Patent application number | Description | Published |
20130032254 | Crucible Materials For Alloy Melting - One embodiment provides a method of melting, comprising: providing a mixture of alloy elements that are at least partially crystalline; and heating the mixture in a container to a temperature above a melting temperature of the alloy elements to form an alloy, wherein the container comprises silica, and wherein the mixture comprising Zr and is free of Ti and Be. | 02-07-2013 |
20130037999 | TEMPERATURE REGULATED VESSEL - Disclosed is a temperature regulated vessel, and method for using the same, having a body configured to melt meltable material received therein, and one or more temperature regulating lines within the body configured to flow a liquid therein for regulating a temperature of the meltable material received in the melting portion. The vessel has a poor or low thermally conductive material on one or more of its parts, such as on the melting portion, on exterior surfaces of the body, and/or surrounding the temperature regulating lines to increase melt temperature of the material. The melting portion can also have indentations in its surface, and low thermally conductive material can be provided in the indentations. The vessel can be used to melt amorphous alloys, for example. | 02-14-2013 |
20130306196 | MANIPULATING SURFACE TOPOLOGY OF BMG FEEDSTOCK - Described herein is a feedstock comprising BMG. The feedstock has a surface with an average roughness of at least 200 microns. Also described herein is a feedstock comprising BMG. The feedstock, when supported on a support during a melting process of the feedstock, has a contact area between the feedstock and the support up to 50% of a total area of the support. These feedstocks can be made by molding ingots of BMG into a mole with surface patterns, enclosing one or more cores into a sheath with a roughened surface, chemical etching, laser ablating, machining, grinding, sandblasting, or shot peening. The feedstocks can be used as starting materials in an injection molding process. | 11-21-2013 |
20130306197 | AMORPHOUS ALLOY COMPONENT OR FEEDSTOCK AND METHODS OF MAKING THE SAME - Described herein is a method of combining discrete pieces of BMG in to a BMG feedstock that has at least one dimension greater than a critical dimension of the BMG, by methods such as thermoplastic forming, pressing, extruding, folding or forging. Other embodiments relate to a bulk metallic glass (BMG) component or feedstock having discrete pieces of a BMG, wherein the BMG component or feedstock has at least one dimension greater than a critical dimension of the BMG. | 11-21-2013 |
20130306198 | LAYER-BY-LAYER CONSTRUCTION WITH BULK METALLIC GLASSES - Described herein is a method of selectively depositing molten bulk metallic glass (BMG). In one embodiment, a continuous stream or discrete droplets of molten BMG is deposited to selected positions. The deposition can be repeated as needed layer by layer. One or more layers of non-BMG can be used as needed. | 11-21-2013 |
20130306199 | BULK METALLIC GLASS FEEDSTOCK WITH A DISSIMILAR SHEATH - Described herein is a feedstock including a core comprising BMG and a sheath attached the core. The sheath has a different physical property, a different chemical property or both from the core. Alternatively, the feedstock can include a sheath that encloses one or more core comprising BMG. The feedstock can be manufactured by attaching the sheath to the core, shot peening the core, etching the core, ion implanting the core, or applying a coating to the core, etc. The feedstock can be used to make a part by injection molding. The sheath can be used to adjust the composition of the core to reach the composition of the part. | 11-21-2013 |
20130306201 | BULK AMORPHOUS ALLOY SHEET FORMING PROCESSES - Embodiments herein relate to a method for forming a bulk solidifying amorphous alloy sheets have different surface finish including a “fire” polish surface like that of a float glass. In one embodiment, a first molten metal alloy is poured on a second molten metal of higher density in a float chamber to form a sheet of the first molten that floats on the second molten metal and cooled to form a bulk solidifying amorphous alloy sheet. In another embodiment, a molten metal is poured on a conveyor conveying the sheet of the first molten metal on a conveyor and cooled to form a bulk solidifying amorphous alloy sheet. The cooling rate such that a time-temperature profile during the cooling does not traverse through a region bounding a crystalline region of the metal alloy in a time-temperature-transformation (TTT) diagram. | 11-21-2013 |
20130309121 | LAYER-BY-LAYER CONSTRUCTION WITH BULK METALLIC GLASSES - Described herein are methods of constructing a part using BMG layer by layer. In one embodiment, a layer of BMG powder is deposited to selected positions and then fused to a layer below by suitable methods such as laser heating or electron beam heating. The deposition and fusing are then repeated as need to construct the part layer by layer. One or more layers of non-BMG can be used as needed. In one embodiment, layers of BMG can be cut from one or more sheets of BMG to desired shapes, stacked and fused to form the part. | 11-21-2013 |
20130319090 | TESTING OF SURFACE CRYSTALLINE CONTENT IN BULK AMORPHOUS ALLOY - Provided in one embodiment is a method, comprising: forming a part comprising a bulk amorphous alloy, wherein the part comprises a sampling portion; determining a parameter related to the part by detecting by imaging on a surface of the sampling portion presence of crystals of the alloy; and evaluating the part based on the parameter. | 12-05-2013 |
20140283959 | TAMPER RESISTANT AMORPHOUS ALLOY JOINING - A method to form an enclosure or assembly which is fitted together and joined via a thermoplastic forming operation in order to seal the enclosure and hinder attempts to tamper with the contents. | 09-25-2014 |
20140284019 | INJECTION MOLDING OF AMORPHOUS ALLOY USING AN INJECTION MOLDING SYSTEM - Disclosed is an injection molding system including a plunger rod and a melt zone that are provided in-line and on a horizontal axis. The plunger rod is moved in a horizontal direction through the melt zone to move molten material into a mold. The melt zone can have a vessel that is configured to receive the plunger therethrough. A transfer sleeve provided between the vessel and the mold and/or an inlet into a mold can also be horizontally in line with the plunger. The injection molding system can perform the melting and molding processes under a vacuum. | 09-25-2014 |
20140284503 | RADIATION SHIELDING STRUCTURES - Radiation shielding structures comprising bulk-solidifying amorphous alloys and methods of making radiation shielding structures and components in near-to-net shaped forms are provided. | 09-25-2014 |
20140293384 | NANO- AND MICRO-REPLICATION FOR AUTHENTICATION AND TEXTURIZATION - Embodiments herein relate to forming nano- and/or micro-replication directly embossed in a bulk solidifying amorphous alloy comprising a metal alloy by superplastic forming of the bulk solidifying amorphous alloy at a temperature greater than a glass transition temperature (Tg) of the metal alloy. | 10-02-2014 |
20140328714 | ALLOYING TECHNIQUE FOR FE-BASED BULK AMORPHOUS ALLOY - One embodiment provides a method of making an alloy feedstock, comprising: forming a first composition by combining Fe with a first nonmetal element; forming a second composition by combining Fe with a plurality of transition metal elements; forming a third composition by combining the second composition with a second nonmetal element; and combining the first composition with the third composition to form an alloy feedstock. | 11-06-2014 |
20140334106 | BULK AMORPHOUS ALLOY HEAT SINK - Embodiments herein relate to a heat sink having nano- and/or micro-replication directly embossed in a bulk solidifying amorphous alloy comprising a metal alloy, wherein the heat sink is configured to transfer heat out of the heat sink by natural convection by air or forced convection by air, or by fluid phase change of a fluid and/or liquid cooling by a liquid. Other embodiments relate apparatus having the heat sink. Yet other embodiments relate to methods of manufacturing the heat sink and apparatus having the heat sink. | 11-13-2014 |
20140345754 | MOLDING AND SEPARATING OF BULK-SOLIDIFYING AMORPHOUS ALLOYS AND COMPOSITE CONTAINING AMORPHOUS ALLOY - A method to form and to separate bulk solidifying amorphous alloy or composite containing amorphous alloy where the forming and separating takes place at a temperature around the glass transition temperature or within the super cooled liquid region are provided. | 11-27-2014 |