Patent application number | Description | Published |
20080209297 | METHOD AND APPARATUS FOR RETRANSMISSION MANAGEMENT FOR RELIABLE HYBRID ARQ PROCESS - A method for transmitting a packet from a transmitter to a receiver in a wireless communication system begins by building a packet by a transport format combination (TFC) selection process, and the packet is transmitted from the transmitter to the receiver. If the transmitter receives an indication that the packet was not successfully received at the receiver, the packet is retransmitted via a hybrid automatic repeat request (HARQ) procedure. If the HARQ procedure did not successfully transmit the packet, then the packet is retransmitted via a retransmission management (RM) procedure. If the RM procedure did not successfully transmit the packet, then the packet is discarded by the transmitter. | 08-28-2008 |
20080212561 | METHOD AND APPARATUS FOR ENHANCING RLC FOR FLEXIBLE RLC PDU SIZE - Enhancements are provided for the radio link control (RLC) protocol in wireless communication systems where variable RLC packet data unit (PDU) size is allowed. When flexible RLC PDU sizes are configured by upper layers, radio network controller (RNC)/Node B flow control, RLC flow control, status reporting and polling mechanisms are configured to use byte count based metrics in order to prevent possible buffer underflows in the Node B and buffer overflows in the RNC. The enhancements proposed herein for the RLC apply to both uplink and downlink communications. | 09-04-2008 |
20080219195 | METHOD AND APPARATUS FOR GENERATING AND PROCESSING A MAC-ehs PROTOCOL DATA UNIT - A method and apparatus for generating and processing a high speed downlink shared channel (HS-DSCH) medium access control (MAC-ehs) protocol data unit (PDU) are disclosed. MAC-ehs service data units (SDUs) are multiplexed based on a logical channel identity. Reordering PDUs are generated from the multiplexed MAC-ehs SDUs. A reordering PDU includes at least one MAC-ehs SDU and/or at least one MAC-ehs SDU segment. A MAC-ehs SDU is segmented on a priority class basis if a MAC-ehs SDU does not fit into a reordering PDU. A MAC-ehs PDU is generated including at least one reordering PDU. The MAC-ehs SDUs may be stored in priority queues before generating the reordering PDUs. Alternatively, the reordering PDUs may be generated from the multiplexed MAC-ehs SDUs. Alternatively, the received MAC-ehs SDUs may be buffered in a corresponding buffer for each logical channel before multiplexed based on a logical channel identity, or reordering PDUs are generated. | 09-11-2008 |
20080225725 | METHOD AND APPARATUS FOR SUPPORTING UPLINK STARVATION AVOIDANCE IN A LONG TERM EVOLUTION SYSTEM - A method and apparatus for uplink (UL) starvation avoidance includes determining a current buffer status information. The current buffer status information is reported to an evolved Node B (eNB). A grant that includes a determination of a number of tokens a wireless transmit/receive unit (WTRU) may accumulate is received from the eNB. | 09-18-2008 |
20080225765 | METHODS AND APPARATUS FOR REORDERING DATA IN AN EVOLVED HIGH SPEED PACKET ACCESS SYSTEM - Method and apparatus for receiving high speed downlink shared channel (HS-DSCH) transmissions are disclosed. An HS-DSCH medium access control (MAC-ehs) entity receives MAC-ehs protocol data units (PDUs) via a high speed downlink shared channel (HS-DSCH) while in one of Cell_FACH, Cell_PCH, and URA_PCH states. The reordering PDUs included in the MAC-ehs PDUs may be sent to a next processing entity without performing reordering of the PDUs. A certain reordering queue may enter a suspend state upon occurrence of a triggering event and MAC-ehs PDUs distributed to the reordering queue in the suspend state may be forwarded to the next processing entity without performing reordering. MAC-ehs reset procedure may be extended for a certain transmission such that the MAC-ehs reset is performed after receiving a MAC-ehs PDU in a target cell. | 09-18-2008 |
20080225782 | METHOD AND APPARATUS FOR PERFORMING BLIND TRANSPORT FORMAT DETECTION - Methods and apparatus for performing efficient blind transport format (TF) detection in wireless communication systems are disclosed based on TF groups and efficient hybrid automatic repeat request (HARQ) assisted blind TF detection for retransmissions. When a receiver detects a failure for an initial transmission, a transmitter receives an HARQ negative acknowledgement (NACK) or no feedback from the receiver beyond a certain duration. The transmitter uses the same transport format combination (TFC) for a first retransmission as is used for the initial transmission for data detection, and if the first retransmission fails and after the transmitter gets the HARQ NACK or no feedback from the receiver beyond the certain duration, the transmitter uses a next more robust TFC for a second retransmission and the receiver should also to use next more robust TFC for data detection for the second retransmission from the transmitter. Alternatively, the transmitter uses the next robust TF for the first retransmission. | 09-18-2008 |
20080225783 | RESOURCE ALLOCATION AND SIGNALINGS FOR GROUP SCHEDULING IN WIRELESS COMMUNICATIONS - Method and apparatus for resource allocation formatting, signaling, and procedures in wireless communications, the method reducing signal overhead. Wireless transmit/receive units are divided into one or more semi-static groups. Resource allocation takes place to a group and the resource sets are signaled to an individual unit needing the resources. The method is applied to resource allocation for services, including both real time and non real time services. | 09-18-2008 |
20080225785 | RANDOM ACCESS RESOURCE MAPPING FOR LONG TERM EVOLUTION - A wireless transmit/receive unit (WTRU) receives a mapping of access service classes (ASCs) to its assigned access class. The ASC mapping may be based on message priority and logical channel priority. ASC mapping is directly or indirectly mapped to RACH preamble burst groupings and RACH signature groupings. | 09-18-2008 |
20080226074 | METHOD AND APPARATUS FOR CIPHERING PACKET UNITS IN WIRELESS COMMUNICATIONS - A method and apparatus are disclosed relating to ciphering and de-ciphering of packet units in wireless devices during retransmission in wireless communications. The packet units are re-segmented with the ciphering done on the re-segmented packet unit or on a radio link control protocol data unit (RLC PDU) with or without segmentation. Alternatively, the re-segmentation is done on the radio link control service data unit (RLC SDU) with or without segmentation. Alternatively, the ciphering process and multiplexing of the RLC PDU is done in the medium access control (MAC) layer of a MAC PU before undergoing a hybrid automatic repeat request (HARQ) process for retransmission. Further, the ciphering process in the RLC is done on a packet data convergence protocol packet data unit (PDCP PDU). | 09-18-2008 |
20080227442 | WIRELESS COMMUNICATION METHOD AND APPARATUS FOR SUPPORTING RECONFIGURATION OF RADIO LINK CONTROL PARAMETERS - A variety of wireless communication methods and apparatus for supporting reconfiguration of radio link control (RLC) parameters are disclosed. A radio resource control (RRC) reconfiguration message is generated that indicates that an RLC unit in a wireless transmit/receive unit (WTRU) or a universal terrestrial radio access network (UTRAN) should be reconfigured from supporting flexible size RLC protocol data units (PDUs) to supporting fixed size RLC PDUs. If an information element (IE) “one sided RLC re-establishment” is present in the RRC reconfiguration message, only a receiving side subassembly in the RLC unit is re-established. Otherwise, both the receiving side subassembly and a transmitting side subassembly in the RLC unit are re-established. Flexible size RLC PDUs may be discarded and a message indicating the discarded flexible size RLC PDUs may be transmitted. The flexible size RLC PDUs may be modified such that they correspond to a set of pre-defined sizes. | 09-18-2008 |
20080253346 | MAC ARCHITECTURE IN WIRELESS COMMUNICATION SYSTEMS SUPPORTING H-ARQ - A medium access control-high speed (MAC-hs) comprises a hybrid automatic repeat request (H-ARQ) device configured to receive data blocks over a wideband-code division multiple access (W-CDMA) high speed-downlink shared channel (HS-DSCH). The H-ARQ device generates an acknowledgement (ACK) or negative acknowledgement (NYACK) for each said data block received. Each received data block having a transmission sequence number. The H-ARQ device receives a new transmission instead of a pending retransmission at any time. At least one reordering device has an input configured to receive an output of the H-ARQ device and the at least one reordering device configured to reorder the received data blocks based on each received data block's transmission sequence number (TSN). Received data blocks are immediately forwarded for processing for higher layers when the received data blocks are received in sequence. | 10-16-2008 |
20080253399 | OPTIMIZATION METHODS AND APPARATUS FOR TRANSMITTING MULTIPLE PLMN-IDS - This application is related to a method and apparatus for optimizing the transmission of PLMN-IDs in a wireless network. This is accomplished by reducing the amount of bandwidth required to transmit a given set of PLMN-IDs. | 10-16-2008 |
20080261600 | RADIO LINK AND HANDOVER FAILURE HANDLING - The method and apparatus disclosed are used for handling RL and handover failures based on context transfer details and RACH procedures that enhance the failure handling procedures. After an RL failure, a user equipment (UE) includes the identity of an evolved Node-B (eNodeB) and/or cell as an information element (IE) in an RRC connection request and/or a cell update message or any other RRC message along with a UE identity. | 10-23-2008 |
20080267105 | ACTIVE MODE DISCONTINUOUS RECEPTION SYNCHRONIZATION AND RESYNCHRONIZATION OPERATION - A method and apparatus for active mode discontinuous reception (DRX) synchronization and resynchronization operation are disclosed. A first entity sends a DRX indicator to a second entity. The first and second entities synchronize and resynchronize DRX operation based on the DRX indicator. | 10-30-2008 |
20080267109 | METHOD AND APPARATUS OF RESOURCE MANAGEMENT FOR MULTIMEDIA BROADCAST MULTICAST SERVICES - A method and apparatus of resource management for multimedia broadcast multicast services (MBMS) are disclosed. A wireless transmit/receive unit (WTRU) sends a measurement report and an MBMS reception performance report to a network. Single frequency network (SFN) area change may be made based on cell reselection information, WTRU macro-diversity MBMS reception performance, neighbor cell signal strength reported by a WTRU, interference level measured by the WTRU, a number of WTRUs in a cell, service priority, WTRU class, WTRU mobility trend, WTRU location to a cell center, WTRU MBMS reception interference level, etc. The MBMS service on/off decision and/or point-to-point (PTP) to point-to-multipoint (PTM) switching may be made based on a channel condition of a WTRU. The channel condition may be determined based on whether the WTRU is in in-sync or out-of-sync in MBMS reception, consecutive negative acknowledgements (NAKs) within a certain time window, measured pathloss from a reference channel, etc. | 10-30-2008 |
20080267123 | PACKET SWITCHED CONNECTIONS USING DEDICATED CHANNELS - A temporary (temp) dedicated channel (DCH) is used to support communications. The temp-DCH channel is a channel that is assigned to a user having a set duration. After the duration expires, the channel is automatically released to the user. Embodiments of the invention relate to establishing the temp-DCH channel, determining the data rate and duration of the channel. Other embodiments relate to establishing back-to-back temp-DCH channels and the implementation details of these embodiments. Additionally, one embodiment relates to adding a start/stop function to the medium access controller which can be used in conjunction with temp-DCH as well as other applications. | 10-30-2008 |
20080268894 | POWER CONTROL OF POINT TO MULTIPOINT PHYSICAL CHANNELS - A method and apparatus are used to determine an efficient transmit power for point to multipoint (PtM) transmissions by maintaining a database at a base station which specifies which of a plurality of wireless transmit/receive units (WTRUs) are members of each PtM group. The transmit power of each WTRU's downlink dedicated channel is adjusted to the minimum required power necessary and the PtM transmit power for each PtM group is set such that the PtM transmit power of a PtM group is equal to the greatest of a WTRU in the PtM group plus a PtM power offset. | 10-30-2008 |
20080273483 | METHOD AND APPARATUS FOR SCHEDULING TRANSMISSIONS VIA AN ENHANCED DEDICATED CHANNEL - A method and apparatus for scheduling transmissions via an enhanced dedicated channel (E-DCH) are disclosed. A scheduled power is calculated for scheduled data flows. A remaining transmit power is calculated for the E-DCH transmission. A rate request message is generated, wherein the scheduled power, remaining transmit power and rate request message are used to select transport format combinations (TFCs) and multiplex data scheduled for the E-DCH transmission. The remaining transmit power is calculated by subtracting from a maximum allowed power the power of a dedicated physical data channel (DPDCH), a dedicated physical control channel (DPCCH), a high speed dedicated physical control channel (HS-DPCCH), an enhanced uplink dedicated physical control channel (E-DPCCH) and a power margin. | 11-06-2008 |
20080273502 | WIRELESS COMMUNICATION METHOD AND SYSTEM FOR CONTROLLING DATA BIT RATES TO MAINTAIN THE QUALITY OF RADIO LINKS - A wireless communication method and system for controlling the current data bit rate of a radio link (RL) to maintain the quality of the RL. The system includes a core network (CN), a radio network controller (RNC) and at least one wireless transmit/receive unit (WTRU). The RL is established between the RNC and the WTRU. The RNC establishes a guaranteed data bit rate, a maximum data bit rate and a current data bit rate associated with the RL. When the RNC senses an event which indicates that the quality of the RL has substantially deteriorated, the RNC reduces the value of the current data bit rate. Then, in a recovery process, if a similar event does not occur during an established waiting period, the RNC restores the current data bit rate back to the maximum data bit rate. | 11-06-2008 |
20090016301 | PACKET DATA CONVERGENCE PROTOCOL OPERATIONS - The application discloses techniques for determining where to locate and how to fit the duplicate detection functionality within the PDCP architecture as well as determining when to activate or deactivate various PDCP functions, such as the PDCP reordering function. These mechanisms can be implemented in wireless devices such as a WTRU, or in any wireless network nodes. | 01-15-2009 |
20090028111 | NODE B AND RNC ACTIONS DURING A SERVING HSDPA CELL CHANGE - An apparatus and method in accordance with the present invention reduce the amount of data that is stalled in a source Node B after a serving HS-DSCH cell change in a communication system that includes a serving RNC and at least one Node B. In a first embodiment, the RNC temporarily suspends data transmissions from the RNC to the Node B. In a second embodiment, the activation time is used in data scheduling. In a third embodiment, a more robust MCS level is selected. In a fourth embodiment flow control is employed for the data transmitted between the RNC and the Node B. | 01-29-2009 |
20090028123 | SYSTEM FOR PERMITTING CONTROL OF THE PURGING OF A NODE B BY THE SERVING RADIO NETWORK CONTROLLER - A system and method which permit the RNC to control purging of data buffered in the Node B. The RNC monitors for a triggering event, which initiates the purging process. The RNC then informs the Node B of the need to purge data by transmitting a purge command, which prompts the Node B to delete at least a portion of buffered data. The purge command can include instructions for the Node B to purge all data for a particular UE, data in one or several user priority transmission queues or in one or more logical channels in the Node B, depending upon the particular data purge triggering event realized in the RNC. | 01-29-2009 |
20090034476 | PACKET DATA CONVERGENCE PROTOCOL PROCEDURES - Method and an apparatus for activating a packet data convergence protocol (PDCP) reordering in a wireless transmit receive unit (WTRU) which receives a handover command message, resets a radio link control (RLC) entity of the WTRU, collects a PDCP sequence number (SN) and a range of the SN of out-of-sequence service data units (SDUs), reports the PDCP SN to a radio resource control (RRC) layer of the WTRU, transmits a handover confirm message along with a first unacknowledged PDCP SN uplink (UL), and activates the PDCP reordering based on the PDCP-SN-UL is disclosed. The WTRU includes PDCP entity including a control plane (C-plane) and a user plane (U-plane). Also, a robust header compression (RoHC) entity, a user ciphering entity, and an entity for the user plane data/control is also described. | 02-05-2009 |
20090042582 | METHOD AND APPARATUS FOR LTE RACH CHANNEL RESOURCE SELECTION AND PARTITIONING - A method and apparatus for random access channel (RACH) channel selection in a long term evolution (LTE) network includes determining a distance from a wireless transmit/receive unit (WTRU) to an evolved Node-B (eNB) in a cell of the LTE network. A RACH channel is then selected based upon the distance determination. | 02-12-2009 |
20090046641 | LONG TERM EVOLUTION MEDIUM ACCESS CONTROL PROCEDURES - Several medium access control methods are disclosed. One such method is a method for requesting an uplink resource allocation. In this method, a wireless transmit/receive unit (WTRU) receives a trigger and sends an uplink resource request to a Node B based on the trigger. The WTRU receives an uplink resource assignment and prepares for an uplink transmission using the resource assignment. The WTRU then sends an acknowledgement that the uplink resource allocation was received. A wireless transmit/receive unit according to one embodiment includes a trigger device and a processor. The trigger device is configured to receive a trigger. The processor is in communication with the trigger device, and is configured to send an uplink resource request upon receipt of the trigger, receive an uplink resource assignment, and send an acknowledgement upon receipt of the uplink resource assignment. | 02-19-2009 |
20090082059 | UPLINK POWER CONTROL USING RECEIVED REFERENCE SIGNAL - A method for determining uplink power level, implemented in a base station, comprises receiving a communication signal over an uplink common control channel. The interference on the uplink common control channel in response to the received communication signal is measured and a channel quality of the uplink common control channel is monitored. A quality margin for the communication signal is provided and transmitted over a downlink control channel. | 03-26-2009 |
20090083603 | Radio Resource Control-Service Data Unit Reception - A method for receiving periodic transmissions of a segmented communication is disclosed. The segmented communication is received and each segment of the segmented communication is examined to determine if the segment is valid. Valid segments are stored, while invalid segments are discarded. Next, it is computed when the invalid segments will be retransmitted. A subsequent transmission of the communication is received and a retransmission of a previously identified invalid segment is extracted, the retransmitted segment being located based on the computation. The retransmitted segment is examined to determine if it is valid. | 03-26-2009 |
20090086708 | METHOD AND APPARATUS FOR SUPPORTING SEGMENTATION OF PACKETS FOR UPLINK TRANSMISSION - A method and apparatus for segmenting medium access control (MAC) service data units (SDUs) creates enhanced MAC-es PDUs in the enhanced MAC-e/es sub-layer by concatenating MAC SDUs received from the logical channels. An enhanced transport format combination (E-TFC) selection entity controls the concatenation of MAC SDUs into enhanced MAC-es PDUs. When a MAC SDU is received that is too large to fit into a selected enhanced MAC-es PDU payload, a segmentation entity segments the MAC SDU such that the MAC SDU segment fills the remaining payload available in the selected enhanced MAC-es PDU. The enhanced MAC-es PDU is then assigned a transmission sequence number (TSN) and multiplexed with other enhanced MAC-es PDUs to create a single enhanced MAC-e PDU that is transmitted on the E-DCH in the next transmission time interval (TTI). A HARQ entity stores and, if necessary retransmits the enhanced MAC-e PDU when a transmission error occurs. | 04-02-2009 |
20090086709 | METHOD AND APPARATUS FOR ENHANCED TRANSPORT FORMAT COMBINATION SELECTION IN WIRELESS COMMUNICATIONS - Efficient enhanced transport format combination (E-TFC) selection methods and apparatus support flexible radio link control (RLC) packet data unit (PDU) size and medium access control (MAC) layer segmentation. Methods for filling an enhanced medium access control (MAC-e) packet data unit (PDU) with data from logical channels as part of E-TFC selection are provided. In one embodiment, the E-TFC selection algorithm employs a single request from the MAC layer to the RLC layer to request the number of bits it is allowed to send for a logical channel to create enhanced MAC-e PDUs. In another embodiment, the MAC entity performs multiple requests to the RLC entity. In another embodiment, the MAC entity makes a single request to the RLC entity to create one or more enhanced MAC-e PDUs of a set size. A technique is also provided for maintaining a guaranteed bit rate (GBR) for non-scheduled data flows with variable-length headers. | 04-02-2009 |
20090097425 | RADIO LINK CONTROL OPERATIONS AND ENHANCED DUPLICATE DETECTION IN A WIRELESS RECEIVER - A radio link control (RLC) entity selectively stores part or parts of a received protocol data unit (PDU) or re-segmented PDU and selectively discards other parts of the received PDU, rather than simply either discarding the whole received PDU or storing the whole received PDU. The receiving RLC entity performs duplicate detection of received data as compared to data in an RLC buffer, selects the parts of the received PDU that will be discarded (if data is duplicated), discards the selected parts of the PDU, and stores the remaining parts of the PDU. Alternatively, data can be stored regardless of duplicate detection, and the buffer data is overwritten by the stored data. | 04-16-2009 |
20090103445 | METHOD AND APPARATUS FOR ENHANCING VARIOUS PDCP AND LAYER 2 OPERATIONS - Method and apparatus for enhancing interactions between layers in a wireless communications system. A PDCP layer sublayer provides a delivery confirmation service to at least one upper layer above the PDCP layer. | 04-23-2009 |
20090103478 | METHOD AND APPARATUS FOR PCDP DISCARD - A method and apparatus for discarding a packet data convergence protocol (PDCP) service data unit (SDU) are disclosed. A PDCP layer sets a timer and discards a PDCP SDU upon expiration of the timer. The timer may be set upon receiving the PDCP SDU from an upper layer or upon submitting the PDCP SDU to a lower layer for transmission. The timer and a radio link control (RLC) discard timer may be coordinated. Alternatively, the PDCP layer may discard the PDCP SDU based on a notification from an RLC layer or based on a PDCP status report. | 04-23-2009 |
20090103511 | METHOD AND APPARATUS FOR SELECTING A RADIO LINK CONTROL PROTOCOL DATA UNIT SIZE - A method and apparatus are used to create RLC PDUs in advance of the E-TFC selection for the MAC PDU that will include this or these RLC PDU(s). The apparatus may be configured to pre-generate RLC PDUs for transmission in a later TTI. This approach avoids the large peak processing requirement due to the tight delay constraint if any RLC PDU to be included into a MAC PDU had to be created after the determination of the size of this MAC PDU, i.e. after E-TFC selection. The method and apparatus maintain an approximate match between the size of an RLC PDU and the size of the MAC PDU it is included into. Maintaining this approximate match ensures that the RLC PDU error rate due to HARQ residual errors remains low. This approach may be designed as “semi-radio aware” or “radio-aware with delay”. | 04-23-2009 |
20090104890 | OPERATION OF CONTROL PROTOCOL DATA UNITS IN PACKET DATA CONVERGENCE PROTOCOL - A method and apparatus reports packet data control protocol (PDCP) status and PDCP resets in a wireless communication, using control PDUs that may have security protection applied by ciphering of the control PDUs. Reliability of the PDCP status and reset messages may be assured by acknowledgment according to an acknowledged mode or to an unacknowledged mode. | 04-23-2009 |
20090104905 | METHOD AND APPARATUS FOR SUPPORTING HOME NODE B SERVICES - A method and apparatus for supporting home Node B (HNB) services are disclosed. A wireless transmit/receive unit (WTRU) receives HNB access restriction information from an HNB and accesses the HNB if an access to the HNB is allowed based on the HNB access restriction information. The HNB access restriction information may be a closed subscriber group identity (CSG ID), a status bit indicating whether an HNB cell is available or not, an identity of WTRUs that are allowed to access the HNB, information indicating whether an access to a cell is barred or not. The WTRU may trigger measurements for cell reselection even though signal strength on a currently connected cell is above a threshold. The measurement may be triggered manually, periodically, under the instruction from the network, or based on a neighbor cell list including information about HNB cells located nearby. | 04-23-2009 |
20090131055 | METHOD AND APPARATUS OF SIGNALING AND PROCEDURE FOR SEQUENCE HOPPING PATTERN CHANGE DURING HANDOVER - A method and apparatus are provided for updating a sequence hopping (SH) pattern of an uplink channel during handover from a current cell having a current SH pattern. At least one downlink channel of each neighbor cell of the current cell is monitored. Information indicative of the monitored downlink channels of the neighbor cells is transmitted to the current cell. Prior to receiving a handover command from the current cell a target cell from among the neighbor cells is anticipated and a common downlink channel of the anticipated target cell is monitored to determine information representative of a target SH pattern of the target cell. | 05-21-2009 |
20090143093 | METHOD AND APPARATUS FOR ADAPTIVE HANDOVER - A method and apparatus for adaptive handover includes receiving a time to trigger (TTT) for a first mobility state. A scaling factor is received for a second mobility state. The TTT for the second mobility state is determined by scaling the first mobility state with the scaling factor for the second mobility state. | 06-04-2009 |
20090149189 | METHOD AND APPARATUS FOR SUPPORTING CONFIGURATION AND CONTROL OF THE RLC AND PDCP SUB-LAYERS - Methods and apparatus support configuration and/or control of the radio link control (RLC) and packet data convergence protocol (PDCP) sub-layers by defining and utilizing radio resource control (RRC) parameters and procedures, and by including information elements (IEs) in RRC messages in both the uplink and downlink for RLC and PDCP configuration. | 06-11-2009 |
20090156196 | SYSTEM LEVEL INFORMATION FOR SYSTEM INFORMATION, PAGING AND MEASUREMENTS - A method and apparatus for performing non-serving cell measurements and determining cycles for monitoring system information updates. A wireless transmit receive unit (WTRU) is configured to determine it is in measurement mode, compare a serving cell signal to a threshold to obtain serving cell strength and measure a non-serving cell based on the serving cell strength. The WTRU is further configured to determine a channel monitoring cycle. The WTRU is further configured to determine a time to trigger value. | 06-18-2009 |
20090161571 | METHOD AND APPARATUS FOR TRIGGERING RADIO LINK CONTROL PACKET DISCARD AND RADIO LINK CONTROL RE-ESTABLISHMENT - A method and apparatus for triggering radio link control (RLC) re-establishment and/or protocol data unit (PDU) discard are disclosed. An RLC entity maintains a state variable for counting a total number of transmissions and/or retransmissions of an RLC PDU and its PDU segments. If the state variable reaches a threshold, the RLC entity initiates RLC re-establishment and/or discards the RLC PDU and PDU segments. The state variable may be incremented each time a negative acknowledgement is received for at least a portion of the RLC PDU or when a retransmission is considered for the RLC PDU or a portion of the RLC PDU. The RLC entity may increase a state variable proportionate to a retransmitted data size. The RLC entity may maintain separate state variables for the RLC PDU and PDU segments and counts the number of transmissions and/or retransmissions for the RLC PDU and the PDU segments. | 06-25-2009 |
20090168731 | METHOD AND APPARATUS FOR HANDLING INTERACTIONS BETWEEN MEASUREMENT GAP, AUTOMATED REPEAT REQUEST, DISCONTINUOUS RECEPTION AND DISCONTINUOUS TRANSMISSION IN WIRELESS COMMUNICATIONS - A method and apparatus for handling interactions between measurement gap, automated repeat request, discontinuous reception and discontinuous transmission in wireless communications are disclosed. The method and apparatus are for real-time data and non-real time data in both an uplink and a downlink. | 07-02-2009 |
20090175163 | METHOD AND APPARATUS OF PERFORMING PACKET DATA CONVERGENCE PROTOCOL RE-ESTABLISHMENT - A method and apparatus of performing packet data convergence protocol (PDCP) re-establishment includes determining a PDCP re-establishment trigger. An error event is detected based upon the PDCP re-establishment trigger, and PDCP re-establishment procedures are requested. | 07-09-2009 |
20090175175 | RADIO LINK CONTROL RESET USING RADIO RESOURCE CONTROL SIGNALING - A method and apparatus are disclosed wherein a reset procedure for a RLC is implemented by RRC signaling. Triggers for the initiation and execution of the disclosed reset method are also disclosed. | 07-09-2009 |
20090176525 | METHOD AND APPARATUS OF SIGNALING AND PROCEDURE TO SUPPORT UPLINK POWER LEVEL DETERMINATION - Method and apparatus are disclosed for determining a physical uplink power level for transmissions on a physical uplink channel. In one embodiment, a random access channel (RACH) uplink message is transmitted. The RACH uplink message includes a RACH message power level and/or a downlink pathloss figure. A downlink message including a power offset value is received. The physical uplink power level is set for transmissions on the physical uplink channel based on the power offset value. In another embodiment, a RACH uplink message is transmitted and a downlink message including a relative power offset value is received. The physical uplink power level for transmissions on the physical uplink channel is then set based on the relative power off set value. | 07-09-2009 |
20090190480 | METHODS AND APPARATUS FOR DETECTING RADIO LINK CONTROL PROTOCOL ERRORS AND TRIGGERING RADIO LINK CONTROL RE-ESTABLISHMENT - Methods and apparatus for detecting errors or events in a wireless transmit/receive unit (WTRU) and/or a base station comprising a radio resource control (RRC) layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, a medium access control (MAC) layer, and a physical (PHY) layer are disclosed. In addition, the RRC layer may initiate an RLC re-establishment procedure upon detecting an error, or upon receiving an indication of an error or an event detected by any one of the RRC, PDCP, RLC, MAC and PHY layers. | 07-30-2009 |
20090190526 | METHOD AND APPARATUS FOR GENERATING RADIO LINK CONTROL PROTOCOL DATA UNITS - A method and apparatus are used to generate radio link control (RLC) protocol data units (PDUs). A data request for a logical channel is received as part of an enhanced dedicated channel (E-DCH) transport format combination (E-TFC) selection procedure in a medium access control (MAC). Upon determining the data field size, an RLC PDU is generated such that it matches the requested data from the E-TFC selection. The size of the RLC PDU generated can be greater than or equal to the minimum configured RLC PDU size (if data is available) and less than or equal to the maximum RLC PDU size. The data is then transmitted in the RLC PDU in a current transmission time interval (TTI). | 07-30-2009 |
20090196175 | METHOD AND APPARATUS FOR INITIALIZING, PRESERVING, AND RECONFIGURING TOKEN BUCKETS - A method and an apparatus are provided for initializing token buckets to a non-zero value, preserving the token buckets during a medium access control (MAC) reset or handover, resetting the token buckets based on a minimum bucket size or ratio of sizes, and transmitting a token status report. | 08-06-2009 |
20090196248 | TRANSPORT FORMAT COMBINATION SELECTION IN A WIRELESS TRANSMIT/RECEIVE UNIT - A method and apparatus for selecting a TFC in a wireless transmit/receive unit (WTRU) is disclosed. The WTRU estimates a transmit power for each of a plurality of available transport format combinations (TFCs). A TFC is selected for an uplink dedicated channel and a TFC is selected for an enhanced uplink (EU) channel. The TFC for the dedicated channel is selected first and independently of the TFC selection of the EU channel. The TFC for the EU channel is selected within a remaining WTRU transmit power after the TFC selection for the dedicated channel. | 08-06-2009 |
20090225711 | METHOD AND APPARATUS FOR PRIORITIZING LOGICAL CHANNELS - A method and apparatus are disclosed for prioritizing logical channels when a new transmission is performed. Logical channel resources are allocated for available data to a plurality of logical channels. A maximum bit rate (MBR) credit (i.e., token) is decremented in a buffer (i.e., bucket) associated with a particular one of the logical channels by the size of a medium access control (MAC) service data unit (SDU). The MBR credit may have a negative value. If any of the allocated channel resources remain, the logical channels are served n a decreasing priority order until the data is exhausted. A radio link control (RLC) SDU is not segmented if the whole RLC SDU fits into the remaining resources. The MAC SDU excludes a MAC PDU header and MAC padding. | 09-10-2009 |
20090228753 | WIRELESS COMMUNICATION METHOD AND APPARATUS FOR DETECTING AND DECODING ENHANCED DEDICATED CHANNEL HYBRID AUTOMATIC REPEAT REQUEST INDICATOR CHANNEL TRANSMISSIONS - A wireless communication method and apparatus for detecting and decoding enhanced dedicated channel (E-DCH) hybrid automatic repeat request (H-ARQ) indicator channel (E-HICH) transmissions are disclosed. A wireless transmit/receive unit (WTRU) receives E-HICH transmissions and detects an H-ARQ indicator transmitted via the E-HICH by performing a binary hypothesis test. The WTRU then generates an acknowledgement (ACK) message or a non-acknowledgement (NACK) message based on the detected H-ARQ indicator. A reliability test may be further performed to improve performance, whereby the binary hypothesis test may be performed only if the reliability test is passed. | 09-10-2009 |
20090232054 | BEHAVIOR FOR WIRELESS TRANSMIT/RECEIVE UNIT AND MAC CONTROL ELEMENTS FOR LTE DRX OPERATIONS - A wireless transmit/receive unit (WTRU) stops discontinuous reception (DRX) timers that are running and that are related to uplink and/or downlink transmissions during a DRX time period. The WTRU stops the DRX timers in response to receiving a medium access control (MAC) control element signal from an eNode-B. | 09-17-2009 |
20090239539 | TIMING AND CELL SPECIFIC SYSTEM INFORMATION HANDLING FOR HANDOVER IN EVOLVED UTRA - A method and apparatus for reducing handover time includes a wireless transmit receive unit receiving cell specific information in a downlink signal. The downlink signal is one of a set of signals included in a handover process. | 09-24-2009 |
20090253453 | METHOD AND SYSTEM FOR CONTROLLING TRANSMISSION POWER OF A DOWNLINK SIGNALING CHANNEL BASED ON ENHANCED UPLINK TRANSMISSION FAILURE STATISTICS - A method and system for controlling the transmission power of at least one downlink (DL) enhanced uplink (EU) signaling channel such that enhanced dedicated channel (E-DCH) DL signaling is delivered efficiently and reliably. The system includes at least one wireless transmit/receive unit (WTRU), at least one Node-B and a radio network controller (RNC). At least one of the WTRU and the Node-B compute EU transmission failure statistics on the DL EU signaling channel and report the EU transmission failure statistics to the RNC. The RNC then adjusts a transmission power offset of the DL EU signaling channel to be used in determining transmission power level of the DL EU signaling channel at the Node-B based on the EU transmission failure statistics. | 10-08-2009 |
20090257408 | METHOD FOR TRANSMISSION TIME INTERVAL BUNDLING IN THE UPLINK - A method and apparatus for supporting uplink Transmission Time Interval (TTI) bundling in Long Term Evolution (LTE) is provided. Described are related method and apparatus for signaling, activation/deactivation and wireless transmit/receive unit (WTRU) behavior. | 10-15-2009 |
20090258646 | CALL SETUP PROCEDURE IN AN EVOLVED THIRD GENERATION RADIO ACCESS NETWORK - A method and system for call setup in an evolved third generation (3G) radio access network are disclosed. A wireless transmit/receive unit (WTRU) sends its identity to a core network (CN) for call setup when the WTRU is in an RRC_disconnected state. The CN verifies the identity and sends an authentication vector to the WTRU. The WTRU sends a service access request message including an authentication response to the CN via a Node-B. The Node-B performs an admission control. The CN attaches the WTRU if the authentication response is same to an expected response. The Node-B then allocates radio resources to the WTRU. The Node-Bs may be directly connected, or may be connected to a control plane server which performs admission control. When the WTRU is transitioning from an RRC_idle state to an RRC_connected state, the WTRU may or may not need to re-authenticate again. | 10-15-2009 |
20090262713 | SYNCHRONIZATION OF TIMING ADVANCE AND DEVIATION - Apparatus and method for reducing the latency from timing deviation (TD) measurement to time advance (TA) adjustment. A deterministic procedure to coordinate time advance (TA) commands and timing deviation (TD) measurements is used so that failed transmissions or mobile terminals signal propagation changes can be recognized and corrected much more rapidly. Radio resource efficiency is maximized by minimizing signaling overhead through effectively reducing the frequency of time advance commands. This is accomplished by using TA command signals which include a Connect Frame Number (CFN) to specify particular radio frames for time advance (TA) adjustment. The potential for timing deviation (TD) measurements to be incorrectly processed in conjunction with adjusting a physical reception window and calculating mobile termination location is minimized, without excessive command signaling requirements. | 10-22-2009 |
20090264146 | OUTER LOOP POWER CONTROL FOR WIRELESS COMMUNICATIONS - An integrated circuit configured for outer loop power control uses data transmitted in temporary dedicated channel allocations. A target metric, preferably, target SIR, is adjusted with differing step up and step down increments to converge on a relatively low steady state level of step up and step down target metric adjustments. The initial target SIR and the transient step size for target SIR adjustment is determined in a dynamic way in the outer loop power control for each Temp-DCH allocation of non-real time data. | 10-22-2009 |
20090274084 | USER EQUIPMENT HAVING IMPROVED POWER SAVINGS DURING FULL AND PARTIAL DTX MODES OF OPERATION - The present invention achieves power savings by turning off all or some of the baseband processing for codes and timeslots that have not been transmitted due to full or partial DTX. With respect to partial DTX, the transmitted codes and associated timeslots and radio frames within the shortest TTI in the CCTrCH are determined from the received TFCI. Thereafter, the receiver is turned off for the unused codes as indicated by the received TFCI. With respect to full DTX, following TFCI reception, the receiver is turned off for all timeslots within the shortest TTI. | 11-05-2009 |
20090290598 | METHOD AND APPARATUS FOR SUPPORTING RLC RE-SEGMENTATION - A method and apparatus for radio link control (RLC) re-segmentation are disclosed. An original RLC protocol data unit (PDU) is generated from at least one RLC service data unit (SDU). The RLC PDU size is within a flexible maximum RLC PDU size. The original RLC PDU is stored in a retransmission buffer. If transmission of the original RLC PDU fails and the original RLC PDU size is larger than an updated maximum RLC PDU size, the original RLC PDU is segmented to segmented RLC PDUs. If transmission of one of the segmented RLC PDUs fails, the original RLC PDU may be re-segmented to smaller size RLC PDUs, or the segmented RLC PDU may be sub-segmented. Alternatively, the failed RLC PDU may be processes as an RLC SDU to generate encapsulating RLC PDUs for carrying the RLC PDU. Alternatively, an RLC SDU corresponding to the failed RLC PDU may be re-segmented. | 11-26-2009 |
20090316639 | METHOD AND APPARATUS FOR SETTING A HAPPY BIT ON AN E-DCH DEDICATED PHYSICAL CONTROL CHANNEL - A wireless transmit/receive unit (WTRU) determines (1) whether the WTRU is transmitting as much scheduled data as allowed by a current Serving_Grant, (2) whether the WTRU has enough power to transmit at higher data rate, and (3) based on a same power offset as a currently selected E-DCH transport format combination (E-TFC), whether total E-DCH buffer status (TEBS) would require more than predetermined period to be transmitted with the current Serving_Grant×a ratio of active processes to a total number of processes. If criteria (1)-(3) are met, the WTRU sets the happy bit to “unhappy.” If MAC-i/is is configured, the WTRU evaluates criteria (2) by identifying an E-TFC that has a transport block size at least x bits larger than a transport block size of the currently selected E-TFC, and determining whether the identified E-TFC is supported based on a same power offset as the currently selected E-TFC. | 12-24-2009 |
20090323592 | METHOD AND APPARATUS FOR DYNAMICALLY ADJUSTING DATA TRANSMISSION PARAMETERS AND CONTROLLING H-ARQ PROCESSES - In a wireless communication system including a wireless transmit/receive unit (WTRU) which transfers data to a Node-B, data transmission parameters such as modulation and coding scheme (MCS) and transport block set (TBS) size are dynamically adjusted on a transmission time interval (TTI) basis, and hybrid-automatic repeat request (H-ARQ) processes used to control the transfer of data between the WTRU and the Node-B are initiated and released, as required. The WTRU transmits and retransmits data to the Node-B through an enhanced uplink (EU) dedicated channel (E-DCH) in accordance with data feedback information received from the Node-B. The WTRU queues data for transmission, and determines a transmission status of the data. The transmission status is set to one of “new transmission,” “successful transmission,” “retransmission” and “restarted transmission.” For each TTI, the WTRU initiates an EU transmission to the Node-B which identifies the assigned H-ARQ process, TBS size and MCS. | 12-31-2009 |
20090323842 | MAC MULTIPLEXING FOR UPLINK MIMO - A method and apparatus for logical channel prioritization in a wireless transmit receive unit (WTRU), including the WTRU receiving multiple streams of a multiple input/multiple output (MIMO) signal, a physical layer (PHY) of the WTRU providing an indicator for each of the multiple streams to a medium access control (MAC) layer of the WTRU, and the MAC layer performing logical channel multiplexing based on the indicator for each of the multiple streams. | 12-31-2009 |
20100002648 | METHOD AND SYSTEM FOR TRANSFERRING WIRELESS TRANSMIT/RECEIVE UNIT-SPECIFIC INFORMATION - The present invention is related to a method and system for transferring wireless transmit/receive unit (WTRU)-specific information to support enhanced uplink (EU) operation in a wireless communication system. A radio network controller (RNC) obtains WTRU-specific information, and transfers the WTRU-specific information to the Node-Bs. Each Node-B is configured to schedule uplink transmissions from a WTRU and utilizes the WTRU-specific information in operation of EU transmissions. | 01-07-2010 |
20100014480 | SCHEDULING DATA TRANSMISSION BY MEDIUM ACCESS CONTROL (MAC) LAYER IN A MOBILE NETWORK - A method for determining padding compatibility is disclosed. A determination is made of a number of protocol data units (PDUs) for a logical channel mapped to a transport channel such that, for a logical channel allowing segmentation, calculate n wherein n=service data unit size/transport block size (SDU size/TB size), and on a condition that n is an integer, setting the number of PDUs=n. | 01-21-2010 |
20100023833 | WIRELESS COMMUNICATION METHOD AND APPARATUS FOR PROCESSING ENHANCED UPLINK SCHEDULING GRANTS - A method for generating a serving grant at a wireless transmit/receive unit is disclosed. An absolute grant channel signal is decoded to obtain an absolute grant from a serving cell. A relative grant channel signal is decoded to obtain a relative grant from a serving radio link set and a relative grant from a non-serving radio link. A first serving grant candidate is generated based on the absolute grant from the serving cell or the relative grant from the serving radio link set. A second serving grant candidate is generated based on the relative grant from the non-serving radio link. The serving grant is generated based on the first serving grant candidate and the second serving grant candidate. | 01-28-2010 |
20100027511 | WIRELESS COMMUNICATION SYSTEM WITH SELECTIVELY SIZED DATA TRANSPORT BLOCKS - A wireless transmit receive unit and methods for code division multiple access telecommunications are disclosed that process data in a physical layer and a medium access control (MAC) layer. The physical and MAC layers communicate data between each other via transport channels. The transport channels are associated with logical channels. Logical-channel data for the transport channels is provided in data units having a bit size evenly divisible by an integer N. The respective logical channels associated with a transport channel utilize MAC headers that have a selected modulo N bit size such that there is bit alignment of the MAC headers of all the logical channels associated with a particular transport channel. | 02-04-2010 |
20100034113 | METHOD AND APPARATUS FOR REPORTING A BUFFER STATUS - A wireless transmit/receive unit (WTRU) reports a buffer status as part of scheduling information for enhanced dedicated channel (E-DCH) transmissions. For reporting the buffer status, the WTRU calculates a total amount of data available across all logical channels for which reporting is requested by a radio resource control (RRC) entity. The total amount of data includes an amount of data that is available for transmission and retransmission at a radio link control (RLC) entity and an amount of data that is available for transmission in a medium access control for enhanced dedicated channel (MAC-i/is) segmentation entity in case that a MAC-i/is entity is configured. The WTRU sends scheduling information including a total E-DCH buffer status (TEBS) field that is set based on the total amount of data. | 02-11-2010 |
20100040088 | MULTIPLEXING CHANNELS BY A MEDIUM ACCESS CONTROLLER - A code division multiple access (CDMA) communication device comprises a medium access controller (MAC) configured to receive data from a plurality of channels. Each channel is associated with a priority and an identifier. The MAC is further configured to multiplex the data of the plurality of channels for transmission over a CDMA channel based on the priority. | 02-18-2010 |
20100061329 | WIRELESS COMMUNICATION METHOD AND APPARATUS FOR REPORTING TRAFFIC VOLUME MEASUREMENT INFORMATION TO SUPPORT ENHANCED UPLINK DATA TRANSMISSIONS - A method and apparatus for enhanced uplink (EU) dedicated channel data transmission. On a condition that a scheduling message is not available, wherein the scheduling message is for scheduling scheduled data transmission, a wireless transmit/receive unit (WTRU) transmits non-scheduled data up to a threshold amount of data in absence of the scheduling message. On a condition that scheduled data for a logical channel is in an EU data buffer of the WTRU, the WTRU transmits EU scheduling information with EU non-scheduled data transmission in absence of the scheduling message, wherein the scheduling information indicates a total amount of data in the EU data buffer and an amount of EU data buffered for a priority logical channel. The WTRU receives a scheduling message in response to the transmitted EU scheduling information and transmits the scheduled data in response to the scheduling message. | 03-11-2010 |
20100067457 | METHOD AND APPARATUS FOR SIGNALING THE RELEASE OF A PERSISTENT RESOURCE - A method and apparatus for signaling the release of a persistent resource in long term evolution (LTE) are disclosed. An indication of the release of a downlink (DL) persistent resource is received by a wireless transmit receive unit (WTRU) from an evolved Node-B (eNB) via a physical downlink control channel (PDCCH). A positive acknowledgement (ACK) is transmitted by the WTRU which denotes that the indication has been received. The PDCCH or a medium access control (MAC) CE may be used by the eNB to signal the indication. At least one bit may be added to contents of the PDCCH to signal whether the PDCCH is for DL persistent or dynamic resource allocation. The DL persistent resource is then released and an indication that the DL persistent resource has been released is transmitted. | 03-18-2010 |
20100105334 | RADIO LINK CONTROL STATUS REPORTING AND POLLING - A method and apparatus for processing, receiving and transmitting partial status reports. The method and apparatus includes disregarding a status report prohibit timer when transmitting a partial status report, creating a continuation status report and disregarding a poll prohibit timer when receiving a partial status report. | 04-29-2010 |
20100105337 | DYNAMIC CHANNEL QUALITY MEASUREMENT PROCEDURE IMPLEMENTED IN A WIRELESS DIGITAL COMMUNICATION SYSTEM TO PRIORITIZE THE FORWARDING OF DOWNLINK DATA - A wireless digital communication system includes a base station in communication with a plurality of user equipment mobile terminals (UEs). The system prioritizes the forwarding of blocks of downlink data to designated ones of the UEs. The system employs adaptive modulation and coding (AM&C) to achieve improved radio resource utilization and provides optimum data rates for user services. Blocks of downlink (DL) data are received by the base station which requests downlink (DL) channel quality measurements only from those mobile terminals (UEs) with pending downlink transmissions. The UEs respond to the request by measuring and reporting DL channel quality to the base station, which then allocates resources such that the UEs will make best use of radio resources. The base station notifies the UEs of the physical channel allocation indicating the modulation/coding rate and allocated slots followed by transmission of blocks of downlink data which are transmitted to the UEs. | 04-29-2010 |
20100113052 | METHOD AND APPARATUS FOR IMPLEMENTING A DATA LIFESPAN TIMER FOR ENHANCED DEDICATED CHANNEL TRANSMISSIONS - A wireless communication system, which supports enhanced dedicated channel (E-DCH) data transmissions, includes a wireless transmit/receive unit (WTRU), at least one Node-B and a radio network controller (RNC). The WTRU includes a buffer, a data lifespan timer, a data retransmission counter, a hybrid-automatic repeat request (H-ARQ) process and a controller. The timer establishes a lifespan for at least one data block stored in the buffer. If physical resources have not been allocated for a data block associated with a lifespan timer that is close to expiration, the WTRU sends an urgent channel allocation request. If physical resources have been allocated, the data block is prioritized for transmission with respect to other data blocks. The data block is discarded if the lifespan timer expires or if the WTRU receives feedback information indicating that the data block was successfully received by the Node-B. | 05-06-2010 |
20100115368 | METHOD AND APPARATUS FOR ASSIGNING HYBRID-AUTOMATIC REPEAT REQUEST PROCESSES - A method and apparatus for assigning a hybrid-automatic repeat request (H-ARQ) process in a wireless transmit/receive unit (WTRU) to support enhanced uplink (EU) data transmission. Configuration parameters for enhanced uplink (EU) operation are received. The configuration parameters include a priority associated with a medium access control for dedicated channel (MAC-d) flow and a maximum number of H-ARQ transmissions associated with the MAC-d flow. Data is selected for transmission over an enhanced dedicated channel (E-DCH) based on a priority of the MAC-d flow, wherein data with the highest priority is selected. On a condition that the selected data is new data that was not previously transmitted, an available H-ARQ process is assigned for supporting transmission of the selected data, and the selected data is transmitted over the E-DCH using the assigned H-ARQ process. On a condition that the selected data was previously transmitted, the selected data is retransmitted over the E-DCH using the same H-ARQ process that was assigned to previously transmit the selected data. A transmission count is incremented in response to transmitting or retransmitting the selected data. A determination is made of whether the transmission count is at least equal to the maximum number of H-ARQ transmissions. The selected data is discarded in response to a determination that the transmission count is at least equal to the maximum number of H-ARQ transmissions. | 05-06-2010 |
20100157948 | METHOD OF USING A: MOBILE UNIT TO DETERMINE WHETHER TO COMMENCE HANDOVER - A method of using a mobile unit in a multi-cell communication system to determine whether to commence handover of the mobile unit from a serving base station located in a first cell of the communication system to a target base station located in a second cell of the communication system. The mobile unit determines the serving base station received signal code power (RSCP | 06-24-2010 |
20100169724 | METHOD AND SYSTEM FOR RECOGNIZING RADIO LINK FAILURES ASSOCIATED WITH HSUPA AND HSDPA CHANNELS - A method and system for detecting radio link (RL) failures between a wireless transmit/receive unit (WTRU) and a Node-B are disclosed. When signaling radio bearers (SRBs) are supported by high speed uplink packet access (HSUPA), an RL failure is recognized based on detection of improper operation of at least one of an absolute grant channel (AGCH), a relative grant channel (RGCH), a hybrid-automatic repeat request (H-ARQ) information channel (HICH), an enhanced uplink dedicated physical control channel (E-DPCCH) and an enhanced uplink dedicated physical data channel (E-DPDCH). When SRBs are supported by high speed downlink packet access (HSDPA), an RL failure is recognized based on detection of improper operation of at least one of a high speed shared control channel (HS-SCCH), a high speed physical downlink shared channel (HS-PDSCH) and a high speed dedicated physical control channel (HS-DPCCH). | 07-01-2010 |
20100189039 | DERIVATION OF LTE SYSTEM INFORMATION RETRANSMISSION REDUNDANCY VERSIONS - A method and apparatus for transmitting system information in an e Node B includes a processor configured to map system information to a plurality of subframes, determine that at least one of the plurality of subframes includes non-SI information, and assign a redundancy version to all of the plurality of subframes except the at least one subframe including non-SI information such that the redundancy versions are assigned in a particular pattern and the at least one subframe including non-SI information does not effect the particular pattern. | 07-29-2010 |
20100197341 | POWER CONTROL OF POINT TO MULTIPOINT PHYSICAL CHANNELS - A method and apparatus are used to determine an efficient transmit power for point to multipoint (PtM) transmissions by maintaining a database at a base station which specifies which of a plurality of wireless transmit/receive units (WTRUs) are members of each PtM group. The transmit power of each WTRU's downlink dedicated channel is adjusted to the minimum required power necessary and the PtM transmit power for each PtM group is set such that the PtM transmit power of a PtM group is equal to the greatest of a WTRU in the PtM group plus a PtM power offset. | 08-05-2010 |
20100202360 | MAC MULTIPLEXING AND TFC SELECTION FOR ENHANCED UPLINK - A method and a wireless transmit/receive unit (WTRU) for multiplexing data for an enhanced dedicated channel (E-DCH) is disclosed. The WTRU receives at least one serving grant and at least one non-scheduled grant, wherein the at least one serving grant is a grant for scheduled data transmission and the at least one non-scheduled grant is a grant for non-scheduled data transmission. The WTRU determines supported enhanced dedicated channel transport format combinations (E-TFCs). The WTRU determines an enhanced uplink medium access control (MAC-e) protocol data unit (PDU) payload amount. For each logical channel, in order of priority, the WTRU multiplexes data from MAC-d flows associated with each logical channel into a MAC-e PDU, wherein each MAC-d flow is configured as either a scheduled MAC-d flow or a non-scheduled MAC-d flow, wherein on a condition that the MAC-e PDU payload amount is not equal to a supported E-TFC size, reducing the amount of data from a scheduled MAC-d flow to multiplex into the MAC-e PDU, based on a next smaller E-TFC size relative to the MAC-e PDU payload amount. The WTRU selects an E-TFC for transmission of the MAC-e PDU, wherein the selected E-TFC is a smallest E-TFC that supports the MAC-e PDU. The WTRU transmit the MAC-e PDU over the E-DCH processed in accordance with the selected E-TFC. | 08-12-2010 |
20100202398 | SYSTEM FOR EFFICIENT RECOVERY OF NODE-B BUFFERED DATA FOLLOWING MAC LAYER RESET - A method and system for the UE and RNC to reduce transmission latency and potentially prevent loss of PDUs upon a MAC layer reset. UE generation of the status PDU is coupled with the MAC layer reset. The RNC generates a message with a MAC reset indication. Following the MAC layer reset all PDUs stored in the UE MAC layer reordering buffers are flushed to RLC entities and then processed by RLC entities prior to the generation of a PDU status report. The PDU status report provides to the RNC the status of all successfully received PDUs. Upon reception of a PDU status report in the RNC, missing PDUs are realized and retransmitted to the UE. | 08-12-2010 |
20100208689 | METHOD AND APPARATUS FOR DYNAMICALLY ALLOCATING H-ARQ PROCESSES - A method and apparatus for supporting enhanced uplink (EU) transmissions, implemented in a wireless transmit/receive unit (WTRU), is disclosed. The WTRU provides hybrid automatic repeat request (H-ARQ) processes for supporting transmission over an enhanced dedicated channel (E-DCH), wherein at least one H-ARQ process is reserved for a dedicated channel medium access control channel (MAC-d) flow. The WTRU receives H-ARQ information, wherein the information indicates H-ARQ processes for which transmission of data from the MAC-d flow is allowed. For each transmission time interval (TTI), the WTRU allocates an H-ARQ process for use by the MAC-d flow, from the allowed H-ARQ processes. The WTRU transmits data from the MAC-d flow over the E-DCH using the allocated H-ARQ process. | 08-19-2010 |
20100226316 | SYSTEM AND METHOD FOR PRIORITIZATION OF RETRANSMISSION OF PROTOCOL DATA UNITS TO ASSIST RADIO-LINK-CONTROL RETRANSMISSION - A medium access control (MAC) architecture reduces transmission latency for data block retransmissions. A plurality of data blocks are received and temporarily stored in a first memory (e.g., queue, buffer). The plurality of data blocks are then transmitted. A determination is made as to whether each of the transmitted data blocks was received successfully or needs to be retransmitted because the data block was not received successfully. Each of the transmitted data blocks that needs to be retransmitted is marked and temporarily stored in a second memory having a higher priority than the first memory. The marked data blocks are retransmitted before data blocks stored in the first memory location. | 09-09-2010 |
20100232382 | METHOD AND APPARATUS FOR SELECTING AND RESELECTING AN UPLINK PRIMARY CARRIER - A method and apparatus are described for using an uplink (UL) primary carrier for long term evolution-advanced (LTE-A) to support hybrid automatic repeat request (HARQ) feedback, a channel quality indicator (CQI), a scheduling request (SR), power headroom, and at least one buffer status report in the context of asymmetrical deployment and symmetrical deployment. | 09-16-2010 |
20100234037 | METHOD AND APPARATUS FOR CARRIER ASSIGNMENT, CONFIGURATION AND SWITCHING FOR MULTICARRIER WIRELESS COMMUNICATIONS - As part of carrier assignment and configuration for multicarrier wireless communications, a single uplink (UL) primary carrier may provide control information for multiple concurrent downlink (DL) carriers. Optionally, control information for each DL carrier may be transmitted over paired UL carriers. Carrier switching of UL and/or DL carriers, including primary and anchor carriers, may occur during normal operation or during handover, and may occur in only the UL or only the DL direction. A unidirectional handover is performed when only an UL carrier or only a DL carrier is switched as part of a handover. Switching of UL and/or DL carriers may be from one component carrier or a subset of carriers to another component carrier, another subset of carriers, or all carriers in the same direction. | 09-16-2010 |
20100251058 | METHOD AND APPARATUS FOR RETRANSMISSION MANAGEMENT FOR RELIABLE HYBRID ARQ PROCESS - A method for transmitting a packet from a transmitter to a receiver in a wireless communication system begins by building a packet by a transport format combination (TFC) selection process, and the packet is transmitted from the transmitter to the receiver. If the transmitter receives an indication that the packet was not successfully received at the receiver, the packet is retransmitted via a hybrid automatic repeat request (HARQ) procedure. If the HARQ procedure did not successfully transmit the packet, then the packet is retransmitted via a retransmission management (RM) procedure. If the RM procedure did not successfully transmit the packet, then the packet is discarded by the transmitter. | 09-30-2010 |
20100254329 | UPLINK GRANT, DOWNLINK ASSIGNMENT AND SEARCH SPACE METHOD AND APPARATUS IN CARRIER AGGREGATION - Methods of mapping, indicating, encoding and transmitting uplink (UL) grants and downlink (DL) assignments for wireless communications for carrier aggregation are disclosed. Methods to encode and transmit DL assignments and UL grants and map and indicate the DL assignments to DL component carriers and UL grants to UL component carriers are described. Methods include specifying the mapping rules for DL component carriers that transmit DL assignment and DL component carriers that receive physical downlink shared channel (PDSCH), and mapping rules for DL component carriers that transmit UL grants and UL component carriers that transit physical uplink shared channel (PUSCH) when using separate coding/separate transmission schemes. | 10-07-2010 |
20100254351 | METHOD AND APPARATUS FOR PERFORMING A HANDOVER IN AN EVOLVED UNIVERSAL TERRESTRIAL RADIO ACCESS NETWORK - A method and an apparatus for performing a handover in an evolved universal terrestrial radio access network (E-UTRAN) are disclosed. A wireless transmit/receive unit (WTRU) sends a measurement report to a source evolved Node B (eNB), and receives a handover command from the source eNB. The WTRU initiates reception and processing of a primary broadcast channel (P-BCH) at the target cell after receiving the handover command. The WTRU then sends a random access preamble to the target eNB, receives a random access response from the target eNB, and sends a handover complete message to the target eNB. The reception and processing of the P-BCH may be initiated immediately after receiving the handover command or after sending the handover complete message. The WTRU may apply default configuration or source cell configuration in the target cell until a target cell SFN and/or P-BCH information are acquired. | 10-07-2010 |
20100272017 | METHOD AND APPARATUS FOR PROCESSING ADVANCED LONG TERM EVOLUTION SYSTEM INFORMATION - A method and apparatus for processing advanced long term evolution (LTE-A) system information (SI) are described. When a wireless transmit/receive unit (WTRU) is in an idle mode/state, an LTE-A SI broadcast may be received on at least one downlink (DL) anchor carrier, including a physical DL shared channel (PDSCH) having paging message content. At least one SI-change parameter included in the paging message content may be decoded and processed. The SI-change parameter may include a flag used to indicate an SI change on a logical partition, (a primary or a secondary SI broadcast group information change). When the WTRU is in a connected mode/state, an LTE-A SI-CHANGE-radio network temporary identifier (RNTI) transmission may be received during a modification period (MP), and an SI change may be performed during a subsequent MP. At least one SI-change parameter included in the SI-CHANGE-RNTI transmission may be decoded and processed. | 10-28-2010 |
20100296431 | METHOD AND APPARATUS FOR USING A RELAY TO PROVIDE PHYSICAL AND HYBRID AUTOMATIC REPEAT REQUEST FUNCTIONALITIES - Methods and apparatus are described for performing automatic repeat request (ARQ) and hybrid-ARQ (HARQ) assisted ARQ procedures in a relay-based wireless communication system. Triggers for radio link control (RLC)/ARQ retransmissions and RLC/ARQ status reporting are also described. | 11-25-2010 |
20100296467 | METHOD AND APPARATUS FOR RANDOM ACCESS IN MULTICARRIER WIRELESS COMMUNICATIONS - Methods and apparatus for random access in multicarrier wireless communications are disclosed. Methods and apparatus are provided for physical random access channel (PRACH) resource signaling, PRACH resource handling, preamble and PRACH resource selection, random access response (RAR) reception, preamble retransmission, and transmission and reception of subsequent messages. A method for maintaining an allowed multicarrier uplink (UL) random access channel (RACH) configuration set by adding an UL carrier to the allowed RACH configuration set provided that a triggering event occurs and performing a random access (RA) procedure using the allowed RACH configuration set. A method for sending data in multicarrier wireless communications by determining a set of available UL carriers and selecting an UL carrier from the set of available UL carriers. | 11-25-2010 |
20100303039 | METHOD AND APPARATUS FOR PERFORMING COMPONENT CARRIER-SPECIFIC RECONFIGURATION - Techniques for component carrier-specific reconfiguration are disclosed. A wireless transmit/receive unit (WTRU) is capable of transmitting or receiving via multiple component carriers. The WTRU may perform component carrier reconfiguration on a component carrier basis to add, remove or replace a component carrier. Discontinuous reception (DRX) and/or discontinuous transmission (DTX) may be performed on at least one component carrier, wherein DRX and/or DTX patterns on the component carriers may not overlap each other. A random access procedure may be performed at the target cell on one component carrier while other component carriers are inactive. The component carrier-specific reconfiguration or handover of a component carrier or a channel may be implemented in coordinated multiple point transmission (CoMP), wherein a handover of a control channel, not a traffic channel, may be performed. Alternatively, a handover of a traffic channel may be performed. | 12-02-2010 |
20100316096 | METHOD AND APPARATUS FOR SYNCHRONOUS HARQ OPERATION AND INTERFERENCE AVOIDANCE - A method and apparatus for avoiding a collision. A collision may be avoided by allocating a first set of subframes to a backhaul link transmission, and allocating a second set of subframes to an access link transmission. In one example, the second set of subframes may be a non-overlapping set of subframes with respect to the first set of subframes. In a second embodiment, a collision may be avoided by receiving a data transmission from an evolved Node-B (eNB) and transmitting an uplink (UL) grant to a wireless transmit/receive unit (WTRU) and a first acknowledgement (ACK) to the eNB. The transmission may be in response to the received data transmission. The RN may avoid a collision by further transmitting an automatic ACK to the WTRU and transmitting a second UL grant to the WTRU. In a third embodiment, a collision between an access link transmission and a backhaul link transmission may be avoided by detecting a collision and determining an interface priority based on a collision occurrence type. | 12-16-2010 |
20100318886 | METHOD AND APPARATUS FOR PROCESSING A DOWNLINK SHARED CHANNEL - A method and apparatus is disclosed wherein a user equipment (UE) receives control information on a first channel and uses the control information to process a second channel. | 12-16-2010 |
20100322173 | METHOD AND APPARATUS FOR OPERATING IN A DISCONTINUOUS RECEPTION MODE EMPLOYING CARRIER AGGREGATION - A method and apparatus are described for operating a wireless transmit/receive unit (WTRU) in a discontinuous reception (DRX) mode employing carrier aggregation. In one scenario, a physical downlink (DL) shared channel (PDSCH) is received on a DL component carrier (CC) of a particular serving cell during a cell-specific active time, whereby the DL CC is associated with an uplink (UL) CC. Then, a physical DL control channel (PDCCH) is monitored for DL assignments for the particular serving cell, and UL grants for the UL CC, during the cell-specific active time. In another scenario, a first subset of CCs is configured for PDCCH reception, and a second subset of the CCs is not configured for PDCCH reception. DRX is applied to at least one CC in the second subset based on a PDCCH active time of at least one of the CCs in the first subset. | 12-23-2010 |
20100322197 | METHOD AND APPARATUS FOR PERFORMING HANDOVER WITH A RELAY NODE - Techniques for performing a handover in a network with a relay node (RN) are disclosed. The RN is a node deployed between an eNodeB (eNB) and a wireless transmit/receive unit (WTRU). The RN receives data from one of the eNB and the WTRU and forwards it to the other. The RN receives a packet data convergence protocol (PDCP) protocol data unit (PDU) from a serving donor evolved Node-B (DeNB) and transmits it to the WTRU. The RN makes a handover decision based on the measurement report received from the WTRU. After making a handover decision, the RN sends a handover request or a control message to the serving DeNB including a first unsuccessfully transmitted PDCP sequence number (SN). The serving DeNB then discards a PDCP PDU with an SN older than the first unsuccessfully transmitted PDCP SN. | 12-23-2010 |
20110002281 | DISCONTINUOUS RECEPTION FOR CARRIER AGGREGATION - Discontinuous reception (DRX) operations for wireless communications implementing carrier aggregation are disclosed. Physical downlink control channel implementation for carrier aggregation is also disclosed. DRX methods are disclosed including a common DRX protocol that may be applied across all component carriers, an individual/independent DRX protocol that is applied on each component carrier, and hybrid approaches that are applied across affected component carriers. Methods for addressing the effects of loss of synchronization on DRX, impact of scheduling request on DRX, uplink power control during DRX, and DRX operation in measurement gaps are disclosed. | 01-06-2011 |
20110021154 | METHOD AND APPARATUS FOR MONITORING FOR A RADIO LINK FAILURE - Methods and apparatus are described for monitoring for a radio link failure in a long term evolution-advanced (LTE-A) system operated with carrier aggregation. The methods include criteria for determining radio link failure, recovery events, and the actions that a wireless transmit/receive unit (WTRU) may take upon the occurrence of such events. | 01-27-2011 |
20110026479 | METHOD AND SYSTEM FOR TRANSFERRING WIRELESS TRANSMIT/RECEIVE UNIT-SPECIFIC INFORMATION - The present invention is related to a method and system for transferring wireless transmit/receive unit (WTRU)-specific information to support enhanced uplink (EU) operation in a wireless communication system. A radio network controller (RNC) obtains WTRU-specific information, and transfers the WTRU-specific information to the Node-Bs. Each Node-B is configured to schedule uplink transmissions from a WTRU and utilizes the WTRU-specific information in operation of EU transmissions. | 02-03-2011 |
20110032877 | METHOD AND APPARATUS FOR SUPPORTING AMD RE-SEGMENTATION - A method and apparatus for acknowledge mode data (AMD) re-segmentation are disclosed. An AMD protocol data unit (PDU) is generated from at least one RLC SDU. The AMD PDU size is within a flexible maximum AMD PDU size. The original AMD PDU is stored in a retransmission buffer, and transmitted. If transmission of the original AMD PDU fails and the original AMD PDU size is larger than an updated maximum AMD PDU size, the original AMD PDU is segmented to segmented AMD PDUs. If transmission of one of the segmented AMD PDUs fails, the original AMD PDU may be re-segmented to smaller size AMD PDUs. | 02-10-2011 |
20110038271 | APPARATUS AND METHOD FOR UPLINK POWER CONTROL FOR A WIRELESS TRANSMITTER/RECEIVER UNIT UTILIZING MULTIPLE CARRIERS - A method and apparatus for determining uplink power in a wireless transmit receive unit (WTRU). The WTRU operates in a carrier aggregated system. The WTRU is configured to receive a plurality of uplink power parameters indexed to one of a plurality of uplink carriers and receive a transmit power control command indexed to the one of the plurality of uplink carriers. The WTRU is configured to determine a pathloss of the one of the plurality of uplink carriers and determine a transmit power for the one of the plurality of uplink carriers based on the plurality of power parameters, the transmit power control command, and the pathloss. | 02-17-2011 |
20110039568 | METHOD AND APPARATUS FOR CONTENTION-BASED UPLINK DATA TRANSMISSION - A method and apparatus for a wireless transmit receive unit (WTRU) to use a contention-based uplink communications channel, applies a rule-based restriction of access to the contention-based uplink channel that attempts to use at least one contention-free uplink channel allocation for uplink transmissions on a condition that at least one contention-free uplink channel allocation has been granted. | 02-17-2011 |
20110085521 | WIRELESS COMMUNICATION SYSTEM WITH SELECTIVELY SIZED DATA TRANSPORT BLOCKS - A wireless transmit receive unit and methods for code division multiple access telecommunications are disclosed that process data in a physical layer and a medium access control (MAC) layer. The physical and MAC layers communicate data between each other via transport channels. The transport channels are associated with logical channels. Logical-channel data for the transport channels is provided in data units having a bit size evenly divisible by an integer N. The respective logical channels associated with a transport channel utilize MAC headers that have a selected modulo N bit size such that there is bit alignment of the MAC headers of all the logical channels associated with a particular transport channel. | 04-14-2011 |
20110128951 | METHOD AND APPARATUS FOR ENHANCED UPLINK MULTIPLEXING - A method and apparatus for multiplexing are disclosed. Data is received over a plurality of logical channels. Data from the plurality of logical channels is multiplexed into a medium access control (MAC) protocol data unit (PDU) based on a priority associated with each of the plurality of the logical channels. The MAC PDU is transmitted over an uplink transport channel. | 06-02-2011 |
20110134774 | COMPONENT CARRIER ACTIVATION/DEACTIVATION IN MULTI-CARRIER SYSTEMS - Methods and apparatus for addressing wireless transmit/receive unit (WTRU) behavior in response to configuration, configuration parameters and access issues related to the activation/deactivation process when the WTRU may be configured with multiple serving cells or carrier aggregation. | 06-09-2011 |
20110149829 | METHOD AND SYSTEM FOR CONTROLLING THE DISTRIBUTION OF MULTIMEDIA BROADCAST SERVICE - A wireless multi-cell communication system and method of controlling the distribution of multimedia broadcast services (MBMS) are disclosed. The system includes at least one network, e.g., a Universal Terrestrial Radio Access Network (UTRAN), which distributes the MBMS to one or more wireless receive/transmit units (WTRUs). In one embodiment, the MBMS are activated and deactivated based on whether periodic cell updates are provided for a particular cell. In another embodiment, MBMS transmission is terminated when receipt of the MBMS are confirmed. In yet another embodiment, the MBMS are segmented to reduce the resources used by the network and/or the WTRUs during MBMS distribution. | 06-23-2011 |
20110149915 | SYSTEM AND METHOD FOR FAST DYNAMIC LINK ADAPTATION - Upon the UE transmission power requirement exceeding the maximum or allowable transmission power the MAC may be informed for subsequent TFC selection of all TFCs that currently exceed this limit. The UE may then chose the TFC with the next lower transmission power requirement and the sequence will continue until an acceptable TFC is determined. The system also enables the replacement of the TFCs in the TFCS and advanced determination of non-supported TFCs. The TFCs that require transmission power greater then the maximum or allowed UE transmission power shall be determined continuously in every TTI, not just in TTIs where the maximum power has been exceeded. | 06-23-2011 |
20110158197 | METHOD AND APPARATUS FOR EFFICIENT OPERATION OF AN ENHANCED DEDICATED CHANNEL - A method for processing enhanced dedicated channel (E-DCH) data in a wireless transmit/receive unit (WTRU) includes sending two messages. A first message is sent from a physical layer to a medium access control (MAC) layer, and triggers MAC layer processing of E-DCH data. A second message is sent from the MAC layer to the physical layer, and enables the physical layer to compute control parameters for physical layer processing of the E-DCH data before the MAC layer processing of the E-DCH data is completed. | 06-30-2011 |
20110159899 | OUTER LOOP POWER CONTROL FOR WIRELESS COMMUNICATIONS - A base station configured for outer loop power control receives an uplink dedicated channel transmission from a wireless transmit/receive unit. The base station transmits transmit power control commands in response to the received uplink channel transmission and determines if the wireless transmit/receive unit is in a discontinuous transmission mode. The base station adjusts a target SIR based on which transmission mode for the wireless transmit/receive unit is detected. The value for the transmit power control command is derived from the adjusted target SIR. | 06-30-2011 |
20110159908 | DYNAMIC CHANNEL QUALITY MEASUREMENT PROCEDURE IMPLEMENTED IN A WIRELESS DIGITAL COMMUNICATION SYSTEM TO PRIORITIZE THE FORWARDING OF DOWNLINK DATA - A wireless digital communication system includes a base station in communication with a plurality of user equipment mobile terminals (UEs). The system prioritizes the forwarding of blocks of downlink data to designated ones of the UEs. The system employs adaptive modulation and coding (AM&C) to achieve improved radio resource utilization and provides optimum data rates for user services. Blocks of downlink (DL) data are received by the base station which requests downlink (DL) channel quality measurements only from those mobile terminals (UEs) with pending downlink transmissions. The UEs respond to the request by measuring and reporting DL channel quality to the base station, which then allocates resources such that the UEs will make best use of radio resources. The base station notifies the UEs of the physical channel allocation indicating the modulation/coding rate and allocated slots followed by transmission of blocks of downlink data which are transmitted to the UEs. | 06-30-2011 |
20110182270 | METHOD AND SYSTEM FOR SWITCHING A RADIO ACCESS TECHNOLOGY BETWEEN WIRELESS COMMUNICATION SYSTEMS WITH A MULTI-MODE WIRELESS TRANSMIT/RECEIVE UNIT - A method and system for switching a radio access technology (RAT) between wireless communication systems connected to each other while implementing different RATs with a multi-mode WTRU are disclosed. A plurality of wireless communication systems are deployed with overlapping coverage areas wherein each system implements different RATs and are connected to each other such that a service that is provided by one system may be provided through the other system. Each wireless communication system transmits an indication of the existence of an inter-working wireless communication system in a coverage area of each system. The WTRU receives the indication and information regarding the inter-working wireless communication system. The WTRU then initiates a handoff to the inter-working wireless communication system using the received information, whereby the WTRU continues to receive the same services that the WTRU receives from the currently connected wireless communication system through the inter-working wireless communication system. | 07-28-2011 |
20110194428 | MCCH NOTIFICATION SCHEDULING AND CONTENTS - A multimedia broadcast multicast service (MBMS) may be transmitted from a wireless network and may be received by a wireless transmit/receive unit (WTRU). From the perspective of the WTRU, an MBMS control channel (MCCH) notification may be received over a physical downlink control channel (PDCCH). The PDCCH may include an MBMS radio network temporary identifier (M-RNTI) and the PDCCH may be on a multimedia broadcast on a single frequency network (MBSFN) subframe for MBMS. The MCCH notification may be monitored on the MBSFN subframe. The MCCH notification may be received periodically within a scheduling period for the MBSFN subframe. The MCCH notification may also be received in an MCCH message modification period that may occur prior to an MCCH message modification period that may include a new MCCH message. | 08-11-2011 |
20110194470 | EFFICIENT MEMORY ALLOCATION IN A WIRELESS TRANSMIT/RECEIVER UNIT - The present invention allows for effective sharing of the hardware memory of a wireless transmit receive unit (WTRU). The memory will be shared among various buffers of different entities. More particularly, memory will be shared among the MAC reordering buffers and the RLC reception buffers. | 08-11-2011 |
20110235617 | CENTRALIZED RADIO NETWORK CONTROLLER - In a radio access network, novel systems and methods reduce processing delay, and improve integration with IP networks, by separating user data from connection management and control data at a Node B or at a base station. The user data are routed to an IP (Internet Protocol) switch, whereas the connection management and control data are routed to a centralized radio network controller (RNC). Pursuant to a second embodiment of the invention, a centralized RNC provides improved radio resource management (RRM) functionality by handing all connection management and control data for a plurality of Node B's, thereby simplifying the switching of user data throughout the radio access network. Pursuant to a third embodiment of the invention, a smart IP switch is equipped to switch user data without core network (CN) involvement. Downlink user data are switched independently of uplink user data. | 09-29-2011 |
20110261747 | METHOD AND APPARATUS FOR SUPPORTING COMMUNICATION VIA A RELAY NODE - A method and apparatus for supporting communication via a relay node are disclosed. A relay node may receive wireless transmit/receive unit (WTRU) buffer status reports (BSRs) from a plurality of WTRUs that are served by the relay node. The WTRU BSRs indicate uplink buffer status at the WTRUs. The relay node then may forward the WTRU BSRs to a donor evolved Node B (DeNB). The relay node may send a relay node BSR to the DeNB. The relay node BSR indicates a relay node uplink buffer status and/or a relay node downlink buffer status at the relay node. The relay node may send a radio resource control (RRC) message to the DeNB for requesting radio resource reconfiguration. | 10-27-2011 |
20110274028 | METHOD AND WIRELESS TRANSMIT/RECEIVE UNIT (WTRU) FOR RECEIVING MULTIMEDIA BROADCAST/MULTICAST SERVICE - A method and wireless transmit/receive unit (WTRU) for receiving a multimedia broadcast/multicast service (MBMS) data is disclosed. A WTRU receives MBMS data segments from a first MBMS transmitting source along with segmentation information. The WTRU receives MBMS data segments and segmentation information from a second MBMS transmitting source. The MBMS data segments from the first MBMS transmitting source and the MBMS data segments from the second MBMS transmitting source are received in different order. The WTRU reassembles the MBMS data segments based on the segmentation information received from the first MBMS transmitting source and the second MBMS transmitting source. | 11-10-2011 |
20110280136 | METHOD FOR ENHANCED DEDICATED CHANNEL (E-DCH) TRANSMISSION OVERLAP DETECTION FOR COMPRESSED MODE GAP SLOTS - A method and apparatus for detecting an overlap of an E-DCH transmission or retransmission in TTIs that overlap with an assigned uplink compressed mode gap is disclosed. More specifically, detecting an overlap of an E-DCH transmission or retransmission in TTIs that overlap with an uplink compressed mode gap assigned by a Node B when a WTRU is configured with a 2 ms TTI is disclosed. After detecting the overlap of the E-DCH transmission or retransmission and the uplink compressed mode gap, the E-DCH transmission or retransmission is paused. | 11-17-2011 |
20110292854 | RETUNING GAPS AND SCHEDULING GAPS IN DISCONTINUOUS RECEPTION - A method for scheduling a time when a retuning gap occurs by a wireless transmit/receive unit includes detecting a retuning triggering event; determining a period of time when a retuning gap occurs, on a condition that the triggering event is detected; and performing radio frequency front end retuning during the retuning gap. | 12-01-2011 |
20110299520 | SYNCHRONIZATION FOR EXTENDING BATTERY LIFE - The present invention discloses a method and system for efficiently supporting data calls to WTRUs in systems that also support telephony. Various types of data is transmitted on a known schedule which is tightly synchronized to a predetermined time frame. The WTRUs synchronize their wake-up periods to search for data at times when data may or will actually be transmitted to them. | 12-08-2011 |
20110317546 | METHOD AND APPARATUS FOR FORWARDING NON-CONSECUTIVE DATA BLOCKS IN ENHANCED UPLINK TRANSMISSIONS - A method and apparatus for forwarding non-consecutive data blocks in enhanced uplink (EU) transmissions. A wireless transmit/receive unit (WTRU) and one or more Node-Bs include one or more automatic repeat request (ARQ)/hybrid-ARQ (H-ARQ) processes for supporting an enhanced dedicated channel (E-DCH). Data blocks transmitted by the WTRU are re-ordered in a re-ordering entity located in the Node-B(s) or a radio network controller (RNC). Once a missing data block is identified, a data forwarding timer in the Node-B(s) or RNC is initiated and subsequent WTRU transmissions are monitored to determine whether the missing data block has been discarded by the WTRU. Upon recognition of the discard of the missing data block, the non-consecutive data blocks are forwarded to higher layers. | 12-29-2011 |
20120002642 | ENHANCED UPLINK OPERATION IN SOFT HANDOVER - A method and system for an enhanced uplink (EU) operation in a wireless communication system during soft handover. The system comprises a wireless transmit/receive unit (WTRU), at least two Node-Bs, and a radio network controller (RNC). One Node-B may be designated as a primary Node-B, and the primary Node-B may control EU operation during soft handover including uplink scheduling and hybrid automatic repeat request (H-ARQ). Soft buffer corruption is avoided during soft handover by controlling H-ARQ by the primary Node-B. Alternatively, an RNC may control EU operation during soft handover including H-ARQ. In this case, an RNC generates final acknowledge/non-acknowledge (ACK/NACK) decision based on the error check results of the Node-Bs. | 01-05-2012 |
20120026929 | METHOD AND APPARATUS FOR MULTIMEDIA BROADCAST MULTICAST SERVICES (MBMS) SERVICE FEEDBACK - A method and apparatus are described for providing multimedia broadcast multicast services (MBMS) service feedback. A wireless transmit/receive unit (WTRU) may receive an MBMS service query message over an MBMS control channel and transmit an MBMS service response. The MBMS service query message and MBMS service response message may be radio resource controller messages. The MBMS service query message may include MBMS service identifiers which identify MBMS services that the WTRU is receiving or intending to receive. The WTRU may generate a report with MBMS service identifier index values, where each MBMS service identifier index value indicates a position of a service identifier corresponding to an MBMS service in the original query list that the WTRU is currently receiving or intending to receive. The MBMS service status query message may be received alone or along with a MBSFNAreaConfiguration message. The WTRU may respond within a predetermined or configured time limit. | 02-02-2012 |
20120039209 | DOWNLINK POWER CONTROL FOR MULTIPLE DOWNLINK TIME SLOTS IN TDD COMMUNICATION SYSTEMS - A method for downlink power control for use in a spread spectrum time division communication system having time slots for communication, implemented in a user equipment, includes receiving data in a command per coded composite transport channel (CCTrCH) transmitted over a plurality of time slots. An interference power for each time slot of the plurality of time slots is measured and a single power command for the entire CCTrCH is transmitted in response to a signal to interference ratio of the received CCTrCH and the measured interference power measurement for each time slot. A subsequent data is received in the CCTrCH communication having a transmission power level for each downlink communication time slot set individually in response to the interference power measurement for that time slot and the single power command for the entire CCTrCH. | 02-16-2012 |
20120039224 | SYSTEM AND METHOD FOR PRIORITIZATION OF RETRANSMISSION OF PROTOCOL DATA UNITS TO ASSIST RADIO-LINK-CONTROL RETRANSMISSION - A medium access control (MAC) architecture reduces transmission latency for data block retransmissions. A plurality of data blocks are received and temporarily stored in a first memory (e.g., queue, buffer). The plurality of data blocks are then transmitted. A determination is made as to whether each of the transmitted data blocks was received successfully or needs to be retransmitted because the data block was not received successfully. Each of the transmitted data blocks that needs to be retransmitted is marked and temporarily stored in a second memory having a higher priority than the first memory. The marked data blocks are retransmitted before data blocks stored in the first memory location. | 02-16-2012 |
20120044873 | METHOD AND APPARATUS FOR PROCESSING A DOWNLINK SHARED CHANNEL - A method and apparatus is disclosed wherein a user equipment (UE) receives control information on a first channel and uses the control information to process a second channel. | 02-23-2012 |
20120057530 | METHOD AND APPARATUS FOR TRANSMITTING AND RECEIVING TRANSMISSIONS IN VARIOUS STATES VIA A HIGH SPEED DOWNLINK SHARED CHANNEL - A method and apparatus for transmitting and receiving via a high speed downlink shared channel (HS-DSCH) is disclosed. A wireless transmit/receive unit (WTRU) receives the HS-DSCH while operating in a cell forward access channel (Cell-FACH) state, a cell paging channel (Cell-PCH) state, or URA paging channel (URA-PCH) state. | 03-08-2012 |
20120076095 | SUPPORTING ENHANCED UPLINK TRANSMISSION DURING SOFT HANDOVER - An enhanced uplink user equipment is in soft handover. A radio network controller selects a primary Node-B out of a plurality of Node-Bs supporting the soft handover. The radio network controller receiving successfully received enhanced uplink data packets from the plurality of Node-Bs. The radio network controller reordered the successfully received enhanced uplink data packets for in-sequence deliver. The primary Node-B sends specified scheduling information to the user equipment that the other Node-Bs does not transmit. At least the primary Node-B transmits acknowledgements and negative acknowledgements to the user equipment. | 03-29-2012 |
20120082037 | METHOD AND APPARATUS FOR PAGING GROUP HANDLING - A method and apparatus for paging group handling includes grouping wireless transmit/receive units (WTRUs) into a paging group. The paging group is assigned a paging occasion, and an existence of a page is indicated to the WTRUs. | 04-05-2012 |
20120093110 | RADIO LINK CONTROL RESET USING RADIO RESOURCE CONTROL SIGNALING - A method and apparatus are described for implementing a reset procedure for radio link control (RLC) using radio resource control (RRC) signaling. A wireless transmit/receive unit (WTRU) receives a request for RLC reset. A processor at the WTRU comprises a RRC entity and a RLC entity. The RRC entity receives the request for a RLC reset in a radio resource control message. The RLC entity reassembles RLC service data units (SDUs) from any protocol data units (PDUs) that are received out of sequence at a receiving side of the RLC entity. The reassembled SDUs are delivered in sequence to a packet data convergence protocol entity (PDCP). At the receiving side of the RLC entity, any remaining PDUs that are not able to be reassembled are discarded. At a transmitting side of the RLC entity, all SDUs and PDUs stored in transmit buffers are discarded. | 04-19-2012 |
20120113843 | METHODS, APPARATUS AND SYSTEMS FOR APPLYING ALMOST BLANK SUBFRAME (ABS) PATTERNS - Methods, apparatus, and systems using almost blank subframes patterns are disclosed. Different ABS patterns and triggers are described for enabling a wireless transmit/receive unit (WTRU) to obtain ABS patterns. One representative method of scheduling operations by a wireless transmit/receive unit (WTRU) may include the WTRU receiving information indicating the ABS pattern with a plurality of ABS intervals of an interfering cell; determining timing associated with the ABS intervals of the interfering cell in accordance with the indicated ABS pattern; and scheduling a measurement opportunity, a transmission opportunity or a reception opportunity during the ABS intervals of the interfering cell. | 05-10-2012 |
20120120920 | METHOD AND WIRELESS TRANSMIT/RECEIVE UNIT FOR SUPPORTING AN ENHANCED UPLINK DEDICATED CHANNEL INTER-NODE-B SERVING CELL CHANGE - A wireless communication method and system for supporting an enhanced uplink dedicated channel (EU-DCH) inter-Node-B serving cell change. The system includes at least one wireless transmit/receive unit (WTRU) for transmitting data blocks, a target Node-B, a source Node-B and a serving radio network controller (S-RNC). The S-RNC includes a re-ordering buffer which stores data blocks correctly received from the WTRU. The S-RNC informs the target Node-B of a need for an EU-DCH inter-Node-B serving cell change from the source Node-B to the target Node-B. A medium access control (MAC) entity that handles EU-DCH functionalities is set up in the target Node-B. Hybrid automatic repeat request (HARQ) processes and transmission sequence numbers (TSNs) are not reset at the WTRU. Using a new data indicator, the WTRU transmits a data block to the target Node-B that was previously transmitted to the source Node-B, but was not correctly received by the source Node-B. | 05-17-2012 |
20120127968 | UPLINK POWER CONTROL USING RECEIVED REFERENCE SIGNAL - A user equipment (UE) includes circuitry configured to receive control information on a downlink control channel from a base station. The control information indicates an allocation of an uplink channel and the control information is sent in response to the base station determining that the UE is to send an adaptive modulation and coding report. The circuitry is further configured in response to the control information to transmit a communication in the allocated uplink channel in a time interval including at least one time slot. The communication includes an adaptive modulation and coding report, and a transmission power level of the communication is derived from the control information and a pathloss measured by the UE. | 05-24-2012 |
20120147771 | METHOD AND APPARATUS FOR REPORTING A BUFFER STATUS - A wireless transmit/receive unit (WTRU) reports a buffer status as part of scheduling information for enhanced dedicated channel (E-DCH) transmissions. For reporting the buffer status, the WTRU calculates a total amount of data available across all logical channels for which reporting is requested by a radio resource control (RRC) entity. The total amount of data includes an amount of data that is available for transmission and retransmission at a radio link control (RLC) entity and an amount of data that is available for transmission in a medium access control for enhanced dedicated channel (MAC-i/is) segmentation entity in case that a MAC-i/is entity is configured. The WTRU sends scheduling information including a total E-DCH buffer status (TEBS) field that is set based on the total amount of data. | 06-14-2012 |
20120147835 | WIRELESS COMMUNICATION METHOD AND APPARATUS FOR SUPPORTING RECONFIGURATION OF RADIO LINK CONTROL PARAMETERS - A variety of wireless communication methods and apparatus for supporting reconfiguration of radio link control (RLC) parameters are disclosed. A radio resource control (RRC) reconfiguration message is generated that indicates that an RLC unit in a wireless transmit/receive unit (WTRU) or a universal terrestrial radio access network (UTRAN) should be reconfigured from supporting flexible size RLC protocol data units (PDUs) to supporting fixed size RLC PDUs. If an information element (IE) “one sided RLC re-establishment” is present in the RRC reconfiguration message, only a receiving side subassembly in the RLC unit is re-established. Otherwise, both the receiving side subassembly and a transmitting side subassembly in the RLC unit are re-established. Flexible size RLC PDUs may be discarded and a message indicating the discarded flexible size RLC PDUs may be transmitted. The flexible size RLC PDUs may be modified such that they correspond to a set of pre-defined sizes. | 06-14-2012 |
20120170550 | HS-DSCH INTER-NODE B CELL CHANGE - A radio resource control (RRC) message is received by a radio resource control (RRC) device of a user equipment (UE). The RRC message notifies the FDD UE of a high speed dedicated shared channel (HS-DSCH) inter-Node B cell change. A reordering buffers of a medium access controller-high speed (MAC-hs) is flushed in response to the receiving the RRC message. A status report is generated for each acknowledge mode (AM) RLC instance mapped to the HS-DSCH by a radio link control (RLC) device after the MAC-hs flushes the reordering buffer. Each status report indicates missing AM RLC packet data units (PDUs). The RRC device sends a “TRANSPORT CHANNEL RECONFIGURATION COMPLETE” message on a DCCH after the RLC device generates each status report. | 07-05-2012 |
20120173946 | METHOD AND SYSTEM FOR SUPPORTING MULTIPLE HYBRID AUTOMATIC REPEAT REQUEST PROCESSES PER TRANSMISSION TIME INTERVAL - A method and apparatus may be used for supporting multiple hybrid automatic repeat request (H-ARQ) processes per transmission time interval (TTI). A transmitter and a receiver may include a plurality of H-ARQ processes. Each H-ARQ process may transmit and receive one TB per TTI. The transmitter may generate a plurality of TBs and assign each TB to a H-ARQ process. The transmitter may send control information for each TB, which may include H-ARQ information associated TBs with the TBs. The transmitter may send the TBs using the associated H-ARQ processes simultaneously per TTI. After receiving the TBs, the receiver may send feedback for each of the H-ARQ processes and associated TBs indicating successful or unsuccessful receipt of each of the TBs to the transmitter. The feedback for multiple TBs may be combined for the simultaneously transmitted H-ARQ processes, (i.e., TBs). | 07-05-2012 |
20120176971 | METHOD AND APPARATUS FOR SUPPORTING SEGMENTATION OF PACKETS FOR UPLINK TRANSMISSION - A method and apparatus for segmenting medium access control (MAC) service data units (SDUs) creates enhanced MAC-es PDUs in the enhanced MAC-e/es sub-layer by concatenating MAC SDUs received from the logical channels. An enhanced transport format combination (E-TFC) selection entity controls the concatenation of MAC SDUs into enhanced MAC-es PDUs. When a MAC SDU is received that is too large to fit into a selected enhanced MAC-es PDU payload, a segmentation entity segments the MAC SDU such that the MAC SDU segment fills the remaining payload available in the selected enhanced MAC-es PDU. The enhanced MAC-es PDU is then assigned a transmission sequence number (TSN) and multiplexed with other enhanced MAC-es PDUs to create a single enhanced MAC-e PDU that is transmitted on the E-DCH in the next transmission time interval (TTI). A HARQ entity stores and, if necessary retransmits the enhanced MAC-e PDU when a transmission error occurs. | 07-12-2012 |
20120176993 | RESOURCE ALLOCATION, SCHEDULING, AND SIGNALING FOR GROUPING REAL TIME SERVICES - The present invention is a method and apparatus for resource allocation signaling for grouping user real time services. Uplink signaling for voice activity reporting of each user's transition between an active state and an inactive voice state is sent from a wireless transmit/receive unit to a Node B. Radio resource allocation to users of a wireless communication system varies based on user measurement reporting, a pre-determined pattern such as frequency hopping, or a pseudorandom function. Grouping methods are adjusted to better utilize the voice activity factor, so that statistical multiplexing can be used to more efficiently utilize physical resources. | 07-12-2012 |
20120178494 | METHODS, APPARATUS AND SYSTEMS FOR HANDLING ADDITIONAL POWER BACKOFF - Methods, apparatus and systems are described for a wireless transmit/receive unit (WTRU) to manage its transmission power. A power headroom report (PHR) may be triggered based on changes to backoff or the impacts of backoff. Additional backoff may be used to calculate a maximum output power of the WTRU and may be indicated by a domination indicator to network resources. The WTRU may be configured to eliminate triggers caused by virtual PHRs. Furthermore, the WTRU may be configured to respond to rapid changes to backoff. | 07-12-2012 |
20120185743 | METHOD AND APPARATUS FOR DATA SECURITY AND AUTOMATIC REPEAT REQUEST IMPLEMENTATION IN A WIRELESS COMMUNICATION SYSTEM - A method and apparatus for implementing data security and automatic repeat request (ARQ) in a wireless communication system are disclosed. Cipher entities are included in a wireless transmit/receive unit (WTRU) and an access gateway (aGW), and outer ARQ, (or radio link control (RLC)), entities are included in the WTRU and an evolved Node-B (eNode-B). Each cipher entity is located on top of an outer ARQ entity. The cipher entities cipher and decipher a data block by using a generic sequence number (SN) assigned to the data block. The outer ARQ entities may segment the ciphered data block to multiple packet data units (PDUs), may concatenate multiple ciphered data blocks to a PDU, or may generate one PDU from one data block. The outer ARQ entities may segment or re-segment the PDU when a transmission failure occurs. | 07-19-2012 |
20120195194 | COGNITIVE FLOW CONTROL BASED ON CHANNEL QUALITY CONDITIONS - A system and method which improve the performance of a wireless transmission system by intelligent use of the control of the flow of data between a radio network controller (RNC) and a Node B. The system monitors certain criteria and, if necessary, adaptively increases or decreases the data flow between the RNC and the Node B. This improves the performance of the transmission system by allowing retransmitted data, signaling procedures and other data to be successfully received at a faster rate, by minimizing the amount of data buffered in the Node B. Flow control is exerted to reduce buffering in the Node B upon degradation of channel qualities, and prior to a High Speed Downlink Shared Channel (HS-DSCH) handover. | 08-02-2012 |
20120195221 | METHOD AND APPARATUS OF RESOURCE MANAGEMENT FOR MULTIMEDIA BROADCAST MULTICAST SERVICES - A method and apparatus of resource management for multimedia broadcast multicast services (MBMS) are disclosed. A wireless transmit/receive unit (WTRU) sends a measurement report and an MBMS reception performance report to a network. Single frequency network (SFN) area change may be made based on cell reselection information, WTRU macro-diversity MBMS reception performance, neighbor cell signal strength reported by a WTRU, interference level measured by the WTRU, a number of WTRUs in a cell, service priority, WTRU class, WTRU mobility trend, WTRU location to a cell center, WTRU MBMS reception interference level, etc. The MBMS service on/off decision and/or point-to-point (PTP) to point-to-multipoint (PTM) switching may be made based on a channel condition of a WTRU. The channel condition may be determined based on whether the WTRU is in in-sync or out-of-sync in MBMS reception, consecutive negative acknowledgements (NAKs) within a certain time window, measured pathloss from a reference channel, etc. | 08-02-2012 |
20120207040 | METHODS AND SYSTEMS FOR IN-DEVICE INTERFERENCE MITIGATION - Methods and apparatus for mitigating in-device interference are described. The methods may include an in-device interference event (e.g. an interference situation), and the processing of events may depend on the priority of the technologies. A handover to another frequency or radio access technology (RAT) may occur in case a co-existing technology may be activated. The network may signal to the device a list of frequencies or RATs that it may be allowed to measure and handoff to. A network may provide a scaling value that the device may use to speed up reaction to the interference. The device may apply a scaling factor to an “out of synch’ counter and/or the radio link failure (RLF) timer used for the RLF procedure. The device may apply different scaling factors for the measurements and time to trigger events. The device may trigger a report to the network requesting gaps for an alternate RAT. | 08-16-2012 |
20120207051 | CHANNEL QUALITY MEASUREMENTS FOR DOWNLINK RESOURCE ALLOCATION - A method for reporting channel quality from a user equipment (UE) to a base station is described. The UE derives a channel quality for each of a plurality of downlink resources. The UE transmits channel quality reports in a pattern of time intervals by rotating through the plurality of downlink resources in different time intervals of the pattern, wherein a channel quality report is not transmitted by the UE in each time interval of a frame. | 08-16-2012 |
20120213206 | TDMA/CDMA USER EQUIPMENT - A wireless hybrid time division multiple access/code division multiple access (TDMA/CDMA) user equipment (UE) includes a signaling receiver and a data detection device in communication with the signaling receiver. The signaling receiver is configured to receive and recover signaled information of code and timeslot assignments of the UE to support an RF communication. The data detection device is configured to recover from the signaling information an identifier of a plurality of assigned timeslots and an indication of a first and last code of a set of consecutive codes. The last code is identified by an identifier associated with the last code. | 08-23-2012 |
20120230197 | SYSTEM FOR PERMITTING CONTROL OF THE PURGING OF A NODE B BY THE SERVING RADIO NETWORK CONTROLLER - A system and method which permit the RNC to control purging of data buffered in the Node B. The RNC monitors for a triggering event, which initiates the purging process. The RNC then informs the Node B of the need to purge data by transmitting a purge command, which prompts the Node B to delete at least a portion of buffered data. The purge command can include instructions for the Node B to purge all data for a particular UE, data in one or several user priority transmission queues or in one or more logical channels in the Node B, depending upon the particular data purge triggering event realized in the RNC. | 09-13-2012 |
20120230280 | METHOD AND APPARATUS FOR TRANSMITTING, RECEIVING AND/OR PROCESSING CONTROL INFORMATION AND/OR DATA - A method and system for providing control information for supporting high speed downlink and high speed uplink packet access are disclosed. A Node-B assigns at least one downlink control channel and at least one uplink control channel to a wireless transmit/receive unit (WTRU). The downlink control channel and the uplink control channel are provided to carry control information for both the downlink and the uplink. Conventional control channels for downlink and uplink are combined into a reduced set of control channels for uplink and downlink. The Node-B and the WTRU communicate control information via the downlink control channel and the uplink control channel. The WTRU receives downlink data and transmits uplink data, and the Node-B receives uplink data and transmits downlink data based on the control information transmitted via the downlink control channel and the uplink control channel. | 09-13-2012 |
20120257591 | METHOD AND APPARATUS FOR CONTROL OF ENHANCED DEDICATED CHANNEL TRANSMISSIONS - A method and apparatus for controlling enhanced dedicated channel (E-DCH) transmissions are disclosed. An enhanced uplink medium access control (MAC-e/es) entity processes a received scheduling grant to calculate a serving grant. The MAC-e/es entity determines whether both a hybrid automatic repeat request (H-ARQ) process for scheduled data and scheduled data are available. If an H-ARQ process for scheduled data and scheduled data are available, the MAC-e/es entity determines whether a serving grant exists. The MAC-e/es entity calculates a remaining power based on maximum allowed power and restricts an E-DCH transport format combination (E-TFC) based on the remaining power. The MAC-e/es entity selects an E-TFC using the serving grant and generates a MAC-e protocol data unit. The MAC-e/es entity may process the received scheduled grant is at each transmission time interval or may store the received scheduled grant in a grant list until there is E-DCH data to transmit. | 10-11-2012 |
20120263088 | IMPLICIT DRX CYCLE LENGTH ADJUSTMENT CONTROL IN LTE_ACTIVE MODE - A method for controlling discontinuous reception in a wireless transmit/receive unit includes defining a plurality of DRX levels, wherein each DRX level includes a respective DRX cycle length and transitioning between DRX levels based on a set of criteria. The transitioning may be triggered by implicit rules. | 10-18-2012 |
20120263151 | DYNAMIC CHANNEL QUALITY MEASUREMENT PROCEDURE IMPLEMENTED IN A WIRELESS DIGITAL COMMUNICATION SYSTEM TO PRIORITIZE THE FORWARDING OF DOWNLINK DATA - A wireless digital communication system includes a base station in communication with a plurality of user equipment mobile terminals (UEs). The system prioritizes the forwarding of blocks of downlink data to designated ones of the UEs. The system employs adaptive modulation and coding (AM&C) to achieve improved radio resource utilization and provides optimum data rates for user services. Blocks of downlink (DL) data are received by the base station which requests downlink (DL) channel quality measurements only from those mobile terminals (UEs) with pending downlink transmissions. The UEs respond to the request by measuring and reporting DL channel quality to the base station, which then allocates resources such that the UEs will make best use of radio resources. The base station notifies the UEs of the physical channel allocation indicating the modulation/coding rate and allocated slots followed by transmission of blocks of downlink data which are transmitted to the UEs. | 10-18-2012 |
20120264479 | METHOD AND SYSTEM FOR CONTROLLING TRANSMISSION POWER OF A DOWNLINK SIGNALING CHANNEL BASED ON ENHANCED UPLINK TRANSMISSION FAILURE STATISTICS - A method and system for controlling the transmission power of at least one downlink (DL) enhanced uplink (EU) signaling channel such that enhanced dedicated channel (E-DCH) DL signaling is delivered efficiently and reliably. The system includes at least one wireless transmit/receive unit (WTRU), at least one Node-B and a radio network controller (RNC). At least one of the WTRU and the Node-B compute EU transmission failure statistics on the DL EU signaling channel and report the EU transmission failure statistics to the RNC. The RNC then adjusts a transmission power offset of the DL EU signaling channel to be used in determining transmission power level of the DL EU signaling channel at the Node-B based on the EU transmission failure statistics. | 10-18-2012 |
20120281571 | METHOD AND APPARATUS FOR SETTING A HAPPY BIT ON AN E-DCH DEDICATED PHYSICAL CONTROL CHANNEL - A wireless transmit/receive unit (WTRU) determines (1) whether the WTRU is transmitting as much scheduled data as allowed by a current Serving_Grant, (2) whether the WTRU has enough power to transmit at higher data rate, and (3) based on a same power offset as a currently selected E-DCH transport format combination (E-TFC), whether total E-DCH buffer status (TEBS) would require more than predetermined period to be transmitted with the current Serving_Grant.times.a ratio of active processes to a total number of processes. If criteria (1)-(3) are met, the WTRU sets the happy bit to “unhappy.” If MAC-i/is is configured, the WTRU evaluates criteria (2) by identifying an E-TFC that has a transport block size at least x bits larger than a transport block size of the currently selected E-TFC, and determining whether the identified E-TFC is supported based on a same power offset as the currently selected E-TFC. | 11-08-2012 |
20120302240 | APPARATUS AND METHODS FOR GROUP WIRELESS TRANSMIT/RECEIVE UNIT (WTRU) HANDOVER - Apparatus and methods of handing over a wireless transmit/receive unit (WTRU) that belongs to a group of WTRUs from an originating base station to a target base station are described. A method includes the WTRU obtaining information regarding a group to which the WTRU has been assigned and the WTRU receiving at least one of handover reconfiguration information that is common to the group and handover reconfiguration information that is specific to the WTRU. On a condition that the WTRU receives the handover reconfiguration information that is specific to the WTRU, the WTRU initiates a synchronization procedure with the target base station based at least on the received handover reconfiguration information. | 11-29-2012 |
20120307622 | MAC ARCHITECTURE IN WIRELESS COMMUNICATION SYSTEMS SUPPORTING H-ARQ - A medium access control-high speed (MAC-hs) comprises a hybrid automatic repeat request (H-ARQ) device configured to receive data blocks over a wideband-code division multiple access (W-CDMA) high speed-downlink shared channel (HS-DSCH). The H-ARQ device generates an acknowledgement (ACK) or negative acknowledgement (NACK) for each said data block received. Each received data block having a transmission sequence number. The H-ARQ device receives a new transmission instead of a pending retransmission at any time. At least one reordering device has an input configured to receive an output of the H-ARQ device and the at least one reordering device configured to reorder the received data blocks based on each received data block's transmission sequence number (TSN). Received data blocks are immediately forwarded for processing for higher layers when the received data blocks are received in sequence. | 12-06-2012 |
20120307723 | Method and Apparatus For Generating Radio Link Control Protocol Data Units - A method and apparatus are used to generate radio link control (RLC) protocol data units (PDUs). A data request for a logical channel is received as part of an enhanced dedicated channel (E-DCH) transport format combination (E-TFC) selection procedure in a medium access control (MAC). Upon determining the data field size, an RLC PDU is generated such that it matches the requested data from the E-TFC selection. The size of the RLC PDU generated can be greater than or equal to the minimum configured RLC PDU size (if data is available) and less than or equal to the maximum RLC PDU size. The data is then transmitted in the RLC PDU in a current transmission time interval (TTI). | 12-06-2012 |
20120307724 | RADIO LINK FAILURE DETECTION PROCEDURES IN LONG TERM EVOLUTION UPLINK AND DOWNLINK AND APPARATUS THEREFOR - A method and apparatus for detecting a radio link (RL) failure for uplink (UL) and downlink (DL) in a long term evolution (LTE) wireless communication system including at least one wireless transmit/receive unit (WTRU) and at least one evolved Node-B (eNodeB) are disclosed. A determination is made as to whether an RL has an in-synchronization status or an out-of-synchronization status. An RL failure is declared if an out-of-synchronization status is detected. | 12-06-2012 |
20120314569 | Relay Node Interface Related Layer 2 Measurements and Relay Node Handling in Network Load Balancing - A method for performing radio usage measurements to support radio link operations and/or load balancing may be performed at an evolved Node B (eNB). The method may include determining a first radio usage parameter. The first radio usage parameter may be a measurement of radio usage between an eNB and at least one wireless transmit receive unit (WTRU). The method may further include determining a second radio usage parameter. The second radio usage parameter may be a measurement of radio usage between the eNB and at least one relay node (RN) served by the eNB. The method may further include utilizing at least one of the first radio usage parameter or the second radio usage parameter to evaluate at least one of evolved universal terrestrial radio access (E-UTRA) radio link operations, radio resource management (RRM), network operations and maintenance (OAM), and self-organizing networks (SON) functions or functionalities. | 12-13-2012 |
20120314628 | METHOD AND SYSTEM FOR TRANSFERRING WIRELESS TRANSMIT/RECEIVE UNIT-SPECIFIC INFORMATION - The present invention is related to a method and system for transferring wireless transmit/receive unit (WTRU)-specific information to support enhanced uplink (EU) operation in a wireless communication system. A radio network controller (RNC) obtains WTRU-specific information, and transfers the WTRU-specific information to the Node-Bs. Each Node-B is configured to schedule uplink transmissions from a WTRU and utilizes the WTRU-specific information in operation of EU transmissions. | 12-13-2012 |
20120320866 | MEDIUM ACCESS CONTROL LAYER ARCHITECTURE FOR SUPPORTING ENHANCED UPLINK - A method and apparatus for processing enhanced uplink data is disclosed. A request for uplink resources is transmitted, wherein the request for uplink resources is a request to transmit data over an enhanced dedicated channel (E-DCH). An uplink scheduling grant is received in response to the request for uplink resources. Data from medium access control for dedicated channel (MAC-d) flows is multiplexed into a medium access control for enhanced uplink (MAC-e) protocol data unit (PDU). A transport format combination (TFC) is selected for transmission of the MAC-e PDU. The MAC-e PDU is transmitted over the E-DCH using an identified hybrid automatic repeat request (H-ARQ) process. Feedback information is received in response to the transmitted MAC-e PDU. The MAC-e PDU is retransmitted using the identified H-ARQ process on a condition that the feedback information indicates a negative acknowledgment (NACK) of the MAC-e PDU transmission. | 12-20-2012 |
20130023269 | METHODS AND SYSTEM FOR PERFORMING HANDOVER IN A WIRELESS COMMUNICATION SYSTEM - A method and system for performing handover in a third generation (3G) long term evolution (LTE) system are disclosed. A source evolved Node-B (eNode-B) makes a handover decision based on measurements and sends a handover request to a target eNode-B. The target eNode-B sends a handover response to the source eNode-B indicating that a handover should commence. The source eNode-B then sends a handover command to a wireless transmit/receive unit (WTRU). The handover command includes at least one of reconfiguration information, information regarding timing adjustment, relative timing difference between the source eNode-B and the target eNode-B, information regarding an initial scheduling procedure at the target eNode-B, and measurement information for the target eNode-B. The WTRU then accesses the target eNode-B and exchanges layer 1/2 signaling to perform downlink synchronization, timing adjustment, and uplink and downlink resource assignment based on information included in the handover command. | 01-24-2013 |
20130028234 | Method And Apparatus For Cell Update While In An Enhanced Cell_Fach State - A method and apparatus for cell update while in a Cell_FACH state are disclosed. After selecting a target cell, system information is read from the target cell including high speed downlink shared channel (HS-DSCH) common system information. A radio network temporary identity (RNTI) received in a source cell is cleared and a variable HS_DSCH_RECEPTION is set to TRUE. An HS-DSCH medium access control (MAC-hs) entity is configured based on the HS-DSCH common system information. High speed downlink packet access (HSDPA) transmission is then received in the target cell. A CELL UPDATE message is sent to notify of a cell change. The HSDPA transmission may be received using a common H-RNTI broadcast in the system information, a reserved H-RNTI as requested in a CELL UPDATE message, or a temporary identity which is a subset of a U-RNTI. The MAC-hs entity may be reset. | 01-31-2013 |
20130058272 | METHOD AND APPARATUS FOR PERFORMING HANDOVER WITH A RELAY NODE - Techniques for performing a handover in a network with a relay node (RN) are disclosed. The RN is a node deployed between an eNodeB (eNB) and a wireless transmit/receive unit (WTRU). The RN receives data from one of the eNB and the WTRU and forwards it to the other. The RN receives a packet data convergence protocol (PDCP) protocol data unit (PDU) from a serving donor evolved Node-B (DeNB) and transmits it to the WTRU. The RN makes a handover decision based on the measurement report received from the WTRU. After making a handover decision, the RN sends a handover request or a control message to the serving DeNB including a first unsuccessfully transmitted PDCP sequence number (SN). The serving DeNB then discards a PDCP PDU with an SN older than the first unsuccessfully transmitted PDCP SN. | 03-07-2013 |
20130058287 | METHOD AND APPARATUS FOR SIGNALING THE RELEASE OF A PERSISTENT RESOURCE - A method and apparatus for signaling the release of a persistent resource in long term evolution (LTE) are disclosed. An indication of the release of a downlink (DL) persistent resource is received by a wireless transmit receive unit (WTRU) from an evolved Node-B (eNB) via a physical downlink control channel (PDCCH). A positive acknowledgement (ACK) is transmitted by the WTRU which denotes that the indication has been received. The PDCCH or a medium access control (MAC) CE may be used by the eNB to signal the indication. At least one bit may be added to contents of the PDCCH to signal whether the PDCCH is for DL persistent or dynamic resource allocation. The DL persistent resource is then released and an indication that the DL persistent resource has been released is transmitted. | 03-07-2013 |
20130064224 | METHOD AND APPARATUS FOR PERFORMING A HANDOVER IN AN EVOLVED UNIVERSAL TERRESTRIAL RADIO ACCESS NETWORK - A method and an apparatus for performing a handover in an evolved universal terrestrial radio access network (E-UTRAN) are disclosed. A wireless transmit/receive unit (WTRU) sends a measurement report to a source evolved Node B (eNB), and receives a handover command from the source eNB. The WTRU initiates reception and processing of a primary broadcast channel (P-BCH) at the target cell after receiving the handover command. The WTRU then sends a random access preamble to the target eNB, receives a random access response from the target eNB, and sends a handover complete message to the target eNB. The reception and processing of the P-BCH may be initiated immediately after receiving the handover command or after sending the handover complete message. The WTRU may apply default configuration or source cell configuration in the target cell until a target cell SFN and/or P-BCH information are acquired. | 03-14-2013 |
20130077585 | UPLINK GRANT, DOWNLINK ASSIGNMENT AND SEARCH SPACE METHOD AND APPARATUS IN CARRIER AGGREGATION - Methods of mapping, indicating, encoding and transmitting uplink (UL) grants and downlink (DL) assignments for wireless communications for carrier aggregation are disclosed. Methods to encode and transmit DL assignments and UL grants and map and indicate the DL assignments to DL component carriers and UL grants to UL component carriers are described. Methods include specifying the mapping rules for DL component carriers that transmit DL assignment and DL component carriers that receive physical downlink shared channel (PDSCH), and mapping rules for DL component carriers that transmit UL grants and UL component carriers that transit physical uplink shared channel (PUSCH) when using separate coding/separate transmission schemes. | 03-28-2013 |
20130094431 | METHOD AND APPARATUS FOR USING A RELAY TO PROVIDE PHYSICAL AND HYBRID AUTOMATIC REPEAT REQUEST FUNCTIONALITIES - Methods and apparatus are described for performing automatic repeat request (ARQ) and hybrid-ARQ (HARQ) assisted ARQ procedures in a relay-based wireless communication system. Triggers for radio link control (RLC)/ARQ retransmissions and RLC/ARQ status reporting are also described. | 04-18-2013 |
20130095818 | METHOD AND APPARATUS FOR LTE RADIO LINK FAILURE DETERMINIATION IN DRX MODE - A method and apparatus for detecting radio link failure (RLF) in a wireless transmit receive unit (WTRU) includes the WTRU performing a series of radio link measurements during a discontinuous reception (DRX) on-duration, comparing each of the series of radio link measurements to a threshold, and determining that the series of radio link measurements indicates an out-of-synch condition. | 04-18-2013 |
20130100964 | METHOD AND APPARATUS FOR CREATING AN ENHANCED MEDIUM ACCESS CONTROL PACKET DATA UNIT FOR ENHANCED TRANSPORT FORMAT COMBINATION SELECTION IN WIRELESS COMMUNICATIONS - Efficient enhanced transport format combination (E-TFC) selection methods and apparatus support flexible radio link control (RLC) packet data unit (PDU) size and medium access control (MAC) layer segmentation. Methods for filling an enhanced medium access control (MAC-e) packet data unit (PDU) with data from logical channels as part of E-TFC selection are provided. In one embodiment, the E-TFC selection algorithm employs a single request from the MAC layer to the RLC layer to request the number of bits it is allowed to send for a logical channel to create enhanced MAC-e PDUs. In another embodiment, the MAC entity performs multiple requests to the RLC entity. In another embodiment, the MAC entity makes a single request to the RLC entity to create one or more enhanced MAC-e PDUs of a set size. A technique is also provided for maintaining a guaranteed bit rate (GBR) for non-scheduled data flows with variable-length headers. | 04-25-2013 |
20130107837 | METHOD AND APPARATUS FOR MINIMIZING REDUNDANT ENHANCED UPLINK ALLOCATION REQUESTS AND FAULT-ISOLATING ENHANCED UPLINK TRANSMISSION FAILURES | 05-02-2013 |
20130107847 | WIRELESS COMMUNICATION METHOD AND SYSTEM FOR CONFIGURING RADIO ACCESS BEARERS FOR ENHANCED UPLINK SERVICES | 05-02-2013 |
20130114505 | METHOD AND APPARATUS FOR POWER CONTROL FOR WIRELESS TRANSMISSIONS ON MULTIPLE COMPONENT CARRIERS ASSOCIATED WITH MULTIPLE TIMING ADVANCES - A method and apparatus for power control for wireless transmissions on multiple component carriers associated with multiple timing advances are disclosed. A wireless transmit/receive unit (WTRU) may perform power scaling or other adjustments on physical channels in each subframe to be transmitted on component carriers that belong to different timing advance groups (TAGs) if a sum of the transmit powers of the channels would or is to exceed a configured maximum output power for that subframe where each TAG may be associated with a separate timing advance value for uplink transmissions. The WTRU may adjust the transmit power of at least one physical channel if a sum of transmit powers in an overlapping portion of subframes of a less advanced TAG and a more advanced TAG would or is to exceed a configured maximum WTRU output power during the overlap. | 05-09-2013 |
20130121132 | METHOD AND SYSTEM FOR RECOGNIZING RADIO LINK FAILURES ASSOCIATED WITH HSUPA AND HSDPA CHANNELS - A method and system for detecting radio link (RL) failures between a wireless transmit/receive unit (WTRU) and a Node-B are disclosed. When signaling radio bearers (SRBs) are supported by high speed uplink packet access (HSUPA), an RL failure is recognized based on detection of improper operation of at least one of an absolute grant channel (AGCH), a relative grant channel (RGCH), a hybrid-automatic repeat request (H-ARQ) information channel (HICH), an enhanced uplink dedicated physical control channel (E-DPCCH) and an enhanced uplink dedicated physical data channel (E-DPDCH). When SRBs are supported by high speed downlink packet access (HSDPA), an RL failure is recognized based on detection of improper operation of at least one of a high speed shared control channel (HS-SCCH), a high speed physical downlink shared channel (HS-PDSCH) and a high speed dedicated physical control channel (HS-DPCCH). | 05-16-2013 |
20130121289 | METHOD AND SYSTEM FOR SUPPORTING MULTIPLE HYBRID AUTOMATIC REPEAT REQUEST PROCESSES PER TRANSMISSION TIME INTERVAL - A method and apparatus may be used for supporting multiple hybrid automatic repeat request (H-ARQ) processes per transmission time interval (TTI). A transmitter and a receiver may include a plurality of H-ARQ processes. Each H-ARQ process may transmit and receive one TB per TTI. The transmitter may generate a plurality of TBs and assign each TB to a H-ARQ process. The transmitter may send control information for each TB, which may include H-ARQ information associated TBs with the TBs. The transmitter may send the TBs using the associated H-ARQ processes simultaneously per TTI. After receiving the TBs, the receiver may send feedback for each of the H-ARQ processes and associated TBs indicating successful or unsuccessful receipt of each of the TBs to the transmitter. The feedback for multiple TBs may be combined for the simultaneously transmitted H-ARQ processes, (i.e., TBs). When MIMO is implemented, one H-ARQ process may be associated with one MIMO stream, or codeword. The feedback may include a channel quality indicator (CQI) per MIMO stream or codeword. The control information and the feedback may be sent via a layer 1 or layer 2/3 control part. | 05-16-2013 |
20130128835 | METHOD AND APPARATUS FOR PROCESSING A DOWNLINK SHARED CHANNEL - A method and apparatus is disclosed wherein a user equipment (UE) receives control information on a first channel and uses the control information to process a second channel, | 05-23-2013 |
20130135987 | OPERATION OF CONTROL PROTOCOL DATA UNITS IN PACKET DATA CONVERGENCE PROTOCOL - A method and apparatus reports packet data control protocol (PDCP) status and PDCP resets in a wireless communication, using control PDUs that may have security protection applied by ciphering of the control PDUs. Reliability of the PDCP status and reset messages may be assured by acknowledgment according to an acknowledged mode or to an unacknowledged mode. | 05-30-2013 |
20130142044 | COGNITIVE FLOW CONTROL BASED ON CHANNEL QUALITY CONDITIONS - A system and method which improve the performance of a wireless transmission system by intelligent use of the control of the flow of data between a radio network controller (RNC) and a Node B. The system monitors certain criteria and, if necessary, adaptively increases or decreases the data flow between the RNC and the Node B. This improves the performance of the transmission system by allowing retransmitted data, signaling procedures and other data to be successfully received at a faster rate, by minimizing the amount of data buffered in the Node B. Flow control is exerted to reduce buffering in the Node B upon degradation of channel qualities, and prior to a High Speed Downlink Shared Channel (HS-DSCH) handover. | 06-06-2013 |
20130148577 | TRANSPORT BLOCK SET SEGMENTATION - Data of a transport block set is to be transmitted in a wireless communication system. Segmentation information for potential segmentation of the data is provided. The data is transmitted with a first specified modulation and coding scheme. The data is received and it is determined whether the received data meets a specified quality. When the specified quality is not met, a repeat request is transmitted. The first specified modulation and coding set is changed to a second specified modulation and coding set. In response to the repeat request, the data is segmented into a plurality of segments supported by the second specified modulation and coding set in accordance with the provided segmentation information. The segments are transmitted and at least two of the segments are transmitted separately. | 06-13-2013 |
20130170355 | METHOD AND APPARATUS FOR SUPPORTING UPLINK STARVATION AVOIDANCE IN A LONG TERM EVOLUTION SYSTEM - A method and apparatus for uplink (UL) starvation avoidance includes determining a current buffer status information. The current buffer status information is reported to an evolved Node B (eNB). A grant that includes a determination of a number of tokens a wireless transmit/receive unit (WTRU) may accumulate is received from the eNB. | 07-04-2013 |
20130176953 | METHODS, APPARATUS AND SYSTEMS FOR POWER CONTROL AND TIMING ADVANCE - A wireless transmit/receive unit (WTRU) may establish communication with a first set of cells and a second set of cells. The first set of cells may be associated with a first scheduler and the second set of cells may be associated with a second scheduler. The maximum allowed transmit power for the WTRU may be determined for and/or distributed across the first set of cells and the second set of cells. The first scheduler may determine a first maximum power value for the first set of cells and a second maximum power value for the second set of cells configured. The first scheduler may signal the second maximum power value to the second scheduler. | 07-11-2013 |
20130176970 | DYNAMIC CHANNEL QUALITY MEASUREMENT PROCEDURE IMPLEMENTED IN A WIRELESS DIGITAL COMMUNICATION SYSTEM TO PRIORITIZE THE FORWARDING OF DOWNLINK DATA - A wireless digital communication system includes a base station in communication with a plurality of user equipment mobile terminals (UEs). The system prioritizes the forwarding of blocks of downlink data to designated ones of the UEs. The system employs adaptive modulation and coding (AM&C) to achieve improved radio resource utilization and provides optimum data rates for user services. Blocks of downlink (DL) data are received by the base station which requests downlink (DL) channel quality measurements only from those mobile terminals (UEs) with pending downlink transmissions. The UEs respond to the request by measuring and reporting DL channel quality to the base station, which then allocates resources such that the UEs will make best use of radio resources. The base station notifies the UEs of the physical channel allocation indicating the modulation/coding rate and allocated slots followed by transmission of blocks of downlink data which are transmitted to the UEs. | 07-11-2013 |
20130182629 | METHOD AND WIRELESS TRANSMIT/RECEIVE UNIT (WTRU) FOR RECEIVING MULTIMEDIA BROADCAST/MULTICAST SERVICE - A method and wireless transmit/receive unit (WTRU) for receiving a multimedia broadcast/multicast service (MBMS) data is disclosed. A WTRU receives MBMS data segments from a first MBMS transmitting source along with segmentation information. The WTRU receives MBMS data segments and segmentation information from a second MBMS transmitting source. The MBMS data segments from the first MBMS transmitting source and the MBMS data segments from the second MBMS transmitting source are received in different order. The WTRU reassembles the MBMS data segments based on the segmentation information received from the first MBMS transmitting source and the second MBMS transmitting source. | 07-18-2013 |
20130201841 | UPLINK FEEDBACK FOR MULTI-SITE SCHEDULING - Systems, methods, and instrumentalities are disclosed for a user equipment (UE) to provide feedback in a multi-site scheduling system (e.g., a system where multiple entities may schedule and/or send data to the UE). For example, the UE may receive a first data from a first network entity and a second data from a second network entity. A network entity may include entities that transmit data and/or control information to the UE, e.g., an eNodeB (eNB). The UE may generate feedback relating to received data, such as ACK/NACK information or channel state information (CSI). The UE may send a first feedback relating to the first data in a first subframe and a second feedback relating to the second data in a second subframe. | 08-08-2013 |
20130201884 | METHOD AND APPARATUS FOR COEXISTENCE AMONG WIRELESS TRANSMIT/RECEIVE UNITS (WTRUS) OPERATING IN THE SAME SPECTRUM - A method and apparatus for coexistence among wireless transmit/receive units (WTRUs) operating in the same spectrum are disclosed. A WTRU includes a memory, a receive unit, a transmit unit and a control unit. The memory stores coexistence gap patterns. Each of the coexistence gap patterns defines a pattern of transmission periods and silent periods for the WTRU and corresponds to a respective duty cycle. The receive unit receives from a base station information regarding a duty cycle for a wireless cell operated by the base station. The control unit selects one of the coexistence gap patterns based on the received information regarding the duty cycle for the wireless cell and controls the transmit unit to transmit information during the transmission periods and not transmit information during the silent periods of the selected one of the plurality of coexistence gap patterns. | 08-08-2013 |
20130215772 | RECONFIGURATION AND HANDOVER PROCEDURES FOR FUZZY CELLS - A wireless transmit/receive unit (WTRU) may transmit data via multiple component carriers associated with multiple eNode-Bs. The WTRU may receive a handover request message from a source eNode-B. While maintaining a connection with a component carrier on the source eNode-B, the WTRU may establish a connection with another component carrier on a target eNode-B. | 08-22-2013 |
20130242871 | METHOD AND APPARATUS FOR VERSATILE MAC MULTIPLEXING IN EVOLVED HSPA - Methods and apparatus for versatile medium access control (MAC) multiplexing in evolved HSPA are disclosed. More particularly, methods for downlink optimization of the enhanced high speed MAC (MAC-ehs) entity and uplink optimization of the MAC-i/is entity are disclosed. Apparatuses for using the optimized downlink and uplink MAC entities are also disclosed. | 09-19-2013 |
20130242914 | METHOD AND APPARATUS FOR SELECTING MULTIPLE TRANSPORT FORMATS AND TRANSMITTING MULTIPLE TRANSPORT BLOCKS SIMULTANEOUSLY WITH MULTIPLE H-ARQ PROCESSES - A method and apparatus for selecting multiple transport formats and transmitting multiple transport blocks (TBs) in a transmission time interval simultaneously with multiple hybrid automatic repeat request (H-ARQ) processes in a wireless communication system are disclosed. Available physical resources and H-ARQ processes associated with the available physical resources are identified and channel quality of each of the available physical resources is determined. Quality of service (QoS) requirements of higher layer data to be transmitted are determined. The higher layer data is mapped to at least two H-ARQ processes. Physical transmission and H-ARQ configurations to support QoS requirements of the higher layer data mapped to each H-ARQ process are determined. TBs are generated from the mapped higher layer data in accordance with the physical transmission and H-ARQ configurations of each H-ARQ process, respectively. The TBs are transmitted via the H-ARQ processes simultaneously. | 09-19-2013 |
20130250892 | TRANSPORT FORMAT COMBINATION SELECTION IN A WIRELESS TRANSMIT/RECEIVE UNIT - A method and apparatus for selecting a TFC in a wireless transmit/receive unit (WTRU) is disclosed. The WTRU estimates a transmit power for each of a plurality of available transport format combinations (TFCs). A TFC is selected for an uplink dedicated channel and a TFC is selected for an enhanced uplink (EU) channel. The TFC for the dedicated channel is selected first and independently of the TFC selection of the EU channel. The TFC for the EU channel is selected within a remaining WTRU transmit power after the TFC selection for the dedicated channel. | 09-26-2013 |
20130250918 | RELAY NODE INTERFACE RELATED LAYER 2 MEASUREMENTS AND RELAY NODE HANDLING IN NETWORK LOAD BALANCING - A method for performing radio usage measurements to support radio link operations and/or load balancing may be performed at an evolved Node B (eNB). The method may include determining a first radio usage parameter. The first radio usage parameter may be a measurement of radio usage between an eNB and at least one wireless transmit receive unit (WTRU). The method may further include determining a second radio usage parameter. The second radio usage parameter may be a measurement of radio usage between the eNB and at least one relay node (RN) served by the eNB. The method may further include utilizing at least one of the first radio usage parameter or the second radio usage parameter to evaluate at least one of evolved universal terrestrial radio access (E-UTRA) radio link operations, radio resource management (RRM), network operations and maintenance (OAM), and self-organizing networks (SON) functions or functionalities. | 09-26-2013 |
20130250920 | MAC ARCHITECTURE IN WIRELESS COMMUNICATION SYSTEMS SUPPORTING H-ARQ - A medium access control-high speed (MAC-hs) comprises a hybrid automatic repeat request (H-ARQ) device configured to receive data blocks over a wideband-code division multiple access (W-CDMA) high speed-downlink shared channel (HS-DSCH). The H-ARQ device generates an acknowledgement (ACK) or negative acknowledgement (NACK) for each said data block received. Each received data block having a transmission sequence number. The H-ARQ device receives a new transmission instead of a pending retransmission at any time. At least one reordering device has an input configured to receive an output of the H-ARQ device and the at least one reordering device configured to reorder the received data blocks based on each received data block's transmission sequence number (TSN). Received data blocks are immediately forwarded for processing for higher layers when the received data blocks are received in sequence. | 09-26-2013 |
20130259002 | SUPPORTING ENHANCED UPLINK DURING SOFT HANDOVER - An enhanced uplink user equipment is in soft handover. A radio network controller selects a primary Node-B out of a plurality of Node-Bs supporting the soft handover. The radio network controller receiving successfully received enhanced uplink data packets from the plurality of Node-Bs. The radio network controller reordered the successfully received enhanced uplink data packets for in-sequence deliver. The primary Node-B sends specified scheduling information to the user equipment that the other Node-Bs does not transmit. At least the primary Node-B transmits acknowledgements and negative acknowledgements to the user equipment. | 10-03-2013 |
20130265923 | BEHAVIOR FOR WIRELESS TRANSMIT/RECEIVE UNIT AND MAC CONTROL ELEMENTS FOR LTE DRX OPERATIONS - A wireless transmit/receive unit (WTRU) stops discontinuous reception (DRX) timers that are running and that are related to uplink and/or downlink transmissions during a DRX time period. The WTRU stops the DRX timers in response to receiving a medium access control (MAC) control element signal from an eNode-B. | 10-10-2013 |
20130272243 | METHOD AND APPARATUS FOR DYNAMICALLY ALLOCATING H-ARQ PROCESSES - A method and wireless transmit/receive unit (WTRU) for supporting enhanced uplink (EU) transmissions are disclosed. A WTRU is configured to provide hybrid automatic repeat request (H-ARQ) processes for supporting transmission over an enhanced uplink (EU) channel, to receive configuration information, wherein the configuration information indicates which H-ARQ processes are associated with a particular MAC-d flow, to allocate an H-ARQ process for transmission of data from the MAC-d flow, wherein the allocated H-ARQ process is from one of the associated H-ARQ processes, and to transmit data from the MAC-d flow over the EU channel using the allocated H-ARQ process. | 10-17-2013 |
20130279408 | QUALITY OF SERVICE BASED RESOURCE DETERMINATION AND ALLOCATION APPARATUS AND PROCEDURE IN HIGH SPEED PACKET ACCESS EVOLUTION AND LONG TERM EVOLUTION SYSTEMS - A wireless transmit receive unit and method disclose processing communication data in a hierarchy of processing layers including a physical (PHY) layer, a medium access control (MAC) layer, and higher layers. A MAC layer transport format selection device (TFSD) assigns higher layer transmission data to parallel data streams based on data characteristics received from higher layers and physical resource information received from the PHY layer. The TFSD generates transport format parameters for each data stream. A multiplexer component multiplexes transmission data onto parallel data streams in transport blocks according to data stream assignment and transport format parameters generated by the TFSD and outputs the selectively multiplexed transmission data to the PHY layer for transmission over physical resource partitions. The TFSD generates physical transmission attributes such as modulation and coding rate, number of subframes per transmission time interval (TTI), duration of TTI, transmission power, and hybrid automatic repeat request (HARQ) parameters. | 10-24-2013 |
20130279490 | METHOD AND APPARATUS FOR ENHANCING RLC FOR FLEXIBLE RLC PDU SIZE - Enhancements are provided for the radio link control (RLC) protocol in wireless communication systems where variable RLC packet data unit (PDU) size is allowed. When flexible RLC PDU sizes are configured by upper layers, radio network controller (RNC)/Node B flow control, RLC flow control, status reporting and polling mechanisms are configured to use byte count based metrics in order to prevent possible buffer underflows in the Node B and buffer overflows in the RNC. The enhancements proposed herein for the RLC apply to both uplink and downlink communications. | 10-24-2013 |
20130301417 | SYSTEM FOR PERMITTING CONTROL OF THE PURGING OF A NODE B BY THE SERVING RADIO NETWORK CONTROLLER - A system and method which permit the RNC to control purging of data buffered in the Node B. The RNC monitors for a triggering event, which initiates the purging process. The RNC then informs the Node B of the need to purge data by transmitting a purge command, which prompts the Node B to delete at least a portion of buffered data. The purge command can include instructions for the Node B to purge all data for a particular UE, data in one or several user priority transmission queues or in one or more logical channels in the Node B, depending upon the particular data purge triggering event realized in the RNC. | 11-14-2013 |
20130301578 | WIRELESS COMMUNICATION SYSTEM WITH SELECTIVELY SIZED DATA TRANSPORT BLOCKS - A wireless transmit receive unit and methods for code division multiple access telecommunications are disclosed that process data in a physical layer and a medium access control (MAC) layer. The physical and MAC layers communicate data between each other via transport channels. The transport channels are associated with logical channels. Logical-channel data for the transport channels is provided in data units having a bit size evenly divisible by an integer N. The respective logical channels associated with a transport channel utilize MAC headers that have a selected modulo N bit size such that there is bit alignment of the MAC headers of all the logical channels associated with a particular transport channel. | 11-14-2013 |
20130301579 | WIRELESS COMMUNICATION METHOD AND APPARATUS FOR TRANSFERRING BUFFERED ENHANCED UPLINK DATA FROM A MOBILE STATION TO A NODE-B - A method and apparatus for transferring buffered enhanced uplink (EU) data is disclosed. The WTRU transmits an EU data transmission request message. The WTRU determines, based on the EU data scheduling message, whether granted resources allow for the amount of EU data stored in the buffer to be transmitted and transmits a portion of the EU data stored in the buffer along with an indication indicating whether the granted resources allow the amount of EU data stored in the buffer to be transmitted. | 11-14-2013 |
20130308605 | CENTRALIZED RADIO NETWORK CONTROLLER - In a radio access network, novel systems and methods reduce processing delay, and improve integration with IP networks, by separating user data from connection management and control data at a Node B or at a base station. The user data are routed to an IP (Internet Protocol) switch, whereas the connection management and control data are routed to a centralized radio network controller (RNC). Pursuant to a second embodiment of the invention, a centralized RNC provides improved radio resource management (RRM) functionality by handing all connection management and control data for a plurality of Node B's, thereby simplifying the switching of user data throughout the radio access network. Pursuant to a third embodiment of the invention, a smart IP switch is equipped to switch user data without core network (CN) involvement. Downlink user data are switched independently of uplink user data. | 11-21-2013 |
20130315124 | SCALABLE VIDEO CODING OVER SIMULTANEOUS UNICAST/MULTICAST LTE DL SHARED CHANNEL - Embodiments contemplate devices and techniques for receiving unicast and multicast transmissions over a downlink (DL) shared channel in parallel, for example an LTE DL shared channel (SCH). For example, one or more hybrid automatic repeat request (HARQ) entities may be configured to perform retransmissions of the multicast and/or unicast messages. Common and/or dedicated (e.g., separate) HARQ entities may be utilized for retransmission. The multicast downlink shared channels may be activated and/or deactivated on demand. The activation and/or deactivation may be performed using radio resource control (RRC) signaling and/or Medium Access Control (MAC) signaling. The multicast and/or unicast downlink shared channel data may include scalable video coding (SVC) data of varying priority. Embodiments also contemplate the use of simultaneous (e.g. parallel) multicast/unicast for scalable video coding transmission over WiFi/802.11 protocol signals. | 11-28-2013 |
20130322384 | METHOD AND APPARATUS FOR SETTING A HAPPY BIT ON AN E-DCH DEDICATED PHYSICAL CONTROL CHANNEL - A wireless transmit/receive unit (WTRU) determines (1) whether the WTRU is transmitting as much scheduled data as allowed by a current Serving_Grant, (2) whether the WTRU has enough power to transmit at higher data rate, and (3) based on a same power offset as a currently selected E-DCH transport format combination (E-TFC), whether total E-DCH buffer status (TEBS) would require more than predetermined period to be transmitted with the current Serving_Grant.times.a ratio of active processes to a total number of processes. If criteria (1)-(3) are met, the WTRU sets the happy bit to “unhappy.” If MAC-i/is is configured, the WTRU evaluates criteria (2) by identifying an E-TFC that has a transport block size at least x bits larger than a transport block size of the currently selected E-TFC, and determining whether the identified E-TFC is supported based on a same power offset as the currently selected E-TFC. | 12-05-2013 |
20130322411 | TDMA/CDMA APPARATUS - A wireless hybrid time division multiple access/code division multiple access (TDMA/CDMA) user equipment (UE) includes a signaling receiver and a data detection device in communication with the signaling receiver. The signaling receiver is configured to receive and recover signaled information of code and timeslot assignments of the UE to suport an RF communication. The data detection device is configured to recover from the signaling information an identifier of a plurality of assigned timeslots and an indication of a first and last code of a set of consecutive codes. The last code is identified by an identifier associated with the last code. | 12-05-2013 |
20130343278 | METHOD AND APPARATUS FOR RETRANSMISSION MANAGEMENT FOR RELIABLE HYBRID ARQ PROCESS - A method for transmitting a packet from a transmitter to a receiver in a wireless communication system begins by building a packet by a transport format combination (TFC) selection process, and the packet is transmitted from the transmitter to the receiver. If the transmitter receives an indication that the packet was not successfully received at the receiver, the packet is retransmitted via a hybrid automatic repeat request (HARQ) procedure. If the HARQ procedure did not successfully transmit the packet, then the packet is retransmitted via a retransmission management (RM) procedure. If the RM procedure did not successfully transmit the packet, then the packet is discarded by the transmitter. | 12-26-2013 |
20130343287 | METHOD AND APPARATUS FOR EFFICIENT OPERATION OF AN ENHANCED DEDICATED CHANNEL - A method for processing enhanced dedicated channel data in a wireless transmit/receive unit is described. An interrupt message is received at a medium access control (MAC) layer. The interrupt message is processed by the MAC layer, including at least one of: performing grant processing, on a condition that a grant is included in the interrupt message; obtaining buffer occupancy information; performing transport format combination recovery and elimination; generating a rate request; or multiplexing multiple protocol data units (PDUs) into a single MAC-e PDU. | 12-26-2013 |
20140022905 | METHOD AND APPARATUS FOR ENHANCED UPLINK MULTIPLEXING - A method, and apparatus for multiplexing are disclosed. Data is received over a plurality of logical channels. Data from the plurality of logical channels is multiplexed into a medium access control (MAC) protocol data unit (PDU) based on a priority associated with each of the plurality of the logical channels. The MAC PDU is transmitted over an uplink transport channel | 01-23-2014 |
20140036671 | SYSTEM AND METHOD FOR PRIORITIZATION OF RETRANSMISSION OF PROTOCOL DATA UNITS TO ASSIST RADIO LINK CONTROL RETRANSMISSION - Managing the transmission and retransmission of radio link control (RLC) data protocol data units (PDUs) is disclosed. An indication is received that an RLC data PDU was not successfully received by a receiving device. The RLC data PDU, that was not successfully received, is retransmitted, and prioritized over non-retransmitted RLC data PDUs. A number of times that the RLC data PDU was retransmitted is determined. | 02-06-2014 |
20140036741 | DOWNLINK POWER CONTROL FOR MULTIPLE DOWNLINK TIME SLOTS IN TDD COMMUNICATION SYSTEMS - A method for downlink power control for use in a spread spectrum time division communication system having time slots for communication, implemented in a user equipment, includes receiving data in a command per coded composite transport channel (CCTrCH) transmitted over a plurality of time slots. An interference power for each time slot of the plurality of time slots is measured and a single power command for the entire CCTrCH is transmitted in response to a signal to interference ratio of the received CCTrCH and the measured interference power measurement for each time slot. A subsequent data is received in the CCTrCH communication having a transmission power level for each downlink communication time slot set individually in response to the interference power measurement for that time slot and the single power command for the entire CCTrCH. | 02-06-2014 |
20140036884 | MAC MULTIPLEXING AND TFC SELECTION PROCEDURE FOR ENHANCED UPLINK - A method and a wireless transmit/receive unit (WTRU) for multiplexing data for an enhanced uplink channel is disclosed. The WTRU multiplexes data from medium access control for dedicated channel (MAC-d) flows into a medium access control for EU channel (MAC-e) protocol data unit (PDU), wherein a data multiplexing limit is at least based on an EU transport format combination (E-TFC) size and a size based on the at least one serving grant and the at least one non-scheduled grant. The WTRU select an E-TFC for transmission of the MAC-e PDU, wherein the selected E-TFC is a smallest E-TFC that supports the multiplexed data. | 02-06-2014 |
20140036886 | RESOURCE ALLOCATION AND SIGNALINGS FOR GROUP SCHEDULING IN WIRELESS COMMUNICATIONS - Method and apparatus for resource allocation formatting, signaling, and procedures in wireless communications, the method reducing signal overhead. Wireless transmit/receive units are divided into one or more semi-static groups. Resource allocation takes place to a group and the resource sets are signaled to an individual unit needing the resources. The method is applied to resource allocation for services, including both real time and non real time services. | 02-06-2014 |
20140043996 | CHANNEL QUALITY MEASUREMENTS FOR DOWNLINK RESOURCE ALLOCATION - A method for reporting channel quality from a user equipment (UE) to a base station is described. The UE derives a channel quality for each of a plurality of downlink resources. The UE transmits channel quality reports in a pattern of time intervals by rotating through the plurality of downlink resources in different time intervals of the pattern, wherein a channel quality report is not transmitted by the UE in each time interval of a frame. | 02-13-2014 |
20140044078 | METHOD AND APPARATUS FOR PROVIDING AND UTILIZING A NON-CONTENTION BASED CHANNEL IN A WIRELESS COMMUNICATION SYSTEM - In a wireless communication system comprising at least one evolved Node-B (eNB) and a plurality of wireless transmit/receive units (WTRUs), a non-contention based (NCB) channel is established, maintained, and utilized. The NCB channel is allocated for use by one or more WTRUs in the system for utilization in a variety of functions, and the allocation is communicated to the WTRUs. The wireless communication system analyzes the allocation of the NCB channel as required, and the NCB channel is reallocated as required. | 02-13-2014 |
20140050171 | METHOD AND APPARATUS FOR SELECTIVELY ENABLING RECEPTION OF DOWNLINK SIGNALING CHANNELS - In a wireless communication system including a wireless transmit/receive unit (WTRU) and at least one Node-B, a method and apparatus is used to selectively enable reception of at least one downlink (DL) enhanced uplink (EU) signaling channel established between the WTRU and the Node-B(s). During the operation of an enhanced dedicated channel (E-DCH), the WTRU monitors at least one DL EU signaling channel established between the WTRU and the Node-B(s) only when it is necessary, based on the WTRU's knowledge of at least one established standard procedure. The WTRU coordinates and consolidates DL signaling channel reception requirements of a plurality of channel allocation and/or data transmission procedures carried out by the WTRU in accordance with the established standard procedure. The WTRU determines whether to enable reception of at least one specific DL signaling channel based on the consolidated DL signaling channel reception requirements. | 02-20-2014 |
20140056243 | OPERATING WITH MULTIPLE SCHEDULERS IN A WIRELESS SYSTEM - Systems and methods are disclosed for a WTRU to operate using multiple schedulers. The WTRU may exchange data with the network over more than one data path, such that each data path may use a radio interface connected to a different network node and each node may be associated with an independent scheduler. For example, a WTRU may establish a RRC connection between the WTRU and a network. The RRC connection may establish a first radio interface between the WTRU and a first serving site of the network and a second radio interface between the WTRU and a second serving site of the network. The RRC connection may be established between the WTRU and the MeNB and a control function may be established between the WTRU and the SCeNB. The WTRU may receive data from the network over the first radio interface or the second radio interface. | 02-27-2014 |
20140071946 | METHOD AND APPARATUS FOR CARRIER ASSIGNMENT, CONFIGURATION AND SWITCHING FOR MULTICARRIER WIRELESS COMMUNICATIONS - As part of carrier assignment and configuration for multicarrier wireless communications, a single uplink (UL) primary carrier may provide control information for multiple concurrent downlink (DL) carriers. Optionally, control information for each DL carrier may be transmitted over paired UL carriers. Carrier switching of UL and/or DL carriers, including primary and anchor carriers, may occur during normal operation or during handover, and may occur in only the UL or only the DL direction. A unidirectional handover is performed when only an UL carrier or only a DL carrier is switched as part of a handover. Switching of UL and/or DL carriers may be from one component carrier or a subset of carriers to another component carrier, another subset of carriers, or all carriers in the same direction. | 03-13-2014 |
20140071965 | METHOD AND SYSTEM FOR SUPPORTING MULTIPLE HYBRID AUTOMATIC REPEAT REQUEST PROCESSES PER TRANSMISSION TIME INTERVAL - A method and apparatus may be used for supporting multiple hybrid automatic repeat request (H-ARQ) processes per transmission time interval (TTI). A transmitter and a receiver may include a plurality of H-ARQ processes. Each H-ARQ process may transmit and receive one TB per TTI. The transmitter may generate a plurality of TBs and assign each TB to a H-ARQ process. The transmitter may send control information for each TB, which may include H-ARQ information associated TBs with the TBs. The transmitter may send the TBs using the associated H-ARQ processes simultaneously per TTI. After receiving the TBs, the receiver may send feedback for each of the H-ARQ processes and associated TBs indicating successful or unsuccessful receipt of each of the TBs to the transmitter. The feedback for multiple TBs may be combined for the simultaneously transmitted H-ARQ processes, (i.e., TBs). When MIMO is implemented, one H-ARQ process may be associated with one MIMO stream, or codeword. The feedback may include a channel quality indicator (CQI) per MIMO stream or codeword. The control information and the feedback may be sent via a layer 1 or layer 2/3 control part. | 03-13-2014 |
20140073373 | POWER CONTROL OF POINT TO MULTIPOINT PHYSICAL CHANNELS - A method and apparatus are used to determine an efficient transmit power for point to multipoint (PtM) transmissions by maintaining a database at a base station which specifies which of a plurality of wireless transmit/receive units (WTRUs) are members of each PtM group. The transmit power of each WTRU's downlink dedicated channel is adjusted to the minimum required power necessary and the PtM transmit power for each PtM group is set such that the PtM transmit power of a PtM group is equal to the greatest of a WTRU in the PtM group plus a PtM power offset. | 03-13-2014 |
20140079035 | METHOD AND APPARATUS FOR CONTROL OF ENHANCED DEDICATED CHANNEL TRANSMISSIONS - A method and apparatus for controlling enhanced dedicated channel (E-DCH) transmissions are disclosed. A plurality of primary absolute grants are received, wherein the plurality of primary absolute grants are associated with a TTI. At least one relative grant is received for E-DCH transmission, wherein the at least one relative grant is associated with the TTI. At least one serving grant for E-DCH transmission is determined. A H-ARQ process is identified for use for the TTI. It is determined whether the identified H-ARQ process is available for scheduled data and whether scheduled data is allowed to be transmitted in the TTI based at least on the identified H-ARQ process. On a condition that the identified H-ARQ process is available for scheduled data and scheduled data is allowed to be transmitted in the TTI, scheduled data is allocated for transmission in the TTI. | 03-20-2014 |
20140079039 | METHOD AND APPARATUS FOR ASSIGNING HYBRID-AUTOMATIC REPEAT REQUEST PROCESSES - A method and apparatus for transmitting enhanced uplink (EU) data is disclosed. Configuration parameters for EU operation are received, including a priority associated with each MAC-d flow and a maximum number of H-ARQ transmissions associated with each MAC-d flow. A H-ARQ process to use for transmission for a next TTI is identified. On a condition that the identified H-ARQ process is available for new data for the next TTI, data is selected for transmission over the EU channel based on MAC-d flow priority, a transmission status is set to indicate a new transmission, and the selected data is transmitted in accordance with the identified H-ARQ process. On a condition that the identified H-ARQ process is not available for new data for the next TTI, the transmission status is set to indicate a retransmission, and data associated with the identified H-ARQ process is retransmitted. | 03-20-2014 |
20140080496 | WIRELESS COMMUNICATION METHOD AND RADIO NETWORK CONTROLLER FOR COORDINATING PAGING OCCASIONS ON A COMMON PAGING CHANNEL - A method of paging a plurality of users by synchronizing user equipment (UE) specific paging and Point-to-Multipoint (PtM) user group paging to reduce power consumption when the UE is in a discontinuous reception state. The UE identities are defined such that paging occasions and common paging channels are synchronized for multiple users within a PtM user group. | 03-20-2014 |
20140087734 | METHODS AND SYSTEM FOR PERFORMING HANDOVER IN A WIRELESS COMMUNICATION SYSTEM - A method and system for performing handover in a third generation (3G) long term evolution (LTE) system are disclosed. A source evolved Node-B (eNode-B) makes a handover decision based on measurements and sends a handover request to a target eNode-B. The target eNode-B sends a handover response to the source eNode-B indicating that a handover should commence. The source eNode-B then sends a handover command to a wireless transmit/receive unit (WTRU). The handover command includes at least one of reconfiguration information, information regarding timing adjustment, relative timing difference between the source eNode-B and the target eNode-B, information regarding an initial scheduling procedure at the target eNode-B, and measurement information for the target eNode-B. The WTRU then accesses the target eNode-B and exchanges layer 1/2 signaling to perform downlink synchronization, timing adjustment, and uplink and downlink resource assignment based on information included in the handover command. | 03-27-2014 |
20140092770 | METHOD AND APPARATUS FOR TRIGGERING RADIO LINK CONTROL PACKET DISCARD AND RADIO LINK CONTROL RE-ESTABLISHMENT - A method and apparatus for triggering radio link control (RLC) re-establishment and/or protocol data unit (PDU) discard are disclosed. An RLC entity maintains a state variable for counting a total number of transmissions and/or retransmissions of an RLC PDU and its PDU segments. If the state variable reaches a threshold, the RLC entity initiates RLC re-establishment and/or discards the RLC PDU and PDU segments. The state variable may be incremented each time a negative acknowledgement is received for at least a portion of the RLC PDU or when a retransmission is considered for the RLC PDU or a portion of the RLC PDU. The RLC entity may increase a state variable proportionate to a retransmitted data size. The RLC entity may maintain separate state variables for the RLC PDU and PDU segments and counts the number of transmissions and/or retransmissions for the RLC PDU and the PDU segments. | 04-03-2014 |
20140098730 | SYNCHRONIZATION FOR EXTENDING BATTERY LIFE - The present invention discloses a method and system for efficiently supporting data calls to WTRUs in systems that also support telephony. Various types of data is transmitted on a known schedule which is tightly synchronized to a predetermined time frame. The WTRUs synchronize their wake-up periods to search for data at times when data may or will actually be transmitted to them. | 04-10-2014 |
20140098768 | UPLINK RADIO ACCESS NETWORK WITH UPLINK SCHEDULING - A radio access network comprises a serving radio network controller (S-RNC). The S-RNC receives successfully received medium access control (MAC) packet data units (PDUs), discards duplicates of MAC PDUs, reorders the non-discarded MAC PDUs based on serial numbers of the MAC PDUs and delivers the MAC PDUs to a radio link control protocol layer. A controlling radio network controller (C-RNC) provides information to Node-Bs under its control for use in scheduling uplink transmissions. A plurality of Node-Bs schedule uplink transmissions in response to the information provided by its C-RNC, transmit scheduling information to user equipments of its cells, receive MAC PDUs from user equipments of its cells using hybrid automatic repeat request and forward the successfully received MAC PDUs to an associated S-RNC. | 04-10-2014 |
20140128121 | OUTER LOOP POWER CONTROL FOR WIRELESS COMMUNICATIONS - A base station configured for outer loop power control receives an uplink dedicated channel transmission from a wireless transmit/receive unit. The base station transmits transmit power control commands in response to the received uplink channel transmission and determines if the wireless transmit/receive unit is in a discontinuous transmission mode. The base station adjusts a target SIR based on which transmission mode for the wireless transmit/receive unit is detected. The value for the transmit power control command is derived from the adjusted target SIR. | 05-08-2014 |
20140153529 | METHOD AND APPARATUS FOR DYNAMICALLY ALLOCATING HARQ PROCESSES IN THE UPLINK - Methods and apparatus for dynamically allocating HARQ processes are described. A wireless transmit/receive unit (WTRU) includes a receive unit configured to receive signaling and a transmit unit. The transmit unit is configured to transmit uplink data sequentially using a first integer number of hybrid automatic repeat request (HARQ) processes during normal HARQ operation and transmit uplink data using a second integer number of HARQ processes that is less than the first number of HARQ processes in response to receiving the signaling. | 06-05-2014 |
20140161039 | SCHEDULING DATA TRANSMISSION BY MEDIUM ACCESS CONTROL (MAC) LAYER IN A MOBILE NETWORK - A method for determining padding compatibility is disclosed. A determination is made of a number of protocol data units (PDUs) for a logical channel mapped to a transport channel such that, for a logical channel allowing segmentation, calculate n wherein n=service data unit size/transport block size (SDU size/TB size), and on a condition that n is an integer, setting the number of PDUs=n. | 06-12-2014 |
20140169305 | METHOD AND SYSTEM FOR TRANSFERRING WIRELESS TRANSMIT/RECEIVE UNIT-SPECIFIC INFORMATION - The present invention is related to a method and system for transferring wireless transmit/receive unit (WTRU)-specific information to support enhanced uplink (EU) operation in a wireless communication system. A radio network controller (RNC) obtains WTRU-specific information, and transfers the WTRU-specific information to the Node-Bs. Each Node-B is configured to schedule uplink transmissions from a WTRU and utilizes the WTRU-specific information in operation of EU transmissions. | 06-19-2014 |
20140177593 | METHOD AND APPARATUS FOR CONTROLLING A HANDOVER BETWEEN UTRA R6 CELLS AND R7 CELLS - A method and apparatus for controlling an optimization of handover procedures between universal terrestrial radio access (UTRA) release 6 (R6) cells and UTRA release 7 (R7) cells are disclosed. When a wireless transmit/receive unit (WTRU) is moving between an R6 cell and an R7 cell, or between R7 cells, a handover is initiated from a source Node-B to a target Node-B. In the R7 cell, the enhanced medium access control (MAC) functionality including flexible radio link control (RLC) protocol data unit (PDU) size and high speed MAC (MAC-hs) segmentation and multiplexing of different priority queues are supported. After the handover, a MAC layer and/or an RLC layer are reconfigured or reset based on functionality supported by the target Node-B. | 06-26-2014 |
20140185448 | METHOD AND APPARATUS FOR SUPPORTING UPLINK STARVATION AVOIDANCE IN A LONG TERM EVOLUTION SYSTEM - A method and apparatus for uplink (UL) starvation avoidance includes determining a current buffer status information. The current buffer status information is reported to an evolved Node B (eNB). A grant that includes a determination of a number of tokens a wireless transmit/receive unit (WTRU) may accumulate is received from the eNB. | 07-03-2014 |
20140185546 | METHOD AND APPARATUS FOR PROCESSING A DOWNLINK SHARED CHANNEL - A method and apparatus is disclosed wherein a user equipment (UE) receives control information on a first channel and uses the control information to process a second channel. | 07-03-2014 |
20140185583 | WIRELESS COMMUNICATION METHOD AND APPARATUS FOR SUPPORTING RECONFIGURATION OF RADIO LINK CONTROL PARAMETERS - A variety of wireless communication methods and apparatus for supporting reconfiguration of radio link control (RLC) parameters are disclosed. A radio resource control (RRC) reconfiguration message is generated that indicates that an RLC unit in a wireless transmit/receive unit (WTRU) or a universal terrestrial radio access network (UTRAN) should be reconfigured from supporting flexible size RLC protocol data units (PDUs) to supporting fixed size RLC PDUs. If an information element (IE) “one sided RLC re-establishment” is present in the RRC reconfiguration message, only a receiving side subassembly in the RLC unit is re-established. Otherwise, both the receiving side subassembly and a transmitting side subassembly in the RLC unit are re-established. Flexible size RLC PDUs may be discarded and a message indicating the discarded flexible size RLC PDUs may be transmitted. The flexible size RLC PDUs may be modified such that they correspond to a set of pre-defined sizes. | 07-03-2014 |
20140192747 | METHOD AND APPARATUS OF SIGNALING AND PROCEDURE TO SUPPORT UPLINK POWER LEVEL DETERMINATION - Method and apparatus are disclosed for determining a physical uplink power level for transmissions on a physical uplink channel. In one embodiment, a random access channel (RACH) uplink message is transmitted. The RACH uplink message includes a RACH message power level and/or a downlink pathloss figure. A downlink message including a power offset value is received. The physical uplink power level is set for transmissions on the physical uplink channel based on the power offset value. In another embodiment, a RACH uplink message is transmitted and a downlink message including a relative power offset value is received. The physical uplink power level for transmissions on the physical uplink channel is then set based on the relative power off set value. | 07-10-2014 |
20140192778 | NODE B AND RNC ACTIONS DURING A SERVING HSDPA CELL CHANGE - An apparatus and method in accordance with the present invention reduce the amount of data that is stalled in a source Node B after a serving HS-DSCH cell change in a communication system that includes a serving RNC and at least one Node B. In a first embodiment, the RNC temporarily suspends data transmissions from the RNC to the Node B. In a second embodiment, the activation time is used in data scheduling. In a third embodiment, a more robust MCS level is selected. In a fourth embodiment flow control is employed for the data transmitted between the RNC and the Node B. | 07-10-2014 |
20140192779 | SYSTEM FOR EFFICIENT RECOVERY OF NODE-B BUFFERED DATA FOLLOWING MAC LAYER RESET - A method and system for the UE and RNC to reduce transmission latency and potentially prevent loss of PDUs upon a MAC-hs layer reset. The RNC generates a radio resource control (RRC) message with a MAC-hs reset indication. The MAC reset indication requires the UE to flush buffers for configured HARQ processes, disassemble MAC protocol data units (PDUs) in the reordering buffers, deliver MAC-d PDUs to a MAC-d layer, and configure the MAC-hs to receive new data. | 07-10-2014 |
20140194136 | UPLINK POWER CONTROL USING RECEIVED REFERENCE SIGNAL - A user equipment (UE) includes circuitry configured to receive control information on a downlink control channel from a base station. The control information indicates an allocation of an uplink channel and the control information is sent in response to the base station determining that the UE is to send an adaptive modulation and coding report. The circuitry is further configured in response to the control information to transmit a communication in the allocated uplink channel in a time interval including at least one time slot. The communication includes an adaptive modulation and coding report, and a transmission power level of the communication is derived from the control information and a pathloss measured by the UE. | 07-10-2014 |
20140198744 | METHOD AND APPARATUS FOR DATA-SPLITTING TRANSMISSION FROM MULTIPLE SITES - Methods and apparatus for changing cell range coverage are disclosed. The coverage may be changed on a per-sub-frame basis. An antenna beam elevation tilting angle may be adjusted to provide different effective downlink (DL) coverage. For example, a subframe may be a small tilt subframe or a large tilt subframe. A network or evolved NodeB (eNB) may determine data channel transmission power to adjust cell range per subframe. Low Power Subframe (LPS) may be used alone or with Almost Blank Subframe (ABS) to transmit data. Timing Advance (TA) handling for uplink (UL) transmissions is described. A common TA (CTA) may be determined for multi-site UL signaling. UL power control may be determined for UL transmission to multiple sites. Radio Link Monitoring (RLM) may be performed for multiple sites on a carrier frequency. A wireless transmit/receive unit (WTRU) may maintain synchronization in selected subframes for multiple cells. | 07-17-2014 |
20140198806 | METHOD AND APPARATUS FOR GENERATING AND PROCESSING MAC-ehs PROTOCOL DATA UNITS - A network device and wireless transmit/receive unit (WTRU) using an enhanced high speed medium access control (MAC-ehs) are disclosed. A network device may provide a MAC-ehs reordering protocol data unit (PDU) with a segment of a service data unit (SDU). A MAC-ehs PDU is generated including the MAC-ehs reordering PDU. The MAC-ehs PDU is sent via a high speed downlink shared channel (HS-DSCH). The WTRU disassembles MAC-ehs PDUs to provide reordering PDUs that each may include a segment of a MAC-ehs SDU. The WTRU may reassemble a MAC-ehs SDU with the segment of the MAC-ehs SDU from at least one of the reordering PDUs. | 07-17-2014 |
20140204827 | METHOD AND SYSTEM FOR CONTROLLING ACCESS TO A WIRELESS COMMUNICATION MEDIUM - A method and apparatus may be used to broadcast a first beacon and a second beacon in a beacon interval. The first beacon may include an indicator that indicates whether a second beacon will be transmitted within the beacon interval. The first beacon may be a legacy beacon and the second beacon may be a non-legacy beacon. A legacy beacon may be decodable by any station (STA) and a non-legacy beacon may be decodable only by non-legacy STAs. | 07-24-2014 |
20140204914 | SYSTEM AND METHOD FOR FAST DYNAMIC LINK ADAPTATION - A method and user equipment for selecting a transport format combination (TFC) is disclosed. Configuration of a plurality of TFCs to use for TFC selection is received, wherein the TFCs of the plurality of TFCs have an order. TFCs to block from TFC selection from the plurality of TFCs is determined, wherein the TFCs to block are based at least on a maximum allowed transmit power. A TFC for transmission of uplink data is selected, wherein the selected TFC is based on the TFC order and wherein the selected TFC is a TFC that is not blocked from TFC selection. | 07-24-2014 |
20140206358 | TIMING AND CELL SPECIFIC SYSTEM INFORMATION HANDLING FOR HANDOVER IN EVOLVED UTRA - A method and apparatus for reducing handover time includes a wireless transmit receive unit receiving cell specific information in a downlink signal. The downlink signal is one of a set of signals included in a handover process. | 07-24-2014 |
20140219085 | MULTIPLEXING CHANNELS BY A MEDIUM ACCESS CONTROLLER - A code division multiple access (CDMA) communication device comprises a medium access controller (MAC) configured to receive data from a plurality of channels. Each channel is associated with a priority and an identifier. The MAC is further configured to multiplex the data of the plurality of channels for transmission over a CDMA channel based on the priority. | 08-07-2014 |
20140219159 | METHOD AND APPARATUS FOR MULTIMEDIA BROADCAST MULTICAST SERVICES (MBMS) SERVICE FEEDBACK - A method and apparatus are described for providing multimedia broadcast multicast services (MBMS) service feedback. A wireless transmit/receive unit (WTRU) may receive an MBMS service query message over an MBMS control channel and transmit an MBMS service response. The MBMS service query message and MBMS service response message may be radio resource controller messages. The MBMS service query message may include MBMS service identifiers which identify MBMS services that the WTRU is receiving or intending to receive. The WTRU may generate a report with MBMS service identifier index values, where each MBMS service identifier index value indicates a position of a service identifier corresponding to an MBMS service in the original query list that the WTRU is currently receiving or intending to receive. The MBMS service status query message may be received alone or along with a MBSFNAreaConfiguration message. The WTRU may respond within a predetermined or configured time limit. | 08-07-2014 |
20140233396 | METHOD AND APPARATUS FOR MONITORING FOR A RADIO LINK FAILURE - Methods and apparatus are described for monitoring for a radio link failure in a long term evolution-advanced (LTE-A) system operated with carrier aggregation. The methods include criteria for determining radio link failure, recovery events, and the actions that a wireless transmit/receive unit (WTRU) may take upon the occurrence of such events. | 08-21-2014 |
20140233512 | METHOD AND APPARATUS FOR SIGNALING THE RELEASE OF A PERSISTENT RESOURCE - A method and apparatus for signaling the release of a persistent resource in long term evolution (LTE) are disclosed. An indication of the release of a downlink (DL) persistent resource is received by a wireless transmit receive unit (WTRU) from an evolved Node-B (eNB) via a physical downlink control channel (PDCCH). A positive acknowledgement (ACK) is transmitted by the WTRU which denotes that the indication has been received. The PDCCH or a medium access control (MAC) CE may be used by the eNB to signal the indication. At least one bit may be added to contents of the PDCCH to signal whether the PDCCH is for DL persistent or dynamic resource allocation. The DL persistent resource is then released and an indication that the DL persistent resource has been released is transmitted. | 08-21-2014 |
20140273872 | METHOD AND APPARATUS FOR LTE RADIO LINK FAILURE DETERMINIATION IN DRX MODE - A method and apparatus for detecting radio link failure (RLF) in a wireless transmit receive unit (WTRU) includes the WTRU performing a series of radio link measurements during a discontinuous reception (DRX) on-duration, comparing each of the series of radio link measurements to a threshold, and determining that the series of radio link measurements indicates an out-of-synch condition. | 09-18-2014 |
20140281781 | METHOD AND APPARATUS FOR DYNAMICALLY ADJUSTING DATA TRANSMISSION PARAMETERS AND CONTROLLING H-ARQ PROCESSES - A method and wireless transmit/receive unit (WTRU) for uplink data transmission is disclosed. Information indicating an allowed limit for uplink data transmission over an enhanced uplink channel is received. A hybrid automatic repeat request (H-ARQ) process to use for transmission of data over the enhanced uplink channel is identified. Data is selected for transmission over the enhanced uplink channel. A data transmission parameter is selected based on the received information indicating the allowed limit for uplink data transmission. The selected data is transmitted over the enhanced uplink channel using the identified H-ARQ process. An indication of the selected data transmission parameter is transmitted over an associated physical control channel. | 09-18-2014 |
20140286231 | METHODS AND APPARATUS FOR REORDERING DATA IN AN EVOLVED HIGH SPEED PACKET ACCESS SYSTEM - Method and apparatus for receiving high speed downlink shared channel (HS-DSCH) transmissions are disclosed. An HS-DSCH medium access control (MAC-ehs) entity receives MAC-ehs protocol data units (PDUs) via a high speed downlink shared channel (HS-DSCH) while in one of Cell_FACH, Cell_PCH, and URA_PCH states. The reordering PDUs included in the MAC-ehs PDUs may be sent to a next processing entity without performing reordering of the PDUs. A certain reordering queue may enter a suspend state upon occurrence of a triggering event and MAC-ehs PDUs distributed to the reordering queue in the suspend state may be forwarded to the next processing entity without performing reordering. MAC-ehs reset procedure may be extended for a certain transmission such that the MAC-ehs reset is performed after receiving a MAC-ehs PDU in a target cell. | 09-25-2014 |
20140286266 | METHOD AND APPARATUS FOR PRIORITIZING LOGICAL CHANNELS - A method and apparatus are disclosed for prioritizing logical channels when a new transmission is performed. Logical channel resources are allocated for available data to a plurality of logical channels. A maximum bit rate (MBR) credit (i.e., token) is decremented in a buffer (i.e., bucket) associated with a particular one of the logical channels by the size of a medium access control (MAC) service data unit (SDU). The MBR credit may have a negative value. If any of the allocated channel resources remain, the logical channels are served in a decreasing priority order until the data is exhausted. A radio link control (RLC) SDU is not segmented if the whole RLC SDU fits into the remaining resources. The MAC SDU excludes a MAC PDU header and MAC padding. | 09-25-2014 |
20140293915 | METHOD AND APPARATUS FOR RANDOM ACCESS IN MULTICARRIER WIRELESS COMMUNICATIONS - Methods and apparatus for random access in multicarrier wireless communications are disclosed. Methods and apparatus are provided for physical random access channel (PRACH) resource signaling, PRACH resource handling, preamble and PRACH resource selection, random access response (RAR) reception, preamble retransmission, and transmission and reception of subsequent messages. A method for maintaining an allowed multicarrier uplink (UL) random access channel (RACH) configuration set by adding an UL carrier to the allowed RACH configuration set provided that a triggering event occurs and performing a random access (RA) procedure using the allowed RACH configuration set. A method for sending data in multicarrier wireless communications by determining a set of available UL carriers and selecting an UL carrier from the set of available UL carriers. | 10-02-2014 |
20140293933 | WIRELESS COMMUNICATION METHOD AND APPARATUS FOR REPORTING TRAFFIC VOLUME MEASUREMENT INFORMATION TO SUPPORT UPLINK DATA TRANSMISSIONS - A method and apparatus for uplink transmission is disclosed. A wireless transmit/receive unit (WTRU) transmits a message to a Node-B, wherein the message is selected from at least a first type, a second type, and a third type. The first type of message indicates that the WTRU has uplink buffered data to transmit and the WTRU requires uplink resources for transmission of uplink data. The second type of message includes a plurality of indications, wherein each indication indicates an amount of uplink buffered data associated with at least one logical channel, wherein each logical channel is associated with a priority. The third type of message indicates an amount of uplink buffered data and has less information than the second type of message. | 10-02-2014 |
20140293999 | USER EQUIPMENT USING HYBRID AUTOMATIC REPEAT REQUEST - A user equipment comprises a transmitter and an adaptive modulation and coding controller. The transmitter is configured to transmit data over an air interface in a single transmission time interval with a first specified modulation and coding scheme, where the single transmission time interval has a plurality of transport block sets. In response to receiving a repeat request for retransmission of at least one particular transport block set, the transmitter retransmits the at least one of the particular transport block sets. The adaptive modulation and coding controller is configured to change the specified modulation and coding scheme to a second specified modulation and coding scheme, enabling a combining of a particular transport block set transmitted at the first specified modulation and coding scheme with a retransmitted version of the particular transport block set transmitted at the second specified modulation and coding scheme. | 10-02-2014 |
20140294179 | METHOD AND APPARATUS FOR CIPHERING PACKET UNITS IN WIRELESS COMMUNICATIONS - A method and apparatus are disclosed relating to ciphering and de-ciphering of packet units in wireless devices during retransmission in wireless communications. The packet units are re-segmented with the ciphering done on the re-segmented packet unit or on a radio link control protocol data unit (RLC PDU) with or without segmentation. Alternatively, the re-segmentation is done on the radio link control service data unit (RLC SDU) with or without segmentation. Alternatively, the ciphering process and multiplexing of the RLC PDU is done in the medium access control (MAC) layer of a MAC PU before undergoing a hybrid automatic repeat request (HARQ) process for retransmission. Further, the ciphering process in the RLC is done on a packet data convergence protocol packet data unit (PDCP PDU). | 10-02-2014 |
20140314027 | METHOD AND APPARATUS FOR REPORTING A BUFFER STATUS - A wireless transmit/receive unit (WTRU) reports a buffer status as part of scheduling information for enhanced dedicated channel (E-DCH) transmissions. For reporting the buffer status, the WTRU calculates a total amount of data available across all logical channels for which reporting is requested by a radio resource control (RRC) entity. The total amount of data includes an amount of data that is available for transmission and retransmission at a radio link control (RLC) entity and an amount of data that is available for transmission in a medium access control for enhanced dedicated channel (MAC-i/is) segmentation entity in case that a MAC-i/is entity is configured. The WTRU sends scheduling information including a total E-DCH buffer status (TEBS) field that is set based on the total amount of data. | 10-23-2014 |
20140321391 | METHOD AND APPARATUS FOR CONTENTION-BASED UPLINK DATA TRANSMISSION - A method and apparatus for a wireless transmit receive unit (WTRU) to use a contention-based uplink communications channel, applies a rule-based restriction of access to the contention-based uplink channel that attempts to use at least one contention-free uplink channel allocation for uplink transmissions on a condition that at least one contention-free uplink channel allocation has been granted. | 10-30-2014 |
20140328291 | MEDIUM ACCESS CONTROL LAYER ARCHITECTURE FOR SUPPORTING ENHANCED UPLINK - A method and apparatus for processing data is disclosed. A request for uplink resources is transmitted. An uplink scheduling grant is received in response to the request for uplink resources. Data from at least one medium access control for dedicated channel (MAC-d) flow is multiplexed into a medium access control for enhanced uplink (MAC-e) protocol data unit (PDU). A transport format combination (TFC) is selected for transmission of the MAC-e PDU, at least based on the uplink scheduling grant, a maximum allowed transmit power, and logical channel priority. A MAC-e PDU is transmitted over an enhanced uplink channel using a hybrid automatic repeat request (H-ARQ) process. | 11-06-2014 |
20140334384 | METHOD AND APPARATUS FOR SUPPORTING SEGMENTATION OF PACKETS FOR UPLINK TRANSMISSION - A method and apparatus for segmenting medium access control (MAC) service data units (SDUs) creates enhanced MAC-es PDUs in the enhanced MAC-e/es sub-layer by concatenating MAC SDUs received from the logical channels. An enhanced transport format combination (E-TFC) selection entity controls the concatenation of MAC SDUs into enhanced MAC-es PDUs. When a MAC SDU is received that is too large to fit into a selected enhanced MAC-es PDU payload, a segmentation entity segments the MAC SDU such that the MAC SDU segment fills the remaining payload available in the selected enhanced MAC-es PDU. The enhanced MAC-es PDU is then assigned a transmission sequence number (TSN) and multiplexed with other enhanced MAC-es PDUs to create a single enhanced MAC-e PDU that is transmitted on the E-DCH in the next transmission time interval (TTI). A HARQ entity stores and, if necessary retransmits the enhanced MAC-e PDU when a transmission error occurs. | 11-13-2014 |
20140341067 | WIRELESS COMMUNICATION METHOD AND SYSTEM FOR CONTROLLING DATA BIT RATES TO MAINTAIN THE QUALITY OF RADIO LINKS - A wireless communication method and system for controlling the current data bit rate of a radio link (RL) to maintain the quality of the RL. The system includes a core network (CN), a radio network controller (RNC) and at least one wireless transmit/receive unit (WTRU). The RL is established between the RNC and the WTRU. The RNC establishes a guaranteed data bit rate, a maximum data bit rate and a current data bit rate associated with the RL. When the RNC senses an event which indicates that the quality of the RL has substantially deteriorated, the RNC reduces the value of the current data bit rate. Then, in a recovery process, if a similar event does not occur during an established waiting period, the RNC restores the current data bit rate back to the maximum data bit rate. | 11-20-2014 |
20140362826 | HS-DSCH INTER-NODE B CELL CHANGE - A radio resource control (RRC) message is received by a radio resource control (RRC) device of a user equipment (UE). The RRC message notifies the FDD UE of a high speed dedicated shared channel (HS-DSCH) inter-Node B cell change. A reordering buffers of a medium access controller-high speed (MAC-hs) is flushed in response to the receiving the RRC message. A status report is generated for each acknowledge mode (AM) RLC instance mapped to the HS-DSCH by a radio link control (RLC) device after the MAC-hs flushes the reordering buffer. Each status report indicates missing AM RLC packet data units (PDUs). The RRC device sends a “TRANSPORT CHANNEL RECONFIGURATION COMPLETE” message on a DCCH after the RLC device generates each status report. | 12-11-2014 |
20140362833 | METHOD AND SYSTEM FOR SUPPORTING MULTIPLE HYBRID AUTOMATIC REPEAT REQUEST PROCESSES PER TRANSMISSION TIME INTERVAL - A method and apparatus may be used for supporting multiple hybrid automatic repeat request (H-ARQ) processes per transmission time interval (TTI). A transmitter and a receiver may include a plurality of H-ARQ processes. Each H-ARQ process may transmit and receive one TB per TTI. The transmitter may generate a plurality of TBs and assign each TB to a H-ARQ process. The transmitter may send control information for each TB, which may include H-ARQ information associated TBs with the TBs. The transmitter may send the TBs using the associated H-ARQ processes simultaneously per TTI. After receiving the TBs, the receiver may send feedback for each of the H-ARQ processes and associated TBs indicating successful or unsuccessful receipt of each of the TBs to the transmitter. The feedback for multiple TBs may be combined for the simultaneously transmitted H-ARQ processes, (i.e., TBs). | 12-11-2014 |
20140369318 | METHOD AND APPARATUS FOR PERFORMING HANDOVER WITH A RELAY NODE - A method and apparatus for performing handover with a relay node (RN) are described. A donor eNodeB (eNB) includes circuitry configured to establish a wireless backhaul link with an RN and an X2 interface with at least one other eNB, circuitry configured to receive over the wireless backhaul link an X2 application protocol (X2AP) handover request message indicating that a wireless transmit/receive unit (WTRU) of the RN is being requested to be handed over to another eNB, and circuitry configured to send the handover request message to the another eNB over the X2 interface. | 12-18-2014 |
20150023285 | METHOD AND APPARATUS FOR SELECTING AND RESELECTING AN UPLINK PRIMARY CARRIER - A method and apparatus are described for using an uplink (UL) primary carrier for long term evolution-advanced (LTE-A) to support hybrid automatic repeat request (HARQ) feedback, a channel quality indicator (CQI), a scheduling request (SR), power headroom, and at least one buffer status report in the context of asymmetrical deployment and symmetrical deployment. | 01-22-2015 |
20150023370 | METHOD AND APPARATUS FOR PCDP DISCARD - A method and apparatus for discarding a packet data convergence protocol (PDCP) service data unit (SDU) are disclosed. A PDCP layer sets a timer and discards a PDCP SDU upon expiration of the timer. The timer may be set upon receiving the PDCP SDU from an upper layer or upon submitting the PDCP SDU to a lower layer for transmission. The timer and a radio link control (RLC) discard timer may be coordinated. Alternatively, the PDCP layer may discard the PDCP SDU based on a notification from an RLC layer or based on a PDCP status report. | 01-22-2015 |
20150043413 | METHOD AND APPARATUS FOR POWER CONTROL FOR WIRELESS TRANSMISSIONS ON MULTIPLE COMPONENT CARRIERS ASSOCIATED WITH MULTIPLE TIMING ADVANCES - A method and apparatus for power control for wireless transmissions on multiple component carriers corresponding to multiple serving cells associated with multiple timing advances are disclosed. A wireless transmit/receive unit (WTRU) may determine transmit powers for a first physical channel for a first serving cell in a first timing advanced group (TAG) and a second physical channel for a second serving cell in a second TAG. The first TAG may less timing advanced than the second TAG. The WTRU may determine a WTRU configured maximum output power (P | 02-12-2015 |
20150043507 | APPARATUS AND METHOD FOR PRIORITIZATION OF RETRANSMISSION OF PROTOCOL DATA UNITS TO ASSIST RADIO LINK CONTROL RETRANSMISSION - Managing the transmission and retransmission of radio link control (RLC) data protocol data units (PDUs) is disclosed. An indication is received that an RLC data PDU was not received by a receiving device. The RLC data PDU, that was not received, is retransmitted and prioritized over other RLC data PDUs. A number of times that the RLC data PDU was retransmitted may be tracked. | 02-12-2015 |
20150071065 | METHOD AND APPARATUS FOR ENHANCED UPLINK MULTIPLEXING - A method and apparatus for multiplexing are disclosed. Data is received over a plurality of logical channels. Data from the plurality of logical channels is multiplexed into a medium access control (MAC) protocol data unit (PDU) based on a priority associated with each of the plurality of the logical channels. The MAC PDU is transmitted over an uplink transport channel. | 03-12-2015 |
20150071265 | METHOD AND APPARATUS FOR SELECTING A RADIO LINK CONTROL PROTOCOL DATA UNIT SIZE - A method and apparatus are used to create RLC PDUs in advance of the E-TFC selection for the MAC PDU that will include this or these RLC PDU(s). The apparatus may be configured to pre-generate RLC PDUs for transmission in a later TTI. This approach avoids the large peak processing requirement due to the tight delay constraint if any RLC PDU to be included into a MAC PDU had to be created after the determination of the size of this MAC PDU, i.e. after E-TFC selection. The method and apparatus maintain an approximate match between the size of an RLC PDU and the size of the MAC PDU it is included into. Maintaining this approximate match ensures that the RLC PDU error rate due to HARQ residual errors remains low. This approach may be designed as “semi-radio aware” or “radio-aware with delay”. | 03-12-2015 |