Patent application number | Description | Published |
20100074397 | Method for detecting X-ray radiation and X-ray system - A method is disclosed for detecting X-ray radiation from an X-ray emitter. In at least one embodiment of the method, an electric pulse with a pulse amplitude characteristic of the energy of a quantum is generated when a quantum of the X-ray radiation impinges on a sensor, wherein a number of threshold energies are predetermined. When the pulse amplitude corresponding to the respective energy is exceeded, a signal is emitted each time the pulse amplitude corresponding to a respective threshold energy is exceeded. At least one embodiment of the method permits reliable and high-quality imaging, even in image regions with high X-ray quanta rates. To this end, at least one of the threshold energies is predetermined such that it is higher than the maximum energy of the X-ray spectrum emitted by the X-ray emitter. | 03-25-2010 |
20100246918 | ITERATIVE EXTRA-FOCAL RADIATION CORRECTION IN THE RECONSTRUCTION OF CT IMAGES - A method is disclosed for reconstruction of image data of an object under examination from measurement data, with the measurement data having been recorded during a rotating movement of a radiation source of a computed tomography system around the object under examination. The radiation source emits focal and extra-focal radiation. In at least one embodiment of the method, the image data is determined from the measurement data by use of an iterative algorithm. A variable is used in the iterative algorithm which contains a distribution of the extra-focal radiation. | 09-30-2010 |
20110089327 | Multimodality Imaging - An imaging system includes interleaved emission detectors and transmission detectors. Emission detectors and transmission detectors can be interleaved along the axis of relative patient motion. Emission detectors and transmission detectors can be interleaved orthogonal to the axis of relative patient motion. Emission detectors can be single photon emission computed tomography detectors and the transmission detectors can be x-ray computed tomography detectors. | 04-21-2011 |
20110096893 | METHOD FOR PREDICTING SPECIFIC CYCLE PHASES OF A BEATING HEART IN A PATIENT WITHIN THE SCOPE OF A CT EXAMINATION AND CT SYSTEM - A method and a CT system are disclosed for predicting specific cardiac cycle phases within the scope of a CT examination, wherein signal profiles of the heart are continuously recorded during the examination over a plurality of cardiac cycles, wherein times of successive cycle positions with the same characteristics are determined with the aid of the signal profiles and the successive cycle lengths of the cardiac cycles are determined with the aid of the determined times, wherein typical patterns in successive cycle lengths over a first number of past and successive cardiac cycles are sought after and a current or future cycle length is determined by recording cycle patterns in a second, smaller number of cycle lengths including their typical successive cycle length within the first number of current past cycle lengths, and predicting, using probabilistic methods, the cycle length that follows the last determined cycle pattern on the basis of the cycle patterns currently determined during the CT examination. | 04-28-2011 |
20110121191 | CIRCUIT ARRANGEMENT FOR COUNTING X-RAY RADIATION X-RAY QUANTA BY WAY OF QUANTA-COUNTING DETECTORS, AND ALSO AN APPLICATION-SPECIFIC INTEGRATED CIRCUIT AND AN EMITTER-DETECTOR SYSTEM - A circuit arrangement of a quanta-counting detector with a multiplicity of detector elements is disclosed, wherein the X-ray quanta registered in each detector element generate a signal profile. In at least one embodiment, the circuit arrangement, in each detector element, includes: at least one first comparator with a first energy threshold lying in the energy range of the measured X-ray quanta and at least one second comparator with a second energy threshold lying above the energy range of the measured X-ray quanta, the at least one first and second comparators being connected to the detector element. Further, the at least two comparators have a logical interconnection, wherein at least a first comparator and a second comparator are connected to the inputs of an XOR gate, and each XOR gate connected to a first comparator is connected to precisely one edge-sensitive counter. Further, in at least one embodiment, an application-specific integrated circuit (ASIC) and an emitter-detector system of an X-ray CT system, including at least one circuit arrangement, are disclosed. | 05-26-2011 |
20110311022 | Counting Detector And Computed Tomography System - A counting detector is disclosed. In at least one embodiment, the counting detector includes sensors for converting radiation quanta into electrical pulses and an evaluation unit with a number of energy thresholds, wherein the evaluation unit generates for each sensor a count value for each energy threshold from the pulses, which count value represents the number of radiation quanta with an energy above the respective energy threshold. In at least one embodiment, one of the energy thresholds is arranged directly above a characteristic energy of radiation quanta causing double counting in order to correct double counting; and a correction unit calculates a corrected count value from the count values of the energy thresholds, which corrected count value has reduced double counting for at least one of the energy thresholds. Images with an improved contrast-to-noise ratio and, at the same time, a reduced X-ray dose can be generated on the basis of the at least one corrected count value. In at least one embodiment, the invention moreover relates to a computed tomography system with such a counting detector. | 12-22-2011 |
20120093282 | Method For Calibrating A CT System With At Least One Focus-Detector Combination With A Quanta-Counting Detector - A method is disclosed for calibrating a CT system with at least one focus-detector combination with a quanta-counting detector including a plurality of detector elements, with the focus-detector combination being arranged to enable it to be rotated around a measurement region and a system axis arranged therein, and an X-ray bundle going out from the focus to the detector which possesses an X-ray energy spectrum over an energy range. In at least one embodiment of the method, actual attenuation values from CT scans obtained with an X-ray energy spectrum are compared with theoretical mono-energetic required attenuation values even in the paralysis range of the quanta-counting detector and a transfer function is determined between the required attenuation values and the actual attenuation values for each detector element and thereby a calibration of the measured attenuation values is carried out. | 04-19-2012 |
20120158811 | Method For Transforming Input Data And Medical Device - A method is disclosed for transmitting measurement data from a transmitter system to a receiver system by way of a transmission link of a medical device. In an embodiment, the measurement data, as input data of a transformation method, is transformed to output values and, after transmission, back transformed again, the values of the input data lying between a maximum value and a minimum value and an assignment function being used for compression purposes, to allocate an output value to every value of the input data, a root function being used as the assignment function for at least some of the values. | 06-21-2012 |
20120243660 | Method For Correcting Detector Data Of An X-Ray Detector And X-Ray Recording System - In a method, with a current measurement, the history of the radiation exposure of the X-ray detector is taken into account with respect to the overall X-ray detector or subareas of the X-ray detector, in respect of a reduction in the measurement sensitivity produced as a result and a recovery of the reduction in the measurement sensitivity, and the determined measuring signal is corrected with a correction factor which is dependent on the history of the radiation exposure. Furthermore, an X-ray recording system includes a detector which includes a plurality of detector elements, which are read out in groups channel by channel and a read-out apparatus with computer-assisted device for correcting read-out detector data prior to a further processing of the detector data to form projective or tomographic images. | 09-27-2012 |
20120250968 | METHOD FOR GENERATING IMAGE DATA OF AN OBJECT UNDER EXAMINATION, PROJECTION DATA PROCESSING DEVICE, X-RAY SYSTEM AND COMPUTER PROGRAM - A method is disclosed for generating image data of an object under examination from X-ray projection data of the object under examination, wherein, before a reconstruction of the image data, the X-ray projection data are subjected to scattered radiation correction on the basis of scattered radiation measured values. Here, the scattered radiation measured values are initially subjected to an extra-focal radiation correction before being used for the scattered radiation correction. A projection data processing device is also disclosed for carrying out a method of this kind and an X-ray system, in particular computed tomography system, with a projection data processing device of this kind. | 10-04-2012 |
20120305757 | METHOD FOR CORRECTING COUNT RATE DRIFT IN A QUANTUM-COUNTING DETECTOR, AN X-RAY SYSTEM WITH A QUANTUM-COUNTING DETECTOR AND A CIRCUIT ARRANGEMENT FOR A QUANTUM-COUNTING DETECTOR - A method, a circuit arrangement and an X-ray system, in particular a CT system, are disclosed wherein, in order to correct the count rate drift of a detector for ionizing radiation having quantum-counting detector elements which include a combination of at least two counters with significantly different energy thresholds, and on the basis of previously determined functional dependencies of count rates on one another and using at least one of the counters per detector element as the reference, the count rates of the respective other counters with different energy thresholds are corrected. | 12-06-2012 |
20120326049 | QUANTUM-COUNTING RADIATION DETECTOR - A quantum-counting radiation detector is disclosed, in particular an x-ray detector. In at least one embodiment, the signals of the individual pixels and the signals of combined pixels are evaluated in parallel processing branches. It is then possible to combine the count results in an appropriate manner, to reduce the influence of unwanted interference effects for the respective application. | 12-27-2012 |
20130208854 | COMPUTED TOMOGRAPHY DEVICE AND METHOD FOR OPERATING A COMPUTED TOMOGRAPHY DEVICE - A method is disclosed for operating a computed tomography device including an x-ray source embodied to emit a fan-type beam bundle and a detector arrangement interacting therewith and including a plurality of detector elements. An embodiment of the method provides that an integration time provided to read out a detector element is dependent on the position of the detector element within the detector arrangement, wherein with a detector element which detects x-rays which penetrate the isocenter lying between the c-ray source and the detector arrangement, a longer integration time is provided, than with a detector element which detects x-rays which penetrate an examination volume which is further away from the isocenter. | 08-15-2013 |
20130214144 | METHOD FOR HOMOGENIZATION OF THE THRESHOLD VALUES OF A MULTI-CHANNEL, QUANTA-COUNTING RADIATION DETECTOR - A method is disclosed for homogenization of threshold values of a multichannel, quanta-counting radiation detector. In an embodiment of the method empty measurements are carried out with the detector at different spectral compositions of the radiation with different settings of threshold values of the comparators. For each channel of which the comparators is to be set to the same energy threshold, an adapted threshold value is determined for this energy threshold from the empty measurement, at which a variation of the normalized count rate of the channel is minimized over the different spectral compositions of the radiation. This avoids problems in the further processing of the measurement data of the detector, which can occur during alterations of the spectrum. | 08-22-2013 |
20130251111 | METHOD FOR ENERGY CALIBRATING QUANTUM-COUNTING X-RAY DETECTORS IN A DUAL-SOURCE COMPUTED-TOMOGRAPHY SCANNER - A method is disclosed for energy calibrating quantum-counting x-ray detectors in an x-ray installation including at least two x-ray systems turnable around a center of rotation. A target, for producing x-ray fluorescence radiation, is positioned between the first x-ray source and first x-ray detector and irradiated with x-radiation of the first x-ray source in such a way that x-ray fluorescence radiation which strikes the second x-ray detector from the target is produced by the x-radiation of the first x-ray source. The second x-ray detector is then energy calibrated by way of the x-ray fluorescence radiation of the target. The first x-ray detector can be energy calibrated in the same way with the aid of the x-radiation of the second x-ray source. With the proposed method, the x-ray detectors of a dual-source CT x-ray installation can be calibrated with little expenditure under conditions close to those of the system. | 09-26-2013 |
20140072098 | X-RAY SYSTEM AND METHOD TO GENERATE IMAGE DATA - An x-ray system, such as a computed tomography system, has an x-ray source, a projection detector arrangement associated with the x-ray source for the acquisition of projection data of an examination subject, and a monitor detector that measures current dose measurement data of the x-ray radiation. The monitor detector is designed and arranged to detect a portion of the x-ray radiation that does not travel through the examination subject. The monitor detector is formed as an energy-resolving detector. Furthermore, a method for the acquisition of projection data of an examination subject a method to generate image data make use of such an x-ray system. | 03-13-2014 |
20150078512 | DETECTION OF X-RAY RADIATION - An X-ray detector is disclosed, including a detection unit to generate a detection signal for incident X-ray radiation; a signal analysis module to determine a set of count rates for incident X-ray radiation based upon the detection signal and signal analysis parameters for X-ray radiation; and a switchover control unit for switching between first signal analysis parameters and second signal analysis parameters. When an amount of X-ray radiation is incident on the detection module, a first set of count rates is generated for a first time interval based upon first signal analysis parameters and a second set of count rates is generated for a second time interval based upon second signal analysis parameters, different from the first signal analysis parameters. An X-ray imaging system including the detector; a method for determining count rates for X-ray radiation; and a method for calibrating signal analysis parameters are also disclosed. | 03-19-2015 |