Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Semans

Ellen Semans, Tampa, FL US

Patent application numberDescriptionPublished
20110192431Apparatus for Washing and Sanitizing Articles for an Infant - Disclosed is a portable and self contained washing and sanitizing apparatus. The apparatus finds particular application in washing small baby items such as bottles, nipples, teething rings or toys. The apparatus includes three primary components: a container for housing the items to be washed; a water reservoir for storing and collecting wash water; and a housing for interconnecting the container and reservoir.08-11-2011
20120216838Method for Washing and Sanitizing Articles for an Infant - Disclosed is a portable and self contained washing and sanitizing apparatus. The apparatus finds particular application in washing small baby items such as bottles, nipples, teething rings or toys. The apparatus includes three primary components: a container for housing the items to be washed; a water reservoir for storing and collecting wash water; and a housing for interconnecting the container and reservoir.08-30-2012
20140150830Method for Washing and Sanitizing Articles for an Infant - Disclosed is a portable and self-contained washing and sanitizing apparatus. The apparatus finds particular application in washing small baby items such as bottles, nipples, teething rings or toys. The apparatus includes a container with a lid, the container housing the items to be washed; an accessory holder connected to the lid for holding infant accessories during washing operations; a water reservoir for storing and collecting wash water; and a housing for interconnecting the container and reservoir.06-05-2014

Patent applications by Ellen Semans, Tampa, FL US

Scott Semans, Palo Alto, CA US

Patent application numberDescriptionPublished
20100109047Multijunction rare earth solar cell - Examples of device structures utilizing layers of rare earth oxides to perform the tasks of strain engineering in transitioning between semiconductor layers of different composition and/or lattice orientation and size are given. A structure comprising a plurality of semiconductor layers separated by transition layer(s) comprising two or more rare earth compounds operable as a sink for structural defects is disclosed.05-06-2010
20100116315Active rare earth tandem solar cell - The use of rare-earth (RE and O, N, P) based materials to transition between two different semiconductor materials and enable up and/or down conversion of incident radiation is disclosed. Rare earth based oxides, nitrides and phosphides provide a wide range of lattice spacing enabling, compressive, tensile or stress-free lattice matching with Group IV, III-V, and Group II-VI compounds.05-13-2010
20100122720Passive Rare Earth Tandem Solar Cell - The use of rare-earth (RE+O, N, P) based materials to transition between two semiconductor materials is disclosed. Rare earth based oxides, nitrides and phosphides provide a wide range of lattice spacings enabling, compressive, tensile or stress-free lattice matching with Group IV, III-V, and Group II-VI compounds. Disclosed embodiments include tandem solar cells.05-20-2010
20120073648Photovoltaic conversion using rare earths plus Group IV Sensitizers - The invention relates to photovoltaic device structures of more than one layer comprising rare earth compounds and Group IV materials enabling spectral harvesting outside the conventional absorption limits for silicon.03-29-2012

Scott Semans, Sunnyvale, CA US

Patent application numberDescriptionPublished
20100038521Photovoltaic up conversion and down conversion using rare earths - The use of rare-earth (REO, N, P) based materials to covert long wavelength photons to shorter wavelength photons that can be absorbed in a photovoltaic device (up-conversion) and (REO, N, P) materials which can absorb a short wavelength photon and re-emit one (downshifting) or more longer wavelength photons is disclosed. The wide spectral range of sunlight overlaps with a multitude of energy transitions in rare-earth materials, thus offering multiple up-conversion pathways. The refractive index contrast of rare-earth materials with silicon enables a DBR with >90% peak reflectivity and a stop band greater than 150 nm.02-18-2010
20100038541Monolithicallly integrated IR imaging using rare-earth up conversion materials - Infrared imaging at wavelengths longer than the silicon bandgap energy (>1100 nm) typically require expensive focal plane arrays fabricated from compound semiconductors (InSb or HgCdTe) or use of slower silicon microbolometer technology. Furthermore, these technologies are available in relatively small array sizes, whereas silicon focal plane arrays are easily available with 10 megapixels or more array size. A new technique is disclosed to up convert infrared light to wavelengths detectable by silicon focal plane arrays, or other detector technologies, thereby enabling a low-cost, high pixel count infrared imaging system.02-18-2010
20140053894GRADED GeSn ON SILICON - A method of fabricating a solar cell on a silicon substrate includes providing a crystalline silicon substrate, selecting a grading profile, epitaxially growing a template on the silicon substrate including a single crystal GeSn layer using the grading profile to grade Sn through the layer. The single crystal GeSn layer has a thickness in a range of approximately 3 μm to approximately 5 μm. At least two layers of high band gap material are epitaxially and sequentially grown on the template to form at least three junctions. The grading profile starts with the Sn at or near zero with the Ge at zero, the percentage of Sn varies to a maximum mid-area, and reduces the percentage of Sn to zero adjacent an upper surface.02-27-2014
20140076390III-V SEMICONDUCTOR INTERFACE WITH GRADED GeSn ON SILICON - A method of depositing III-V solar collection materials on a GeSn template on a silicon substrate including the steps of providing a crystalline silicon substrate and epitaxially growing a single crystal GeSn layer on the silicon substrate using a grading profile to grade Sn through the layer. The single crystal GeSn layer has a thickness in a range of approximately 3 μm to approximately 5 μm. A layer of III-V solar collection material is epitaxially grown on the graded single crystal GeSn layer. The graded single crystal GeSn layer includes Sn up to an interface with the layer of III-V solar collection material.03-20-2014
20140077240IV MATERIAL PHOTONIC DEVICE ON DBR - A photonic structure including a substrate of either crystalline silicon or germanium and a multilayer distributed Bragg reflector (DBR) positioned on the substrate. The DBR includes material substantially crystal lattice matching the DBR to the substrate. The DBR includes a plurality of pairs of layers of material including any combination of IV materials and any rare earth oxide (REO). A photonic device including multilayers of single crystal IV material positioned on the DBR and including material substantially crystal lattice matching the DBR to the photonic device.03-20-2014
20140077338Si-Ge-Sn ON REO TEMPLATE - An electronic device includes IV material grown on a silicon substrate. The device includes a crystalline silicon substrate and a rare earth structure epitaxially grown on the silicon substrate. The rare earth structure includes a layer of a rare earth oxide with electrical insulating characteristics so that the rare earth structure provides electrical insulation from the silicon substrate. A single crystal IV material film is epitaxially grown on the rare earth structure. The single crystal IV material film includes one of crystal lattice matching or crystal lattice mismatching the IV material film to the rare earth structure.03-20-2014
20140077339DELTA DOPING AT Si-Ge INTERFACE - A IV or III-V device is fabricated on a germanium template on a silicon substrate and includes a thin layer of Ge epitaxially grown on a silicon substrate. The thin layer includes Ge delta doped with Sn at the silicon substrate. A single crystal layer of Ge is epitaxially grown on the thin layer of Ge doped with Sn. A structure including one of IV material and III-V material is epitaxially grown on the single crystal layer of Ge.03-20-2014
Website © 2015 Advameg, Inc.