Patent application number | Description | Published |
20100025382 | STRATEGICALLY PLACED LARGE GRAINS IN SUPERALLOY CASTING TO IMPROVE WELDABILITY - Process for reducing cracking in superalloy metal components by selectively growing large single grains during the casting operation at a region where fusion welding will be required. | 02-04-2010 |
20100059573 | PROCESS OF FILLING OPENINGS IN A COMPONENT - A process for filling openings, including blind holes, through-holes, and cavities, in high temperature components. The process entails forming a powder mixture by mixing particles of at least a base alloy and a second alloy that contains a sufficient amount of a melting point depressant to have a lower melting temperature than the base alloy. The powder mixture is combined with a binder and compacted to form a compacted preform, which is then heated to remove the binder and form a rigid sintered preform. The sintered preform is produced, or optionally is further shaped, to have a cross-sectional shape and dimensions to achieve a clearance of up to 200 micrometers with the opening, after which the preform is placed in the opening and diffusion bonded within the opening to form a brazement comprising the particles of the base alloy dispersed in a matrix formed by the second alloy. | 03-11-2010 |
20110024393 | PROCESS OF CLOSING AN OPENING IN A COMPONENT - A process for closing an opening in a surface of a component, and components formed thereby. The process entails forming a channel in the component surface so that the channel at least partially surrounds an opening at the component surface. An alloy is then deposited in the channel to form a crack-free deposit in the channel. A step is then machined that intersects the opening and is at least partially formed in the deposit. The step defines a recess that is at least partially surrounded by a peripheral portion of the deposit and has a surface recessed into the component surface. A cap is placed in the recess and welded to the peripheral portion of the deposit to define a weld joint that completely closes the opening. The surface of the weld joint is then machined to form a machined surface that is substantially flush with the component surface. | 02-03-2011 |
20110042361 | SYSTEM AND METHOD OF DUAL LASER BEAM WELDING OF FIRST AND SECOND FILLER METALS - A system and method for laser beam welding at least two adjacent superalloy components involves substantially simultaneous formation of a base weld with a first filler metal placed between the components and cap weld with second filler metal formed over the base weld. A shim is inserted between the components, which may optionally be formed with a groove along the joint surface. A filler wire is fed to a location over the given surface or within the optional groove. Two lasers or a laser and coupled beam splitter supply first and second laser beams that are applied at focal points separated by a predetermined distance (e.g., 0.05-1.5 cm). The first laser beam is used to form a base weld with the first filler metal between the components, and the second laser beam is used to form a cap weld with the second filler metal on top of the base weld. | 02-24-2011 |
20110049112 | COMBUSTION CAP EFFUSION PLATE LASER WELD REPAIR - A process for modifying or repairing a metallic component, such as a combustion cap effusion plate for a gas turbine, is disclosed. The method includes generating a notch or groove in the metallic component and depositing a filler material in the notch or groove. A pulsed laser is applied to the filler material. The pulsed laser has a power, frequency, and pulse width sufficient to apply heat to the metallic component and to the filler material to make at least a portion of the metallic component and the filler material melt in order to weld the filler material to the metallic component and repair or modify the metallic component. Various operating parameters of the pulsed laser can be configured to reduce undesirable heating affects. | 03-03-2011 |
20110064584 | APPARATUS AND METHOD FOR A TURBINE BUCKET TIP CAP - A turbine bucket that includes a pressure side, a suction side opposite the pressure side, and a rib extending between the pressure side and the suction side. A tip cap is attached to the pressure side and the suction side and covers the rib. The tip cap includes a precipitation hardened material and a passage aligned with the rib. A method for assembling a turbine bucket having a pressure side and a suction side and a rib extending between the pressure side and suction side. The method includes receiving a tip cap made from a precipitation hardened material and having a passage in the tip cap. The method further includes locating the rib visually through the passage and aligning the passage with the rib. The method also includes welding the tip cap to the turbine bucket and to the rib. | 03-17-2011 |
20110076151 | METHOD AND SYSTEM FOR FOCUSED ENERGY BRAZING - A method and system that includes generation of an energy beam. The energy beam may be generated from a focused energy source. Additionally, the energy beam may be directed towards a pre-sintered preform. The pre-sintered preform may be made of a braze material and may seal a hole that may be located in a turbine component. | 03-31-2011 |
20110081229 | METHOD FOR ATTACHING A CONNECTOR TO DEPOSITED MATERIAL - A method for attaching a connector to deposited material includes the steps of depositing material on a substrate using a thin- or thick-film deposition process and attaching at least one connector to the deposited material using a high energy beam welding process. | 04-07-2011 |
20110255984 | SYSTEM AND METHOD FOR REDUCING GRAIN BOUNDARIES IN SHROUDED AIRFOILS - A turbine bucket includes an airfoil and a shroud. The shroud includes first and second bearing surfaces, and the first and second bearing surfaces each comprise a single grain structure. A method for forming a turbine bucket includes orienting a mold vertically, wherein the mold includes a first portion that defines a shank, a second portion connected to the first portion that defines an airfoil, and a third portion connected to the second portion that defines a shroud, wherein the third portion includes first and second sides, and wherein the first portion is higher than the second portion and the second portion is higher than the third portion. The method further includes flowing a molten metal into the mold and selectively growing large single grains in at least one of the first or second sides. | 10-20-2011 |
20120006795 | HYBRID LASER ARC WELDING PROCESS AND APPARATUS - A welding method and apparatus for welding workpieces together by conducting a forward hybrid welding process on a joint region that includes a weld seam defined by and between faying surfaces of the workpieces, and then conducting an aft hybrid welding process on the joint region. The forward hybrid welding process simultaneously causes a forward laser beam and a forward electric arc to travel along the joint region, which in combination penetrates the weld seam and forms a weld pool that solidifies to form a weldment. The aft hybrid welding process utilizes an aft electric arc and an aft laser beam to produce a second weld pool that remelts and mixes with the weldment. On cooling, a weld joint is formed that is capable of deeply penetrating the weld seam of the joint region. | 01-12-2012 |
20120110847 | METHOD FOR SERVICING A TURBINE PART - According to one aspect of the invention, a method for in situ repair of a turbine part is provided. The method includes the steps of accessing the turbine part while assembled to other turbine components, wherein the turbine part comprises a region with a structural flaw near a hole in the turbine part, wherein the hole is configured to flow a cooling fluid and welding the structural flaw without performing a heat treatment of the turbine part, wherein welding the structural flaw comprises laser welding that maintains a structure of the region. | 05-10-2012 |
20120156020 | METHOD OF REPAIRING A TRANSITION PIECE OF A GAS TURBINE ENGINE - A method of weld repairing an air-cooled aft frame of a transition piece of a gas turbine engine. The transition piece has an interior surface coated with a ceramic coating. The aft frame has a surface with cooling holes therein and from which cracks have propagated. The method includes removing the transition piece from the engine and, without removing the ceramic coating or the aft frame from the transition piece, weld repairing the cracks by performing a laser beam welding technique that deposits a filler material on the surface but does not close the cooling holes in the surface. The surface of the aft frame can be machined to remove excess filler material prior to re-installing the transition piece in a gas turbine engine. | 06-21-2012 |
20120156054 | TURBINE COMPONENT WITH NEAR-SURFACE COOLING PASSAGE AND PROCESS THEREFOR - A process for creating a near-surface cooling passage in an air-cooled turbomachine component. The process entails forming a channel in a surface of a surface region of the component so that the channel is open at the surface and fluidically connected to a first cooling passages within the component. A metallic layer is then deposited on the surface and over the channel without filling the channel. The metallic layer closes the channel at the surface of the surface region to define therewith a second cooling passage within the component that is fluidically connected to the first cooling passages. A coating system is then deposited on the metallic layer to define an outermost surface of the component. The second cooling passage is closer to the outermost surface of the component than the first cooling passages. | 06-21-2012 |
20120214019 | COMPONENT AND A METHOD OF PROCESSING A COMPONENT - A component and a method of processing a component are disclosed. The method includes providing a base metal having a feature, removing the feature to form a processed region, applying a first layer to the processed region, and applying a second layer to the first layer. The base metal, the first layer, and the second layer each have predetermined thermal expansion coefficients, yield strengths, and elongations. The processed component includes the first layer applied to a processed region of the base metal and a second layer applied to the first layer. | 08-23-2012 |
20120231295 | METHOD OF FABRICATING A COMPONENT AND A COMPONENT - A method of fabricating a component and a component are disclosed. The method includes beam brazing a pre-sintered preform to the component to form a beam-brazed portion. The component includes a beam-brazed portion formed by a pre-sintered preform. | 09-13-2012 |
20120234798 | CLADDING APPLICATION METHOD AND APPARATUS USING HYBRID LASER PROCESS - Disclosed is a method for affixing a metal cladding to a metal base. The method includes: heating the metal cladding and a surface of the metal base with a heating device to create a molten metal pool having molten metal cladding layered upon molten metal base material in the metal base; stabilizing a temperature gradient of the molten metal pool with a laser beam directed into the molten metal pool; and cooling the molten metal pool to affix solidified cladding to the metal base. | 09-20-2012 |
20120255989 | METHOD OF ESTABLISHING FILLER METAL CHEMISTRY FOR A FILLER ROD FOR JOINING COMPONENTS - A method of establishing filler metal composition for joining components includes determining an initial desired filler metal chemistry, adjoining a first filler rod having a first portion of the desired filler metal chemistry with a second filler rod having a second portion of the desired filler metal chemistry to form a test filler rod, joining a first component formed from a first material to a second component formed from a second material at a weld joint with the test filler rod providing a filler metal portion of the weld joint, and testing the weld joint for desired mechanical, chemical, and weldability properties to establish a desired filler metal composition. | 10-11-2012 |
20120261389 | HYBRID WELDING APPARATUS AND SYSTEM AND METHOD OF WELDING - A hybrid welding apparatus, and a system and method for welding at least two adjacent components having a large gap of approximately 3.0 millimeters that results in a full-penetration weld is provided. The welding system includes a hybrid welder having a defocused laser beam, an electric arc welder, and at least one bridge piece adjacent to one or more of the at least two adjacent components. The defocused laser beam and the electric arc welder are arranged and disposed to direct energy onto the at least two adjacent components to create a common molten pool operable to provide a full penetration weld to bridge the gap at a high constant weld speed, thereby joining the two adjacent components with a weld. | 10-18-2012 |
20120328902 | METHOD OF FABRICATING A COMPONENT AND A MANUFACTURED COMPONENT - A method of fabricating a component and a fabricated component are disclosed. The method includes depositing a material to a component and manipulating the material to form a boundary region and a filler region for desired properties. The component includes the boundary region and the filler region, thereby having the desired properties. | 12-27-2012 |
20130032577 | CLADDING SYSTEM AND METHOD FOR APPLYING A CLADDING TO A POWER GENERATION SYSTEM COMPONENT - A cladding system and method for applying a cladding to a power generation system component including a first weld bead, a second weld and a filler bead. The first weld is deposited on the surface with a first energy source and solidified to form a first weld bead. The second weld is deposited on the surface adjacent to the first weld bead with the first energy source, wherein depositing the second weld creates a surface depression between the first weld bead and second weld. The filler bead is simultaneously deposited in the surface depression with a second energy source while depositing the second weld bead. The second weld and the filler bead are solidified to form the cladding bead. | 02-07-2013 |
20130056449 | WELDING SYSTEM AND METHOD - A welding system comprises pieces positioned to form a gap, a filler positioned in the gap, an arc welder positioned and configured to follow the gap and transfer melted material to the vicinity of the gap to create an initial weld pool, and a laser welder positioned and configured to project a beam through the initial weld pool adjacent to the gap to melt a portion of the filler, creating an enhanced weld pool and helping it to fill the gap. A welding method comprises fixing pieces to define a gap, positioning a filler in the gap, applying an electrical arc to at least one of the pieces so as to transfer melted material to the vicinity of the gap and thereby create an initial weld pool, and projecting a laser beam through the initial weld pool adjacent to the gap to melt a portion of the filler. | 03-07-2013 |
20130071250 | PROCESS OF WELDING A TURBINE BLADE, A PROCESS OF WELDING A NON-UNIFORM ARTICLE, AND A WELDED TURBINE BLADE - A process of welding an article and a welded turbine blade are disclosed. The process includes fusion welding over a primary symmetry line determined from a center of gravity on a first side of the article or blade and fusion welding over the primary symmetry line determined from the center of gravity on a second side of the article or blade. The fusion treating includes multiple fusion treatments. | 03-21-2013 |
20130086785 | HYBRID REPAIR PLUGS AND REPAIR METHODS INCORPORATING THE SAME - Hybrid repair plugs include an alloy core and a sintered preform shell at least partially surrounding the alloy core, wherein the sintered preform shell includes a mixture comprising a base alloy comprising about 30 weight percent to about 90 weight percent of the mixture and a second alloy including a sufficient amount of a melting point depressant to have a lower melting temperature than the base alloy. | 04-11-2013 |
20130086911 | PROCESS AND APPARATUS FOR OVERLAY WELDING - An apparatus and process for depositing an overlay weld on a substrate in a manner that reduces dilution of the substrate material. A consumable electrode is positioned in proximity to the surface of the substrate, and an electrical potential is applied between the electrode and substrate to generate an electrical arc therebetween. The arc melts the electrode and forms a molten spray that deposits on the substrate surface. Energy of the electric arc is absorbed to reduce the temperature at the substrate surface by feeding an additional filler material into the electric arc toward its center axis. The filler material continuously melts prior to reaching the center axis of the electric arc, and the electrode and filler materials are simultaneously deposited to form the overlay weld on the substrate. Sufficient energy is absorbed by the filler material to reduce intermixing between the overlay weld and the substrate. | 04-11-2013 |
20130095342 | BRAZING PROCESS, BRAZE ASSEMBLY, AND BRAZED ARTICLE - A brazing process, a braze assembly, and a brazed article are disclosed. The brazing process includes applying a braze material to an article within a vacuum chamber while the vacuum chamber is substantially evacuated. The braze assembly is capable of applying a braze material to an article within a vacuum chamber while the vacuum chamber is substantially evacuated. The brazed article is devoid of re-formed oxides. | 04-18-2013 |
20130136940 | WELDING SYSTEM, WELDING PROCESS, AND WELDED ARTICLE - A welding system, welding process and welded article are disclosed. The system includes a laser welding apparatus, a GMAW apparatus, and a GTAW apparatus. The laser welding apparatus, the GMAW apparatus, and the GTAW apparatus are positioned to weld an article along a weld path. The process includes providing a welding system having a laser welding apparatus, a GMAW apparatus, and a GTAW apparatus. The process further includes welding an article with one or more of the laser welding apparatus, the GMAW apparatus, and the GTAW apparatus. The welded article includes a weld formed by welding from a GMAW apparatus, a laser welding apparatus, and a GTAW apparatus. | 05-30-2013 |
20130139510 | METHOD FOR MANUFACTURING A HOT GAS PATH COMPONENT AND HOT GAS PATH TURBINE COMPONENT - According to one aspect of the invention, a method for manufacturing a hot gas path component of a turbine is provided, the method including forming cooling channels in a surface of a member. The method also includes disposing a layer on the surface of the member to enclose the cooling channels, the layer being disposed on a portion of the member to be cooled and bonding the layer to the surface, wherein bonding comprises heating the member and the layer. | 06-06-2013 |
20130168926 | SEAL ASSEMBLY AND METHOD FOR ASSEMBLING A TURBINE - According to one aspect of the invention, a method for assembling a turbine includes placing a middle layer between a first and second outer member, wherein the middle layer includes a non-continuous layer of material and the first and second outer members each include a member of continuous material and welding a primary joint between the middle layer, first outer member and second outer member, the primary joint extending through the first outer member, the middle layer and at least a portion of the second outer member. The method also includes welding a secondary joint between the middle layer and first outer member, the secondary joint extending through the first outer member and at least a portion of the middle layer. | 07-04-2013 |
20130175325 | METHOD FOR MAKING A CELLULAR SEAL - A method for making a cellular seal member for a turbine is disclosed. The method includes, in sequence, forming a diffusion aluminide coating on a surface of a cellular seal to form a coated cellular seal. The method also includes brazing the coated cellular seal to a seal substrate. | 07-11-2013 |
20130181071 | FUEL NOZZLE AND PROCESS OF FABRICATING A FUEL NOZZLE - Disclosed is a fuel nozzle and a process of fabricating a fuel nozzle. The fuel nozzle includes a fuel nozzle end cover and a fuel nozzle insert. The fuel nozzle insert is welded to the fuel nozzle end cover by a welding process selected from the group consisting of beam welding, solid state welding, and combinations thereof and/or the fuel nozzle insert includes a first fuel nozzle insert portion and a second fuel nozzle insert portion. The process includes welding the fuel nozzle insert to the fuel nozzle end cover. | 07-18-2013 |
20130205789 | FUEL NOZZLE END COVER, FUEL NOZZLE, AND PROCESS OF FABRICATING A FUEL NOZZLE END COVER - Disclosed is a fuel nozzle end cover, a fuel nozzle and a process of fabricating a fuel nozzle end cover. The fuel nozzle end cover includes a base material and one or more features extending from the base material into a cavity of the fuel nozzle end cover. The one or more features are secured to the base material by a process selected from the group consisting of beam welding, friction welding, gas tungsten arc welding, gas metal arc welding, and combinations thereof. The fuel nozzle includes a fuel nozzle insert and a fuel nozzle end cover. The process of fabricating the fuel nozzle end cover includes providing a base material and securing one or more features to the base material by a welding process selected from the group consisting of beam welding, friction welding, gas tungsten arc welding, gas metal arc welding, and combinations thereof. | 08-15-2013 |
20130309000 | HYBRID LASER ARC WELDING PROCESS AND APPARATUS - A welding method and apparatus that simultaneously utilize laser beams and arc welding techniques. The welding apparatus generates a first laser beam that is projected onto a joint region between at least two workpieces to produce a first laser beam projection on adjacent surfaces of the workpieces and to cause the first laser beam projection to travel along the joint region and penetrate the joint region. The apparatus also generates an electric arc to produce an arc projection that encompasses the first laser beam projection and travels therewith along the joint region to form a molten weld pool. In addition, the apparatus generates a pair of lateral laser beams that produce lateral laser beams projections that are encompassed by the arc projection and are spaced laterally apart from the joint region to interact with portions of the weld pool that solidify to define weld toes of the weld joint. | 11-21-2013 |
20130309418 | ELECTROSPARK DEPOSITION PROCESS AND SYSTEM FOR REPAIR OF GAS TURBINE - A system and method for repairing a metal substrate includes an electrospark device and an electrode removably supported in the electrode holder. The electrospark device applies a coating of a material when placed into contact with the metal substrate. A cooling device to lowers the temperature of shielding gas flow below an ambient temperature. A conduit is arranged to direct a flow of the shielding gas to the interface of the electrode and the substrate to cool the area of the substrate receiving the coating. | 11-21-2013 |
20130313307 | METHOD FOR MANUFACTURING A HOT GAS PATH COMPONENT - A method for manufacturing a cooling passage in a component of a machine is described. The method may include: forming a channel in a surface of the component, the channel having a predetermined configuration; forming a cover wire, the cover wire having a predetermined configuration based on the predetermined configuration of the channel; nesting the cover wire in the channel; and welding the nested cover wire to the component such that the channel is enclosed. | 11-28-2013 |
20130323533 | REPAIRED SUPERALLOY COMPONENTS AND METHODS FOR REPAIRING SUPERALLOY COMPONENTS - Methods for repairing superalloy components include disposing a single crystal coupon in a void of the superalloy component, disposing one or more shims between the single crystal coupon and the superalloy component, and, welding the one or more shims to join with the single crystal coupon and the superalloy component using a high energy density beam welder. | 12-05-2013 |
20130336800 | CHANNEL MARKER AND RELATED METHODS - Various embodiments of the disclosure include a component, methods of forming components, and methods of cooling components. In some embodiments, a component is disclosed including: a body; a microchannel extending through a portion of the body; a thermal barrier coating (TBC) covering a portion of the microchannel; and a marker member extending from the microchannel through the TBC or from an end of the microchannel, the marker member indicating a location of the microchannel in the body. | 12-19-2013 |
20140008333 | WELDING METHOD AND APPARATUS THEREFOR - Methods and apparatus for welding a component to fill a groove therein. The method entails simultaneously projecting an electric arc and at least first and second laser beams into the groove. The electric arc melts and deposits a filler material in the groove while the first and second laser beams are projected onto opposite first and second walls, respectively, of the groove. The axis of each of the first and second laser beams is oriented at an acute angle relative to the respective wall thereof. | 01-09-2014 |
20140014628 | METHOD OF WELDING ALLOY ARTICLES - A method of welding alloys having a ductility drop temperature range to limit strain-age cracking. The method involves the use of a welding device to weld a weld area of an article while maintaining temperatures throughout the weld area and a heat affected zone adjacent the weld area within a non-crack sensitive temperature range that is above a ductility drop temperature range of the alloy being welded. During welding, the temperatures of the weld area and the heat affected zone are predominantly controlled with heat input from the welding device. Once the welding has been terminated, the weld area and the heat affected zone are cooled from the non-crack sensitive temperature range through the ductility drop temperature range to a temperature below the ductility drop temperature range of the alloy. | 01-16-2014 |
20140017415 | COATING/REPAIRING PROCESS USING ELECTROSPARK WITH PSP ROD - An electrospark deposition electrode and an associated method for depositing coatings using the electrode are provided. The electrode includes a powder of a first metal and a powder of a second metal. The second metal is a braze alloy including nickel, the second metal having a lower melting point than the first metal. The powder of the first metal and the powder of the second metal are sintered together to form the electrode so that the powders are comingled but not combined within the electrode. The method includes depositing a layer of the first metal onto the substrate using an electrospark deposition process. | 01-16-2014 |
20140027410 | METHOD AND SYSTEM FOR REDUCING OVERSIZED HOLES ON TURBINE COMPONENTS - A system is disclosed for reducing an internal diameter of a hole in a metal substrate. The system includes an electrospark device having an electrospark torch and an electrode holder rotatable about an axis. An electrode is removably supported in the electrode holder. The electrospark device configured to apply a coating of a material of which the electrode is formed, to the substrate on an inner wall of the hole when the electrode is rotated within the hole. | 01-30-2014 |
20140027413 | DUAL-WIRE HYBRID WELDING SYSTEM AND METHOD OF WELDING - A dual-wire hybrid welding system includes a hybrid welding apparatus having laser, electric arc welder and second wire feeding device. Electric arc welder includes first wire feeding device for feeding first wire. Second wire feeding device is arranged and disposed to feed a second wire to electric arc welder. Laser and electric arc welder are arranged and disposed to direct energy toward at least two adjacent components along a joint and first wire is a consumable electrode fed into joint to establish molten pool generated by both laser and arc welder with first wire. Second wire is fed to molten pool to form a common molten pool. Common molten pool is operable to provide a full penetration weld with less total heat input to join the at least two adjacent components without cracking the components at a high constant weld speed. | 01-30-2014 |
20140027414 | HYBRID WELDING SYSTEM AND METHOD OF WELDING - A hybrid welding system including a hybrid welding apparatus and method of welding are provided. The hybrid welding apparatus includes a laser, an electric arc welder with a non-consumable electrode and a wire feeding device. The electric arc welder provides an electric arc without feeding a welding wire. The wire feeding device is arranged and disposed to feed a wire to a treatment area, which is located between the projections of laser beam and the electric arc. The laser and the electric arc welder are arranged and disposed to direct energy toward at least two adjacent components to form a common molten pool. The wire is fed by the wire feeding device into the common molten pool created by the laser and the electric arc. | 01-30-2014 |
20140027415 | ADAPTIVE CONTROL HYBRID WELDING SYSTEM AND METHODS OF CONTROLLING - An adaptive control hybrid welding system including hybrid welding apparatus, control system connected to hybrid welding apparatus, and seam tracker connected to control system is provided. Hybrid welding apparatus includes a laser and an electric arc welder. Laser and electric arc welder each have adjustable welding parameters. Control system modifies welding parameters of laser and electric arc welder, and spacing between laser beam and arc of welder. Seam tracker is operable to measure seam property of adjacent workpieces prior to welding. Seam tracker is operable to send signals to control system in response to the measured seam property. Control system modifies welding parameters based on signal from seam tracker and adaptive control hybrid welding apparatus joins adjacent workpieces having variable gap sizes of up to 2.5 mm with full penetration welds. Also provided is a method of controlling the adaptive control hybrid welding system. | 01-30-2014 |
20140034144 | LEAK PLUGGING IN COMPONENTS WITH FLUID FLOW PASSAGES - A method for repairing a component with a leak are disclosed. In an embodiment, a component having at least one fluid flow path with a leak therein is provided. The component may be made of a first material. A second material may be introduced into the fluid flow path, and propelled into the location of the leak in the flow path. Once there, the second material is melted and solidified, forming a plug that occludes the leak. | 02-06-2014 |
20140037981 | CASTING METHODS AND MOLDED ARTICLES PRODUCED THEREFROM - A method comprising introducing a first casting material into a casting mold; applying directional solidification to the first casting material in the casting mold; introducing a second casting material into the casting mold, the second casting material having a different chemical composition than the first casting material; applying directional solidification to the second casting material in the casting mold; and forming a molded article, wherein the molded article comprises a first region | 02-06-2014 |
20140042140 | WELDING PROCESS FOR REPAIR OF THICK SECTIONS - A double-sided tribrid welding technique and apparatus for root pass welding of narrow groove welds. The welding technique utilizes three welding devices. A welding apparatus on a backside of the weld joint may strike an arc on the backside of the weld joint; a welding apparatus on a narrow groove side of the weld may strike an arc within the narrow groove weld joint, while the remaining welding apparatus is a laser that can help establish a keyhole as a common pool of molten metal at the root without burning through the root. Once the arcs are struck substantially simultaneously and the laser is energized, the welding heads move simultaneously, the arc welders assisting in maintaining pre-heat temperature, while minimizing distortion and cracking. Adjusting arc weld parameters provides deformation on completion of the root pass so as to compensate for distortion due to metal shrinkage in subsequent passes. | 02-13-2014 |
20140061171 | HYBRID WELDING APPARATUSES, SYSTEMS AND METHODS - Hybrid welding apparatuses include a laser that produces a leading laser beam, and, an arc welder that produces a trailing backhand weld arc, wherein the leading laser beam and the trailing backhand weld arc are directed towards a common molten pool, and wherein the trailing backhand weld arc trails the leading laser beam as the leading laser beam progresses in a weld direction. | 03-06-2014 |
20140062034 | GAS PATH LEAKAGE SEAL FOR A TURBINE - A gas path leakage seal for a turbine includes a flexible manifold having opposed raised edges; at least one cloth seal layer on one side of the manifold between the opposed raised edges; and a filter material covering at least one end of the at least one cloth seal layer. | 03-06-2014 |
20140099194 | BIMETALLIC TURBINE SHROUD AND METHOD OF FABRICATING - A bimetallic ring for use as a turbine shroud in a gas turbine engine. The bimetallic ring forms a sealing surface as a hot gas flow path boundary in the engine. The ring is comprised of two materials. The first material, a wrought, oxidation resistant metal alloy comprises a first portion, which is the hot gas flow path sealing surface. The second material, a low cost low alloy steel, comprises a second portion that may be at least a pair of supporting side plates. A dissimilar weld joint joins the sealing surface to the second portion, the at least pair of supporting side plates. | 04-10-2014 |
20140120308 | REINFORCED ARTICLES AND METHODS OF MAKING THE SAME - An article comprising a substrate; a bond layer disposed on the substrate, the bond layer comprising one or more bonding segments and at least one reinforcing segment; at least one protective layer disposed on the bond layer; and at least one cooling hole extending through the substrate, the at least one reinforcing segment and the at least one protective layer, wherein the at least one reinforcing segment reduces cracking and/or delamination at the interface between the substrate and the bond layer, and methods of making the same. | 05-01-2014 |
20140126995 | MICROCHANNEL COOLED TURBINE COMPONENT AND METHOD OF FORMING A MICROCHANNEL COOLED TURBINE COMPONENT - A microchannel cooled turbine component includes a first portion of the microchannel cooled turbine component having a substrate surface. Also included is a second portion of the microchannel cooled turbine component comprising a substance that is laser fused on the substrate surface. Further included is at least one microchannel extending along at least one of the first portion and the second portion, the at least one microchannel formed and enclosed upon formation of the second portion. | 05-08-2014 |
20140138358 | COMPONENT REPAIR ARRANGEMENT AND METHOD - A component repair arrangement includes a material depositing electrospark rod configured to deposit a material onto the component. Also included is a first routing hose for flowing a first shielding gas to a location proximate a tip of the material depositing electrospark rod, the first shielding gas removing a plurality of sparks generated proximate the tip. | 05-22-2014 |
20140170433 | COMPONENTS WITH NEAR-SURFACE COOLING MICROCHANNELS AND METHODS FOR PROVIDING THE SAME - Methods for providing a near-surface cooling microchannel in a component include forming a near-surface cooling microchannel in a first surface of a pre-sintered preform, disposing the first surface of the pre-sintered preform onto an outer surface of the base article such that an opening of the outer surface of the base article is aligned with the near-surface cooling microchannel in the first surface of the pre-sintered preform, and, heating the pre-sintered preform to bond it to the base article, wherein the opening of the outer surface of the base article remains aligned with the near-surface cooling microchannel in the first surface of the pre-sintered preform. | 06-19-2014 |
20140212208 | BRAZING PROCESS AND PLATE ASSEMBLY - A brazing process and plate assembly are disclosed. The brazing process includes positioning a braze foil on a first workpiece, then securing the braze foil to the first workpiece to form a brazable component, then positioning a second workpiece proximal to the brazable component, and then brazing the second workpiece to the brazable component. Additionally or alternatively, the brazing process includes positioning the braze foil on a tube, then securing the braze foil to the tube to form a brazable tube, then positioning a plate of a plate assembly proximal to the brazable tube, and then brazing the plate to the brazable tube. The plate assembly includes a plate and a tube brazed to the plate by a braze foil secured to the tube. | 07-31-2014 |
20140212628 | MULTILAYER COMPONENT AND FABRICATION PROCESS - A multilayer component and fabrication process are disclosed. The multilayer component includes a foil surface layer abutting the bond coat layer and a channel-forming material positioned between the foil surface layer and a substrate. The channel-forming material defines at least a portion of a channel. The channel can be at least partially defined by a channel-forming material brazed with a foil surface layer to a substrate of the multilayer component. The process includes applying one or more layers to a foil surface layer and applying a channel-forming material to at least partially define a channel between the foil surface layer and a substrate. | 07-31-2014 |
20140212681 | JOINING PROCESS AND JOINED ARTICLE - A joining process and a joined article are disclosed. The joining process includes positioning an article having a base material, and friction welding a pre-sintered preform to the base material. The pre-sintered preform forms a feature on the article. The joined article includes a feature joined to a base material by friction welding of a pre-sintered preform. | 07-31-2014 |
20140220376 | BRAZING PROCESS, BRAZE ARRANGEMENT, AND BRAZED ARTICLE - A brazing process, a braze arrangement, and a brazed article are disclosed. The brazing process includes brazing an article with a braze arrangement. The braze arrangement includes a first braze material and a second braze material, the first braze material having a first melting point and the second braze material having a second melting point, the first melting point differing from the second melting point. The brazed article includes a treatment region, a first brazed material positioned within the treatment region, and a second brazed material positioned distal from the article in comparison to the first brazed material. The first brazed material is formed by the first braze material and the second brazed material is formed by the second braze material. | 08-07-2014 |
20140237784 | METHOD OF FORMING A MICROCHANNEL COOLED COMPONENT - A method of forming a microchannel cooled component is provided. The method includes forming at least one microchannel within a surface of a relatively planar plate. The method also includes placing a relatively planar cover member over the surface having the at least one microchannel formed therein. The method further includes adhering the relatively planar cover member to the relatively planar plate. The method yet further includes curving the microchannel cooled component by pressing the relatively planar cover member with a forming component for at least a portion of a time period of adhering the relatively planar cover member to the relatively planar plate. | 08-28-2014 |
20140260327 | COOLED ARTICLE - The present invention is an article containing internal cooling channels located near at least one surface. In an embodiment, the cooled article includes a base material, a first layer, and a second layer. Here, the first layer is bonded to the base material and the second layer is bonded to the first layer, wherein at least one closed cooling channel is disposed within a portion of the first layer and a portion of the second layer. | 09-18-2014 |
20140335373 | JOINING PROCESS, JOINED ARTICLE, AND PROCESS OF FABRICATING A JOINED ARTICLE - Joining process, joined article, and process of fabricating a joined article are disclosed. The joining process includes providing a consumable electrode comprising a first material and a second material, melting the consumable electrode by a current-induced melting or remelting, and re-solidifying the first material and the second material to form a dissimilar ingot having a first region being a re-solidification of the first material and a second region being a re-solidification of the second material. The joined article includes the first region and the second region; the dissimilar ingot at least partially defines the joined article. The process of fabricating includes providing the dissimilar ingot, positioning the dissimilar ingot within a die, and applying force from the die to compress the dissimilar ingot, thereby forming the joined article. | 11-13-2014 |
20140342139 | CASTING METHOD, CAST ARTICLE AND CASTING SYSTEM - A casting method, cast article and casting system are disclosed. The casting method includes providing a base material in a mold, directing a fluid material into the mold, and solidifying the base material and the fluid material to form a cast article. The base material has a first density and first composition. The fluid material has a second density and a second composition. The first density differs from the second density, the first composition differs from the second composition, or the first density differs from the second density and the first composition differs from the second composition. The cast article includes a first material solidification from the base material, and a second material solidification from the fluid material. The casting system includes a mold for containing a base material and an input configuration, with flow control feature, for directing a fluid material into the mold containing the base material. | 11-20-2014 |
20140352835 | WELDING PROCESS, WELDING SYSTEM, AND WELDED ARTICLE - A welding process, welding system and welded article are disclosed. The welding process includes generating a first beam from a stationary fusion apparatus and generating a second beam from a rotatable fusion apparatus. The first beam and the second beam form a weld in an article. The welding system includes a stationary fusion apparatus and a rotatable fusion apparatus directed at an article to be welded, the stationary fusion apparatus and rotatable fusion apparatus being arranged and disposed to form a single weld in the article. The welded article includes a first element welded to a second element, the welded article having a decreased root reinforcement, in an inaccessible region, from that of a hybrid stationary fusion apparatus. | 12-04-2014 |
20140369741 | JOINING PROCESS AND JOINED ARTICLE - A joining process and a joined article are disclosed. The joining process includes positioning an article having a base material, and friction joining a pre-sintered preform to the base material. The pre-sintered preform forms a feature on the article. The joined article includes a feature joined to a base material by friction joining of a pre-sintered preform. | 12-18-2014 |
20150017018 | TURBINE COMPONENT AND METHODS OF ASSEMBLING THE SAME - A turbine component is provided. The turbine component includes an airfoil having a first surface and a second surface. A thermal barrier coating is coupled to the second surface, wherein the thermal barrier coating includes a first portion, a second portion and a trench defined between the first and second portions. A channel is coupled in flow communication to the first surface and the trench, wherein the channel includes a first sidewall and a second sidewall opposite of the first sidewall. The first and second sidewalls extend from the first surface and toward the trench at an angle. The turbine component includes a cover coupled to the second surface, wherein the cover includes a first end coupled to the first portion and a second end extending into the trench and spaced from the second portion. | 01-15-2015 |
20150030460 | METHODS FOR MODIFYING COOLING HOLES WITH RECESS-SHAPED MODIFICATIONS AND COMPONENTS INCORPORATING THE SAME - Methods for modifying a plurality of cooling holes of a component include disposing a recess-shaped modification in a recess of the component comprising a plurality of cooling hole outlets, wherein the recess-shaped modification is formed to substantially fill the recess and comprising a plurality of modified cooling holes passing there through. The method further includes aligning the plurality of modified cooling holes of the recess-shaped modification with the plurality of cooling hole outlets of the component, and, bonding the recess-shaped modification disposed in the recess to the component, wherein the plurality of modified cooling holes of the recess-shaped modification is fluidly connected with the plurality of cooling holes of the component. | 01-29-2015 |
20150056469 | METHOD OF FABRICATING A COMPONENT AND A MANUFACTURED COMPONENT - A method of fabricating a component and a fabricated component are disclosed. The method includes depositing a material to a component and manipulating the material to form a boundary region and a filler region for desired properties. The component includes the boundary region and the filler region, thereby having the desired properties. | 02-26-2015 |
20150064019 | Gas Turbine Components with Porous Cooling Features - The present application provides a hot gas path component for use with a gas turbine engine. The hot gas path component may include an airfoil, an internal cooling cavity, and a porous section created by a direct metal laser melting technique. The porous section may be built into the airfoil or the airfoil may be built separately and attached to the airfoil. | 03-05-2015 |
20150068629 | THREE-DIMENSIONAL PRINTING PROCESS, SWIRLING DEVICE AND THERMAL MANAGEMENT PROCESS - A three-dimensional printing process, a swirling device, and a thermal management process are disclosed. The three-dimensional printing process includes distributing a material to a selected region, selectively laser melting the material, and forming a swirling device from the material. The swirling device is printed by selective laser melting. The thermal management process includes providing an article having a swirling device printed by selective laser melting, and cooling a portion of the article by transporting air through the swirling device. | 03-12-2015 |
20150086408 | METHOD OF MANUFACTURING A COMPONENT AND THERMAL MANAGEMENT PROCESS - A method of manufacturing a component and a method of thermal management are provided. The methods include forming at least one portion of the component, printing a cooling member of the component and attaching the at least one portion to the cooling member of the component. The cooling member includes at least one cooling feature. The at least one cooling feature includes at least one cooling channel adjacent to a surface of the component, wherein printing allows for near-net shape geometry of the cooling member with the at least one cooling channel being located within a range of about 127 (0.005 inches) to about 762 micrometers (0.030 inches) from the surface of the component. The method of thermal management also includes transporting a fluid through at least one fluid pathway defined by the at least one cooling channel within the component to cool the component. | 03-26-2015 |