Patent application number | Description | Published |
20080197526 | Process for Preparing Composites Using Epoxy Resin Formulations - Epoxy composites are prepared by separately preheating an epoxy resin and a hardener; mixing the preheated epoxy resin and preheated hardener to form a hot reaction mixture and curing the hot reaction mixture in the presence of a reinforcement until the mixture cures to form a composite having a polymer phase with a glass transition temperature of at least 150° C. | 08-21-2008 |
20110033646 | PROCESS FOR MAKING FIBER REINFORCED PLASTIC PIPE - An improved process for making fiber reinforced epoxy plastic structure by a process that includes the steps of : forming a structure of the reinforcing fibers ( | 02-10-2011 |
20110124762 | NATURAL RESOURCE BASED VISCOELASTIC FOAMS - Embodiments of the present invention disclose viscoelastic foams having a renewable natural resource contents of between about 1 and about 25 wt % of the foam. The foams may have a ratio of elastic modulus (E′) at 20° C. to 25% compression force deflection (CFD) of 25 to 125. | 05-26-2011 |
20120028024 | CELLULAR STRUCTURES AND VISCOELASTIC POLYURETHANE FOAMS - The present invention discloses a structure comprising a plurality of three dimensional cells, wherein each cell comprises exterior walls defining an interior void wherein the walls comprise a plurality of struts and windows, the struts forming borders for the plurality of windows, wherein the struts have a plurality of pores. The present invention further discloses a viscoelastic foam having a ratio of elastic modulus (E′) at 20° C. to 25% compression force deflection (CFD) of 25 to 125. | 02-02-2012 |
20130035413 | CELLULAR STRUCTURES AND VISCOELASTIC POLYURETHANE FOAMS - The present invention discloses a structure comprising a plurality of three dimensional cells, wherein each cell comprises exterior walls defining an interior void wherein the walls comprise a plurality of struts and windows, the struts forming borders for the plurality of windows, wherein the struts have a plurality of pores. The present invention further discloses a viscoelastic foam having a ratio of elastic modulus (E′) at 20° C. to 25% compression force deflection (CFD) of 25 to 125. | 02-07-2013 |
20130085200 | HIGH AIR FLOW POLYURETHANE VISCOELASTIC FOAM - Polyurethane foams and methods for making polyurethane foams are provided. The method may comprise forming a reaction mixture including a toluene diisocyanate (TDI) component, an isocyanate reactive component comprising one or more propylene oxide rich (PO-rich) polyols, one or more ethylene oxide rich (EO-rich) polyols having a combined number average equivalent weight from 100 to 500 comprising from 10% to 28% by weight of the total isocyanate reactive component, water, and a catalyst component comprising at least one catalyst, and subjecting the reaction mixture to conditions sufficient to result in the reaction mixture to expand and cure to form a viscoelastic polyurethane foam having a resilience of less than 25%, as measured according to ASTM D3574 Test H. | 04-04-2013 |
Patent application number | Description | Published |
20110145844 | SYSTEMS AND METHODS FOR FACILITATING CALL REQUEST AGGREGATION OVER A NETWORK - In accordance with one or more embodiments of the present disclosure, a method for facilitating electronic commerce over a network includes identifying input dependencies for a call request based on information passed with the call request, identifying state dependencies for the call request based on information passed with the call request, parallelizing calls from the call request based on at least one of the identified input dependencies and the identified state dependencies, developing a service execution map by grouping calls in an execution order including parallelized calls, and processing the service execution map by executing grouped calls in the execution order including parallelized calls. | 06-16-2011 |
20130091192 | ASYNCHRONOUS MESSAGING BUS - Techniques for event message processing are presented. Embodiments may receive an event message from a first capability. The event message may include a header and a payload. Embodiments may then parse the header of the event message to identify a topic of the event message. Embodiments also identify a tenant identifier associated with the event message. Using the topic and the tenant identifier, embodiments may determine that a second capability is to receive the event message. Accordingly, embodiments send the event message to the second capability. | 04-11-2013 |
20130191500 | METHODS AND SYSTEMS FOR PROVIDING A SYNCHRONOUS INTERFACE OVER AN ASYNCHRONOUS MESSAGE BUS - Techniques for providing a synchronous communication layer between a capability and an asynchronous message bus are presented. A method may receive, over a protocol connection, an initial event message from the first capability. The method may then update the initial event message to include a correlation identifier that is associated with the protocol connection. The updated initial event message is then sent through the asynchronous message bus, which may route the event message to a second capability. Then, the method may receive, through the asynchronous message bus, a response event message from the second capability. The method may then send the response event message to the first capability over the protocol connection. Sending the response event to the first capability may be based at least in part on the response event message including the correlation identifier. | 07-25-2013 |
20140164047 | SYSTEMS AND METHODS FOR FACILITATING CALL REQUEST AGGREGATION OVER A NETWORK - In accordance with one or more embodiments of the present disclosure, a method for facilitating electronic commerce over a network includes identifying input dependencies for a call request based on information passed with the call request, identifying state dependencies for the call request based on information passed with the call request, parallelizing calls from the call request based on at least one of the identified input dependencies and the identified state dependencies, developing a service execution map by grouping calls in an execution order including parallelized calls, and processing the service execution map by executing grouped calls in the execution order including parallelized calls. | 06-12-2014 |
20150347207 | ASYNCHRONOUS MESSAGING BUS - Techniques for event message processing are presented. Embodiments may receive an event message from a first capability. The event message may include a header and a payload. Embodiments may then parse the header of the event message to identify a topic of the event message. Embodiments also identify a tenant identifier associated with the event message. Using the topic and the tenant identifier, embodiments may determine that a second capability is to receive the event message. Accordingly, embodiments send the event message to the second capability. | 12-03-2015 |
Patent application number | Description | Published |
20090139902 | PROCESS FOR CATALYTIC HYDROTREATING OF SOUR CRUDE OILS - A continuous process for upgrading sour crude oil by treating the sour crude oil in a two step process that includes a hydro-demetallization section and a hydro-desulfurization section, both of which are constructed in a permutable fashion so as to optimize the operating conditions and catalyst lifespan to produce a high value crude oil having low sulfur and low organometallic impurities. | 06-04-2009 |
20100018904 | Prerefining Process for the Hydrodesulfurization of Heavy Sour Crude Oils to Produce Sweeter Lighter Crudes Using Moving Catalyst System - A pre-refining catalytic hydrotreating process for the desulfurization, demetallization, and upgrading of heavy, sour crude oils operating at a moderate temperature and pressure through the utilization of moving catalyst bed technology. | 01-28-2010 |
20100025291 | Process for the Treatment of Heavy Oils Using Light Hydrocarbon Components as a Diluent - The present invention relates to a process for the treatment of heavy oils using a catalytic hydrotreating process. More specifically, the invention relates to the presence of light hydrocarbon components in conjunction with the heavy oils for improved treatment of the heavy oils utilizing moderate temperature and pressure. | 02-04-2010 |
20100025293 | Process for the Sequential Hydroconversion and Hydrodesulfurization of Whole Crude Oil - The invention relates to a method for removing sulfur from crude oils using a catalytic hydrotreating process operating at moderate temperature and pressure and reduced hydrogen consumption. The process produces sweet crude oil having a sulfur content of between about 0.1 and 1.0 wt % in addition to reduced crude density. The method employs least two reactors in series, wherein the first reactor includes a hydroconversion catalyst and the second reactor includes a desulfurization catalyst. | 02-04-2010 |
20110083996 | Alternative Process for Treatment of Heavy Crudes in a Coking Refinery - The present invention relates to a process for the pretreatment of heavy oils using a catalytic hydrotreating process prior to introduction to a refinery. More specifically, the invention relates to the use of an HDM reactor and an HDS reactor in order to improve the characteristics of the heavy oil, such that when the oil is introduced into the refinery, the refinery can achieve improved throughputs, increased catalysts life, increased life cycles, and a reduction in overall operation costs. | 04-14-2011 |
20130068661 | PROCESS FOR THE SEQUENTIAL HYDROCONVERSION AND HYDRODESULFURIZATION OF WHOLE CRUDE OIL - The invention relates to a method for removing sulfur from crude oils using a catalytic hydrotreating process operating at moderate temperature and pressure and reduced hydrogen consumption. The process produces sweet crude oil having a sulfur content of between about 0.1 and 1.0 wt % in addition to reduced crude density. The method employs least two reactors in series, wherein the first reactor includes a hydroconversion catalyst and the second reactor includes a desulfurization catalyst. | 03-21-2013 |
20130197283 | INTEGRATED HYDROTREATING AND STEAM PYROLYSIS PROCESS INCLUDING RESIDUAL BYPASS FOR DIRECT PROCESSING OF A CRUDE OIL - A process is provided that is directed to a steam pyrolysis zone integrated with a hydroprocessing zone including residual bypass to permit direct processing of crude oil feedstocks to produce petrochemicals including olefins and aromatics. The integrated hydrotreating and steam pyrolysis process for the direct processing of a crude oil to produce olefinic and aromatic petrochemicals comprises separating the crude oil into light components and heavy components; charging the light components and hydrogen to a hydroprocessing zone operating under conditions effective to produce a hydroprocessed effluent reduced having a reduced content of contaminants, an increased paraffinicity, reduced Bureau of Mines Correlation Index, and an increased American Petroleum Institute gravity; thermally cracking the hydroprocessed effluent in the presence of steam to produce a mixed product stream; separating the mixed product stream; purifying hydrogen recovered from the mixed product stream and recycling it to the hydroprocessing zone ; recovering olefins and aromatics from the separated mixed product stream; and recovering a combined stream of pyrolysis fuel oil from the separated mixed product stream and heavy components from step (a) as a fuel oil blend. | 08-01-2013 |
20130197284 | INTEGRATED HYDROTREATING, SOLVENT DEASPHALTING AND STEAM PYROLYSIS PROCESS FOR DIRECT PROCESSING OF A CRUDE OIL - A process is provided that is directed to a steam pyrolysis zone integrated with a hydrotreating zone and a solvent deasphalting zone to permit direct processing of crude oil feedstocks to produce petrochemicals including olefins and aromatics. The integrated hydrotreating, solvent deasphalting and steam pyrolysis process comprises charging the crude oil to a hydroprocessing zone operating under conditions effective to produce a hydroprocessed effluent reduced having a reduced content of contaminants, an increased paraffinicity, reduced Bureau of Mines Correlation Index, and an increased American Petroleum Institute gravity; charging the hydroprocessed effluent to a solvent deasphalting zone with an effective amount of solvent to produce a deasphalted and demetalized oil stream and a bottom asphalt phase; thermally cracking the deasphalted and demetalized oil stream in the presence of steam to produce a mixed product stream; separating the mixed product stream; purifying hydrogen recovered from the mixed product stream and recycling it to the hydroprocessing zone; recovering olefins and aromatics from the separated mixed product stream; and recovering pyrolysis fuel oil from the separated mixed product stream. | 08-01-2013 |
20130197285 | INTEGRATED HYDROTREATING AND STEAM PYROLYSIS PROCESS FOR DIRECT PROCESSING OF A CRUDE OIL - An integrated hydrotreating and steam pyrolysis process for the direct processing of a crude oil is provided to produce olefinic and aromatic petrochemicals. Crude oil and hydrogen are charged to a hydroprocessing zone operating under conditions effective to produce a hydroprocessed effluent reduced having a reduced content of contaminants, an increased paraffinicity, reduced Bureau of Mines Correlation Index, and an increased American Petroleum Institute gravity. Hydroprocessed effluent is thermally cracked in the presence of steam to produce a mixed product stream, which is separated. Hydrogen from the mixed product stream is purified and recycled to the hydroprocessing zone, and olefins and aromatics are recovered from the separated mixed product stream. | 08-01-2013 |
20130197289 | INTEGRATED SOLVENT DEASPHALTING AND STEAM PYROLYSIS PROCESS FOR DIRECT PROCESSING OF A CRUDE OIL - A process is provided that is directed to a steam pyrolysis zone integrated with a solvent deasphalting zone to permit direct processing of crude oil feedstocks to produce petrochemicals including olefins and aromatics. The integrated solvent deasphalting and steam pyrolysis process for the direct processing of a crude oil to produce olefinic and aromatic petrochemicals comprises charging the crude oil to a solvent deasphalting zone with an effective amount of solvent to produce a deasphalted and demetalized oil stream and a bottom asphalt phase; thermally cracking the deasphalted and demetalized oil stream in the presence of steam to produce a mixed product stream; separating the mixed product stream; recovering olefins and aromatics from the separated mixed product stream; and recovering pyrolysis fuel oil from the separated mixed product stream. | 08-01-2013 |
20130220884 | INTEGRATED HYDROTREATING, SOLVENT DEASPHALTING AND STEAM PYROLYSIS PROCESS FOR DIRECT PROCESSING OF A CRUDE OIL - A process is provided that is directed to a steam pyrolysis zone integrated with a hydrotreating zone and a solvent deasphalting zone to permit direct processing of crude oil feedstocks to produce petrochemicals including olefins and aromatics. The integrated hydrotreating, solvent deasphalting and steam pyrolysis process comprises charging the crude oil to a hydroprocessing zone operating under conditions effective to produce a hydroprocessed effluent reduced having a reduced content of contaminants, an increased paraffinicity, reduced Bureau of Mines Correlation Index, and an increased American Petroleum Institute gravity; charging the hydroprocessed effluent to a solvent deasphalting zone with an effective amount of solvent to produce a deasphalted and demetalized oil stream and a bottom asphalt phase; thermally cracking the deasphalted and demetalized oil stream in the presence of steam to produce a mixed product stream; separating the mixed product stream; purifying hydrogen recovered from the mixed product stream and recycling it to the hydroprocessing zone; recovering olefins and aromatics from the separated mixed product stream; and recovering pyrolysis fuel oil from the separated mixed product stream. | 08-29-2013 |
20130228495 | INTEGRATED HYDROTREATING AND STEAM PYROLYSIS PROCESS INCLUDING HYDROGEN REDISTRIBUTION FOR DIRECT PROCESSING OF A CRUDE OIL - Steam pyrolysis and hydroprocessing are integrated including hydrogen redistribution to permit direct processing of crude oil feedstocks to produce petrochemicals including olefins and aromatics. A feed is initially split into a light portion and a heavy portion, and the heavy portion is hydroprocessed. A hydroprocessed effluent is charged, along with steam, to a convection section of a steam pyrolysis zone. The mixture is heated and passed to a vapor-liquid separation section. A residual portion is removed and light components are charged to a pyrolysis section of the steam pyrolysis zone. A mixed product stream is recovered from the steam pyrolysis zone and it is separated into product including olefins and aromatics. | 09-05-2013 |
20130228496 | INTEGRATED SOLVENT DEASPHALTING AND STEAM PYROLYSIS PROCESS FOR DIRECT PROCESSING OF A CRUDE OIL - A process is provided that is directed to a steam pyrolysis zone integrated with a solvent deasphalting zone to permit direct processing of crude oil feedstocks to produce petrochemicals including olefins and aromatics. The integrated solvent deasphalting and steam pyrolysis process for the direct processing of a crude oil to produce olefinic and aromatic petrochemicals comprises charging the crude oil to a solvent deasphalting zone with an effective amount of solvent to produce a deasphalted and demetalized oil stream and a bottom asphalt phase; thermally cracking the deasphalted and demetalized oil stream in the presence of steam to produce a mixed product stream; separating the mixed product stream; recovering olefins and aromatics from the separated mixed product stream; and recovering pyrolysis fuel oil from the separated mixed product stream. | 09-05-2013 |
20130233766 | INTEGRATED HYDROTREATING AND STEAM PYROLYSIS PROCESS FOR DIRECT PROCESSING OF A CRUDE OIL - An integrated hydrotreating and steam pyrolysis process for the direct processing of a crude oil is provided to produce olefinic and aromatic petrochemicals. Crude oil and hydrogen are charged to a hydroprocessing zone operating under conditions effective to produce a hydroprocessed effluent reduced having a reduced content of contaminants, an increased paraffinicity, reduced Bureau of Mines Correlation Index, and an increased American Petroleum Institute gravity. Hydroprocessed effluent is thermally cracked in the presence of steam to produce a mixed product stream, which is separated. Hydrogen from the mixed product stream is purified and recycled to the hydroprocessing zone, and olefins and aromatics are recovered from the separated mixed product stream. | 09-12-2013 |
20130233767 | INTEGRATED HYDROTREATING AND STEAM PYROLYSIS PROCESS INCLUDING RESIDUAL BYPASS FOR DIRECT PROCESSING OF A CRUDE OIL - A process is provided that is directed to a steam pyrolysis zone integrated with a hydroprocessing zone including residual bypass to permit direct processing of crude oil feedstocks to produce petrochemicals including olefins and aromatics. The integrated hydrotreating and steam pyrolysis process for the direct processing of a crude oil to produce olefinic and aromatic petrochemicals comprises separating the crude oil into light components and heavy components; charging the light components and hydrogen to a hydroprocessing zone operating under conditions effective to produce a hydroprocessed effluent reduced having a reduced content of contaminants, an increased paraffinicity, reduced Bureau of Mines Correlation Index, and an increased American Petroleum Institute gravity; thermally cracking the hydroprocessed effluent in the presence of steam to produce a mixed product stream; separating the mixed product stream; purifying hydrogen recovered from the mixed product stream and recycling it to the hydroprocessing zone; recovering olefins and aromatics from the separated mixed product stream; and recovering a combined stream of pyrolysis fuel oil from the separated mixed product stream and heavy components from step (a) as a fuel oil blend. | 09-12-2013 |
20130233768 | INTEGRATED SOLVENT DEASPHALTING, HYDROTREATING AND STEAM PYROLYSIS PROCESS FOR DIRECT PROCESSING OF A CRUDE OIL - A process is provided that is directed to a steam pyrolysis zone integrated with a solvent deasphalting zone and a hydrotreating zone to permit direct processing of crude oil feedstocks to produce petrochemicals including olefins and aromatics. The integrated solvent deasphalting, hydrotreating and steam pyrolysis process for the direct processing of a crude oil to produce olefinic and aromatic petrochemicals comprises: charging the crude oil to a solvent deasphalting zone with an effective amount of solvent for producing a deasphalted and demetalized oil stream and a bottom asphalt phase; charging the deasphalted and demetalized oil stream and hydrogen to a hydroprocessing zone operating under conditions effective to produce a hydroprocessed effluent reduced having a reduced content of contaminants, an increased paraffinicity, reduced Bureau of Mines Correlation Index, and an increased American Petroleum Institute gravity; thermally cracking the hydroprocessed effluent in the presence of steam to produce a mixed product stream; separating the mixed product stream; purifying hydrogen recovered from the mixed product stream and recycling it to the hydroprocessing zone; recovering olefins and aromatics from the separated mixed product stream; and recovering pyrolysis fuel oil from the separated mixed product stream. | 09-12-2013 |
20130248416 | INTEGRATED HYDROPROCESSING AND STEAM PYROLYSIS OF CRUDE OIL TO PRODUCE LIGHT OLEFINS AND COKE - An integrated hydrotreating, steam pyrolysis and coker process for the direct processing of a crude oil is provided to produce olefinic and aromatic petrochemicals, and petroleum coke. Crude oil and recycled coker liquid product are charged to a hydroprocessing zone operating under conditions effective to produce a hydroprocessed effluent which is thermally cracked in the presence of steam to produce a mixed product stream. The residual liquid fraction recovered upstream of the thermal cracking unit or within the thermal cracking unit is thermally cracked under conditions effective to produce coke and coker liquid product. The coker liquid product is recycled to the step of hydroprocessing while the petroleum coke is recovered. Hydrogen from the mixed product stream is purified and recycled to the hydroprocessing zone, and olefins, aromatics and pyrolysis fuel oil are recovered from the separated mixed product stream. | 09-26-2013 |
20130248417 | INTEGRATED HYDROPROCESSING, STEAM PYROLYSIS AND SLURRY HYDROPROCESSING OF CRUDE OIL TO PRODUCE PETROCHEMICALS - Crude oil is charged to a hydroprocessing zone in the presence of hydrogen operating under conditions effective to produce a hydroprocessed effluent, which is thermally cracked in the presence of steam in a steam pyrolysis zone to produce a mixed product stream. Heavy components, which are derived from one or more of the hydroprocessed effluent, a heated stream within the steam pyrolysis zone, or the mixed product stream catalytically cracking are charged to a slurry hydroprocessing zone to produce a slurry intermediate product which is then thermally cracked. Olefins and aromatics are recovered from the separated mixed product stream as product. | 09-26-2013 |
20130248418 | INTEGRATED SLURRY HYDROPROCESSING AND STEAM PYROLYSIS OF CRUDE OIL TO PRODUCE PETROCHEMICALS - An integrated slurry hydroprocessing and steam pyrolosyis process for the production of olefins and aromatic petrochemicals from a crude oil feedstock is provided. Crude oil, a steam pyrolysis residual liquid fraction and slurry reside are combined and treated in a hydroprocessing zone in the presence of hydrogen under conditions effective to produce an effluent having an increased hydrogen content. The effluent is thermally cracked with steam under conditions effective to produce a mixed product stream and steam pyrolysis residual liquid fraction. The mixed product stream is separated and olefins and aromatics are recovered and hydrogen is purified and recycled. | 09-26-2013 |
20130248419 | INTEGRATED HYDROPROCESSING, STEAM PYROLYSIS AND CATALYTIC CRACKING PROCESS TO PRODUCE PETROCHEMICALS FROM CRUDE OIL - An integrated hydrotreating, steam pyrolysis and catalytic cracking process for the production of olefins and aromatic petrochemicals from a crude oil feedstock is provided. Crude oil and hydrogen are charged to a hydroprocessing zone under conditions effective to produce a hydroprocessed effluent, which is thermally cracked in the presence of steam in a steam pyrolysis zone to produce a mixed product stream. Heavy components are catalytically cracked, which are derived from one or more of the hydroprocessed effluent, a heated stream within the steam pyrolysis zone, or the mixed product stream catalytically cracking. Catalytically cracked products are produced, which are combined with the mixed product stream and the combined stream is separated, and olefins and aromatics are recovered as product streams. | 09-26-2013 |
20130248421 | INTEGRATED HYDROPROCESSING AND FLUID CATALYTIC CRACKING FOR PROCESSING OF A CRUDE OIL - An integrated hydroprocessing and fluid catalytic cracking process is provided for the direct processing of a crude oil to produce olefinic and aromatic petrochemicals. Crude oil and hydrogen are charged to a hydroprocessing zone operating under conditions effective to produce a hydroprocessed effluent having a reduced content of contaminants, an increased paraffinicity, reduced Bureau of Mines Correlation Index, and an increased American Petroleum Institute gravity. The hydroprocessed effluent is separated into a low boiling fraction and a high boiling fraction. The low boiling fraction is cracked in a first downflow reactor of a fluid catalytic cracking unit in the presence of a predetermined amount of catalyst to produce cracked products and spent catalyst, and the high boiling fraction is cracked in a second downflow reactor of the fluid catalytic cracking unit in the presence of a predetermined amount of catalyst to produce cracked products and spent catalyst. Spent catalyst from both the first and second downflow reactors are regenerated in a common regeneration zone, and first and second cracked product streams are recovered. | 09-26-2013 |