Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Ruben Caballero, San Jose US

Ruben Caballero, San Jose, CA US

Patent application numberDescriptionPublished
20080316115Antennas for handheld electronic devices with conductive bezels - A handheld electronic device may be provided that contains wireless communications circuitry. The handheld electronic device may have a housing and a display. The display may be attached to the housing a conductive bezel. The handheld electronic device may have one or more antennas for supporting wireless communications. A ground plane in the handheld electronic device may serve as ground for one or more of the antennas. The ground plane and bezel may define a opening. A rectangular slot antenna or other suitable slot antenna may be formed from or within the opening. One or more antenna resonating elements may be formed above the slot. An electrical switch that bridges the slot may be used to modify the perimeter of the slot so as to tune the communications bands of the handheld electronic device.12-25-2008
20080316117Handheld electronic device antennas - A handheld electronic device may be provided that contains a conductive housing and other conductive elements. The conductive elements may form an antenna ground plane. One or more antennas for the handheld electronic device may be formed from the ground plane and one or more associated antenna resonating elements. Transceiver circuitry may be connected to the resonating elements by transmission lines such as coaxial cables. Ferrules may be crimped to the coaxial cables. A bracket with extending members may be crimped over the ferrules to ground the coaxial cables to the housing and other conductive elements in the ground plane. The ground plane may contain an antenna slot. A dock connector and flex circuit may overlap the slot in a way that does not affect the resonant frequency of the slot. Electrical components may be isolated from the antenna using isolation elements such as inductors and resistors.12-25-2008
20090040115Antennas for handheld electronic devices - Handheld electronic devices are provided that contain wireless communications circuitry. The wireless communications circuitry may include antenna structures. An antenna may be located in an upper right corner of the handheld device as the handheld device is operated in a portrait mode. When the handheld device is rotated counterclockwise and operated in a landscape mode, the antenna is located in an unobstructed upper left corner of the device. The antenna may be formed from a strip of conductor. A proximal end of the strip of conductor may be connected to a transmission line. A distal end of the strip of conductor may be routed away from housing surfaces by bends formed in the strip. A printed circuit board in the handheld electronic device may have a hole. The distal end of the strip of conductor may be located adjacent to the hole.02-12-2009
20090051604Multiband antenna for handheld electronic devices - A handheld electronic device is provided that contain wireless communications circuitry. The wireless communications circuitry may include antenna structures. A first antenna may handle first and second communications bands. A second antenna may handle additional communications bands. The first and second antennas may be located at opposite ends of the handheld electronic device. Conductive structures in the handheld electronic device may form an antenna ground plane. The antenna ground plane may have portions defining an antenna slot. An L-shaped antenna resonating element may be located adjacent to the slot. In the first communications band, the L-shaped antenna resonating element may serve as a non-radiating coupling stub that excites the antenna slot. In the second communications band, the L-shaped antenna resonating element may transmit and receive radio-frequency signals.02-26-2009
20090083847EMBEDDED AUTHENTICATION SYSTEMS IN AN ELECTRONIC DEVICE - This invention is directed to an electronic device with an embedded authentication system for restricting access to device resources. The authentication system may include one or more sensors operative to detect biometric information of a user. The sensors may be positioned in the device such that the sensors may detect appropriate biometric information as the user operates the device, without requiring the user to perform a step for providing the biometric information (e.g., embedding a fingerprint sensor in an input mechanism instead of providing a fingerprint sensor in a separate part of the device housing). In some embodiments, the authentication system may be operative to detect a visual or temporal pattern of inputs to authenticate a user. In response to authenticating, a user may access restricted files, applications (e.g., applications purchased by the user), or settings (e.g., application settings such as contacts or saved game profile).03-26-2009
20090083850EMBEDDED AUTHENTICATION SYSTEMS IN AN ELECTRONIC DEVICE - This invention is directed to an electronic device with an embedded authentication system for restricting access to device resources. The authentication system may include one or more sensors operative to detect biometric information of a user. The sensors may be positioned in the device such that the sensors may detect appropriate biometric information as the user operates the device, without requiring the user to perform a step for providing the biometric information (e.g., embedding a fingerprint sensor in an input mechanism instead of providing a fingerprint sensor in a separate part of the device housing). In some embodiments, the authentication system may be operative to detect a visual or temporal pattern of inputs to authenticate a user. In response to authenticating, a user may access restricted files, applications (e.g., applications purchased by the user), or settings (e.g., application settings such as contacts or saved game profile).03-26-2009
20090153407HYBRID ANTENNAS WITH DIRECTLY FED ANTENNA SLOTS FOR HANDHELD ELECTRONIC DEVICES - A handheld electronic device is provided that contains wireless communications circuitry. The wireless communications circuitry may include antennas. An antenna in the handheld electronic device may have a ground plane element. A slot antenna resonating element may be formed from an opening in the ground plane element. A near-field-coupled antenna resonating element may be electromagnetically coupled to the slot antenna resonating element through electromagnetic near-field coupling. A transmission line may directly feed the slot antenna resonating element. The transmission line may indirectly feed the near-field-coupled antenna resonating element through the slot antenna resonating element. The slot antenna resonating element may have one or more associated resonant frequencies and the near-field-coupled antenna resonating element may have one or more associated resonant frequencies. The antenna may be configured to cover one or more distinct communications bands.06-18-2009
20090273526HANDHELD ELECTRONIC DEVICES WITH ISOLATED ANTENNAS - Handheld electronic devices are provided that contain wireless communications circuitry having at least first and second antennas. An antenna isolation element reduces signal interference between the antennas, so that the antennas may be used in close proximity to each other. A planar ground element may be used as a ground by the first and second antennas. The first antenna may be formed using a hybrid planar-inverted-F and slot arrangement in which a planar resonating element is located above a rectangular slot in the planar ground element. The second antenna may be formed from an L-shaped strip. The planar resonating element of the first antenna may have first and second arms. The first arm may resonate at a common frequency with the second antenna and may serve as the isolation element. The second arm may resonate at approximately the same frequency as the slot portion of the hybrid antenna.11-05-2009
20090275370HANDHELD ELECTRONIC DEVICES WITH ISOLATED ANTENNAS - Handheld electronic devices are provided that contain wireless communications circuitry having at least first and second antennas. An antenna isolation element reduces signal interference between the antennas, so that the antennas may be used in close proximity to each other. A planar ground element may be used as a ground by the first and second antennas. The first antenna may be formed using a hybrid planar-inverted-F and slot arrangement in which a planar resonating element is located above a rectangular slot in the planar ground element. The second antenna may be formed from an L-shaped strip. The planar resonating element of the first antenna may have first and second arms. The first arm may resonate at a common frequency with the second antenna and may serve as the isolation element. The second arm may resonate at approximately the same frequency as the slot portion of the hybrid antenna.11-05-2009
20090278753HANDHELD ELECTRONIC DEVICES WITH ISOLATED ANTENNAS - Handheld electronic devices are provided that contain wireless communications circuitry having at least first and second antennas. An antenna isolation element reduces signal interference between the antennas, so that the antennas may be used in close proximity to each other. A planar ground element may be used as a ground by the first and second antennas. The first antenna may be formed using a hybrid planar-inverted-F and slot arrangement in which a planar resonating element is located above a rectangular slot in the planar ground element. The second antenna may be formed from an L-shaped strip. The planar resonating element of the first antenna may have first and second arms. The first arm may resonate at a common frequency with the second antenna and may serve as the isolation element. The second arm may resonate at approximately the same frequency as the slot portion of the hybrid antenna.11-12-2009
20090298440SYSTEM FOR CALIBRATING WIRELESS COMMUNICATIONS DEVICES - A wireless electronic device such as a portable electronic device may contain a baseband module. Power amplifier circuitry in the device may amplify radio-frequency signals for transmission. During calibration measurements, a computer directs the baseband module to generate control signals that adjust the gain of the power amplifier circuitry. The computer may also direct the baseband module to generate a series of modulated or unmodulated test tones at one or more communications channel frequencies. A power sensor may be connected to the output of the power amplifier circuitry using a transmission line path. The computer and power sensor may be used in making power measurements on radio-frequency signals at the output of the power amplifier while power amplifier gain and test tone frequency adjustments are being made. Power amplifier calibration data may be produced and stored in the electronic device based on the power measurements.12-03-2009
20090303139HANDHELD ELECTRONIC DEVICES WITH ISOLATED ANTENNAS - Handheld electronic devices are provided that contain wireless communications circuitry having at least first and second antennas. An antenna isolation element reduces signal interference between the antennas, so that the antennas may be used in close proximity to each other. A planar ground element may be used as a ground by the first and second antennas. The first antenna may be formed using a hybrid planar-inverted-F and slot arrangement in which a planar resonating element is located above a rectangular slot in the planar ground element. The second antenna may be formed from an L-shaped strip. The planar resonating element of the first antenna may have first and second arms. The first arm may resonate at a common frequency with the second antenna and may serve as the isolation element. The second arm may resonate at approximately the same frequency as the slot portion of the hybrid antenna.12-10-2009
20090305742ELECTRONIC DEVICE WITH PROXIMITY-BASED RADIO POWER CONTROL - An electronic device such as a portable electronic device may have an antenna and associated wireless communications circuitry. A sensor such as a proximity sensor may be used to detect when the electronic device is in close proximity to a user's head. Control circuitry within the electronic device may be used to adjust radio-frequency signal transmit power levels. When it is determined that the electronic device is within a given distance from the user's head, the radio-frequency signal transmit power level may be reduced. When it is determined that the electronic device is not within the given distance from the user's head, proximity-based limits on the radio-frequency signal transmit power level may be removed. Data may be gathered from a touch sensor, accelerometer, ambient light sensor and other sources for use in determining how to adjust the transmit power level.12-10-2009
20100007564ANTENNAS FOR HANDHELD ELECTRONIC DEVICES WITH CONDUCTIVE BEZELS - A handheld electronic device may be provided that contains wireless communications circuitry. The handheld electronic device may have a housing and a display. The display may be attached to the housing a conductive bezel. The handheld electronic device may have one or more antennas for supporting wireless communications. A ground plane in the handheld electronic device may serve as ground for one or more of the antennas. The ground plane and bezel may define a opening. A rectangular slot antenna or other suitable slot antenna may be formed from or within the opening. One or more antenna resonating elements may be formed above the slot. An electrical switch that bridges the slot may be used to modify the perimeter of the slot so as to tune the communications bands of the handheld electronic device.01-14-2010
20100057359LOCATION SYSTEMS FOR HANDHELD ELECTRONIC DEVICES - An electronic device such as a portable electronic device is provided. The device may have wireless circuitry such as a global satellite navigation system receiver for receiving global satellite navigation system signals and for producing corresponding global satellite navigation system data. The global satellite navigation system data may include information on the current position of the portable electronic device. The portable electronic device may also have one or more sensors that are used to gather data in addition to the global satellite navigation system data. The sensors may include accelerometers and other devices capable of determining how the portable electronic device is oriented with respect to the Earth's magnetic field and how the device is being moved. When the device is moved, the movement and resulting change in orientation may be used in conjunction with the global satellite navigation system data to compute a current geographic location.03-04-2010
20100123632MULTIBAND HANDHELD ELECTRONIC DEVICE SLOT ANTENNA - An electronic device such as a portable electronic device may have an antenna and associated wireless communications circuitry. The antenna may be a slot antenna having a dielectric slot opening. The slot opening may have a shape such as a U shape or an L shape in which elongated regions of the slot run parallel to the edges of the portable electronic device. The portable electronic device may have a housing with conductive sidewalls. The conductive sidewalls may help define the shape of the slot. Antenna feed arrangements may be used to feed the slot antenna in a way that excites harmonic frequencies and that supports multiband operation while being shielded from proximity effects.05-20-2010
20100321253DIELECTRIC WINDOW ANTENNAS FOR ELECTRONIC DEVICES - Logo antennas are provided for electronic devices such as portable computers. An electronic device may have a housing with conductive housing walls. A logo antenna may be formed from an antenna resonating element such as a patch antenna resonating element, a monopole antenna resonating element, or other antenna resonating element structure. A conductive cavity may be placed behind the antenna resonating element. A dielectric antenna window that serves as a logo may be used to cover the antenna resonating element. The dielectric antenna window may be mounted in an opening in the conductive housing walls. A positive antenna feed terminal may be coupled to the antenna resonating element. A ground antenna feed terminal may be coupled to the cavity and portions of the conductive housing walls. The dielectric antenna window may be shaped in the form of a logo.12-23-2010
20110006953CAVITY ANTENNAS FOR ELECTRONIC DEVICES - Antennas are provided for electronic devices such as portable computers. An electronic device may have a housing in which an antenna is mounted. The housing may have an antenna window for the antenna. The antenna window may be formed from dielectric or from antenna window slots in a conductive member such as a conductive wall of the electronic device housing. An antenna may have an antenna resonating element that is backed by a conductive antenna cavity. The antenna resonating element may have antenna resonating element slots or may be formed using other antenna configurations such as inverted-F configurations. The antenna cavity may have conductive vertical sidewalls and a conductive rear wall. The antenna cavity walls may be formed from conductive layers on a dielectric antenna support structure.01-13-2011
20110012793ELECTRONIC DEVICES WITH CAPACITIVE PROXIMITY SENSORS FOR PROXIMITY-BASED RADIO-FREQUENCY POWER CONTROL - An electronic device may have a housing in which an antenna is mounted. An antenna window may be mounted in the housing to allow radio-frequency signals to be transmitted from the antenna and to allow the antenna to receive radio-frequency signals. Near-field radiation limits may be satisfied by reducing transmit power when an external object is detected in the vicinity of the dielectric antenna window and the antenna. A capacitive proximity sensor may be used in detecting external objects in the vicinity of the antenna. The proximity sensor may have conductive layers separated by a dielectric. A capacitance-to-digital converter may be coupled to the proximity sensor by inductors. The capacitive proximity sensor may be interposed between an antenna resonating element and the antenna window. The capacitive proximity sensor may serve as a parasitic antenna resonating element and may be coupled to the housing by a capacitor.01-20-2011
20110012794ELECTRONIC DEVICES WITH PARASITIC ANTENNA RESONATING ELEMENTS THAT REDUCE NEAR FIELD RADIATION - Antennas are provided for electronic devices such as portable computers. An electronic device may have a housing in which an antenna is mounted. The housing may be formed of conductive materials. A dielectric antenna window may be mounted in the housing to allow radio-frequency signals to be transmitted from the antenna and to allow the antenna to receive radio-frequency signals. Near-field radiation limits may be satisfied by reducing transmit power when an external object is detected in the vicinity of the dielectric antenna window and the antenna. A proximity sensor may be used in detecting external objects. A parasitic antenna resonating element may be interposed between the antenna resonating element and the dielectric antenna window to minimize near-field radiation hotspots. The parasitic antenna resonating element may be formed using a capacitor electrode for the proximity sensor. A ferrite layer may be interposed between the parasitic element and the antenna window.01-20-2011
20110050508DUAL-BAND CAVITY-BACKED ANTENNA FOR INTEGRATED DESKTOP COMPUTER - An electronic device may have a housing with conductive housing walls. A dielectric antenna window may be formed in an opening in one of the conductive housing walls. A dielectric logo may form the dielectric antenna window. A dielectric support structure may have an outline that matches the dielectric logo. An antenna resonating element for an antenna may be formed on the dielectric support structure. An antenna cavity for the antenna may be formed by a conductive cavity structure. A pattern of voids in the dielectric support structure may reduce dielectric loading for the antenna. The conductive cavity structure may be formed from solderable plated metal. The conductive cavity structure may have a planar lip that is attached to the conductive housing walls using conductive adhesive. Rear wall portions of the conductive cavity structure may be oriented at a non-perpendicular non-zero angle with respect to the planar lip.03-03-2011
20110050509CAVITY-BACKED ANTENNA FOR TABLET DEVICE - An electronic device may have a cavity antenna. The cavity antenna may have a logo-shaped dielectric window. An antenna resonating element for the cavity antenna may be formed from conductive traces on a printed circuit board. An antenna resonating element may be formed from the traces. The antenna resonating element may be mounted on an antenna support structure. A conductive cavity structure for the cavity antenna may have a planar lip that is mounted flush with an interior surface of a conductive housing wall. The cavity structure may have more than one depth. Shallower planar portions of the cavity structure may lie in a plane. The antenna resonating element may be located between the plane of the shallow cavity walls and an external surface of the conductive housing wall.03-03-2011
20110050513ANTENNAS FOR HANDHELD ELECTRONIC DEVICES WITH CONDUCTIVE BEZELS - A handheld electronic device may be provided that contains wireless communications circuitry. The handheld electronic device may have a housing and a display. The display may be attached to the housing a conductive bezel. The handheld electronic device may have one or more antennas for supporting wireless communications. A ground plane in the handheld electronic device may serve as ground for one or more of the antennas. The ground plane and bezel may define a opening. A rectangular slot antenna or other suitable slot antenna may be formed from or within the opening. One or more antenna resonating elements may be formed above the slot. An electrical switch that bridges the slot may be used to modify the perimeter of the slot so as to tune the communications bands of the handheld electronic device.03-03-2011
20110084887SYSTEM FOR TESTING MULTI-ANTENNA DEVICES - A test system for testing multiple-input and multiple-output (MIMO) systems is provided. The test system may convey signals bidirectionally between two test chambers. Each test chamber may be lined with foam to minimize electromagnetic reflections. Each test chamber may include structure three-dimensional array of test antennas. The test antennas may be mounted in a sphere using an antenna mounting structure. The antenna mounting structure may include multiple rings of different sizes. Test antennas may be embedded in the inner walls of the antenna mounting structure. There may be multiple receiving antennas located in each test chamber. One test chamber may include a device under test inside an array of test antennas and another test chamber may include base station antennas inside another array of test antennas. Signals may be conveyed between the test chambers using channel emulators.04-14-2011
20110133995BEZEL GAP ANTENNAS - Electronic devices are provided that contain wireless communications circuitry. The wireless communications circuitry may include radio-frequency transceiver circuitry and antenna structures. A parallel-fed loop antenna may be formed from portions of an electronic device bezel and a ground plane. The antenna may operate in multiple communications bands. An impedance matching circuit for the antenna may be formed from a parallel-connected inductive element and a series-connected capacitive element. The bezel may surround a peripheral portion of a display that is mounted to the front of an electronic device. The bezel may contain a gap. Antenna feed terminals for the antenna may be located on opposing sides of the gap. The inductive element may bridge the gap and the antenna feed terminals. The capacitive element may be connected in series between one of the antenna feed terminals and a conductor in a transmission line located between the transceiver circuitry and the antenna.06-09-2011
20110136447BEZEL GAP ANTENNAS - Electronic devices are provided that contain wireless communications circuitry. The wireless communications circuitry may include radio-frequency transceiver circuitry and antenna structures. A parallel-fed loop antenna may be formed from portions of an electronic device bezel and a ground plane. The antenna may operate in multiple communications bands. An impedance matching circuit for the antenna may be formed from a parallel-connected inductive element and a series-connected capacitive element. The bezel may surround a peripheral portion of a display that is mounted to the front of an electronic device. The bezel may contain a gap. Antenna feed terminals for the antenna may be located on opposing sides of the gap. The inductive element may bridge the gap and the antenna feed terminals. The capacitive element may be connected in series between one of the antenna feed terminals and a conductor in a transmission line located between the transceiver circuitry and the antenna.06-09-2011
20110183721ANTENNA FOR HANDHELD ELECTRONIC DEVICES WITH CONDUCTIVE BEZELS - A handheld electronic device may be provided that contains wireless communications circuitry. The handheld electronic device may have a housing and a display. The display may be attached to the housing using a conductive bezel. The handheld electronic device may have one or more antennas for supporting wireless communications. A ground plane in the handheld electronic device may serve as ground for one or more of the antennas. The ground plane and bezel may define a opening. A rectangular slot antenna or other suitable slot antenna may be formed from or within the opening. One or more antenna resonating elements may be formed above the slot. An electrical switch that bridges the slot may be used to modify the perimeter of the slot so as to tune the communications bands of the handheld electronic device.07-28-2011
20110193754HANDHELD ELECTRONIC DEVICES WITH ISOLATED ANTENNAS - Handheld electronic devices are provided that contain wireless communications circuitry having at least first and second antennas. An antenna isolation element reduces signal interference between the antennas, so that the antennas may be used in close proximity to each other. A planar ground element may be used as a ground by the first and second antennas. The first antenna may be formed using. a hybrid planar-inverted-F and slot arrangement in which a planar resonating element is located above a rectangular slot in the planar ground element. The second antenna may be formed from an L-shaped strip. The planar resonating element of the first antenna may have first and second arms. The first arm may resonate at a common frequency with the second antenna and may serve as the isolation element. The second arm may resonate at approximately the same frequency as the slot portion of the hybrid antenna.08-11-2011
20110241943METHODS FOR FORMING CAVITY ANTENNAS - An antenna resonating element may be mounted in an antenna cavity. The antenna resonating element may have a printed circuit board substrate with a patterned metal layer. Components may be soldered to the antenna resonating element using solder with a given melting point before soldering the antenna resonating element the antenna cavity using solder with a lower melting point. Solder widow openings may be formed in the antenna resonating element and antenna cavity to allow for application of solder paste. Engagement features and alignment structures may be used to align the antenna resonating element relative to the antenna cavity. The antenna cavity may have a curved opening. The printed circuit board substrate may be bent to the shape of the curved opening before soldering components to the printed circuit board. An elastomeric fixture may be used to hold the antenna resonating element to the cavity during soldering.10-06-2011
20110241949MULTIBAND ANTENNAS FORMED FROM BEZEL BANDS WITH GAPS - Electronic devices are provided that contain wireless communications circuitry. The wireless communications circuitry may include radio-frequency transceiver circuitry and antenna structures. An inverted-F antenna may have first and second short circuit legs and a feed leg. The first and second short circuit legs and the feed leg may be connected to a folded antenna resonating element arm. The antenna resonating element arm and the first short circuit leg may be formed from portions of a conductive electronic device bezel. The folded antenna resonating element arm may have a bend. The bezel may have a gap that is located at the bend. Part of the folded resonating element arm may be formed from a conductive trace on a dielectric member. A spring may be used in connecting the conductive trace to the electronic device bezel portion of the antenna resonating element arm.10-06-2011
20110250928ADJUSTABLE WIRELESS CIRCUITRY WITH ANTENNA-BASED PROXIMITY DETECTOR - An electronic device such as a portable electronic device has wireless communications circuitry. Antennas in the electronic device may be used in transmitting radio-frequency antenna signals. A coupler and antenna signal phase and magnitude measurement circuitry may be used to determine when external objects are in the vicinity of the antenna by making antenna impedance measurements. In-band and out-of-band phase and magnitude signal measurements may be made in determining whether external objects are present. Additional sensors such as motion sensors, light and heat sensors, acoustic and electrical sensors may produce data that can be combined with the proximity data gathered using the antenna-based proximity sensor. In response to detecting that an external object such as a user's body is within a given distance of the antenna, the electronic device may reduce transmit powers, switch antennas, steer a phased antenna array, switch communications protocols, or take other actions.10-13-2011
20110269423WIRELESS NETWORK AUTHENTICATION APPARATUS AND METHODS - Apparatus and methods for authenticating and granting a client device (e.g., cellular telephone) access to a network. In one embodiment, a network service provider such as a cellular telephone company may distribute user access (e.g., Universal Subscriber Identity Module or “USIM”) credentials to a services manager via a USIM vendor. The services manager may maintain a list of authorized users. A user at a client may authenticate to the services manager. Once authenticated, the services manager may provide the user with a set of USIM credentials. When the user desires to use wireless network services, the user equipment may establish a wireless link between the user equipment and the network service provider. During authentication operations, the user equipment may use the USIM credentials to authenticate to the network service provider. Following successful authentication, the network service provider may provide the user equipment with wireless services.11-03-2011
20110270567TOOLS FOR DESIGN AND ANALYSIS OF OVER-THE-AIR TEST SYSTEMS WITH CHANNEL MODEL EMULATION CAPABILITIES - A wireless electronic device may serve as a device under test in a test system. The test system may include an array of over-the-air antennas that can be used in performing over-the-air wireless tests on the device under test (DUT). A channel model may be used in modeling a multiple-input-multiple-output (MIMO) channel between a multi-antenna wireless base station and a multi-antenna DUT. The test system may be configured to perform over-the-air tests that emulate the channel model. A design and analysis tool may be used to identify an optimum over-the-air test system setup. The tool may be used in converting a geometric model to a stochastic model for performing conducted tests. The tool may be used in converting a stochastic model to a geometric model and then further convert the geometric model to an over-the-air emulated stochastic model. The over-the-air emulated stochastic model may be used in performing conducted tests.11-03-2011
20110282593WELD CHECK STATIONS - A method of manufacture for a portable computing device is described. In particular, methods and apparatus for assessing a quality of weld joints used to connect one or more components of the portable computing device are described. The weld joints can include one or more weld points. At a weld check station, using a vector network analyzer, a test signal generated can be passed through the weld joint and a response signal can be measured. The measured characteristics can be used to assess a quality of the weld joint. In one embodiment, the vector network analyzer can be used to generate a number of high frequency test signals that are passed through the weld to perform a time domain reflectometry measurement where the weld joint can be accepted or rejected based upon the measurement.11-17-2011
20110291896HOUSING STRUCTURES FOR OPTIMIZING LOCATION OF EMITTED RADIO-FREQUENCY SIGNALS - Electronic devices are provided that contain wireless communications circuitry. The wireless communications circuitry may include radio-frequency transceiver circuitry and antenna structures. A display may be mounted on a front face of an electronic device. A conductive member such as a bezel may surround the display. Internal housing support structures such as a metal midplate member may be used to support the display. The midplate member may be connected between opposing edges of the bezel. The antenna structures may include an antenna formed from part of the midplate member and part of the bezel. Antenna image currents in the midplate member may be blocked by slots in the midplate member. The slots may be located adjacent to the antenna and may ensure that the antenna emits radio-frequency signals in a desired pattern. The slots may be angled and segmented.12-01-2011
20110300907PARALLEL-FED EQUAL CURRENT DENSITY DIPOLE ANTENNA - Electronic devices such as handheld devices may have wireless communications circuitry. The wireless communications circuitry may include a broadband antenna and circuitry that covers multiple communications bands. The broadband antenna may be formed from a parallel-fed dipole. The antenna may have first and second antenna resonating element regions on opposing sides of a slot. The slot may be an open slot that has one open end and one closed end. The slot may be formed from an opening in conductive housing structures in a conductive housing for an electronic device. The conductive housing structures may include sidewall structures, rear housing wall structures, and other conductive structures. The antenna may have a feed with a feed line that crosses the slot. An interposed dielectric substrate member may separate the feed line from the conductive structures. The feed line may have sections with different widths to minimize feed line length.12-08-2011
20110313708METHODS FOR MANUFACTURING DEVICES WITH FLEX CIRCUITS AND RADIO-FREQUENCY CABLES - A flex circuit may have test structures and antenna structures. The test structures may include test capacitors and transmission lines. The performance of the test structures may be measured using test equipment. Pass/fail criteria may be applied to the flex circuit based on the measured values. If the flex circuit is a failing circuit, flex circuit manufacturing settings may be adjusted. The performance of a radio-frequency (RF) cable may also be measured using the test equipment. Sample portions of the RF cable may be obtained and measured. Pass/fail criteria may be applied to the RF cable based on measured cable loss values. If the RF cable is a failing cable, RF cable manufacturing settings may be adjusted. Antenna structures associated with passing flex circuits and RF cable segments associated with passing sample RF cable segments may be incorporated into a wireless device during production device assembly.12-22-2011
20120009983TUNABLE ANTENNA SYSTEMS - An electronic device has wireless communications circuitry including an adjustable antenna system coupled to a radio-frequency transceiver. The adjustable antenna system may include one or more adjustable electrical components that are controlled by storage and processing circuitry in the electronic device. The adjustable electrical components may include switches and components that can be adjusted between numerous different states. The adjustable electrical components may be coupled between antenna system components such as transmission line elements, matching network elements, antenna elements and antenna feeds. By adjusting the adjustable electrical components, the storage and processing circuitry can tune the adjustable antenna system to ensure that the adjustable antenna system covers communications bands of interest.01-12-2012
20120046002ANTENNAS FOR HANDHELD ELECTRONIC DEVICES WITH CONDUCTIVE BEZELS - A handheld electronic device may be provided that contains wireless communications circuitry. The handheld electronic device may have a housing and a display. The display may be attached to the housing using a conductive bezel. The handheld electronic device may have one or more antennas for supporting wireless communications. A ground plane in the handheld electronic device may serve as ground for one or more of the antennas. The ground plane and bezel may define an opening. A rectangular slot antenna or other suitable slot antenna may be formed from or within the opening. One or more antenna resonating elements may be formed above the slot. An electrical switch that bridges the slot may be used to modify the perimeter of the slot so as to tune the communications bands of the handheld electronic device.02-23-2012
20120068893ANTENNA STRUCTURES HAVING RESONATING ELEMENTS AND PARASITIC ELEMENTS WITHIN SLOTS IN CONDUCTIVE ELEMENTS - Electronic devices may include radio-frequency transceiver circuitry and antenna structures. The antenna structures may include antenna resonating elements such as dual-band antenna resonating elements that resonate in first and second communications bands. The antenna structures may also contain parasitic antenna elements such as elements that are operative in only the first or second communications band and elements that are operative in both the first and second communications bands. The antenna resonating elements and parasitic elements may be mounted on a common dielectric carrier. The dielectric carrier may be mounted within a slot or other opening in a conductive element. The conductive element may be formed from conductive housing structures in an electronic device such as a portable computer. The portable computer may have a clutch barrel with a dielectric cover. The dielectric cover may overlap and cover the slot and the dielectric carrier.03-22-2012
20120098713SYSTEM FOR TESTING MULTI-ANTENNA DEVICES USING BIDIRECTIONAL FADED CHANNELS - A test system for testing multiple-input and multiple-output (MIMO) systems is provided. The test system may convey radio-frequency (RF) signals bidirectionally between a base station emulator and a device under test (DUT). The DUT may be placed within a test chamber during testing. An antenna mounting structure may surround the DUT. Multiple antennas may be mounted on the antenna mounting structure to transmit and receive RF signals to and from the DUT. A first group of antennas may be coupled to the base station emulator through downlink circuitry. A second group of antennas may be coupled to the base station emulator through uplink circuitry. The uplink and downlink circuitry may each include a splitter, channel emulators, and amplifier circuits. The channel emulators and amplifier circuits may be configured to provide desired path loss and channel characteristics to model real-world wireless network transmission.04-26-2012
20120100813SYSTEM FOR TESTING MULTI-ANTENNA DEVICES USING BIDIRECTIONAL FADED CHANNELS - A test system for testing multiple-input and multiple-output (MIMO) systems is provided. The test system may convey radio-frequency (RF) signals bidirectionally between a device under test (DUT) and at least one base station. The DUT may be placed within a test chamber during testing. An antenna mounting structure may surround the DUT. Multiple antennas may be mounted on the antenna mounting structure to transmit and receive RF signals to and from the DUT. A first group of dual-polarized antennas may be coupled to the base station through downlink circuitry. A second group of dual-polarized antennas may be coupled to the base station through uplink circuitry. The uplink and downlink circuitry may each include a splitter/combiner, channel emulators, amplifier circuits, and switch circuitry. The channel emulators and amplifier circuits may be configured to provide desired path loss, spatial interference, and channel characteristics to model real-world wireless network transmission.04-26-2012
20120112969ANTENNA SYSTEM WITH RECEIVER DIVERSITY AND TUNABLE MATCHING CIRCUIT - Electronic devices may be provided that contain wireless communications circuitry. The wireless communications circuitry may include radio-frequency transceiver circuitry and antenna structures. An electronic device may include a display mounted within a housing. A peripheral conductive member may run around the edges of the display and housing. Dielectric-filled gaps may divide the peripheral conductive member into individual segments. A ground plane may be formed within the housing from conductive housing structures, printed circuit boards, and other conductive elements. The ground plane and the segments of the peripheral conductive member may form antennas in upper and lower portions of the housing. The radio-frequency transceiver circuitry may implement receiver diversity using both the upper and lower antennas. The lower antenna may be used in transmitting signals. The upper antenna may be tuned using a tunable matching circuit.05-10-2012
20120112970ANTENNA SYSTEM WITH ANTENNA SWAPPING AND ANTENNA TUNING - Electronic devices may be provided that contain wireless communications circuitry. The wireless communications circuitry may include radio-frequency transceiver circuitry and first and second antennas. An electronic device may include a housing. The first antenna may be located at an upper end of the housing and the second antenna may be located at a lower end of the housing. A peripheral conductive member may run around the edges of the housing and may be used in forming the first and second antennas. The radio-frequency transceiver circuitry may have a transmit-receive port and a receive port. Switching circuitry may connect the first antenna to the transmit-receive port and the second antenna to the receiver port or may connect the first antenna to the receive port and the second antenna to the transmit-receive port.05-10-2012
20120178386METHODS FOR ADJUSTING RADIO-FREQUENCY CIRCUITRY TO MITIGATE INTERFERENCE EFFECTS - An electronic device may transmit and receive wireless signals using wireless circuitry that is controlled by control circuitry. The wireless circuitry may include adjustable components such as adjustable antenna structures, adjustable front end circuitry, and adjustable transceiver circuitry. During characterization operations, the electronic device may be tested to identify operating settings for the wireless circuitry that lead to potential wireless interference between aggressor transmitters and victim receivers. The control circuitry can adjust the wireless circuitry to mitigate the effects of interference based on settings identified during characterization operations or real time signal quality measurements.07-12-2012
20120214412ANTENNA WITH INTEGRATED PROXIMITY SENSOR FOR PROXIMITY-BASED RADIO-FREQUENCY POWER CONTROL - An electronic device may have a housing in which an antenna is mounted. An antenna window may be mounted in the housing to allow radio-frequency signals to be transmitted from the antenna and to allow the antenna to receive radio-frequency signals. Near-field radiation limits may be satisfied by reducing transmit power when an external object is detected in the vicinity of the dielectric antenna window and the antenna. A capacitive proximity sensor may be used in detecting external objects in the vicinity of the antenna. The proximity sensor and the antenna may be formed using integral antenna resonating element and proximity sensor capacitor electrode structures. These structures may be formed from identical first and second patterned conductive layers on opposing sides of a dielectric substrate. A transceiver and proximity sensor may be coupled to the structures through respective high-pass and low-pass circuits.08-23-2012
20120229347TUNABLE ANTENNA SYSTEM WITH RECEIVER DIVERSITY - A wireless electronic device may include antenna structures and antenna tuning circuitry. The device may include a display mounted within a housing. A peripheral conductive member may run around the edges of the display and housing. Dielectric-filled gaps may divide the peripheral conductive member into individual segments. A ground plane may be formed within the housing. The ground plane and the segments of the peripheral conductive member may form antennas in upper and lower portions of the housing. The antenna tuning circuitry may include switchable inductor circuits and variable capacitor circuits for the upper and lower antennas. The switchable inductor circuits associated with the upper antenna may be tuned to provide coverage in at least two high-band frequency ranges of interest, whereas the variable capacitor circuits associated with the upper antenna may be tuned to provide coverage in at least two low-band frequency ranges of interest.09-13-2012
20120231750TUNABLE LOOP ANTENNAS - Electronic devices are provided that contain wireless communications circuitry. The wireless communications circuitry may include radio-frequency transceiver circuitry and antenna structures. A parallel-fed loop antenna may be formed from portions of a conductive bezel and a ground plane. The antenna may operate in multiple communications bands. The bezel may surround a peripheral portion of a display that is mounted to the front of an electronic device. The bezel may contain a gap. Antenna feed terminals for the antenna may be located on opposing sides of the gap. A variable capacitor may bridge the gap. An inductive element may bridge the gap and the antenna feed terminals. A switchable inductor may be coupled in parallel with the inductive element. Tunable matching circuitry may be coupled between one of the antenna feed terminals and a conductor in a coaxial cable connecting the transceiver circuitry to the antenna.09-13-2012
20130009828Bezel Gap Antennas - Electronic devices are provided that contain wireless communications circuitry. The wireless communications circuitry may include radio-frequency transceiver circuitry and antenna structures. A parallel-fed loop antenna may be formed from portions of an electronic device bezel and a ground plane. The antenna may operate in multiple communications bands. An impedance matching circuit for the antenna may be formed from a parallel-connected inductive element and a series-connected capacitive element. The bezel may surround a peripheral portion of a display that is mounted to the front of an electronic device. The bezel may contain a gap. Antenna feed terminals for the antenna may be located on opposing sides of the gap. The inductive element may bridge the gap and the antenna feed terminals. The capacitive element may be connected in series between one of the antenna feed terminals and a conductor in a transmission line located between the transceiver circuitry and the antenna.01-10-2013
20130082895Antenna Structures with Molded and Coated Substrates - Electronic devices may be provided with antenna structures. The antenna structures may be used in wirelessly transmitting and receiving radio-frequency signals. Antenna structures may be formed from molded dielectric substrates. Patterned conductive material may be formed on the dielectric substrates. The dielectric substrates may be formed from molded materials such as glass or ceramic. Sheets of dielectric or dielectric powder may be compressed to form a dielectric substrate of a desired shape. The patterned conductive material may be formed from metallic paint or other conductors. A hollow antenna chamber may be formed by joining molded dielectric structures. An antenna such as an indirectly-fed loop antenna or other antennas may be formed from the molded dielectric substrates and patterned conductors.04-04-2013
20130106665ANTENNAS FOR HANDHELD ELECTRONIC DEVICES05-02-2013
20130127672Distributed Loop Antennas with Extended Tails - Electronic devices may be provided with antenna structures such as distributed loop antenna resonating element structures. A distributed loop antenna may be formed on an elongated dielectric carrier and may have a longitudinal axis. The distributed loop antenna may include a loop antenna resonating element formed from a sheet of conductive material that extends around the longitudinal axis. A gap may be formed in the sheet of conductive material. The gap may be located under an opaque masking layer on the underside of a display cover glass associated with a display. The loop antenna resonating element may have a main body portion that includes the gap and may have an extended tail portion that extends between the display and conductive housing structures. The main body portion and extended tail portion may be configured to ensure that undesired waveguide modes are cut off during operation of the loop antenna.05-23-2013
20130172045ELECTRONIC DEVICE WITH PROXIMITY-BASED RADIO POWER CONTROL - An electronic device such as a portable electronic device may have an antenna and associated wireless communications circuitry. A sensor such as a proximity sensor may be used to detect when the electronic device is in close proximity to a user's head. Control circuitry within the electronic device may be used to adjust radio-frequency signal transmit power levels. When it is determined that the electronic device is within a given distance from the user's head, the radio-frequency signal transmit power level may be reduced. When it is determined that the electronic device is not within the given distance from the user's head, proximity-based limits on the radio-frequency signal transmit power level may be removed. Data may be gathered from a touch sensor, accelerometer, ambient light sensor and other sources for use in determining how to adjust the transmit power level.07-04-2013
20130214986ANTENNA WITH FOLDED MONOPOLE AND LOOP MODES - Electronic devices may be provided that contain wireless communications circuitry. The wireless communications circuitry may include radio-frequency transceiver circuitry and antennas. An antenna may have an antenna ground that is configured to form a cavity for the antenna. The antenna ground may be formed on a support structure. The antenna ground may have an opening. The support structure may have a planar surface on which the opening is formed. A folded monopole antenna resonating element and an L-shaped conductive antenna element may be formed in the opening and may be capacitively coupled. The folded monopole antenna resonating element may have an end at which a positive antenna feed terminal is formed. A ground antenna feed terminal may be formed on the antenna ground. A segment of the antenna ground may extend between the ground antenna feed terminal and an end of the L-shaped conductive antenna element.08-22-2013
20130234741Methods for Characterizing Tunable Radio-Frequency Elements - A wireless electronic device may contain at least one antenna tuning element for use in tuning the operating frequency range of the device. The antenna tuning element may include radio-frequency switches, continuously/semi-continuously adjustable components such as tunable resistors, inductors, and capacitors, and other load circuits that provide desired impedance characteristics. A test station may be used to measure the radio-frequency characteristics associated with the tuning element. The test station may provide adjustable temperature, power, and impedance control to help emulate a true application environment for the tuning element without having to place the tuning element within an actual device during testing. The test system may include at least one signal generator and a tester for measuring harmonic distortion values and may include at least two signal generators and a tester for measuring intermodulation distortion values. During testing, the antenna tuning element may be placed in a series or shunt configuration.09-12-2013
20130241780ELECTRONIC DEVICES WITH CAPACITIVE PROXIMITY SENSORS FOR PROXIMITY-BASED RADIO-FREQUENCY POWER CONTROL - An electronic device may have a housing in which an antenna is mounted. An antenna window may be mounted in the housing to allow radio-frequency signals to be transmitted from the antenna and to allow the antenna to receive radio-frequency signals. Near-field radiation limits may be satisfied by reducing transmit power when an external object is detected in the vicinity of the dielectric antenna window and the antenna. A capacitive proximity sensor may be used in detecting external objects in the vicinity of the antenna. The proximity sensor may have conductive layers separated by a dielectric. A capacitance-to-digital converter may be coupled to the proximity sensor by inductors. The capacitive proximity sensor may be interposed between an antenna resonating element and the antenna window. The capacitive proximity sensor may serve as a parasitic antenna resonating element and may be coupled to the housing by a capacitor.09-19-2013
20130257454Methods for Characterizing Tunable Radio-Frequency Elements in Wireless Electronic Devices - A wireless electronic device may contain an antenna tuning element for tuning the device's operating frequency range. The antenna tuning element may include radio-frequency switches, continuously/semi-continuously adjustable components such as tunable resistors, inductors, and capacitors, etc. A test system may be used to measure the radio-frequency characteristics associated with the tuning element assembled with an electronic device. The test system may include a test host, a test chamber, a signal generator, power meters, and radio-frequency testers. The electronic device under test (DUT) may be placed in the test chamber. The signal generator may generate radio-frequency test signals for energizing the antenna tuning element. The power meters and radio-frequency testers may be used to measure conducted and radiated signals emitted from the DUT while the DUT is placed in different desired orientations. A phantom object is optionally placed in the vicinity of the DUT to simulate actual user scenario.10-03-2013
20130271317Methods and Apparatus for Testing Satellite Navigation System Receiver Performance - A test system for performing over the air testing on a device under test (DUT) with satellite navigation system capability is provided. The test system may include a test host, a satellite navigation system emulator, a test chamber in which the DUT may be placed during testing, and test antennas mounted inside the test chamber. The satellite navigation system emulator may receive ephemeris and almanac data and may generate corresponding simulated test signals to be transmitted to the DUT via the test antennas. The test antennas may be mounted on fixed or rotatable ring-shaped antenna mounting structures configured to emulate respective orbital planes in a given satellite constellation that is currently being characterized. The DUT may also be rotated during testing to emulate user movement.10-17-2013
20130293249Methods for Modeling Tunable Radio-Frequency Elements - A test system for characterizing an antenna tuning element is provided. The test system may include a test host, a radio-frequency tester, and a test fixture. The test system may calibrate the radio-frequency tester using known coaxial standards. The test system may then calibrate transmission line effects associated with the test fixture using a THRU-REFLECT-LINE calibration algorithm. The antenna tuning element may be mounted on a test socket that is part of the test fixture. While the antenna tuning element is mounted on the test socket, scattering parameter measurements may be obtained using the radio-frequency tester. An equivalent circuit model for the test socket can be obtained based on the measured scattering parameters and known characteristics of the antenna tuning element. Once the test socket has been characterized, an equivalent circuit model for the antenna tuning element can be obtained by extracting suitable modeling parameters from the measured scattering parameters.11-07-2013
20130293424Corner Bracket Slot Antennas - A display cover layer may be mounted in an electronic device housing using housing structures such as corner brackets. A slot antenna may be formed from a corner bracket opening, metal traces on a hollow plastic support structure, or other conductive structures. The slot antenna may have a main portion with opposing ends. An antenna feed may be located at one of the ends. The slot antenna may have a slot with one or more bends. The bends may provide the slot antenna with a C-shaped outline. A side branch slot may extend from the main portion of the slot at a location between the two bends. The presence of the side branch slot may enhance antenna bandwidth. A hollow enclosure may serve as an antenna support structure and as a speaker box enclosing a speaker driver. The antenna feed may be positioned so as to overlap the speaker driver.11-07-2013
20130321012Methods and Apparatus for Testing Small Form Factor Antenna Tuning Elements - A test system for testing a device under test (DUT) is provided. The test system may include a DUT receiving structure configured to receive the DUT during testing and a DUT retention structure that is configured to press the DUT against the DUT receiving structure so that DUT cannot inadvertently shift around during testing. The DUT retention structure may include a pressure sensor operable to detect an amount of pressure that is applied to the DUT. The DUT retention structure may be raised and lowered vertically using a manually-controlled or a computer-controlled positioner. The positioner may be adjusted using a coarse tuning knob and a fine tuning knob. The positioner may be calibrated such that the DUT retention structure applies a sufficient amount of pressure on the DUT during production testing.12-05-2013
20130328582Methods and Apparatus for Performing Wafer-Level Testing on Antenna Tuning Elements - A test system for testing an antenna tuning element is provided. The test system may include a tester, a test fixture, and a probing structure. The probing structure may include probe tips configured to mate with corresponding solder bumps formed on a device under test (DUT) containing an antenna tuning element. The DUT may be tested in a shunt or series configuration. The tester may be electrically coupled to the test probe via first and second connectors on the test fixture. An adjustable load circuit that is coupled to the second connector may be configured in a selected state so that a desired amount of electrical stress may be presented to the DUT during testing. The tester may be used to obtain measurement results on the DUT. Systematic effects associated with the test structures may be de-embedded from the measured results to obtain calibrated results.12-12-2013
20140049432ANTENNAS FOR HANDHELD ELECTRONIC DEVICES - A handheld electronic device may be provided that contains wireless communications circuitry. The handheld electronic device may have a housing and a display. The display may be attached to the housing a conductive bezel. The handheld electronic device may have one or more antennas for supporting wireless communications. A ground plane in the handheld electronic device may serve as ground for one or more of the antennas. The ground plane and bezel may define an opening. A rectangular slot antenna or other suitable slot antenna may be formed from or within the opening. One or more antenna resonating elements may be formed above the slot. An electrical switch that bridges the slot may be used to modify the perimeter of the slot so as to tune the communications bands of the handheld electronic device.02-20-2014
20140085161Distributed loop antenna with multiple subloops - An electronic device may be provided with antenna structures. The antenna structures may be formed using a dielectric carrier structure. The antenna structures may have first and second loop antenna resonating elements. The first loop antenna resonating element may indirectly feed the second loop antenna resonating element. The second loop antenna resonating element may be a distributed loop element formed from multiple antenna resonating element subloops. The second loop antenna resonating element may be formed from a strip of metal with a width that loops around the dielectric carrier. An opening in the metal may separate first and second subloop antenna resonating elements from each other in the second loop antenna resonating element. Openings in the metal may form metal segments that collectively form an inductance for the first subloop. Antenna currents may flow through metal traces on the carrier and portions of an electronic device housing wall.03-27-2014
20140086441Distributed Loop Speaker Enclosure Antenna - An electronic device may be provided with antenna structures. The antenna structures may be formed using a dielectric carrier structure such as a speaker enclosure, so that interior space within the electronic device that is occupied by a speaker can be used in forming an antenna. A speaker driver may be mounted in the speaker enclosure. Openings in the speaker enclosure may allow sound from the speaker driver to be emitted from the speaker enclosure. The antenna structures may have first and second loop antenna resonating elements. The first loop antenna resonating element may indirectly feed the second loop antenna resonating element. The second loop antenna resonating element may be a distributed loop element formed from a strip of metal with a width that loops around the speaker enclosure. Openings in the second loop antenna resonating element may be aligned with the speaker enclosure openings.03-27-2014
20140087668Methods and Apparatus for Performing Coexistence Testing for Multi-Antenna Electronic Devices - Radio frequency test systems for characterizing antenna performance in various radio coexistence scenarios are provided. In one suitable arrangement, a test system may be used to perform passive radio coexistence characterization. During passive radio coexistence characterization, at least one signal generator may be used to feed aggressor signals directly to antennas within an electronic device under test (DUT). The aggressor signals may generate undesired interference signals in a victim frequency band, which can then be received and analyzed using a spectrum analyzer. During active radio coexistence characterization, at least one radio communications emulator may be used to communicate with a DUT via a first test antenna. While the DUT is communicating with the at least one radio communications emulator, test signals may also be conveyed between DUT 03-27-2014
20140112555Embedded Authentication Systems in an Electronic Device - This invention is directed to an electronic device with an embedded authentication system for restricting access to device resources. The authentication system may include one or more sensors operative to detect biometric information of a user. The sensors may be positioned in the device such that the sensors may detect appropriate biometric information as the user operates the device, without requiring the user to perform a step for providing the biometric information (e.g., embedding a fingerprint sensor in an input mechanism instead of providing a fingerprint sensor in a separate part of the device housing). In some embodiments, the authentication system may be operative to detect a visual or temporal pattern of inputs to authenticate a user. In response to authenticating, a user may access restricted files, applications (e.g., applications purchased by the user), or settings (e.g., application settings such as contacts or saved game profile).04-24-2014
20140115694Embedded Authentication Systems in an Electronic Device - This invention is directed to an electronic device with an embedded authentication system for restricting access to device resources. The authentication system may include one or more sensors operative to detect biometric information of a user. The sensors may be positioned in the device such that the sensors may detect appropriate biometric information as the user operates the device, without requiring the user to perform a step for providing the biometric information (e.g., embedding a fingerprint sensor in an input mechanism instead of providing a fingerprint sensor in a separate part of the device housing). In some embodiments, the authentication system may be operative to detect a visual or temporal pattern of inputs to authenticate a user. In response to authenticating, a user may access restricted files, applications (e.g., applications purchased by the user), or settings (e.g., application settings such as contacts or saved game profile).04-24-2014
20140115695Embedded Authentication Systems in an Electronic Device - This invention is directed to an electronic device with an embedded authentication system for restricting access to device resources. The authentication system may include one or more sensors operative to detect biometric information of a user. The sensors may be positioned in the device such that the sensors may detect appropriate biometric information as the user operates the device, without requiring the user to perform a step for providing the biometric information (e.g., embedding a fingerprint sensor in an input mechanism instead of providing a fingerprint sensor in a separate part of the device housing). In some embodiments, the authentication system may be operative to detect a visual or temporal pattern of inputs to authenticate a user. In response to authenticating, a user may access restricted files, applications (e.g., applications purchased by the user), or settings (e.g., application settings such as contacts or saved game profile).04-24-2014
20140115696Embedded Authentication Systems in an Electronic Device - This invention is directed to an electronic device with an embedded authentication system for restricting access to device resources. The authentication system may include one or more sensors operative to detect biometric information of a user. The sensors may be positioned in the device such that the sensors may detect appropriate biometric information as the user operates the device, without requiring the user to perform a step for providing the biometric information (e.g., embedding a fingerprint sensor in an input mechanism instead of providing a fingerprint sensor in a separate part of the device housing). In some embodiments, the authentication system may be operative to detect a visual or temporal pattern of inputs to authenticate a user. In response to authenticating, a user may access restricted files, applications (e.g., applications purchased by the user), or settings (e.g., application settings such as contacts or saved game profile).04-24-2014
20140167794Methods for Validating Radio-Frequency Test Stations - A manufacturing system for assembling wireless electronic devices is provided. The manufacturing system may include test stations for testing the radio-frequency performance of components that are to be assembled within the electronic devices. A reference test station may be calibrated using calibration coupons having known radio-frequency characteristics. The calibration coupons may include transmission line structures. The reference test station may measure verification standards to establish baseline measurement data. The verification standards may include circuitry having electrical components with given impedance values. Many verification coupons may be measured to enable testing for a wide range of impedance values. Test stations in the manufacturing system may subsequently measure the verification standards to generate test measurement data. The test measurement data may be compared to the baseline measurement data to characterize the performance of the test stations to ensure consistent test measurements across the test stations.06-19-2014
20140200053ADVANCED THERMAL CONTROL ALGORITHM - A method implemented on a mobile device that starts by receiving a temperature reading from a sensor included on the mobile device. The temperature reading is compared to a threshold temperature and a power cap is set when the temperature reading is greater than the threshold temperature. The power cap is a maximum transmission power of the mobile device. The method then determines if the mobile device is transmitting a critical message. The power cap is released for a period of time if the power cap is set and the mobile device is determined to be sending a critical message. Other embodiments are also described.07-17-2014
20140206297Adjustable Wireless Circuitry with Antenna-Based Proximity Detector - An electronic device such as a portable electronic device has wireless communications circuitry. Antennas in the electronic device may be used in transmitting radio-frequency antenna signals. A coupler and antenna signal phase and magnitude measurement circuitry may be used to determine when external objects are in the vicinity of the antenna by making antenna impedance measurements. In-band and out-of-band phase and magnitude signal measurements may be made in determining whether external objects are present. Additional sensors such as motion sensors, light and heat sensors, acoustic and electrical sensors may produce data that can be combined with the proximity data gathered using the antenna-based proximity sensor. In response to detecting that an external object such as a user's body is within a given distance of the antenna, the electronic device may reduce transmit powers, switch antennas, steer a phased antenna array, switch communications protocols, or take other actions.07-24-2014
20140248854WIRELESS NETWORK AUTHENTICATION APPARATUS AND METHODS - Apparatus and methods for authenticating and granting a client device (e.g., cellular telephone) access to a network. In one embodiment, a network service provider such as a cellular telephone company may distribute user access (e.g., Universal Subscriber Identity Module or “USIM”) credentials to a service manager via a USIM vendor. The services manager may maintain a list of authorized users. A user at a client may authenticate to the services manager. Once authenticated, the services manager may provide the user with a set of USIM credentials. When the user desires to use wireless network services, the user equipment may establish a wireless link between the user equipment and the network service provider. During authentication operations, the user equipment may use the USIM credentials to authenticate to the network service provider. Following successful authentication, the network service provider may provide the user equipment with wireless services.09-04-2014
20140304809EMBEDDED AUTHENTICATION SYSTEMS IN AN ELECTRONIC DEVICE - An electronic device with a display and a fingerprint sensor may authenticate a user for a respective function. While a respective function of the device is in a locked state, the device displays a graphical element on the display, the graphical element indicating a first direction of finger movement that enables unlocking of the respective function. While displaying the graphical element, the device detects an input that includes movement of a finger in the first direction over the fingerprint sensor and determines whether the input meets unlock criteria based at least in part on fingerprint information of the finger detected by the fingerprint sensor during the input. In accordance with a determination that the input meets the unlock criteria, the device unlocks the respective function; and in accordance with a determination that the input does not meet the unlock criteria, the device maintains the respective function in the locked state.10-09-2014
20140323063Methods for Manufacturing an Antenna Tuning Element in an Electronic Device - Custom antenna structures may be used to improve antenna performance and to compensate for manufacturing variations in electronic device antennas. An electronic device antenna may include an antenna tuning element and conductive structures formed from portions of a peripheral conductive housing member and other conductive antenna structures. The antenna tuning element may be connected across a gap in the peripheral conductive housing member. The custom antenna structures may be used to couple the antenna tuning element to a fixed custom location on the peripheral conductive housing member to help satisfy design criteria and to compensate for manufacturing variations in the conductive antenna structures that could potentially lead to undesired variations in antenna performance. Custom antenna structures may include springs and custom paths on dielectric supports.10-30-2014
20140328488Electronic Device With Wireless Power Control System - An electronic device may include wireless circuitry that is configured to transmit wireless signals during operation. A maximum transmit power level may be established that serves as a cap on how much power is transmitted from the electronic device. Adjustments may be made to the maximum transmit power level in real time based on sensor signals and other information on the operating state of the electronic device. The sensor signals may include motion signals from an accelerometer. The sensor signals may also include ultrasonic sound detected by a microphone. Device orientation data may be used by the device to select whether to measure the ultrasonic sound using a front facing or rear facing microphone. Maximum transmit power level may also be adjusted based on whether or not sound is playing through an ear speaker in the device.11-06-2014
20140361935MODULAR STRUCTURAL AND FUNCTIONAL SUBASSEMBLIES - A housing for a personal electronic device is described herein. The housing may include at least one modular subassembly configured to be arranged within an internal cavity of the housing. The at least one modular subassembly is aligned with a feature external to the housing, is affixed to an interior surface of the internal cavity, and is configured to function both as an antenna and as an internal support member of the housing.12-11-2014
20140380465EMBEDDED AUTHENTICATION SYSTEMS IN AN ELECTRONIC DEVICE - An electronic device with a display and a fingerprint sensor may authenticate a user for a respective function. While access to one or more resources of the device is restricted, the device displays an irregular arrangement of shapes on the touch-sensitive display. The device receives input based on the displayed irregular arrangement of the shapes. In accordance with a determination that the input meets input pattern criteria, the device provides access to the one or more restricted resources. In accordance with a determination that the input does not meet the input pattern criteria, the devices forgoes providing access to the one or more restricted resources of the device.12-25-2014
20150070219HYBRID ANTENNA FOR A PERSONAL ELECTRONIC DEVICE - A housing for a personal electronic device is described herein. The housing may include at least one modular subassembly configured to be arranged within an internal cavity of the housing. The at least one modular subassembly is aligned with a feature external to the housing, is affixed to an interior surface of the internal cavity, and is configured to function both as an antenna and as an internal support member of the housing. A hybrid antenna is also described herein. The hybrid antenna can include first and second flexible members capable of facilitating wireless communication, where the first and second flexible members are affixed to one another via a metal member.03-12-2015

Patent applications by Ruben Caballero, San Jose, CA US

Website © 2015 Advameg, Inc.