Patent application number | Description | Published |
20080199937 | Reagent Composition and Methods of Using and Forming the Same - A reagent composition containing GDH-PQQ as an enzyme-co-factor and screen-printed on working and counter electrodes of electrochemical biosensors, maintains activity of the enzyme reagents by proper selection of components. A preferred composition includes hydrophilic polymers, amorphous untreated silica, buffers, surfactants, and a mediator For example, the biosensor is useful in the amperometric determination of glucose. | 08-21-2008 |
20090152128 | Test Sensor Reagent Having Cellulose Polymers - A test sensor reagent for measuring the concentration of analytes in body fluids includes cellulose polymers for improving the stability of the test sensor and reducing the total assay time. The test sensor reagent also includes an enzyme, an electron transfer mediator and a rheological additive. | 06-18-2009 |
20150076003 | Test Sensors and Methods of Using The Same - A reagent composition containing GDH-PQQ as an enzyme-co-factor and screen-printed on working and counter electrodes of electrochemical biosensors, maintains activity of the enzyme reagents by proper selection of components. A preferred composition includes hydrophilic polymers, amorphous untreated silica, buffers, surfactants, and a mediator. | 03-19-2015 |
Patent application number | Description | Published |
20120159127 | SECURITY SANDBOX - Different instruction sets are provided for different units of execution such as threads, processes, and execution contexts. Execution units may be associated with instruction sets. The instruction sets may have mutually exclusive opcodes, meaning an opcode in one instruction set is not included in any other instruction set. When executing a given execution unit, the processor only allows execution of instructions in the instruction set that corresponds to the current execution unit. A failure occurs if the execution unit attempts to directly execute an instruction in another instruction set. | 06-21-2012 |
20120159143 | KERNEL AWARENESS OF PHYSICAL ENVIRONMENT - Techniques to implement physically aware kernels are described. A kernel or operating system controlling resources and processing on a computer is rendered environmentally aware. The physical environment of a computer is measured by one or more sensors. The measurements or observations are evaluated. When a pre-specified environmental condition exists according the measurements or observations, the kernel is adapted accordingly. The core behavior of the kernel, such as how it manages memory or how it manages processes, is modified in light of sensed environmental conditions. That is, kernel-level functionality, as opposed to user-space application code, is modified in response to specific environmental conditions. An embodiment may have a policy engine that monitors sensor observations and an enforcement module that reaches into the kernel to modify the kernel based on conclusions reached by the policy engine. In another embodiment, the kernel itself stores, monitors, and responds to environment data. | 06-21-2012 |
Patent application number | Description | Published |
20120159193 | SECURITY THROUGH OPCODE RANDOMIZATION - An opcode obfuscation system is described herein that varies the values of opcodes used by operating system or application code while the application is stored in memory. The system puts application code through a translation process as the application code is loaded, so that the code sits in memory with an altered instruction set. If new and potentially malicious code is injected into the process, its instruction set will not match that of the translated application code. As time to execute the application code approaches, the system puts the application code through a reverse translation process that converts the application code back to the original opcodes. Any malicious code injected into the process will also undergo the reverse translation, which will have the effect of making the malicious code detectable as invalid or erroneous. | 06-21-2012 |
20120159454 | PROBE INSERTION VIA BACKGROUND VIRTUAL MACHINE - A performance monitoring system is described herein that works with a hypervisor to reserve resources outside of a virtual machine to monitor performance of an application running within the virtual machine. The application receives the guaranteed amount of resources specified by the virtual machine's specifications, and the monitoring consumes resources not associated with the virtual machine. The application running in the virtual machine is already isolated by the hypervisor from the physical machine, and thus additional burdens on the physical machine that allow the hypervisor to continue meeting guarantees to the virtual machine will not impact application performance. The performance monitoring system provides instrumentation of deployed applications that information technology (IT) personnel can dynamically turn on and off without affecting the performance of the deployed application. The performance monitoring system provides a robust framework for monitoring production applications without affecting the performance of those applications during execution. | 06-21-2012 |
20120159478 | VIRTUAL MACHINE BRANCHING AND PARALLEL EXECUTION - A state branching system is described herein that allows parallel execution of complex state transitions while leveraging time invested to setup a starting state. By allowing branching at the virtual machine level, the state branching system allows setup of a particular condition or state in a virtual machine, then copying and branching to parallel instances of the virtual machine to explore different possible subsequent states. Upon detecting a large state change with unknown outcome, the state branching system instructs the hypervisor to copy the executing virtual machine into one or more separate virtual machines. The system then allows divergent branching between the two or more virtual machines to explore different states from a similar starting point. Once the executions have reached the next state, the system coordinates to determine which copies will continue execution. Thus, the state branching system allows faster exploration of complex state changes. | 06-21-2012 |
20120166604 | FLEXIBLE POLICY BASED NETWORK DECISIONMAKING - A network policy system is described herein that allows computing devices to manage and control various networking decisions based on a specific policy defined by a policy administrator that may include the device manufacturer, information technology (IT) personnel maintaining the devices, or the network provider. The policies can include many factors defined by the policy administrator under various conditions, including cost, power consumption, central processing unit (CPU) time, battery life, use of pooled minutes, and so forth. Packet routing in the device happens today primarily based on hardcoded factors such as bandwidth availability or cost, but there may be other considerations that appeal to policy administrators. The network policy system allows the policy administrator to define one or more flexible policies suited to the administrator's purpose. | 06-28-2012 |
20120324196 | MEMORY MANAGER WITH ENHANCED APPLICATION METADATA - A memory management system is described herein that receives information from applications describing how memory is being used and that allows an application host to exert more control over application requests for using memory. The system provides an application memory management application-programming interface (API) that allows the application to specify more information about memory allocations that is helpful for managing memory later. The system also provides an ability to statically and/or dynamically analyze legacy applications to give applications that are not modified to work with the system some ability to participate in more effective memory management. The system provides application host changes to leverage the information provided by applications and to manage memory more effectively using the information and hooks into the application's use of memory. Thus, the system provides a new model for managing memory that improves application host behavior and allows applications to use computing resources more efficiently. | 12-20-2012 |
20120324197 | MEMORY MANAGEMENT MODEL AND INTERFACE FOR UNMODIFIED APPLICATIONS - A memory management system is described herein that receives information from applications describing how memory is being used and that allows an application host to exert more control over application requests for using memory. The system provides an application memory management application-programming interface (API) that allows the application to specify more information about memory allocations that is helpful for managing memory later. The system also provides an ability to statically and/or dynamically analyze legacy applications to give applications that are not modified to work with the system some ability to participate in more effective memory management. The system provides application host changes to leverage the information provided by applications and to manage memory more effectively using the information and hooks into the application's use of memory. Thus, the system provides a new model for managing memory that improves application host behavior and allows applications to use computing resources more efficiently. | 12-20-2012 |
20120324198 | MEMORY MANAGEMENT MODEL AND INTERFACE FOR NEW APPLICATIONS - A memory management system is described herein that receives information from applications describing how memory is being used and that allows an application host to exert more control over application requests for using memory. The system provides an application memory management application-programming interface (API) that allows the application to specify more information about memory allocations that is helpful for managing memory later. The system also provides an ability to statically and/or dynamically analyze legacy applications to give applications that are not modified to work with the system some ability to participate in more effective memory management. The system provides application host changes to leverage the information provided by applications and to manage memory more effectively using the information and hooks into the application's use of memory. Thus, the system provides a new model for managing memory that improves application host behavior and allows applications to use computing resources more efficiently. | 12-20-2012 |
20140201739 | VIRTUAL MACHINE BRANCHING AND PARALLEL EXECUTION - A state branching system is described herein that allows parallel execution of complex state transitions while leveraging time invested to setup a starting state. By allowing branching at the virtual machine level, the state branching system allows setup of a particular condition or state in a virtual machine, then copying and branching to parallel instances of the virtual machine to explore different possible subsequent states. Upon detecting a large state change with unknown outcome, the state branching system instructs the hypervisor to copy the executing virtual machine into one or more separate virtual machines. The system then allows divergent branching between the two or more virtual machines to explore different states from a similar starting point. Once the executions have reached the next state, the system coordinates to determine which copies will continue execution. Thus, the state branching system allows faster exploration of complex state changes. | 07-17-2014 |