Patent application number | Description | Published |
20080203447 | LOW-TEMPERATURE ELECTRICALLY ACTIVATED GATE ELECTRODE AND METHOD OF FABRICATING SAME - A gate electrode structure is provided, which includes, from bottom to top, an optional, yet preferred metallic layer, a Ge rich-containing layer and a Si rich-containing layer. The sidewalls of the Ge rich-containing layer include a surface passivation layer. The inventive gate electrode structure serves as a low-temperature electrically activated gate electrode of a MOSFET in which the materials thereof as well as the method of fabricating the same are compatible with existing MOSFET fabrication techniques. The inventive gate electrode structure is electrically activated at low processing temperatures (on the order of less than 750° C.). Additionally, the inventive gate electrode structure also minimizes gate-depletion effects, does not contaminate a standard MOS fabrication facility and has sufficiently low reactivity of the exposed surfaces that renders such a gate electrode structure compatible with conventional MOSFET processing steps. | 08-28-2008 |
20080246019 | DEFECT REDUCTION BY OXIDATION OF SILICON - A method of fabricating high-quality, substantially relaxed SiGe-on-insulator substrate materials which may be used as a template for strained Si is described. A silicon-on-insulator substrate with a very thin top Si layer is used as a template for compressively strained SiGe growth. Upon relaxation of the SiGe layer at a sufficient temperature, the nature of the dislocation motion is such that the strain-relieving defects move downward into the thin Si layer when the buried oxide behaves semi-viscously. The thin Si layer is consumed by oxidation of the buried oxide/thin Si interface. This can be accomplished by using internal oxidation at high temperatures. In this way the role of the original thin Si layer is to act as a sacrificial defect sink during relaxation of the SiGe alloy that can later be consumed using internal oxidation. | 10-09-2008 |
20080258220 | ION IMPLANTATION COMBINED WITH IN SITU OR EX SITU HEAT TREATMENT FOR IMPROVED FIELD EFFECT TRANSISTORS - This invention teaches methods of combining ion implantation steps with in situ or ex situ heat treatments to avoid and/or minimize implant-induced amorphization (a potential problem for source/drain (S/D) regions in FETs in ultrathin silicon on insulator layers) and implant-induced plastic relaxation of strained S/D regions (a potential problem for strained channel FETs in which the channel strain is provided by embedded S/D regions lattice mismatched with an underlying substrate layer). In a first embodiment, ion implantation is combined with in situ heat treatment by performing the ion implantation at elevated temperature. In a second embodiment, ion implantation is combined with ex situ heat treatments in a “divided-dose-anneal-in-between” (DDAB) scheme that avoids the need for tooling capable of performing hot implants. | 10-23-2008 |
20080277690 | STRAINED SILICON-ON-INSULATOR BY ANODIZATION OF A BURIED p+ SILICON GERMANIUM LAYER - A cost efficient and manufacturable method of fabricating strained semiconductor-on-insulator (SSOI) substrates is provided that avoids wafer bonding. The method includes growing various epitaxial semiconductor layers on a substrate, wherein at least one of the semiconductor layers is a doped and relaxed semiconductor layer underneath a strained semiconductor layer; converting the doped and relaxed semiconductor layer into a porous semiconductor via an electrolytic anodization process, and oxidizing to convert the porous semiconductor layer into a buried oxide layer. The method provides a SSOI substrate that includes a relaxed semiconductor layer on a substrate; a high-quality buried oxide layer on the relaxed semiconductor layer; and a strained semiconductor layer on the high-quality buried oxide layer. In accordance with the present invention, the relaxed semiconductor layer and the strained semiconductor layer have identical crystallographic orientations. | 11-13-2008 |
20080280416 | Techniques for Layer Transfer Processing - Techniques for the fabrication of semiconductor devices are provided. In one aspect, a layer transfer structure is provided. The layer transfer structure comprises a carrier substrate having a porous region with a tuned porosity in combination with an implanted species defining a separation plane therein. In another aspect, a method of forming a layer transfer structure is provided. In yet another aspect, a method of forming a three dimensional integrated structure is provided. | 11-13-2008 |
20080296634 | STRUCTURE AND METHOD FOR MANUFACTURING STRAINED SILICON DIRECTLY-ON-INSULATOR SUBSTRATE WITH HYBRID CRYSTALLINE ORIENTATION AND DIFFERENT STRESS LEVELS - The present invention provides a strained Si directly on insulator (SSDOI) substrate having multiple crystallographic orientations and a method of forming thereof. Broadly, but in specific terms, the inventive SSDOI substrate includes a substrate; an insulating layer atop the substrate; and a semiconducting layer positioned atop and in direct contact with the insulating layer, the semiconducting layer comprising a first strained Si region and a second strained Si region; wherein the first strained Si region has a crystallographic orientation different from the second strained Si region and the first strained Si region has a crystallographic orientation the same or different from the second strained Si region. The strained level of the first strained Si region is different from that of the second strained Si region. | 12-04-2008 |
20090117720 | STRAINED SEMICONDUCTOR-ON-INSULATOR BY Si:C COMBINED WITH POROUS PROCESS - A method of fabricating a strained semiconductor-on-insulator (SSOI) substrate is provided. The method includes first providing a structure that includes a substrate, a doped and relaxed semiconductor layer on the substrate, and a strained semiconductor layer on the doped and relaxed semiconductor layer. In the invention, the doped and relaxed semiconductor layer having a lower lattice parameter than the substrate. Next, at least the doped and relaxed semiconductor layer is converted into a buried porous layer and the structure including the buried porous layer is annealed to provide a strained semiconductor-on-insulator substrate. During the annealing, the buried porous layer is converted into a buried oxide layer. | 05-07-2009 |
20090134460 | STRAINED SEMICONDUCTOR-ON-INSULATOR (sSOI) BY A SIMOX METHOD - A strained (tensile or compressive) semiconductor-on-insulator material is provided in which a single semiconductor wafer and a separation by ion implantation of oxygen process are used. The separation by ion implantation of oxygen process, which includes oxygen ion implantation and annealing creates, a buried oxide layer within the material that is located beneath the strained semiconductor layer. In some embodiments, a graded semiconductor buffer layer is located beneath the buried oxide layer, while in other a doped semiconductor layer including Si doped with at least one of B or C is located beneath the buried oxide layer. | 05-28-2009 |
20090186455 | DISPOSABLE METALLIC OR SEMICONDUCTOR GATE SPACER - A disposable spacer is formed directly on or in close proximity to the sidewalls of a gate electrode and a gate dielectric. The disposable spacer comprises a material that scavenges oxygen such as a metal, a metal nitride, or a semiconductor material having high reactivity with oxygen. The disposable gate spacer absorbs any oxygen during subsequent high temperature processing such as a stress memorization anneal. A metal is deposited over, and reacted with, the gate electrode and source and drain regions to form metal semiconductor alloy regions. The disposable gate spacer is subsequently removed selective to the metal semiconductor alloy regions. A porous or non-porous low-k dielectric material is deposited to provide a low parasitic capacitance between the gate electrode and the source and drain regions. The gate dielectric maintains the original dielectric constant since the disposable gate spacer prevents absorption of additional oxygen during high temperature processes. | 07-23-2009 |
20090233079 | Techniques for Layer Transfer Processing - Techniques for the fabrication of semiconductor devices are provided. In one aspect, a layer transfer structure is provided. The layer transfer structure comprises a carrier substrate having a porous region with a tuned porosity in combination with an implanted species defining a separation plane therein. In another aspect, a method of forming a layer transfer structure is provided. In yet another aspect, a method of forming a three dimensional integrated structure is provided. | 09-17-2009 |
20090302353 | STRUCTURES CONTAINING ELECTRODEPOSITED GERMANIUM AND METHODS FOR THEIR FABRICATION - Methods for electrodepositing germanium on various semiconductor substrates such as Si, Ge, SiGe, and GaAs are provided. The electrodeposited germanium can be formed as a blanket or patterned film, and may be crystallized by solid phase epitaxy to the orientation of the underlying semiconductor substrate by subsequent annealing. These plated germanium layers may be used as the channel regions of high-mobility channel field effect transistors (FETs) in complementary metal oxide semiconductor (CMOS) circuits. | 12-10-2009 |
20100032684 | ION IMPLANTATION FOR SUPPRESSION OF DEFECTS IN ANNEALED SiGe LAYERS - A method for fabricating substantially relaxed SiGe alloy layers with a reduced planar defect density is disclosed The method of the present invention includes forming a strained Ge-containing layer on a surface of a Si-containing substrate; implanting ions at or below the Ge-containing layer/Si-containing substrate interface and heating to form a substantially relaxed SiGe alloy layer that has a reduced planar defect density. A substantially relaxed SiGe-on-insulator substrate material having a SiGe layer with a reduced planar defect density as well as heterostructures containing the same are also provided. | 02-11-2010 |
20100200937 | METHOD AND STRUCTURE FOR PMOS DEVICES WITH HIGH K METAL GATE INTEGRATION AND SiGe CHANNEL ENGINEERING - Various techniques for changing the workfunction of the substrate by using a SiGe channel which, in turn, changes the bandgap favorably for a p-type metal oxide semiconductor field effect transistors (pMOSFETs) are disclosed. In the various techniques, a SiGe film that includes a low doped SiGe region above a more highly doped SiGe region to allow the appropriate threshold voltage (Vt) for pMOSFET devices while preventing pitting, roughness and thinning of the SiGe film during subsequent cleans and processing is provided. | 08-12-2010 |
20100207208 | NANOWIRE MESH DEVICE AND METHOD OF FABRICATING SAME - A semiconductor structure is provided that includes a plurality of vertically stacked and vertically spaced apart semiconductor nanowires (e.g., a semiconductor nanowire mesh) located on a surface of a substrate. One end segment of each vertically stacked and vertically spaced apart semiconductor nanowires is connected to a source region and another end segment of each vertically stacked and vertically spaced apart semiconductor nanowires is connected to a drain region. A gate region including a gate dielectric and a gate conductor abuts the plurality of vertically stacked and vertically spaced apart semiconductor nanowires, and the source regions and the drain regions are self-aligned with the gate region. | 08-19-2010 |
20100261319 | N-type carrier enhancement in semiconductors - A method for generating n-type carriers in a semiconductor is disclosed. The method includes supplying a semiconductor having an atomic radius. Implanting an n-type dopant species into the semiconductor, which n-type dopant species has a dopant atomic radius. Implanting a compensating species into the semiconductor, which compensating species has a compensating atomic radius. Selecting the n-type dopant species and the compensating species in such manner that the size of the semiconductor atomic radius is inbetween the dopant atomic radius and the compensating atomic radius. A further method is disclosed for generating n-type carriers in germanium (Ge). The method includes setting a target concentration for the carriers, implanting a dose of an n-type dopant species into the Ge, and selecting the dose to correspond to a fraction of the target carrier concentration. Thermal annealing the Ge in such manner as to activate the n-type dopant species and to repair a least a portion of the implantation damage. Repeating the implantation and the thermal annealing until the target n-type carrier concentration has been reached. | 10-14-2010 |
20100297816 | NANOWIRE MESH DEVICE AND METHOD OF FABRICATING SAME - A semiconductor structure is provided that includes a plurality of vertically stacked and vertically spaced apart semiconductor nanowires (e.g., a semiconductor nanowire mesh) located on a surface of a substrate. One end segment of each vertically stacked and vertically spaced apart semiconductor nanowires is connected to a source region and another end segment of each vertically stacked and vertically spaced apart semiconductor nanowires is connected to a drain region. A gate region including a gate dielectric and a gate conductor abuts the plurality of vertically stacked and vertically spaced apart semiconductor nanowires, and the source regions and the drain regions are self-aligned with the gate region. | 11-25-2010 |
20110279125 | FET Nanopore Sensor - A method of using a sensor comprising a field effect transistor (FET) embedded in a nanopore includes placing the sensor in an electrolyte comprising at least one of biomolecules and deoxyribonucleic acid (DNA); placing an electrode in the electrolyte; applying a gate voltage in the sub-threshold regime to the electrode; applying a drain voltage to a drain of the FET; applying a source voltage to a source of the FET; detecting a change in a drain current in the sensor in response to the at least one of biomolecules and DNA passing through the nanopore. | 11-17-2011 |
20120009766 | STRAINED SEMICONDUCTOR-ON-INSULATOR BY ADDITION AND REMOVAL OF ATOMS IN A SEMICONDUCTOR-ON-INSULATOR - A method of forming a strained semiconductor-on-insulator (SSOI) substrate that does not include wafer bonding is provided. In this disclosure a relaxed and doped silicon layer is formed on an upper surface of a silicon-on-insulator (SOI) substrate. In one embodiment, the dopant within the relaxed and doped silicon layer has an atomic size that is smaller than the atomic size of silicon and, as such, the in-plane lattice parameter of the relaxed and doped silicon layer is smaller than the in-plane lattice parameter of the underlying SOI layer. In another embodiment, the dopant within the relaxed and doped silicon layer has an atomic size that is larger than the atomic size of silicon and, as such, the in-plane lattice parameter of the relaxed and doped silicon layer is larger than the in-plane lattice parameter of the underlying SOI layer. After forming the relaxed and doped silicon layer on the SOI substrate, the dopant within the relaxed and doped silicon layer is removed from that layer converting the relaxed and doped silicon layer into a strained (compressively or tensilely) silicon layer that is formed on an upper surface of an SOI substrate. | 01-12-2012 |
20120031476 | COMPOSITIONALLY-GRADED BAND GAP HETEROJUNCTION SOLAR CELL - A photovoltaic device includes a composition modulated semiconductor structure including a p-doped first semiconductor material layer, a first intrinsic compositionally-graded semiconductor material layer, an intrinsic semiconductor material layer, a second intrinsic compositionally-graded semiconductor layer, and an n-doped first semiconductor material layer. The first and second intrinsic compositionally-graded semiconductor material layers include an alloy of a first semiconductor material having a greater band gap width and a second semiconductor material having a smaller band gap with, and the concentration of the second semiconductor material increases toward the intrinsic semiconductor material layer in the first and second compositionally-graded semiconductor material layers. The photovoltaic device provides an open circuit voltage comparable to that of the first semiconductor material, and a short circuit current comparable to that of the second semiconductor material, thereby increasing the efficiency of the photovoltaic device. | 02-09-2012 |
20120037998 | CMOS TRANSISTORS WITH STRESSED HIGH MOBILITY CHANNELS - A p-type field effect transistor (PFET) having a compressively stressed channel and an n-type field effect transistor (NFET) having a tensilely stressed channel are formed. In one embodiment, a silicon-germanium alloy is employed as a device layer, and the source and drain regions of the PFET are formed employing embedded germanium-containing regions, and source and drain regions of the NFET are formed employing embedded silicon-containing regions. In another embodiment, a germanium layer is employed as a device layer, and the source and drain regions of the PFET are formed by implanting a Group IIIA element having an atomic radius greater than the atomic radius of germanium into portions of the germanium layer, and source and drain regions of the NFET are formed employing embedded silicon-germanium alloy regions. The compressive stress and the tensile stress enhance the mobility of charge carriers in the PFET and the NFET, respectively. | 02-16-2012 |
20120068267 | STRAINED DEVICES, METHODS OF MANUFACTURE AND DESIGN STRUCTURES - Strained Si and strained SiGe on insulator devices, methods of manufacture and design structures is provided. The method includes growing an SiGe layer on a silicon on insulator wafer. The method further includes patterning the SiGe layer into PFET and NFET regions such that a strain in the SiGe layer in the PFET and NFET regions is relaxed. The method further includes amorphizing by ion implantation at least a portion of an Si layer directly underneath the SiGe layer. The method further includes performing a thermal anneal to recrystallize the Si layer such that a lattice constant is matched to that of the relaxed SiGe, thereby creating a tensile strain on the NFET region. The method further includes removing the SiGe layer from the NFET region. The method further includes performing a Ge process to convert the Si layer in the PFET region into compressively strained SiGe. | 03-22-2012 |
20120074494 | STRAINED THIN BODY SEMICONDUCTOR-ON-INSULATOR SUBSTRATE AND DEVICE - A method of forming a strained, semiconductor-on-insulator substrate includes forming a second semiconductor layer on a first semiconductor substrate. The second semiconductor is lattice matched to the first semiconductor substrate such that the second semiconductor layer is subjected to a first directional stress. An active device semiconductor layer is formed over the second semiconductor layer such that the active device semiconductor layer is initially in a relaxed state. One or more trench isolation structures are formed through the active device layer and through the second semiconductor layer so as to relax the second semiconductor layer below the active device layer and impart a second directional stress on the active device layer opposite the first directional stress. | 03-29-2012 |
20120091100 | ETCHANT FOR CONTROLLED ETCHING OF GE AND GE-RICH SILICON GERMANIUM ALLOYS - The present disclosure provides a chemical etchant which is capable of removing Ge and Ge-rich SiGe alloys in a controlled manner. The chemical etchant of the present disclosure includes a mixture of a halogen-containing acid, hydrogen peroxide, and water. Water is present in the mixture in an amount of greater than 90% by volume of the entire mixture. The present disclosure also provides a method of making such a chemical etchant. The method includes mixing, in any order, a halogen-containing acid and hydrogen peroxide to provide a halogen-containing acid/hydrogen peroxide mixture, and adding water to the halogen-containing acid/hydrogen peroxide mixture. Also disclosed is a method of etching a Ge or Ge-rich SiGe alloy utilizing the chemical etchant of the present application. | 04-19-2012 |
20120104390 | Germanium-Containing Release Layer For Transfer of a Silicon Layer to a Substrate - A germanium-containing layer is deposited on a single crystalline bulk silicon substrate in an ambient including a level of oxygen partial pressure sufficient to incorporate 1%-50% of oxygen in atomic concentration. The thickness of the germanium-containing layer is preferably limited to maintain some degree of epitaxial alignment with the underlying silicon substrate. Optionally, a graded germanium-containing layer can be grown on, or replace, the germanium-containing layer. An at least partially crystalline silicon layer is subsequently deposited on the germanium-containing layer. A handle substrate is bonded to the at least partially crystalline silicon layer. The assembly of the bulk silicon substrate, the germanium-containing layer, the at least partially crystalline silicon layer, and the handle substrate is cleaved within the germanium-containing layer to provide a composite substrate including the handle substrate and the at least partially crystalline silicon layer. Any remaining germanium-containing layer on the composite substrate is removed. | 05-03-2012 |
20120112208 | STRESSED TRANSISTOR WITH IMPROVED METASTABILITY - An embedded, strained epitaxial semiconductor material, i.e., an embedded stressor element, is formed at the footprint of at least one pre-fabricated field effect transistor that includes at least a patterned gate stack, a source region and a drain region. As a result, the metastability of the embedded, strained epitaxial semiconductor material is preserved and implant and anneal based relaxation mechanisms are avoided since the implants and anneals are performed prior to forming the embedded, strained epitaxial semiconductor material. | 05-10-2012 |
20120118383 | Autonomous Integrated Circuit - An autonomous integrated circuit (IC) includes a solar cell formed on a bottom substrate of a silicon-on-insulator (SOI) substrate as a handle substrate; an insulating layer of the SOI substrate located on top of the solar cell; and a device layer formed on a top semiconductor layer of the SOI substrate located on top of the insulating layer, wherein a top contact of the device layer is electrically connected to a bottom contact of the solar cell such that the solar cell is enabled to power the device layer. | 05-17-2012 |
20120135587 | N-type carrier enhancement in semiconductors - A method for generating n-type carriers in a semiconductor is disclosed. The method includes supplying a semiconductor having an atomic radius. Implanting an n-type dopant species into the semiconductor, which n-type dopant species has a dopant atomic radius. Implanting a compensating species into the semiconductor, which compensating species has a compensating atomic radius. Selecting the n-type dopant species and the compensating species in such manner that the size of the semiconductor atomic radius is inbetween the dopant atomic radius and the compensating atomic radius. A further method is disclosed for generating n-type carriers in germanium (Ge). The method includes setting a target concentration for the carriers, implanting a dose of an n-type dopant species into the Ge, and selecting the dose to correspond to a fraction of the target carrier concentration. Thermal annealing the Ge in such manner as to activate the n-type dopant species and to repair a least a portion of the implantation damage. Repeating the implantation and the thermal annealing until the target n-type carrier concentration has been reached. | 05-31-2012 |
20120139014 | STRUCTURE AND METHOD FOR LOW TEMPERATURE GATE STACK FOR ADVANCED SUBSTRATES - A low-temperature metal gate stack for a field-effect transistor that is electrically activated at temperatures below 1000° C. The metal gate stack is composed of low melting materials that can be deposited by physical vapor deposition (PVD) onto a substrate. | 06-07-2012 |
20120146050 | MEASUREMENT OF CMOS DEVICE CHANNEL STRAIN BY X-RAY DIFFRACTION - A direct measurement of lattice spacing by X-ray diffraction is performed on a periodic array of unit structures provided on a substrate including semiconductor devices. Each unit structure includes a single crystalline strained material region and at least one stress-generating material region. For example, the single crystalline strained material region may be a structure simulating a channel of a field effect transistor, and the at least one stress-generating material region may be a single crystalline semiconductor region in epitaxial alignment with the single crystalline strained material region. The direct measurement can be performed in-situ at various processing states to provide in-line monitoring of the strain in field effect transistors in actual semiconductor devices. | 06-14-2012 |
20120181631 | METHOD AND STRUCTURE FOR PMOS DEVICES WITH HIGH K METAL GATE INTEGRATION AND SiGe CHANNEL ENGINEERING - Various techniques for changing the workfunction of the substrate by using a SiGe channel which, in turn, changes the bandgap favorably for a p-type metal oxide semiconductor field effect transistors (pMOSFETs) are disclosed. In the various techniques, a SiGe film that includes a low doped SiGe region above a more highly doped SiGe region to allow the appropriate threshold voltage (Vt) for pMOSFET devices while preventing pitting, roughness and thinning of the SiGe film during subsequent cleans and processing is provided. | 07-19-2012 |
20120190161 | N-type carrier enhancement in semiconductors - A field effect transistor (FET) has a channel hosted in Ge. The FET has silicon-germanium (SiGe) source and drain formed by selective epitaxy. The SiGe source and drain exert a tensile stress onto the Ge channel. During forming of the SiGe source and drain, an n-type dopant species and a compensating species are being incorporated into the SiGe source and drain. The n-type dopant species and the compensating species are so selected that the size of the SiGe atomic radius is inbetween the dopant atomic radius and the compensating species atomic radius. | 07-26-2012 |
20120190177 | N-type carrier enhancement in semiconductors - A method includes epitaxially growing a germanium (Ge) layer onto a Ge substrate and incorporating a compensating species with a compensating atomic radius into the Ge layer. The method includes implanting an n-type dopant species with a dopant atomic radius into the Ge layer. The method includes selecting the n-type dopant species and the compensating species in such manner that the size of the Ge atomic radius is inbetween the n-type dopant atomic radius and the compensating atomic radius. | 07-26-2012 |
20120199941 | SEMICONDUCTOR DEVICE HAVING SILICON ON STRESSED LINER (SOL) - A method of fabricating an integrated circuit and an integrated circuit having silicon on a stress liner are disclosed. In one embodiment, the method comprises providing a semiconductor substrate comprising an embedded disposable layer, and removing at least a portion of the disposable layer to form a void within the substrate. This method further comprises depositing a material in that void to form a stress liner, and forming a transistor on an outside semiconductor layer of the substrate. This semiconductor layer separates the transistor from the stress liner. In one embodiment, the substrate includes isolation regions; and the removing includes forming recesses in the isolation regions, and removing at least a portion of the disposable layer via these recesses. In one embodiment, the depositing includes depositing a material in the void via the recesses. End caps may be formed in the recesses at ends of the stress liner. | 08-09-2012 |
20120205784 | GROWING COMPRESSIVELY STRAINED SILICON DIRECTLY ON SILICON AT LOW TEMPERATURES - Compressively strained silicon is epitaxially grown directly onto a silicon substrate at low temperature using hydrogen to engineer the strain level. Hydrogen dilution may be varied during such growth to provide a strain gradient. | 08-16-2012 |
20120216158 | STRAINED DEVICES, METHODS OF MANUFACTURE AND DESIGN STRUCTURES - Strained Si and strained SiGe on insulator devices, methods of manufacture and design structures is provided. The method includes growing an SiGe layer on a silicon on insulator wafer. The method further includes patterning the SiGe layer into PFET and NFET regions such that a strain in the SiGe layer in the PFET and NFET regions is relaxed. The method further includes amorphizing by ion implantation at least a portion of an Si layer directly underneath the SiGe layer. The method further includes performing a thermal anneal to recrystallize the Si layer such that a lattice constant is matched to that of the relaxed SiGe, thereby creating a tensile strain on the NFET region. The method further includes removing the SiGe layer from the NFET region. The method further includes performing a Ge process to convert the Si layer in the PFET region into compressively strained SiGe. | 08-23-2012 |
20120252216 | Low-Temperature in-situ Removal of Oxide from a Silicon Surface During CMOS Epitaxial Processing - Low-temperature in-situ techniques are provided for the removal of oxide from a silicon surface during CMOS epitaxial processing. Oxide is removed from a semiconductor wafer having a silicon surface, by depositing a SiGe layer on the silicon surface; etching the SiGe layer from the silicon surface at a temperature below 700 C (and above, for example, approximately 450 C); and repeating the depositing and etching steps a number of times until a contaminant is substantially removed from the silicon surface. In one variation, the deposited layer comprises a group IV semiconductor material and/or an alloy thereof. | 10-04-2012 |
20120255600 | METHOD OF BONDING AND FORMATION OF BACK SURFACE FIELD (BSF) FOR MULTI-JUNCTION III-V SOLAR CELLS - A photovoltaic device including at least one top cell that include at least one semiconductor material; a bottom cell of a germanium containing material having a thickness of 10 microns or less; and a back surface field (BSF) region provided by a eutectic alloy layer of aluminum and germanium on the back surface of the bottom cell of that is opposite the interface between the bottom cell and at least one of the top cells. The eutectic alloy of aluminum and germanium bonds the bottom cell of the germanium-containing material to a supporting substrate. | 10-11-2012 |
20120285520 | WAFER BONDED SOLAR CELLS AND FABRICATION METHODS - A photovoltaic device and method for fabrication include multijunction cells, each cell having a material grown independently from the other and including different band gap energies. An interface is disposed between the cells and configured to wafer bond the cells wherein the cells are configured to be adjacent without regard to lattice mismatch. | 11-15-2012 |
20120295417 | SELECTIVE EPITAXIAL GROWTH BY INCUBATION TIME ENGINEERING - A method of controlling the nucleation rate (i.e., incubation time) of dissimilar materials in an epitaxial growth chamber that can favor high growth rates and can be compatible with low temperature growth is provided. The nucleation rate of dissimilar materials is controlled in an epitaxial growth chamber by altering the nucleation rate for the growth of a given material film, relative to single crystal growth of the same material film, by choosing an appropriate masking material with a given native nucleation characteristic, or by modifying the surface of the masking layer to achieve the appropriate nucleation characteristic. Alternatively, nucleation rate control can be achieved by modifying the surface of selected areas of a semiconductor substrate relative to other areas in which an epitaxial semiconductor material will be subsequently formed. | 11-22-2012 |
20120305940 | Defect Free Si:C Epitaxial Growth - A method and structure are disclosed for a defect free Si:C source/drain in an NFET device. A wafer is accepted with a primary surface of {100} crystallographic orientation. A recess is formed in the wafer in such manner that the bottom surface and the four sidewall surfaces of the recess are all having {100} crystallographic orientations. A Si:C material is eptaxially grown in the recess, and due to the crystallographic orientations the defect density next to each of the four sidewall surfaces is essentially the same as next to the bottom surface. The epitaxially filled recess is used in the source/drain fabrication of an NFET device. The NFET device is oriented along the <100> crystallographic direction, and has the device channel under a tensile strain due to the defect free Si:C in the source/drain. | 12-06-2012 |
20120309269 | LOW-TEMPERATURE METHODS FOR SPONTANEOUS MATERIAL SPALLING - Method to (i) introduce additional control into a material spalling process, thus improving both the crack initiation and propagation, and (ii) increase the range of selectable spalling depths are provided. In one embodiment, the method includes providing a stressor layer on a surface of a base substrate at a first temperature which is room temperature. Next, the base substrate including the stressor layer is brought to a second temperature which is less than room temperature. The base substrate is spalled at the second temperature to form a spalled material layer. Thereafter, the spalled material layer is returned to room temperature, i.e., the first temperature. | 12-06-2012 |
20120318334 | SPALLING METHODS TO FORM MULTI-JUNCTION PHOTOVOLTAIC STRUCTURE - A method cleaving a semiconductor material that includes providing a germanium substrate having a germanium and tin alloy layer is present therein. A stressor layer is deposited on a surface of the germanium substrate. A stress from the stressor layer is applied to the germanium substrate, in which the stress cleaves the germanium substrate to provide a cleaved surface. The cleaved surface of the germanium substrate is then selective to the germanium and tin alloy layer of the germanium substrate. In another embodiment, the germanium and tin alloy layer may function as a fracture plane during a spalling method. | 12-20-2012 |
20120322227 | METHOD FOR CONTROLLED LAYER TRANSFER - A method of controlled layer transfer is provided. The method includes providing a stressor layer to a base substrate. The stressor layer has a stressor layer portion located atop an upper surface of the base substrate and a self-pinning stressor layer portion located adjacent each sidewall edge of the base substrate. A spalling inhibitor is then applied atop the stressor layer portion of the base substrate, and thereafter the self-pinning stressor layer portion of the stressor layer is decoupled from the stressor layer portion. A portion of the base substrate that is located beneath the stressor layer portion is then spalled from the original base substrate. The spalling includes displacing the spalling inhibitor from atop the stressor layer portion. After spalling, the stressor layer portion is removed from atop a spalled portion of the base substrate. | 12-20-2012 |
20120322230 | METHOD FOR FORMING TWO DEVICE WAFERS FROM A SINGLE BASE SUBSTRATE UTILIZING A CONTROLLED SPALLING PROCESS - The present disclosure provides a method for forming two device wafers starting from a single base substrate. The method includes first providing a structure which includes a base substrate with device layers located on, or within, a topmost surface and a bottommost surface of the base substrate. The base substrate may have double side polished surfaces. The structure including the device layers is spalled in a region within the base substrate that is between the device layers. The spalling provides a first device wafer including a portion of the base substrate and one of the device layers, and a second device wafer including another portion of the base substrate and the other of the device layer. | 12-20-2012 |
20120322244 | METHOD FOR CONTROLLED REMOVAL OF A SEMICONDUCTOR DEVICE LAYER FROM A BASE SUBSTRATE - A method of removing a semiconductor device layer from a base substrate is provided that includes providing a crack propagation layer on an upper surface of a base substrate. A semiconductor device layer including at least one semiconductor device is formed on the crack propagation layer. Next, end portions of the crack propagation layer are etched to initiate a crack in the crack propagation layer. The etched crack propagation layer is then cleaved to provide a cleaved crack propagation layer portion to a surface of the semiconductor device layer and another cleaved crack propagation layer portion to the upper surface of the base substrate. The cleaved crack propagation layer portion is removed from the surface of the semiconductor device layer and the another cleaved crack propagation layer portion is removed from the upper surface of the base substrate. | 12-20-2012 |
20120329197 | METHOD OF BONDING AND FORMATION OF BACK SURFACE FIELD (BSF) FOR MULTI-JUNCTION III-V SOLAR CELLS - A photovoltaic device including at least one top cell that include at least one III-V semiconductor material; a bottom cell of a germanium containing material having a thickness of | 12-27-2012 |
20130005116 | EDGE-EXCLUSION SPALLING METHOD FOR IMPROVING SUBSTRATE REUSABILITY - A method to minimize edge-related substrate breakage during spalling using an edge-exclusion region where the stressor layer is either non-present (excluded either during deposition or removed afterwards) or present but significantly non-adhered to the substrate surface in the exclusion region is provided. In one embodiment, the method includes forming an edge exclusion material on an upper surface and near an edge of a base substrate. A stressor layer is then formed on exposed portions of the upper surface of the base substrate and atop the edge exclusion material, A portion of the base substrate that is located beneath the stressor layer and which is not covered by the edge exclusion material is then spalled. | 01-03-2013 |
20130005119 | METHOD FOR CONTROLLED REMOVAL OF A SEMICONDUCTOR DEVICE LAYER FROM A BASE SUBSTRATE - A method of removing a semiconductor device layer from a base substrate is provided that includes providing a crack propagation layer on an upper surface of a base substrate. A semiconductor device layer including at least one semiconductor device is formed on the crack propagation layer. Next, end portions of the crack propagation layer are etched to initiate a crack in the crack propagation layer. The etched crack propagation layer is then cleaved to provide a cleaved crack propagation layer portion to a surface of the semiconductor device layer and another cleaved crack propagation layer portion to the upper surface of the base substrate. The cleaved crack propagation layer portion is removed from the surface of the semiconductor device layer and the another cleaved crack propagation layer portion is removed from the upper surface of the base substrate. | 01-03-2013 |
20130014811 | HETEROJUNCTION III-V SOLAR CELL PERFORMANCEAANM Bedell; Stephen W.AACI Wappingers FallsAAST NYAACO USAAGP Bedell; Stephen W. Wappingers Falls NY USAANM Hekmatshoartabari; BahmanAACI Mount KiscoAAST NYAACO USAAGP Hekmatshoartabari; Bahman Mount Kisco NY USAANM Sadana; Devendra K.AACI PleasantvilleAAST NYAACO USAAGP Sadana; Devendra K. Pleasantville NY USAANM Shahidi; Ghavam G.AACI Pound RidgeAAST NYAACO USAAGP Shahidi; Ghavam G. Pound Ridge NY USAANM Shahrjerdi; DavoodAACI OssiningAAST NYAACO USAAGP Shahrjerdi; Davood Ossining NY US | 01-17-2013 |
20130015455 | GERMANIUM-CONTAINING RELEASE LAYER FOR TRANSFER OF A SILICON LAYER TO A SUBSTRATE - A germanium-containing layer is deposited on a single crystalline bulk silicon substrate in an ambient including a level of oxygen partial pressure sufficient to incorporate 1%-50% of oxygen in atomic concentration. The thickness of the germanium-containing layer is preferably limited to maintain some degree of epitaxial alignment with the underlying silicon substrate. Optionally, a graded germanium-containing layer can be grown on, or replace, the germanium-containing layer. An at least partially crystalline silicon layer is subsequently deposited on the germanium-containing layer. A handle substrate is bonded to the at least partially crystalline silicon layer. The assembly of the bulk silicon substrate, the germanium-containing layer, the at least partially crystalline silicon layer, and the handle substrate is cleaved within the germanium-containing layer to provide a composite substrate including the handle substrate and the at least partially crystalline silicon layer. Any remaining germanium-containing layer on the composite substrate is removed. | 01-17-2013 |
20130025653 | III-V PHOTOVOLTAIC ELEMENTS - Solar cell structures that have improved carrier collection efficiencies at a heterointerface are provided by low temperature epitaxial growth of silicon on a III-V base. Additionally, a solar cell structure having improved open circuit voltage includes a shallow junction III-V emitter formed by epitaxy or diffusion followed by the epitaxy of Si | 01-31-2013 |
20130025654 | MULTI-JUNCTION PHOTOVOLTAIC DEVICE AND FABRICATION METHOD - A method of forming a photovoltaic device that includes bonding a substrate to a germanium-containing semiconductor layer with a stressor layer, wherein the stressor layer cleaves the germanium-containing semiconductor layer. At least one semiconductor layer is formed on a cleaved surface of the germanium-containing semiconductor layer that is opposite the conductivity type of the germanium-containing semiconductor layer to provide a first solar cell. The first solar cell absorbs a first range of wavelengths. At least one second solar cell may be formed on the first solar cell, wherein the at least one second solar cell is composed of at least one semiconductor material to absorb a second range of wavelengths that is different than the first range wavelengths absorbed by the first solar cell. | 01-31-2013 |
20130025655 | HETEROJUNCTION PHOTOVOLTAIC DEVICE AND FABRICATION METHOD - A photovoltaic device and method include a doped germanium-containing substrate, an emitter contact coupled to the substrate on a first side and a back contact coupled to the substrate on a side opposite the first side. The emitter includes at least one doped layer of an opposite conductivity type as that of the substrate and the back contact includes at least one doped layer of the same conductivity type as that of the substrate. The at least one doped layer of the emitter contact or the at least one doped layer of the back contact is in direct contact with the substrate, and the at least one doped layer of the emitter contact or the back contact includes an n-type material having an electron affinity smaller than that of the substrate, or a p-type material having a hole affinity larger than that of the substrate. | 01-31-2013 |
20130025658 | HETEROJUNCTION PHOTOVOLTAIC DEVICE AND FABRICATION METHOD - A photovoltaic device and method include a doped germanium-containing substrate, an emitter contact coupled to the substrate on a first side and a back contact coupled to the substrate on a side opposite the first side. The emitter includes at least one doped layer of an opposite conductivity type as that of the substrate and the back contact includes at least one doped layer of the same conductivity type as that of the substrate. The at least one doped layer of the emitter contact or the at least one doped layer of the back contact is in direct contact with the substrate, and the at least one doped layer of the emitter contact or the back contact includes an n-type material having an electron affinity smaller than that of the substrate, or a p-type material having a hole affinity larger than that of the substrate. | 01-31-2013 |
20130025659 | MULTI-JUNCTION PHOTOVOLTAIC DEVICE AND FABRICATION METHOD - A method of forming a photovoltaic device that includes bonding a substrate to a germanium-containing semiconductor layer with a stressor layer, wherein the stressor layer cleaves the germanium-containing semiconductor layer. At least one semiconductor layer is formed on a cleaved surface of the germanium-containing semiconductor layer that is opposite the conductivity type of the germanium-containing semiconductor layer to provide a first solar cell. The first solar cell absorbs a first range of wavelengths. At least one second solar cell may be formed on the first solar cell, wherein the at least one second solar cell is composed of at least one semiconductor material to absorb a second range of wavelengths that is different than the first range wavelengths absorbed by the first solar cell. | 01-31-2013 |
20130082306 | ENHANCEMENT OF CHARGE CARRIER MOBILITY IN TRANSISTORS - Transistor devices including stressors are disclosed. One such transistor device includes a channel region, a dielectric layer and a semiconductor substrate. The channel region is configured to provide a conductive channel between a source region and a drain region. In addition, the dielectric layer is below the channel region and is configured to electrically insulate the channel region. Further, the semiconductor substrate, which is below the channel region and below the dielectric layer, includes dislocation defects at a top surface of the semiconductor substrate, where the dislocation defects are collectively oriented to impose a compressive strain on the channel region such that charge carrier mobility is enhanced in the channel region. | 04-04-2013 |
20130082328 | ENHANCEMENT OF CHARGE CARRIER MOBILITY IN TRANSISTORS - Transistor devices including stressors are disclosed. One such transistor device includes a channel region, a dielectric layer and a semiconductor substrate. The channel region is configured to provide a conductive channel between a source region and a drain region. In addition, the dielectric layer is below the channel region and is configured to electrically insulate the channel region. Further, the semiconductor substrate, which is below the channel region and below the dielectric layer, includes dislocation defects at a top surface of the semiconductor substrate, where the dislocation defects are collectively oriented to impose a compressive strain on the channel region such that charge carrier mobility is enhanced in the channel region. | 04-04-2013 |
20130082357 | PREFORMED TEXTURED SEMICONDUCTOR LAYER - A base layer of a semiconductor material is formed with a naturally textured surface. The base layer may be incorporated within a photovoltaic structure. A controlled spalling technique, in which substrate fracture is propagated in a selected direction to cause the formation of facets, is employed. Spalling in the [110] directions of a (001) silicon substrate results in the formation of such facets of the resulting base layer, providing a natural surface texture. | 04-04-2013 |
20130092218 | BACK-SURFACE FIELD STRUCTURES FOR MULTI-JUNCTION III-V PHOTOVOLTAIC DEVICES - A multi-junction III-V photovoltaic device is provided that includes at least one top cell comprised of at least one III-V compound semiconductor material; and a bottom cell in contact with a surface of the at least one top cell. The bottom cell includes a germanium-containing layer in contact with the at least one top cell, at least one intrinsic hydrogenated silicon-containing layer in contact with a surface of the germanium-containing layer, and at least one doped hydrogenated silicon-containing layer in contact with a surface of the at least one intrinsic hydrogenated silicon-containing layer. The intrinsic and doped silicon-containing layers can be amorphous, nano/micro-crystalline, poly-crystalline or single-crystalline. | 04-18-2013 |
20130095598 | BACK-SURFACE FIELD STRUCTURES FOR MULTI-JUNCTION III-V PHOTOVOLTAIC DEVICES - A multi-junction III-V photovoltaic device is provided that includes at least one top cell comprised of at least one III-V compound semiconductor material; and a bottom cell in contact with a surface of the at least one top cell. The bottom cell includes a germanium-containing layer in contact with the at least one top cell, at least one intrinsic hydrogenated silicon-containing layer in contact with a surface of the germanium-containing layer, and at least one doped hydrogenated silicon-containing layer in contact with a surface of the at least one intrinsic hydrogenated silicon-containing layer. The intrinsic and doped silicon-containing layers can be amorphous, nano/micro-crystalline, poly-crystalline or single-crystalline. | 04-18-2013 |
20130099318 | THIN SEMICONDUCTOR-ON-INSULATOR MOSFET WITH CO-INTEGRATED SILICON, SILICON GERMANIUM AND SILICON DOPED WITH CARBON CHANNELS - A method of fabricating a semiconductor device that may begin with providing a semiconductor substrate including a first device region including a silicon layer in direct contact with a buried dielectric layer, a second device region including a silicon germanium layer in direct contact with the buried dielectric layer, and a third device region with a silicon doped with carbon layer. At least one low power semiconductor device may then be formed on the silicon layer within the first device region of the semiconductor substrate. At least one p-type semiconductor device may be formed on the silicon germanium layer of the second device region of the semiconductor substrate. At least one n-type semiconductor device may be formed on the silicon doped with carbon layer of the third device region of the semiconductor substrate. | 04-25-2013 |
20130099319 | THIN SEMICONDUCTOR-ON-INSULATOR MOSFET WITH CO-INTEGRATED SILICON, SILICON GERMANIUM AND SILICON DOPED WITH CARBON CHANNELS - A method of fabricating a semiconductor device that may begin with providing a semiconductor substrate including a first device region including a silicon layer in direct contact with a buried dielectric layer, a second device region including a silicon germanium layer in direct contact with the buried dielectric layer, and a third device region with a silicon doped with carbon layer. At least one low power semiconductor device may then be formed on the silicon layer within the first device region of the semiconductor substrate. At least one p-type semiconductor device may be formed on the silicon germanium layer of the second device region of the semiconductor substrate. At least one n-type semiconductor device may be formed on the silicon doped with carbon layer of the third device region of the semiconductor substrate. | 04-25-2013 |
20130126493 | SPALLING WITH LASER-DEFINED SPALL EDGE REGIONS - Laser ablation can be used to form a trench within at least a blanket layer of a stressor layer that is atop a base substrate. A non-ablated portion of the stressor layer has an edge that defines the edge of the material layer region to be spalled. Laser ablation can also be used to form a trench within a blanket material stack including at least a plating seed layer. A stressor layer is formed on the non-ablated portions of the material stack and one portion of the stressor layer has an edge that defines the edge of the material layer region to be spalled. Laser ablation can be further used to form a trench that extends through a blanket stressor layer and into the base substrate itself. The trench has an edge that defines the edge of the material layer region to be spalled. | 05-23-2013 |
20130126890 | INTEGRATING ACTIVE MATRIX INORGANIC LIGHT EMITTING DIODES FOR DISPLAY DEVICES - A method of forming an active matrix, light emitting diode (LED) array includes removing, from a base substrate, a layer of inorganic LED material originally grown thereupon; and bonding the removed layer of inorganic LED material to an active matrix, thin film transistor (TFT) backplane array. | 05-23-2013 |
20130134444 | STRESSED TRANSISTOR WITH IMPROVED METASTABILITY - An embedded, strained epitaxial semiconductor material, i.e., an embedded stressor element, is formed at the footprint of at least one pre-fabricated field effect transistor that includes at least a patterned gate stack, a source region and a drain region. As a result, the metastability of the embedded, strained epitaxial semiconductor material is preserved and implant and anneal based relaxation mechanisms are avoided since the implants and anneals are performed prior to forming the embedded, strained epitaxial semiconductor material. | 05-30-2013 |
20130146805 | ETCHANT FOR CONTROLLED ETCHING OF GE AND GE-RICH SILICON GERMANIUM ALLOYS - The present disclosure provides a chemical etchant which is capable of removing Ge and Ge-rich SiGe alloys in a controlled manner. The chemical etchant of the present disclosure includes a mixture of a halogen-containing acid, hydrogen peroxide, and water. Water is present in the mixture in an amount of greater than 90% by volume of the entire mixture. The present disclosure also provides a method of making such a chemical etchant. The method includes mixing, in any order, a halogen-containing acid and hydrogen peroxide to provide a halogen-containing acid/hydrogen peroxide mixture, and adding water to the halogen-containing acid/hydrogen peroxide mixture. Also disclosed is a method of etching a Ge or Ge-rich SiGe alloy utilizing the chemical etchant of the present application. | 06-13-2013 |
20130149823 | SEMICONDUCTOR DEVICE HAVING SILICON ON STRESSED LINER (SOL) - A method of fabricating an integrated circuit and an integrated circuit having silicon on a stress liner are disclosed. In one embodiment, the method comprises providing a semiconductor substrate comprising an embedded disposable layer, and removing at least a portion of the disposable layer to form a void within the substrate. This method further comprises depositing a material in that void to form a stress liner, and forming a transistor on an outside semiconductor layer of the substrate. This semiconductor layer separates the transistor from the stress liner. In one embodiment, the substrate includes isolation regions; and the removing includes forming recesses in the isolation regions, and removing at least a portion of the disposable layer via these recesses. In one embodiment, the depositing includes depositing a material in the void via the recesses. End caps may be formed in the recesses at ends of the stress liner. | 06-13-2013 |
20130240893 | BREAKDOWN VOLTAGE MULTIPLYING INTEGRATION SCHEME - A circuit includes a first field effect transistor having a gate, a first drain-source terminal, and a second drain-source terminal; and a second field effect transistor having a gate, a first drain-source terminal, and a second drain-source terminal. The second field effect transistor and the first field effect transistor are of the same type, i.e., both n-channel transistors or both p-channel transistors. The second drain-source terminal of the first field effect transistor is coupled to the first drain-source terminal of the second field effect transistor; and the gate of the second field effect transistor is coupled to the first drain-source terminal of the second field effect transistor. The resulting three-terminal device can be substituted for a single field effect transistor that would otherwise suffer breakdown under proposed operating conditions. | 09-19-2013 |
20130240951 | GALLIUM NITRIDE SUPERJUNCTION DEVICES - Gallium nitride high electron mobility transistor structures enable high breakdown voltages and are usable for high-power, and/or high-frequency switching. Schottky diodes facilitate high voltage applications and offer fast switching. A superjunction formed by p/n junctions in gallium nitride facilitates operation of the high electron mobility transistor structures and Schottky diodes as well as gated diodes formed by drain to gate connections of the transistor structures. Breakdown between the gate and drain of the high electron mobility transistor structures, through the substrate, or both is suppressed. | 09-19-2013 |
20130242627 | MONOLITHIC HIGH VOLTAGE MULTIPLIER - High voltage diode-connected gallium nitride high electron mobility transistor structures or Schottky diodes are employed in a network including high-k dielectric capacitors in a solid state, monolithic voltage multiplier. A superjunction formed by vertical p/n junctions in gallium nitride facilitates operation of the high electron mobility transistor structures and Schottky diodes. A design structure for designing, testing or manufacturing an integrated circuit is tangibly embodied in a machine-readable medium and includes elements of a solid state voltage multiplier. | 09-19-2013 |
20130260505 | SOLAR-POWERED ENERGY-AUTONOMOUS SILICON-ON-INSULATOR DEVICE - A solar-powered autonomous CMOS circuit structure is fabricated with monolithically integrated photovoltaic solar cells. The structure includes a device layer including an integrated circuit and a solar cell layer. Solar cell structures in the solar cell layer can be series connected during metallization of the device layer or subsequently. The device layer and the solar cell layer are formed using a silicon-on-insulator substrate. Subsequent spalling of the silicon-on-insulator substrate through the handle substrate thereof facilitates production of a relatively thin solar cell layer that can be subjected to a selective etching process to isolate the solar cell structures. | 10-03-2013 |
20130269860 | TEMPERATURE-CONTROLLED DEPTH OF RELEASE LAYER - A stressor layer is formed atop a base substrate at a first temperature which induces a first tensile stress in the base substrate that is below a fracture toughness of base substrate. The base substrate and the stressor layer are then brought to a second temperature which is less than the first temperature. The second temperature induces a second tensile stress in the stressor layer which is greater than the first tensile stress and which is sufficient to allow for spalling mode fracture to occur within the base substrate. The base substrate is spalled at the second temperature to form a spalled material layer. Spalling occurs at a fracture depth which is dependent upon the fracture toughness of the base substrate, stress level within the base substrate, and the second tensile stress of the stressor layer induced at the second temperature. | 10-17-2013 |
20130280885 | LASER-INITIATED EXFOLIATION OF GROUP III-NITRIDE FILMS AND APPLICATIONS FOR LAYER TRANSFER AND PATTERNING - A pulsed laser-initiated exfoliation method for patterning a Group III-nitride film on a growth substrate is provided. This method includes providing a Group III-nitride film a growth substrate, wherein a growth substrate/Group III-nitride film interface is present between the Group III-nitride film and the growth substrate. Next, a laser is selected that provides radiation at a wavelength at which the Group III-nitride film is transparent and the growth substrate is absorbing. The interface is then irradiated with pulsed laser radiation from the Group III-nitride film side of the growth substrate/Group III-nitride film interface to exfoliate a region of the Group III-nitride from the growth substrate. A method for transfer a Group-III nitride film from a growth substrate to a handle substrate is also provided. | 10-24-2013 |
20130306971 | SEMICONDUCTOR ACTIVE MATRIX ON BURIED INSULATOR - A high resolution active matrix backplane is fabricated using techniques applicable to flexible substrates. A backplane layer including active semiconductor devices is formed on a semiconductor-on-insulator substrate. The backplane layer is spalled from the substrate. A frontplane layer including passive devices such as LCDs, OLEDs, photosensitive materials, or piezo-electric materials is formed over the backplane layer to form an active matrix structure. The active matrix structure may be fabricated to allow bottom emission and provide mechanical flexibility. | 11-21-2013 |
20130309791 | SEMICONDUCTOR ACTIVE MATRIX ON BURIED INSULATOR - A high resolution active matrix backplane is fabricated using techniques applicable to flexible substrates. A backplane layer including active semiconductor devices is formed on a semiconductor-on-insulator substrate. The backplane layer is spalled from the substrate. A frontplane layer including passive devices such as LCDs, OLEDs, photosensitive materials, or piezo-electric materials is formed over the backplane layer to form an active matrix structure. The active matrix structure may be fabricated to allow bottom emission and provide mechanical flexibility. | 11-21-2013 |
20130312819 | REMOVAL OF STRESSOR LAYER FROM A SPALLED LAYER AND METHOD OF MAKING A BIFACIAL SOLAR CELL USING THE SAME - A stressor layer used in a controlled spalling method is removed through the use of a cleave layer that can be fractured or dissolved. The cleave layer is formed between a host semiconductor substrate and the metal stressor layer. A controlled spalling process separates a relatively thin residual host substrate layer from the host substrate. Following attachment of a handle substrate to the residual substrate layer or other layers subsequently formed thereon, the cleave layer is dissolved or otherwise compromised to facilitate removal of the stressor layer. Such removal allows the fabrication of a bifacial solar cell. | 11-28-2013 |
20130316488 | REMOVAL OF STRESSOR LAYER FROM A SPALLED LAYER AND METHOD OF MAKING A BIFACIAL SOLAR CELL USING THE SAME - A stressor layer used in a controlled spalling method is removed through the use of a cleave layer that can be fractured or dissolved. The cleave layer is formed between a host semiconductor substrate and the metal stressor layer. A controlled spalling process separates a relatively thin residual host substrate layer from the host substrate. Following attachment of a handle substrate to the residual substrate layer or other layers subsequently formed thereon, the cleave layer is dissolved or otherwise compromised to facilitate removal of the stressor layer. Such removal allows the fabrication of a bifacial solar cell. | 11-28-2013 |
20130316538 | SURFACE MORPHOLOGY GENERATION AND TRANSFER BY SPALLING - The generation of surface patterns or the replication of surface patterns is achieved in the present disclosure without the need to employ an etching process. Instead, a unique fracture mode referred to as spalling is used in the present disclosure to generate or replicate surface patterns. In the case of surface pattern generation, a surface pattern is provided in a stressor layer and then spalling is performed. In the case of surface pattern replication, a surface pattern is formed within or on a surface of a base substrate, and then a stressor layer is applied. After applying the stressor layer, spalling is performed. Generation or replication of surface patterns utilizing spalling provides a low cost means for generation or replication of surface patterns. | 11-28-2013 |
20130316542 | SPALLING UTILIZING STRESSOR LAYER PORTIONS - A method for spalling local areas of a base substrate utilizing at least one stressor layer portion which is located on a portion, but not all, of an uppermost surface of a base substrate. The method includes providing a base substrate having a uniform thickness and a planar uppermost surface spanning across an entirety of the base substrate. At least one stressor layer portion having a shape is formed on at least a portion, but not all, of the uppermost surface of the base substrate. Spalling is performed which removes a material layer portion from the base substrate and provides a remaining base substrate portion. The material layer portion has the shape of the at least one stressor layer portion, while the remaining base substrate portion has at least one opening located therein which correlates to the shape of the at least one stressor layer. | 11-28-2013 |
20130334571 | EPITAXIAL GROWTH OF SMOOTH AND HIGHLY STRAINED GERMANIUM - A smooth germanium layer which can be grown directly on a silicon semiconductor substrate by exposing the substrate to germanium precursor in the presence of phosphine at temperature of about 350C. The germanium layer formation can be achieved with or without a SiGe seed layer. The process to form the germanium layer can be integrated into standard CMOS processing to efficiently form a structure embodying a thin, highly strained germanium layer. Such structure can enable processing flexibility. The germanium layer can also provide unique physical properties such as in an opto-electronic devices, or to enable formation of a layer of group III-V material on a silicon substrate. | 12-19-2013 |
20130341770 | RADIATION HARDENED SOI STRUCTURE AND METHOD OF MAKING SAME - An SOI substrate including a buried insulator layer positioned between a base substrate and a top semiconductor active layer is first provided. A semiconductor device can then be formed on and/or within a portion of the top semiconductor active layer. A bottommost surface of the buried insulator layer which is opposite a topmost surface of the buried insulator layer that forms an interface with the top semiconductor active layer can be then exposed. Ions can then be implanted through the bottommost surface of the buried insulator layer and into a portion of the buried insulator layer. The ions are implanted at energy ranges that do not disturb the buried insulator layer/top semiconductor active layer interface, while leaving a relatively thin portion of the buried insulator layer near the buried insulator layer/top semiconductor active layer interface intact. | 12-26-2013 |
20140007932 | FLEXIBLE III-V SOLAR CELL STRUCTURE - Solar cell structures include stacked layers in reverse order on a germanium substrate wherein a n++ (In)GaAs buffer layer plays dual roles as buffer and contact layers in the inverted structures. The absorbing layers employed in such exemplary structures are III-V layers such as (In)GaAs. Controlled spalling may be employed as part of the fabrication process for the solar cell structures, which may be single or multi-junction. The requirement for etching a buffer layer is eliminated, thereby facilitating the manufacturing process of devices using the disclosed structures. | 01-09-2014 |
20140008729 | STRAINED SILICON AND STRAINED SILICON GERMANIUM ON INSULATOR - A structure includes a tensilely strained nFET region including a strained silicon layer of a silicon on insulator wafer. A relaxed nFET region includes one of an ion implanted silicon and an ion implanted silicon dioxide interface layer of a tensilely strained silicon layer of the silicon on insulator wafer. A compressively strained pFET region includes a SiGe layer which was converted from a tensilely strained silicon layer of the silicon on insulator wafer. A relaxed pFET region includes one of an ion implanted silicon and an ion implanted silicon dioxide interface layer of a tensilely strained silicon layer of the silicon on insulator wafer. | 01-09-2014 |
20140034699 | METHOD FOR IMPROVING QUALITY OF SPALLED MATERIAL LAYERS - Methods for removing a material layer from a base substrate utilizing spalling in which mode III stress, i.e., the stress that is perpendicular to the fracture front created in the base substrate, during spalling is reduced. The substantial reduction of the mode III stress during spalling results in a spalling process in which the spalled material has less surface roughness at one of its' edges as compared to prior art spalling processes in which the mode III stress is present and competes with spalling. | 02-06-2014 |
20140048809 | SEMICONDUCTOR ACTIVE MATRIX ON BURIED INSULATOR - A high resolution active matrix backplane is fabricated using techniques applicable to flexible substrates. A backplane layer including active semiconductor devices is formed on a semiconductor-on-insulator substrate. The backplane layer is spalled from the substrate. A frontplane layer including passive devices such as LCDs, OLEDs, photosensitive materials, or piezo-electric materials is formed over the backplane layer to form an active matrix structure. The active matrix structure may be fabricated to allow bottom emission and provide mechanical flexibility. | 02-20-2014 |
20140051190 | METHOD OF LARGE-AREA CIRCUIT LAYOUT RECOGNITION - Methods for detecting the physical layout of an integrated circuit are provided. The methods of the present disclosure allow large area imaging of the circuit layout without requiring tedious sample preparation techniques. The imaging can be performed utilizing low-energy beam techniques such as scanning electron microscopy; however, more sophisticated imaging techniques can also be employed. In the methods of the present disclosure, spalling is used to remove a portion of a semiconductor layer including at least one semiconductor device formed thereon or therein from a base substrate. In some cases, a buried insulator layer that is located beneath a semiconductor layer including the at least one semiconductor device can be completely or partially removed. In some cases, the semiconductor layer including the at least one semiconductor device can be thinned. The methods improve the detection quality that the buried insulator layer and a thick semiconductor layer can reduce. | 02-20-2014 |
20140057385 | III-V PHOTOVOLTAIC ELEMENT AND FABRICATION METHOD - A solar cell structure includes stacked layers in reverse order on a germanium substrate. A heterostructure including an (In)GaAs absorbing layer and a disordered emitter layer is provided in the solar cell structures. Controlled spalling may be employed as part of the fabrication process for the solar cell structure, which may be single or multi-junction. | 02-27-2014 |
20140070215 | DEFECT FREE STRAINED SILICON ON INSULATOR (SSOI) SUBSTRATES - A method of forming a strained semiconductor material that in one embodiment includes forming a cleave layer in a host semiconductor substrate, and contacting a strain inducing material layer on a surface of a transfer portion of the host semiconductor substrate. A handle substrate is then contacted to an exposed surface of the stress inducing material layer. The transfer portion of the host semiconductor substrate may then be separated from the host semiconductor substrate along the cleave layer. A dielectric layer is formed directly on the transfer portion of the host semiconductor substrate. The handle substrate and the stress inducing material are then removed, wherein the transferred portion of the host semiconductor substrate provides a strained semiconductor layer that is in direct contact with a dielectric layer. | 03-13-2014 |
20140070277 | EPITAXIAL GROWTH OF SMOOTH AND HIGHLY STRAINED GERMANIUM - A smooth germanium layer which can be grown directly on a silicon semiconductor substrate by exposing the substrate to germanium precursor in the presence of phosphine at temperature of about 350 C. The germanium layer formation can be achieved with or without a SiGe seed layer. The process to form the germanium layer can be integrated into standard CMOS processing to efficiently form a structure embodying a thin, highly strained germanium layer. Such structure can enable processing flexibility. The germanium layer can also provide unique physical properties such as in an opto-electronic devices, or to enable formation of a layer of group III-V material on a silicon substrate. | 03-13-2014 |
20140073119 | DEFECT FREE STRAINED SILICON ON INSULATOR (SSOI) SUBSTRATES - A method of forming a strained semiconductor material that in one embodiment includes forming a cleave layer in a host semiconductor substrate, and contacting a strain inducing material layer on a surface of a transfer portion of the host semiconductor substrate. A handle substrate is then contacted to an exposed surface of the stress inducing material layer. The transfer portion of the host semiconductor substrate may then be separated from the host semiconductor substrate along the cleave layer. A dielectric layer is formed directly on the transfer portion of the host semiconductor substrate. The handle substrate and the stress inducing material are then removed, wherein the transferred portion of the host semiconductor substrate provides a strained semiconductor layer that is in direct contact with a dielectric layer. | 03-13-2014 |
20140103436 | EXTREMELY THIN SEMICONDUCTOR-ON-INSULATOR WITH BACK GATE CONTACT - A structure is provided in which the back gate regions are physically separated from one another as opposed to using reversed biased pn junction diodes. In the present disclosure, the back gate regions can be formed first through a buried dielectric material of an extremely thin semiconductor-on-insulator (ETSOI) substrate. After dopant activation, standard device fabrication processes can be performed. A semiconductor base layer portion of the ETSOI substrate can then be removed from the original ETSOI to expose a surface of the back gates. | 04-17-2014 |
20140103533 | EXTREMELY THIN SEMICONDUCTOR-ON-INSULATOR WITH BACK GATE CONTACT - A structure is provided in which the back gate regions are physically separated from one another as opposed to using reversed biased pn junction diodes. In the present disclosure, the back gate regions can be formed first through a buried dielectric material of an extremely thin semiconductor-on-insulator (ETSOI) substrate. After dopant activation, standard device fabrication processes can be performed. A semiconductor base layer portion of the ETSOI substrate can then be removed from the original ETSOI to expose a surface of the back gates. | 04-17-2014 |
20140106494 | DUAL-GATE BIO/CHEM SENSOR - A dual gate extremely thin semiconductor-on-insulator transistor with asymmetric gate dielectrics is provided. This structure can improve the sensor detection limit and also relieve the drift effects. Detection is performed at a constant current mode while the species will be detected at a gate electrode with a thin equivalent oxide thickness (EOT) and the gate bias will be applied to the second gate electrode with thicker EOT to maintain current flow through the transistor. As a result, a small change in the charge on the first electrode with the thin EOT will be translated into a larger voltage on the gate electrode with the thick EOT to sustain the current flow through the transistor. This allows a reduction of the sensor dimension and therefore an increase in the array size. The dual gate structure further includes cavities, i.e., microwell arrays, for chemical sensing. | 04-17-2014 |
20140109961 | COMPOSITIONALLY-GRADED BAND GAP HETEROJUNCTION SOLAR CELL - A photovoltaic device includes a composition modulated semiconductor structure including a p-doped first semiconductor material layer, a first intrinsic compositionally-graded semiconductor material layer, an intrinsic semiconductor material layer, a second intrinsic compositionally-graded semiconductor layer, and an n-doped first semiconductor material layer. The first and second intrinsic compositionally-graded semiconductor material layers include an alloy of a first semiconductor material having a greater band gap width and a second semiconductor material having a smaller band gap with, and the concentration of the second semiconductor material increases toward the intrinsic semiconductor material layer in the first and second compositionally-graded semiconductor material layers. The photovoltaic device provides an open circuit voltage comparable to that of the first semiconductor material, and a short circuit current comparable to that of the second semiconductor material, thereby increasing the efficiency of the photovoltaic device. | 04-24-2014 |
20140131286 | LARGE-SCALE ELECTRICITY-LESS DISINFECTION OF FLUENT WATER - A system for disinfecting a water sample includes a pipe having an inlet for engaging a source of the water sample, a storage reservoir connected to an outlet of the pipe for holding the water sample, an array of photovoltaic cells coupled to the pipe for converting solar radiation into a current, and an array of light emitting diodes coupled to the pipe and powered by the current, wherein the array of light emitting diodes emits a germicidal wavelength of radiation. A method for disinfecting a fluent water sample includes generating a current using an array of photovoltaic cells, using the current to power an array of light emitting diodes, wherein the array of light emitting diodes emits a germicidal wavelength of radiation, and exposing the fluent water sample to the radiation while transporting the fluent water sample from a source to a storage reservoir. | 05-15-2014 |
20140131287 | ELECTRICITY-LESS WATER DISINFECTION - Disinfecting a sample of water includes generating a current using an array of photovoltaic cells, using the current to power an array of light emitting diodes, wherein the array of light emitting diodes emits a germicidal wavelength of radiation, and exposing the sample of water to the radiation. Another method for disinfecting a sample of water includes placing the sample of water within a container, wherein the container includes an array of photovoltaic cells encircling an exterior wall of the container and an array of light emitting diodes encircling an interior wall of the container, placing the container in a location exposed to solar radiation, converting the solar radiation to a current using the array of photovoltaic cells, and powering the array of light emitting diodes using the current, wherein the array of light emitting diodes emits a germicidal wavelength of radiation sufficient to disinfect the sample of water. | 05-15-2014 |
20140131591 | ELECTRICITY-LESS WATER DISINFECTION - A system for disinfecting a sample of water includes a container for holding the sample of water, an array of photovoltaic cells coupled to the container for converting solar radiation into a current, and an array of light emitting diodes coupled to the container and powered by the current, wherein the array of light emitting diodes emits a germicidal wavelength of radiation. Another system for disinfecting a sample of water includes a container for holding the sample of water, an array of photovoltaic cells encircling an exterior wall of the container, for converting solar radiation into a current, and an array of light emitting diodes encircling an interior wall of the container and powered by the current, wherein the array of light emitting diodes emits a germicidal wavelength of radiation. | 05-15-2014 |
20140147988 | FIXED CURVATURE FORCE LOADING OF MECHANICALLY SPALLED FILMS - A spalling method is provided that includes depositing a stressor layer on surface of a base substrate, and contacting the stressor layer with a planar transfer. The planar transfer surface is then traversed along a plane that is parallel to and having a vertical offset from the upper surface of the base substrate. The planar transfer surface is traversed in a direction from a first edge of the base substrate to an opposing second edge of the base substrate to cleave the base substrate and transfer a spalled portion of the base substrate to the planar transfer surface. The vertical offset between the plane along which the planar transfer surface is traversed and the upper surface of the base substrate is a fixed distance. The fixed distance of the vertical offset provides a uniform spalling force. A spalling method is also provided that includes a transfer roller. | 05-29-2014 |
20140159161 | MEASUREMENT OF CMOS DEVICE CHANNEL STRAIN BY X-RAY DIFFRACTION - A direct measurement of lattice spacing by X-ray diffraction is performed on a periodic array of unit structures provided on a substrate including semiconductor devices. Each unit structure includes a single crystalline strained material region and at least one stress-generating material region. For example, the single crystalline strained material region may be a structure simulating a channel of a field effect transistor, and the at least one stress-generating material region may be a single crystalline semiconductor region in epitaxial alignment with the single crystalline strained material region. The direct measurement can be performed in-situ at various processing states to provide in-line monitoring of the strain in field effect transistors in actual semiconductor devices. | 06-12-2014 |
20140166079 | MONOLITHIC INTEGRATION OF HETEROJUNCTION SOLAR CELLS - A method for fabricating a device with integrated photovoltaic cells includes supporting a semiconductor substrate on a first handle substrate and doping the semiconductor substrate to form doped alternating regions with opposite conductivity. A doped layer is formed over a first side the semiconductor substrate. A conductive material is patterned over the doped layer to form conductive islands such that the conductive islands are aligned with the alternating regions to define a plurality of photovoltaic cells connected in series on a monolithic structure. | 06-19-2014 |
20140170807 | MONOLITHIC INTEGRATION OF HETEROJUNCTION SOLAR CELLS - A method for fabricating a device with integrated photovoltaic cells includes supporting a semiconductor substrate on a first handle substrate and doping the semiconductor substrate to form doped alternating regions with opposite conductivity. A doped layer is formed over a first side the semiconductor substrate. A conductive material is patterned over the doped layer to form conductive islands such that the conductive islands are aligned with the alternating regions to define a plurality of photovoltaic cells connected in series on a monolithic structure. | 06-19-2014 |
20140183686 | AUTONOMOUS INTEGRATED CIRCUITS - An autonomous integrated circuit (IC) includes a solar cell formed on a bottom substrate of a silicon-on-insulator (SOI) substrate as a handle substrate; an insulating layer of the SOI substrate located on top of the solar cell; and a device layer formed on a top semiconductor layer of the SOI substrate located on top of the insulating layer, wherein a top contact of the device layer is electrically connected to a bottom contact of the solar cell such that the solar cell is enabled to power the device layer. | 07-03-2014 |
20140190564 | HETEROJUNCTION III-V SOLAR CELL PERFORMANCE | 07-10-2014 |
20140196773 | MULTI-JUNCTION III-V SOLAR CELL - A multi junction solar cell structure includes a top photovoltaic cell including III-V semiconductor materials and a silicon-based bottom photovoltaic cell. A thin, germanium-rich silicon germanium buffer layer is provided between the top and bottom cells. Fabrication techniques for producing multi junction III-V solar cell structures, lattice-matched or pseudomorphic to germanium, on silicon substrates is further provided wherein silicon serves as the bottom cell. The open circuit voltage of the silicon cell may be enhanced by localized back surface field structures, localized back contacts, or amorphous silicon-based heterojunction back contacts. | 07-17-2014 |
20140196774 | MULTI-JUNCTION III-V SOLAR CELL - A multi junction solar cell structure includes a top photovoltaic cell including III-V semiconductor materials and a silicon-based bottom photovoltaic cell. A thin, germanium-rich silicon germanium buffer layer is provided between the top and bottom cells. Fabrication techniques for producing multi junction III-V solar cell structures, lattice-matched or pseudomorphic to germanium, on silicon substrates is further provided wherein silicon serves as the bottom cell. The open circuit voltage of the silicon cell may be enhanced by localized back surface field structures, localized back contacts, or amorphous silicon-based heterojunction back contacts. | 07-17-2014 |
20140242807 | METHOD FOR FACILITATING CRACK INITIATION DURING CONTROLLED SUBSTRATE SPALLING - A method is provided in which a substrate including various materials of different fracture toughness (K | 08-28-2014 |
20140251548 | METHOD FOR IMPROVING SURFACE QUALITY OF SPALLED SUBSTRATES - A compliant material is formed between a base substrate and a support structure prior to performing a controlled spalling process. By positioning the compliant material between the base substrate and the support structure, the localized effects of surface perturbations (particles, wafer artifacts, etc.) on spalling mode fracture can be reduced. The method of the present disclosure thus leads to improved surface quality of the spalled material layer and the remaining base substrate. Moreover, the method of the present disclosure can reduce the density of cleaving artifacts. | 09-11-2014 |
20140252446 | EXTREMELY THIN SEMICONDUCTOR ON INSULATOR (ETSOI) LOGIC AND MEMORY HYBRID CHIP - A method of forming a semiconductor device that includes providing a logic device on a semiconductor on insulating layer of a transfer substrate. The transfer substrate may further include a dielectric layer and a first handle substrate. A second handle substrate may be contacted to the semiconductor on insulating layer of the transfer substrate that includes logic device. The first handle substrate may be removed to expose the dielectric layer. A memory device can then be formed on the dielectric layer. Interconnect wiring can then be formed connecting the logic device with the memory device. | 09-11-2014 |
20140252448 | EXTREMELY THIN SEMICONDUCTOR ON INSULATOR (ETSOI) LOGIC AND MEMORY HYBRID CHIP - A method of forming a semiconductor device that includes providing a logic device on a semiconductor on insulating layer of a transfer substrate. The transfer substrate may further include a dielectric layer and a first handle substrate. A second handle substrate may be contacted to the semiconductor on insulating layer of the transfer substrate that includes logic device. The first handle substrate may be removed to expose the dielectric layer. A memory device can then be formed on the dielectric layer. Interconnect wiring can then be formed connecting the logic device with the memory device. | 09-11-2014 |
20140291282 | WAFER SCALE EPITAXIAL GRAPHENE TRANSFER - A method for transfer of a two-dimensional material includes forming a spreading layer of a two-dimensional material on a substrate, the spreading layer having a monolayer. A stressor layer is formed on the spreading layer, and the stressor layer is configured to apply stress to a closest monolayer of the spreading layer. The closest monolayer is exfoliated by mechanically splitting the spreading layer wherein the closest monolayer remains on the stressor layer. | 10-02-2014 |
20140312094 | SUBSTRATE HOLDER ASSEMBLY FOR CONTROLLED LAYER TRANSFER - A substrate holder assembly for use in a controlled spalling process is provided. The substrate holder assembly includes a base structure having a surface in which a base substrate or other work piece can be placed thereupon. A framing element is located above and spaced apart from the surface of the base structure. The framing element has a window which exposes an upper surface of the base substrate and defines an area of the upper surface of the base substrate in which another material can be applied thereto. A support structure containing at least one mechanical securing element is located on the framing element. The support structure mechanically constrains the base substrate within the substrate holder assembly. Each mechanical securing element contacts at least one surface of the support structure and, optionally, one surface of the base substrate. | 10-23-2014 |
20140312576 | SUBSTRATE HOLDER ASSEMBLY FOR CONTROLLED LAYER TRANSFER - A substrate holder assembly for use in a controlled spalling process is provided. The substrate holder assembly includes a base structure having a surface in which a base substrate or other work piece can be placed thereupon. A framing element is located above and spaced apart from the surface of the base structure. The framing element has a window which exposes an upper surface of the base substrate and defines an area of the upper surface of the base substrate in which another material can be applied thereto. A support structure containing at least one mechanical securing element is located on the framing element. The support structure mechanically constrains the base substrate within the substrate holder assembly. Each mechanical securing element contacts at least one surface of the support structure and, optionally, one surface of the base substrate. | 10-23-2014 |
20140315389 | CRACK CONTROL FOR SUBSTRATE SEPARATION - A method for separating a layer for transfer includes forming a crack guiding layer on a substrate and forming a device layer on the crack-guiding layer. The crack guiding layer is weakened by exposing the crack-guiding layer to a gas which reduces adherence at interfaces adjacent to the crack guiding layer. A stress inducing layer is formed on the device layer to assist in initiating a crack through the crack guiding layer and/or the interfaces. The device layer is removed from the substrate by propagating the crack. | 10-23-2014 |
20140327446 | FET Nanopore Sensor - A method of using a sensor comprising a field effect transistor (FET) embedded in a nanopore includes placing the sensor in an electrolyte comprising at least one of biomolecules and deoxyribonucleic acid (DNA); placing an electrode in the electrolyte; applying a gate voltage in the sub-threshold regime to the electrode; applying a drain voltage to a drain of the FET; applying a source voltage to a source of the FET; detecting a change in a drain current in the sensor in response to the at least one of biomolecules and DNA passing through the nanopore. | 11-06-2014 |
20140357082 | High-Rate Chemical Vapor Etch of Silicon Substrates - Methods of etching a silicon substrate at a high rate using a chemical vapor etching process are provided. A silicon substrate may be etched by heating the silicon substrate in a process chamber and then flowing hydrochloric acid and a germanium-carrying compound into the process chamber. The substrate may be heated to at least 700° C. The hydrochloric acid flow rate may be at least approximately 100 (standard cubic centimeters per minute) sccm. In some embodiments, the hydrochloric acid flow rate may be between approximately 10 slm and approximately 20 standard liters per minute (slm). The germanium-carrying compound flow rate may be at least approximately 50 sccm. In some embodiments, the germanium-carrying compound flow rate may be between approximately 100 sccm and approximately 500 sccm. The etching may extend fully through the silicon substrate. | 12-04-2014 |
20140367786 | FLEXIBLE, STRETCHABLE ELECTRONIC DEVICES - Fabrication methods are disclosed that facilitate the production of electronic structures that are both flexible and stretchable to conform to non-planar (e.g. curved) surfaces without suffering functional damage due to excessive strain. Electronic structures including CMOS devices are provided that can be stretched or squeezed within acceptable limits without failing or breaking The methods disclosed herein further facilitate the production of flexible, stretchable electronic structures having multiple levels of intra-chip connectors. Such connectors are formed through deposition and photolithographic patterning (back end of the line processing) and can be released following transfer of the electronic structures to flexible substrates. | 12-18-2014 |
20150035123 | CURVATURE COMPENSATED SUBSTRATE AND METHOD OF FORMING SAME - A curvature-control-material (CCM) is formed on one side of a substrate prior to forming a Group III nitride material on the other side of the substrate. The CCM possess a thermal expansion coefficient (TEC) that is lower than the TEC of the substrate and is stable at elevated growth temperatures required for formation of a Group III nitride material. In some embodiments, the deposition conditions of the CCM enable a flat-wafer condition for the Group III nitride material maximizing the emission wavelength uniformity of the Group III nitride material. Employment of the CCM also reduces the final structure bowing during cool down leading to reduced convex substrate curvatures. In some embodiments, the final structure curvature can further be engineered to be concave by proper selection of CCM properties, and via controlled selective etching of the CCM, this method enables the final structure to be flat. | 02-05-2015 |
20150041756 | THIN LIGHT EMITTING DIODE AND FABRICATION METHOD - A method for fabrication a light emitting diode (LED) includes growing a crystalline LED structure on a growth substrate, forming alternating material layers on the LED structure to form a reflector on a back side opposite the growth substrate and depositing a stressor layer on the reflector. A handle substrate is adhered to the stressor layer. The LED structure is separated from the growth substrate using a spalling process to expose a front side of the LED structure. | 02-12-2015 |
20150041936 | PASSIVATION OF BACK-ILLUMINATED IMAGE SENSOR - A method for forming a back-illuminated image sensor includes forming a higher doped crystalline layer on a crystalline substrate, growing a lower doped crystalline layer on the higher doped crystalline layer and forming a photodiode and component circuitry from the lower doped crystalline layer. Metallization structures are formed to make connections to and between components. The crystalline substrate is removed to expose the higher doped crystalline layer. An optical component structure is provided on an exposed surface of the higher doped crystalline layer to receive light therein such that the higher doped crystalline layer provides a passivation layer for the photodiode and the component circuitry. | 02-12-2015 |
20150041938 | PASSIVATION OF BACK-ILLUMINATED IMAGE SENSOR - A method for forming a back-illuminated image sensor includes forming a higher doped crystalline layer on a crystalline substrate, growing a lower doped crystalline layer on the higher doped crystalline layer and forming a photodiode and component circuitry from the lower doped crystalline layer. Metallization structures are formed to make connections to and between components. The crystalline substrate is removed to expose the higher doped crystalline layer. An optical component structure is provided on an exposed surface of the higher doped crystalline layer to receive light therein such that the higher doped crystalline layer provides a passivation layer for the photodiode and the component circuitry. | 02-12-2015 |
20150044796 | THIN LIGHT EMITTING DIODE AND FABRICATION METHOD - A method for fabrication a light emitting diode (LED) includes forming alternating material layers on an LED structure, formed on a substrate, to form a reflector on a back side opposite the substrate. A handle substrate is adhered to a stressor layer deposited on the reflector. The LED structure is separated from the substrate using a spalling process to expose a front side of the LED structure. | 02-12-2015 |
20150047704 | III-V PHOTOVOLTAIC ELEMENTS - Solar cell structures that have improved carrier collection efficiencies at a heterointerface are provided by low temperature epitaxial growth of silicon on a III-V base. Additionally, a solar cell structure having improved open circuit voltage includes a shallow junction III-V emitter formed by epitaxy or diffusion followed by the epitaxy of Si | 02-19-2015 |
20150047781 | CONTROLLING THE MELT FRONT OF THIN FILM APPLICATIONS - Systems and methods for bonding include selectively heating an initial location of a sample to melt a bonding layer at an interface between a first layer and a second layer of the sample. The heating is propagated in a direction away from the initial location such that a melt front of the bonding layer is translated across the interface to provide a void free bond between the first layer and the second layer. | 02-19-2015 |
20150048145 | CONTROLLING THE MELT FRONT OF THIN FILM APPLICATIONS - Systems and methods for bonding include selectively heating an initial location of a sample to melt a bonding layer at an interface between a first layer and a second layer of the sample. The heating is propagated in a direction away from the initial location such that a melt front of the bonding layer is translated across the interface to provide a void free bond between the first layer and the second layer. | 02-19-2015 |
20150050769 | SOLAR-POWERED ENERGY-AUTONOMOUS SILICON-ON-INSULATOR DEVICE - A solar-powered autonomous CMOS circuit structure is fabricated with monolithically integrated photovoltaic solar cells. The structure includes a device layer including an integrated circuit and a solar cell layer. Solar cell structures in the solar cell layer can be series connected during metallization of the device layer or subsequently. The device layer and the solar cell layer are formed using a silicon-on-insulator substrate. Subsequent spalling of the silicon-on-insulator substrate through the handle substrate thereof facilitates production of a relatively thin solar cell layer that can be subjected to a selective etching process to isolate the solar cell structures. | 02-19-2015 |
20150060759 | TUNABLE LIGHT-EMITTING DIODE - A method of forming a light-emitting diode including determining a first level of tensile stress to be applied to a base substrate including a plurality of quantum well layers to adjust a band-gap of the base substrate to a predetermined band-gap. The first level of tensile stress is generated in the base substrate by forming a tensile-stressing layer on the base substrate. | 03-05-2015 |
20150060760 | TUNABLE LIGHT-EMITTING DIODE - A light-emitting diode device includes a base substrate including a plurality of quantum well layers, a first electrode on one side of the plurality of quantum well layers, and a second electrode on an opposite side of the plurality of quantum well layers. The device includes a tensile-stressing layer formed on the base substrate and having a thickness and chemical composition configured to generate a first tensile stress in the base substrate, the first compressive stress selected to cause the base substrate to have a predetermined band-gap. | 03-05-2015 |
20150068604 | SPALLING METHODS TO FORM MULTI-JUNCTION PHOTOVOLTAIC STRUCTURE - A method cleaving a semiconductor material that includes providing a germanium substrate having a germanium and tin alloy layer is present therein. A stressor layer is deposited on a surface of the germanium substrate. A stress from the stressor layer is applied to the germanium substrate, in which the stress cleaves the germanium substrate to provide a cleaved surface. The cleaved surface of the germanium substrate is then selective to the germanium and tin alloy layer of the germanium substrate. In another embodiment, the germanium and tin alloy layer may function as a fracture plane during a spalling method. | 03-12-2015 |