Patent application number | Description | Published |
20080218824 | METHODS OF DRIVING A SCANNING BEAM DEVICE TO ACHIEVE HIGH FRAME RATES - The present invention provides methods and systems for scanning an illumination spot over a target area. The present invention removes stored energy from a scanning element to stop the scanning element from vibrating and to substantially return the scanning element to its starting position so as to enable high frame rates. | 09-11-2008 |
20080221388 | SIDE VIEWING OPTICAL FIBER ENDOSCOPE - An optical fiber conveys light from a source at a proximal end, to a distal end, where a piezoelectric material tube applies a force that causes the distal end of the optical fiber to scan in a desired pattern. Light from the distal end of the optical fiber passes through a lens system and is at least partially reflected by a reflective surface toward a side of the scope, to illuminate tissue within a patient's body. Light received from the internal tissue is reflected back either to collection optical fibers, which convey the light to proximally disposed optical detectors, or directly toward distal optical detectors. The optical detectors produce electrical signals indicative of an intensity of the light that can be used for producing an image of the internal tissue. The light received from the tissue can be either scattered, polarized, fluorescent, or filtered, depending on the illumination light. | 09-11-2008 |
20080243031 | CATHETER WITH IMAGING CAPABILITY ACTS AS GUIDEWIRE FOR CANNULA TOOLS - A catheter having an imaging device on its distal end serves as a guidewire for cannula tools, enabling the tools to be advanced to a desired site in a patient's body. One exemplary embodiment of such a catheter is a scanning fiber endoscope. The images facilitate navigation through linked body lumens and also enable an operator to view a site where a biopsy sample is to be taken with a cannula tool. Exemplary cannula tools include bristles or sharp points that scrub cells from adjacent tissue, a biopsy needle that can be thrust into tissue, a loop that cuts away tissue, a cutting edge that slices tissue from a site, and forceps. The sample can be carried by a bodily or introduced fluid to a proximal end of the catheter through an annular gap between the catheter and the cannula tool, or the cannula tool can retain the sample. | 10-02-2008 |
20080249369 | Compact scanning fiber device - Scanning fiber devices are disclosed. In one aspect, a scanning fiber device may include an actuator tube. The scanning fiber device may also include a cantilevered free end portion of an optical fiber. The cantilevered free end portion of the optical fiber may have an attached end that is coupled with the actuator tube. The cantilevered free end portion of the optical fiber may also have a free end to be moved by the actuator tube. At least a portion of a length of the cantilevered free end portion of the optical fiber may be disposed within the actuator tube. Methods of using scanning fiber devices are also disclosed. | 10-09-2008 |
20080265178 | Driving scanning fiber devices with variable frequency drive signals - Methods of moving or vibrating cantilevered optical fibers of scanning fiber devices are disclosed. In one aspect, a method may include vibrating the cantilevered optical fiber at an initial frequency that is substantially displaced from a resonant frequency of the cantilevered optical fiber. Then, the frequency of vibration of the cantilevered optical fiber may be changed over a period of time toward the resonant frequency. Light may be directed through an end of the cantilevered optical fiber while the cantilevered optical fiber is vibrated. | 10-30-2008 |
20090092364 | REDUCING DISTORTION IN SCANNING FIBER DEVICES - Methods of reducing distortion in scanning fiber devices are disclosed. In one aspect, a method includes changing an intensity of light transmitted through a cantilevered optical fiber of a scanning fiber device. The method also includes changing a setpoint temperature for the scanning fiber device based at least in part on the change in the intensity of the light. Other methods, apparatus, systems, and machine-readable mediums are also disclosed. | 04-09-2009 |
20090103882 | Attaching optical fibers to actuator tubes with beads acting as spacers and adhesives - A scanning fiber device of one aspect may include an actuator tube. An optical fiber may be inserted through the actuator tube. The optical fiber may have a free end portion outside of the actuator tube. A first bead may be around the optical fiber. At least part of the first bead may be within a distal portion of the actuator tube. An adhesive may be adhering the first bead to the distal portion of the actuator tube. A second bead may be around the optical fiber. At least part of the second bead may be within a proximal portion of the actuator tube. An adhesive may be adhering the second bead to the proximal portion of the actuator tube. | 04-23-2009 |
20090141997 | Reducing noise in images acquired with a scanning beam device - Methods and apparatus for reducing noise in images acquired with a scanning beam device are disclosed. A representative method may include scanning a beam of light over a surface in a scan with a variable velocity. Light backscattered from the surface may be detected at different points in time during the scan at a substantially constant rate. Reduced-noise representations of groups of the detected light that each correspond to a different position in an image of the surface may be generated. The reduced-noise representations may be generated for groups having multiple different sizes. The image of the surface may be generated by representing the different positions in the image with the reduced-noise representations of the corresponding groups. Other methods and apparatus are disclosed. | 06-04-2009 |
20090218641 | PIEZOELECTRIC SUBSTRATE, FABRICATION AND RELATED METHODS - Improved methods, and related systems and devices, for fabricating selectively patterned piezoelectric substrates suitable for use in a wide variety of systems and devices. A method can include providing a piezoelectric substrate having a protrusion of substrate material, depositing an electrically conductive coating so as to cover a portion of a side of the substrate and protrusion, and removing a portion of the coated protrusion. | 09-03-2009 |
20090316116 | SCANNING LASER PROJECTION DISPLAY FOR SMALL HANDHELD DEVICES - Image projection devices, high-speed fiber scanned displays and related methods for projecting an image onto a surface and interfacing with the projected image are provided. A method for projecting one or more images and obtaining feedback with an optical input-output assembly is provided. The input-output assembly comprising a light-scanning optical fiber and a sensor. The method includes generating a sequence of light in response to one or more image representations and a scan pattern of the optical fiber, articulating the optical fiber in the scan pattern, projecting the sequence of light from the articulated optical fiber, and generating a feedback signal with the sensor in response to reflections of the sequence of light. | 12-24-2009 |
20130003131 | SCANNING BEAM DEVICE CALIBRATION - Scanning beam device calibration using a calibration pattern is disclosed. In one aspect, a method may include acquiring an image of a calibration pattern using a scanning beam device. The acquired image may be compared with a representation of the calibration pattern. The scanning beam device may be calibrated based on the comparison. Software and apparatus to perform these and other calibration methods are also disclosed. | 01-03-2013 |