Patent application number | Description | Published |
20100012207 | LIQUID COINFUSION UNIT - A liquid coinfusion unit and processes are provided inside which liquid and air are unlikely to accumulate which consists of a chamber part, a main upstream branch pipe, a downstream branch pipe, a supplementary upstream branch pipe, and a stopcock which can allow communication/block the area between the chamber part and main upstream branch pipe, and the area between the chamber part and downstream branch pipe, respectively. The portion of the liquid flow channel inside the chamber part which runs from the main upstream branch pipe towards the downstream branch pipe consists of a bypass flow channel which extends from the direction of advance of the liquid from the main upstream branch pipe towards the chamber part to one side which is substantially orthogonal to the direction of advance, after which it extends in the direction of advance of the liquid from the chamber part towards the downstream branch pipe. | 01-21-2010 |
20100069856 | Structure for Connecting between a Medical Needle and Medical Tubing - A connecting structure is provided which includes a medical needle with a connector provided with a joining groove formed on its rear-end portion, an inner tube that joins to the joining groove, and medical tubing that has one end secured to the outer peripheral surface of the inner tube by welding or adhesive. Moreover, the connector and the inner tube are shaped so as to form a cylinder when the inner tube is fit to the joining groove of the connector. In addition, a portion that is not covered by the inner tube is provided at the base-end portion of the connector, thus providing a gap between the base-end portion of the connector and the medical tubing. | 03-18-2010 |
Patent application number | Description | Published |
20110256980 | VEHICLE CONTROL APPARATUS - A vehicle control apparatus includes: an automatic-stop-and-restart-control-unit stopping/restarting an engine, a brake-fluid-pressure-control-unit controlling wheel-cylinder-pressure using a brake-system, which intensifies brake-manipulation-force by a brake-booster to cause master-cylinder-pressure in a master-cylinder while the engine operates, and which transfers the master-cylinder-pressure to wheel-cylinders to cause the wheel-cylinder-pressure, the brake-system including an actuator automatically increasing pressure in the wheel-cylinders irrespective of the brake-manipulation-force; a negative-pressure-detection-unit which detects the vacuum-pressure; a first-determination-unit which determines whether the vacuum-pressure is not more than a first threshold while the engine stops, a restarting-unit which allows the automatic-stop-and-restart-control-unit to restart the engine when the first-determination-unit determines that the vacuum-pressure is not more than the first threshold; a second-determination-unit which determines whether the vacuum-pressure is not more than a second threshold; and a braking-boost-unit which allows the brake-fluid-pressure-control-unit to automatically increase the pressure in the wheel-cylinders when the second-determination-unit determines that the vacuum-pressure is not more than the second threshold. | 10-20-2011 |
20110256981 | APPARATUS FOR CONTROLLING AUTOMATIC STOP AND RESTART OF ENGINE - An apparatus for controlling automatic stop/restart of an engine, includes: an automatic-stop/restart-control-unit which stops/restarts the engine; a brake-pressure-detection-unit which detects brake pressure in a brake system and controls the brake pressure to perform anti-skid control; a first-determination-unit which determines whether the brake pressure is not less than a first-threshold; a second-determination-unit which determines whether the brake pressure is not less than a second-threshold larger than the-first threshold; a stop-allowing-unit which allows the automatic-stop/restart-control-unit to stop the engine while the engine operates, when the first-determination-unit determines that the brake pressure is not less than the first-threshold and the second-determination-unit determines that the brake pressure is less than the second-threshold; and a stop-inhibiting-unit which inhibits the automatic-stop/restart-control-unit from stopping the engine while the engine operates, when the-first-determination-unit determines that the brake pressure is less than the first-threshold and the second-determination-unit determines that the brake pressure is not less than the second-threshold. | 10-20-2011 |
20120022773 | ENGINE AUTOMATIC STOP AND RESTART CONTROL APPARATUS - An engine automatic stop and restart control apparatus is provided. The apparatus includes a control unit which stops and restarts an engine, an actual axle torque change speed calculation unit which calculates change speed in actual axle torque that is actually generated when the engine is restarted, an ideal axle torque change speed calculation unit which calculates change speed in ideal axle torque that corresponds to engine torque generated by the engine, a change speed difference calculation unit which calculates a change speed difference that is a difference between the change speed in actual axle torque and the change speed in ideal axle torque, and a vibration suppression control unit which executes a vibration suppression control for applying braking torque based on the change speed difference. | 01-26-2012 |
Patent application number | Description | Published |
20120003446 | NITRIDE CRYSTAL AND METHOD FOR PRODUCING THE SAME - A nitride crystal which encircles an outer periphery of a seed crystal, the nitride crystal in an embodiment includes: a first partial region, and a second partial region that has optical characteristics different from those of the first partial region and has optical characteristics which indicate the crystal orientation. | 01-05-2012 |
20130011677 | GALLIUM NITRIDE CRYSTAL, GROUP 13 NITRIDE CRYSTAL, CRYSTAL SUBSTRATE, AND MANUFACTURING METHOD THEREOF - A large sized bulk crystal is produced which allows to cut out a practical size of crystal substrate. The gallium nitride crystal has features in which a length L of c-axis is 9 mm or more, a crystal diameter d of a cross section orthogonal to the c-axis is 100 μm, and a ratio L/d of the length L of the c-axis and the crystal diameter d of the cross section orthogonal to the c-axis is 7 or more. By enlarging this elongated needle-like crystal, a bulk crystal with a large volume can be produced, and a large sized bulk crystal can be produced which allows to cut out a practical size of crystal substrate. | 01-10-2013 |
20130061799 | MANUFACTURING METHOD OF GROUP 13 NITRIDE CRYSTAL - A method of manufacturing a group | 03-14-2013 |
20130062660 | GROUP 13 NITRIDE CRYSTAL AND SUBSTRATE THEREOF - A group 13 nitride crystal has a hexagonal crystal structure and at least contains nitrogen atom and at least a kind of metal atoms selected from a group consisting of B, Al, Ga, In, and Tl. The group 13 nitride crystal includes a first region located at an inner side of a cross section intersecting a c-axis, and a second region surrounding at least a part of an outer periphery of the first region, having a thickness larger than a maximum diameter of the first region, and having a carrier density higher than that of the first region. | 03-14-2013 |
20130064749 | GROUP 13 NITRIDE CRYSTAL AND GROUP 13 NITRIDE CRYSTAL SUBSTRATE - A group 13 nitride crystal having a hexagonal crystal structure and containing at least a nitrogen atom and at least a metal atom selected from a group consisting of B, Al, Ga, In, and Tl. The group 13 nitride crystal includes a first region disposed on an inner side in a cross section intersecting c-axis, a third region disposed on an outermost side in the cross section and having a crystal property different from that of the first region, and a second region disposed at least partially between the first region and the third region in the cross section, the second region being a transition region of a crystal growth and having a crystal property different from that of the first region and that of the third region. | 03-14-2013 |
20130065010 | GALLIUM NITRIDE CRYSTAL, GROUP 13 NITRIDE CRYSTAL, GROUP 13 NITRIDE CRYSTAL SUBSTRATE, AND MANUFACTURING METHOD - A gallium nitride crystal having a hexagonal crystal structure includes a first region located on an inner side of a cross section intersecting c-axis of the hexagonal crystal structure, and a second region surrounding at least a part of the outer periphery of the first region in the cross section. An emission spectrum of each of the first region and the second region with electron beam or ultraviolet light excitation has a first peak including a band edge emission of gallium nitride and a second peak located in a longer wavelength area than the first peak. A peak intensity of the first peak is smaller than a peak intensity of the second peak in the first region, and a peak intensity of the first peak is greater than a peak intensity of the second peak in the second region. | 03-14-2013 |
20130065036 | GROUP 13 NITRIDE CRYSTAL SUBSTRATE, MANUFACTURING METHOD OF GROUP 13 NITRIDE CRYSTAL, AND GALLIUM NITRIDE CRYSTAL - A gallium nitride crystal having a hexagonal crystal structure, wherein a full width at half maximum (FWHM) of X-ray rocking curve in a region at a side of one edge in a c-axis direction is smaller than the FWHM in a region at a side of the other edge in the c-axis direction, in at least one of m-plane outer peripheral surfaces of the hexagonal crystal structure. | 03-14-2013 |
20130243680 | GROUP 13 NITRIDE CRYSTAL AND GROUP 13 NITRIDE CRYSTAL SUBSTRATE - A group 13 nitride crystal has a hexagonal crystal structure containing a nitrogen atom and at least one type of metal atom selected from the group consisting of B, Al, Ga, In, and Tl. The group 13 nitride crystal has a basal plane dislocation in a plurality of directions. Dislocation density of the basal plane dislocation is higher than dislocation density of a threading dislocation of a c-plane. | 09-19-2013 |
20140077218 | GROUP 13 NITRIDE CRYSTAL, GROUP 13 NITRIDE CRYSTAL SUBSTRATE, AND METHOD OF MANUFACTURING GROUP 13 NITRIDE CRYSTAL - A group 13 nitride crystal having a hexagonal crystal structure contains at least a nitrogen atom and at least one metal atom selected from a group consisting of B, Al, Ga, In and Tl. Dislocation density of basal plane dislocations in a cross section parallel to a c-axis is 10 | 03-20-2014 |
20140261157 | METHOD FOR PRODUCING GROUP 13 NITRIDE CRYSTAL AND APPARATUS FOR PRODUCING THE SAME - A method for producing a group 13 nitride crystal, comprises a crystal growth step of reacting nitrogen and a mixed melt containing at least a group 13 metal and at least one of an alkali metal and an alkaline earth metal, in the mixed melt, to grow a nitride crystal on a seed crystal, wherein at least one of the mixed melt and the seed crystal is rotated in the crystal growth step, a relative speed between the mixed melt and the seed crystal in the crystal growth step is repeatedly fluctuated in accordance with one or a plurality of types of predetermined patterns, and a maximum value of the relative speed indicated by the pattern is 0.01 m/s or more. | 09-18-2014 |
20150247257 | GALLIUM NITRIDE CRYSTAL, GROUP 13 NITRIDE CRYSTAL, GROUP 13 NITRIDE CRYSTAL SUBSTRATE, AND MANUFACTURING METHOD - A gallium nitride crystal having a hexagonal crystal structure includes a first region located on an inner side of a cross section intersecting c-axis of the hexagonal crystal structure, and a second region surrounding at least a part of the outer periphery of the first region in the cross section. An emission spectrum of each of the first region and the second region with electron beam or ultraviolet light excitation has a first peak including a band edge emission of gallium nitride and a second peak located in a longer wavelength area than the first peak. A peak intensity of the first peak is smaller than a peak intensity of the second peak in the first region, and a peak intensity of the first peak is greater than a peak intensity of the second peak in the second region. | 09-03-2015 |
Patent application number | Description | Published |
20140136086 | VEHICLE CONTROLLER - A vehicle controller performs a throttle-valve-late-close control in which the throttle valve is held open until a delay time has passed after the fuel cut is started, and an EGR-valve-open-close control in which the EGR valve is repeatedly opened and closed. Then, the throttle valve is closed and the EGR valve is opened. In a period from a latter period of an exhaust stroke to a preceding period of an intake stroke, a valve-overlap control is executed so that a variable valve timing controller is controlled to make both an intake valve and an exhaust valve opened. A pumping loss of an engine is sufficiently reduced and an energy-regenerate efficiency can be effectively improved. | 05-15-2014 |
20150051775 | VEHICLE CONTROL APPARATUS - A vehicle control apparatus uses a travel mode selection unit to select between an EV travel mode, an engine travel mode, and an engine generation mode depending on comparisons between an engine generated power cost, an EV effect, and a surplus electric energy. In such manner, according to a travel condition of a vehicle, an appropriate travel mode is selected for an improvement of fuel consumption efficiency. The vehicle control apparatus also computes a fuel consumption decrease or a fuel consumption increase for each of a plurality of travel modes based on an engine efficiency and an MG-INV efficiency. In such manner, fuel consumption increase/decrease for every travel mode may be computed. | 02-19-2015 |
20150051776 | VEHICLE CONTROL APPARATUS - A vehicle control apparatus computes a fuel consumption decrease or a fuel consumption increase for each of a plurality of travel modes. The vehicle control apparatus includes a control section that calculates an engine efficiency of an engine and an MG-INV efficiency which is a combined efficiency of a motor generator and an inverter. The engine efficiency is calculated based on an engine power and an ideal fuel consumption line. The MG-INV efficiency is calculated based on an MG power. As such, based on the engine efficiency and the MG-INV efficiency, the control section computes the per-unit-electric-power fuel consumption decrease or the per-unit-electric-power fuel consumption increase. | 02-19-2015 |