Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Schlub

Robert Schlub, Cupertino, CA US

Patent application numberDescriptionPublished
20110188178HIGH TOLERANCE CONNECTION BETWEEN ELEMENTS - This is directed to connecting two or more elements using an intermediate element constructed from a material that changes between states. An electronic device can include one or more components constructed by connecting several elements. To provide a connection having a reduced or small size or cross-section and construct a component having high tolerances, a material can be provided in a first state in which it flows between the elements before changing to a second state in which it adheres to the elements and provides a structurally sound connection. For example, a plastic can be molded between the elements. As another example, a composite material can be brazed between the elements. In some cases, internal surfaces of the elements can include one or more features for enhancing a bond between the elements and the material providing the interface between the elements.08-04-2011

Robert W. Schlub, Cupertino, CA US

Patent application numberDescriptionPublished
20110006953CAVITY ANTENNAS FOR ELECTRONIC DEVICES - Antennas are provided for electronic devices such as portable computers. An electronic device may have a housing in which an antenna is mounted. The housing may have an antenna window for the antenna. The antenna window may be formed from dielectric or from antenna window slots in a conductive member such as a conductive wall of the electronic device housing. An antenna may have an antenna resonating element that is backed by a conductive antenna cavity. The antenna resonating element may have antenna resonating element slots or may be formed using other antenna configurations such as inverted-F configurations. The antenna cavity may have conductive vertical sidewalls and a conductive rear wall. The antenna cavity walls may be formed from conductive layers on a dielectric antenna support structure.01-13-2011
20110133995BEZEL GAP ANTENNAS - Electronic devices are provided that contain wireless communications circuitry. The wireless communications circuitry may include radio-frequency transceiver circuitry and antenna structures. A parallel-fed loop antenna may be formed from portions of an electronic device bezel and a ground plane. The antenna may operate in multiple communications bands. An impedance matching circuit for the antenna may be formed from a parallel-connected inductive element and a series-connected capacitive element. The bezel may surround a peripheral portion of a display that is mounted to the front of an electronic device. The bezel may contain a gap. Antenna feed terminals for the antenna may be located on opposing sides of the gap. The inductive element may bridge the gap and the antenna feed terminals. The capacitive element may be connected in series between one of the antenna feed terminals and a conductor in a transmission line located between the transceiver circuitry and the antenna.06-09-2011
20110250928ADJUSTABLE WIRELESS CIRCUITRY WITH ANTENNA-BASED PROXIMITY DETECTOR - An electronic device such as a portable electronic device has wireless communications circuitry. Antennas in the electronic device may be used in transmitting radio-frequency antenna signals. A coupler and antenna signal phase and magnitude measurement circuitry may be used to determine when external objects are in the vicinity of the antenna by making antenna impedance measurements. In-band and out-of-band phase and magnitude signal measurements may be made in determining whether external objects are present. Additional sensors such as motion sensors, light and heat sensors, acoustic and electrical sensors may produce data that can be combined with the proximity data gathered using the antenna-based proximity sensor. In response to detecting that an external object such as a user's body is within a given distance of the antenna, the electronic device may reduce transmit powers, switch antennas, steer a phased antenna array, switch communications protocols, or take other actions.10-13-2011
20110270567TOOLS FOR DESIGN AND ANALYSIS OF OVER-THE-AIR TEST SYSTEMS WITH CHANNEL MODEL EMULATION CAPABILITIES - A wireless electronic device may serve as a device under test in a test system. The test system may include an array of over-the-air antennas that can be used in performing over-the-air wireless tests on the device under test (DUT). A channel model may be used in modeling a multiple-input-multiple-output (MIMO) channel between a multi-antenna wireless base station and a multi-antenna DUT. The test system may be configured to perform over-the-air tests that emulate the channel model. A design and analysis tool may be used to identify an optimum over-the-air test system setup. The tool may be used in converting a geometric model to a stochastic model for performing conducted tests. The tool may be used in converting a stochastic model to a geometric model and then further convert the geometric model to an over-the-air emulated stochastic model. The over-the-air emulated stochastic model may be used in performing conducted tests.11-03-2011
20110282593WELD CHECK STATIONS - A method of manufacture for a portable computing device is described. In particular, methods and apparatus for assessing a quality of weld joints used to connect one or more components of the portable computing device are described. The weld joints can include one or more weld points. At a weld check station, using a vector network analyzer, a test signal generated can be passed through the weld joint and a response signal can be measured. The measured characteristics can be used to assess a quality of the weld joint. In one embodiment, the vector network analyzer can be used to generate a number of high frequency test signals that are passed through the weld to perform a time domain reflectometry measurement where the weld joint can be accepted or rejected based upon the measurement.11-17-2011
20110291896HOUSING STRUCTURES FOR OPTIMIZING LOCATION OF EMITTED RADIO-FREQUENCY SIGNALS - Electronic devices are provided that contain wireless communications circuitry. The wireless communications circuitry may include radio-frequency transceiver circuitry and antenna structures. A display may be mounted on a front face of an electronic device. A conductive member such as a bezel may surround the display. Internal housing support structures such as a metal midplate member may be used to support the display. The midplate member may be connected between opposing edges of the bezel. The antenna structures may include an antenna formed from part of the midplate member and part of the bezel. Antenna image currents in the midplate member may be blocked by slots in the midplate member. The slots may be located adjacent to the antenna and may ensure that the antenna emits radio-frequency signals in a desired pattern. The slots may be angled and segmented.12-01-2011
20110300907PARALLEL-FED EQUAL CURRENT DENSITY DIPOLE ANTENNA - Electronic devices such as handheld devices may have wireless communications circuitry. The wireless communications circuitry may include a broadband antenna and circuitry that covers multiple communications bands. The broadband antenna may be formed from a parallel-fed dipole. The antenna may have first and second antenna resonating element regions on opposing sides of a slot. The slot may be an open slot that has one open end and one closed end. The slot may be formed from an opening in conductive housing structures in a conductive housing for an electronic device. The conductive housing structures may include sidewall structures, rear housing wall structures, and other conductive structures. The antenna may have a feed with a feed line that crosses the slot. An interposed dielectric substrate member may separate the feed line from the conductive structures. The feed line may have sections with different widths to minimize feed line length.12-08-2011
20110313708METHODS FOR MANUFACTURING DEVICES WITH FLEX CIRCUITS AND RADIO-FREQUENCY CABLES - A flex circuit may have test structures and antenna structures. The test structures may include test capacitors and transmission lines. The performance of the test structures may be measured using test equipment. Pass/fail criteria may be applied to the flex circuit based on the measured values. If the flex circuit is a failing circuit, flex circuit manufacturing settings may be adjusted. The performance of a radio-frequency (RF) cable may also be measured using the test equipment. Sample portions of the RF cable may be obtained and measured. Pass/fail criteria may be applied to the RF cable based on measured cable loss values. If the RF cable is a failing cable, RF cable manufacturing settings may be adjusted. Antenna structures associated with passing flex circuits and RF cable segments associated with passing sample RF cable segments may be incorporated into a wireless device during production device assembly.12-22-2011
20120009983TUNABLE ANTENNA SYSTEMS - An electronic device has wireless communications circuitry including an adjustable antenna system coupled to a radio-frequency transceiver. The adjustable antenna system may include one or more adjustable electrical components that are controlled by storage and processing circuitry in the electronic device. The adjustable electrical components may include switches and components that can be adjusted between numerous different states. The adjustable electrical components may be coupled between antenna system components such as transmission line elements, matching network elements, antenna elements and antenna feeds. By adjusting the adjustable electrical components, the storage and processing circuitry can tune the adjustable antenna system to ensure that the adjustable antenna system covers communications bands of interest.01-12-2012
20120068893ANTENNA STRUCTURES HAVING RESONATING ELEMENTS AND PARASITIC ELEMENTS WITHIN SLOTS IN CONDUCTIVE ELEMENTS - Electronic devices may include radio-frequency transceiver circuitry and antenna structures. The antenna structures may include antenna resonating elements such as dual-band antenna resonating elements that resonate in first and second communications bands. The antenna structures may also contain parasitic antenna elements such as elements that are operative in only the first or second communications band and elements that are operative in both the first and second communications bands. The antenna resonating elements and parasitic elements may be mounted on a common dielectric carrier. The dielectric carrier may be mounted within a slot or other opening in a conductive element. The conductive element may be formed from conductive housing structures in an electronic device such as a portable computer. The portable computer may have a clutch barrel with a dielectric cover. The dielectric cover may overlap and cover the slot and the dielectric carrier.03-22-2012
20120098713SYSTEM FOR TESTING MULTI-ANTENNA DEVICES USING BIDIRECTIONAL FADED CHANNELS - A test system for testing multiple-input and multiple-output (MIMO) systems is provided. The test system may convey radio-frequency (RF) signals bidirectionally between a base station emulator and a device under test (DUT). The DUT may be placed within a test chamber during testing. An antenna mounting structure may surround the DUT. Multiple antennas may be mounted on the antenna mounting structure to transmit and receive RF signals to and from the DUT. A first group of antennas may be coupled to the base station emulator through downlink circuitry. A second group of antennas may be coupled to the base station emulator through uplink circuitry. The uplink and downlink circuitry may each include a splitter, channel emulators, and amplifier circuits. The channel emulators and amplifier circuits may be configured to provide desired path loss and channel characteristics to model real-world wireless network transmission.04-26-2012
20120100813SYSTEM FOR TESTING MULTI-ANTENNA DEVICES USING BIDIRECTIONAL FADED CHANNELS - A test system for testing multiple-input and multiple-output (MIMO) systems is provided. The test system may convey radio-frequency (RF) signals bidirectionally between a device under test (DUT) and at least one base station. The DUT may be placed within a test chamber during testing. An antenna mounting structure may surround the DUT. Multiple antennas may be mounted on the antenna mounting structure to transmit and receive RF signals to and from the DUT. A first group of dual-polarized antennas may be coupled to the base station through downlink circuitry. A second group of dual-polarized antennas may be coupled to the base station through uplink circuitry. The uplink and downlink circuitry may each include a splitter/combiner, channel emulators, amplifier circuits, and switch circuitry. The channel emulators and amplifier circuits may be configured to provide desired path loss, spatial interference, and channel characteristics to model real-world wireless network transmission.04-26-2012
20120112969ANTENNA SYSTEM WITH RECEIVER DIVERSITY AND TUNABLE MATCHING CIRCUIT - Electronic devices may be provided that contain wireless communications circuitry. The wireless communications circuitry may include radio-frequency transceiver circuitry and antenna structures. An electronic device may include a display mounted within a housing. A peripheral conductive member may run around the edges of the display and housing. Dielectric-filled gaps may divide the peripheral conductive member into individual segments. A ground plane may be formed within the housing from conductive housing structures, printed circuit boards, and other conductive elements. The ground plane and the segments of the peripheral conductive member may form antennas in upper and lower portions of the housing. The radio-frequency transceiver circuitry may implement receiver diversity using both the upper and lower antennas. The lower antenna may be used in transmitting signals. The upper antenna may be tuned using a tunable matching circuit.05-10-2012
20120112970ANTENNA SYSTEM WITH ANTENNA SWAPPING AND ANTENNA TUNING - Electronic devices may be provided that contain wireless communications circuitry. The wireless communications circuitry may include radio-frequency transceiver circuitry and first and second antennas. An electronic device may include a housing. The first antenna may be located at an upper end of the housing and the second antenna may be located at a lower end of the housing. A peripheral conductive member may run around the edges of the housing and may be used in forming the first and second antennas. The radio-frequency transceiver circuitry may have a transmit-receive port and a receive port. Switching circuitry may connect the first antenna to the transmit-receive port and the second antenna to the receiver port or may connect the first antenna to the receive port and the second antenna to the transmit-receive port.05-10-2012
20120142296Methods For Selecting Antennas To Avoid Signal Bus Interference - Electronic devices may have multiple antennas. A first antenna may be located at one end of a device and a second antenna may be located at another end of the device. An input-output port in a device may have a connector that receives a mating connector associated with external equipment. The input-output port and the second antenna may be located at one of the ends of the electronic device. When equipment such as an external video accessory is in use, input-output circuitry in an electronic device may transmit high speed data signals through the input-output port. The presence of activity on the input-output port such as video data or other data transmissions may be monitored by control circuitry in the electronic device. When input-output port activity is detected, use of the second antenna in receiving radio-frequency signals can be inhibited.06-07-2012
20120176278ANTENNA STRUCTURES WITH ELECTRICAL CONNECTIONS TO DEVICE HOUSING MEMBERS - Electronic devices may be provided that contain wireless communications circuitry. The wireless communications circuitry may include antenna structures that are formed from an internal ground plane and a peripheral conductive housing member. A conductive path may be formed that connects the peripheral conductive housing member and the internal ground plane. The conductive path may include a flex circuit. A metal structure may be welded to the peripheral conductive housing member. A solder pad and other traces in the flex circuit may be soldered to the metal structure at one end of the conductive path. At the other end of the conductive path, the flex circuit may be attached to the ground plane using a bracket, screw, and screw boss.07-12-2012
20120176754ANTENNA STRUCTURES WITH ELECTRICAL CONNECTIONS TO DEVICE HOUSING MEMBERS - Electronic devices may be provided that contain wireless communications circuitry. The wireless communications circuitry may include antenna structures that are formed from an internal ground plane and a peripheral conductive housing member. A conductive path may be formed that connects the peripheral conductive housing member and the internal ground plane. The conductive path may include a flex circuit. The flex circuit can include a solder flow barrier to constrain flow of solder. A metal structure may be welded to the peripheral conductive housing member. A solder pad and other traces in the flex circuit may be soldered to the metal structure at one end of the conductive path. At the other end of the conductive path, the flex circuit may be attached to the ground plane using a bracket, screw, and screw boss.07-12-2012
20120178386METHODS FOR ADJUSTING RADIO-FREQUENCY CIRCUITRY TO MITIGATE INTERFERENCE EFFECTS - An electronic device may transmit and receive wireless signals using wireless circuitry that is controlled by control circuitry. The wireless circuitry may include adjustable components such as adjustable antenna structures, adjustable front end circuitry, and adjustable transceiver circuitry. During characterization operations, the electronic device may be tested to identify operating settings for the wireless circuitry that lead to potential wireless interference between aggressor transmitters and victim receivers. The control circuitry can adjust the wireless circuitry to mitigate the effects of interference based on settings identified during characterization operations or real time signal quality measurements.07-12-2012
20120214412ANTENNA WITH INTEGRATED PROXIMITY SENSOR FOR PROXIMITY-BASED RADIO-FREQUENCY POWER CONTROL - An electronic device may have a housing in which an antenna is mounted. An antenna window may be mounted in the housing to allow radio-frequency signals to be transmitted from the antenna and to allow the antenna to receive radio-frequency signals. Near-field radiation limits may be satisfied by reducing transmit power when an external object is detected in the vicinity of the dielectric antenna window and the antenna. A capacitive proximity sensor may be used in detecting external objects in the vicinity of the antenna. The proximity sensor and the antenna may be formed using integral antenna resonating element and proximity sensor capacitor electrode structures. These structures may be formed from identical first and second patterned conductive layers on opposing sides of a dielectric substrate. A transceiver and proximity sensor may be coupled to the structures through respective high-pass and low-pass circuits.08-23-2012
20120223865ANTENNA STRUCTURES WITH CARRIERS AND SHIELDS - Antennas are provided for electronic devices such as portable computers. An electronic device may have a housing in which an antenna is mounted. The housing may be formed of conductive materials. A dielectric window may be mounted in the housing to allow radio-frequency signals to be transmitted from the antenna and to allow the antenna to receive radio-frequency signals. A proximity sensor adjacent to the dielectric window may be used in detecting external objects. The antenna may have an antenna resonating element that is mounted against an inner surface of a display cover glass layer. The antenna resonating element may be mounted to an upper surface of a plastic carrier. An electromagnetic shield may be mounted on a lower surface of the plastic carrier above the proximity sensor.09-06-2012
20120223866MULTI-ELEMENT ANTENNA STRUCTURE WITH WRAPPED SUBSTRATE - Antennas are provided for electronic devices such as portable computers. Multiple resonating elements may be formed on a flexible antenna resonating element substrate. The flexible antenna resonating element substrate may have a first antenna resonating element at one end and a second antenna resonating element at an opposing end. The flexible antenna resonating substrate may be wrapped around a dielectric carrier and mounted within an electronic device under an inactive display region and above a dielectric housing window. Conductive structures such as conductive housing structures may form antenna ground. The resonating elements and antenna ground may form first and second antennas. A parasitic antenna resonating element may form part of the first antenna.09-06-2012
20120229347TUNABLE ANTENNA SYSTEM WITH RECEIVER DIVERSITY - A wireless electronic device may include antenna structures and antenna tuning circuitry. The device may include a display mounted within a housing. A peripheral conductive member may run around the edges of the display and housing. Dielectric-filled gaps may divide the peripheral conductive member into individual segments. A ground plane may be formed within the housing. The ground plane and the segments of the peripheral conductive member may form antennas in upper and lower portions of the housing. The antenna tuning circuitry may include switchable inductor circuits and variable capacitor circuits for the upper and lower antennas. The switchable inductor circuits associated with the upper antenna may be tuned to provide coverage in at least two high-band frequency ranges of interest, whereas the variable capacitor circuits associated with the upper antenna may be tuned to provide coverage in at least two low-band frequency ranges of interest.09-13-2012
20120231750TUNABLE LOOP ANTENNAS - Electronic devices are provided that contain wireless communications circuitry. The wireless communications circuitry may include radio-frequency transceiver circuitry and antenna structures. A parallel-fed loop antenna may be formed from portions of a conductive bezel and a ground plane. The antenna may operate in multiple communications bands. The bezel may surround a peripheral portion of a display that is mounted to the front of an electronic device. The bezel may contain a gap. Antenna feed terminals for the antenna may be located on opposing sides of the gap. A variable capacitor may bridge the gap. An inductive element may bridge the gap and the antenna feed terminals. A switchable inductor may be coupled in parallel with the inductive element. Tunable matching circuitry may be coupled between one of the antenna feed terminals and a conductor in a coaxial cable connecting the transceiver circuitry to the antenna.09-13-2012
20120262188RADIO-FREQUENCY TEST PROBES WITH INTEGRATED MATCHING CIRCUITRY - Wireless electronic devices include wireless communications circuitry such as transceiver circuitry coupled to an antenna resonating element. The transceiver circuitry and the antenna element may be formed on first and second substrates, respectively. In compact wireless devices, transceiver and antenna matching circuits may be formed on the first substrate. During production testing, a radio-frequency test probe with integrated matching circuitry may be used to mate with a corresponding contact point on the first substrate. The integrated matching circuitry may include resistors, capacitors, and inductors soldered in desired series-parallel configurations within the test probe. When the test probe is mated to the contact point on the first substrate, a test unit connected to the test probe may be used to perform radio-frequency measurements to determine whether the transceiver circuitry satisfies design criteria.10-18-2012
20130082895Antenna Structures with Molded and Coated Substrates - Electronic devices may be provided with antenna structures. The antenna structures may be used in wirelessly transmitting and receiving radio-frequency signals. Antenna structures may be formed from molded dielectric substrates. Patterned conductive material may be formed on the dielectric substrates. The dielectric substrates may be formed from molded materials such as glass or ceramic. Sheets of dielectric or dielectric powder may be compressed to form a dielectric substrate of a desired shape. The patterned conductive material may be formed from metallic paint or other conductors. A hollow antenna chamber may be formed by joining molded dielectric structures. An antenna such as an indirectly-fed loop antenna or other antennas may be formed from the molded dielectric substrates and patterned conductors.04-04-2013
20130106665ANTENNAS FOR HANDHELD ELECTRONIC DEVICES05-02-2013
20130127672Distributed Loop Antennas with Extended Tails - Electronic devices may be provided with antenna structures such as distributed loop antenna resonating element structures. A distributed loop antenna may be formed on an elongated dielectric carrier and may have a longitudinal axis. The distributed loop antenna may include a loop antenna resonating element formed from a sheet of conductive material that extends around the longitudinal axis. A gap may be formed in the sheet of conductive material. The gap may be located under an opaque masking layer on the underside of a display cover glass associated with a display. The loop antenna resonating element may have a main body portion that includes the gap and may have an extended tail portion that extends between the display and conductive housing structures. The main body portion and extended tail portion may be configured to ensure that undesired waveguide modes are cut off during operation of the loop antenna.05-23-2013
20130162485WIRELESS HANDHELD ELECTRONIC DEVICE - A handheld electronic device may be provided that contains a conductive housing and other conductive elements. The conductive elements may form an antenna ground plane. One or more antennas for the handheld electronic device may be formed from the ground plane and one or more associated antenna resonating elements. Transceiver circuitry may be connected to the resonating elements by transmission lines such as coaxial cables. Ferrules may be crimped to the coaxial cables. A bracket with extending members may be crimped over the ferrules to ground the coaxial cables to the housing and other conductive elements in the ground plane. The ground plane may contain an antenna slot. A dock connector and flex circuit may overlap the slot in a way that does not affect the resonant frequency of the slot. Electrical components may be isolated from the antenna using isolation elements such as inductors and resistors.06-27-2013
20130169490Antenna With Switchable Inductor Low-Band Tuning - Electronic devices may be provided that contain wireless communications circuitry. The wireless communications circuitry may include radio-frequency transceiver circuitry and antennas. An antenna may be formed from an antenna resonating element arm and an antenna ground. The antenna resonating element arm may have a shorter portion that resonates at higher communications band frequencies and a longer portion that resonates at lower communications band frequencies. A short circuit branch may be coupled between the shorter portion of the antenna resonating element arm and the antenna ground. A series-connected inductor and switch may be coupled between the longer portion of the antenna resonating element arm and the antenna ground. An antenna feed branch may be coupled between the antenna resonating element arm and the antenna ground at a location that is between the short circuit branch and the series-connected inductor and switch.07-04-2013
20130172045ELECTRONIC DEVICE WITH PROXIMITY-BASED RADIO POWER CONTROL - An electronic device such as a portable electronic device may have an antenna and associated wireless communications circuitry. A sensor such as a proximity sensor may be used to detect when the electronic device is in close proximity to a user's head. Control circuitry within the electronic device may be used to adjust radio-frequency signal transmit power levels. When it is determined that the electronic device is within a given distance from the user's head, the radio-frequency signal transmit power level may be reduced. When it is determined that the electronic device is not within the given distance from the user's head, proximity-based limits on the radio-frequency signal transmit power level may be removed. Data may be gathered from a touch sensor, accelerometer, ambient light sensor and other sources for use in determining how to adjust the transmit power level.07-04-2013
20130201067Tunable Antenna System - An electronic device antenna may be provided with an antenna ground. An antenna resonating element may have a first end that is coupled to the ground using an inductor and may have a second end that is coupled to a peripheral conductive housing member in an electronic device. The peripheral conductive housing member may have a portion that is connected to the ground and may have a portion that is separated from the ground by a gap. The gap may be bridged by an inductor that couples the second end of the antenna resonating element to the antenna ground. The inductor may be bridged by a switch. A tunable circuit such as a capacitor bridged by a switch may be interposed in the antenna resonating element. The switches that bridge the gap and the capacitor may be used in tuning the antenna.08-08-2013
20130203364Tunable Antenna System with Multiple Feeds - Electronic devices may be provided that contain wireless communications circuitry. The wireless communications circuitry may include radio-frequency transceiver circuitry and antenna structures. The antenna structures may form an antenna having first and second feeds at different locations. The transceiver circuit may have a first circuit that handles communications using the first feed and may have a second circuit that handles communications using the second feed. A first filter may be interposed between the first feed and the first circuit and a second filter may be interposed between the second feed and the second circuit. The first and second filters and the antenna may be configured so that the first circuit can use the first feed without being adversely affected by the presence of the second feed and so that the second circuit can use the second feed without being adversely affected by the presence of the first feed.08-08-2013
20130214979Electronic Device Antennas with Filter and Tuning Circuitry - An electronic device may have an antenna that includes conductive antenna structures forming an antenna resonating element and an antenna ground. A band-stop filter may be coupled between first and second portions of the conductive structures. The band-stop filter may be formed from multiple series-connected resonant circuits. The band-stop filter and an impedance matching circuit may be coupled in series between the antenna resonating element and the antenna ground. The band-stop filter may be characterized by a stop band. The antenna may be configured to operate in a first communications band that is outside of the stop band and a second communications band that is covered by the stop band. The impedance matching circuit may be an adjustable circuit that is used to tune the antenna. The adjustable circuit may be a switch-based adjustable capacitor that is adjusted to tune the response of the antenna in the first communications band.08-22-2013
20130214986ANTENNA WITH FOLDED MONOPOLE AND LOOP MODES - Electronic devices may be provided that contain wireless communications circuitry. The wireless communications circuitry may include radio-frequency transceiver circuitry and antennas. An antenna may have an antenna ground that is configured to form a cavity for the antenna. The antenna ground may be formed on a support structure. The antenna ground may have an opening. The support structure may have a planar surface on which the opening is formed. A folded monopole antenna resonating element and an L-shaped conductive antenna element may be formed in the opening and may be capacitively coupled. The folded monopole antenna resonating element may have an end at which a positive antenna feed terminal is formed. A ground antenna feed terminal may be formed on the antenna ground. A segment of the antenna ground may extend between the ground antenna feed terminal and an end of the L-shaped conductive antenna element.08-22-2013
20130222195HYBRID ANTENNAS FOR ELECTRONIC DEVICES - A portable electronic device is provided that has a hybrid antenna. The hybrid antenna may include a slot antenna structure and an inverted-F antenna structure. The slot antenna portion of the hybrid antenna may be used to provide antenna coverage in a first communications band and the inverted-F antenna portion of the hybrid antenna may be used to provide antenna coverage in a second communications band. The second communications band need not be harmonically related to the first communications band. The electronic device may be formed from two portions. One portion may contain conductive structures that define the shape of the antenna slot. One or more dielectric-filled gaps in the slot may be bridged using conductive structures on another portion of the electronic device. A conductive trim member may be inserted into an antenna slot to trim the resonant frequency of the slot antenna portion of the hybrid antenna.08-29-2013
20130234741Methods for Characterizing Tunable Radio-Frequency Elements - A wireless electronic device may contain at least one antenna tuning element for use in tuning the operating frequency range of the device. The antenna tuning element may include radio-frequency switches, continuously/semi-continuously adjustable components such as tunable resistors, inductors, and capacitors, and other load circuits that provide desired impedance characteristics. A test station may be used to measure the radio-frequency characteristics associated with the tuning element. The test station may provide adjustable temperature, power, and impedance control to help emulate a true application environment for the tuning element without having to place the tuning element within an actual device during testing. The test system may include at least one signal generator and a tester for measuring harmonic distortion values and may include at least two signal generators and a tester for measuring intermodulation distortion values. During testing, the antenna tuning element may be placed in a series or shunt configuration.09-12-2013
20130241780ELECTRONIC DEVICES WITH CAPACITIVE PROXIMITY SENSORS FOR PROXIMITY-BASED RADIO-FREQUENCY POWER CONTROL - An electronic device may have a housing in which an antenna is mounted. An antenna window may be mounted in the housing to allow radio-frequency signals to be transmitted from the antenna and to allow the antenna to receive radio-frequency signals. Near-field radiation limits may be satisfied by reducing transmit power when an external object is detected in the vicinity of the dielectric antenna window and the antenna. A capacitive proximity sensor may be used in detecting external objects in the vicinity of the antenna. The proximity sensor may have conductive layers separated by a dielectric. A capacitance-to-digital converter may be coupled to the proximity sensor by inductors. The capacitive proximity sensor may be interposed between an antenna resonating element and the antenna window. The capacitive proximity sensor may serve as a parasitic antenna resonating element and may be coupled to the housing by a capacitor.09-19-2013
20130241800Electronic Device with Tunable and Fixed Antennas - Electronic devices may be provided that contain wireless communications circuitry. The wireless communications circuitry may include radio-frequency transceiver circuitry and antennas. The antennas may include a non-tunable antenna and a tunable antenna. The non-tunable antenna may serve as the primary antenna in the electronic device and the tunable antenna may serve as a secondary antenna in the electronic device. The non-tunable antenna may be configured to operate in at least one communications band. The tunable antenna may contain adjustable circuitry. The adjustable circuitry may be used to tune the tunable antenna to cover the same communications band used by the non-tunable antenna. The tunable antenna may have a resonating element and an antenna ground. The adjustable circuit may be coupled between the resonating element and the antenna ground. The adjustable circuit may include electrical components such as inductors and capacitors and a radio-frequency switch for antenna tuning.09-19-2013
20130257454Methods for Characterizing Tunable Radio-Frequency Elements in Wireless Electronic Devices - A wireless electronic device may contain an antenna tuning element for tuning the device's operating frequency range. The antenna tuning element may include radio-frequency switches, continuously/semi-continuously adjustable components such as tunable resistors, inductors, and capacitors, etc. A test system may be used to measure the radio-frequency characteristics associated with the tuning element assembled with an electronic device. The test system may include a test host, a test chamber, a signal generator, power meters, and radio-frequency testers. The electronic device under test (DUT) may be placed in the test chamber. The signal generator may generate radio-frequency test signals for energizing the antenna tuning element. The power meters and radio-frequency testers may be used to measure conducted and radiated signals emitted from the DUT while the DUT is placed in different desired orientations. A phantom object is optionally placed in the vicinity of the DUT to simulate actual user scenario.10-03-2013
20130278480Antenna with Variable Distributed Capacitance - Electronic devices may be provided with antennas. An antenna may be formed from conductive antenna structures that include a frequency-dependent distributed capacitor. The antenna may include an antenna ground and an antenna resonating element that are separated by a gap. A low pass filter circuit may bridge the gap. The antenna resonating element may have antenna resonating element conductive structures that serve as first and second electrodes for the distributed capacitor. The second electrode may have first and second conductive elements coupled by a filter. The filter may be a low pass filter implemented using an inductor. The inductor may have a first terminal coupled to the first conductive element and a second terminal coupled to the second conductive element. A first antenna feed terminal may be coupled to the first conductive element and a second antenna feed terminal may be coupled to the antenna ground.10-24-2013
20130293249Methods for Modeling Tunable Radio-Frequency Elements - A test system for characterizing an antenna tuning element is provided. The test system may include a test host, a radio-frequency tester, and a test fixture. The test system may calibrate the radio-frequency tester using known coaxial standards. The test system may then calibrate transmission line effects associated with the test fixture using a THRU-REFLECT-LINE calibration algorithm. The antenna tuning element may be mounted on a test socket that is part of the test fixture. While the antenna tuning element is mounted on the test socket, scattering parameter measurements may be obtained using the radio-frequency tester. An equivalent circuit model for the test socket can be obtained based on the measured scattering parameters and known characteristics of the antenna tuning element. Once the test socket has been characterized, an equivalent circuit model for the antenna tuning element can be obtained by extracting suitable modeling parameters from the measured scattering parameters.11-07-2013
20130293424Corner Bracket Slot Antennas - A display cover layer may be mounted in an electronic device housing using housing structures such as corner brackets. A slot antenna may be formed from a corner bracket opening, metal traces on a hollow plastic support structure, or other conductive structures. The slot antenna may have a main portion with opposing ends. An antenna feed may be located at one of the ends. The slot antenna may have a slot with one or more bends. The bends may provide the slot antenna with a C-shaped outline. A side branch slot may extend from the main portion of the slot at a location between the two bends. The presence of the side branch slot may enhance antenna bandwidth. A hollow enclosure may serve as an antenna support structure and as a speaker box enclosing a speaker driver. The antenna feed may be positioned so as to overlap the speaker driver.11-07-2013
20130300618Antenna and Proximity Sensor Structures Having Printed Circuit and Dielectric Carrier Layers - An electronic device may have a conductive housing with an antenna window. A display cover layer may be mounted on the front face of the device. Antenna and proximity sensor structures may include a dielectric support structure with a notch. The antenna window may have a protruding portion that extends into the notch between the display cover layer and the antenna and proximity sensor structures. The antenna and proximity sensor structures may have an antenna feed that is coupled to a first conductive layer by a high pass circuit and capacitive proximity sensor circuitry that is coupled to the first conductive layer and a parallel second conductive layer by a low pass circuit. The first conductive layer may be formed from a metal coating on the support structure. The second conductive layer may be formed from patterned metal traces in a flexible printed circuit.11-14-2013
20130321012Methods and Apparatus for Testing Small Form Factor Antenna Tuning Elements - A test system for testing a device under test (DUT) is provided. The test system may include a DUT receiving structure configured to receive the DUT during testing and a DUT retention structure that is configured to press the DUT against the DUT receiving structure so that DUT cannot inadvertently shift around during testing. The DUT retention structure may include a pressure sensor operable to detect an amount of pressure that is applied to the DUT. The DUT retention structure may be raised and lowered vertically using a manually-controlled or a computer-controlled positioner. The positioner may be adjusted using a coarse tuning knob and a fine tuning knob. The positioner may be calibrated such that the DUT retention structure applies a sufficient amount of pressure on the DUT during production testing.12-05-2013
20130321216Antenna Structures in Electronic Devices With Hinged Enclosures - Electronic devices may include radio-frequency transceiver circuitry and antenna structures. The antenna structures may include antenna resonating elements, parasitic antenna resonating elements, and antenna ground structures. The antenna structures may include metal traces that are wrapped around an elongated plastic carrier. The plastic carrier may have metal traces that are coupled to a metal bracket using solder that protrudes through a hole in the metal bracket. A printed circuit board may be mounted between the metal bracket and a metal housing. The metal housing may have a protruding ridge portion that is gripped between prongs on the metal bracket. A cover may cover the metal traces on the elongated plastic carrier. The antenna structures may be mounted between hinge structures that couple upper and lower housing structures. The antenna structures may be configured to operate with comparable performance when the upper and lower housing structures are open and closed.12-05-2013
20130328582Methods and Apparatus for Performing Wafer-Level Testing on Antenna Tuning Elements - A test system for testing an antenna tuning element is provided. The test system may include a tester, a test fixture, and a probing structure. The probing structure may include probe tips configured to mate with corresponding solder bumps formed on a device under test (DUT) containing an antenna tuning element. The DUT may be tested in a shunt or series configuration. The tester may be electrically coupled to the test probe via first and second connectors on the test fixture. An adjustable load circuit that is coupled to the second connector may be configured in a selected state so that a desired amount of electrical stress may be presented to the DUT during testing. The tester may be used to obtain measurement results on the DUT. Systematic effects associated with the test structures may be de-embedded from the measured results to obtain calibrated results.12-12-2013
20140049432ANTENNAS FOR HANDHELD ELECTRONIC DEVICES - A handheld electronic device may be provided that contains wireless communications circuitry. The handheld electronic device may have a housing and a display. The display may be attached to the housing a conductive bezel. The handheld electronic device may have one or more antennas for supporting wireless communications. A ground plane in the handheld electronic device may serve as ground for one or more of the antennas. The ground plane and bezel may define an opening. A rectangular slot antenna or other suitable slot antenna may be formed from or within the opening. One or more antenna resonating elements may be formed above the slot. An electrical switch that bridges the slot may be used to modify the perimeter of the slot so as to tune the communications bands of the handheld electronic device.02-20-2014
20140085161Distributed loop antenna with multiple subloops - An electronic device may be provided with antenna structures. The antenna structures may be formed using a dielectric carrier structure. The antenna structures may have first and second loop antenna resonating elements. The first loop antenna resonating element may indirectly feed the second loop antenna resonating element. The second loop antenna resonating element may be a distributed loop element formed from multiple antenna resonating element subloops. The second loop antenna resonating element may be formed from a strip of metal with a width that loops around the dielectric carrier. An opening in the metal may separate first and second subloop antenna resonating elements from each other in the second loop antenna resonating element. Openings in the metal may form metal segments that collectively form an inductance for the first subloop. Antenna currents may flow through metal traces on the carrier and portions of an electronic device housing wall.03-27-2014
20140086441Distributed Loop Speaker Enclosure Antenna - An electronic device may be provided with antenna structures. The antenna structures may be formed using a dielectric carrier structure such as a speaker enclosure, so that interior space within the electronic device that is occupied by a speaker can be used in forming an antenna. A speaker driver may be mounted in the speaker enclosure. Openings in the speaker enclosure may allow sound from the speaker driver to be emitted from the speaker enclosure. The antenna structures may have first and second loop antenna resonating elements. The first loop antenna resonating element may indirectly feed the second loop antenna resonating element. The second loop antenna resonating element may be a distributed loop element formed from a strip of metal with a width that loops around the speaker enclosure. Openings in the second loop antenna resonating element may be aligned with the speaker enclosure openings.03-27-2014
20140087668Methods and Apparatus for Performing Coexistence Testing for Multi-Antenna Electronic Devices - Radio frequency test systems for characterizing antenna performance in various radio coexistence scenarios are provided. In one suitable arrangement, a test system may be used to perform passive radio coexistence characterization. During passive radio coexistence characterization, at least one signal generator may be used to feed aggressor signals directly to antennas within an electronic device under test (DUT). The aggressor signals may generate undesired interference signals in a victim frequency band, which can then be received and analyzed using a spectrum analyzer. During active radio coexistence characterization, at least one radio communications emulator may be used to communicate with a DUT via a first test antenna. While the DUT is communicating with the at least one radio communications emulator, test signals may also be conveyed between DUT 03-27-2014
20140100004Tunable Multiband Antenna with Dielectric Carrier - Antenna structures for an antenna may be formed from a dielectric carrier with metal structures. The metal structures may be patterned to cover all sides of the dielectric carrier. The dielectric carrier may have a shape with six sides or other shape that creates a three-dimensional layout for the antenna structures. The antenna structures may have a tunable circuit that allows the antenna to be tuned. The tunable circuit may have first and second terminals coupled to one of the sides of the carrier. The metal structures may be configured to form an inverted-F antenna resonating element. Portions of the metal structures may form a first arm for an inverted-F antenna and portions of the metal structures may form a second arm for the inverted-F antenna. The antenna may operate in multiple communications bands. The tunable circuit may tune one band without significantly tuning other bands.04-10-2014
20140111684Antenna Structures and Electrical Components with Grounding - An electronic device may have a conductive housing with an antenna window. Antenna structures may be mounted adjacent to the antenna window. The antenna structures may have a dielectric carrier. Patterned metal antenna traces may be formed on the surface of the dielectric carrier. A proximity sensor may be formed from a flexible printed circuit mounted on the dielectric carrier. The flexible printed circuit may have a tail that contains a transmission line for feeding the antenna structures. The transmission line may include a positive signal conductor that is maintained at a desired distance from the conductive housing using a polymer sheet. A portion of the antenna structures may protrude between a microphone and a camera module. Plastic camera module housing structures may have an inner surface coated with a shielding metal. A U-shaped conductive fabric layer may be used as a grounding structure.04-24-2014
20140112511Electronic Device With Conductive Fabric Shield Wall - An electronic device may have a housing such as a metal housing. A display may be mounted in the metal housing. Antenna structures may be mounted in the housing under an inactive peripheral portion of the display. Integrated circuits and other electrical components may be mounted in the housing under an active central portion of the display. Shielding structures may be configured to form a wall that extends between the display and the metal housing. The shielding structures may include a sheet of conductive fabric that is shorted to the metal housing and metal chassis structures in the display. The shielding structures may also include a tube of conductive fabric that is capacitively coupled to ground traces in a touch sensor panel. The conductive fabric tube and the sheet of conductive fabric may be shorted to each other using conductive adhesive.04-24-2014
20140132463Handheld Electronic Device With Cable Grounding - A handheld electronic device may be provided that contains a conductive housing and other conductive elements. The conductive elements may form an antenna ground plane. One or more antennas for the handheld electronic device may be formed from the ground plane and one or more associated antenna resonating elements. Transceiver circuitry may be connected to the resonating elements by transmission lines such as coaxial cables. Ferrules may be crimped to the coaxial cables. A bracket with extending members may be crimped over the ferrules to ground the coaxial cables to the housing and other conductive elements in the ground plane. The ground plane may contain an antenna slot. A dock connector and flex circuit may overlap the slot in a way that does not affect the resonant frequency of the slot. Electrical components may be isolated from the antenna using isolation elements such as inductors and resistors.05-15-2014
20140139380Shared Antenna Structures for Near-Field Communications and Non-Near-Field Communications Circuitry - Electronic devices may be provided that contain wireless communications circuitry. The wireless communications circuitry may include radio-frequency transceiver circuitry and antenna structures. The antenna structures may include conductive housing structures such as a peripheral conductive housing member. The antenna structures may be based on an inverted-F antenna resonating element or other types of antenna resonating element. An electronic device may have near field communications circuitry and non-near-field communications circuitry such as cellular telephone, satellite navigation system, or wireless local area network transceiver circuitry. Antenna structures may be configured to handle signals associated with the non-near-field communications circuitry. The antenna structures may also have portions that form a near field communications loop antenna for handling signals associated with the near field communications circuitry.05-22-2014
20140141726Robotic Wireless Test System - A test system may include a wireless test chamber with metal walls lined with pyramidal absorbers. A trapdoor may be provided in a wall opening to accommodate a robotic arm. The robotic arm may have grippers that grip a device under test or a support structure that is supporting a device under test. The robotic arm may move the device under test to a docking station for automatic battery charging during testing. When it is desired to perform wireless tests on a device under test, the robotic arm may move the device under test through the trapdoor into an interior portion of the test chamber. A turntable and movable test antenna may be used to rotate the device under test while varying angular orientations between test antenna and device under test. Emitted radiation levels can be measured using a liquid filled phantom and test probe on a robotic arm.05-22-2014
20140162628Methods for Validating Radio-Frequency Test Systems Using Statistical Weights - A test system may include test stations for testing the radio-frequency performance of wireless electronic devices. A reference test station may perform test measurements on a group of wireless electronic devices under test (DUTs) to select a reference DUT. The reference test station may gather radio-frequency measurements at a number of test frequencies from the group of DUTs. The reference test station may compute statistical data associated with the gathered measurements. The reference test station may compute weight values associated with each test frequency based on the statistical parameters. The reference test station may compute a weighted mean square error value for each DUT based on the weight values and the statistical data. The reference test station may select a DUT having a minimum weighted mean square error value to serve as the reference DUT, which may be used to calibrate test stations in the test system.06-12-2014
20140206297Adjustable Wireless Circuitry with Antenna-Based Proximity Detector - An electronic device such as a portable electronic device has wireless communications circuitry. Antennas in the electronic device may be used in transmitting radio-frequency antenna signals. A coupler and antenna signal phase and magnitude measurement circuitry may be used to determine when external objects are in the vicinity of the antenna by making antenna impedance measurements. In-band and out-of-band phase and magnitude signal measurements may be made in determining whether external objects are present. Additional sensors such as motion sensors, light and heat sensors, acoustic and electrical sensors may produce data that can be combined with the proximity data gathered using the antenna-based proximity sensor. In response to detecting that an external object such as a user's body is within a given distance of the antenna, the electronic device may reduce transmit powers, switch antennas, steer a phased antenna array, switch communications protocols, or take other actions.07-24-2014
20140233168Handheld Electronic Device With Cable Grounding - A handheld electronic device may be provided that contains a conductive housing and other conductive elements. The conductive elements may form an antenna ground plane. One or more antennas for the handheld electronic device may be formed from the ground plane and one or more associated antenna resonating elements. Transceiver circuitry may be connected to the resonating elements by transmission lines such as coaxial cables. Ferrules may be crimped to the coaxial cables. A bracket with extending members may be crimped over the ferrules to ground the coaxial cables to the housing and other conductive elements in the ground plane. The ground plane may contain an antenna slot. A dock connector and flex circuit may overlap the slot in a way that does not affect the resonant frequency of the slot. Electrical components may be isolated from the antenna using isolation elements such as inductors and resistors.08-21-2014
20140233169Handheld Electronic Device With Cable Grounding - A handheld electronic device may be provided that contains a conductive housing and other conductive elements. The conductive elements may form an antenna ground plane. One or more antennas for the handheld electronic device may be formed from the ground plane and one or more associated antenna resonating elements. Transceiver circuitry may be connected to the resonating elements by transmission lines such as coaxial cables. Ferrules may be crimped to the coaxial cables. A bracket with extending members may be crimped over the ferrules to ground the coaxial cables to the housing and other conductive elements in the ground plane. The ground plane may contain an antenna slot. A dock connector and flex circuit may overlap the slot in a way that does not affect the resonant frequency of the slot. Electrical components may be isolated from the antenna using isolation elements such as inductors and resistors.08-21-2014
20140233170Handheld Electronic Device With Cable Grounding - A handheld electronic device may be provided that contains a conductive housing and other conductive elements. The conductive elements may form an antenna ground plane. One or more antennas for the handheld electronic device may be formed from the ground plane and one or more associated antenna resonating elements. Transceiver circuitry may be connected to the resonating elements by transmission lines such as coaxial cables. Ferrules may be crimped to the coaxial cables. A bracket with extending members may be crimped over the ferrules to ground the coaxial cables to the housing and other conductive elements in the ground plane. The ground plane may contain an antenna slot. A dock connector and flex circuit may overlap the slot in a way that does not affect the resonant frequency of the slot. Electrical components may be isolated from the antenna using isolation elements such as inductors and resistors.08-21-2014
20140243052Handheld Electronic Device With Cable Grounding - A handheld electronic device may be provided that contains a conductive housing and other conductive elements. The conductive elements may form an antenna ground plane. One or more antennas for the handheld electronic device may be formed from the ground plane and one or more associated antenna resonating elements. Transceiver circuitry may be connected to the resonating elements by transmission lines such as coaxial cables. Ferrules may be crimped to the coaxial cables. A bracket with extending members may be crimped over the ferrules to ground the coaxial cables to the housing and other conductive elements in the ground plane. The ground plane may contain an antenna slot. A dock connector and flex circuit may overlap the slot in a way that does not affect the resonant frequency of the slot. Electrical components may be isolated from the antenna using isolation elements such as inductors and resistors.08-28-2014
20140253392Electronic Device With Capacitively Loaded Antenna - An electronic device may have an antenna for providing coverage in wireless communications bands of interest such as a low frequency communications band, a middle frequency communications band, and a high frequency communications band. Slot structures in the antenna that might reduce efficiency in the high frequency communications band may be avoided by capacitively loading the antenna and omitting meandering paths in the antenna. A capacitor may be coupled between an antenna ground formed from a metal housing structure and an antenna resonating element having a curved shape that conforms to the shape of the edge of the electronic device. The capacitor may have interdigitated fingers and may be adjustable to tune the antenna. The antenna may transmit and receive radio-frequency signals through a display cover layer in a display and a dielectric antenna window portion of the housing.09-11-2014
20140266922Tunable Antenna With Slot-Based Parasitic Element - Electronic devices may be provided that contain wireless communications circuitry. The wireless communications circuitry may include radio-frequency transceiver circuitry and antenna structures. The antenna structures may form a dual arm inverted-F antenna. The antenna may have a resonating element formed from portions of a peripheral conductive electronic device housing member and may have an antenna ground that is separated from the antenna resonating element by a gap. A short circuit path may bridge the gap. An antenna feed may be coupled across the gap in parallel with the short circuit path. Low band tuning may be provided using an adjustable inductor that bridges the gap. The antenna may have a slot-based parasitic antenna resonating element with a slot formed between portions of the peripheral conductive electronic device housing member and the antenna ground. An adjustable capacitor may bridge the slot to provide high band tuning.09-18-2014
20140266923Antenna System Having Two Antennas and Three Ports - Electronic devices may include radio-frequency transceiver circuitry and antenna structures. The antenna structures may form a dual arm inverted-F antenna and a monopole antenna sharing a common antenna ground. The antenna structures may have three ports. A first antenna port may be coupled to an inverted-F antenna resonating element at a first location and a second antenna port may be coupled to the inverted-F antenna resonating element at a second location. A third antenna port may be coupled to the monopole antenna. Tunable circuitry can be used to tune the antenna structures. An adjustable capacitor may be coupled to the first port to tune the inverted-F antenna. An additional adjustable capacitor may be coupled to the third port to tune the monopole antenna. Transceiver circuitry for supporting wireless local area network communications, satellite navigation system communications, and cellular communications may be coupled to the first, second, and third antenna ports.09-18-2014
20140266938Electronic Device Having Multiport Antenna Structures With Resonating Slot - Electronic devices may include radio-frequency transceiver circuitry and antenna structures. The antenna structures may include an inverted-F antenna resonating element and an antenna ground that form an inverted-F antenna having first and second antenna ports. The antenna structures may include a slot antenna resonating element. The slot antenna resonating element may serve as a parasitic antenna resonating element for the inverted-F antenna at frequencies in a first communications band and may serve as a slot antenna at frequencies in a second communications band. The slot antenna may be directly fed using a third antenna port. An adjustable capacitor may be coupled to the first port to tune the inverted-F antenna. The inverted-F antenna may also be tuned using an adjustable capacitor bridging the slot antenna resonating element.09-18-2014
20140266941Electronic Device With Hybrid Inverted-F Slot Antenna - An electronic device may be provided with a housing. The housing may have a periphery that is surrounded by peripheral conductive structures such as a segmented peripheral metal member. A segment of the peripheral metal member may be separated from a ground by a slot. An antenna feed may have a positive antenna terminal coupled to the peripheral metal member and a ground terminal coupled to the ground and may feed both an inverted-F antenna structure that is formed from the peripheral metal member and the ground and a slot antenna structure that is formed from the slot. Control circuitry may tune the antenna by controlling adjustable components that are coupled to the peripheral metal member. The adjustable components may include adjustable inductors and adjustable capacitors.09-18-2014
20140292587Electronic Device With Reduced Emitted Radiation During Loaded Antenna Operating Conditions - An electronic device may have an antenna for providing coverage in wireless communications bands of interest. The wireless communications bands may include a communications band at a first frequency. The antenna may have a parasitic antenna resonating element that supports a low efficiency resonance. In response to operation of the electronic device in free space, the low efficiency resonance will be located at a second frequency that is greater than the first frequency. In response to operation of the electronic device in proximity to a user's body or other external object, the antenna will be loaded and the low efficiency resonance associated with the parasitic antenna resonating element will shift to the communications band at the first frequency. The antenna may include a resonating element formed on a flexible printed circuit or a dielectric carrier such as a plastic support structure.10-02-2014
20140292591Antennas Mounted Under Dielectric Plates - Electronic devices are provided that contain wireless communications circuitry. The wireless communications circuitry may include radio-frequency transceiver circuitry and antenna structures. The antenna structures may include antennas such as inverted-F antennas that contain antenna resonating elements and antenna ground elements. Antenna resonating elements may be formed from patterned conductive traces on substrates such as flex circuit substrates. Antenna ground elements may be formed from conductive device structures such as metal housing walls. Support and biasing structures such as dielectric support members and layer of foam may be used to support and bias antenna resonating elements against planar device structures. The planar device structures against which the antenna resonating elements are biased may be planar dielectric members such as transparent layers of display cover glass or other planar structures. Adhesive may be interposed between the planar structures and the antenna resonating elements.10-02-2014
20140302797Methods and Apparatus for Testing Electronic Devices Under Specified Radio-frequency Voltage and Current Stress - Test systems for characterizing devices under test (DUTs) are provided. A test system for testing a DUT in a shunt configuration may include a signal generator and a matching network that is coupled between the signal generator and the DUT and that is optimized to apply desired voltage/current stress to the DUT with reduced source power. The matching network may be configured to provide matching and desired stress levels at two or more frequency bands. In another suitable embodiment, a test system for testing a DUT in a series configuration may include a signal generator, an input matching network coupled between the DUT and a first terminal of the DUT, and an output matching network coupled between the DUT and a second terminal of the DUT. The input and output matching network may be optimized to apply desired voltage/current stress to the DUT with reduced source power.10-09-2014
20140313087Tunable Multiband Antenna With Passive and Active Circuitry - An electronic device may have an antenna for providing coverage in wireless communications bands of interest such as a low frequency communications band and a high frequency communications band. The antenna may have an antenna ground and an antenna resonating element. The antenna resonating element may have a high band arm that contributes to a first high band resonance in the high band and may have a low band arm that exhibits a low band resonance in the low band. A passive filter that is coupled between first and second portions of the antenna resonating element may be configured to exhibit a short circuit impedance associated with a bypass path that allows the antenna resonating element to contribute to a second high band resonance in the high band. A tunable inductor coupled to the antenna resonating element may be used to tune the low band resonance.10-23-2014
20140315592Wireless Device With Dynamically Adjusted Maximum Transmit Powers - An electronic device may be provided with antenna structures. Proximity sensors and other sensors may be used in determining how the electronic device is being operated. Wireless circuitry such as a radio-frequency transmitter associated with a cellular telephone communications band, a wireless local area network band, or other communications band may be used in transmitting radio-frequency signals through the antenna structures at a transmit power. Control circuitry may adjust the wireless circuitry to ensure that the transmit power is capped at a maximum transmit power. The maximum transmit power may be adjusted dynamically by the control circuitry based on data from the proximity sensors, data from a magnetic sensor that detects whether a cover is present on the device, a connector sensor that detects whether the device is coupled to a dock or other accessory, and other sensors.10-23-2014
20140323063Methods for Manufacturing an Antenna Tuning Element in an Electronic Device - Custom antenna structures may be used to improve antenna performance and to compensate for manufacturing variations in electronic device antennas. An electronic device antenna may include an antenna tuning element and conductive structures formed from portions of a peripheral conductive housing member and other conductive antenna structures. The antenna tuning element may be connected across a gap in the peripheral conductive housing member. The custom antenna structures may be used to couple the antenna tuning element to a fixed custom location on the peripheral conductive housing member to help satisfy design criteria and to compensate for manufacturing variations in the conductive antenna structures that could potentially lead to undesired variations in antenna performance. Custom antenna structures may include springs and custom paths on dielectric supports.10-30-2014
20140328488Electronic Device With Wireless Power Control System - An electronic device may include wireless circuitry that is configured to transmit wireless signals during operation. A maximum transmit power level may be established that serves as a cap on how much power is transmitted from the electronic device. Adjustments may be made to the maximum transmit power level in real time based on sensor signals and other information on the operating state of the electronic device. The sensor signals may include motion signals from an accelerometer. The sensor signals may also include ultrasonic sound detected by a microphone. Device orientation data may be used by the device to select whether to measure the ultrasonic sound using a front facing or rear facing microphone. Maximum transmit power level may also be adjusted based on whether or not sound is playing through an ear speaker in the device.11-06-2014
20140329558Electronic Device With Multiple Antenna Feeds and Adjustable Filter and Matching Circuitry - Electronic devices may include antenna structures. The antenna structures may form an antenna having first and second feeds at different locations. A first transceiver may be coupled to the first feed using a first circuit. A second transceiver may be coupled to the second feed using a second circuit. The first and second feeds may be isolated from each other using the first and second circuits. The second circuit may have a notch filter that isolates the second feed from the first feed at operating frequencies associated with the first transceiver. The first circuit may include an adjustable component such as an adjustable capacitor. The adjustable component may be placed in different states depending on the mode of operation of the second transceiver to ensure that the first feed is isolated from the second feed.11-06-2014
20140333495Electronic Device Antenna With Multiple Feeds for Covering Three Communications Bands - Electronic devices may be provided that include radio-frequency transceiver circuitry and antennas. An antenna may be formed from an antenna resonating element and an antenna ground. The antenna resonating element may have a shorter portion that resonates at higher communications band frequencies and a longer portion that resonates at lower communications band frequencies. An extended portion of the antenna ground may form an inverted-F antenna resonating element portion of the antenna resonating element. The antenna resonating element may be formed from a peripheral conductive electronic device housing structure that is separated from the antenna ground by an opening. A first antenna feed may be coupled between the peripheral conductive electronic device housing structures and the antenna ground across the opening. A second antenna feed may be coupled to the inverted-F antenna resonating element portion of the antenna resonating element.11-13-2014
20140333496Antenna With Tunable High Band Parasitic Element - Electronic devices may be provided that include radio-frequency transceiver circuitry and antennas. An antenna may be formed from an antenna resonating element and an antenna ground. The antenna resonating element may have a shorter portion that resonates at higher communications band frequencies and a longer portion that resonates at lower communications band frequencies. The resonating element may be formed from a peripheral conductive electronic device housing structure that is separated from the antenna ground by an opening. A parasitic monopole antenna resonating element or parasitic loop antenna resonating element may be located in the opening. Antenna tuning in the higher communications band may be implemented using an adjustable inductor in the parasitic element. Antenna tuning in the lower communications band may be implemented using an adjustable inductor that couples the antenna resonating element to the antenna ground.11-13-2014
20140340265Electronic Device With Multiband Antenna - An electronic device may have an antenna for providing coverage in wireless communications bands of interest. The wireless communications bands may include first, second, third, and fourth communications bands. The antenna may have an antenna resonating element with first, second, and third arms and may have an antenna ground. The antenna ground may be formed form metal housing structures and other conductive structures in the electronic device. The first arm may be configured to exhibit an antenna resonance in the first and third communications bands. The second arm may be configured to exhibit an antenna resonance in the second communications band. The third arm may be configured to exhibit an antenna resonance in the fourth communications band. The third arm may be located between the first arm and the ground. A diagonal crossover path may pass over a return path and may couple the second and third arms.11-20-2014
20140361932Electronic Devices With Antenna Windows on Opposing Housing Surfaces - An electronic device housing may have a base unit and a lid. Aligned antenna windows may be formed on opposing upper and lower surfaces of the base unit along a hinge. Antenna structures that are located between respective upper and lower antenna windows on the upper and lower surfaces may be based on a pair of antennas that are coupled to switching circuitry that can select which antenna to switch into use or may be based on an antenna having a position that may be adjusted relative to the upper and lower antenna windows using a mechanical coupling to the lid or using a positioner. A sensor such as a lid position sensor may monitor how the lid is positioned relative to the base unit. Information from the lid position sensor may be used in adjusting the antenna structures to optimize performance.12-11-2014
20140361935MODULAR STRUCTURAL AND FUNCTIONAL SUBASSEMBLIES - A housing for a personal electronic device is described herein. The housing may include at least one modular subassembly configured to be arranged within an internal cavity of the housing. The at least one modular subassembly is aligned with a feature external to the housing, is affixed to an interior surface of the internal cavity, and is configured to function both as an antenna and as an internal support member of the housing.12-11-2014
20150050893Methodology and Apparatus for Testing Conductive Adhesive Within Antenna Assembly - Damage to conductive material that serves as bridging connections between conductive structures within an electronic device may result in deficiencies in radio-frequency (RF) and other wireless communications. A test system for testing device structures under test is provided. Device structures under test may include substrates and a conductive material between the substrates. The test system may include a test fixture for increasing tensile or compressive stress on the device structures under test to evaluate the resilience of the conductive material. The test system may also include a test unit for transmitting RF test signals and receiving test data from the device structures under test. The received test data may include scattered parameter measurements from the device structures under test that may be used to determine if the device structures under test meet desired RF performance criteria.02-19-2015
20150070219HYBRID ANTENNA FOR A PERSONAL ELECTRONIC DEVICE - A housing for a personal electronic device is described herein. The housing may include at least one modular subassembly configured to be arranged within an internal cavity of the housing. The at least one modular subassembly is aligned with a feature external to the housing, is affixed to an interior surface of the internal cavity, and is configured to function both as an antenna and as an internal support member of the housing. A hybrid antenna is also described herein. The hybrid antenna can include first and second flexible members capable of facilitating wireless communication, where the first and second flexible members are affixed to one another via a metal member.03-12-2015

Patent applications by Robert W. Schlub, Cupertino, CA US

Robert W. Schlub, Santa Clara, CA US

Patent application numberDescriptionPublished
20090174611ANTENNA ISOLATION FOR PORTABLE ELECTRONIC DEVICES - Portable electronic devices are provided with wireless circuitry that includes antennas and antenna isolation elements. The antennas may include antennas that have multiple arms and that are configured to handle communications in multiple frequency bands. The antennas may also include one or more antennas that are configured to handle communications in a single frequency band. The antennas may be coupled to different radio-frequency transceivers. For example, there may be first, second, and third antennas and first and second transceivers. The first and third antennas may be coupled to the first transceiver and the second antenna may be coupled to the second transceiver. The antenna isolation elements may be interposed between the antennas and may serve to reduce radio-frequency interference between the antennas. There may be a first antenna isolation element between the first and second antennas and a second antenna isolation element between the second and third antennas.07-09-2009
20110169703ANTENNA ISOLATION FOR PORTABLE ELECTRONIC DEVICES - Portable electronic devices are provided with wireless circuitry that includes antennas and antenna isolation elements. The antennas may include antennas that have multiple arms and that are configured to handle communications in multiple frequency bands. The antennas may also include one or more antennas that are configured to handle communications in a single frequency band. The antennas may be coupled to different radio-frequency transceivers. For example, there may be first, second, and third antennas and first and second transceivers. The first and third antennas may be coupled to the first transceiver and the second antenna may be coupled to the second transceiver. The antenna isolation elements may be interposed between the antennas and may serve to reduce radio-frequency interference between the antennas. There may be a first antenna isolation element between the first and second antennas and a second antenna isolation element between the second and third antennas.07-14-2011
20120169550ANTENNA ISOLATION FOR PORTABLE ELECTRONIC DEVICES - Portable electronic devices are provided with wireless circuitry that includes antennas and antenna isolation elements. The antennas may include antennas that have multiple arms and that are configured to handle communications in multiple frequency bands. The antennas may also include one or more antennas that are configured to handle communications in a single frequency band. The antennas may be coupled to different radio-frequency transceivers. For example, there may be first, second, and third antennas and first and second transceivers. The first and third antennas may be coupled to the first transceiver and the second antenna may be coupled to the second transceiver. The antenna isolation elements may be interposed between the antennas and may serve to reduce radio-frequency interference between the antennas. There may be a first antenna isolation element between the first and second antennas and a second antenna isolation element between the second and third antennas.07-05-2012

Patent applications by Robert W. Schlub, Santa Clara, CA US

Robert Walter Schlub, San Jose, CA US

Patent application numberDescriptionPublished
20090109104Balanced-Unbalanced Antennas - There is disclosed an antenna device comprising a pair of physically and electrically symmetrical radiating elements configured for cooperative operation as a balanced antenna, and a third radiating element configured for operation as an unbalanced antenna The balanced antenna may be configured for operation in a first frequency band, and the unbalanced antenna may be configured for operation in a second frequency band Embodiments of the disclosed antenna device provide multiband operation close to a conductive groundplane and are strongly resistant to detuning.04-30-2009
Website © 2015 Advameg, Inc.