Patent application number | Description | Published |
20120045368 | Chemical Coating of Microwell for Electrochemical Detection Device - The described embodiments may provide a method of fabricating a chemical detection device. The method may comprise forming a microwell above a CMOS device. The microwell may comprise a bottom surface and sidewalls. The method may further comprise applying a first chemical to be selectively attached to the bottom surface of the microwell, forming a metal oxide layer on the sidewalls of the microwell, and applying a second chemical to be selectively attached to the sidewalls of the microwell. The second chemical may lack an affinity to the first chemical. | 02-23-2012 |
20130089466 | Chemical Coating of Microwell for Electrochemical Detection Device - The described embodiments may provide a method of fabricating a chemical detection device. The method may comprise forming a microwell above a CMOS device. The microwell may comprise a bottom surface and sidewalls. The method may further comprise applying a first chemical to be selectively attached to the bottom surface of the microwell, forming a metal oxide layer on the sidewalls of the microwell, and applying a second chemical to be selectively attached to the sidewalls of the microwell. The second chemical may lack an affinity to the first chemical. | 04-11-2013 |
20130189158 | HIGH CAPACITANCE MICROWELL - A system includes a sensor including a sensor pad and a well wall structure defining a well operatively coupled to the sensor pad. The well is further defined by a lower surface disposed over the sensor pad. The well wall structure defines an upper surface and defines a wall surface extending between the upper surface and the lower surface. The system further includes a conductive layer disposed over the lower surface and the wall surface. | 07-25-2013 |
20130189790 | SENSOR ARRAYS AND METHODS FOR MAKING SAME - A system includes a sensor including a sensor pad and includes a well wall structure defining a well operatively connected to the sensor pad. The sensor pad is associated with a lower surface of the well. The well wall structure defines an upper surface and a wall surface extending between the upper surface and the lower surface. The upper surface is defined by an upper buffer material having an intrinsic buffer capacity of at least 2×10 | 07-25-2013 |
20140113303 | Chemical Coating of Microwell for Electrochemical Detection Device - The described embodiments may provide a method of fabricating a chemical detection device. The method may comprise forming a microwell above a CMOS device. The microwell may comprise a bottom surface and sidewalls. The method may further comprise applying a first chemical to be selectively attached to the bottom surface of the microwell, forming a metal oxide layer on the sidewalls of the microwell, and applying a second chemical to be selectively attached to the sidewalls of the microwell. The second chemical may lack an affinity to the first chemical. | 04-24-2014 |
20140191292 | METHODS AND SYSTEMS FOR POINT OF USE REMOVAL OF SACRIFICIAL MATERIAL - A method of manufacturing a sensor, the method including forming an array of chemically-sensitive field effect transistors (chemFETs), depositing a dielectric layer over the chemFETs in the array, depositing a protective layer over the dielectric layer, etching the dielectric layer and the protective layer to form cavities corresponding to sensing surfaces of the chemFETs, and removing the protective layer. The method further includes, etching the dielectric layer and the protective layer together to form cavities corresponding to sensing surfaces of the chemFETs. The protective layer is at least one of a polymer, photoresist material, noble metal, copper oxide, and zinc oxide. The protective layer is removed using at least one of sodium hydroxide, organic solvent, aqua regia, ammonium carbonate, hydrochloric acid, acetic acid, and phosphoric acid. | 07-10-2014 |
20140191293 | METHODS FOR MANUFACTURING WELL STRUCTURES FOR LOW-NOISE CHEMICAL SENSORS - In one implementation, a method for manufacturing a chemical detection device is described. The method includes forming a chemical sensor having a sensing surface. A dielectric material is deposited on the sensing surface. A first etch process is performed to partially etch the dielectric material to define an opening over the sensing surface and leave remaining dielectric material on the sensing surface. An etch protect material is formed on a sidewall of the opening. A second etch process is then performed to selectively etch the remaining dielectric material using the etch protect material as an etch mask, thereby exposing the sensing surface. | 07-10-2014 |
20140209982 | SELF-ALIGNED WELL STRUCTURES FOR LOW-NOISE CHEMICAL SENSORS - In one implementation, a chemical detection device is described. The device includes a chemically-sensitive field effect transistor including a floating gate conductor coupled to a gate dielectric and having an upper surface, and a sensing material on the upper surface. The device also includes a fill material defining a reaction region extending above the sensing material, the reaction region overlying and substantially aligned with the floating gate conductor. | 07-31-2014 |
20140217477 | ELECTRIC FIELD DIRECTED LOADING OF MICROWELL ARRAY - An apparatus includes a device substrate including an array of sensors. Each sensor of the array of sensors can include a electrode structure disposed at a surface of the device substrate. The apparatus further includes a wall structure overlying the surface of the device substrate and defining an array of wells at least partially corresponding with the array of sensors. The well structure including an electrode layer and an insulative layer. | 08-07-2014 |
20140220697 | CHEMICAL SENSOR WITH CONDUCTIVE CUP-SHAPED SENSOR SURFACE - A system includes a sensor including a sensor pad and a well wall structure defining a well operatively coupled to the sensor pad. The well is further defined by a lower surface disposed over the sensor pad. The well wall structure defines an upper surface and defines a wall surface extending between the upper surface and the lower surface. The system further includes a conductive layer disposed over the lower surface and the wall surface. | 08-07-2014 |
20140264322 | CHEMICAL SENSOR WITH PROTRUDED SENSOR SURFACE - In one implementation, a chemical sensor is described. The chemical sensor includes a chemically-sensitive field effect transistor including a floating gate conductor having an upper surface. A conductive element protrudes from the upper surface of the floating gate conductor into an opening. A dielectric material defines a reaction region. The reaction region overlies and extends below an upper surface of the conductive element. | 09-18-2014 |
20140264469 | CHEMICAL SENSOR WITH SIDEWALL SENSOR SURFACE - In one embodiment, a chemical sensor is described. The chemical sensor includes a chemically-sensitive field effect transistor including a floating gate conductor. A material defines an opening overlying the floating gate conductor. The material comprises a conductive element having an inner surface defining a lower portion of a sidewall of the opening. A dielectric is on the conductive element and has an inner surface defining an upper portion of the sidewall. | 09-18-2014 |
20140264470 | CHEMICAL SENSORS WITH CONSISTENT SENSOR SURFACE AREAS - In one embodiment, a chemical sensor is described. The chemical sensor includes a chemically-sensitive field effect transistor including a floating gate conductor having an upper surface. A material defines an opening extending to the upper surface of the floating gate conductor. The material comprises a first dielectric underlying a second dielectric. A conductive element contacts the upper surface of the floating gate conductor and extends a distance along a sidewall of the opening, the distance defined by a thickness of the first dielectric. | 09-18-2014 |
20140264471 | CHEMICAL DEVICE WITH THIN CONDUCTIVE ELEMENT - In one implementation, a chemical device is described. The sensor includes a chemically-sensitive field effect transistor including a floating gate structure having a plurality of floating gate conductors electrically coupled to one another. A conductive element overlies and is in communication with an uppermost floating gate conductor in the plurality of floating gate conductors. The conductive element is wider and thinner than the uppermost floating gate conductor. A dielectric material defines an opening extending to an upper surface of the conductive element. | 09-18-2014 |
20140264472 | CHEMICAL SENSOR WITH CONSISTENT SENSOR SURFACE AREAS - In one embodiment, a chemical sensor is described. The chemical sensor includes a chemically-sensitive field effect transistor including a floating gate conductor having an upper surface. A material defines an opening extending to the upper surface of the floating gate conductor, the material comprising a first dielectric underlying a second dielectric. A conductive element contacts the upper surface of the floating gate conductor and extending a distance along a sidewall of the opening. | 09-18-2014 |