Ruffell
John Ruffell, Sunnyvale, CA US
Patent application number | Description | Published |
---|---|---|
20110186743 | Systems And Methods For Scanning A Beam Of Charged Particles - Systems and methods of an ion implant apparatus include an ion source for producing an ion beam along an incident beam axis. The ion implant apparatus includes a beam deflecting assembly coupled to a rotation mechanism that rotates the beam deflecting assembly about the incident beam axis and deflects the ion beam. At least one wafer holder holds target wafers and the rotation mechanism operates to direct the ion beam at one of the at least one wafer holders which also rotates to maintain a constant implant angle. | 08-04-2011 |
20110186747 | Systems And Methods For Scanning A Beam Of Charged Particles - Systems and methods of an ion implant apparatus include an ion source for producing an ion beam along an incident beam axis. The ion implant apparatus includes a beam deflecting assembly coupled to a rotation mechanism that rotates the beam deflecting assembly about the incident beam axis and deflects the ion beam. At least one wafer holder holds target wafers and the rotation mechanism operates to direct the ion beam at one of the at least one wafer holders which also rotates to maintain a constant implant angle. | 08-04-2011 |
20110186748 | Systems And Methods For Scanning A Beam Of Charged Particles - Systems and methods of an ion implant apparatus include an ion source for producing an ion beam along an incident beam axis. The ion implant apparatus includes a beam deflecting assembly coupled to a rotation mechanism that rotates the beam deflecting assembly about the incident beam axis and deflects the ion beam. At least one wafer holder holds target wafers and the rotation mechanism operates to direct the ion beam at one of the at least one wafer holders which also rotates to maintain a constant implant angle. | 08-04-2011 |
Simon Ruffell, Australian Capital Territory AU
Patent application number | Description | Published |
---|---|---|
20100084613 | SEMICONDUCTOR DOPING PROCESS - A doping process, including applying pressure to at least one first phase of a semiconductor containing an electrically inactive dopant and removing the pressure to cause at least one phase transformation of the semiconductor to at least one second phase, wherein the at least one phase transformation activates the dopant so that the at least one second phase includes at least one doped phase of the semiconductor in which the dopant is electrically active. | 04-08-2010 |
Simon Ruffell, Beverly, MA US
Patent application number | Description | Published |
---|---|---|
20120289031 | COMPOUND SEMICONDUCTOR GROWTH USING ION IMPLANTATION - A workpiece is implanted to affect growth of a compound semiconductor, such as GaN. Implanted regions of a workpiece increase, reduce, or prevent growth of this compound semiconductor. Combinations of implants may be performed to cause increased growth in certain regions of the workpiece, such as between regions where growth is reduced. Growth also may be reduced or prevented at the periphery of the workpiece. | 11-15-2012 |
20130285177 | MAGNETIC MEMORY AND METHOD OF FABRICATION - In one embodiment a magnetic memory includes a memory device base and a plurality of memory cells disposed on the memory cell base, where each memory cell includes a layer stack comprising a plurality of magnetic and electrically conductive layers arranged in a stack of layers common to each other memory cell. The magnetic memory further includes an implanted matrix disposed between the memory cells and surrounding each memory cell, where the implanted matrix includes component material of the layer stack of each memory cell inter mixed with implanted species, where the implanted matrix comprises a non-conducting material and a non-magnetic material, wherein each memory cell is electrically and magnetically isolated from each other memory cell. | 10-31-2013 |
20130288394 | MAGNETIC MEMORY AND METHOD OF FABRICATION - A method of forming a magnetic memory includes providing a layer stack comprising a plurality of magnetic layers and a plurality of electrically conducting layers on a base portion of a substrate; forming a first mask feature on an outer surface of the layer stack above a first protected region and a second mask feature on the outer surface of the layer stack above a second protected region, the first mask feature and second mask feature defining an exposed region of the layer stack in portions of the layer stack therebetween; and directing ions towards exposed the region of the layer stack in an ion exposure that is effective to magnetically isolate the first protected region from the second protected region and to electrically isolate the first protected region from the second protected region without removal of the exposed region of the layer stack. | 10-31-2013 |
Simon Ruffell, South Hamilton, MA US
Patent application number | Description | Published |
---|---|---|
20150083581 | TECHNIQUES FOR PROCESSING SUBSTRATES USING DIRECTIONAL REACTIVE ION ETCHING - A method of treating a substrate includes directing ions to the substrate along at least one non-zero angle with respect to a perpendicular to a substrate surface in a presence of a reactive ambient containing a reactive species where the substrate includes a surface feature. At least one surface of the surface feature is etched using the ions in combination with the reactive ambient at a first etch rate that is greater than a second etch rate when the ions are directed to the substrate without the reactive ambient and greater than a third etch rate when the reactive ambient is provided to the substrate without the ions. | 03-26-2015 |