Patent application number | Description | Published |
20110198147 | SEISMIC TRANSDUCERS HAVING IMPROVED POLYGONAL BASEPLATES AND METHODS OF USE - Methods and systems are provided for inducing seismic energy waves in a subterranean formation. More specifically, seismic transducers are provided that incorporate enhanced seismic baseplates. In certain embodiments, baseplates comprise certain enhancements such as having a perimeter in the shape of a polygon, such as, a hexagon or an octagon. In other embodiments, the perimeter of the baseplate may take the form of a polygon having n sides, where n is any integer greater than 4. Advantages of such baseplate enhancements include, but are not limited to, a reduction of baseplate harmonics or ringing, enhanced baseplate strength so as to reduce baseplate fatigue or failure, a reduction of baseplate flexure, and a consequent reduction of baseplate weight resulting in a more responsive baseplate. These advantages ultimately translate to improved seismic surveys, having higher resolution of the formations surveyed and resulting in surveys reaching greater depths. | 08-18-2011 |
20110198148 | SEISMIC TRANSDUCERS AND BASEPLATES HAVING EXTERNAL DAMPENERS AND METHODS OF USE - Methods and systems are provided for inducing seismic vibrations into subterranean formations. Seismic transducers may comprise a frame, a reaction mass, a driver, and a baseplate. The driver actuates the reaction mass, imparting a vibratory energy to the baseplate. This vibratory energy is then imparted directly to the ground surface to propagate seismic waves into the formation. These seismic waves are then reflected by subsurface geological features. The reflected seismic waves may then be detected and interpreted by seismic detectors to reveal seismic information representative of the surveyed region. An external dampener may be secured to the baseplate, which provide, among other benefits, a damping effect to the baseplate. Advantages include, reduced undesirable baseplate harmonic distortion or “ringing,” reduced baseplate decoupling, and reduced seismic noise due to flexure reduction and more uniform baseplate-to-ground conformance. These advantages ultimately translate to improved seismic surveys, having higher formation resolution and reaching greater depths. | 08-18-2011 |
20110272206 | MATRIX GROUND FORCE MEASUREMENT OF SEISMIC TRANSDUCERS AND METHODS OF USE - Methods and systems are provided for inducing seismic vibrations into an elastic medium such as subterranean formations. The methods and systems utilize seismic transducers having a sensor matrix for measurement of baseplate force distributions. Certain embodiments include a sensor matrix that is configured to measure a distribution of discrete force measurements across the surface area of the baseplate. Advantages of including such sensor matrices include a more accurate prediction of seismic transducer energy output. That is, these measurements can be used as feedback to adjust the operation of the seismic transducer. Additionally, these force measurements may be used to provide for a better interpretation of gathered seismic data. These advantages ultimately translate to improved seismic surveys, having higher resolution of the formations surveyed and reaching greater depths. | 11-10-2011 |
20120002503 | Seismic Acquisition in Marine Environments Using Survey Paths Following a Series of Linked Deviated Paths and Methods of Use - Methods and systems are provided for acquiring seismic data in a marine environment using survey paths following a series of linked curved paths so as to obtain multi-azimuthal data over a sub-surface target. Marine vessels towing multiple seismic streamers may be configured to travel substantially along a series of linked deviated paths or a series of linked curved paths. Sources may be excited to introduce acoustic wave energy in the marine environment and into the subsea region. The acoustic wave energy then reflects and refracts from the subsea region to form reflected and refracted wave energy, which is detected by seismic receivers spaced along the streamers. The detected seismic data is then interpreted to reveal seismic information representative of the surveyed subsea region. Other enhancements include configuring the streamers in a flared configuration, where the lateral spacing increases rearwardly over the length of the seismic streamers. | 01-05-2012 |
20120037443 | SEISMIC TRANSDUCERS HAVING REDUCED SURFACE AREA BASEPLATES AND METHODS OF USE - Methods and systems are provided for inducing seismic energy waves in a subterranean formation. More particularly, improved seismic transducers are provided that comprise enhanced baseplates. Baseplates are provided that comprise an intermediate plate and a plurality of contact plates secured to the underside of the intermediate plate. The contact plates provide a surface area for engagement with the ground surface that is more limited than the lower surface area of the intermediate plate. Advantages of such baseplate enhancements include, but are not limited to, a reduction of baseplate harmonics or ringing and enhanced baseplate strength so as to reduce baseplate fatigue or failure, a reduction of baseplate flexure. These advantages ultimately translate to improved seismic surveys, having higher resolution of the formations surveyed and resulting in surveys reaching greater depths. | 02-16-2012 |
20120037444 | CONSTANT HOLDDOWN WEIGHT FOR VIBRATORY SEISMIC SOURCES - The invention relates to maintaining constant holddown force on the vibrator baseplate during actuation. The invention described measures the weight on the point of locomotion verses the baseplate and dynamically adjusts the forces required to keep the holddown force on the baseplate constant. | 02-16-2012 |
20120037445 | METHOD FOR CREATING AN IMPROVED SWEEP FOR A SEISMIC SOURCE - An adapted seismic vibrator for obtaining a true ground force comprising: a baseplate pad; a baseplate drive system, wherein the drive system is connected to the baseplate pad and moves the baseplate pad up and down; a vibrator controller electronics, wherein the electronics are connected to the drive system and causes the drive system to move the baseplate pad up and down; and a plurality of load cell sensors disposed between the baseplate pad and ground, wherein the sensors measure the vibrator output force during a sweep. A method of obtaining a true ground force sweep comprising the steps of: using the load cell sensors to measure an actual output force of a seismic vibrator and electronics to obtain an actual ground force data; using inversion to invert the actual ground force data and desired original pilot sweep to obtain a revised pilot sweep that produces a true ground force sweep; and entering the true ground force sweep into the electronics. | 02-16-2012 |
20120037446 | UNIFORM DISPLACEMENT SWEEP - This invention relates to operating a seismic vibrator to produce a uniform displacement sweep wherein the baseplate drive is connected to the baseplate and the baseplate is moved in an up and down or reciprocating pattern creating displacement of the earth. The reciprocating pattern and physical displacement of the baseplate and the ground in contact with the baseplate is maintained at a relatively constant distance over at least most of the frequencies that are delivered into the earth although a constant displacement of the baseplate at higher frequencies will require greater power. The high frequency energy is more significantly present in the data traces of the recorded return wavefield and shows that Q attenuation is not fully to blame for the relative absence of high frequency data but rather in failing to effectively deliver high frequency energy into the earth in the first place. | 02-16-2012 |
20130283923 | DETERMINATION OF NEAR SURFACE GEOPHYSCIAL PROPERTIES BY IMPULSIVE DISPLACEMENT EVENTS - The invention is an improved technique for measuring near surface attributes of the ground while conducting a seismic survey. The improved technique is enabled by an electric vibe using a number of linear electric motors that direct a rod or piston to contact the ground in a recurring fashion. By applying constant force on the rods of the linear electric motors against the ground, the penetration into the ground may be measured for both rate and overall deformation. This information provides an accurate indication of viscosity and stiffness. In addition shear velocity and compression velocity may be measured and in some conditions, even the type of prominent shear wave may be identified for the area. | 10-31-2013 |
20130284534 | WHEEL LIFTING APPARATUS - The invention is an electric powered mechanism for lifting and lowering at the wheels for an electric sweep type seismic vibrator source of the type used in seismic prospecting for hydrocarbons. The source uses an engine and generator combination to create electric power for all systems on the source such as driving a frame of linear electric motors that direct a rod or piston to contact the ground in a recurring fashion along with driving the source from location to location through a survey area. Preferably a foot is arranged on the bottom end of the rod or piston for contact with the ground and by engaging the grid of motors to push down against the ground in a rapid progression, acoustic energy is created and delivered into the ground for geophones to sense and record. The electric powered wheel mechanism may be utilized to bring the foot of the rod or piston in contact with the ground or in closer proximity to the ground or level the source prior to emitting the seismic energy or to adjust weight on the acoustic energy delivery system while seismic energy is being delivered. | 10-31-2013 |
20130286779 | QUASI-IMPULSIVE DISPLACEMENT SOURCE - The invention is an electric seismic vibrator source of the type used in seismic prospecting for hydrocarbons that creates a quasi-impulsive burst of seismic energy onto the ground and into the earth. The source uses an engine and generator combination to create electric power for all systems on the source such as driving a frame of linear electric motors that direct a rod or piston to contact the ground. All of the linear electric motors are driven against the ground in a high power pulse that delivers a band-limited spectrum of seismic energy over a very brief period of time that would like a “pop” and be measured in milliseconds. A quasi-impulsive seismic pulse would create a wave field that resembles the seismic data acquired using dynamite or other explosive seismic systems without the ultrahigh frequencies of a true explosive pulse. The quick burst or several quick bursts may further speed up the survey by minimizing the time that a vibe spends on a source point. | 10-31-2013 |
20130286780 | DISTINCTIVE LAND SEISMIC SWEEP - The invention is an electric sweep type seismic vibrator source of the type used in seismic prospecting for hydrocarbons. The source uses an engine and generator combination to create electric power for all systems on the source such as driving a frame of linear electric motors that direct a rod or piston to contact the ground in a recurring fashion along with driving the source from location to location through a survey area. Preferably a foot is arranged on the bottom end of the rod or piston for contact with the ground and by engaging the grid of motors to push down against the ground in a rapid progression, acoustic energy is created and delivered into the ground for geophones to sense and record. However, the rapid progression of pulses or sweep of seismic energy is delivered in a distinctive fashion as compared to a conventional upsweep or downsweep and the distinctiveness is also achieved by creating a designed cadence or timing such that each pulse in a series of pulses is not delivered in a regular timing. Several similar seismic sources may be employed where each is provided with its own distinctive series of pulses such that each may be identified within the data record and source separation from a number of seismic sources may be accomplished. | 10-31-2013 |
20130286788 | ELECTRICAL ENERGY ACCUMULATOR - The invention is an electric power accumulator used with an electric sweep type seismic vibrator source of the type used in seismic prospecting for hydrocarbons. The source uses an engine and generator combination to create electric power to drive a frame of linear electric motors that direct a rod or piston to contact the ground in a recurring fashion. The source may also be designed to use electric power to drive the source from location to location through a survey area. A large electric power accumulator is provided to store electric power when the generator is able to produce excess power and the accumulator may deliver power along with the generator to drive the rods and deliver acoustic energy. With a large electric power accumulator, such as a battery or capacitor, the engine and generator combination may be engineered to be somewhat smaller, less costly and more efficient than a system where the engine and generator were sized to provide the electric power at times of maximum electric draw. | 10-31-2013 |
20130286789 | ACTIVE ISOLATION APPARATUS - The invention is an electric sweep type seismic vibrator source of the type used in seismic prospecting for hydrocarbons. The source uses an engine and generator combination to create electric power for all systems on the source such as driving a frame of linear electric motors that direct a rod or piston to contact the ground in a recurring fashion along with driving the source from location to location through a survey area. The seismic source further includes an active isolation system that provides for significant weight on the ground through the rods of the linear electric motors, but protects the vehicle body and the remainder of the systems on the seismic source to be insulated from the harshest vibration related to the acoustic energy being applied to the ground. The active isolation system may include reactive elements such as pneumatic and hydraulic shock absorbers, but also includes active elements such as linear motors operated to counteract the impulsive forces from conveying through the frame of the seismic source. | 10-31-2013 |
20130286790 | SIMULTANEOUS COMPOSITE LAND SEISMIC SWEEP - The invention is an electric sweep type seismic vibrator source of the type used in seismic prospecting for hydrocarbons. The source uses an engine and generator combination to create electric power for all systems on the source such as driving a frame of linear electric motors that direct a rod or piston to contact the ground in a recurring fashion along with driving the source from location to location through a survey area. Preferably a foot is arranged on the bottom end of the rod or piston for contact with the ground and by engaging the grid of motors to push down against the ground to create impulses that deliver acoustic seismic energy into the earth for geophones to sense and record. However, the pulses of seismic energy are delivered in a distinctive fashion where different linear motors are deliberately and concurrently providing different signals that create a distinctive composite signature or signal that can be identified in the data record for source separation purpose. | 10-31-2013 |
20130286791 | DISCRETE ELECTRIC SEISMIC SOURCE UNIT - The invention is an electric sweep type seismic vibrator source of the type used in seismic prospecting for hydrocarbons. The source uses an engine and generator combination to create electric power for all systems on the source such as driving a frame of linear electric motors that direct a rod or piston to contact the ground in a recurring fashion along with driving the source from location to location through a survey area. The seismic source includes systems for driving the acoustic energy systems using electric energy concurrently from both the generator and an electric energy accumulator such as a capacitor or battery, systems for adjusting the weight on the acoustic energy delivery system by raising and lowering wheels individually and an active energy isolation to isolate the chocks and impulses of the acoustic energy delivery system from the remainder of the seismic source. | 10-31-2013 |
20130308422 | CONSTANT ENERGY DISPLACEMENTS - An electric sweep type seismic vibrator source of the type used in seismic prospecting for hydrocarbons is provided. In one example, the source uses an engine and generator combination to create electric power for all systems on the source such as driving a frame of linear electric motors that direct a rod or piston to contact the ground in a recurring fashion along with driving the source from location to location through a survey area. A foot is arranged on the bottom end of the rod or piston for contact with the ground and by engaging the grid of motors to push down against the ground in a rapid progression, acoustic energy is created and delivered into the ground for geophones to sense and record. | 11-21-2013 |
20130343152 | METHOD FOR DETERMINING AN EQUIPMENT CONSTRAINED ACQUISITION DESIGN - A method for determining an equipment constrained acquisition design. | 12-26-2013 |
20140269175 | Seismic Acquisition in Marine Environments Using Survey Paths Following a Series of Linked Deviated Paths and Methods of Use - Methods and systems are provided for acquiring seismic data in a marine environment using survey paths following a series of linked curved paths so as to obtain multi-azimuthal data over a sub-surface target. Marine vessels towing multiple seismic streamers may be configured to travel substantially along a series of linked deviated paths or a series of linked curved paths. Sources may be excited to introduce acoustic wave energy in the marine environment and into the subsea region. The acoustic wave energy then reflects and refracts from the subsea region to form reflected and refracted wave energy, which is detected by seismic receivers spaced along the streamers. The detected seismic data is then interpreted to reveal seismic information representative of the surveyed subsea region. Other enhancements include configuring the streamers in a flared configuration, where the lateral spacing increases rearwardly over the length of the seismic streamers. | 09-18-2014 |