Patent application number | Description | Published |
20090098343 | EPITAXIAL METHODS AND TEMPLATES GROWN BY THE METHODS - This invention provides methods for fabricating substantially continuous layers of a group III nitride semiconductor material having low defect densities and optionally having a selected crystal polarity. The methods include epitaxial growth nucleating and/or seeding on the upper portions of a plurality of pillars/islands of a group III nitride material that are irregularly arranged on a template structure. The upper portions of the islands have low defect densities and optionally have a selected crystal polarity. The invention also includes template structures having a substantially continuous layer of a masking material through which emerge upper portions of the pillars/islands. The invention also includes such template structures. The invention can be applied to a wide range of semiconductor materials, both elemental semiconductors, e.g., combinations of Si (silicon) with strained Si (sSi) and/or Ge (germanium), and compound semiconductors, e.g., group II-VI and group III-V compound semiconductor materials. | 04-16-2009 |
20090214785 | THERMALIZATION OF GASEOUS PRECURSORS IN CVD REACTORS - The present invention relates to the field of semiconductor processing and provides apparatus and methods that improve chemical vapor deposition (CVD) of semiconductor materials by promoting more efficient thermalization of precursor gases prior to their reaction. In preferred embodiments, the invention comprises heat transfer structures and their arrangement within a CVD reactor so as to promote heat transfer to flowing process gases. In certain preferred embodiments applicable to CVD reactors transparent to radiation from heat lamps, the invention comprises radiation-absorbent surfaces placed to intercept radiation from the heat lamps and to transfer it to flowing process gases. | 08-27-2009 |
20100180913 | METHODS FOR IN-SITU CHAMBER CLEANING PROCESS FOR HIGH VOLUME MANUFACTURE OF SEMICONDUCTOR MATERIALS - The present invention is related to the field of semiconductor processing equipment and methods and provides, in particular, methods and apparatus for in-situ removal of undesired deposits in the interiors of reactor chambers, for example, on chamber walls and elsewhere. The invention provides methods according to which cleaning steps are integrated and incorporated into a high-throughput growth process. Preferably, the times when growth should be suspended and cleaning commenced and when cleaning should be terminated and growth resumed are automatically determined based on sensor inputs. The invention also provides reactor chamber systems for the efficient performance of the integrated cleaning/growth methods of this invention. | 07-22-2010 |
20100216316 | TRANSFER OF HIGH TEMPERATURE WAFERS - This invention provides apparatus, protocols, and methods that permit wafers to be loaded and unloaded in a gas-phase epitaxial growth chamber at high temperatures. Specifically, this invention provides a device for moving wafers or substrates that can bath a substrate being moved in active gases that are optionally temperature controlled. The active gases can act to limit or prevent sublimation or decomposition of the wafer surface, and can be temperature controlled to limit or prevent thermal damage. Thereby, previously-necessary temperature ramping of growth chambers can be reduced or eliminated leading to improvement in wafer throughput and system efficiency. | 08-26-2010 |
20100258053 | APPARATUS FOR DELIVERING PRECURSOR GASES TO AN EPITAXIAL GROWTH SUBSTRATE - This invention provides gas injector apparatus that extends into a growth chamber in order to provide more accurate delivery of thermalized precursor gases. The improved injector can distribute heated precursor gases into a growth chamber in flows that spatially separated from each other up until they impinge of a growth substrate and that have volumes adequate for high volume manufacture. Importantly, the improved injector is sized and configured so that it can fit into existing commercial growth chamber without hindering the operation of mechanical and robot substrate handling equipment used with such chambers. This invention is useful for the high volume growth of numerous elemental and compound semiconductors, and particularly useful for the high volume growth of Group III-V compounds and GaN. | 10-14-2010 |
20110033610 | MODULAR AND READILY CONFIGURABLE REACTOR ENCLOSURES AND ASSOCIATED FUNCTION MODULES - The invention provides an improved CVD reactor sub-system including a modular reactor enclosure and function modules. The modular reactor enclosure can accommodate a commercially available cold-wall CVD reactor chamber, and the function modules can be arranged on the reactor enclosure to provide functions necessary to perform a CVD process with the reactor chamber. Preferred function modules include modules for providing heat to a CVD reactor chamber and modules for measuring conditions internal to a CVD reactor chamber. The invention also provides methods for configuring such a CVD reactor sub-system, in particular configuring the sub-system to best perform a particular CVD process, and kits for performing such configuring. Advantageously, the invention allows a single CVD reactor sub-system to be reconfigured and rearranged so that it can best perform a number of different CVD processes. | 02-10-2011 |
20110212546 | UV ABSORPTION BASED MONITOR AND CONTROL OF CHLORIDE GAS STREAM - A semiconductor growth system includes a chamber and a source of electromagnetic radiation. A detector is arranged to detect absorption of radiation from the source by a chloride- based chemical of the reaction chamber. A control system controls the operation of the chamber in response to the absorption of radiation by the chloride-based chemical. The control system controls the operation of the chamber by adjusting a parameter of the reaction chamber. | 09-01-2011 |
20110277681 | GAS INJECTORS FOR CVD SYSTEMS WITH THE SAME - The present invention provides improved gas injectors for use with chemical vapour deposition (CVD) systems that thermalize gases prior to injection into a CVD chamber. The provided injectors are configured to increase gas flow times through heated zones and include gas-conducting conduits that lengthen gas residency times in the heated zones. The provided injectors also have outlet ports sized, shaped, and arranged to inject gases in selected flow patterns. The invention also provides CVD systems using the provided thermalizing gas injectors. The present invention has particular application to high volume manufacturing of GaN substrates. | 11-17-2011 |
20110305835 | SYSTEMS AND METHODS FOR A GAS TREATMENT OF A NUMBER OF SUBSTRATES - Systems and methods for the gas treatment of one or more substrates include at least two gas injectors in a reaction chamber, one of which may be movable. The systems may also include a substrate support structure for holding one or more substrates disposed within the reaction chamber. The movable gas injector may be disposed between the substrate support structure and another gas injector. The gas injectors may be configured to discharge different process gasses therefrom. The substrate support structure may be rotatable around an axis of rotation. | 12-15-2011 |
20120083100 | THERMALIZING GAS INJECTORS FOR GENERATING INCREASED PRECURSOR GAS, MATERIAL DEPOSITION SYSTEMS INCLUDING SUCH INJECTORS, AND RELATED METHODS - Methods of depositing material on a substrate include forming a precursor gas and a byproduct from a source gas within a thermalizing gas injector. The byproduct may be reacted with a liquid reagent to form additional precursor gas, which may be injected from the thermalizing gas injector into a reaction chamber. Thermalizing gas injectors for injecting gas into a reaction chamber of a deposition system may include an inlet, a thermalizing conduit, a liquid container configured to hold a liquid reagent therein, and an outlet. A pathway may extend from the inlet, through the thermalizing conduit to an interior space within the liquid container, and from the interior space within the liquid container to the outlet. The thermalizing conduit may have a length that is greater than a shortest distance between the inlet and the liquid container. Deposition systems may include one or more such thermalizing gas injectors. | 04-05-2012 |
20120164843 | TRANSFER OF HIGH TEMPERATURE WAFERS - This invention provides methods that permit wafers to be loaded and unloaded in a gas-phase epitaxial growth chamber at high temperatures. Specifically, this invention provides a method for moving wafers or substrates that can bathe a substrate being moved in active gases that are optionally temperature controlled. The active gases can act to limit or prevent sublimation or decomposition of the wafer surface, and can be temperature controlled to limit or prevent thermal damage. Thereby, previously-necessary temperature ramping of growth chambers can be reduced or eliminated leading to improvement in wafer throughput and system efficiency. | 06-28-2012 |
20130047917 | DIRECT LIQUID INJECTION FOR HALIDE VAPOR PHASE EPITAXY SYSTEMS AND METHODS - Methods of depositing compound semiconductor materials on one or more substrates include metering and controlling a flow rate of a precursor liquid from a precursor liquid source into a vaporizer. The precursor liquid may comprise at least one of GaCl | 02-28-2013 |
20130047918 | DEPOSITION SYSTEMS INCLUDING A PRECURSOR GAS FURNACE WITHIN A REACTION CHAMBER, AND RELATED METHODS - Deposition systems include a reaction chamber, a substrate support structure disposed within the chamber for supporting a substrate within the reaction chamber, and a gas input system for injecting one or more precursor gases into the reaction chamber. The gas input system includes at least one precursor gas furnace disposed at least partially within the reaction chamber. Methods of depositing materials include separately flowing a first precursor gas and a second precursor gas into a reaction chamber, flowing the first precursor gas through at least one precursor gas flow path extending through at least one precursor gas furnace disposed within the reaction chamber, and, after heating the first precursor gas within the at least one precursor gas furnace, mixing the first and second precursor gases within the reaction chamber over a substrate. | 02-28-2013 |
20130052806 | DEPOSITION SYSTEMS HAVING ACCESS GATES AT DESIRABLE LOCATIONS, AND RELATED METHODS - Deposition systems include a reaction chamber, and a substrate support structure disposed at least partially within the reaction chamber. The systems further include at least one gas injection device and at least one vacuum device, which together are used to flow process gases through the reaction chamber. The systems also include at least one access gate through which a workpiece substrate may be loaded into the reaction chamber and unloaded out from the reaction chamber. The at least one access gate is located remote from the gas injection device. Methods of depositing semiconductor material may be performed using such deposition systems. Methods of fabricating such deposition systems may include coupling an access gate to a reaction chamber at a location remote from a gas injection device. | 02-28-2013 |
20130137247 | THERMALIZATION OF GASEOUS PRECURSORS IN CVD REACTORS - The present invention relates to the field of semiconductor processing and provides methods that improve chemical vapor deposition (CVD) of semiconductor materials by promoting more efficient thermalization of precursor gases prior to their reaction. In preferred embodiments, the method provides heat transfer structures and their arrangement within a CVD reactor so as to promote heat transfer to flowing process gases. In certain preferred embodiments applicable to CVD reactors transparent to radiation from heat lamps, the invention provides radiation-absorbent surfaces placed to intercept radiation from the heat lamps and to transfer it to flowing process gases. | 05-30-2013 |
20130160802 | PROCESSES AND SYSTEMS FOR REDUCING UNDESIRED DEPOSITS WITHIN A REACTION CHAMBER ASSOCIATED WITH A SEMICONDUCTOR DEPOSITION SYSTEM - Processes and systems are used to reduce undesired deposits within a reaction chamber associated with a semiconductor deposition system. A cleaning gas may be caused to flow through at least one gas flow path extending through at least one gas furnace, and the heated cleaning gas may be introduced into a reaction chamber to remove at least a portion of undesired deposits from within the reaction chamber. | 06-27-2013 |
20130199441 | GAS INJECTORS FOR CHEMICAL VAPOUR DEPOSITION (CVD) SYSTEMS AND CVD SYSTEMS WITH THE SAME - The present invention provides improved gas injectors for use with CVD (chemical vapour deposition) systems that thermalize gases prior to injection into a CVD chamber. The provided injectors are configured to increase gas flow times through heated zones and include gas-conducting conduits that lengthen gas residency times in the heated zones. The provided injectors also have outlet ports sized, shaped, and arranged to inject gases in selected flow patterns. The invention also provides CVD systems using the provided thermalizing gas injectors. The present invention has particular application to high volume manufacturing of GaN substrates. | 08-08-2013 |
20130234157 | METHODS FOR FORMING GROUP III-NITRIDE MATERIALS AND STRUCTURES FORMED BY SUCH METHODS - Embodiments of the invention include methods for forming Group III-nitride semiconductor structure using a halide vapor phase epitaxy (HVPE) process. The methods include forming a continuous Group III-nitride nucleation layer on a surface of a non-native growth substrate, the continuous Group III-nitride nucleation layer concealing the upper surface of the non-native growth substrate. Forming the continuous Group III-nitride nucleation layer may include forming a Group III-nitride layer and thermally treating said Group III-nitride layer. Methods may further include forming a further Group III-nitride layer upon the continuous Group III-nitride nucleation layer. | 09-12-2013 |
20130280892 | METHODS OF DEPOSITING A SEMICONDUCTOR MATERIAL ON A SUBSTRATE - Methods of depositing material on a substrate include forming a precursor gas and a byproduct from a source gas within a thermalizing gas injector. The byproduct may be reacted with a liquid reagent to form additional precursor gas, which may be injected from the thermalizing gas injector into a reaction chamber. Thermalizing gas injectors for injecting gas into a reaction chamber of a deposition system may include an inlet, a thermalizing conduit, a liquid container configured to hold a liquid reagent therein, and an outlet. A pathway may extend from the inlet, through the thermalizing conduit to an interior space within the liquid container, and from the interior space within the liquid container to the outlet. The thermalizing conduit may have a length that is greater than a shortest distance between the inlet and the liquid container. Deposition systems may include one or more such thermalizing gas injectors. | 10-24-2013 |
20140217553 | TEMPLATE LAYERS FOR HETEROEPITAXIAL DEPOSITION OF III NITRIDE SEMICONDUCTOR MATERIALS USING HVPE PROCESSES - Methods of depositing III-nitride semiconductor materials on substrates include depositing a layer of III-nitride semiconductor material on a surface of a substrate in a nucleation HVPE process stage to form a nucleation layer having a microstructure comprising at least some amorphous III-nitride semiconductor material. The nucleation layer may be annealed to form crystalline islands of epitaxial nucleation material on the surface of the substrate. The islands of epitaxial nucleation material may be grown and coalesced in a coalescence HVPE process stage to form a nucleation template layer of the epitaxial nucleation material. The nucleation template layer may at least substantially cover the surface of the substrate. Additional III-nitride semiconductor material may be deposited over the nucleation template layer of the epitaxial nucleation material in an additional HVPE process stage. Final and intermediate structures comprising III-nitride semiconductor material are formed by such methods. | 08-07-2014 |