Patent application number | Description | Published |
20090101244 | AMORPHOUS ALLOY HOOKS AND METHODS OF MAKING SUCH HOOKS - Mechanical hooks made of bulk-solidifying amorphous alloys, wherein the bulk-solidifying amorphous alloys provide ruggedness, durability, higher service loads, excellent resistance to chemical and environmental effects, and low-cost manufacturing are provided. In addition, methods of making such mechanical hooks from bulk-solidifying amorphous alloys are also disclosed. | 04-23-2009 |
20110162795 | AMORPHOUS ALLOY BONDING - Provided in one embodiment is a method of forming an interfacial layer or a seal, the method comprising: providing a composition that is at least partially amorphous, the composition having a glass transition temperature Tg and a crystallization temperature Tx; heating the composition to a first temperature that is below Tx; disposing the heated composition to form the interfacial layer or the seal; and cooling the interfacial layer or the seal to a second temperature that is below Tg. | 07-07-2011 |
20110163509 | AMORPHOUS ALLOY SEAL - Provided in one embodiment is an article, comprising a first part having a first surface and a hermetic seal disposed over a portion of the first surface, wherein the hermetic seal comprises a composition that is at least partially amorphous. | 07-07-2011 |
20120247622 | AMORPHOUS ALLOY HOOKS AND METHODS OF MAKING SUCH HOOKS - Mechanical hooks made of bulk-solidifying amorphous alloys, wherein the bulk-solidifying amorphous alloys provide ruggedness, durability, higher service loads, excellent resistance to chemical and environmental effects, and low-cost manufacturing are provided. In addition, methods of making such mechanical hooks from bulk-solidifying amorphous alloys are also disclosed. | 10-04-2012 |
20120312061 | THERMOPLASTIC FORMING METHODS FOR AMORPHOUS ALLOY - Provided herein include methods of molding a parison comprising an amorphous alloy and or an amorphous alloy composites, where the molding takes place within the supercooled liquid region or around the glass transition temperature of the amorphous alloy. In one embodiment, the foπning can be carried out with two fluids at different temperatures. The molded article can have a very high aspect ratio or a three-dimensional hollow shape with a desirable surface finish. | 12-13-2012 |
20130037232 | VACUUM MOLD - Disclosed is a vacuum mold with at least a first plate and a second plate to mold materials (e.g., amorphous alloys), and a method for manufacturing parts using the mold. An ejector mechanism, to eject molded material, is enclosed within an ejector box that is vacuum sealed relative to the plates. An ejector rod for moving the mechanism is also vacuum sealed via a seal in a vacuum feed through opening. Seals are provided between adjacent interfaces of the mold parts (plates and ejector box) to vacuum seal the mold. The mold is connected to at least one vacuum source that applies vacuum pressure thereto via a first vacuum port in a first direction. A second vacuum port may also be provided to apply pressure in a second direction. A vacuum release valve may be connected to the mold to release vacuum pressure applied to the mold. | 02-14-2013 |
20130037999 | TEMPERATURE REGULATED VESSEL - Disclosed is a temperature regulated vessel, and method for using the same, having a body configured to melt meltable material received therein, and one or more temperature regulating lines within the body configured to flow a liquid therein for regulating a temperature of the meltable material received in the melting portion. The vessel has a poor or low thermally conductive material on one or more of its parts, such as on the melting portion, on exterior surfaces of the body, and/or surrounding the temperature regulating lines to increase melt temperature of the material. The melting portion can also have indentations in its surface, and low thermally conductive material can be provided in the indentations. The vessel can be used to melt amorphous alloys, for example. | 02-14-2013 |
20130133787 | TIN-CONTAINING AMORPHOUS ALLOY - One embodiment provides a composition, the composition comprising: an alloy that is at least partially amorphous and is represented by a chemical formula: (Zr, Ti) | 05-30-2013 |
20130306196 | MANIPULATING SURFACE TOPOLOGY OF BMG FEEDSTOCK - Described herein is a feedstock comprising BMG. The feedstock has a surface with an average roughness of at least 200 microns. Also described herein is a feedstock comprising BMG. The feedstock, when supported on a support during a melting process of the feedstock, has a contact area between the feedstock and the support up to 50% of a total area of the support. These feedstocks can be made by molding ingots of BMG into a mole with surface patterns, enclosing one or more cores into a sheath with a roughened surface, chemical etching, laser ablating, machining, grinding, sandblasting, or shot peening. The feedstocks can be used as starting materials in an injection molding process. | 11-21-2013 |
20130306197 | AMORPHOUS ALLOY COMPONENT OR FEEDSTOCK AND METHODS OF MAKING THE SAME - Described herein is a method of combining discrete pieces of BMG in to a BMG feedstock that has at least one dimension greater than a critical dimension of the BMG, by methods such as thermoplastic forming, pressing, extruding, folding or forging. Other embodiments relate to a bulk metallic glass (BMG) component or feedstock having discrete pieces of a BMG, wherein the BMG component or feedstock has at least one dimension greater than a critical dimension of the BMG. | 11-21-2013 |
20130306199 | BULK METALLIC GLASS FEEDSTOCK WITH A DISSIMILAR SHEATH - Described herein is a feedstock including a core comprising BMG and a sheath attached the core. The sheath has a different physical property, a different chemical property or both from the core. Alternatively, the feedstock can include a sheath that encloses one or more core comprising BMG. The feedstock can be manufactured by attaching the sheath to the core, shot peening the core, etching the core, ion implanting the core, or applying a coating to the core, etc. The feedstock can be used to make a part by injection molding. The sheath can be used to adjust the composition of the core to reach the composition of the part. | 11-21-2013 |
20130306201 | BULK AMORPHOUS ALLOY SHEET FORMING PROCESSES - Embodiments herein relate to a method for forming a bulk solidifying amorphous alloy sheets have different surface finish including a “fire” polish surface like that of a float glass. In one embodiment, a first molten metal alloy is poured on a second molten metal of higher density in a float chamber to form a sheet of the first molten that floats on the second molten metal and cooled to form a bulk solidifying amorphous alloy sheet. In another embodiment, a molten metal is poured on a conveyor conveying the sheet of the first molten metal on a conveyor and cooled to form a bulk solidifying amorphous alloy sheet. The cooling rate such that a time-temperature profile during the cooling does not traverse through a region bounding a crystalline region of the metal alloy in a time-temperature-transformation (TTT) diagram. | 11-21-2013 |
20130309121 | LAYER-BY-LAYER CONSTRUCTION WITH BULK METALLIC GLASSES - Described herein are methods of constructing a part using BMG layer by layer. In one embodiment, a layer of BMG powder is deposited to selected positions and then fused to a layer below by suitable methods such as laser heating or electron beam heating. The deposition and fusing are then repeated as need to construct the part layer by layer. One or more layers of non-BMG can be used as needed. In one embodiment, layers of BMG can be cut from one or more sheets of BMG to desired shapes, stacked and fused to form the part. | 11-21-2013 |
20130340897 | HIGH THERMAL STABILITY BULK METALLIC GLASS IN THE ZR-NB-CU-NI-AL SYSTEM - Disclosed is an improved bulk metallic glass alloy and methods of making the alloy in which the alloy has the structure Zr | 12-26-2013 |
20140010259 | TEMPERATURE TUNED FAILURE DETECTION DEVICE - The embodiments described herein relate to BMG parts and related failure detection devices. The BMG parts can be formed of a material including at least one or more amorphous alloys having binary physical properties in response to a temperature. The BMG parts can be configured in failure detection devices, which can be used for controlling and detecting failures, determining mechanical and temperature parameters, and/or providing protection and switching functions to an electronic system that contains the BMG parts and/or the failure detection devices. | 01-09-2014 |
20140328714 | ALLOYING TECHNIQUE FOR FE-BASED BULK AMORPHOUS ALLOY - One embodiment provides a method of making an alloy feedstock, comprising: forming a first composition by combining Fe with a first nonmetal element; forming a second composition by combining Fe with a plurality of transition metal elements; forming a third composition by combining the second composition with a second nonmetal element; and combining the first composition with the third composition to form an alloy feedstock. | 11-06-2014 |
20140334106 | BULK AMORPHOUS ALLOY HEAT SINK - Embodiments herein relate to a heat sink having nano- and/or micro-replication directly embossed in a bulk solidifying amorphous alloy comprising a metal alloy, wherein the heat sink is configured to transfer heat out of the heat sink by natural convection by air or forced convection by air, or by fluid phase change of a fluid and/or liquid cooling by a liquid. Other embodiments relate apparatus having the heat sink. Yet other embodiments relate to methods of manufacturing the heat sink and apparatus having the heat sink. | 11-13-2014 |
20140369375 | BOAT AND COIL DESIGNS - Disclosed are vessels used for melting material to be injection molded to form a part. One vessel has a body formed from a plurality of elongate segments configured to be electrically isolated from each other and with a melting portion for melting meltable material therein. Material can be provided between adjacent segments. An induction coil can be used to melt the material in the body. Other vessels have a body with an embedded induction coil therein. The embedded coil can be configured to surround the melting portion, or can be positioned below and/or adjacent the melting portion, so that meltable material is melted. The vessels can be used to melt amorphous alloys, for example. | 12-18-2014 |