Patent application number | Description | Published |
20130248306 | VIBRATION CONTROL DEVICE FOR RAILROAD VEHICLE - A vibration control device for railroad vehicle includes an actuator with a cylinder coupled to a truck of a railroad vehicle, a piston, a rod coupled to the piston and a vehicle body, a rod-side chamber and a piston-side chamber in the cylinder, a tank, a first on-off valve disposed at an intermediate position of a first passage communicating between the rod-side chamber and the piston-side chamber, a second on-off valve disposed at an intermediate position of a second passage communicating between the piston-side chamber and the tank, and a pump for supplying fluid to the rod-side chamber. A warm-up operation of the actuator is performed by opening the first and second on-off valves and driving the pump after the vibration control device is started and before a transition is made to a normal control mode for suppressing the vibration of the vehicle body. | 09-26-2013 |
20140083807 | VIBRATION DAMPING DEVICE FOR RAILWAY VEHICLE - A vibration damping device for railway vehicle includes an actuator and a damper circuit that causes the actuator to function as a damper. The actuator includes a cylinder coupled to a truck of a railway vehicle, a piston, a rod coupled to the piston and a body, a rod-side chamber and a piston-side chamber inside the cylinder, a first on-off valve for a first passage that communicates between a rod-side chamber and a piston-side chamber, a second on-off valve for a second passage that communicates between the piston-side chamber and a tank, and a pump that supplies a hydraulic fluid into the rod-side chamber. The hydraulic fluid has such kinematic viscosity-temperature characteristics that a kinematic viscosity of the hydraulic fluid ranges from 7 mm | 03-27-2014 |
20140116826 | RAILCAR DAMPING DEVICE - A railcar damping device includes: a tank storing a liquid; a first opening/closing valve provided in a first passage connecting a rod side chamber to a piston side chamber, which are defined by a piston, to be capable of opening and closing the first passage; a second opening/closing valve provided in a second passage connecting the piston side chamber to the tank to be capable of opening and closing the second passage; a pump that supplies the liquid from the tank to the rod side chamber; a motor that rotates at a fixed rotation speed in order to drive the pump to rotate; and a section determination unit that determines whether a section type of a current travel section of the railcar is an open section or a tunnel section on the basis of a speed deviation between a target rotation speed and an actual rotation speed of the motor. | 05-01-2014 |
20140196627 | RAILCAR DAMPING DEVICE - A railcar damping device includes: a tank storing a liquid; a first opening/closing valve provided in a first passage connecting a rod side chamber to a piston side chamber, which are defined by a piston, to be capable of opening and closing the first passage; a second opening/closing valve provided in a second passage connecting the piston side chamber to the tank to be capable of opening and closing the second passage; and a pump that is driven to rotate at a predetermined normal rotation speed in order to supply the liquid from the tank to the rod side chamber, wherein a rotation speed of the pump is reduced when a thrust command value is smaller than a normal lower limit value, which is a lower limit value of a thrust that can be generated by the actuator when the pump is rotated at the normal rotation speed. | 07-17-2014 |
20140196628 | RAILCAR DAMPING DEVICE - A railcar damping device includes: a tank storing a liquid; a first opening/closing valve provided in a first passage connecting a rod side chamber and a piston side chamber, which are defined by a piston, to be capable of opening and closing the first passage; a second opening/closing valve provided in a second passage connecting the piston side chamber and the tank to be capable of opening and closing the second passage; a pump that is driven to rotate at a predetermined normal rotation speed in order to supply the liquid from the tank to the rod side chamber; and a temperature determination unit that determines a temperature of the liquid supplied to the actuator, wherein a rotation speed of the pump is reduced below a normal rotation speed when the temperature determination unit determines that the temperature of the liquid is lower than a predetermined temperature. | 07-17-2014 |
20140249705 | RAILWAY VEHICLE VIBRATION DAMPING DEVICE - Two or more front-side vibration suppression force generation sources and two or more rear-side vibration suppression force generation sources are interposed between bogies and the vehicle body. A controller calculates a sway high-frequency vibration suppression force for suppressing vibration having a frequency which is not less than a frequency of a centrifugal acceleration acting on the vehicle body when the railway vehicle runs in a curve section. The controller lets at least a part of the front-side vibration suppression force generation sources and at least a part of the rear-side vibration suppression force generation sources output a resultant force of a yaw suppression force and the sway high-frequency vibration suppression force. The controller lets all the remaining vibration suppression force generation sources function as passive dampers when the railway vehicle runs in the curve section. Ride quality of the vehicle in the curve section is thereby improved. | 09-04-2014 |
20140257606 | RAILWAY VEHICLE VIBRATION DAMPING DEVICE - A railway vehicle vibration damping device having at least two vibration suppression force generating sources interposed between a bogie and a vehicle body of a railway vehicle extracts from a transverse direction velocity of the vehicle body a frequency component at or above a frequency of a centrifugal acceleration of the vehicle body, and calculates a high frequency vibration suppression force on the basis thereof. When the railway vehicle travels in a curve section, at least a part of the vibration suppression force generating sources is caused to output the high frequency vibration suppression force, and the remaining vibration suppression force generating sources are caused to function as passive dampers. As a result, passenger comfort in the railway vehicle during travel in a curve section is improved. | 09-11-2014 |
20140318411 | RAILWAY VEHICLE DAMPING DEVICE - A railway vehicle damping device comprises at least two front side actuators interposed between a front bogie and a vehicle body of a railway vehicle, and at least two rear side actuators interposed between a rear bogie and the vehicle body of the railway vehicle, and suppresses vibration in a yaw direction of the vehicle body using a yaw suppression force generated by the actuators. After determining that the railway vehicle is traveling in a curve section, a control device causes at least one of the front side actuators and at least one of the rear side actuators to generate a yaw suppression force, and causes all of the remaining actuators to function as passive dampers. As a result, passenger comfort in the railway vehicle during travel in the curve section is improved. | 10-30-2014 |
Patent application number | Description | Published |
20150152894 | ACTUATOR - An actuator according to the present invention includes a cylinder, a piston inserted into the cylinder to be free to slide, a rod that is inserted into the cylinder and connected to the piston, a rod side chamber and a piston side chamber defined by the piston within the cylinder, a tank, a first opening/closing valve provided in a first passage that connects the rod side chamber to the piston side chamber, a second opening/closing valve provided in a second passage that connects the piston side chamber to the tank, a pump that supplies a working fluid to the rod side chamber, a motor that drives the pump, an exhaust passage that connects the rod side chamber to the tank, and a passive valve that is provided in the exhaust passage and has a predetermined pressure/flow rate characteristic. | 06-04-2015 |
20150152935 | DAMPER - A damper includes a cylinder, a piston that is inserted into the cylinder, a rod that is connected to the piston, a rod-side chamber and a piston-side chamber that are divided within the cylinder, a tank, an extension-side passage that allows communication between the rod-side chamber and the tank, a compression-side passage that allows communication between the piston-side chamber and the tank, an extension-side damping valve that is provided in the extension-side passage, a first check valve that is provided in the extension-side passage in parallel with the extension-side damping valve, a compression-side damping valve that is provided in the compression-side passage, a second check valve that is provided in the compression-side passage in parallel with the compression-side damping valve, and a center passage that allows communication between the tank and the inside of the cylinder. | 06-04-2015 |
20150184681 | ACTUATOR - An actuator includes a cylinder, a piston, a rod, a rod-side chamber and a piston-side chamber, a tank, a first pump capable of supplying liquid to the rod-side chamber, a second pump capable of supplying the liquid to the piston-side chamber, a first control passage allowing communication between the rod-side chamber and the tank, a second control passage allowing communication between the piston-side chamber and the tank, a first variable relief valve capable of changing a valve opening pressure for permitting a flow of the liquid by being opened when a pressure in the rod-side chamber reaches the valve opening pressure, a second variable relief valve capable of changing a valve opening pressure for permitting a flow of the liquid by being opened when a pressure in the piston-side chamber reaches the valve opening pressure, and a center passage allowing communication between the tank and the interior of the cylinder. | 07-02-2015 |
20150184683 | ACTUATOR - An actuator according to the present invention includes a telescopic body, a tank, a first opening/closing valve provided in a first passage that connects a rod side chamber to a piston side chamber, a second opening/closing valve provided in a second passage that connects the piston side chamber to the tank, a pump that supplies a fluid to the rod side chamber, a motor that, drives the pump, an exhaust passage that connects the rod side chamber to the tank, and a valve element provided in the exhaust passage, wherein a telescopic unit is formed by integrating the telescopic body, the first opening/closing valve, and the second opening/closing valve, a driving unit is formed by integrating the pump and the motor, and the telescopic unit and the driving unit are provided as separate bodies. | 07-02-2015 |
20150354606 | ACTUATOR UNIT - An actuator unit includes a rod side chamber and a piston side chamber defined in the cylinder by a piston; a tank; a direction control valve configured to allow a working fluid discharged from the pump to be supplied selectively to the rod side chamber and the piston side chamber; a first control passage the rod side chamber with the tank; a second control passage the piston side chamber with the tank; a first variable relief valve provided on the first control passage, the first variable relief valve being configured to be varied a valve opening pressure; a second variable relief valve provided on the second control passage, the second variable relief valve configured to be varied a valve opening pressure; and a center passage the tank with a interior of the cylinder. | 12-10-2015 |
20150369263 | ACTUATOR UNIT - An actuator unit includes two chambers defined in the cylinder; a supply passage allowing a working fluid discharged from the pump to be supplied to the two chambers; a discharge passage allowing the two chambers to communicate with the tank; a direction control valve configured to selectively communicate each of the two chambers with one of the pump and the tank; a control passage that branches from the supply passage on a side of the pump rather than the direction control valve so as to communicate the pump with the tank; a variable relief valve provided on the control passage, the variable relief valve opening so as to allow the working fluid to flow from the supply passage toward the tank when a pressure in the supply passage reaches the valve opening pressure; and a center passage that communicates the tank with an interior of the cylinder. | 12-24-2015 |
20160001795 | ACTUATOR UNIT - An actuator unit includes a rod side chamber and a piston side chamber defined by a piston; a tank; a first opening/closing valve communicating the rod side chamber with the piston side chamber; a second opening/closing valve communicating the piston side chamber with the tank; an suction passage allowing a working fluid to flow from the tank toward the piston side chamber; a rectifying passage allowing the working fluid to flow from the piston side chamber toward the rod side chamber; a pump suppling the working fluid to the rod side chamber; a first discharge passage and a second discharge passage respectively communicating the rod side chamber to the tank; a first passive valve provided on the first discharge passage; a second passive valve provided on the second discharge passage; and a third passive valve configured to communicate and block the first discharge passage. | 01-07-2016 |