Patent application number | Description | Published |
20090158015 | Uses of Known Good Code for Implementing Processor Architectural Modifications - In one embodiment, a processor comprises a programmable map and a circuit. The programmable map is configured to store data that identifies at least one instruction for which an architectural modification of an instruction set architecture implemented by the processor has been defined, wherein the processor does not implement the modification. The circuitry is configured to detect the instruction or its memory operands and cause a transition to Known Good Code (KGC), wherein the KGC is protected from unauthorized modification and is provided from an authenticated entity. The KGC comprises code that, when executed, emulates the modification. In another embodiment, an integrated circuit comprises at least one processor core; at least one other circuit; and a KGC source configured to supply KGC to the processor core for execution. The KGC comprises interface code for the other circuit whereby an application executing on the processor core interfaces to the other circuit through the KGC. | 06-18-2009 |
20090183245 | Limited Functionality Mode for Secure, Remote, Decoupled Computer Ownership - In one embodiment, a computer system comprises one or more components and a secure computing environment coupled to the components. The secure computing environment is configured to program at least one of the components to enter a limited functionality mode responsive to expiration of a use right to the computer system, wherein operation of the computer system in the limited functionality mode is reduced compared to operation when the use right has not expired. The secure computing environment is configured to monitor the components in the limited functionality mode to detect that a limited functionality mode configuration has been modified by an unauthorized entity and to cause the computer system to enter a second mode in which operation of the computer system is reduced compared to operation in the limited functionality mode in response. In another embodiment, the secure computing environment detects a non-temporal event that indicates a violation of an owner-imposed restriction and enters a limited functionality mode. | 07-16-2009 |
20090193230 | COMPUTER SYSTEM INCLUDING A MAIN PROCESSOR AND A BOUND SECURITY COPROCESSOR - A computer system includes a main processor and a security control processor that is coupled to the main processor and configured to control and monitor an operational state of the main processor. To ensure the computer system may be trusted, the security control processor may be configured to hold the main processor in a slave mode during initialization of the security control processor such that the main processor is not operable to fetch and execute instructions from an instruction source external to the main processor, for example. In addition, the security control processor may be configured to initialize the operational state of the main processor to a predetermined state by transferring to the main processor via a control interface one or more instructions and to cause the main processor to execute the one or more instructions while the main processor is held in the slave mode. | 07-30-2009 |
20100174890 | Known Good Code for On-Chip Device Management - In one embodiment, a processor comprises a programmable map and a circuit. The programmable map is configured to store data that identifies at least one instruction for which an architectural modification of an instruction set architecture implemented by the processor has been defined, wherein the processor does not implement the modification. The circuitry is configured to detect the instruction or its memory operands and cause a transition to Known Good Code (KGC), wherein the KGC is protected from unauthorized modification and is provided from an authenticated entity. The KGC comprises code that, when executed, emulates the modification. In another embodiment, an integrated circuit comprises at least one processor core; at least one other circuit; and a KGC source configured to supply KGC to the processor core for execution. The KGC comprises interface code for the other circuit whereby an application executing on the processor core interfaces to the other circuit through the KGC. | 07-08-2010 |
20130159750 | METHOD AND APPARATUS FOR TRANSITIONING A SYSTEM TO AN ACTIVE DISCONNECT STATE - A processor includes a processor core and a power management controller operable to receive a timer event, store the timer event, generate a hardware system sleep command to enter a hardware system sleep state, and restore the timer event upon exiting from the hardware system sleep state. | 06-20-2013 |
20140129810 | Known Good Code for On-Chip Device Management - In one embodiment, a processor comprises a programmable map and a circuit. The programmable map is configured to store data that identifies at least one instruction for which an architectural modification of an instruction set architecture implemented by the processor has been defined, wherein the processor does not implement the modification. The circuitry is configured to detect the instruction or its memory operands and cause a transition to Known Good Code (KGC), wherein the KGC is protected from unauthorized modification and is provided from an authenticated entity. The KGC comprises code that, when executed, emulates the modification. In another embodiment, an integrated circuit comprises at least one processor core; at least one other circuit; and a KGC source configured to supply KGC to the processor core for execution. The KGC comprises interface code for the other circuit whereby an application executing on the processor core interfaces to the other circuit through the KGC. | 05-08-2014 |
Patent application number | Description | Published |
20080318496 | METHODS OF CRYSTALLOGRAPHICALLY REORIENTING SINGLE CRYSTAL BODIES - A method of changing the crystallographic orientation of a single crystal body is disclosed that includes the steps of characterizing a crystallographic orientation of the single crystal body and calculating a misorientation angle between a select crystallographic direction of the single crystal body and a projection of the crystallographic direction along a plane of a first exterior major surface of the single crystal body. The method further includes removing material from at least a portion of the first exterior major surface to change the misorientation angle. | 12-25-2008 |
20090161285 | ELECTROSTATIC CHUCK AND METHOD OF FORMING - An electrostatic chuck includes an insulating layer, a conductive layer overlying the insulating layer, a dielectric layer overlying the conductive layer, the dielectric layer having pores forming interconnected porosity, and a cured polymer infiltrant residing in the pores of the dielectric layer. | 06-25-2009 |
20090170992 | ETCH RESISTANT POLYMER COMPOSITION - A composite material includes a polymer and a colloidal metal oxide. The composite material has a Plasma Etch Index of 40 relative to a polymer absent the colloidal metal oxide. | 07-02-2009 |
20100323124 | SEALED PLASMA COATINGS - A processing device includes a plurality of walls defining an interior space configured to be exposed to plasma and a surface coating on the interior surface of at least one of the plurality of walls. The surface coating includes pores forming interconnected porosity. The processing device further includes a sealant residing in at least a portion of the pores of the surface coating. In an embodiment, the sealant can be a thermally cured sealant having a cure temperature not greater than about 100° C. In another embodiment, the sealant can be an epoxy sealant having a viscosity of not greater than 500 cP in liquid precursor form. In yet another embodiment, the sealant can be a low shrinkage sealant characterized by a solidification shrinkage of not greater than 8%. | 12-23-2010 |
20110091700 | MICROELECTRONIC PROCESSING COMPONENT HAVING A CORROSION-RESISTANT LAYER, MICROELECTRONIC WORKPIECE PROCESSING APPARATUS INCORPORATING SAME, AND METHOD OF FORMING AN ARTICLE HAVING THE CORROSION-RESISTANT LAYER - A microelectronic processing component can include a substrate and a corrosion-resistant layer. The substrate can include a metal-containing material, and the corrosion-resistant layer can be adjacent to the surface region. The corrosion-resistant layer can include a first portion and a second portion each including a rare earth compound, wherein the first portion is disposed between the substrate and the second portion, and the first portion has a first porosity, and the second portion has a second porosity that is greater than the first porosity. The component can be component within a processing apparatus used to process microelectronic workpieces. In a particular embodiment, the component can be exposed to the processing conditions as seen by the microelectronic workpiece when fabrication a microelectronic device from the microelectronic workpiece. Methods can be used to achieve the difference in porosity, and such methods can be for articles other than microelectronic processing components. | 04-21-2011 |
Patent application number | Description | Published |
20120267557 | Butterfly Valve - A butterfly valve having a valve body is provided. The butterfly valve includes a valve disk assembly rotationally coupled to the valve body. The valve disk assembly has a disk member with a first surface disposed about a periphery having a first diameter and a second surface offset from the first surface. A seal ring is arranged adjacent the first surface, the seal ring having a first outer surface with a second diameter, wherein the second diameter is larger than the first diameter. A retainer is coupled to the second surface adjacent the seal ring opposite the first surface. The retainer has inner surface arranged to radially constraining the seal ring on the disk member. | 10-25-2012 |
20130276916 | OVERPRESSURE RELIEF VALVE ASSEMBLY - An overpressure relief valve assembly includes an outer housing having an inlet at a first end opening to an inlet cavity and an outlet at an opposite second end opening to an outlet cavity, and a valve located in the outer housing, the valve including a valve housing that is fixed with respect to the outer housing and an actuator movable within the valve housing to alternatingly cut off and allow communication between the inlet cavity and the outlet cavity. | 10-24-2013 |
20130283815 | INTEGRAL COOLING FOR SERVO VALVE - A cooling structure for a servo valve includes a shroud to enclose at least a portion of the servo valve; and a base connected to the shroud to define a cooling chamber surrounding the servo valve, the base including an inlet port to receive cooling air, a flow channel connecting to the inlet port and a plurality of flow passages connecting the flow channel to the cooling chamber to allow cooling air flow from the inlet port into the cooling chamber. | 10-31-2013 |
20140109978 | AIRCRAFT BLEED SYSTEM AND METHOD OF CONTROLLING AN AIRCRAFT BLEED SYSTEM - An aircraft bleed system includes a low pressure supply port for delivering a first fluid at a first pressure. Also included is a high pressure supply port for delivering a second fluid at a second pressure, the second pressure greater than the first pressure. Further included is a feedback circuit in operable communication with the high pressure supply port for receiving the second fluid. The feedback circuit includes a first branch configured to route the second fluid to a high pressure control piston for manipulating the high pressure control piston between a high pressure closed position and a high pressure open position. The feedback circuit also includes a second branch configured to route the second fluid to a low pressure control piston moveably disposed within the high pressure control piston for manipulating the low pressure control piston between a low pressure closed position and a low pressure open position. | 04-24-2014 |
20140299808 | BALL SHAFT FOR A LIQUID COOLANT VALVE - A ball shaft for a coolant valve includes a body extending from a first end to a second end through an intermediate portion defining an axis of rotation, and a ball section formed on the intermediate portion. The ball section includes an outer surface, an inner surface that forms a coolant receptacle, and a slotted opening extending from the outer surface to the inner surface. The slotted opening includes a width of between about 0.0374″ (0.696 mm) and about 0.0364″ (0.670 mm). | 10-09-2014 |
20140346379 | BACKFLOW PREVENTION VALVE - A valve assembly includes an outer housing having a first opening in fluid communication with a first fluid, a second opening in fluid communication with a second fluid, a third opening in fluid communication with a third fluid and a fourth opening in fluid communication with a fourth fluid. The valve assembly includes a piston configured to slide within the outer housing into a first position at which the third opening is blocked from fluid communication with the fourth opening based on a fluid pressure of the first fluid being greater than a fluid pressure of the fourth fluid. The piston is further configured to slide within the outer housing into a second position at which the third opening is in fluid communication with the fourth opening based on the fluid pressure of the second fluid being greater than the fluid pressure of the fourth fluid. | 11-27-2014 |
20140366964 | REVERSE FLOW RELIEF VALVE - A bleed valve system includes a bleed valve, a valve regulator, a valve actuator and a reverse flow relief valve. The bleed valve is opened and closed to control a flow of bleed air from an upstream inlet to a downstream outlet. The valve regulator provides a servo pressure used to regulate the position of the bleed valve, and the valve actuator is mechanically connected to open/close the bleed valve based on the servo pressure provided by the valve regulator. The reverse flow relief valve compares a pressure upstream of the bleed valve to a pressure downstream of the bleed valve and in response to the downstream pressure exceeding the upstream pressure creates a fluid communication path between the servo pressure and an ambient pressure to decrease the servo pressure such that the bleed valve is closed. | 12-18-2014 |
20140366965 | INTEGRAL FILTER AND REGULATOR FOR VALVE - A valve assembly comprises a closure element disposed in a flow control duct, a fluid-driven actuator assembly, a shaft operable to translate linear movement of the actuator assembly into rotation of the closure element, and an integral filter and pressure regulator unit disposed in line with an actuator fluid supply passage. The actuator fluid supply passage extends between the flow control duct and the actuator assembly. The integral filter and pressure regulator unit includes a regulator housing having at least one cylindrical wall surrounding a vent cavity and a regulator cavity. Filter media is secured to the regulator housing and is disposed across a regulator orifice in communication with the regulator cavity. | 12-18-2014 |