Patent application number | Description | Published |
20140068284 | Configuring Power Management Functionality In A Processor - In one embodiment, a multicore processor includes cores that can independently execute instructions, each at an independent voltage and frequency. The processor may include a power controller having logic to provide for configurability of power management features of the processor. One such feature enables at least one core to operate at an independent performance state based on a state of a single power domain indicator present in a control register. Other embodiments are described and claimed. | 03-06-2014 |
20140068290 | Configuring Power Management Functionality In A Processor - In one embodiment, a multicore processor includes cores that can independently execute instructions, each at an independent voltage and frequency. The processor may include a power controller having logic to provide for configurability of power management features of the processor. One such feature enables at least one core to operate at an independent performance state based on a state of a single power domain indicator present in a control register. Other embodiments are described and claimed. | 03-06-2014 |
20150089173 | SECURE MEMORY REPARTITIONING - Secure memory repartitioning technologies are described. A processor includes a processor core and a memory controller coupled between the processor core and main memory. The main memory includes a memory range including a section of convertible pages are convertible to secure pages or non-secure pages. The processor core, in response to a page conversion instruction, is to determine from the instruction a convertible page in the memory range to be converted and convert the convertible page to be at least one of a secure page or a non-secure page. The memory range may also include a hardware reserved section are convertible in response to a section conversion instruction. | 03-26-2015 |
20150100796 | FLEXIBLE ARCHITECTURE AND INSTRUCTION FOR ADVANCED ENCRYPTION STANDARD (AES) - A flexible aes instruction set for a general purpose processor is provided. The instruction set includes instructions to perform a “one round” pass for aes encryption or decryption and also includes instructions to perform key generation. An immediate may be used to indicate round number and key size for key generation for 128/192/256 bit keys. The flexible aes instruction set enables full use of pipelining capabilities because it does not require tracking of implicit registers. | 04-09-2015 |
20150100797 | FLEXIBLE ARCHITECTURE AND INSTRUCTION FOR ADVANCED ENCRYPTION STANDARD (AES) - A flexible aes instruction set for a general purpose processor is provided. The instruction set includes instructions to perform a “one round” pass for aes encryption or decryption and also includes instructions to perform key generation. An immediate may be used to indicate round number and key size for key generation for 128/192/256 bit keys. The flexible aes instruction set enables full use of pipelining capabilities because it does not require tracking of implicit registers. | 04-09-2015 |
20150100798 | FLEXIBLE ARCHITECTURE AND INSTRUCTION FOR ADVANCED ENCRYPTION STANDARD (AES) - A flexible aes instruction set for a general purpose processor is provided. The instruction set includes instructions to perform a “one round” pass for aes encryption or decryption and also includes instructions to perform key generation. An immediate may be used to indicate round number and key size for key generation for 128/192/256 bit keys. The flexible aes instruction set enables full use of pipelining capabilities because it does not require tracking of implicit registers. | 04-09-2015 |
20150104007 | FLEXIBLE ARCHITECTURE AND INSTRUCTION FOR ADVANCED ENCRYPTION STANDARD (AES) - A flexible aes instruction set for a general purpose processor is provided. The instruction set includes instructions to perform a “one round” pass for aes encryption or decryption and also includes instructions to perform key generation. An immediate may be used to indicate round number and key size for key generation for 128/192/256 bit keys. The flexible aes instruction set enables full use of pipelining capabilities because it does not require tracking of implicit registers. | 04-16-2015 |
20150104008 | FLEXIBLE ARCHITECTURE AND INSTRUCTION FOR ADVANCED ENCRYPTION STANDARD (AES) - A flexible aes instruction set for a general purpose processor is provided. The instruction set includes instructions to perform a “one round” pass for aes encryption or decryption and also includes instructions to perform key generation. An immediate may be used to indicate round number and key size for key generation for 128/192/256 bit keys. The flexible aes instruction set enables full use of pipelining capabilities because it does not require tracking of implicit registers. | 04-16-2015 |
20150104009 | FLEXIBLE ARCHITECTURE AND INSTRUCTION FOR ADVANCED ENCRYPTION STANDARD (AES) - A flexible aes instruction set for a general purpose processor is provided. The instruction set includes instructions to perform a “one round” pass for aes encryption or decryption and also includes instructions to perform key generation. An immediate may be used to indicate round number and key size for key generation for 128/192/256 bit keys. The flexible aes instruction set enables full use of pipelining capabilities because it does not require tracking of implicit registers. | 04-16-2015 |
20150104010 | FLEXIBLE ARCHITECTURE AND INSTRUCTION FOR ADVANCED ENCRYPTION STANDARD (AES) - A flexible aes instruction set for a general purpose processor is provided. The instruction set includes instructions to perform a “one round” pass for aes encryption or decryption and also includes instructions to perform key generation. An immediate may be used to indicate round number and key size for key generation for 128/192/256 bit keys. The flexible aes instruction set enables full use of pipelining capabilities because it does not require tracking of implicit registers. | 04-16-2015 |