Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Scott A. Vanstone, Campbellville CA

Scott A. Vanstone, Campbellville CA

Patent application numberDescriptionPublished
20080310625DIGITAL SIGNATURE ON A SMARTCARD - A digital signature scheme for a “smart” card utilizes a set of prestored signing elements and combines pairs of the elements to produce a new session pair. The combination of the elements is performed partly on the card and partly on the associated transaction device so that the exchange of information between card and device does not disclose the identity of the signing elements. The signing elements are selected in a deterministic but unpredictable manner so that each pair of elements is used once. Further signing pairs are generated by implementing the signing over an anomalous elliptic curve encryption scheme and applying a Frobenius Operator to the normal basis representation of one of the elements.12-18-2008
20090022309METHOD OF PROVIDING TEXT REPRESENTATION OF A CRYPTOGRAPHIC VALUE - A method of representing crytographic values in text form is described. The text representation is formed from words selected from a vocabulary, which may include a collection of pseudowords. The text representations can be further transformed to a paragraph in an apparently grammatically correct form.01-22-2009
20090022311METHOD OF COMPRESSING A CRYPTOGRAPHIC VALUE - A method of compressing a cryptographic value. The method comprising the steps of: (a) selecting a secret value; (b) performing a cryptographic operation on the secret value to generate the cryptographic value; (c) determining whether the cryptographic value satisfies the pre-determined criteria; and (d) repeating the sequence of steps starting at step (a) until the cryptographic value satisfies the pre-determined criteria.01-22-2009
20090041238IMPLICIT CERTIFICATE SCHEME - A method of generating a public key in a secure digital communication system, having at least one trusted entity CA and subscriber entities A. For each entity A, the trusted entity selects a unique identity distinguishing the entity A. The trusted entity then generates a public key reconstruction public data of the entity A by mathematically combining public values obtained from respective private values of the trusted entity and the entity A. The unique identity and public key reconstruction public data of the entity A serve as A's implicit certificate. The trusted entity combines the implicit certificate information with a mathematical function to derive an entity information f and generates a value k02-12-2009
20090046852METHOD AND SYSTEM FOR GENERATING IMPLICIT CERTIFICATES AND APPLICATIONS TO IDENTITY-BASED ENCRYPTION (IBE) - The invention relates to a method of generating an implicit certificate and a method of generating a private key from a public key. The method involves a method generating an implicit certificate in three phases. The public key may be an entity's identity or derived from an entity's identify. Only the owner of the public key possesses complete information to generate the corresponding private key. No authority is required to nor able to generate an entity's private key.02-19-2009
20090074180METHOD AND APPARATUS FOR PERFORMING ELLIPTIC CURVE ARITHMETIC - A method of performing a cryptographic operation on a point in an elliptic curve cryptosystem using an elliptic curve. The method comprises the steps of obtaining information that uniquely identifies the elliptic curve and performing computations on the point to obtain the result of the cryptographic operation. The computations use the information. The computations produce an incorrect result if the point is not on the elliptic curve.03-19-2009
20090077384Accelerated signature verification on an elliptic curve - A public key encryption system exchanges information between a pair of correspondents. The recipient performs computations on the received data to recover the transmitted data or verify the identity of the sender. The data transferred includes supplementary information that relates to intermediate steps in the computations performed by the recipient.03-19-2009
20090086968A METHOD FOR THE APPLICATION OF IMPLICIT SIGNATURE SCHEMES - A method of verifying a transaction over a data communication system between a first and second correspondent through the use of a certifying authority. The certifying authority has control of a certificate's validity, which is used by at least the first correspondent. The method comprises the following steps. One of the first and second correspondents advising the certifying authority that the certificate is to be validated. The certifying authority verifies the validity of the certificate attributed to the first correspondent. The certifying authority generates implicit signature components including specific authorization information. At least one of the implicit signature components is forwarded to the first correspondent for permitting the first correspondent to generate an ephemeral private key. At least one of the implicit signature components is forwarded to the second correspondent for permitting recovery of an ephemeral public key corresponding to the ephemeral private key. The first correspondent signs a message with the ephemeral private key and forwards the message to the second correspondent. The second correspondent attempts to verify the signature using the ephemeral public key and proceeds with the transaction upon verification.04-02-2009
20090100267Signatures with confidential message recovery - A portion of the signed message in an ECPVS is kept truly confidential by dividing the message being signed into at least three parts, wherein one portion is visible, another portion is recoverable by any entity and carries the necessary redundancy for verification, and at least one additional portion is kept confidential. The additional portion is kept confidential by encrypting such portion using a key generated from information specific to that verifying entity. In this way, any entity with access to the signer's public key can verify the signature by checking for a specific characteristic, such as a certain amount of redundancy in the one recovered portion, but cannot recover the confidential portion, only the specific entity can do so. Message recovery is also provided in an elliptic curve signature using a modification of the well analyzed ECDSA signing equation instead of, e.g. the Schnorr equation used in traditional PV signature schemes.04-16-2009
20090164792DATA CARD VERIFICATION SYSTEM - A method of verifying a pair of correspondents in electronic transaction, the correspondents each including first and second signature schemes and wherein the first signature scheme is computationally more difficult in signing than verifying and the second signature scheme is computationally more difficult in verifying than signing. The method comprises the step of the first correspondent signing information according to the first signature scheme and transmitting the first signature to the second correspondent, the second correspondent verifying the first signature received from the first correspondent, wherein the verification is performed according to the first signature scheme. The second correspondent then signs information according to the second signature scheme and transmits the second signature to the first correspondent, the first correspondent verifies the second signature received from the second correspondent, wherein the verification is performed according to the second signature algorithm; the transaction is rejected if either verification fails. The method thereby allows one of the correspondents to participate with relatively little computing power while maintaining security of the transaction.06-25-2009
20090323944METHOD OF PUBLIC KEY GENERATION - A potential bias in the generation of a private key is avoided by selecting the key and comparing it against the system parameters. If a predetermined condition is attained it is accepted. If not it is rejected and a new key is generated.12-31-2009
20100014663Strengthened public key protocol - A method of determining the integrity of a message exchanged between a pair of correspondents. The message is secured by embodying the message in a function of a public key derived from a private key selected by one of the correspondents. The method comprises first obtaining the public key. The public key is then subjected to at least one mathematical test to determine whether the public key satisfies predefined mathematical characteristics. Messages utilizing the public key are accepted if the public key satisfies the predefined mathematical characteristics.01-21-2010
20100023775COMPRESSED ECDSA SIGNATURES - An improved compression scheme for compressing an ECDSA signature is provided. The scheme substitutes the integer s in a signature (r, s) by a smaller value c. The value c is derived from s and another value d, d being small enough such that c is smaller than s. The compressed signature (r, c) is verified by computing a value using r and e, e being a hash of a message m, and using this value with a value R recovered from r to derive the value d. The value s can then be recovered and the full signature then recovered and verified.01-28-2010
20100166188IMPLICIT CERTIFICATE SCHEME - A method of generating a public key in a secure digital communication system, having at least one trusted entity CA and subscriber entities A. For each entity A, the trusted entity selects a unique identity distinguishing the entity A. The trusted entity then generates a public key reconstruction public data of the entity A by mathematically combining public values obtained from respective private values of the trusted entity and the entity A. The unique identity and public key reconstruction public data of the entity A serve as A's implicit certificate. The trusted entity combines the implicit certificate information with a mathematical function to derive an entity information ƒ and generates a value k07-01-2010
20100189253PRIVACY-ENHANCED E-PASSPORT AUTHENTICATION PROTOCOL - A passport authentication protocol provides for encryption of sensitive data such as biometric data and transfer of the encryption key from the passport to the authentication authority to permit comparison to a reference value.07-29-2010
20100250945PRIVACY-ENHANCED E-PASSPORT AUTHENTICATION PROTOCOL - A passport authentication protocol provides for encryption of sensitive data such as biometric data and transfer of the encryption key from the passport to the authentication authority to permit comparison to a reference value.09-30-2010
20100278333METHOD AND APPARATUS FOR PERFORMING ELLIPTIC CURVE ARITHMETIC - A method of performing a cryptographic operation on a point in an elliptic curve cryptosystem using an elliptic curve. The method comprises the steps of obtaining information that uniquely identifies the elliptic curve and performing computations on the point to obtain the result of the cryptographic operation. The computations use the information. The computations produce an incorrect result if the point is not on the elliptic curve.11-04-2010
20110016324DATA CARD VERIFICATION SYSTEM - A method of verifying a pair of correspondents in electronic transaction, the correspondents each including first and second signature schemes and wherein the first signature scheme is computationally more difficult in signing than verifying and the second signature scheme is computationally more difficult in verifying than signing. The method comprises the step of the first correspondent signing information according to the first signature scheme and transmitting the first signature to the second correspondent, the second correspondent verifying the first signature received from the first correspondent, wherein the verification is performed according to the first signature scheme. The second correspondent then signs information according to the second signature scheme and transmits the second signature to the first correspondent, the first correspondent verifies the second signature received from the second correspondent, wherein the verification is performed according to the second signature algorithm; the transaction is rejected if either verification fails. The method thereby allows one of the correspondents to participate with relatively little computing power while maintaining security of the transaction.01-20-2011
20110060909TRAPDOOR ONE-WAY FUNCTIONS ON ELLIPTIC CURVES AND THEIR APPLICATION TO SHORTER SIGNATURES AND ASYMMETRIC ENCRYPTION - The present invention provides a new trapdoor one-way function. In a general sense, some quadratic algebraic integer z is used. One then finds a curve E and a rational map defining [z] on E. The rational map [z] is the trapdoor one-way function. A judicious selection of z will ensure that [z] can be efficiently computed, that it is difficult to invert, that determination of [z] from the rational functions defined by [z] is difficult, and knowledge of z allows one to invert [z] on a certain set of elliptic curve points. Every rational map is a composition of a translation and an endomorphism. The most secure part of the rational map is the endomorphism as the translation is easy to invert. If the problem of inverting the endomorphism and thus [z] is as hard as the discrete logarithm problem in E, then the size of the cryptographic group can be smaller than the group used for RSA trapdoor one-way functions.03-10-2011
20110064226SPLIT-KEY KEY-AGREEMENT PROTOCOL - This invention relates to a method for generating a shared secret value between entities in a data communication system, one or more of the entities having a plurality of members for participation in the communication system, each member having a long term private key and a corresponding long term public key. The method comprises the steps of generating a short term private and a corresponding short term public key for each of the members; exchanging short term public keys of the members within an entity. For each member then computing an intra-entity shared key by mathematically combining the short term public keys of each the members computing an intra-entity public key by mathematically combining its short-term private key, the long term private key and the intra-entity shared key. Next, each entity combines intra-entity public keys to derive a group short-term S03-17-2011
20110268270Method of Public Key Generation - A potential bias in the generation of a private key is avoided by selecting the key and comparing it against the system parameters. If a predetermined condition is attained it is accepted. If not it is rejected and a new key is generated.11-03-2011
20120039466Method of Compressing a Cryptographic Value - A computer implemented method of compressing a digitally represented cryptographic value. The method comprising the steps of: (a) selecting a secret value; (b) performing a cryptographic operation on the secret value to generate the cryptographic value; (c) determining whether the cryptographic value satisfies the pre-determined criteria; and (d) repeating the sequence of steps starting at step (a) until the cryptographic value satisfies the pre-determined criteria.02-16-2012
20120089844ONE WAY AUTHENTICATION - A cryptosystem prevents replay attacks within existing authentication protocols, susceptible to such attacks but containing a random component, without requiring modification to said protocols. The entity charged with authentication maintains a list of previously used bit patterns, extracted from a portion of the authentication message connected to the random component. If the bit pattern has been seen before, the message is rejected; if the bit pattern has not been seen before, the bit pattern is added to the stored list and the message is accepted.04-12-2012
20120102318Method for the Application of Implicit Signature Schemes - A method of certifying a correspondent in data communication system by a certifying authority. The certifying authority includes a cryptographic unit. The method includes generating a random number and implicit certificate components based on the random number using the cryptographic unit. The implicit certificate components have a first component and a second component. The method also includes providing the implicit certificate components for use in the data communication system and providing a public key of the certifying authority for use in derivation of a public key of the correspondent from the first component. The certifying authority recertifies the correspondent by providing implicit certificate components using a changed value for the random number.04-26-2012
20120131322System and Method for Authenticating a Gaming Device - A method and system are provided for authenticating and securing an embedded device using a secure boot procedure and a full non-volatile memory encryption process that implements Elliptic Curve Pinstov-Vanstone Signature (ECPV) scheme with message recovery on a personalized BIOS and master boot record. The signature includes code that is recovered in order to unlock a key that is in turn used to decrypt the non-volatile memory. The use of ECPVS provides an implicit verification that the hardware is bound to the BIOS since the encrypted memory is useless unless properly decrypted with the proper key.05-24-2012
20120213366Aggregate Signature Schemes - An authenticated RFID system is provided that uses elliptic curve cryptography (ECC) to reduce the signature size and read/write times when compared to traditional public key implementations such as RSA. Either ECDSA or ECPVS can be used to reduce the signature size and ECPVS can be used to hide a portion of the RFID tag that contains sensitive product identifying information. As a result, smaller tags can be used or multiple signatures can be written at different stages in a manufacturing or supply chain. A key management system is used to distribute the verification keys and aggregate signature schemes are also provided for adding multiple signatures to the RFID tags, for example in a supply chain.08-23-2012
20120230494Accelerated Verification of Digital Signatures and Public Keys - Accelerated computation of combinations of group operations in a finite field is provided by arranging for at least one of the operands to have a relatively small bit length. In a elliptic curve group, verification that a value representative of a point R corresponds the sum of two other points uG and vG is obtained by deriving integers w,z of reduced bit length and so that v=w/z. The verification equality R=uG+vQ may then be computed as −zR+(uz mod n) G+wQ=O with z and w of reduced bit length. This is beneficial in digital signature verification where increased verification can be attained.09-13-2012
20120257745Split-Key Key-Agreement Protocol - There is provided a method of one member of a first entity generating an intra-entity public key. The first entity has a plurality of members and the one member has a long-term private key and a corresponding long-term public key. The method includes generating a short-term private key and a corresponding short-term public key, computing an intra-entity shared key by mathematically combining the short-term public key of the one member and respective short-term public keys of each other member of the first entity and computing the intra-entity public key by mathematically combining the short-term private key, the long-term private key and the intra-entity shared key.10-11-2012
20120257758STRENGTHENED PUBLIC KEY PROTOCOL - A method of determining the integrity of a message exchanged between a pair of correspondents. The message is secured by embodying the message in a function of a public key derived from a private key selected by one of the correspondents. The method comprises first obtaining the public key. The public key is then subjected to at least one mathematical test to determine whether the public key satisfies predefined mathematical characteristics. Messages utilizing the public key are accepted if the public key satisfies the predefined mathematical characteristics.10-11-2012
20120281826RESILIENT CRYPTOGRAPHIC SCHEME - A system and method are provided for enabling a symmetric key to be derived, the method comprising: obtaining a plurality of key parts, wherein the plurality of key parts when combined equal the symmetric key; encrypting a first of the key parts using a first cryptographic algorithm to generate a first encrypted value; encrypting one or more remaining key parts of the plurality of key parts using respective cryptographic algorithms to generate one or more additional encrypted values, wherein each key part encrypted is encrypted using a different cryptographic algorithm; and providing the first encrypted value and the one or more additional encrypted values to an other entity to enable the other entity to derive the symmetric key.11-08-2012
20120290836ACCELERATED SIGNATURE VERIFICATION ON AN ELLIPTIC CURVE - A public key encryption system exchanges information between a pair of correspondents. The recipient performs computations on the received data to recover the transmitted data or verify the identity of the sender. The data transferred includes supplementary information that relates to intermediate steps in the computations performed by the recipient.11-15-2012
20120300924Implicit Certificate Scheme - A method of generating a public key in a secure digital communication system, having at least one trusted entity CA and subscriber entities A. The trusted entity selects a unique identity distinguishing each entity A. The trusted entity then generates a public key reconstruction public data of the entity A by mathematically combining public values obtained from respective private values of the trusted entity and the entity A. The unique identity and public key reconstruction public data of the entity A serve as A's implicit certificate. The trusted entity combines the implicit certificate information with a mathematical function to derive an entity information f and generates a value k11-29-2012
20120303950Implicit Certificate Scheme - A method of generating a public key in a secure digital communication system, having at least one trusted entity CA and subscriber entities A. The trusted entity selects a unique identity distinguishing each entity A. The trusted entity then generates a public key reconstruction public data of the entity A by mathematically combining public values obtained from respective private values of the trusted entity and the entity A. The unique identity and public key reconstruction public data of the entity A serve as A's implicit certificate. The trusted entity combines the implicit certificate information with a mathematical function to derive an entity information ƒ and generates a value k11-29-2012
20120314855Trapdoor One-Way Functions on Elliptic Curves and Their Application to Shorter Signatures and Asymmetric Encryption - A new trapdoor one-way function is provided. In a general sense, some quadratic algebraic integer z is used. One then finds a curve E and a rational map defining [z] on E. The rational map [z] is the trapdoor one-way function. A judicious selection of z will ensure that [z] can be efficiently computed, that it is difficult to invert, that determination of [z] from the rational functions defined by [z] is difficult, and knowledge of z allows one to invert [z] on a certain set of elliptic curve points.12-13-2012
20130019099Strengthened Public Key Protocol - A method of determining the integrity of a message exchanged between a pair of correspondents. The message is secured by embodying the message in a function of a public key derived from a private key selected by one of the correspondents. The method comprises first obtaining the public key. The public key is then subjected to at least one mathematical test to determine whether the public key satisfies predefined mathematical characteristics. Messages utilizing the public key are accepted if the public key satisfies the predefined mathematical characteristics.01-17-2013
20130064367ACCELERATED VERIFICATION OF DIGITAL SIGNATURES AND PUBLIC KEYS - Accelerated computation of combinations of group operations in a finite field is provided by arranging for at least one of the operands to have a relatively small bit length. In a elliptic curve group, verification that a value representative of a point R corresponds the sum of two other points uG and vG is obtained by deriving integers w,z of reduced bit length and so that v=w/z. The verification equality R=uG+vQ may then be computed as −zR+(uz mod n) G+wQ=O with z and w of reduced bit length. This is beneficial in digital signature verification where increased verification can be attained.03-14-2013
20130067233DATA CARD VERIFICATION SYSTEM - To verify a pair of correspondents in an. electronic transaction, each of the correspondents utilises respective parts of first and second signature schemes. The first signature scheme is computationally more difficult in signing than verifying and the second signature scheme is computationally more difficult in verifying than signing. The first correspondent signs information according to the first signature scheme, the second correspondent verifies the first signature received from the first correspondent, using the first signature scheme. The second correspondent then signs information according to the second signature scheme and the first correspondent verifies the second signature received from the second correspondent, according to the second signature algorithm. The method thereby allows one of the correspondents in participate with relatively little computing power while maintaining security of the transaction.03-14-2013
20130073857ONE WAY AUTHENTICATION - A cryptosystem prevents replay attacks within existing authentication protocols, susceptible to such attacks but containing a random component, without requiring modification to said protocols. The entity charged with authentication maintains a list of previously used bit patterns, extracted from a portion of the authentication message connected to the random component. If the bit pattern has been seen before, the message is rejected; if the bit pattern has not been seen before, the bit pattern is added to the stored list and the message is accepted.03-21-2013
20130246805SECURE INTERFACE FOR VERSATILE KEY DERIVATION FUNCTION SUPPORT - Improper re-use of a static Diffie-Hellman (DH) private key may leak information about the key. The leakage is prevented by a key derivation function (KDF), but standards do not agree on key derivation functions. The module for performing a DH private key operation must somehow support multiple different KDF standards. The present invention provides an intermediate approach that neither attempts to implement all possible KDF operations, nor provide unprotected access to the raw DH private key operation. Instead, the module performs parts of the KDF operation, as indicated by the application using the module. This saves the module from implementing the entire KDF for each KDF needed. Instead, the module implements only re-usable parts that are common to most KDFs. Furthermore, when new KDFs are required, the module may be able to support them if they built on the parts that the module has implemented.09-19-2013
20130318342Method and System for Generating Implicit Certificates and Applications to Identity-Based Encryption (IBE) - The invention relates to a method of generating an implicit certificate and a method of generating a private key from a public key. The method involves a method generating an implicit certificate in three phases. The public key may be an entity's identity or derived from an entity's identify. Only the owner of the public key possesses complete information to generate the corresponding private key. No authority is required to nor able to generate an entity's private key.11-28-2013
20140281538ACCELERATED SIGNATURE VERIFICATION ON AN ELLIPTIC CURVE - A public key encryption system exchanges information between a pair of correspondents. The recipient performs computations on the received data to recover the transmitted data or verify the identity of the sender. The data transferred includes supplementary information that relates to intermediate steps in the computations performed by the recipient.09-18-2014

Patent applications by Scott A. Vanstone, Campbellville CA

Website © 2015 Advameg, Inc.