with each other via over-the-air messaging to determine a local optimal resource apportionment. | 05-07-2009 |
20090149140 | POWER CONTROL UTILIZING MULTIPLE RATE INTERFERENCE INDICATIONS - Systems and methodologies are described that facilitate mitigation of interference in a wireless communication environment. Terminals can utilize interference information provided by neighboring sectors to adjust transmit power and reduce interference. Access points can provide two sets or types of interference information. The first type can be transmitted over a large coverage area, requiring significant overhead and limiting the transmission rate. Access points can also provide a second set or type of interference information directed at smaller coverage area, such as an area proximate to the edge of the supported sector. This second type of interference information can be utilized by terminals that include the access point within their active set. The second set of interference information can be provided at a higher rate than the first set due to decreased overhead requirements. Terminals can utilize both sets of interference information to adjust transmit power. | 06-11-2009 |
20090161606 | METHOD AND APPARATUS FOR IMPROVING PERFORMANCE OF ERASURE SEQUENCE DETECTION - Attributes of access terminals are employed in determining durations for erasure sequences. Transmissions from access terminals are analyzed to determine different attributes are based at least ont these attributes traffic models are estimated. Those terminals whose traffic models tend towards more frequent occurrences of longer erasures are assigned longer erasure durations to improve performance in erasure sequence detection. | 06-25-2009 |
20090190500 | SERVING CELL SELECTION IN WIRELESS COMMUNICATIONS - Systems and methodologies are described that facilitate selecting and/or reselecting one or more access points, related cells, or carriers based at least in part on calculating an energy efficiency related to the access points. In particular, the energy efficiency can be based at least in part on an estimated pathloss and/or a level of interference related to communicating with the access points. Moreover, load parameters related to the access point can be received and evaluated in selecting and/or reselecting the access point. Thus, access points can be selected or reselected based on parameters other than forward link transmit power. In addition, pathloss and/or interference levels can be weighed based on access point type to prevent macrocell overloading. | 07-30-2009 |
20090196174 | VIRTUAL SCHEDULING IN HETEROGENEOUS NETWORKS - Providing for virtual management of wireless resources in a mobile communication environment is described herein. By way of example, access terminals in the communication environment can maintain connections with nearby network transmitters and report factors pertinent to wireless scheduling to a central entity, such as a macro base station. The macro base station can employ those factors in improving wireless communications for other serving cells within or near to a macro coverage area served by the macro base station. By maintaining information pertinent to prevailing wireless conditions, quality of service requirements, pilot signal reports, mobility management considerations, and so on, of transmissions within the cell, significant interference reduction can be implemented for the macro coverage area, or nearby coverage areas. | 08-06-2009 |
20090196245 | VIRTUAL SCHEDULING IN HETEROGENEOUS NETWORKS - Providing for virtual management of wireless resources in a mobile communication environment is described herein. By way of example, access terminals in the communication environment can maintain connections with nearby network transmitters and report factors pertinent to wireless scheduling to a central entity, such as a macro base station. The macro base station can employ those factors in improving wireless communications for other serving cells within or near to a macro coverage area served by the macro base station. By maintaining information pertinent to prevailing wireless conditions, quality of service requirements, pilot signal reports, mobility management considerations, and so on, of transmissions within the cell, significant interference reduction can be implemented for the macro coverage area, or nearby coverage areas. | 08-06-2009 |
20090197588 | BACKHAUL SIGNALING FOR INTERFERENCE AVOIDANCE - Providing for interference reduction and/or avoidance utilizing backhaul signaling between wireless access points (APs) of a wireless access network (AN) is described herein. By way of example, an interference avoidance request (IAR) can be issued by an AP to reduce signal interference on forward link (FL) and/or downlink (DL) transmissions by neighboring APs. The IAR can be routed via a backhaul network and/or over-the-air via access terminals (ATs) coupled with the AP or one or more interfering APs. Upon receiving the IAR, an interfering AP can determine reduced transmit power levels for FL and/or RL transmissions and respond to the IAR. The response can include reduced power levels and can be sent via the backhaul network or OTA. By employing the backhaul network in full or in part, interference avoidance can be conducted even for semi-planned or unplanned heterogeneous networks coupled by the backhaul. | 08-06-2009 |
20090197603 | SERVING BASE STATION SELECTION IN A WIRELESS COMMUNICATION NETWORK - Techniques for selecting a serving base station for a terminal in a wireless communication network are described. In one design, multiple candidate base stations for the terminal may be identified, with each candidate base station being a candidate for selection as the serving base station for the terminal. The multiple candidate base stations may include base stations with different transmit power levels and/or may support interference mitigation. One of the multiple candidate base stations may be selected as the serving base station. In one design, the serving base station may be selected based on at least one metric for each candidate base station. The at least one metrics may be for pathloss, effective transmit power, effective geometry, projected data rate, control channel reliability, network utility, etc. The selected candidate base station may have a lower SINR than a highest SINR among the multiple candidate base stations. | 08-06-2009 |
20090201826 | SEGMENT SENSITIVE SCHEDULING - Systems and methods of scheduling sub-carriers in an OFDMA system in which a scheduler takes into account channel conditions experienced by the communication devices to optimize channel conditions. The scheduler can partition a set of sub-carriers spanning an operating bandwidth into a plurality of segments. The segments can include a plurality of global segments that each includes a distinct non-contiguous subset of the sub-carriers spanning substantially the entire operating bandwidth. One or more of the global segments can be further partitioned into a plurality of local segments that each has a bandwidth that is less than a channel coherence bandwidth. The scheduler determines channel characteristics experienced by each communication device via reporting or channel estimation, and allocates one or more segments to communication links for each device according to the channel characteristics. | 08-13-2009 |
20090201872 | SEGMENT SENSITIVE SCHEDULING - Systems and methods of scheduling sub-carriers in an OFDMA system in which a scheduler takes into account channel conditions experienced by the communication devices to optimize channel conditions. The scheduler can partition a set of sub-carriers spanning an operating bandwidth into a plurality of segments. The segments can include a plurality of global segments that each includes a distinct non-contiguous subset of the sub-carriers spanning substantially the entire operating bandwidth. One or more of the global segments can be further partitioned into a plurality of local segments that each has a bandwidth that is less than a channel coherence bandwidth. The scheduler determines channel characteristics experienced by each communication device via reporting or channel estimation, and allocates one or more segments to communication links for each device according to the channel characteristics. | 08-13-2009 |
20090213950 | PILOT SIGNAL TRANSMISSION FOR AN ORTHOGONAL FREQUENCY DIVISION WIRELESS COMMUNICATION SYSTEM - Transmission patterns for pilot symbols transmitted from a mobile station or base station are provided. The pattern allows for improved receipt of the pilot symbols transmitted. In addition, schemes for improving the ability to multiplex pilot symbols without interference and/or biasing from different mobile stations over the same frequencies and in the same time slots. | 08-27-2009 |
20090252075 | TRANSMISSION OF OVERHEAD CHANNELS WITH TIMING OFFSET AND BLANKING - Techniques for mitigating interference in a wireless network are described. In an aspect, interference on overhead channels may be mitigated by (i) sending the overhead channels from different base stations in non-overlapping time intervals and (ii) having each interfering base station reduce its transmit power during time intervals in which the overhead channels are sent by neighbor base stations. In one design, a first base station may send an overhead channel in a first time interval, and a second base station may send the overhead channel in a second time interval that is non-overlapping with the first time interval. The base stations may have different frame timing, which may be offset by an integer number of subframes and/or an integer number of symbol periods. Alternatively, the base stations may have the same frame timing, and the first and second time intervals may cover non-overlapping symbol periods with different indices. | 10-08-2009 |
20090252077 | METHOD AND APPARATUS FOR USING MBSFN SUBFRAMES TO SEND UNICAST INFORMATION - Techniques for sending information in a wireless network are described. The network may support (i) regular subframes used to send unicast information and (ii) multicast/broadcast single frequency network (MBSFN) subframes used to send broadcast information and having lower overhead than the regular subframes. In an aspect, MBSFN subframes may be used to mitigate interference. A first base station may cause high interference to stations (e.g., UEs) served by a second base station. The first base station may reserve a subframe for the second base station, send system information conveying the reserved subframe as an MBSFN subframe to its stations, and transmit in a first part of the reserved subframe in accordance with an MBSFN subframe format. The second base station may skip the first part and may send unicast information to its stations in the remaining part of the reserved subframe. In another aspect, MBSFN subframes may be used to support additional base station capabilities. | 10-08-2009 |
20090257390 | SYSTEM AND METHOD TO ENABLE UPLINK CONTROL FOR RESTRICTED ASSOCIATION NETWORKS - Systems and methodologies are described that facilitate resource management in a wireless communication system. Various techniques described herein can enable a network cell in a wireless communication system (e.g. a macro cell) to mitigate the effects of interference on other surrounding network cells (e.g., femto cells embedded within the coverage of the macro cell). For example, a network cell can allocate control resources that overlap control resources of a nearby cell and assign resources within the region of overlap only to users that will not cause substantial interference to the nearby cell. As another example, a network cell can utilize a control channelization that partially coincides with a control and/or random access channelization of a nearby cell. The network cell can subsequently elect not to use the control resources in the coinciding region in order to enable the nearby cell to control the effects of interference though data scheduling. | 10-15-2009 |
20090286563 | METHOD AND APPARATUS FOR USING VIRTUAL NOISE FIGURE IN A WIRELESS COMMUNICATION NETWORK - Techniques for using virtual noise figure for various functions in a wireless communication network are described. A virtual noise figure is an indication of a virtual noise level at a receiver, which may be higher than an actual noise level at the receiver. In an aspect, virtual noise figure may be used for serving base station selection. A terminal may receive information indicative of a virtual noise figure for each of at least one base station. The terminal may select a serving base station based on the virtual noise figure for each base station. The terminal may send data to the serving base station at a rate selected based on an actual noise figure for the serving base station. In other aspects, virtual noise figure may be used for interference management and/or power control. | 11-19-2009 |
20090310554 | JAMMING GRAPH AND ITS APPLICATION IN NETWORK RESOURCE ASSIGNMENT - A wireless communication network uses backhaul negotiation based upon static and dynamic resource assignment on jamming graphs. Static reuse factor design methods including fractional frequency reuse (FFR) are addressed. The jamming graph is used to summarize the interfering relationship between transmitters (nodes in the jamming graph). Negotiation-based algorithm is used to arrive at a static resource assignment so that a large reuse factor can be achieved while jamming scenario can be avoided. As a result of such algorithm, each transmitter is assigned some resources, over which traffic transmission can be done instantaneously to reduce the packet delay for short packets. Based on the result of static resource negotiation algorithm, a dynamic resource algorithm can be run, such that the resources assigned to different nodes can be share in a bursty traffic scenario to further reduce packet delay for larger packet size cases, while jamming be also avoided. | 12-17-2009 |
20090323640 | FAIR RESOURCE SHARING IN WIRELESS COMMUNICATIONS - Providing for fair resource sharing among wireless nodes in a wireless communication environment is described herein. By way of example, fairness can comprise establishing a set of resource sharing credits for wireless nodes. By expending credits, a node can borrow a resource of another node, to enable or enhance operation of the borrowing node. Credits for the borrowing node are decreased based on consumption of a shared resource, or credits for the lending node are increased based on such consumption, or both. Once an amount of credits expires, a node can be restricted from borrowing further resources until enough resources are lent to build up a suitable amount of credits. Accordingly, fairness can comprise correlating shared resource consumption with shared resource provisioning, to encourage participation in cooperative wireless communications. | 12-31-2009 |
20090325479 | RELAY ANTENNA INDEXING FOR SHARED ANTENNA COMMUNICATION - Providing for distributed processing for a set of wireless communication devices to implement distributed, multi-antenna communication via one or more of the devices is described herein. By way of example, a relay link can be established between one or more wireless transceivers. The link can be utilized to distribute an indexing parameter to a remote transceiver. The indexing parameter can be employed to identify a set of index-specific instructions configured for a particular wireless node of a network. Based on the instructions and indexing parameter, such transceiver can locally compute and transmit, or receive and decode, a stream of traffic data for the multi-antenna communication. Thus, for instance, a P-P link between UTs can be employed to implement increased throughput and reduced interference benefits of multi-antenna communication for unplanned configurations of mobile devices. | 12-31-2009 |
20090325480 | METHOD AND APPARATUS FOR SELECTING AND PROCESSING SIGNALS FROM A SOURCE STATION AND RELAY STATIONS - Techniques for selecting and processing signals from different stations in a wireless network are described. A destination station may receive a direct signal from a source station and at least one relay signal from at least one relay station. The destination station may determine metrics for the source and relay stations, e.g., based on pilots received from these stations. The destination station may select at least one signal to process from among the direct and relay signals based on the metrics for the source and relay stations. The destination station may select the direct signal if the metric for the source station exceeds a threshold. The destination station may select the relay signal from each relay station having a metric exceeding at least one threshold. The destination station may process the at least one selected signal to recover a transmission sent by the source station to the destination station. | 12-31-2009 |
20100002597 | FEEDBACK TO SUPPORT RESTRICTIVE REUSE - The scheduler in a base station needs CQI information from a terminal for all re-use sets every 5 ms. to decide on which re-use set to schedule a given terminal. For MIMO users, the problem is that the CQI cannot be reconstructed for all re-use sets, using the current design. Solution: (1) For Multiple Code Word MIMO users, a MIMO VCQI connection layer message enables the base station to reconstruct the MIMO-CQI for all reuse sets on a packet-by-packet basis. This will enable dynamic scheduling (RESTRICTIVE REUSE) gains. (2) For Single Code Word users, dynamic RESTRICTIVE REUSE can be obtained by changing the CQI reporting format, and also sending a MIMO-VCQI connection layer message. (3) For Single Code Word design, quasi-static scheduling gains can be obtained by sending a MIMO-VCQI connection layer message. | 01-07-2010 |
20100002656 | OPPORTUNISTIC RELAY SCHEDULING IN WIRELESS COMMUNICATIONS - Systems and methodologies are described that facilitate providing opportunistic relay node communication based on scheduling of other communications in a wireless network. In particular, a relay node can maintain a backhaul link with an access point and an access link with a mobile device to facilitate communicating information therebetween. Time slots during which the backhaul link is active can be determined and avoided during scheduling access link communications with the mobile device. Furthermore, resource assignments from the access point to the mobile device can be monitored and decoded such that time slots associated therewith can also be determined and avoided. Thus, the relay node can communicate with mobile devices in time slots where the backhaul link is inactive and/or the mobile devices are not occupied communicating directly with the access point. | 01-07-2010 |
20100008258 | ACCESS POINT IDENTIFIER CONFIGURATION PROCEDURE - In an access point identifier configuration scheme, different procedures are used for configuring (e.g., updating) different types of access points. For example, the criteria used to determine which identifiers are to be assigned to mobile access points may be different than the criteria used to determine which identifiers are to be assigned to stationary access points. | 01-14-2010 |
20100008295 | CANDIDATE SET MANAGEMENT IN A HETEROGENEOUS NETWORK - Techniques for managing candidate sets for a user equipment (UE) are described. In an aspect, multiple candidate sets of cells of different classes may be maintained for the UE. Each candidate set may include cells of a particular class. As some examples, the multiple candidate sets may be for cells of different transmit power levels, cells of different association types, cells associated with different resources, etc. The multiple candidate sets may be maintained separately based on applicable criteria and rules. The multiple candidate sets may be used to select a serving cell for the UE and/or for other communication purposes for the UE. In another aspect, one or more candidate sets may be maintained for the UE and may be used for multiple communication purposes for the UE. The multiple communication purposes may include server selection, interference management, measurement reporting, etc. | 01-14-2010 |
20100020771 | METHOD AND APPARATUS FOR MITIGATING PILOT POLLUTION IN A WIRELESS NETWORK - Techniques for mitigating pilot pollution in a wireless network are described. In an aspect, pilot pollution may be mitigated by reducing density and/or transmit power of common pilots whenever possible. A cell may send a common pilot at a first density and a first transmit power level during a first time period and may send the common pilot at a second density and a second transmit power level during a second time period. The second density may be lower than the first density and/or the second transmit power level may be lower than the first transmit power level. Lower density may be achieved by sending the common pilot less frequently, on fewer subcarriers, and/or from fewer antennas. The cell may determine whether to reduce the density and/or transmit power of the common pilot based on network loading, SINRs of terminals, etc. In another aspect, pilot pollution may be mitigated by performing pilot cancellation at a terminal. | 01-28-2010 |
20100022263 | SYSTEM AND METHOD FOR NETWORK MANAGEMENT - Various systems and methods for network management are disclosed. In one embodiment, a network management system comprises a receiver for receiving data from a plurality of entities, including base stations and/or subscriber handsets, a processor for generating a network map or a recommendation based on the received data, a display device for displaying the network map or recommendation, and a transmitter for transmitting instructions based on the recommendation. | 01-28-2010 |
20100029282 | RESOURCE PARTITIONING IN HETEROGENEOUS ACCESS POINT NETWORKS - Providing for dynamic resource provisioning in wireless communication is described herein. By way of example, various wireless performance metrics are collected by respective network access points as an aggregate measure of wireless network performance. Aggregated data can be utilized to generate a performance model for the network and for individual access points. Changes to the data are updated to the model to provide a steady-state characterization of network performance. Wireless resources are generated for respective access points in a manner that optimizes wireless performance. Additionally, resource assignments can be updated at various intervals to re-optimize for existing wireless conditions, whether event driven or based on performance metrics. Accordingly, a robust and dynamic optimization is provided for wireless network resource provisioning that can accommodate heterogeneous access point networks in a changing topology. | 02-04-2010 |
20100041411 | HIERARCHICAL CLUSTERING FRAMEWORK FOR INTER-CELL MIMO SYSTEMS - A method for wireless communications is provided. The method includes forming a first set of wireless components into a master cluster that provides upper level service functionality to a subset of user devices. The method includes forming a second set of wireless components into a nested cluster that is associated with the master cluster, where the nested cluster provides data transfer to and from the subset of user devices. | 02-18-2010 |
20100042716 | ADAPTIVE CLUSTERING FRAMEWORK IN FREQUENCY-TIME FOR NETWORK MIMO SYSTEMS - A method for wireless communications is provided. The method includes analyzing a set of network parameters and automatically forming a set of network clusters based in part on the network parameters. This includes dynamically selecting at least one network cluster from the set of network clusters to provide wireless service to a subset of user equipment. | 02-18-2010 |
20100080139 | TECHNIQUES FOR SUPPORTING RELAY OPERATION IN WIRELESS COMMUNICATION SYSTEMS - Techniques for supporting operation of relay stations in wireless communication systems are described. In an aspect, a bitmap may be sent by a base station and/or a relay station to identify subframes of at least two types in multiple radio frames. For example, the bitmap may indicate whether each subframe covered by the bitmap is of a first type or a second type. UEs may use the bitmap to control their operation. For example, a UE may perform channel estimation or measurement for the subframes of the first type and may skip channel estimation and measurement for the subframes of the second type. In another aspect, a base station may transmit data and/or control information on resources not used by a relay station to transmit a reference signal. This may avoid interference to the reference signal from the relay station, which may improve performance for UEs communicating with the relay station. | 04-01-2010 |
20100080166 | TECHNIQUES FOR SUPPORTING RELAY OPERATION IN WIRELESS COMMUNICATION SYSTEMS - Techniques for supporting operation of relay stations in wireless communication systems are described. In an aspect, a base station may transmit data to a relay station in a portion of a subframe instead of the entire subframe. The relay station may transmit control information during part of the subframe. The base station may transmit data to the relay station during the remaining part of the subframe. In another aspect, a target termination for a packet may be selected based on data and/or ACK transmission opportunities available for the packet. One or more transmissions of the packet may be sent with HARQ, and ACK information may be sent for the packet. The packet may be transmitted such that it can be terminated prior to the first subframe (i) not available for sending the packet or (ii) available for sending ACK information. | 04-01-2010 |
20100097978 | DATA TRANSMISSION VIA A RELAY STATION IN A WIRELESS COMMUNICATION SYSTEM - Techniques for supporting data transmission via a relay station are described. In an aspect, data transmission may be supported using ACK-and-suspend. A transmitter station sends a first transmission of a packet to a receiver station. The transmitter station receives no ACK information for the first transmission of the packet and suspends transmission of the packet. The transmitter station thereafter receives an indication to resume transmission of the packet and, in response, sends a second transmission of the packet. In another aspect, different ACK timeline may be used when applicable. The receiver station may send ACK information in a designated subframe if available for use or in a different subframe. In yet another aspect, ACK repetition may be used. The receiver may send ACK information in multiple subframes to facilitate reception of the ACK information when the transmitter station is unable to receive one or more of the multiple subframes. | 04-22-2010 |
20100099428 | NULL PILOTS FOR INTERFERENCE ESTIMATION IN A WIRELESS COMMUNICATION NETWORK - Techniques for transmitting null pilots to support interference estimation in a wireless network are described. A null pilot is non-transmission on designated time-frequency resources by a cell or a cluster of cells supporting cooperative transmission to a UE. The received power of the null pilot from the cell or cluster of cells may be indicative of interference from other cells. In one design, a cell in the cluster may determine resources for sending a null pilot by the cell. The cell may transmit the null pilot (i.e., send no transmissions) on the resources to allow UEs to estimate out-of-cluster interference. Some or all cells in the cluster may transmit null pilots on the same resources. The cell may receive interference and channel information from the UE and may send data transmission to the UE based on the interference and/or channel information. Remaining cells in the cluster may reduce interference to the UE. | 04-22-2010 |
20100099449 | INTERFERENCE MANAGEMENT WITH REDUCE INTERFERENCE REQUESTS AND INTERFERENCE INDICATORS - Techniques for managing interference in a wireless network are described. In an aspect, reduce interference requests and interference indicators may be used for interference management to enable operation in scenarios with dominant interferers. In one design, a terminal may receive a reduce interference request from a first base station requesting lower interference on specified time-frequency resources. The terminal may also receive an interference indicator conveying the interference observed by a second base station. The terminal may determine its transmit power based on the reduce interference request and the interference indicator. For example, the terminal may determine an initial transmit power based on the reduce interference request (or the interference indicator) and may adjust the initial transmit power based on the interference indicator (or the reduce interference request) to obtain its transmit power. The terminal may transmit data to a serving base station at the determined transmit power. | 04-22-2010 |
20100118926 | METHODS AND DEVICES FOR SELECTING SETS OF AVAILABLE SUB-CHANNELS - Information is transmitted over selected, Orthogonal Frequency Division Multiplexed (OFDM) sub-channels to avoid frequencies with unacceptable congestion, noise or interference levels. Using frequency hopping, selected non-contiguous OFDM sub-channels used for transmission may vary with time. Once a group of OFDM sub-channels is selected, a power level and modulation technique may also be selected based on channel quality. | 05-13-2010 |
20100135235 | BLANK SUBFRAME UPLINK DESIGN - Blank subframe link design uses reduced bandwidth either explicit or derived for Closed Subscriber Group (CSG) cell interference mitigation, enabling a non-allowed User Equipment (UE) to co-exist with CSG cells on the same carrier. One could specify UL blank subframes to orthogonalize non-allowed UE and allowed UE transmissions on UL either via explicit UL blank subframe definition or derived from DL blank subframe definition. Scheduling can orthogonalize data transmissions. A femto cell temporarily reducing uplink bandwidth can mitigate uplink control channel residual interference from a non-allowed UE. A relay configures RACH occasion to coincide with non-blank UL subframes as much as possible. UE knowledge of RACH occasion is sufficient to start RACH and hand over procedure. RACH occasions with 10 ms periodicity are supported by assigning all odd/even uplink HARQ interlaces to relay. RACH occasions with 20 ms periodicity are supported by assigning any of the 1/4 UL HARQ interlaces to relay. | 06-03-2010 |
20100135272 | METHODS AND SYSTEMS FOR LTE-WIMAX COEXISTENCE - Methods and apparatus for supporting coexistence between two different radio access technologies (RATs), such as the Long Term Evolution (LTE) standard and one of the IEEE 802.16 standards, are provided. To accomplish this coexistence, a multi-mode base station (BS) may replace transmission gaps in a frame of a first RAT with subframes or symbols of the second RAT and transmit the resulting dual-RAT frame. In this manner, a single BS may support and communicate according to two different RATs simultaneously. | 06-03-2010 |
20100177672 | SPECIAL MANAGEMENT CONNECTION BETWEEN BASE STATION AND RELAY STATIONS IN MULTIHOP RELAY SYSTEMS - The present disclosure proposes different methods of utilizing dedicated control channels in a multi-hop relay system. For one embodiment of the present disclosure, dedicated control channels may be used to power control communication entities in the multi-hop relay system. For another embodiment of the present disclosure, bandwidth resources of dedicated control channels may be employed to control a sleep mode at a subscriber station. For yet another embodiment of the present disclosure, dedicated control channels of the multi-hop relay system may be exploited for sending multicast and broadcast service messages. | 07-15-2010 |
20100202289 | METHOD AND APPARATUS FOR INTERFERENCE MANAGEMENT IN A WIRELESS COMMUNICATION SYSTEM - Systems and methodologies are described herein that facilitate interference control and resource management in a wireless communication system. As described herein, a base station, terminal, and/or other entity in a wireless communication system that observes interference from one or more other network entities can construct and communicate resource utilization messages (RUMs) in order to request the interfering network entities to conduct power backoff on designated resources. Parameters constructed as a function of quality of service (QoS) and/or priority metrics (such as head-of-line delays, queue lengths, burst sizes, delay targets, average rates, or the like) can be included within the RUM, such that an entity receiving the RUM can compute QoS changes associated with various power backoff levels in order to select a power backoff level that maximizes overall system QoS performance. | 08-12-2010 |
20100220597 | TIME DIVISION DUPLEXING (TDD) CONFIGURATION FOR ACCESS POINT BASE STATIONS - Systems and methodologies are described that facilitate establishing synchronization and/or mitigating interference with a time division duplexing (TDD) access point base station in a wireless communication environment. For example, a TDD configuration can be selected for the access point base station based upon received information to control interference. By way of another example, the access point base station can be synchronized with a disparate base station based upon the received information. Moreover, the received information can relate to the disparate base station, a served user equipment (UE) (e.g., served by the access point base station, . . . ), and/or a non-served UE (e.g., served by a base station other than the access point base station, . . . ). For example, the served UE can transmit a measurement related to the disparate base station to the access point base station. | 09-02-2010 |
20100222068 | TIMING ADJUSTMENT FOR SYNCHRONOUS OPERATION IN A WIRELESS NETWORK - Techniques for adjusting transmit timing of base stations and user equipments (UEs) in a wireless network are described. In one operating scenario, a femto base station communicates with a femto UE, and a macro base station communicates with a macro UE located within the coverage of the femto base station. In an aspect, the transmit timing of the femto base station may be delayed relative to the transmit timing of the macro base station, e.g., to time align downlink signals from the femto and macro base stations at the femto and macro UEs. In another aspect, the transmit timing of the femto UE may be advanced relative to the transmit timing of femto base station by an amount larger than twice the propagation delay between the femto UE and the femto base station, e.g., to time align uplink signals from the femto and macro UEs at the femto base station. | 09-02-2010 |
20100232524 | METHOD AND APPARATUS FOR SYSTEM BANDWIDTH INDICATION - Techniques for conveying system bandwidths in a wireless communication system are described. In an aspect, system bandwidth information may be signaled to first user equipments (UEs) supporting a first set of system bandwidths and second UEs supporting a second set of system bandwidths. In one design, a base station may obtain and broadcast system bandwidth information indicating a first system bandwidth for the first UEs and a second system bandwidth for the second UEs. The first system bandwidth may be selected from the first set, and the second system bandwidth may be selected from the second set, which may be a superset of the first set. The system bandwidth information may include a first part and a second part. The first part may convey the first system bandwidth for the first UEs. The first and second parts may convey the second system bandwidth for the second UEs. | 09-16-2010 |
20100234040 | METHODS AND APPARATUS FOR ADJACENT CHANNEL INTERFERENCE MITIGATION IN ACCESS POINT BASE STATIONS - Apparatus and methods for interference mitigation in wireless communication networks are described. In one implementation, at a node in a first network, a power level and/or bandwidth or channelization of an adjacent channel signal may be determined, and a power level and/or bandwidth of a transmitted signal in the first network may be adjusted in response. | 09-16-2010 |
20100238902 | Channel Structures for a Quasi-Orthogonal Multiple-Access Communication System - A channel structure has at least two channel sets. Each channel set contains multiple channels and is associated with a specific mapping of the channels to the system resources available for data transmission. Each channel set may be defined based on a channel tree having a hierarchical structure. To achieve intra-cell interference diversity, the channel-to-resource mapping for each channel set is pseudo-random with respect to the mapping for each remaining channel set. In each scheduling interval, terminals are scheduled for transmission on the forward and/or reverse link. The scheduled terminals are assigned channels from the channel sets. Multiple terminals may use the same system resources and their overlapping transmissions may be separated in the spatial domain. For example, beamforming may be performed to send multiple overlapping transmissions on the forward link, and receiver spatial processing may be performed to separate out multiple overlapping transmissions received on the reverse link. | 09-23-2010 |
20100240373 | HYBRID CELL MANAGEMENT IN WIRELESS NETWORKS - Systems and methodologies are described that facilitate providing hybrid cell access points that can support closed subscriber groups (CSG) while providing at least a minimum level of service to wireless devices excluded from the CSG. Hybrid cell access points can allow non-member wireless devices to camp and receive paging signals. Upon receiving a request for resources from non-member wireless devices, hybrid cell access points can handover the non-member wireless devices to an access point that can serve the non-member wireless devices, provide a portion of resources compared to a disparate portion provided to member wireless devices, and/or the like. In addition, hybrid cell access points can vary levels of service and downlink transmission power to provide load balancing for access points. Varying levels of service and downlink transmission power can facilitate additional functionality, such as reducing transmission power to serve member devices while mitigating interference to non-member devices. | 09-23-2010 |
20100254354 | Softer and Soft Handoff in an Orthogonal Frequency Division Wireless Communication System - Transmission patterns for pilot symbols transmitted from a mobile station or base station are provided. The patterns may be selected according to a location of the mobile station with respect to one or more antennas are provided. In some aspects, the pattern may be selected based upon the distance between the mobile station and the one or more antennas. In other aspect, the pattern may be based upon whether the mobile station is in handoff. | 10-07-2010 |
20100303013 | DYNAMIC SELECTION OF SUBFRAME FORMATS IN A WIRELESS NETWORK - Techniques for dynamically selecting subframe formats in a wireless network are described. In an aspect, a base station may dynamically switch between different subframe formats to support communication for different types of user equipments (UEs). In one design, the base station may declare a set of subframes as multicast/broadcast single frequency network (MBSFN) subframes for first/legacy UEs. The base station may send signaling conveying the set of subframes as MBSFN subframes to the legacy UEs. The base station may dynamically select the formats of the set of subframes for second/new UEs, e.g., on a per subframe basis. The format of each subframe may be selected from a plurality of formats, which may include at least one regular subframe format, at least one MBSFN subframe format, and/or at least one blank subframe format. The base station may send transmissions in the set of subframes based on the selected formats. | 12-02-2010 |
20100322079 | METHOD AND APPARATUS THAT FACILITATES MEASUREMENT PROCEDURES IN MULTICARRIER OPERATION - Aspects directed towards measurement procedures in multicarrier operation are disclosed. In a particular aspect, a wireless terminal selects a subset of cells, which include at least one serving cell and at least one non-serving cell. The subset of cells are then evaluated by obtaining a first measurement associated with the at least one serving cell and a second measurement associated with the at least one non-serving cell. A measurement event occurrence, which is based on a comparison between the first measurement and the second measurement, is then monitored. An occurrence of the measurement event triggers a measurement report transmission, which the network then uses to perform handovers. Other disclosed embodiments are directed towards placing a reception band, which include identifying a set of assigned component carriers and placing a reception band within the system bandwidth so that the placement overlaps with at least a portion of the assigned component carriers. | 12-23-2010 |
20100323717 | METHOD AND APPARATUS FOR FACILITATING PROXIMITY DETECTION IN A WIRELESS NETWORK - Methods, apparatuses, and computer program products are disclosed for facilitating proximity detection in wireless networks. a location enhancement device is activated and a unique identifier associated with the location enhancement device is ascertained. A positioning signal that emulates a base station reference signal is then generated, which includes the unique identifier. The positioning signal is transmitted from the location enhancement device, wherein the positioning signal is detectable by wireless terminals proximate to the location enhancement device. Proximity detection is then facilitated by processing the positioning signal. | 12-23-2010 |
20100323745 | METHOD AND APPARATUS FOR MANAGING DOWNLINK TRANSMISSION POWER IN A HETEROGENEOUS NETWORK - A method, an apparatus, and a computer program product for wireless communication are provided in which it is determined that a transmission of a first instance of control information in a first control region in a subframe of a first power class eNodeB a non-modified power spectral density (PSD) will result in interference above a threshold with a transmission of a second instance of control information in a second control region in a subframe of a second power class eNodeB, PSD is modified for a portion of at least one of the first or second control regions of at least one of the subframes for at least one of the first power class or second power class eNodeB, and the first instance of control information is transmitted during the control region using the modified PSD for the portion of the first instance of control information. | 12-23-2010 |
20100329113 | METHOD AND APPARATUS FOR INTERFERENCE MANAGEMENT IN A WIRELESS COMMUNICATION SYSTEM - Systems and methodologies are described herein that facilitate interference control and resource management in a wireless communication system. As described herein, a base station, terminal, and/or other entity in a wireless communication system that observes interference from one or more other network entities can construct and communicate resource utilization messages (RUMs) in order to request the interfering network entities to conduct power backoff on designated resources. Parameters constructed as a function of quality of service (QoS) and/or priority metrics (such as head-of-line delays, queue lengths, burst sizes, delay targets, average rates, or the like) can be included within the RUM, such that an entity receiving the RUM can compute QoS changes associated with various power backoff levels in order to select a power backoff level that maximizes overall system QoS performance. | 12-30-2010 |
20100329310 | LOW COMPLEXITY BEAMFORMING FOR MULTIPLE ANTENNA SYSTEMS - Methods and apparatuses are disclosed that utilize the discrete Fourier transform of time domain responses to generate beamforming weights for wireless communication. In addition, in some embodiments frequency subcarriers constituting less than all of the frequency subcarriers allocated for communication to a user may utilized for generating the beamforming weights. | 12-30-2010 |
20110059699 | RATE SELECTION FOR A QUASI-ORTHOGONAL COMMUNICATION SYSTEM - A selected rate is received for an apparatus based on a hypothesized signal-to-noise-and-interference ratio (SINR) for the apparatus, and characterized statistics of noise and interference observed at a receiver for the apparatus. Data are processed in accordance with the rate selected for the apparatus. | 03-10-2011 |
20110103295 | APPARATUS AND METHOD FOR PROVIDING RELAY BACKHAUL COMMUNICATIONS IN A WIRELESS COMMUNICATION SYSTEM - An apparatus and method for designing a relay backhaul channel in a wireless communication system are provided. At least one relay node utilized for communication with respective user devices and at least one relay backhaul channel for conducting in-band half-duplex communication with the at least one relay node are identified. The relay backhaul channel may be an FDM channel, a TDM/FDM channel, or a joint R-PDCCH/R-PDSCH channel. The relay channel is used for communicating with the at least one relay node. The supportable ranks of the R-PDSCH channel may depend on the number of resources reserved for demodulation reference signals in the R-PDCCH region. | 05-05-2011 |
20110103296 | TDM-FDM RELAY BACKHAUL CHANNEL FOR LTE ADVANCED - Methods, apparatus and computer program products are provided for receiving a first group of resource blocks, frequency multiplexed in a transmission subframe, where the first group of resource blocks spans less than a full transmission bandwidth and includes a UE control channel in a first time interval, a relay control channel and a first quantity of dedicated reference symbols in a second time interval, and a shared data channel and a second quantity of dedicated reference symbols in a third time interval. | 05-05-2011 |
20110110254 | CELL RESELECTION ENHANCEMENT - Methods and apparatuses are provided that facilitate measuring frequencies for cell reselection. A base station providing a cell can be interfered by one or more closed subscriber group (CSG) cells over at least a portion of frequency utilized by the base station to serve one or more devices. The base station can determine and provide one or more parameters related to performing a measurement of a system bandwidth to one or more devices that are within range of the one or more CSG cells that includes at least a portion of the bandwidth utilized by the one or more CSG cells. The one or more devices can accordingly perform measurements of the system bandwidth of the base station for determining one or more communication metrics related to performing reselection and/or measuring other frequencies for reselection. The measurement can relate to a wideband measurement, a plurality of narrowband measurements, etc. | 05-12-2011 |
20110128933 | METHOD AND APPARATUS THAT FACILITATES OPERATING A RELAY VIA A MULTIMEDIA BROADCAST SINGLE FREQUENCY NETWORK BASED BACKHAUL LINK - Aspects are disclosed for operating a relay via an MBSFN-based backhaul link. Control resources are allocated, which include a first set of control resources and a second set of control resources. For some embodiments, a portion of the first set of control resources is concatenated with a portion of the second set of control resources to form a concatenation of resources whereas, in other embodiments, an indication scheme is implemented to provide an indication of a first or second allocation size respectively associated with the first and second set of control resources. At least one control signal is then transmitted which includes at least one of the concatenation or the indication. Other disclosed embodiments are directed towards configuring a user equipment to decode a control signal generated according to the aspects disclosed herein. | 06-02-2011 |
20110158116 | METHOD AND APPARATUS THAT FACILITATES A TIMING ALIGNMENT IN A MULTICARRIER SYSTEM - Aspects are disclosed for facilitating a timing alignment in a multicarrier system. In one aspect, at least one downlink timing associated with at least one downlink carrier is determined, and an uplink timing associated with an uplink group of carriers is ascertained based on at least one downlink timing and a timing offset associated with the uplink group of carriers. Each of the uplink group of carriers is then transmitted within a threshold value of the uplink timing. In another aspect, a downlink communication is transmitted to a wireless terminal via at least one downlink carrier. This embodiment further includes assigning a timing offset to an uplink group of carriers, and providing the timing offset to the wireless terminal via the at least one downlink carrier. An uplink communication is then received via the uplink group of carriers according to the timing offset. | 06-30-2011 |
20110170474 | METHOD AND APPARATUS FOR TRANSPARENT RELAY HYBRID AUTOMATIC REPEAT REQUEST (HARQ) - Systems, apparatuses, and methods are disclosed for a relay station for use in a communication system with a base station and user equipment (UE). The relay station may decode and forward a data packet between the base station and the UE that the relay station services in which the relay station does not establish a direct link with the UE. Further, the relay station indicates successful decoding of the data packet to the base station such that if the base station receives information indicating successful decoding of the data packet from the relay station, the base station terminates a HARQ transmission on a direct link between the base station and the UE such that HARQ retransmission time is extended compared to direct communications between the base station and the UE. | 07-14-2011 |
20110176435 | ASYNCHRONOUS TIME DIVISION DUPLEX OPERATION IN A WIRELESS NETWORK - Techniques for supporting communication in an asynchronous TDD wireless network are described. In an aspect, downlink transmissions and uplink transmissions may be sent on different carriers in an asynchronous TDD wireless network to mitigate interference. In one design, a station (e.g., a base station or a UE) may send a first transmission on a first carrier in a first time period and may receive a second transmission on a second carrier in a second time period. The station may only transmit, or only receive, or neither in each time period. In one design, allocation of carriers for the downlink and uplink may be performed when strong interference is detected, e.g., by a base station or a UE. When strong interference is not detected, the first and second carriers may each be used for both the downlink and uplink. | 07-21-2011 |
20110194407 | Systems and Methods of Mobile Relay Mobility in Asynchronous Networks - A system and method of managing adjustment of synchronization timing for handover of a mobile relay is disclosed. The method includes repositioning coverage of the mobile relay from a first network access point to a second network access point and adjusting a synchronization timing of the mobile relay in an asynchronous network of the wireless communication system. | 08-11-2011 |
20110194482 | METHOD AND APPARATUS FOR RELAY BACKHAUL DESIGN IN A WIRELESS COMMUNICATION SYSTEM - Systems and methodologies are described herein that facilitate techniques for design of relay backhaul to support mobility of relay nodes in a wireless communication system. According to various aspects herein, techniques are provided to enable and support the use of mobile relays and to facilitate handover of mobile relays between respective donor cells. More particularly, techniques are provided herein for relay backhaul control channel assignment associated with hand in or hand out of mobile relays, access/backhaul resource partitioning for mobile relays, and management of quality of service (QoS) requirements associated with a relay handover. | 08-11-2011 |
20110194483 | METHOD AND APPARATUS FOR RELAY BACKHAUL DESIGN IN A WIRELESS COMMUNICATION SYSTEM - Systems and methodologies are described herein that facilitate techniques for design of relay backhaul to support mobility of relay nodes in a wireless communication system. According to various aspects herein, techniques are provided to enable and support the use of mobile relays and to facilitate handover of mobile relays between respective donor cells. More particularly, techniques are provided herein for relay backhaul control channel assignment associated with hand in or hand out of mobile relays, access/backhaul resource partitioning for mobile relays, and management of quality of service (QoS) requirements associated with a relay handover. | 08-11-2011 |
20110194511 | MULTI-USER CONTROL CHANNEL ASSIGNMENT - A method, an apparatus, and a computer program product for wireless communication are provided in which a resource assignment utilizing the PDCCH and/or the R-PDCCH may be addressed to a group of UEs, rather than an individual UE, by utilizing a group identifier for indicating to the group that there may be information for any UE in the group in the PDSCH. In this way, the capacity of the PDCCH, which is limited, is multiplied and a potential bottleneck at PDCCH scheduling can be relieved. | 08-11-2011 |
20110194527 | FREQUENCY AND TIME DOMAIN RANGE EXPANSION - For range expansion, a determination to enter range expansion may be made based on a signal strength differential for user equipment (UE) communications between a first class of base stations and a second class of base stations. If the signal strength differential is beyond a certain threshold, range expansion may be implemented. In range expansion, a signal is transmitted, on a resource coordinated with at least one of the first class of base stations, from one of the second class of base stations to the UE which could experience dominant interference from one of the first class of base stations if coordination were not performed. Transmission power may be reduced from one of the first class of base stations on that resource. The second signal may be transmitted within the region of the Physical Downlink Shared Channel. | 08-11-2011 |
20110194593 | DL MU-MIMO operation in LTE-A - Techniques for scheduling UEs are described. In one design, a scheduler (e.g., for a cell) may receive channel direction information (CDI) and channel strength information (CSI) from a plurality of UEs. In one design, the CDI from each UE may include at least one eigenvector, and the CSI from each UE may include at least one singular value corresponding to the at least one eigenvector. The scheduler may schedule at least one UE among the plurality of UEs for data transmission based on the CDI and CSI from the plurality of UEs. The scheduler may select the at least one UE based on a metric related to signal-to-leakage ratio (SLR), or spectral efficiency, etc. In one design, the scheduler may evaluate the performance of different sets of UEs to determine whether to schedule one UE for single-user MIMO or multiple UEs for multi-user MIMO. | 08-11-2011 |
20110199919 | METHOD AND APPARATUS FOR ASSOCIATING A RELAY IN WIRELESS COMMUNICATIONS - Methods and apparatuses are provided that facilitate associating with relays in a wireless network. A device can select whether to utilize relay assistance where present based at least in part on measuring one or more determined or projected parameters related to the relay. Where utilizing a relay results in user-plane data channel conditions above a threshold level and control channel conditions below a threshold level, a serving base station can determine whether to employ another base station to serve the device, jointly serve a relay with an additional base station, and/or the like. | 08-18-2011 |
20110235582 | SUBFRAME DEPENDENT TRANSMISSION POWER CONTROL FOR INTERFERENCE MANAGEMENT - According to certain aspects, transmission power control may be applied to uplink transmissions in a subframe-type dependent manner as part of an interference management scheme. | 09-29-2011 |
20110235602 | SUBFRAME DEPENDENT PHYSICAL UPLINK CONTROL CHANNEL (PUCCH) REGION DESIGN - According to certain aspects, resources allocated to a user equipment (UE) for physical uplink control channel (PUCCH) transmissions may be determined in a subframe-type dependent manner. As a result, PUCCH regions for different subframes may vary based on the subframe types. | 09-29-2011 |
20110249584 | PERIODIC CQI REPORTING IN A WIRELESS COMMUNICATION NETWORK - According to certain aspects, techniques for aperiodically reporting channel state information (CSI) on protected and unprotected resources are provided. The protected resources may include resources in which transmissions in a first cell are protected by restricting transmissions in a second cell. According to certain aspects, a request for channel quality indicator (CQI) may be sent in a first subframe, CQI may be measured for a second subframe having a first offset from the first subframe, and a corresponding CQI report sent in a third subframe having a second offset from the first subframe. | 10-13-2011 |
20110249611 | SUBFRAME STAGGERING FOR RELAY COMMUNICATION - Techniques for supporting relay communication with subframe staggering are described. For subframe staggering, subframes of different relays are staggered from one another, which can increase the number of potential backhaul subframes. In one design, a first relay determines its access subframes and backhaul subframes, which correspond to different non-overlapping subsets of the subframes of the first relay. The first relay communicates with at least one UE during the access subframes and communicates with a base station during the backhaul subframes. The subframes of the first relay are offset from the subframes of a second relay communicating with the base station. In one design, the access subframes of the first relay includes all subframes with either even or odd indices, which can support data transmission with HARQ. In one design, at least one access subframe corresponds to at least one reserved subframe having reduced transmit power from the base station. | 10-13-2011 |
20110249642 | ADAPTIVE RESOURCE NEGOTIATION BETWEEN BASE STATIONS FOR ENHANCED INTERFERENCE COORDINATION - Methods and apparatus for supporting adaptive resource negotiation between evolved node Bs (eNBs) for enhanced inter-cell interference coordination (eICIC) are provided. This resource negotiation may occur via a network backhaul between the eNBs or, in some cases, using over-the-air messages (OAMs). For certain aspects, a first eNB may propose its adaptive resource partitioning information (ARPI) to a second eNB, where the second eNB may accept or reject the proposed resource partitioning. If the second eNB accepts the proposed partitioning, the second eNB may schedule resources, such as subframes, based on the accepted partitioning. | 10-13-2011 |
20110249643 | CHANNEL STATE INFORMATION REPORTING IN A WIRELESS COMMUNICATION NETWORK - According to certain aspects, techniques for periodically reporting channel state information (CSI) on protected and unprotected resources are provided. The protected resources may include resources in which transmissions in a first cell are protected by restricting transmissions in a second cell. | 10-13-2011 |
20110250899 | UPLINK POWER CONTROL IN LONG TERM EVOLUTION NETWORKS - A method for power control in a long term evolution (LTE) network is disclosed and includes configuring a user equipment (UE) with a plurality of transmit power levels where each transmit power level corresponds to a subframe type. A first power level is used in subframes protected by cooperative coordination between base stations. A second power level corresponds to unprotected subframes. The method also includes scheduling the UE to transmit in accordance with the configured transmit power levels. | 10-13-2011 |
20110250911 | NOISE PADDING TECHNIQUES IN HETEROGENEOUS NETWORKS - A method of wireless communication includes detecting uplink interference in a received uplink transmission of a user equipment. The received uplink transmission is padded with noise based on the detected interference and also based on a frequency domain partition, whether a subframe is protected, and/or a user equipment type. | 10-13-2011 |
20110250913 | RANDOM ACCESS PROCEDURE ENHANCEMENTS FOR HETEROGENEOUS NETWORKS - Certain aspects of the present disclosure provide various mechanisms that allow a user equipment to convey information regarding one or more attributes to a base station during a random access (RA) procedure. The attributes may include, for example a capability of the UE (e.g., to support a particular feature or version of a standard) or a condition of the UE (e.g., if it is currently experiencing an interference condition). | 10-13-2011 |
20110250919 | CQI ESTIMATION IN A WIRELESS COMMUNICATION NETWORK - Techniques for estimating and reporting channel quality indicator (CQI) are disclosed. Neighboring base stations may cause strong interference to one another and may be allocated different resources, e.g., different subframes. A UE may observe different levels of interference on different resources. In an aspect, the UE may determine a CQI for resources allocated to a base station and having reduced or no interference from at least one interfering base station. In another aspect, the UE may determine multiple CQI for resources of different types and associated with different interference levels. For example, the UE may determine a first CQI based on at least one first subframe allocated to the base station and having reduced or no interference from the interfering base station(s). The UE may determine a second CQI based on at least one second subframe allocated to the interfering base station(s). | 10-13-2011 |
20110255468 | ENHANCING UPLINK COVERAGE IN INTERFERENCE SCENARIOS - A method for wireless communication in a Long Term Evolution (LTE) network includes transmitting a request, from a first evolved Node B (eNodeB) of the LTE network to a second eNodeB of the LTE network, for the second eNodeB to yield a bundles of non-consecutive subframes. The method also includes configuring a User Equipment (UE), which is associated with the first eNodeB and experiencing interference from the second eNodeB, for uplink transmission in the plurality of bundles of non-consecutive subframes. | 10-20-2011 |
20110275394 | RESOURCE PARTITIONING INFORMATION FOR ENHANCED INTERFERENCE COORDINATION - Methods and apparatus for partitioning resources for enhanced inter-cell interference coordination (eICIC) are provided. Certain aspects involve broadcasting a message indicating time-domain resource partitioning information (RPI), where a user equipment (UE) may be operating in idle mode. With the RPI, the UE may be able to identify protected resources with reduced/eliminated interference from neighboring cells. The RPI in this broadcasted message may be encoded as a bitmap as an alternative or in addition to enumeration of the U/N/X subframes. Other aspects entail transmitting a dedicated or unicast message indicating the time-domain RPI, where a UE may be operating in connected mode. With the RPI, the UE may be able to determine channel state information (CSI), make radio resource management (RRM) measurements, or perform radio link monitoring (RLM), based on one or more signals from a serving base station during the protected time-domain resources. | 11-10-2011 |
20110286346 | MEASUREMENT OF RECEIVED POWER AND RECEIVED QUALITY IN A WIRELESS COMMUNICATION NETWORK - Certain aspects of the present disclosure provide techniques and apparatuses for wireless communications. According to certain aspects, a set of protected resources, allocated to a base station of a first cell, that are protected by restricting transmissions of a second cell is determined and received power of a first reference signal from the base station in the set of resources is measured. According to certain aspects, a subset of one or more neighbor base stations that have reduced interference in a set of protected resources is determined and received power measurements for the subset of neighbor cells is excluded when calculating receive signal quality measurements for the subframe. | 11-24-2011 |
20110286407 | SYSTEMS AND METHODS FOR ENHANCING UPLINK COVERAGE IN INTERFERENCE SCENARIOS - A method and apparatus are for communication in a wireless network in which a User Equipment (UE) associated with a first evolved Node B (eNB) experiences interference from a second eNB. The method includes negotiating by the first eNB of the wireless network with a second eNB of the wireless network for a partitioning of subband resources on an uplink. A first subset of subband resources is assigned to the first eNB, and a second subset of subband resources is assigned to the second eNB. A method and apparatus are for communication in a wireless network. The method includes decoding a downlink control channel received during a protected downlink subframe to determine an uplink subframe n containing a protected subband for uplink transmission. The method also includes transmitting data during the uplink subframe n on the protected subband. | 11-24-2011 |
20110292823 | SOUNDING REFERENCE SIGNAL (SRS) IN HETEROGENEOUS NETWORK (HETNET) WITH TIME DIVISION MULTIPLEXING (TDM) PARTITIONING - Methods and apparatus for uplink (UL) radio link monitoring (RLM) in a Long Term Evolution (LTE) heterogeneous network (HetNet) with enhanced inter-cell interference coordination (eICIC) are described. Various options are presented in an effort to transmit a sounding reference signal (SRS) of a user equipment device (UE) served by a Node B in the HetNet, avoiding both interference from UL transmissions from other UEs being served by neighboring Node Bs and collisions with the UE's own channel quality information (CQI) or physical uplink shared channel (PUSCH), for example. | 12-01-2011 |
20110310802 | ADAPTIVE RESOURCE PARTITIONING INFORMATION (ARPI) TRANSITION BEHAVIOR IN HETEROGENEOUS NETWORKS - One aspect discloses transition behavior of dynamically changing subframe interlaces and the corresponding behavior of the bases stations during the changing. A method of wireless communication includes receiving a request to dynamically change a subframe interlace. The subframe interlace is transitioned and during the transition either new data transmission is prevented on the prohibited subframe interlace and/or retransmissions are allowed on the prohibited subframe interlace. | 12-22-2011 |
20110312358 | Channel Quality Reporting for Different Types of Subframes - A method for determining channel quality estimates of two or more types of subframes, such as clean and unclean subframes, may be applicable to both legacy and newer user equipment. A first base station affects a channel quality measurement by either transmitting dummy signals over designed tones that correspond to a second base station, or by puncturing transmissions during designated tones that correspond to the second base station. | 12-22-2011 |
20110319090 | Resource Utilization Measurements for Heterogeneous Networks - Interference issues between wireless network devices are mitigated. An evolved node B (eNodeB) may experience higher cell load or higher interference when serving user equipment (UEs) that are operating in an cell range extension (CRE) area in which the UEs are strongly affected by aggressor eNodeBs. An eNodeB experiencing higher cell load or serving user equipments (UEs) under higher interference generally requests an interfering/aggressor eNodeB to repartition some of its resources. Repartitioning of resources, however, may have a negative impact on the eNodeB serving CRE area UEs. In one aspect, a new measurement of utilization accounts for CRE status and differentiates between protected and unprotected resources, such as subframes. | 12-29-2011 |
20120002578 | LIMITED DUTY CYCLE FDD SYSTEM - Acknowledgment bundling has been defined for Long Term Evolution (LTE) Time Division Duplex (TDD) systems due to asymmetric DL/UL partitioning. In the case of Frequency Division Duplex (FDD) with a limited uplink (UL) duty cycle, there may be asymmetry associated with a downlink transmission and an associated uplink acknowledgment. For example, there may be a physical downlink shared channel (PDSCH) and a physical uplink control channel (PUCCH) hybrid automatic repeat request acknowledgment (HARQ-ACK) asymmetry. Interference between downlink and uplink transmissions may be a factor contributing to the limited UL duty cycle in an FDD system. For an FDD system having a limited mobile transmission duty cycle, both DL and UL performance may be significantly degraded without proper mitigation techniques. According to certain embodiments of the present disclosure, various HARQ and scheduling techniques may be utilized for minimizing loss due to the limited UL duty cycle. | 01-05-2012 |
20120020310 | METHOD AND APPARATUS FOR MITIGATING DATA LOSS DURING AUTONOMOUS SYSTEM INFORMATION READING - Techniques for mitigating data loss during autonomous system information (SI) reading by a user equipment (UE) are described. For autonomous SI reading, the UE may autonomously determine when to read system information from neighbor cells and may not inform a serving cell. In one design, the UE may autonomously select a SI reading gap for reading system information from a neighbor cell. During the SI reading gap, the UE may suspend reception of downlink transmission from the serving cell, receive system information from the neighbor cell, and maintain capability to transmit on the uplink to the serving cell. In one design, the serving cell may determine SI reading gaps autonomously selected by the UE for reading system information from neighbor cells. The serving cell may communicate with the UE by accounting for the SI reading gaps of the UE, e.g., may suspend communication with the UE during the SI reading gaps. | 01-26-2012 |
20120020316 | ORTHOGONAL RESOURCE REUSE WITH SDMA BEAMS - A wireless communication system can implement beamforming across multiple omni-directional antennas to create beams at different spatial directions. The communication system can arrange the beams in sets, with each set arranged to provide substantially complete coverage over a predetermined coverage area. The communication system can arrange the multiple SDMA beam sets to support substantially complementary coverage areas, such that a main beam from a first set provides coverage to a weak coverage area of the second beam set. The wireless communication system assigns or otherwise allocates substantially orthogonal resources to each of the beam sets. The wireless communication system allocates resources to a communication link using a combination of beam sets and substantially orthogonal resources in order to provide improved coverage without a corresponding increase in interference. | 01-26-2012 |
20120069756 | METHOD AND APPARATUS FOR INTERFERENCE MITIGATION IN WIRELESS NETWORKS - Methods and apparatuses are provided that include mitigating interference for devices communicating with femto nodes or other low power base stations by assigning protected resources for communicating therewith. The protected resources can be negotiated with a macrocell base station using interference cancellation. The protected resources can be assigned based on an early or late handover event, which can indicate that the device may be susceptible to interference from the macrocell base station. | 03-22-2012 |
20120076025 | REPORTING OF CHANNEL PROPERTIES IN HETEROGENEOUS NETWORKS - Rank indicator and channel quality indicator (CQI) estimation and reporting functionalities are discussed with regard to heterogeneous networks to reduce the number of inconsistent CQI estimates transmitted to an evolved node B (eNB), where the CQI is defined as inconsistent when the rank indicator, on which the CQI is conditioned, is from a different subframe type than the subframe on which the CQI is to be estimated. | 03-29-2012 |
20120083302 | METHOD AND APPARATUS FOR FAST OTHER SECTOR INTERFERENCE (OSI) ADJUSTMENT - Systems and methods that facilitate management of interference and communication resources are provided. A differential approach is devised in which other-sector interference (OSI) and communication resources are managed by adjusting an offset (delta) value associated with the resources in response to receiving an indication of other-sector interference. An OSI indication can be issued based on a short and a long time scale, and effective interference metrics over time-frequency resources. The adjusted delta value is communicated to a serving access point, which reassigns communication resources in order to mitigate other-sector interference. | 04-05-2012 |
20120087250 | DETERMINATION OF RADIO LINK FAILURE WITH ENHANCED INTERFERENCE COORDINATION AND CANCELLATION - Existing criteria for analyzing radio link failure conditions may not satisfactorily address the conditions between cells that support cooperative resource coordination. Generally, when the UE declares radio link failure, the UE discontinues communication with a serving base station and searches for a new base station. When the UE lies in a region with severe interference, where the interference is coordinated between base stations by the interfering cell yielding part of its resources, the UE measurements for determining radio link failure (RLF) may vary considerably, depending on whether the measured resources were yielded by the interfering cell. When the UE measures resources which were not yielded by the interfering cell, the UE can erroneously declare RLF (e.g., due to high interference), although the UE can still access the serving cell using resources yielded by the interfering cell. Accordingly, disclosed are aspects for determining RLF based by accounting for cooperative resource coordination employing yielded resources. | 04-12-2012 |
20120088516 | HETEROGENEOUS NETWORK (HETNET) USER EQUIPMENT (UE) RADIO RESOURCE MANAGEMENT (RRM) MEASUREMENTS - Methods and apparatus for performing radio resource management (RRM) measurements in a heterogeneous network (HetNet) are provided in an effort to prevent failure of RRM measurement procedures in a dominant interference scenario. Several alternatives are provided for determining particular resources (e.g., subframes) to use for performing the RRM measurements, wherein the particular resources are based on cooperative resource partitioning between cells of the HetNet, wherein the cells may be of different types (e.g., macro, pico, or femto cells). These alternatives include, for example: (1) intra-frequency or intra-RAT (radio access technology) alternatives, which may involve transmitting resource partitioning information (RPI) in or deriving non-serving cell RPI based on the serving cell's RPI, as well as (2) inter-frequency or inter-RAT alternatives, where the RRM measurements may be performed during a measurement gap. | 04-12-2012 |
20120093010 | EVOLVED NODE B CHANNEL QUALITY INDICATOR (CQI) PROCESSING FOR HETEROGENEOUS NETWORKS - Methods and apparatus for processing channel quality information (CQI) and scheduling resources subject to cooperative resource allocation based on the CQI are provided. To convey the CQI for protected/unprotected subframes in a single report, a new vector CQI format may be utilized. Two alternatives for CQI processing this vector format and the advantages of each are described. In the first alternative, a single entry from the CQI vector is selected for processing by a downlink scheduler and/or other media access control (MAC) blocks (e.g., a PHICH, DCI power control, and/or PDCCH scheduler). In the second alternative, the selection from the CQI vector is made on a per-subframe basis, and both the subframe and the selected CQI element are processed by the downlink scheduler and/or the other MAC blocks. In this manner, better scheduling decisions may be made using the CQI vector. | 04-19-2012 |
20120093028 | INTERFERENCE CONTROL IN A WIRELESS COMMUNICATION SYSTEM - For interference control, a sector m estimates interference observed from terminals in neighbor sectors and obtains an interference estimate. Sector m may generate an over-the-air (OTA) other-sector interference (OSI) report and/or an inter-sector (IS)OSI report based on the interference estimate. Sector m may send the IS OSI report to the neighbor sectors, receive IS OSI reports from the neighbor sectors, and regulate data transmissions for terminals in sector m based on the received IS OSI reports. Sector m may control admission of terminals to sector m, de-assign admitted terminals, schedule terminals in sector m in a manner to reduce interference to the neighbor sectors, and/or assign the terminals in sector m with traffic channels that cause less interference to the neighbor sectors. | 04-19-2012 |
20120093095 | METHOD AND APPARATUS FOR SUPPORTING COMMUNICATIONS IN A HETEROGENEOUS NETWORK - A method, an apparatus, and a computer program product for wireless communication are provided in which an apparatus may determine broadcast channel scheduling information for one or more broadcasts of a payload by a broadcast channel associated with a first base station based on one or more broadcast channel interference coordination schemes, wherein reception of the broadcast channel associated with the first base station is interfered at least in part based on one or more transmissions from a second base station, and receive the payload based on the determined broadcast channel scheduling information. | 04-19-2012 |
20120106476 | METHODS AND APPARATUS FOR DEFINING AND USING SEQUENCES FOR RESOURCE SETS FOR ENHANCED INTER-CELL INTERFERENCE COORDINATION - Aspects of the present disclosure may simplify the negotiation of resources by defining and/or using sequences for sets of resources for enhanced inter-cell interference coordination. According to aspects, a configuration of protected resources may have an ordering such that a pattern representing ‘k’ protected resources overlaps with a pattern representing ‘k+1’ protected resources. In an aspect, each pattern may comprise a bitmap with one or more bits set to a value to indicate the one or more protected subframes. In an aspect, a bitmap of a pattern corresponding to ‘k’ protected subframes differs from a bitmap of a pattern corresponding to ‘k+1’ protected subframes by a single bit value. According to aspects, an interfering evolved Node B may limit transmissions during protected subframes based on the selected pattern. | 05-03-2012 |
20120190391 | PHYSICAL LAYER SIGNALING TO USER EQUIPMENT IN A WIRELESS COMMUNICATION SYSTEM - A method of wireless communication includes receiving physical layer signaling from a serving eNodeB in a wireless network. Interference estimation, interference cancellation and/or spatial equalization of user equipment is controlled in accordance with the received signaling. | 07-26-2012 |
20120207043 | METHOD AND APPARATUS FOR ENABLING CHANNEL AND INTERFERENCE ESTIMATIONS IN MACRO/RRH SYSTEM - Aspects disclosed herein relate to channel and interference estimations in a multiple transmission point environment including an eNB and RRHs. In the disclosed aspects, one or more transmission points can signal to a UE to measure channel state conditions based on a first and a second resource pattern. The UE may receive the signaling and perform interference estimation based at least in part on the first resource pattern, and channel estimation based at least in part on the second resource pattern. The UE may generate a channel state report based on the interference and channel estimations, and transmit the channel state report to a transmission point. The eNB may employ the received channel state report in scheduling one or more resources for use by the UE, and may select or adjust network traffic on the first and the second resource pattern, to affect the resulting channel and interference estimation. | 08-16-2012 |
20120207105 | COOPERATION AND OPERATION OF MACRO NODE AND REMOTE RADIO HEAD DEPLOYMENTS IN HETEROGENEOUS NETWORKS - A method, an apparatus, and a computer program product for wireless communication are provided for separating control transmissions and data transmissions within the coverage area of a plurality of transmission/reception points or points that are geographically displaced, the plurality of points comprising a macro node and a plurality of remote radio heads (RRHs) coupled to the macro node. Separating control transmissions and data transmissions in the macro node/RRH configuration may allow UEs to be associated with one set of transmission points for data transmissions and the same set or a different set of transmission points for common control signaling. Separating control transmissions and data transmissions may also allow for faster reconfiguration of antenna ports used for UE data transmission compared with reconfiguration via a handover process. | 08-16-2012 |
20120208541 | MOBILITY PROCEDURES IN WIRELESS NETWORKS WITH DISTRIBUTED REMOTE RADIO HEADS - Wireless networks may include remote radio heads (RRHs) for extending the coverage of a macro cell. The macro cell may be connected to the RRHs, for example, by optical fiber, and there may be negligible latency between the macro cell and the RRHs. As a user equipment (UE) moves within the macro cell, or between other macro cells, mobility procedures followed by the UE may vary based on the release of the UE (e.g., Rel-8/9, Rel-10, or Rel-11 and beyond). The macro cell may handle all the scheduling within the cell, for itself and the RRHs. | 08-16-2012 |
20120213108 | RADIO RESOURCE MONITORING (RRM) AND RADIO LINK MONITORING (RLM) PROCEDURES FOR REMOTE RADIO HEAD (RRH) DEPLOYMENTS - Wireless networks may include remote radio heads (RRHs) for extending the coverage of a macro cell. The macro cell may be connected to the RRHs, for example, by optical fiber, and there may be negligible latency between the macro cell and the RRHs. RRH deployment with different cell specific RS transmissions may create many cell edges, which may present challenges in idle state mobility. Certain aspects of the present disclosure may utilize coordinated multipoint (CoMP) transmissions for idle user equipment (UE) support and, in some aspects, may introduce new radio link monitoring (RLM) techniques. As a result, the techniques presented herein may help achieve better idle mode performance and/or better RLM performance. | 08-23-2012 |
20120213109 | DISCOVERY REFERENCE SIGNAL DESIGN FOR COORDINATED MULTIPOINT OPERATIONS IN HETEROGENEOUS NETWORKS - Certain aspects of the present disclosure relate to techniques that may be used to discover transmission points in heterogeneous networks (HetNet) that involves coordinated multi-point (CoMP) transmission and reception. | 08-23-2012 |
20120236741 | POWER CONTROL AND USER MULTIPLEXING FOR HETEROGENEOUS NETWORK COORDINATED MULTIPOINT OPERATIONS - Certain aspects of the present disclosure relate to techniques for power control and user multiplexing for coordinated multi-point (CoMP) transmission and reception in heterogeneous networks (HetNet). | 09-20-2012 |
20120252523 | SERVING SECTOR INTERFERENCE BROADCAST AND CORRESPONDING RL TRAFFIC POWER CONTROL - Systems and methodologies are described that facilitate broadcasting an interference level and adjusting transmit power corresponding to a reverse link in accordance with the interference level. An interference indication can be broadcasted on a broadcast channel in a wireless communication system. In response to the broadcast, mobile devices can adjust transmit power on the reverse link based upon considerations of the interference level. Further, mobile devices can evaluate an initial set point of a transmit power level during periods of inactivity. | 10-04-2012 |
20120275322 | METHOD AND APPARATUS FOR RESTRICTED MEASURING IN A WIRELESS NETWORK - Methods and apparatuses are provided that include determining resources over which to measure signals from a base station. One or more parameters related to a resource restriction pattern can be provided to the device for measuring signals over indicated resources. The resource restricted pattern can correspond to a bitmap where each bit relates to a time period over which signals can be transmitted by the base station, and the bit can specify whether a signal received over the resource should be measured. The resource restriction pattern can correspond to a set or protected resources negotiated using a resource partitioning scheme. | 11-01-2012 |
20120287859 | SERVING BASE STATION SELECTION IN A WIRELESS COMMUNICATION NETWORK - Techniques for selecting a serving base station for a terminal in a wireless communication network are described. In one design, multiple candidate base stations for the terminal may be identified, with each candidate base station being a candidate for selection as the serving base station for the terminal. The multiple candidate base stations may include base stations with different transmit power levels and/or may support interference mitigation. One of the multiple candidate base stations may be selected as the serving base station. In one design, the serving base station may be selected based on at least one metric for each candidate base station. The at least one metrics may be for pathloss, effective transmit power, effective geometry, projected data rate, control channel reliability, network utility, etc. The selected candidate base station may have a lower SINR than a highest SINR among the multiple candidate base stations. | 11-15-2012 |
20120289248 | SYSTEM AND METHOD FOR NETWORK MANAGEMENT - Various systems and methods for network management are disclosed. In one embodiment, a network management system comprises a receiver for receiving data from a plurality of entities, including base stations and/or subscriber handsets, a processor for generating a network map or a recommendation based on the received data, a display device for displaying the network map or recommendation, and a transmitter for transmitting instructions based on the recommendation. | 11-15-2012 |
20120290720 | SYSTEM AND METHOD FOR NETWORK MANAGEMENT - Various systems and methods for network management are disclosed. In one embodiment, a network management system comprises a receiver for receiving data from a plurality of entities, including base stations and/or subscriber handsets, a processor for generating a network map or a recommendation based on the received data, a display device for displaying the network map or recommendation, and a transmitter for transmitting instructions based on the recommendation. | 11-15-2012 |
20120307765 | Fair Resource Sharing in Wireless Communication - Providing for fair resource sharing among wireless nodes in a wireless communication environment is described herein. By way of example, fairness can comprise establishing a set of resource sharing credits for wireless nodes. By expending credits, a node can borrow a resource of another node, to enable or enhance operation of the borrowing node. Credits for the borrowing node are decreased based on consumption of a shared resource, or credits for the lending node are increased based on such consumption, or both. Once an amount of credits expires, a node can be restricted from borrowing further resources until enough resources are lent to build up a suitable amount of credits. Accordingly, fairness can comprise correlating shared resource consumption with shared resource provisioning, to encourage participation in cooperative wireless communications. | 12-06-2012 |
20120307808 | DETERMINING UE INTERFERENCE DURING HANDOVER IN ENHANCED INTER-CELL INTERFERENCE COORDINATION - A method of wireless communication determines a UE interference condition during handover. A target cell receives information that indicates an interference condition of a user equipment (UE). Prior to completing handover, the target cell determines an expected UE interference condition that will arise after completing the handover of the UE at a target base station. The information can be determined based on a message from the UE. The UE message may indicate which cell is the strongest, indicate the interference condition at both the source and target cells, or only provide a measurement of the strongest cell. Based on the UE measurements, the target eNodeB may schedule the UE on resources based on the expected interference condition at the UE that may arise after the handover. | 12-06-2012 |
20130021926 | FEEDBACK REPORTING BASED ON CHANNEL STATE INFORMATION REFERENCE SIGNAL (CSI-RS) GROUPS - In macro/RRH setups, channel state information reference signals (CSI-RS) and demodulation reference signals (DM-RS) may be used to decouple control and data transmission. Data transmission (e.g. for LTE Rel 10 and beyond) may be based on CSI-RS and DM-RS, while control may be received from a different set of cells or TxPs via CRS. Certain aspects of the present disclosure introduce a reporting framework, in which configuration of data-serving cells/TxPs may be carried out based on CSI-RS. In certain aspects, a new concept of CSI-RS groups, i.e., a set of CSI-RS ports that a UE considers as one group for precoding matrix indicator (PMI)/channel quality indicator (CQI)/rank indicator (RI) reporting, may be defined. | 01-24-2013 |
20130021974 | REVERSE LINK FEEDBACK FOR INTERFERENCE CONTROL IN A WIRELESS COMMUNICATION SYSTEM - Systems and methodologies are described that provide techniques for generating and utilizing reverse link feedback for interference management in a wireless communication system. Channel quality and/or interference data can be obtained by a terminal from a serving sector and one or more neighboring sectors, from which an interference-based headroom value can be computed that contains interference caused by the terminal to an allowable range. The interference-based headroom value can then be provided with power amplifier (PA) headroom feedback to the serving sector. Based on the provided feedback from the terminal, the serving sector can assign resources for use by the terminal in communication with the serving sector. Further, the serving sector may choose to honor or disregard a received interference-based power value based on quality of service and/or other system parameters. | 01-24-2013 |
20130028182 | IMPLICITLY LINKING APERIODIC CHANNEL STATE INFORMATION (A-CSI) REPORTS TO CSI-REFERENCE SIGNAL (CSI-RS) RESOURCES - Certain aspects of the present disclosure provide techniques for implicitly linking aperiodic channel state information (A-CSI) reports to CSI-reference signal (CSI-RS) resources. In an aspect, the UE may be instructed to report on specific CSI-RS resource(s) via explicit signaling in the UE grant. Other aspects disclose techniques for implicit CSI-RS resource selection by the UE that require fewer signaling resources. Instead of explicitly signaling CSI-RS resources to the UE, the UE may implicitly select CSI-RS resource for CSI feedback reporting based on information known to the UE, e.g. a subframe on which a reporting request is received. This may reduce the impact of the additional signaling in the UE grant. | 01-31-2013 |
20130039227 | INSERTION LOSS IMPROVEMENT IN A MULTI-BAND DEVICE - A multi-band user equipment (UE) is configured to operate in a single frequency band mode or a multiple frequency band mode. When operating in a single frequency band mode, the UE activates a bypass switch to route uplink signals of a first band around a multiplexer and reduce the insertion loss for the band. | 02-14-2013 |
20130051321 | MULTIPLE DESCRIPTION CODING (MDC) FOR CHANNEL STATE INFORMATION REFERENCE SIGNALS (CSI-RS) - Aspects of the present disclosure include a wireless system to reduce quantization error due to codebook-based PMI reporting by precoding channel state information reference signals (CSI-RSs) via a base station. The eNodeB varies the properties for a CSI-RS transmission in a known pattern and receives varying reports from the UE. The eNodeB can reconstruct the PMI with improved accuracy by combining multiple consecutive reports. | 02-28-2013 |
20130051322 | MULTI-POINT PUCCH ATTACHMENT - Various aspects of the present disclosure are directed to periodic over-the-air channel state information (CSI) reporting to serving cells and one or more non-serving cells via a control channel multi-point attachment. The channel state information report may be transmitted based on information indicating how to transmit the channel state information report to the non-serving cell. The information indicating how to transmit the channel state information report may be provided by the serving eNodeB. The information may include a periodicity, offset parameters, timing advance commands, power control commands, and/or an aperiodic report request. | 02-28-2013 |
20130053077 | USER EQUIPMENT ENHANCEMENTS FOR COOPERATIVE MULTI-POINT COMMUNICATION - Certain aspects of the present disclosure provide techniques for measuring interference observed at a CoMP UE caused by neighbor base stations transmitting reference signals. | 02-28-2013 |
20130053078 | BACKHAUL ENHANCEMENTS FOR COOPERATIVE MULTI-POINT (COMP) OPERATIONS - Certain aspects of the present disclosure relate to techniques for backhaul enhancements for cooperative multi-point (CoMP) operations. An aggressor node may take pre-scheduling decisions in advance of beamformed data transmissions based on the pre-scheduling decisions. The aggressor node may communicate the pre-scheduling decisions to one or more victim nodes, for example, via a backhaul link between the aggressor node and the one or more victim nodes. A victim node may take scheduling decisions based at least on the pre-scheduling decisions of the aggressor node to coordinate beamformed transmissions from the victim node with the beamformed transmissions from the aggressor node. | 02-28-2013 |
20130095829 | IDLE MODE OPERATION IN HETEROGENEOUS NETWORKS - An idle mode UE can RACH to a cell different from the cell paging the UE. The UE can be allocated additional time to respond to all cells in the neighborhood to identify the cell in which to RACH. Interference cancellation can occur at different rates based on whether the UE is in connected mode or idle mode. The time to respond to the page can be a function of a paging cycle. Additionally, a variable bias may promote early handoff to lower power cells and late handoff to high power cells. | 04-18-2013 |
20130100834 | INCREASING CSI-RS OVERHEAD VIA ANTENNA PORT AUGMENTATION - A method of wireless communication is presented. The method includes signaling a first number of channel state information-reference signal (CSI-RS) ports corresponding to resource elements (REs) and a second number of virtual antenna ports, the second number being less than or equal to the first number. The method also includes transmitting CSI-RS on each virtual antenna port, the CSI-RS mapped to at least a portion of the REs. | 04-25-2013 |
20130107740 | INTERFERENCE CONTROL IN A WIRELESS COMMUNICATION SYSTEM | 05-02-2013 |
20130142139 | SIGNALING OF SUPPORTED CARRIER BANDWIDTHS FOR CARRIER AGGREGATION - Techniques for signaling carrier bandwidths supported by a user equipment (UE) for carrier aggregation are disclosed. A UE may be configured with a plurality of carriers for carrier aggregation. Each carrier may have one carrier bandwidth of a set of possible carrier bandwidths. The set of possible carrier bandwidths may be dependent on a band in which the carrier belongs. Multiple combinations of carrier bandwidths for the plurality of carriers may be possible. The UE may identify at least one supported carrier bandwidth combination for the plurality of carriers. Each of the supported carrier bandwidth combinations may include a particular carrier bandwidth for each configured carrier. The UE may send signaling indicative of the at least one supported carrier bandwidth combination. The UE may thereafter communicate on the plurality of carriers based on a carrier bandwidth combination selected from the supported carrier bandwidth combination(s). | 06-06-2013 |
20130155973 | MULTI-HYPOTHESIS CHANNEL QUALITY INDICATOR FEEDBACK - A method for providing multi-hypothesis channel quality indicator (MH-CQI) feedback is described. Hypotheses corresponding to rank indicator (RI) and precoding matrix indicator (PMI) assumptions associated with a dominant interferer are selected. Multi-hypothesis channel quality indicator (MH-CQI) values based on the selected hypotheses are generated. The multi-hypothesis channel quality indicator (MH-CQI) values are encoded. The multi-hypothesis channel quality indicator (MH-CQI) values are sent as feedback. | 06-20-2013 |
20130182663 | MAXIMUM POWER REDUCTION FOR INTERFERENCE CONTROL IN ADJACENT CHANNELS - Techniques for determining power relaxation values are disclosed. The power relaxation values may be determined according to an ending resource block (RB) and a number of RBs in a contiguous allocation. In one aspect, the power relaxation values are arranged into regions based, at least in part, on transmission channel bandwidths and the distance from a protected adjacent channel. A user equipment (UE) can determine a power relaxation value for its current allocation using the ending RB index and contiguous RB length and can adjust its transmission power accordingly. Evolved NodeBs may estimate the power relaxation that a particular UE has selected in order to more accurately determine the transmit power available to the UE. Using the more accurate estimate of transmit power, the eNB may schedule the UE for uplink transmissions accordingly. | 07-18-2013 |
20130188507 | DATA TRANSMISSION AND POWER CONTROL IN A MULTIHOP RELAY COMMUNICATION SYSTEM - Techniques for transmitting data with distributed and centralized scheduling in a multihop relay communication system are described. For distributed scheduling, a relay station may generate and send first channel quality information (CQI) to a base station and receive second CQI from a subscriber station. The relay station may receive data sent by the base station based on the first CQI and may resend the data to the subscriber station based on the second CQI. For centralized scheduling, the relay station may generate first CQI for the base station, receive second CQI from the subscriber station, and send both CQIs to the base station. The relay station may receive data sent by the base station based on the first CQI and may resend the data to the subscriber station based on a scheduling decision determined based on the second CQI. Techniques for distributed and centralized power control are also described. | 07-25-2013 |
20130196603 | FLEXIBLE RADIO RESOURCE MANAGEMENT (RRM) MEASUREMENTS FOR WIRELESS NETWORKS - Methods and apparatus for performing reference signal (RS) metric measurements in different parts of a channel bandwidth are described. One example method generally includes receiving signaling indicating one or more frequency bands within an operating frequency band of a current serving cell for performing reference signal (RS) metric measurements, performing the measurements on the one or more frequency bands, and reporting the measurements. | 08-01-2013 |
20130208681 | Channel Quality Reporting for Adaptive Sectorization - Apparatuses and methodologies are described that enhance performance in a wireless communication system using beamforming transmissions. According to one aspect, the channel quality is monitored. Channel quality indicators can be used to select a scheduling technique, such as space division multiplexing (SDM), multiple-input multiple output (MIMO) transmission and opportunistic beamforming for one or more user devices. In addition, the CQI can be used to determine the appropriate beam assignment or to update the beam pattern. | 08-15-2013 |
20130215778 | Intra-Cell Common Reuse for a Wireless Communication System - To avoid or reduce intra-cell interference, each sector of a cell is associated with a sector-specific set of system resources (e.g., subbands) and at least one non-overlapping common set of system resources. Each common set for each sector includes system resources observing little or no interference from at least one other sector in the cell. The channel condition for a terminal in a given sector x is ascertained based on forward and/or reverse link measurements for the terminal. The terminal is assigned system resources from a common set or a sector-specific set for sector x based on the terminal's channel condition. For example, if the terminal observes high interference from another sector y, then the terminal is assigned system resources from a common set that observes little or no interference from sector y. The techniques may be used for an OFDMA system that uses frequency hopping. | 08-22-2013 |
20130229933 | HETEROGENEOUS NETWORK (HETNET) USER EQUIPMENT (UE) RADIO RESOURCE MANAGEMENT (RRM) MEASUREMENTS - Methods and apparatus for performing radio resource management (RRM) measurements in a heterogeneous network (HetNet) are provided in an effort to prevent failure of RRM measurement procedures in a dominant interference scenario. Several alternatives are provided for determining particular resources (e.g., subframes) to use for performing the RRM measurements, wherein the particular resources are based on cooperative resource partitioning between cells of the HetNet, wherein the cells may be of different types (e.g., macro, pico, or femto cells). These alternatives include, for example: (1) intra-frequency or intra-RAT (radio access technology) alternatives, which may involve transmitting resource partitioning information (RPI) in or deriving non-serving cell RPI based on the serving cell's RPI, as well as (2) inter-frequency or inter-RAT alternatives, where the RRM measurements may be performed during a measurement gap. | 09-05-2013 |
20130237262 | METHOD AND APPARATUS FOR ADJUSTMENTS FOR DELTA-BASED POWER CONTROL IN WIRELESS COMMUNICATION SYSTEMS - Systems and methodologies are described that provide techniques for performing adjustments for delta-based power control and interference management in a wireless communication system. A terminal can utilize one or more delta-based power control techniques described herein upon engaging in a reverse link transmission after a predetermined period of silence or after receiving indications of interference from neighboring access points. A delta value can be computed through open-loop projection, based on which transmission resources such as bandwidth and/or transmit power can be increased or decreased to manage interference caused by the terminal. A delta value, other feedback from the terminal, and/or indications of interference caused by the terminal can also be communicated as feedback to a serving access point to allow the access point to assign transmission resources for the terminal. | 09-12-2013 |
20130250927 | Resource Partitioning Information for Enhanced Interference Coordination - Methods and apparatus for partitioning resources for enhanced inter-cell interference coordination (eICIC) are provided. Certain aspects involve broadcasting a message indicating time-domain resource partitioning information (RPI), where a user equipment (UE) may be operating in idle mode. With the RPI, the UE may be able to identify protected resources with reduced/eliminated interference from neighboring cells. The RPI in this broadcasted message may be encoded as a bitmap as an alternative or in addition to enumeration of the U/N/X subframes. Other aspects entail transmitting a dedicated or unicast message indicating the time-domain RPI, where a UE may be operating in connected mode. With the RPI, the UE may be able to determine channel state information (CSI), make radio resource management (RRM) measurements, or perform radio link monitoring (RLM), based on one or more signals from a serving base station during the protected time-domain resources. | 09-26-2013 |
20130301458 | CHANNEL QUALITY REPORTING FOR DIFFERENT TYPES OF SUBFRAMES - A method for determining channel quality estimates of two or more types of subframes, such as clean and unclean subframes, may be applicable to both legacy and newer user equipment. A first base station affects a channel quality measurement by either transmitting dummy signals over designed tones that correspond to a second base station, or by puncturing transmissions during designated tones that correspond to the second base station. | 11-14-2013 |
20130301461 | RESOURCE UTILIZATION MEASUREMENTS FOR HETEROGENEOUS NETWORKS - Interference issues between wireless network devices are mitigated. An evolved node B (eNodeB) may experience higher cell load or higher interference when serving user equipment (UEs) that are operating in an cell range extension (CRE) area in which the UEs are strongly affected by aggressor eNodeBs. An eNodeB experiencing higher cell load or serving user equipments (UEs) under higher interference generally requests an interfering/aggressor eNodeB to repartition some of its resources. Repartitioning of resources, however, may have a negative impact on the eNodeB serving CRE area UEs. In one aspect, a new measurement of utilization accounts for CRE status and differentiates between protected and unprotected resources, such as subframes. | 11-14-2013 |
20130301524 | METHODS AND APPARATUS FOR MANAGING MACHINE-TYPE COMMUNICATIONS - The described aspects include methods and apparatus providing MTC in a wireless network. In an aspect, a narrow bandwidth within a wide system bandwidth is allocated for communicating data related to MTC. MTC control data generated for communicating over one or more MTC control channels for an MTC UE within the narrow bandwidth is transmitted over the one or more MTC control channels. The one or more MTC channels are multiplexed with one or more legacy channels over the wide system bandwidth. Other aspects are provided for transmission mode and content of the MTC control data or other MTC data. | 11-14-2013 |
20130301525 | METHODS AND APPARATUS FOR MANAGING MACHINE-TYPE COMMUNICATIONS - The described aspects include methods and apparatus providing MTC in a wireless network. In an aspect, a narrow bandwidth within a wide system bandwidth is allocated for communicating data related to MTC. MTC control data generated for communicating over one or more MTC control channels for an MTC UE within the narrow bandwidth is transmitted over the one or more MTC control channels. The one or more MTC channels are multiplexed with one or more legacy channels over the wide system bandwidth. Other aspects are provided for transmission mode and content of the MTC control data or other MTC data. | 11-14-2013 |
20130301552 | METHODS AND APPARATUS FOR MANAGING MACHINE-TYPE COMMUNICATIONS - The described aspects include methods and apparatus providing MTC in a wireless network. In an aspect, a narrow bandwidth within a wide system bandwidth is allocated for communicating data related to MTC. MTC control data generated for communicating over one or more MTC control channels for an MTC UE within the narrow bandwidth is transmitted over the one or more MTC control channels. The one or more MTC channels are multiplexed with one or more legacy channels over the wide system bandwidth. Other aspects are provided for transmission mode and content of the MTC control data or other MTC data. | 11-14-2013 |
20130301565 | COEXISTENCE BETWEEN LCTS AND NCTS - A method of wireless communication occurs in a frequency band having a first set of resources associated with a first carrier type and a second set of resources associated with a second carrier type. In one configuration, the first carrier type is a NCT (NCT) and the second carrier type is a LCT (LCT). LCT UEs may only receive signals from the second carrier type. However, NCT UEs may receive signals from both the first carrier type and the second carrier type. Therefore, to provide backward compatibility while supporting NCT UEs, an eNodeB may signal support of the first carrier type to a NCT UE while maintaining signaling with LCT UEs. | 11-14-2013 |
20130301566 | COEXISTENCE BETWEEN LEGACY CARRIER TYPES AND NEW CARRIER TYPES - A method of wireless communication occurs in a frequency band having a first set of resources associated with a first carrier type and a second set of resources associated with a second carrier type. In one configuration, the first carrier type is a new carrier type and the second carrier type is a legacy carrier type. Legacy UEs may only receive signals from the second carrier type. However, new UEs may receive signals from both the first carrier type and the second carrier type. Therefore, to provide backward compatibility while supporting new UEs, an eNodeB may signal support of the first carrier type to a new UE while maintaining signaling with legacy UEs. Additionally, the eNodeB may restrict operations of a UE to the first set of resources or second set of resources. | 11-14-2013 |
20130310037 | CARRIER AGGREGATION CAPABLE MOBILE OPERATION OVER SINGLE FREQUENCY - A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus communicates with a primary serving cell via a first radio, detects a presence of a target cell, sends a first message to the primary serving cell indicating the detected presence of the target cell, receives a command from the primary serving cell to add the target cell as a secondary serving cell, and communicates with at least one of the primary serving cell or the target cell via a second radio to facilitate a handover to the target cell. The first radio and the second radio operate on a same frequency. A downlink control channel of the primary serving cell is not used to schedule a target cell downlink transmission. An uplink control channel to the primary serving cell is not used to provide an acknowledgment of the target cell downlink transmission. The uplink control channel to the primary serving cell is not used to provide channel side information for the target cell downlink transmission. | 11-21-2013 |
20130336193 | NETWORK INFORMATION FOR ASSISTING USER EQUIPMENT - A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus may be a UE that acquires information regarding an interfering non-serving cell and uses the information to improve decoding of serving cell signals. The method includes receiving, from a serving evolved Node B (eNB), information that includes one or more transmission characteristics of at least one non-serving cell and performing at least one of interference cancellation, demodulation, or provides an improved channel quality indicator (CQI) based on the received information. | 12-19-2013 |
20140016488 | METHODS AND APPARATUS FOR POWER SAVING IN BROADCASTING CARRIER INFORMATION - The described aspects include methods and apparatus for activating a transmitter to communicate in a wireless network. A small cell can determine to activate the transmitter to serve user equipment (UE) in a wireless network. The small cell can then broadcast a portion of a set of broadcast signals in a radio frame and broadcast a remaining portion of the set of broadcast signals along with the portion of the set of broadcast signals in a subsequent radio frame. By refraining from immediately broadcasting all broadcast signals, the small cell can mitigate interference to other small cells. In addition, a UE can determine whether to generate random access channel (RACH) sequences for proximity determination or uplink timing synchronization based on parameters received in a RACH order. Moreover, a small cell with an active transmitter can decode discovery signals from a device to facilitate handover determination. | 01-16-2014 |
20140071957 | COVERAGE ENHANCEMENT TECHNIQUES FOR MACHINE TYPE COMMUNICATION DEVICES IN A WIRELESS NETWORK - Certain aspects provide a method for wireless communications by a first access point, comprising determining a first schedule of intervals for the first access point to communicate with a first group of one or more wireless devices, wherein intervals of the first schedule are synchronized with wake up or transmission cycles of the first group of one or more wireless devices and communicating with the first group of one or more wireless devices according to the first schedule. | 03-13-2014 |
20140098754 | METHODS AND APPARATUS FOR IMPROVED RESOURCE MANAGEMENT IN LTE - Certain aspects of the present disclosure relate to methods and apparatus for improved resource management in LTE. Methods and apparatus are provided for receiving, by a user equipment (UE), signaling providing an indication of a set of one or more subframes in which a set of resources are non-usable for one or more functions performed by the UE, or determining of the set by the UE, and excluding the non-usable resources when performing the one or more functions. Methods and apparatus are provided for identifying, by a base station (BS), a set of one or more subframes in which a set of resources might not be suitable for one or more functions performed by a user equipment (UE) and transmitting signaling, to the UE, providing an indication the set of resources are non-usable in the one or more subframes for the one or more functions performed by the UE. | 04-10-2014 |
20140119320 | RANDOM ACCESS PROCEDURE ENHANCEMENTS FOR HETEROGENEOUS NETWORKS - Certain aspects of the present disclosure provide various mechanisms that allow a user equipment to convey information regarding one or more attributes to a base station during a random access (RA) procedure. The attributes may include, for example a capability of the UE (e.g., to support a particular feature or version of a standard) or a condition of the UE (e.g., if it is currently experiencing an interference condition). | 05-01-2014 |
20140119331 | UPLINK COVERAGE ENHANCEMENTS - Aspects of the present disclosure provided techniques for enhancing uplink coverage. A method for wireless communications by a wireless device is provided. The method generally includes obtaining a payload of data to be transmitted to a base station, selecting at least one uplink control channel and a number of transmission time intervals (TTIs), and conveying the data in the at least one uplink control channel over the number of TTIs, wherein different portions of the data are conveyed in different TTIs. | 05-01-2014 |
20140120893 | METHOD AND APPARATUS FOR ENHANCED NEW CARRIER TYPE IN WIRELSS COMMUNICATION SYSTEMS - Systems and methods providing an enhanced new carrier type (eNCT) operable to adapt cells of a wireless communication network for opportunistic behavior that adapts to the geo-temporal traffic distribution are disclosed. Embodiments of eNCT operation provide for transmission of downlink common channels by cells employing eNCT techniques only when needed. Base stations implementing eNCT techniques herein may transition between two or more operational states, such as an active state wherein full base station functionality is performed and a dormant state wherein limited base station functionality is performed, based upon geo-temporal traffic distribution within the network. Thus, when a base station is not actively serving a user equipment (UE), the downlink transmission by the base station, and resulting interference, may be reduced or even eliminated. | 05-01-2014 |
20140126497 | TECHNIQUES FOR DECOUPLING DOWNLINK AND UPLINK OPERATIONS - Techniques are provided for decoupling uplink and downlink operations. According to certain aspects, a wireless node (e.g., a low power node) may receive, from a base station of a first cell, signaling indicating a random access channel (RACH) configuration for a wireless device. The wireless node may then detect the wireless node performing a RACH detection (based on the RACH configuration) and report the RACH detection and desired UL configuration to the base station of the first cell. The base station of the first cell may then select the wireless node for serving the wireless device for UL operations (e.g., based on the reported RACH detection-and similar reports from other wireless nodes detecting the same RACH procedure). | 05-08-2014 |
20140126552 | AUTONOMOUS DENIAL CONFIGURATIONS FOR MULTI-RADIO COEXISTENCE - To manage in-device coexistence between multiple radios for different radio access technologies (RATs) on a wireless device, an autonomous denial rate may be specified for the wireless device from a base station of a first RAT. The communications for a second RAT of the wireless device may then be adjusted based on the autonomous denial rate. The wireless device may also request TDM or FDM communication configurations for the first RAT to manage communications. Measurement reporting may be scheduled around denied uplink subframes of the first RAT. | 05-08-2014 |
20140176366 | POSITIONING REFERENCE SIGNAL (PRS) GENERATION FOR MULTIPLE TRANSMIT ANTENNA SYSTEMS - A method of providing Observed Time Difference of Arrival (OTDOA) assistance information to a mobile station is disclosed. In some embodiments, the OTDOA assistance information may comprise Positioning Reference Signal (PRS) assistance information including antenna switching assistance information for at least one cell. In one embodiment, the method may be implemented on a location server for the cell. | 06-26-2014 |
20140198663 | METHODS AND APPARATUS FOR POWER EFFICIENT OPERATION OF LTE BASED MACHINE TYPE COMMUNICATIONS - Certain aspects of the present disclosure generally relate to wireless communications and, more particularly, to techniques for power efficient operation of LTE MTC. A method is provided wireless communications by a user equipment (UE). The method generally includes signaling information regarding traffic requirements for the UE to a base station (BS) for use in persistent scheduling (PS), receiving signaling from the BS indicating PS opportunities of traffic for the UE, powering on the radio components for the PS opportunities, and powering down radio components between PS opportunities when traffic is not expected. | 07-17-2014 |
20140198664 | METHODS AND SYSTEM FOR RESOURCE MANAGEMENT IN TTI (TRANSMISSION TIME INTERVAL) BUNDLING FOR IMPROVED PHASE CONTINUITY - Certain aspects of the present disclosure propose methods for improving phase continuity in an uplink transmit time interval (TTI) bundle. A first method may include identifying a segment of UL subframes in the TTI bundle and maintaining substantially the same transmit power/timing/frequency when transmitting data to a node over the segment of UL subframes in the TTI bundle. Another method may include ignoring reception of downlink subframes for a duration of the TTI bundle. | 07-17-2014 |
20140198677 | CHANNEL STATE INFORMATION AND ADAPTIVE MODULATION AND CODING DESIGN FOR LONG-TERM EVOLUTION MACHINE TYPE COMMUNICATIONS - A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus may be a UE. The UE determines CSI. The UE determines whether to send the CSI based on at least one of a timer or a threshold. The UE sends the CSI upon determining to send the CSI. The UE may send the CSI in a MAC header upon determining to send the CSI. When the UE determines whether to send the CSI based on the threshold, the UE may determine whether to send the CSI based on a difference between the CSI and reference CSI. The UE may determine the reference CSI based on at least one of previously reported CSI, fixed CSI, or an MCS of a received data transmission from a base station. The UE may send CSI to the base station in an initial connection setup with the base station. | 07-17-2014 |
20140198685 | BROADCAST AND PAGING CHANNELS FOR MACHINE TYPE COMMUNICATION - Methods, systems, and devices are described for facilitating Machine Type Communication in a wireless communications system. Link budget-limited MTC devices, may be supported. An MTC physical broadcast channel may be utilized for the Machine Type Communication. The MTC physical broadcast channel may be transmitted over one or more subframes different from a regular physical broadcast channel. The payload for the MTC physical broadcast channel may be reduced. The MTC physical broadcast channel may also be utilized to indicate the presence of paging and/or to indicate a change in system information. Some embodiments utilize one or more MTC-specific system information blocks. The MTC-specific system information blocks may combine and/or simplify multiple system information blocks. The location of the MTC system information blocks may be predetermined or information about their location may be transmitted over the MTC physical broadcast channel. An enhanced paging channel may be used to indicate system information updates. | 07-17-2014 |
20140198726 | BROADCAST AND SYSTEM INFORMATION FOR MACHINE TYPE COMMUNICATION - Methods, systems, and devices are described for facilitating Machine Type Communication in a wireless communications system. Link budget-limited MTC devices, may be supported. An MTC physical broadcast channel may be utilized for the Machine Type Communication. The MTC physical broadcast channel may be transmitted over one or more subframes different from a regular physical broadcast channel. The payload for the MTC physical broadcast channel may be reduced. The MTC physical broadcast channel may also be utilized to indicate the presence of paging and/or to indicate a change in system information. Some embodiments utilize one or more MTC-specific system information blocks. The MTC-specific system information blocks may combine and/or simplify multiple system information blocks. The location of the MTC system information blocks may be predetermined or information about their location may be transmitted over the MTC physical broadcast channel. An enhanced paging channel may be used to indicate system information updates. | 07-17-2014 |
20140204849 | ENHANCED CONTROL CHANNEL ELEMENT (ECCE) BASED PHYSICAL DOWNLINK SHARED CHANNEL (PDSCH) RESOURCE ALLOCATION FOR LONG-TERM EVOLUTION (LTE) - Aspects of the present disclosure provide techniques and apparatus for enhanced control channel element (ECCE) based physical downlink shared channel (PDSCH) resource allocation for long-term evolution (LTE). A method is provided for wireless communications by a user equipment (UE). The method generally includes determining resources assigned for a data channel, based on a resource granularity associated with a control channel and processing the data channel transmissions in a subframe based on the determination. The data channel may comprise a PDSCH. According to certain aspects, the UE may receive downlink control information (DCI) having a number of bits indicating VRBs assigned for PDSCH. Each VRB may include ECCEs from the same or different enhanced resource element group (EREG). ECCEs may span multiple PRB pairs or the same PRB pair. The UE may perform rate matching around enhanced physical downlink control channel (EPDCCH) overlapping assigned PDSCH resources. | 07-24-2014 |
20140204889 | SYSTEMS AND METHODS FOR ENHANCING UPLINK COVERAGE IN INTERFERENCE SCENARIOS - A method and apparatus are for communication in a wireless network in which a User Equipment (UE) associated with a first evolved Node B (eNB) experiences interference from a second eNB. The method includes negotiating by the first eNB of the wireless network with a second eNB of the wireless network for a partitioning of subband resources on an uplink. A first subset of subband resources is assigned to the first eNB, and a second subset of subband resources is assigned to the second eNB. A method and apparatus are for communication in a wireless network. The method includes decoding a downlink control channel received during a protected downlink subframe to determine an uplink subframe n containing a protected subband for uplink transmission. The method also includes transmitting data during the uplink subframe n on the protected subband. | 07-24-2014 |
20140211646 | CELL-SPECIFIC REFERENCE SIGNAL INTERFERENCE AVERAGING - Aspects of the present disclosure provide techniques and apparatus for enhancing performance by selectively applying averaging to CSI reporting processes. According to certain aspects, a base station (e.g., an eNB) with knowledge of traffic patterns of potentially interfering transmitters may signal a UE how (or whether) to apply averaging, for example, when reporting CSI based on interference measurement resources (IMR). | 07-31-2014 |
20140241272 | INTERFACE BETWEEN LOW POWER NODE AND MACRO CELL TO ENABLE DECOUPLED UPLINK AND DOWNLINK COMMUNICATION - Certain aspects provide a method for wireless communications with low powered, possible low cost devices, such as machine-type communications (MTC) devices. A method for wireless communications by a wireless node is provided. The method generally includes receiving, from a base station of a cell, signaling indicating a random access channel (RACH) configuration for a wireless device, detecting, based on the RACH configuration, the wireless device performing a RACH procedure, reporting the RACH detection to the base station of the cell, receiving signaling indicating the wireless node has been selected to serve the wireless device for uplink communications with the base station of the cell, receiving uplink data transmitted from the wireless device, and forwarding the uplink data to the base station of the cell. | 08-28-2014 |
20140247781 | METHOD AND APPARATUS FOR MTC DEVICE ASSOCIATION SCHEMES - Methods and apparatuses are described for wireless communications in which various association schemes may be performed for a machine type communication (MTC) device. In a long-term evolution (LTE) heterogeneous network, the MTC device may associate with a macro cell or a small cell using a narrowband MTC channel supported by the cells. Information about the MTC channel, including its frequency spectrum, may be transmitted to the MTC device using reserved bits in a physical broadcast channel (PBCH). Once the MTC device identifies the MTC channel, it may communicate with one or more cells during a frame or during a sub-frame. The MTC device may determine channel metrics of the cells from the MTC communication and may identify a cell with which to associate from the channel metrics. The association may be to a best downlink cell or a best uplink cell based on the operating profile of the MTC device. | 09-04-2014 |
20140247790 | SYSTEMS AND METHODS FOR ENHANCING UPLINK COVERAGE IN INTERFERENCE SCENARIOS - A method and apparatus are for communication in a wireless network in which a User Equipment (UE) associated with a first evolved Node B (eNB) experiences interference from a second eNB. The method includes negotiating by the first eNB of the wireless network with a second eNB of the wireless network for a partitioning of subband resources on an uplink. A first subset of subband resources is assigned to the first eNB, and a second subset of subband resources is assigned to the second eNB. A method and apparatus are for communication in a wireless network. The method includes decoding a downlink control channel received during a protected downlink subframe to determine an uplink subframe n containing a protected subband for uplink transmission. The method also includes transmitting data during the uplink subframe n on the protected subband. | 09-04-2014 |
20140273879 | METHOD AND APPARATUS FOR ABSORBED POWER CALIBRATION FOR UE - Methods, systems, apparatuses, and computer program products are described for operating a wireless communications device. Multiple signals may be received at the wireless communications device. The device may determine a power measurement for each of the signals and may receive absorbed power values corresponding to each power measurement. The wireless communications device may then be calibrated using one or more of the absorbed power values and corresponding power measurements. | 09-18-2014 |
20140301263 | TIMING RESOLUTION FOR DEVICES WITH LONG SLEEP CYCLES - Timing resolution for user equipments (UEs) that operate using a discontinuous reception (DRX) mode that includes various sleep cycles may be addressed through selection of various alternative wake up procedures. A UE selects a wake-up procedure based on the length of the sleep cycle. The UE may use details of the sleep cycle, including a time offset or timing uncertainty associated with the sleep cycle, when selecting the wake-up procedure. The UE may select to obtain system timing information either directly from a serving cell or non-serving cell in sync with the serving cell or may select to perform either a one-step or two-step pre-wake up procedure in order to obtain the system timing. Once the UE obtains the system timing or determines a wake-up procedure, it performs timing correction before the scheduled wake-up times between the sleep cycles. | 10-09-2014 |
20140301268 | NETWORK ASSISTED INTERFERENCE CANCELLATION/SUPPRESSION FOR MULTIPLE SERVICES - Certain aspects of the present disclosure relate to methods and apparatus for network assisted interference cancellation (IC) and interference suppression (IS) for multiple services. According to aspects a user equipment (UE) may determine information regarding system parameters for one or more types of communications services used to transmit potentially interfering signals in one or more neighbor cells, wherein a type of the information determined depends on the type of communications service. The UE may perform interference management using the determined information to cancel or suppress interference caused by the potentially interfering signals. | 10-09-2014 |
20140301272 | COMMON REFERENCE SIGNAL INTERFERENCE CANCELLATION TRIGGERING IN HOMOGENEOUS NETWORKS - A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus determines whether one or more criteria for triggering interference cancellation in a homogeneous network are satisfied. The apparatus transmits a signal to a UE to control triggering the interference cancellation at the UE if the one or more criteria are satisfied. | 10-09-2014 |
20140301302 | ENHANCED TRANSMISSION TIME INTERVAL BUNDLING DESIGN FOR MACHINE TYPE COMMUNICATIONS - Aspects of the present disclosure provide techniques for enhanced transmission time interval (TTI) bundling design for machine type communications (MTC). A method for wireless communications by a wireless device is provided. The method generally includes determining a mapping of one or more uplink or downlink channels to one or more fixed bundling sizes, wherein each of the one or more fixed bundling sizes indicates a number of transmission time intervals (TTIs) over which a channel should be transmitted and processing transmission of the one or more uplink or downlink channels based on the mapping. | 10-09-2014 |
20140301305 | PHYSICAL BROADCAST CHANNEL (PBCH) COVERAGE ENHANCEMENTS FOR MACHINE TYPE COMMUNICATIONS (MTC) - Aspects of the present disclosure provide techniques and apparatus for physical broadcast channel (PBCH) coverage enhancements, for example, for machine type communications (MTC). In aspects, the PBCH coverage enhancements may be applied by non-MTC devices. A method for wireless communications typically performed by a base station (BS) is provided. The method generally includes determining a set of resources for a new physical broadcast channel (PBCH) with enhanced coverage relative to a legacy PBCH and communicating to at least one user equipment (UE) based on the determined set of resources for the new PBCH. In aspects, the new PBCH may be transmitted on a subframe allocated for communicating with MTC devices (MTC subframe). | 10-09-2014 |
20140307714 | METHOD AND APPARATUS FOR INTERFERENCE MITIGATION IN WIRELESS NETWORKS - Methods and apparatuses are provided that include mitigating interference for devices communicating with femto nodes or other low power base stations by assigning protected resources for communicating therewith. The protected resources can be negotiated with a macrocell base station using interference cancellation. The protected resources can be assigned based on an early or late handover event, which can indicate that the device may be susceptible to interference from the macrocell base station. | 10-16-2014 |
20140313997 | UTILIZING UNUSED UPLINK SEQUENCE SHIFTS FOR SIGNALING - Certain aspects of the present disclosure propose methods and apparatus for signaling information via the selection of resources used for an uplink transmission. The aspects may include selecting one or more cyclic shifts or orthogonal cover codes used to transmit an uplink channel. The one or more cyclic shifts or orthogonal cover codes may be selected to convey information. The information may be conveyed by transmitting the uplink channel using the selected cyclic shifts or orthogonal cover codes. | 10-23-2014 |
20140334299 | OVERLOAD CONTROL AND SUPERVISION FOR WIRELESS DEVICES - Methods, systems, and/or devices are described for are provided for transmission overload control and/or supervision of wireless devices. Tools and techniques may be provided for resolving issues associated with numerous wireless devices connected to a base station. For example, a transmission cycle for an uplink channel may be identified where the transmission cycle is discontinuous. Scheduling request and or Random Access Channel messages may be transmitted from a wireless device based on the discontinuous transmission cycle. Tools and techniques are also provided that may involve supervision of numerous wireless devices. Supervision may, for example, involve keep-alive messages transmitted in accordance with a timer. The supervision may be based on determination of, and transmissions related to, a list or lists of connected wireless devices. In some cases, the wireless devices may be delay tolerant. The wireless devices may include UEs that may have long sleep cycles and/or machine-type communications (MTC) devices. | 11-13-2014 |
20140334399 | METHODS AND APPARATUS FOR NETWORK SYNCHRONIZATION - Certain aspects relate to techniques and apparatus for network synchronization by network listening. Aspects include transmitting a synchronization signal for a base station (BS) to use for acquiring synchronization with the network. Aspects include listening for a synchronization signal from a BS to use for acquiring network synchronization. In aspects, a method for wireless communications by a BS is provided. The method generally includes acquiring synchronization with a network based on a first synchronization signal transmitted from a primary BS or a secondary BS, determining a synchronization stratum for the BS based on whether the BS acquired synchronization with the network from the primary BS or from the secondary BS, and transmitting a second synchronization signal for one or more other BS s to use for acquiring synchronization with the network, wherein the transmitting is based, at least in part on the determined synchronization stratum. | 11-13-2014 |
20140341018 | TECHNIQUES FOR SELECTING SUBFRAME TYPE OR FOR INTERLEAVING SIGNALS FOR WIRELESS COMMUNICATIONS OVER UNLICENSED SPECTRUM - Methods and apparatuses are described in which an unlicensed spectrum is used for Long Term Evolution (LTE) communications. A first method includes comparing past transmission activity on an unlicensed spectrum to an activity threshold, transmitting a first subframe type in the unlicensed spectrum during a next active transmission when the past transmission activity is greater than the activity threshold, and transmitting a second subframe type in the unlicensed spectrum during a next active transmission when the past transmission activity is lesser than the activity threshold, the second subframe type comprising a more robust subframe type than the first subframe type. A second method includes generating one or both of PUCCH signals and PUSCH signals based on interleaved signals that increase nominal bandwidth occupancy in an unlicensed spectrum, and transmitting the generated signals in the unlicensed spectrum. A third method includes receiving the PUCCH signals and the PUSCH signals. | 11-20-2014 |
20140341024 | CONCURRENT WIRELESS COMMUNICATIONS OVER LICENSED AND UNLICENSED SPECTRUM - Methods and apparatuses are described for wireless communications. A first method includes transmitting a first Orthogonal Frequency-Division Multiple Access (OFDMA) communications signal to a wireless node in a licensed spectrum, and transmitting, concurrently with the transmission of the first OFDMA communications signal, a second OFDMA communications signal to the wireless node in an unlicensed spectrum. A second method includes receiving a first Orthogonal Frequency-Division Multiple Access (OFDMA) communications signal from a wireless node in a licensed spectrum, and receiving, concurrently with the reception of the first OFDMA communications signal, a second OFDMA communication signal from the wireless node in an unlicensed spectrum. A third method includes generating a periodic gating interval for a cellular downlink in an unlicensed spectrum, and synchronizing at least one boundary of the periodic gating interval with at least one boundary of a periodic frame structure associated with a primary component carrier of the cellular downlink. | 11-20-2014 |
20140341035 | BEACON TRANSMISSION OVER UNLICENSED SPECTRUM - Methods and apparatuses are described in which an unlicensed spectrum is used for Long Term Evolution (LTE) communications. A first method includes broadcasting beacon signals in an unlicensed spectrum at predetermined times from an evolved Node B (eNB). A second method includes receiving beacon signals broadcast in an unlicensed spectrum at predetermined times from an eNB. The beacon signals may include downlink signals identifying the eNB and at least one associated attribute of the eNB. | 11-20-2014 |
20140341053 | WIRELESS FEEDBACK COMMUNICATIONS OVER UNLICENSED SPECTRUM - Methods and apparatuses are described in which an unlicensed spectrum is used for Long Term Evolution (LTE) communications. A first method includes receiving feedback information from a user equipment (UE) via a primary component carrier (PCC) uplink in a licensed spectrum. A second method includes transmitting feedback information from a UE to an evolved Node B (eNB) via a PCC uplink in a licensed spectrum. The feedback information may address signals transmitted to the UE via a downlink in an unlicensed spectrum | 11-20-2014 |
20140341135 | COLLISION AVOIDANCE SCHEME FOR WIRELESS COMMUNICATIONS OVER UNLICENSED SPECTRUM - Methods and apparatuses are described in which an unlicensed spectrum is used for Long Term Evolution (LTE) communications. A first method includes performing clear channel assessment (CCA) to determine availability of an unlicensed spectrum, transmitting a request-to-send (RTS) signal to a set of user equipments (UEs) using the unlicensed spectrum when a determination is made that the unlicensed spectrum is available, and receiving, in the unlicensed spectrum, a common clear-to-send (CTS) signal and an individual CTS signal from one or more of the UEs in response to the RTS signal. A second method includes transmitting an RTS signal in an unlicensed spectrum or a V-RTS signal in a licensed spectrum, addressed to a set of UEs, and transmitting a CTS-to-self signal in the unlicensed spectrum along with the transmission of the V-RTS signal. | 11-20-2014 |
20140341207 | LISTEN-BEFORE-TALK RESERVATION SCHEME FOR WIRELESS COMMUNICATIONS OVER UNLICENSED SPECTRUM - Methods and apparatuses are described in which an unlicensed spectrum is used for Long Term Evolution (LTE) communications. A first method includes synchronizing clear channel assessment (CCA) slots across a plurality of base stations to determine availability of an unlicensed spectrum for transmissions in a next transmission interval. A second method includes performing a CCA during one of a plurality of CCA slots synchronized across a plurality of evolved Node Bs (eNBs) to determine availability of unlicensed spectrum for transmissions in a next transmission interval. | 11-20-2014 |
20140342745 | GATING SCHEME FOR WIRELESS COMMUNICATION OVER UNLICENSED SPECTRUM - Methods and apparatuses are described in which an unlicensed spectrum is used for Long Term Evolution (LTE) communications. One method includes performing a clear channel assessment (CCA) for an unlicensed spectrum in a current gating interval to determine whether the unlicensed spectrum is available for a transmission in a next transmission interval, and gating OFF the transmission in the unlicensed spectrum for the next transmission interval when the determination is that the unlicensed spectrum is unavailable. | 11-20-2014 |
20140348019 | CQI Estimation in a Wireless Communication Network - Techniques for estimating and reporting channel quality indicator (CQI) are disclosed. Neighboring base stations may cause strong interference to one another and may be allocated different resources, e.g., different subframes. A UE may observe different levels of interference on different resources. In an aspect, the UE may determine a CQI for resources allocated to a base station and having reduced or no interference from at least one interfering base station. In another aspect, the UE may determine multiple CQI for resources of different types and associated with different interference levels. For example, the UE may determine a first CQI based on at least one first subframe allocated to the base station and having reduced or no interference from the interfering base station(s). The UE may determine a second CQI based on at least one second subframe allocated to the interfering base station(s). | 11-27-2014 |
20140349701 | UPLINK POWER HEADROOM MANAGEMENT FOR CONNECTIVITY WITH LOGICALLY SEPARATE CELLS - Power headroom management in uplink carrier aggregation for connectivity with logically separate cells of a wireless communications system is performed by a network entity, alone or in combination with another network entity, one or more mobile entities, or both. This may include determining an uplink power allocation across at least two independently controlled cells of a wireless communication network for a mobile entity served by at least two independently controlled cells of a wireless communication network, subject to a total PH constraint for uplink transmissions by the mobile entity. A network entity may then manage PH reporting for determining the uplink power allocation by the uplink serving cells, based on the determined uplink power allocation. Managing the PH reporting may be performed by at least one of: explicit coordination between the at least two independently controlled cells, implicit coordination between the at least two independently controlled cells, or configuring PH reporting from the mobile entity by at least one of the at least two independently controlled cells. | 11-27-2014 |
20150023296 | TIMING ADJUSTMENT FOR SYNCHRONOUS OPERATION IN A WIRELESS NETWORK - Techniques for adjusting transmit timing of base stations and user equipments (UEs) in a wireless network are described. In one operating scenario, a femto base station communicates with a femto UE, and a macro base station communicates with a macro UE located within the coverage of the femto base station. In an aspect, the transmit timing of the femto base station may be delayed relative to the transmit timing of the macro base station, e.g., to time align downlink signals from the femto and macro base stations at the femto and macro UEs. In another aspect, the transmit timing of the femto UE may be advanced relative to the transmit timing of femto base station by an amount larger than twice the propagation delay between the femto UE and the femto base station, e.g., to time align uplink signals from the femto and macro UEs at the femto base station. | 01-22-2015 |
20150029903 | TRANSMISSION TIME INTERVAL (TTI) BUNDLING FOR PHYSICAL DOWNLINK SHARED CHANNEL (PDSCH) - Certain aspects of the present disclosure propose techniques for transmission time interval (TTI) bundling for physical downlink shared channel (PDSCH) in long term evolution (LTE). According to certain aspects a method is provided for wireless communications. The method may be performed, for example, by a user equipment (UE). The method generally includes identifying a transmit time interval (TTI) bundle comprising a subset of subframes from a set of subframes for transmitting data on a physical downlink shared channel (PDSCH) and receiving the data on the PDSCH in the subset of subframes. | 01-29-2015 |
20150029923 | CONNECTED MODE DESIGN WITH BUNDLING CONSIDERATIONS - Aspects of the present disclosure provided techniques that may be applied in systems that utilize bundled transmissions from a base station (e.g., an eNodeB) to a user equipment (UE), when a user equipment (UE) is in a connected mode of operation. An exemplary method performed by a UE for processing a downlink control channel sent as a bundled transmission over a bundle of subframes, comprises determining when to start monitoring for the control channel; and monitoring for the control channel in a limited number of downlink subframes, based on the determination. | 01-29-2015 |
20150029953 | TRANSMISSION TIME INTERVAL (TTI) BUNDLING FOR CONTROL CHANNELS IN LONG TERM EVOLUTION (LTE) - Certain aspects of the present disclosure propose techniques for transmission time interval (TTI) bundling for control channels (e.g., physical downlink control channel (PDCCH) and enhanced PDCCH) in long term evolution (LTE). According to certain aspects a method is provided for wireless communications. The method may be performed, for example, by a user equipment (UE). The method generally includes determining a first set of possible decoding candidates for the downlink control channel in a first subframe of the bundle of subframes and a second set of possible decoding candidates for the downlink control channel in a second subframe in the bundle of subframes, wherein the first set of possible decoding candidates and the second set of possible decoding candidates are different and processing the bundle of subframes based, at least in part, on the determination. | 01-29-2015 |
20150031382 | PAGING A USER EQUIPMENT OVER UNLICENSED SPECTRUM - Methods and apparatus for paging comprise receiving data destined for a UE. The methods and apparatus further comprise determining a short identity for the UE relative to a longer global user equipment identity and identifying a MIB transmission based on a short identity. Moreover, the methods and apparatus comprise activating a bit within a slot of the MIB transmission to indicate that the user equipment listen for a page in order to receive the data and broadcasting the MIB. In other aspects, methods and apparatus for receiving a page comprise entering an idle state while camped on a cell. The methods and apparatus further comprise waking up from the idle state to monitor a slot of a MIB for a paging indication. Moreover, the methods and apparatus comprise recognizing the paging indication in the monitored slot of the MIB, determining a paging window based on correlation information in a SIB and waking up to listen for a page during the paging window. | 01-29-2015 |
20150043523 | TRANSMISSION AND RECEPTION OF COMMON CHANNEL IN AN UNLICENSED OR SHARED SPECTRUM - Methods, systems, and apparatuses are described for wireless communications, in which transmission of common information to two or more receivers over unlicensed spectrum may be provided. The common information may be transmitted over a number (e.g., a set) of different carrier frequencies of the unlicensed spectrum. A staggering pattern may be employed to transmit all or a part of the common information across each of the carrier frequencies in the set of carrier frequencies. The detection of the information on one of the carrier frequencies may provide information that may be used to derive the staggering pattern. The duration of the common information transmission on each of the carrier frequencies may be selected such that a clear channel assessment (CCA) to determine availability of the unlicensed spectrum is not required. | 02-12-2015 |
20150049708 | HARQ DESIGN FOR LTE IN UNLICENSED SPECTRUM UTILIZING INDIVIDUAL ACK/NACK - Methods, systems, and apparatuses are described for wireless communications. In one method, a sequence number corresponding to a data frame and one or more data subframes of the data frame may be transmitted over an unlicensed spectrum to a user equipment (UE), and hybrid automatic repeat request (HARQ) feedback for the one or more data subframes may be received over the unlicensed spectrum, from the UE, when the sequence number corresponding to the data frame is received by the UE in a specified order. In another method, a sequence number corresponding to a data frame and HARQ feedback may be transmitted over an unlicensed spectrum to a UE, and one or more data subframes may be received over the unlicensed spectrum, from the UE, in response to the HARQ feedback when the sequence number corresponding to the data frame is received by the UE in a specified order. | 02-19-2015 |
20150049709 | GROUP ACK/NACK FOR LTE IN UNLICENSED SPECTRUM - Methods, systems, devices, and apparatuses are described for wireless communications. In one method, a set of one or more data subframes of a data frame may be transmitted over an unlicensed spectrum, to a user equipment (UE), during a transmission period. A group hybrid automatic repeat request (HARQ) feedback message for a plurality of data subframes including at least one of the data subframes in the set of one or more data subframes may then be received over the unlicensed spectrum, from the UE, during the transmission period. In another method, a set of one or more data subframes of a data frame may be received over an unlicensed spectrum during a transmission period. A group HARQ feedback message for a plurality of data subframes including at least one of the data subframes in the set of one or more data subframes may then be transmitted over the unlicensed spectrum during the transmission period. | 02-19-2015 |
20150049712 | Uplink Procedures For LTE/LTE-A Communication Systems With Unlicensed Spectrum - Long term evolution (LTE)/LTE-Advanced (LTE-A) deployments with unlicensed spectrum leverage more efficient LTE communication aspects over unlicensed spectrum, such as over WIFI radio access technology. In order to accommodate such communications, various uplink procedures may be modified in order to handle communications between licensed and unlicensed spectrum with LTE/LTE-A deployments with unlicensed spectrum. | 02-19-2015 |
20150049741 | Downlink Procedures For LTE/LTE-A Communication Systems With Unlicensed Spectrum - Long term evolution (LTE)/LTE-Advanced (LTE-A) deployments with unlicensed spectrum leverage more efficient LTE communication aspects over unlicensed spectrum, such as over WIFI radio access technology. In order to accommodate such communications, various downlink procedures may be modified in order to handle communications between licensed and unlicensed spectrum with LTE/LTE-A deployments with unlicensed spectrum. | 02-19-2015 |
20150055545 | Techniques for Supporting Relay Operation in Wireless Communication Systems - Techniques for supporting operation of relay stations in wireless communication systems are described. In an aspect, a bitmap may be sent by a base station and/or a relay station to identify subframes of at least two types in multiple radio frames. For example, the bitmap may indicate whether each subframe covered by the bitmap is of a first type or a second type. UEs may use the bitmap to control their operation. For example, a UE may perform channel estimation or measurement for the subframes of the first type and may skip channel estimation and measurement for the subframes of the second type. In another aspect, a base station may transmit data and/or control information on resources not used by a relay station to transmit a reference signal. This may avoid interference to the reference signal from the relay station, which may improve performance for UEs communicating with the relay station. | 02-26-2015 |
20150055611 | METHOD AND APPARATUS FOR MITIGATING PILOT POLLUTION IN A WIRELESS NETWORK - Techniques for mitigating pilot pollution in a wireless network are described. In an aspect, pilot pollution may be mitigated by reducing density and/or transmit power of common pilots whenever possible. A cell may send a common pilot at a first density and a first transmit power level during a first time period and may send the common pilot at a second density and a second transmit power level during a second time period. The second density may be lower than the first density and/or the second transmit power level may be lower than the first transmit power level. Lower density may be achieved by sending the common pilot less frequently, on fewer subcarriers, and/or from fewer antennas. The cell may determine whether to reduce the density and/or transmit power of the common pilot based on network loading, SINRs of terminals, etc. In another aspect, pilot pollution may be mitigated by performing pilot cancellation at a terminal. | 02-26-2015 |
20150055613 | METHODS AND APPARATUS FOR ADJACENT CHANNEL INTERFERENCE MITIGATION IN ACCESS POINT BASE STATIONS - Apparatus and methods for interference mitigation in wireless communication networks are described. In one implementation, at a node in a first network, a power level and/or bandwidth or channelization of an adjacent channel signal may be determined, and a power level and/or bandwidth of a transmitted signal in the first network may be adjusted in response. | 02-26-2015 |
20150063262 | SUBFRAME DEPENDENT PHYSICAL UPLINK CONTROL CHANNEL (PUCCH) REGION DESIGN - According to certain aspects, resources allocated to a user equipment (UE) for physical uplink control channel (PUCCH) transmissions may be determined in a subframe-type dependent manner. As a result, PUCCH regions for different subframes may vary based on the subframe types. | 03-05-2015 |
20150067435 | RESOURCE MAPPING TO HANDLE BURSTY INTERFERENCE - Resource mapping and coding schemes to handle bursty interference are disclosed that provide for spreading the modulated symbols for one or more transmission code words over more symbols in the time-frequency transmission stream. Certain aspects allow for the modulated symbols to be based on bits from more than one code word. Other aspects also provide for re-mapping code word transmission sequences for re-transmissions based on the number of re-transmissions requested by the receiver. Additional aspects provide for layered coding that uses a lower fixed-size constellation to encode/decode transmissions in a layered manner in order to achieve a larger-size constellation encoding. The layered encoding process allows the transmitter and receiver to use different coding rates for each coding layer. The layered encoding process also allows interference from neighboring cells to be canceled without knowledge of the actual constellation used to code the interfering neighboring signal. | 03-05-2015 |
20150071060 | COUPLING UPLINK AND DOWNLINK CCA IN LTE-U - Methods, systems, and devices are described contention-based channel access procedures that may enhance efficiency in communications using unlicensed spectrum. A time period may be identified during which base stations perform contention-based downlink channel access procedures for access to a channel in an unlicensed spectrum. The base stations may be coordinated such that different base stations may seek channel access during different time intervals during the time period. Contention-based uplink channel access procedures for UEs may then be modified to favor one or more UEs that are associated with a base station that has won channel access. | 03-12-2015 |
20150078188 | UPLINK CHANNEL DESIGN WITH COVERAGE ENHANCEMENTS - Aspects of the present disclosure provide techniques for providing uplink channel coverage enhancements for wireless devices. An example method generally includes determining a power difference value based on a target preamble received power level and a maximum preamble transmit power level, selecting a bundling size for uplink transmissions based on the determined difference, and sending the uplink transmissions, in accordance with the selected bundling size. | 03-19-2015 |
20150078300 | COVERAGE ENHANCEMENTS FOR PHYSICAL BROADCAST CHANNEL (PBCH) - Certain aspects of the present disclosure generally relate to wireless communications, and more specifically, coverage enhancements for physical broadcast channel (PBCH). According to certain aspects, a method is provided for wireless communications by a user equipment (UE). The method generally includes receiving a physical downlink shared channel (PDSCH) transmission, receiving a different type downlink transmission, with transmit power boosted relative to the PDSCH transmission, receiving information regarding relative transmit power of the PDSCH transmission relative to a common reference signal (CRS) based on the transmit power of the different type downlink transmission, and processing the PDSCH transmission based on the information. | 03-19-2015 |
20150085794 | UPLINK RESOURCE ALLOCATION AND TRANSPORT BLOCK SIZE DETERMINATION OVER UNLICENSED SPECTRUM - Methods and apparatus for determining a transport block size include identifying data to be transmitted on an uplink, wherein the data is associated with a number of resource blocks. The methods and apparatus further include receiving at least one indicated coefficient via a downlink control information. Additionally, the methods and apparatus include determining at least one coefficient based on the at least one indicated coefficient and calculating a transport block size column index based on the number of resource blocks and the at least one coefficient. Moreover, the methods and apparatus include determining the transport block size based at least in part on the transport block size column index. The methods and apparatus may transmit the data on the uplink based at least in part on the transport block size. | 03-26-2015 |
20150085797 | LTE-U UPLINK WAVEFORM AND VARIABLE MULTI-SUBFRAME SCHEDULING - Uplink waveforms for operating long term evolution (LTE) in an unlicensed band (i.e., long term evolution-unlicensed (LTE-U) communication) are disclosed. Carrier aggregation (CA) and standalone (SA) are disclosed. LTE on the licensed channel may provide both control and data, LTE on the unlicensed channel may provide data. Managing variable transmission time interval (TTI) continuous transmission is disclosed for transmission over multiple subframes of an unlicensed carrier in LTE-U. Listen-before-talk (LBT) requirements of unlicensed carriers provide for additional channel occupancy constraints when scheduling resources for multiple UEs for variable TTI continuous uplink transmissions over multiple subframes. A joint control channel is disclosed that provides control information for all of the potentially available subframes to be scheduled for the uplink transmissions. In addition to management of the variable TTI continuous transmissions, adjustments to uplink signal parameters are also disclosed that address the constraints due to the LBT requirements of unlicensed carriers. | 03-26-2015 |