Patent application number | Description | Published |
20090107835 | Rapidly Cleanable Electroplating Cup Assembly - Embodiments of a closed-contact electroplating cup assembly that may be rapidly cleaned while an electroplating system is on-line are disclosed. One disclosed embodiment comprises a cup assembly and a cone assembly, wherein the cup assembly comprises a cup bottom comprising an opening, a seal surrounding the opening, an electrical contact structure comprising a plurality of electrical contacts disposed around the opening, and an interior cup side that is tapered inwardly in along an axial direction of the cup from a cup top toward the cup bottom. | 04-30-2009 |
20090107836 | Closed Contact Electroplating Cup Assembly - Embodiments of a closed-contact electroplating cup are disclosed. One embodiment comprises a cup bottom comprising an opening, and a seal disposed on the cup bottom around the opening. The seal comprises a wafer-contacting peak located substantially at an inner edge of the seal. The embodiment also comprises an electrical contact structure disposed over a portion of the seal, wherein the electrical contact structure comprises an outer ring and a plurality of contacts extending inwardly from the outer ring, and wherein each contact has a generally flat wafer-contacting surface. The embodiment further comprises a wafer-centering mechanism configured to center a wafer in the cup. | 04-30-2009 |
20100032303 | Method and apparatus for electroplating including remotely positioned second cathode - An apparatus for electroplating a layer of metal on the surface of a wafer includes a second cathode located remotely with respect to the wafer. The remotely positioned second cathode allows modulation of current density at the wafer surface during an entire electroplating process. The second cathode diverts a portion of current flow from the near-edge region of the wafer and improves the uniformity of plated layers. The remote position of second cathode allows the insulating shields disposed in the plating bath to shape the current profile experienced by the wafer, and therefore act as a “virtual second cathode”. The second cathode may be positioned outside of the plating vessel and separated from it by a membrane. | 02-11-2010 |
20100032310 | Method and apparatus for electroplating - An apparatus for electroplating a layer of metal on the surface of a wafer includes an ionically resistive ionically permeable element located in close proximity of the wafer (preferably within 5 mm of the wafer surface) which serves to modulate ionic current at the wafer surface, and a second cathode configured to divert a portion of current from the wafer surface. The ionically resistive ionically permeable element in a preferred embodiment is a disk made of a resistive material having a plurality of perforations formed therein, such that perforations do not form communicating channels within the body of the disk. The provided configuration effectively redistributes ionic current in the plating system allowing plating of uniform metal layers and mitigating the terminal effect. | 02-11-2010 |
20100044236 | METHOD AND APPARATUS FOR ELECTROPLATING - An apparatus for electroplating a layer of metal onto the surface of a wafer includes an ionically resistive ionically permeable element located in close proximity of the wafer and an auxiliary cathode located between the anode and the ionically resistive ionically permeable element. The ionically resistive ionically permeable element serves to modulate ionic current at the wafer surface. The auxiliary cathode is configured to shape the current distribution from the anode. The provided configuration effectively redistributes ionic current in the plating system allowing plating of uniform metal layers and mitigating the terminal effect. | 02-25-2010 |
20100116672 | METHOD AND APPARATUS FOR ELECTROPLATING - An apparatus for electroplating a layer of metal onto the surface of a wafer includes an ionically resistive ionically permeable element located in close proximity of the wafer and an auxiliary cathode located between the anode and the ionically resistive ionically permeable element. The ionically resistive ionically permeable element serves to modulate ionic current at the wafer surface. The auxiliary cathode is configured to shape the current distribution from the anode. The provided configuration effectively redistributes ionic current in the plating system allowing plating of uniform metal layers and mitigating the terminal effect. | 05-13-2010 |
20100317178 | REMOTE PLASMA PROCESSING OF INTERFACE SURFACES - Embodiments related to the cleaning of interface surfaces in a semiconductor wafer fabrication process via remote plasma processing are disclosed herein. For example, in one disclosed embodiment, a semiconductor processing apparatus comprises a processing chamber, a load lock coupled to the processing chamber via a transfer port, a wafer pedestal disposed in the load lock and configured to support a wafer in the load lock, a remote plasma source configured to provide a remote plasma to the load lock, and an ion filter disposed between the remote plasma source and the wafer pedestal. | 12-16-2010 |
20100317198 | REMOTE PLASMA PROCESSING OF INTERFACE SURFACES - Embodiments related to the cleaning of interface surfaces in a semiconductor wafer fabrication process via remote plasma processing are disclosed herein. For example, in one disclosed embodiment, a semiconductor processing apparatus comprises a processing chamber, a load lock coupled to the processing chamber via a transfer port, a wafer pedestal disposed in the load lock and configured to support a wafer in the load lock, and a remote plasma source configured to provide a remote plasma to the load lock. | 12-16-2010 |
20110083965 | Electrolyte Concentration Control System for High Rate Electroplating - An electroplating apparatus for filling recessed features on a semiconductor substrate includes an electrolyte concentrator configured for concentrating an electrolyte having Cu | 04-14-2011 |
20110120377 | REMOTE PLASMA PROCESSING OF INTERFACE SURFACES - Embodiments related to the cleaning of interface surfaces in a semiconductor wafer fabrication process via remote plasma processing are disclosed herein. For example, in one disclosed embodiment, a semiconductor processing apparatus comprises a processing chamber, a load lock coupled to the processing chamber via a transfer port, a wafer pedestal disposed in the load lock and configured to support a wafer in the load lock, a remote plasma source configured to provide a remote plasma to the load lock, and an ion filter disposed between the remote plasma source and the wafer pedestal. | 05-26-2011 |
20110233056 | ELECTROPLATING CUP ASSEMBLY - Embodiments of a closed-contact electroplating cup are disclosed. One embodiment comprises a cup bottom comprising an opening, and a seal disposed on the cup bottom around the opening. The seal comprises a wafer-contacting peak located substantially at an inner edge of the seal. The embodiment also comprises an electrical contact structure disposed over a portion of the seal, wherein the electrical contact structure comprises an outer ring and a plurality of contacts extending inwardly from the outer ring, and wherein each contact has a generally flat wafer-contacting surface. The embodiment further comprises a wafer-centering mechanism configured to center a wafer in the cup. | 09-29-2011 |
20130237063 | SPLIT PUMPING METHOD, APPARATUS, AND SYSTEM - A split-pumping system and method for semiconductor fabrication process chambers is provided. The split pumping method may provide two separate exhaust paths, each configured to evacuate a different process gas. The exhaust paths may be configured to not evacuate process gases other than the process gas that the exhaust path is configured to evacuate. | 09-12-2013 |
20130327650 | METHOD AND APPARATUS FOR ELECTROPLATING - An apparatus for electroplating a layer of metal onto the surface of a wafer includes an ionically resistive ionically permeable element located in close proximity of the wafer and an auxiliary cathode located between the anode and the ionically resistive ionically permeable element. The ionically resistive ionically permeable element serves to modulate ionic current at the wafer surface. The auxiliary cathode is configured to shape the current distribution from the anode. The provided configuration effectively redistributes ionic current in the plating system allowing plating of uniform metal layers and mitigating the terminal effect. | 12-12-2013 |
20140217590 | THROUGH SILICON VIA METALLIZATION - To achieve the foregoing and in accordance with the purpose of the present invention, a method for filling through silicon vias is provided. A dielectric layer is formed over the through silicon vias. A barrier layer, comprising tungsten, is deposited by CVD or ALD over the dielectric layer. The through silicon vias are filled with a conductive material. | 08-07-2014 |