Patent application number | Description | Published |
20140028148 | METHODS, SYSTEMS, AND APPARATUS FOR REDUCING COGGING TORQUE IN AN ELECTRIC MACHINE - An interior permanent magnet machine is described. The machine includes a rotor rotatable about a central machine axis. The rotor includes a plurality of permanent magnet openings and a plurality of permanent magnets disposed therein. The permanent magnet openings are separated by rotor webs configured to facilitate reducing leakage flux through the rotor webs. The machine also includes a stator disposed coaxially with the rotor and separated from the rotor by a circumferential air gap. The stator includes a plurality of stator teeth that define a plurality of stator slots therebetween. The stator teeth include a stator tooth tip configured to facilitate reducing cogging torque and torque ripple. | 01-30-2014 |
20140102674 | RADIALLY EMBEDDED PERMANENT MAGNET ROTOR AND METHODS THEREOF - In one embodiment, a permanent magnet rotor for use with a stator is provided. The permanent magnet rotor includes at least one permanent magnet and a substantially cylindrical rotor core including an outer edge, a hub having an inner edge defining a central opening, and a plurality of independent pole pieces spaced from the hub radially about the central opening. The rotor core further includes at least one radial aperture extending radially from the outer edge through the rotor core between adjacent independent pole pieces, the at least one aperture configured to receive the at least one permanent magnet. | 04-17-2014 |
20140103768 | RADIALLY EMBEDDED PERMANENT MAGNET ROTOR AND METHODS THEREOF - In one embodiment, a permanent magnet rotor is provided. The permanent magnet rotor includes at least one permanent magnet and a substantially cylindrical rotor core including an outer edge and an inner edge defining a central opening. The rotor core includes a radius R, at least one pole, and at least one radial aperture extending radially though the rotor core from the outer edge to a predetermined depth less than the radius. The at least one radial aperture is configured to receive the at least one permanent magnet. The rotor further includes at least one protrusion extending into the at least one radial aperture, the at least one protrusion positioned substantially along a bottom of the at least one radial aperture and configured to facilitate retention of the at least one permanent magnet within the at least one radial aperture. | 04-17-2014 |
20140103769 | RADIALLY EMBEDDED PERMANENT MAGNET ROTOR AND METHODS THEREOF - In one embodiment, a permanent magnet rotor is provided. The permanent magnet rotor includes a shaft comprising an outer diameter, a first hub coupled about the shaft outer diameter, and a first plurality of pole pieces positioned radially about the hub. The rotor further includes a plurality of permanent magnets positioned radially about the hub. The plurality of pole pieces and the plurality of permanent magnets define a rotor outer diameter, and the rotor outer diameter is magnetically isolated from shaft. | 04-17-2014 |
20140103770 | PERMANENT MAGNET ROTOR AND METHODS THEREOF - In one embodiment, an electric machine is provided. The electric machine includes a machine housing and a stator disposed at least partially within the housing, the stator comprising a plurality of teeth and an aluminum winding wound around at least one tooth of the plurality of teeth. The electric machine further includes a radially embedded permanent magnet rotor disposed at least partially within the housing, the rotor comprising at least one radially embedded permanent magnet and configured to provide increased flux to reduce motor efficiency loss compared to a copper winding. | 04-17-2014 |
20140103772 | RADIALLY EMBEDDED PERMANENT MAGNET ROTOR AND METHODS THEREOF - In one embodiment, a permanent magnet rotor is provided. The rotor includes at least one permanent magnet and a substantially cylindrical rotor core including a plurality of stacked laminations, a hub having an inner edge defining a central opening, and a shaft inserted through the central opening, the shaft magnetically isolated from the hub. The rotor includes at least one connected pole piece coupled to the hub and at least one independent pole piece separated from the hub. The at least one permanent magnet is disposed between the at least one connected pole piece and the at least one independent pole piece. | 04-17-2014 |
20150061441 | ELECTRIC MACHINE AND ASSOCIATED METHOD - An electric machine includes a machine housing and a stator disposed at least partially within the housing. The electric machine also includes a radially embedded permanent magnet rotor disposed at least partially within the housing and an endcap. The rotor has at least one radially embedded permanent magnet that is configured to provide increased flux to reduce motor efficiency loss. The endcap is operably connected to a distal portion of the rotor. | 03-05-2015 |
20150061468 | ELECTRIC MACHINE AND ASSOCIATED METHOD - A method for fabricating a rotor for an electric motor is provided. The method includes the steps of fabricating a first set of rotor parts for use in a motor having a first frame size and fabricating a second set of rotor parts for use in a motor having a second frame size. The second frame size is substantially different from the first frame size. The method further includes the steps of fabricating a third set of rotor parts for use in the motor having the first frame size and for use in the motor having the second frame size, ascertaining the desired motor frame size, and selecting one of the first set of rotor parts and the second set of rotor parts in accordance with desired motor frame size. The method also includes the steps of selecting the third set of rotor parts and assembling a rotor with one of the first set of rotor parts and the second set of rotor parts and with the third set of rotor parts, such that a rotor for use with the desired motor frame size is substantially provided. | 03-05-2015 |