Patent application number | Description | Published |
20100109047 | Multijunction rare earth solar cell - Examples of device structures utilizing layers of rare earth oxides to perform the tasks of strain engineering in transitioning between semiconductor layers of different composition and/or lattice orientation and size are given. A structure comprising a plurality of semiconductor layers separated by transition layer(s) comprising two or more rare earth compounds operable as a sink for structural defects is disclosed. | 05-06-2010 |
20100116315 | Active rare earth tandem solar cell - The use of rare-earth (RE and O, N, P) based materials to transition between two different semiconductor materials and enable up and/or down conversion of incident radiation is disclosed. Rare earth based oxides, nitrides and phosphides provide a wide range of lattice spacing enabling, compressive, tensile or stress-free lattice matching with Group IV, III-V, and Group II-VI compounds. | 05-13-2010 |
20100122720 | Passive Rare Earth Tandem Solar Cell - The use of rare-earth (RE+O, N, P) based materials to transition between two semiconductor materials is disclosed. Rare earth based oxides, nitrides and phosphides provide a wide range of lattice spacings enabling, compressive, tensile or stress-free lattice matching with Group IV, III-V, and Group II-VI compounds. Disclosed embodiments include tandem solar cells. | 05-20-2010 |
20120073648 | Photovoltaic conversion using rare earths plus Group IV Sensitizers - The invention relates to photovoltaic device structures of more than one layer comprising rare earth compounds and Group IV materials enabling spectral harvesting outside the conventional absorption limits for silicon. | 03-29-2012 |
20120085399 | REO-Ge Multi-Junction Solar Cell - The invention relates to a semiconductor based structure for a device for converting radiation to electrical energy comprising various combinations of rare-earths and Group IV, III-V, and II-VI semiconductors and alloys thereof enabling enhanced performance including high radiation conversion efficiency. | 04-12-2012 |
20120090672 | REO-Ge Multi-Junction Solar Cell - The invention relates to a semiconductor based structure for a device for converting radiation to electrical energy comprising various combinations of rare-earths and Group IV, III-V, and II-VI semiconductors and alloys thereof enabling enhanced performance including high radiation conversion efficiency. | 04-19-2012 |
20130032858 | RARE EARTH OXY-NITRIDE BUFFERED III-N ON SILICON - Rare earth oxy-nitride buffered III-N on silicon includes a silicon substrate with a rare earth oxide (REO) structure, including several REO layers, is deposited on the silicon substrate. A layer of single crystal rare earth oxy-nitride is deposited on the REO structure. The REO structure is stress engineered to approximately crystal lattice match the layer of rare earth oxy-nitride so as to provide a predetermined amount of stress in the layer of rare earth oxy-nitride. A III oxy-nitride structure, including several layers of single crystal rare earth oxy-nitride, is deposited on the layer of rare earth oxy-nitride. A layer of single crystal III-N nitride is deposited on the III oxy-nitride structure. The III oxy-nitride structure is chemically engineered to approximately crystal lattice match the layer of III-N nitride and to transfer the predetermined amount of stress in the layer of rare earth oxy-nitride to the layer of III-N nitride. | 02-07-2013 |
20130062609 | III-N FET ON SILICON USING FIELD SUPPRESSING REO - A III-N on silicon substrate with enhanced breakdown voltage including a rare earth oxide structure deposited on the silicon substrate and a layer of single crystal III-N semiconductor material deposited on the rare earth oxide structure. The rare earth oxide has a dielectric constant greater (approximately twice) than the III-N semiconductor material. The rare earth oxide structure is selected to cooperate with the layer of single crystal III-N semiconductor material to reduce the thickness of the layer of single crystal III-N semiconductor material required for a selected breakdown voltage to a value less than a thickness of the layer of single crystal III-N semiconductor material for the selected breakdown voltage without the cooperating single crystal rare earth oxide. | 03-14-2013 |
20130062610 | LATTICE MATCHED CRYSTALLINE REFLECTOR - A virtual substrate structure with a lattice matched crystalline reflector for a light emitting device including a single crystal rare earth oxide layer deposited on a silicon substrate and substantially crystal lattice matched to the silicon substrate. A reflective layer of single crystal electrically conductive material is deposited on the layer of single crystal rare earth oxide and a layer of single crystal semiconductor material is positioned in overlying relationship to the reflective layer and substantially crystal lattice matched to the reflective layer. A single crystal rare earth oxide layer is optionally deposited between the reflective layer and the layer of semiconductor material. | 03-14-2013 |
20130214282 | III-N ON SILICON USING NANO STRUCTURED INTERFACE LAYER - A method of fabricating a layer of single crystal semiconductor material on a silicon substrate including providing a crystalline silicon substrate and epitaxially depositing a nano structured interface layer on the substrate. The nano structured interface layer has a thickness up to a critical thickness. The method further includes epitaxially depositing a layer of single crystal semiconductor material in overlying relationship to the nano structured interface layer. Preferably, the method includes the nano structured interface layer being a layer of coherently strained nano dots of selected material. The critical thickness of the nano dots includes a thickness up to a thickness at which the nano dots become incoherent. | 08-22-2013 |
20130334536 | SINGLE-CRYSTAL REO BUFFER ON AMORPHOUS SiOx - A method of forming a layer of amorphous silicon oxide positioned between a layer of rare earth oxide and a silicon substrate. The method includes providing a crystalline silicon substrate and depositing a layer of rare earth metal on the silicon substrate in an oxygen deficient ambient at a temperature above approximately 500° C. The rare earth metal forms a layer of rare earth silicide on the substrate. A first layer of rare earth oxide is deposited on the layer of rare earth silicide with a structure and lattice constant substantially similar to the substrate. The structure is annealed in an oxygen ambience to transform the layer of rare earth silicide to a layer of amorphous silicon and an intermediate layer of rare earth oxide between the substrate and the first layer of rare earth oxide. | 12-19-2013 |
20140239307 | REO GATE DIELECTRIC FOR III-N DEVICE ON Si SUBSTRATE - A rare earth oxide gate dielectric on III-N material grown on a silicon substrate includes a single crystal stress compensating template positioned on a silicon substrate. The stress compensating template is substantially crystal lattice matched to the surface of the silicon substrate. A GaN structure is positioned on the surface of the stress compensating template and substantially crystal lattice matched thereto. An active layer of single crystal III-N material is grown on the GaN structure and substantially crystal lattice matched thereto. A single crystal rare earth oxide dielectric layer is grown on the active layer of III-N material. | 08-28-2014 |
20150014676 | III-N MATERIAL GROWN ON REN EPITAXIAL BUFFER ON Si SUBSTRATE - A method of growing III-N material on a silicon substrate includes the steps of epitaxially growing a single crystal rare earth oxide on a silicon substrate, epitaxially growing a single crystal rare earth nitride on the single crystal rare earth oxide, and epitaxially growing a layer of single crystal III-N material on the single crystal rare earth nitride. | 01-15-2015 |