Patent application number | Description | Published |
20080273918 | FLUIDIC CONNECTORS AND MICROFLUIDIC SYSTEMS - Fluidic connectors, methods, and devices for performing analyses (e.g., immunoassays) in microfluidic systems are provided. In some embodiments, a fluidic connector having a fluid path is used to connect two independent channels formed in a substrate so as to allow fluid communication between the two independent channels. One or both of the independent channels may be pre-filled with reagents (e.g., antibody solutions, washing buffers and amplification reagents), which can be used to perform the analysis. These reagents may be stored in the channels of the substrate for long periods amounts of time (e.g., 1 year) prior to use. Prior to connection of the fluid connector and the substrate, the fluid path may be filled with a sample (e.g., blood). The sample may be obtained, for example, by pricking a finger of a user until blood is drawn from the finger into the fluid path (e.g., by capillary forces). Upon connection of the fluidic connector and the channels of the substrate, the sample can pass through a reaction area within the first channel of the substrate. This process can allow components of the sample to interact with components disposed in the reaction area. Afterwards, reagents from the second channel can flow to the reaction area via the fluid path, allowing components in the reaction area to be processed (e.g., amplified to produce detectable signal). Components in the reaction area can then be determined using various methods of detection. | 11-06-2008 |
20100278798 | METHODS AND SYSTEMS FOR FORMING BIOCOMPATIBLE MATERIALS - Methods and systems forming biocompatible materials are disclosed herein. Forming a biocompatible material may include contacting a liquid, having a linking material, with an adjoining material having embedded therein a nucleating material that causes the linking material to nucleate and grow into the liquid. After a time sufficient to cause the linking material to grow substantially from the nucleating material into a space occupied by the liquid, the liquid may be solidified to form a solid such that the linking material secures the solid to the adjoining material. | 11-04-2010 |
20100279310 | ASSAY DEVICE AND METHOD - An assay method is described, which comprises the steps of immobilizing a binding partner (e.g., an antigen or antibody) for an analyte to be detected (e.g., an antibody or antigen) on a portion of a surface of a microfluidic chamber; passing a fluid sample over the surface and allowing the analyte to bind to the binding partner; allowing a metal colloid, e.g., a gold-conjugated antibody, to associate with the bound analyte; flowing a metal solution, e.g., a silver solution, over the surface such as to form an opaque metallic layer; and detecting the presence of said metallic layer, e.g., by visual inspection or by measuring light transmission through the layer, conductivity or resistance of the layer, or metal concentration in the metal solution after flowing the metal solution over the surface. | 11-04-2010 |
20110015739 | SYSTEMS AND METHODS FOR FORMING PATTERNED EXTRACELLULAR MATRIX MATERIALS - An extracellular matrix (ECM)-based scaffold suitable for artificial skin as well as other structures can be formed using a bioreactor fabricated with a pattern that introduces desired structural features, on the microscale and/or nanoscale, to ECM-precursors gelled in the bioreactor. The bioreactor can produce a finely patterned scaffold—over clinically relevant size scales—sufficiently robust for routine handling. Preformed ECM-based scaffolds can also have microscale and/or nano-scale structural features introduced into a surface thereof. ECM-based scaffolds may be formed with well-defined structural features via microetching and/or remodeling via ‘contact degradation.’ A surface-activated pattern can be used to degrade the ECM-based scaffold at contact regions between the pattern and the ECM. The produced ECM-based scaffolds can have structures of dimensions conducive to host tissue ingrowth while preserving the fibrous structure and ligand density of natural ECMs. | 01-20-2011 |
20110028341 | METHODS, DEVICES, AND SYSTEMS FOR CHEMILUMINESCENCE-BASED MICROFLUIDIC CELL COUNTING - A chemiluminescence-based detection system and method for counting blood cells by capturing and isolating target blood cells flowing through a microfluidic chip and detecting light emitted by the captured target blood cells. | 02-03-2011 |
20110243790 | MICROFLUIDIC DEVICE FOR COUNTING BIOLOGICAL PARTICLES - A particle counter for analyzing blood has features which provide for automatic operation and preferably, also provide for portable use in a low resource setting. In a preferred embodiment, preferred embodiment, the device is used to obtain CD4 counts for AIDS diagnosis. | 10-06-2011 |
20110315229 | FLUID DELIVERY SYSTEM AND METHOD - A method and apparatus for delivering one or more fluids. Fluids may be delivered sequentially from a common vessel to a chemical, biological or biochemical process. | 12-29-2011 |
20120238033 | FLUIDIC CONNECTORS AND MICROFLUIDIC SYSTEMS - Fluidic connectors, methods, and devices for performing analyses (e.g., immunoassays) in microfluidic systems are provided. In some embodiments, a fluidic connector having a fluid path is used to connect two independent channels formed in a substrate so as to allow fluid communication between the two independent channels. One or both of the independent channels may be pre-filled with reagents (e.g., antibody solutions, washing buffers and amplification reagents), which can be used to perform the analysis. These reagents may be stored in the channels of the substrate for long periods amounts of time (e.g., 1 year) prior to use. | 09-20-2012 |
20120269701 | FLUIDIC CONNECTORS AND MICROFLUIDIC SYSTEMS - Fluidic connectors, methods, and devices for performing analyses (e.g., immunoassays) in microfluidic systems are provided. In some embodiments, a fluidic connector having a fluid path is used to connect two independent channels formed in a substrate so as to allow fluid communication between the two independent channels. One or both of the independent channels may be pre-filled with reagents (e.g., antibody solutions, washing buffers and amplification reagents), which can be used to perform the analysis. These reagents may be stored in the channels of the substrate for long periods amounts of time (e.g., 1 year) prior to use. | 10-25-2012 |
20130030354 | SYSTEMS, METHODS, AND DEVICES FOR IN VIVO DELIVERY USING REMOTE ACTUATION OF IMPLANTABLE HYDROGEL MEMS DEVICES - MicroElectroMechanical System (MEMS) devices can be fabricated completely of hydrogel materials. Such hydrogels can include polyethylene glycol with diacrylate functional groups (e.g., PEGDA), which are photopolymerizable in the presence of crosslinkers and photoinitiators. By using PEGDA monomers of different molecular weights and at different percentages, the mechanical properties of the polymerized gels and their respective permeabilities can be tuned. This spatial variation in properties and permeabilities can lead to different functionalities between different portions of the hydrogel MEMS device. Portions of the hydrogel device may be remotely actuated by applying wave energy, for example, a magnetic field, high intensity focused ultrasound, and/or infrared radiation. The remote actuation can allow the device to be actuated in vivo, for example, to allow the device to deliver a drug or other substance at a desired time and/or desired location within a patient. | 01-31-2013 |
20130096029 | MULTIPLEXED IN VIVO SCREENING OF BIOLOGICAL SAMPLES - Microfabricated platforms can be used to study a heterogeneous panel of biosamples in a realistic in vivo setting. The platform can be formed of a polymer (e.g., a hydrogel) and can be constructed for implantation into an animal host for in vivo testing. The platform can have a plurality of testing regions therein that are constructed to allow exposure of the testing region to the host stroma when implanted in vivo. For example, the microfabricated platform can be used for screening different cancer cell-lines (e.g., to identify which cell line responds to an anti-cancer drug) or for screening different biomaterials (e.g., to identify a composition with ideal host response for a specific implantable device). | 04-18-2013 |
20130157286 | FLUIDIC CONNECTORS AND MICROFLUIDIC SYSTEMS - Fluidic connectors, methods, and devices for performing analyses (e.g., immunoassays) in microfluidic systems are provided. In some embodiments, a fluidic connector having a fluid path is used to connect two independent channels formed in a substrate so as to allow fluid communication between the two independent channels. One or both of the independent channels may be pre-filled with reagents (e.g., antibody solutions, washing buffers and amplification reagents), which can be used to perform the analysis. These reagents may be stored in the channels of the substrate for long periods amounts of time (e.g., 1 year) prior to use. | 06-20-2013 |
20130203157 | MICROFLUIDIC DEVICE FOR COUNTING BIOLOGICAL PARTICLES - A particle counter for analyzing blood has features which provide for automatic operation and preferably, also provide for portable use in a low resource setting. In a preferred embodiment, preferred embodiment, the device is used to obtain CD4 counts for AIDS diagnosis. | 08-08-2013 |
20130330748 | FLUIDIC STRUCTURES INCLUDING MEANDERING AND WIDE CHANNELS - The present invention relates generally to microfluidic structures, and more specifically, to microfluidic structures and methods including meandering and wide channels. Microfluidic systems can provide an advantageous environment for performing various reactions and analyses due to a reduction in sample and reagent quantities that are required, a reduction in the size of the operating system, and a decrease in reaction time compared to conventional systems. Unfortunately, the small size of microfluidic channels can sometimes result in difficulty in detecting a species without magnifying optics (such as a microscope or a photomultiplier). A series of tightly packed microchannels, i.e., a meandering region, or a wide channel having a dimension on the order of millimeters, can serve as a solution to this problem by creating a wide measurement area. Although this invention mainly describes the use of meandering and wide channels in heterogeneous immunoassays on a microfluidic chip, this invention could be used for amplifying optical signals for other types of reactions and/or assays. | 12-12-2013 |
20140031750 | SYSTEMS, METHODS, AND DEVICES FOR IN VIVO DELIVERY USING REMOTE ACTUATION OF IMPLANTABLE HYDROGEL MEMS DEVICES - MicroElectroMechanical System (MEMS) devices can be fabricated completely of hydrogel materials. Such hydrogels can include polyethylene glycol with diacrylate functional groups (e.g., PEGDA), which are photopolymerizable in the presence of crosslinkers and photoinitiators. By using PEGDA monomers of different molecular weights and at different percentages, the mechanical properties of the polymerized gels and their respective permeabilities can be tuned. This spatial variation in properties and permeabilities can lead to different functionalities between different portions of the hydrogel MEMS device. Portions of the hydrogel device may be remotely actuated by applying wave energy, for example, a magnetic field, high intensity focused ultrasound, and/or infrared radiation. The remote actuation can allow the device to be actuated in vivo, for example, to allow the device to deliver a drug or other substance at a desired time and/or desired location within a patient. | 01-30-2014 |
20140038167 | FLUID DELIVERY SYSTEM AND METHOD - A method and apparatus for delivering one or more fluids. Fluids may be delivered sequentially from a common vessel to a chemical, biological or biochemical process. | 02-06-2014 |
20140134603 | ASSAY DEVICE AND METHOD - An assay method is described, which comprises the steps of immobilizing a binding partner (e.g., an antigen or antibody) for an analyte to be detected (e.g., an antibody or antigen) on a portion of a surface of a microfluidic chamber; passing a fluid sample over the surface and allowing the analyte to bind to the binding partner; allowing a metal colloid, e.g., a gold-conjugated antibody, to associate with the bound analyte; flowing a metal solution, e.g., a silver solution, over the surface such as to form an opaque metallic layer; and detecting the presence of said metallic layer, e.g., by visual inspection or by measuring light transmission through the layer, conductivity or resistance of the layer, or metal concentration in the metal solution after flowing the metal solution over the surface. | 05-15-2014 |
20140205997 | FLUIDIC CONNECTORS AND MICROFLUIDIC SYSTEMS - Fluidic connectors, methods, and devices for performing analyses (e.g., immunoassays) in microfluidic systems are provided. In some embodiments, a fluidic connector having a fluid path is used to connect two independent channels formed in a substrate so as to allow fluid communication between the two independent channels. One or both of the independent channels may be pre-filled with reagents (e.g., antibody solutions, washing buffers and amplification reagents), which can be used to perform the analysis. These reagents may be stored in the channels of the substrate for long periods amounts of time (e.g., 1 year) prior to use. | 07-24-2014 |
20140220687 | METHODS AND SYSTEMS FOR FORMING BIOCOMPATIBLE MATERIALS - Methods and systems forming biocompatible materials are disclosed herein. Forming a biocompatible material may include contacting a liquid, having a linking material, with an adjoining material having embedded therein a nucleating material that causes the linking material to nucleate and grow into the liquid. After a time sufficient to cause the linking material to grow substantially from the nucleating material into a space occupied by the liquid, the liquid may be solidified to form a solid such that the linking material secures the solid to the adjoining material. | 08-07-2014 |
20140333453 | FIELD OPTIMIZED ASSAY DEVICES, METHODS, AND SYSTEMS - A portable unitary device handheld diagnostic device can be operated with minimal power requirement and provides ease of operation as well as low cost communication of diagnostic data from remote locations. The device can provide nucleic-acid based diagnostics with minimal training, little to no sample preparation, and generates diagnostic data in about 45 minutes. A system can enable point of care transmission from any location globally using a low cost satellite-based data link technique, for example, Short Burst Data (SBD), combined with data encoding. | 11-13-2014 |
20150079606 | FLUIDIC CONNECTORS AND MICROFLUIDIC SYSTEMS - Fluidic connectors, methods, and devices for performing analyses (e.g., immunoassays) in microfluidic systems are provided. In some embodiments, a fluidic connector having a fluid path is used to connect two independent channels formed in a substrate so as to allow fluid communication between the two independent channels. One or both of the independent channels may be pre-filled with reagents (e.g., antibody solutions, washing buffers and amplification reagents), which can be used to perform the analysis. These reagents may be stored in the channels of the substrate for long periods amounts of time (e.g., 1 year) prior to use. | 03-19-2015 |
20150233901 | FLUID DELIVERY SYSTEM AND METHOD - A method and apparatus for delivering one or more fluids. Fluids may be delivered from a common vessel to a chemical, biological or biochemical process. | 08-20-2015 |
20160029937 | FLUID EXTRACTION AND DRUG DELIVERY SYSTEM AND METHODS USING MICRONEEDLES - Devices systems and methods for fluid extraction and delivery to human or animal hosts are described. In embodiments, microneedles are employed to provide low infection risk and painless access to and administration of fluids. The disclosed embodiments address, among others, issues of cost, portability, ease of use in remote settings including use by untrained personnel, and others. | 02-04-2016 |
20160077087 | FLUIDIC CONNECTORS AND MICROFLUIDIC SYSTEMS - Fluidic connectors, methods, and devices for performing analyses (e.g., immunoassays) in microfluidic systems are provided. In some embodiments, a fluidic connector having a fluid path is used to connect two independent channels formed in a substrate so as to allow fluid communication between the two independent channels. One or both of the independent channels may be pre-filled with reagents (e.g., antibody solutions, washing buffers and amplification reagents), which can be used to perform the analysis. These reagents may be stored in the channels of the substrate for long periods amounts of time (e.g., 1 year) prior to use. | 03-17-2016 |
Patent application number | Description | Published |
20090212106 | CODE BASED ACCESS SYSTEMS - A system including at least two parts or stations wherein a transaction or connection between any two or more of the parts or stations is conducted or established by means of an access code, the access code being available to an accessed part or station and requiring an identical access code to be provided to an accessing part or station at the time of conducting the transaction or establishing the connection. The system is characterized in that the access code is one of a plurality of codes provided to the accessed part or station and available to the accessing part or station. The system is further characterized in that the access code is selected from the plurality of codes at the time of conducting the transaction or establishing the connection, such that no two transactions are conducted or no two connections are established with the same access codes. | 08-27-2009 |
20100132622 | Swiftlets Farming for Production of Edible Bird's Nests - An edible bird's nests production facility comprising of: a wholly man made artificial caves system and/or converted natural relief such as caves, valleys, cliffs forming the nesting habitat and associated supporting facilities configured to breed swiftlets for their nests by means of a captive breeding program for swiftlets; commercialized-scientific farming methods; specialized apparatus, mechanisms and techniques; managed sustainable harvesting of nests; provision of a safe and secure nesting habitat and a conducive environment to maximize avian population by minimizing mortality rates; safe collection of nests by means of mechanized lifting systems and specialist mountaineering equipment. | 06-03-2010 |
20100139572 | Swiflets Farming for Production of Edible Bird's Nests - A swiftlet breeding facility, for use in creating and harvesting edible bird's nests. The facility includes sub-systems for injecting live insect and worm prey, and water, into an aerial enclosure to provide a feeding system imitative of a natural swiftlet feeding environment. | 06-10-2010 |
20100327055 | Code Based Access Systems - A system including at least two parts or stations wherein a transaction or connection between any two or more of the parts or stations is conducted or established by an access code, the access code being available to an accessed part or station and requiring an identical access code to be provided to an accessing part or station at the time of conducting the transaction or establishing the connection. The system is characterized in that the access code is one of a plurality of codes provided to the accessed part or station and available to the accessing part or station. The system is further characterized in that the access code is selected from the plurality of codes at the time of conducting the transaction or establishing the connection, such that no two transactions are conducted or no two connections are established with the same access codes. | 12-30-2010 |
20120186523 | Swiftlets Farming for Production of Edible Bird's Nests - An edible bird's nests production facility comprising of: a wholly man made artificial caves system and/or converted natural relief such as caves, valleys, cliffs forming the nesting habitat and associated supporting facilities configured to breed swiftlets for their nests by means of a captive breeding program for swiftlets; commercialized-scientific farming methods; specialized apparatus, mechanisms and techniques; managed sustainable harvesting of nests; provision of a safe and secure nesting habitat and a conducive environment to maximize avian population by minimizing mortality rates; safe collection of nests by means of mechanized lifting systems and specialist mountaineering equipment. | 07-26-2012 |
20120255501 | Swiftlets Farming for Production of Edible Bird's Nests - A swiftlet breeding facility, for use in creating and harvesting edible bird's nests. The facility includes sub-systems for injecting live insect and worm prey, and water, into an aerial enclosure to provide a feeding system imitative of a natural swiftlet feeding environment. | 10-11-2012 |
20130307274 | Power Generating Windbags and Waterbags - A method of using a bagged power generation system comprising windbags and water-bags for harnessing wind and water power to produce electricity to meet the escalating energy needs of mankind. Windbags integrated with aerodynamically shaped inflatable bodies filled with lighter-than-air gas: HAV, UAV, airplanes; enabling the apparatus to attain high altitude to capture and entrap high velocity wind. Water-bags integrated with hydrodynamic shaped bodies HUV, UUV, Submarine-boats; enabling the apparatus to dive, capture and entrap swift moving tidal-currents. Attached tether-lines pulling on the rotating reel-drums and generators to produce electricity. Active control surfaces, turbo-fans, propellers provide precision control of the apparatus. A system configured to maximize fluids capture, retention and optimized extraction of its kinetic energy. An extremely scalable and environmentally friendly method, system, apparatus, equipment and techniques configured to produce renewable green energy with high productivity and efficiency. | 11-21-2013 |
20140230744 | Swiftlets Farming for Production of Edible Bird's Nests - A swiftlet breeding facility, for use in creating and harvesting edible bird's nests. The facility includes sub-systems for injecting live insect and worm prey, and water, into an aerial enclosure to provide a feeding system imitative of a natural swiftlet feeding environment. | 08-21-2014 |
20140318468 | SWIFTLETS FARMING FOR PRODUCTION OF EDIBLE BIRD'S NESTS - An edible bird's nests production facility, for use in creating and harvesting edible bird's nests. A plurality of arrangement of swiftlet's nesting substrates configured to maximize efficiency, productivity and high net worth value of the edible nests products created. The facility includes mechanized equipment and apparatus for harvesting swiftlet's edible nests at great heights; carriage of goods and equipment in swiftlets farming houses; safe and efficient collection of nests. | 10-30-2014 |
20150137523 | POWER GENERATING WINDBAGS AND WATERBAGS - A method of using a bagged power generation system comprising windbags and water-bags for harnessing wind and water power to produce electricity to meet the escalating energy needs of mankind. Windbags integrated with aerodynamically shaped inflatable bodies filled with lighter-than-air gas: HAV, UAV, airplanes; enabling the apparatus to attain high altitude to capture and entrap high velocity wind. Water-bags integrated with hydrodynamic shaped bodies HUV, UUV, Submarine-boats; enabling the apparatus to dive, capture and entrap swift moving tidal-currents. Attached tether-lines pulling on the rotating reel-drums and generators to produce electricity. Active control surfaces, turbo-fans, propellers provide precision control of the apparatus. A system configured to maximize fluids capture, retention and optimized extraction of its kinetic energy. An extremely scalable and environmentally friendly method, system, apparatus, equipment and techniques configured to produce renewable green energy with high productivity and efficiency. | 05-21-2015 |
20150296749 | Swiftlets Farming for Production of Edible Bird's Nests - A swiftlet breeding facility, for use in creating and harvesting edible bird's nests. The facility includes sub-systems for injecting live insect and worm prey, and water, into an aerial enclosure to provide a feeding system imitative of a natural swiftlet feeding environment. | 10-22-2015 |