Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Puneet Sharma, Rahway US

Puneet Sharma, Rahway, NJ US

Patent application numberDescriptionPublished
20100280352Method and System for Multi-Component Heart and Aorta Modeling for Decision Support in Cardiac Disease - A method and system for generating a patient specific anatomical heart model is disclosed. Volumetric image data, such as computed tomography (CT), echocardiography, or magnetic resonance (MR) image data of a patient's cardiac region is received. Individual models for multiple heart components, such as the left ventricle (LV) endocardium, LV epicardium, right ventricle (RV), left atrium (LA), right atrium (RA), mitral valve, aortic valve, aorta, and pulmonary trunk, are estimated in said volumetric cardiac image data. A multi-component patient specific anatomical heart model is generated by integrating the individual models for each of the heart components. Fluid Structure Interaction (FSI) simulations are performed on the patient specific anatomical model, and patient specific clinical parameters are extracted based on the patient specific heart model and the FSI simulations. Disease progression modeling and risk stratification are performed based on the patient specific clinical parameters.11-04-2010
20110060576Method and System for Computational Modeling of the Aorta and Heart - A method and system for generating a patient specific anatomical heart model is disclosed. A sequence of volumetric image data, such as computed tomography (CT), echocardiography, or magnetic resonance (MR) image data of a patient's cardiac region is received. A multi-component patient specific 4D geometric model of the heart and aorta estimated from the sequence of volumetric cardiac imaging data. A patient specific 4D computational model based on one or more of personalized geometry, material properties, fluid boundary conditions, and flow velocity measurements in the 4D geometric model is generated. Patient specific material properties of the aortic wall are estimated using the 4D geometrical model and the 4D computational model. Fluid Structure Interaction (FSI) simulations are performed using the 4D computational model and estimated material properties of the aortic wall, and patient specific clinical parameters are extracted based on the FSI simulations. Disease progression modeling and risk stratification are performed based on the patient specific clinical parameters.03-10-2011
20120022843Method and System for Comprehensive Patient-Specific Modeling of the Heart - A method and system for patient-specific modeling of the whole heart anatomy, dynamics, hemodynamics, and fluid structure interaction from 4D medical image data is disclosed. The anatomy and dynamics of the heart are determined by estimating patient-specific parameters of a physiological model of the heart from the 4D medical image data for a patient. The patient-specific anatomy and dynamics are used as input to a 3D Navier-Stokes solver that derives realistic hemodynamics, constrained by the local anatomy, along the entire heart cycle. Fluid structure interactions are determined iteratively over the heart cycle by simulating the blood flow at a given time step and calculating the deformation of the heart structure based on the simulated blood flow, such that the deformation of the heart structure is used in the simulation of the blood flow at the next time step. The comprehensive patient-specific model of the heart representing anatomy, dynamics, hemodynamics, and fluid structure interaction can be used for non-invasive assessment and diagnosis of the heart, as well as virtual therapy planning and cardiovascular disease management. Parameters of the comprehensive patient-specific model are changed or perturbed to simulate various conditions or treatment options, and then the patient specific model is recalculated to predict the effect of the conditions or treatment options.01-26-2012
20120072190Method and System for Non-Invasive Assessment of Coronary Artery Disease - A method and system for non-invasive patient-specific assessment of coronary artery disease is disclosed. An anatomical model of a coronary artery is generated from medical image data. A velocity of blood in the coronary artery is estimated based on a spatio-temporal representation of contrast agent propagation in the medical image data. Blood flow is simulated in the anatomical model of the coronary artery using a computational fluid dynamics (CFD) simulation using the estimated velocity of the blood in the coronary artery as a boundary condition.03-22-2012
20120203530Method and System for Patient-Specific Computational Modeling and Simulation for Coupled Hemodynamic Analysis of Cerebral Vessels - A method and system for patient-specific computational modeling and simulation for coupled hemodynamic analysis of cerebral vessels is disclosed. An anatomical model of a cerebral vessel is extracted from 3D medical image data. The anatomical model of the cerebral vessel includes an inner wall and an outer wall of the cerebral vessel. Blood flow in the cerebral vessel and deformation of the cerebral vessel wall are simulated using coupled computational fluid dynamics (CFD) and computational solid mechanics (CSM) simulations based on the anatomical model of the cerebral vessel.08-09-2012
20130132054Method and System for Multi-Scale Anatomical and Functional Modeling of Coronary Circulation - A method and system for multi-scale anatomical and functional modeling of coronary circulation is disclosed. A patient-specific anatomical model of coronary arteries and the heart is generated from medical image data of a patient. A multi-scale functional model of coronary circulation is generated based on the patient-specific anatomical model. Blood flow is simulated in at least one stenosis region of at least one coronary artery using the multi-scale function model of coronary circulation. Hemodynamic quantities, such as fractional flow reserve (FFR), are computed to determine a functional assessment of the stenosis, and virtual intervention simulations are performed using the multi-scale function model of coronary circulation for decision support and intervention planning.05-23-2013
20130144573Method and System for Patient-Specific Hemodynamic Assessment of Virtual Stent Implantation - A method and system for assessment of virtual stent implantation in an aortic aneurysm is disclosed. A patient-specific 4D anatomical model of the aorta is generated from the 4D medical imaging data. A model representing mechanical properties of the aorta wall is adjusted to reflect changes due to aneurysm growth at a plurality of time stages. A stable deformation configuration of the aorta is generated for each time stages by performing fluid structure interaction (FSI) simulations using the patient-specific 4D anatomical model at each time stage based on the adjusted model representing the mechanical properties of the aorta wall at each time stage. Virtual stent implantation is performed for each stable deformation configuration of the aorta and FSI simulations are performed for each virtual stent implantation.06-06-2013
20130191100BLOOD FLOW COMPUTATION IN VESSELS WITH IMPLANTED DEVICES - A method for modeling blood flow through a flow diverter includes receiving a medical image containing blood vessels. Vessel geometry is extracted from the received medical image. Inlets and outlets are tagged within the extracted vessel geometry. A desired flow diverter is selected. A model of the selected flow diverter is generated within the imaged blood vessel, the model representing the flow diverter as a tube having a porous surface characterized by a viscous resistance and an inertial resistance. A course of blood flow though the flow diverter is predicted based on the generated model, the extracted vessel geometry, and the tagged inlets and outlets.07-25-2013
20130197884Method and System for Advanced Measurements Computation and Therapy Planning from Medical Data and Images Using a Multi-Physics Fluid-Solid Heart Model - Method and system for computation of advanced heart measurements from medical images and data; and therapy planning using a patient-specific multi-physics fluid-solid heart model is disclosed. A patient-specific anatomical model of the left and right ventricles is generated from medical image patient data. A patient-specific computational heart model is generated based on the patient-specific anatomical model of the left and right ventricles and patient-specific clinical data. The computational model includes biomechanics, electrophysiology and hemodynamics. To generate the patient-specific computational heart model, initial patient-specific parameters of an electrophysiology model, initial patient-specific parameters of a biomechanics model, and initial patient-specific computational fluid dynamics (CFD) boundary conditions are marginally estimated. A coupled fluid-structure interaction (FSI) simulation is performed using the initial patient-specific parameters, and the initial patient-specific parameters are refined based on the coupled FSI simulation. The estimated model parameters then constitute new advanced measurements that can be used for decision making.08-01-2013

Patent applications by Puneet Sharma, Rahway, NJ US

Website © 2015 Advameg, Inc.