Patent application number | Description | Published |
20130243294 | Method and System for Hemodynamic Assessment of Aortic Coarctation from Medical Image Data - A method and system for non-invasive hemodynamic assessment of aortic coarctation from medical image data, such as magnetic resonance imaging (MRI) data is disclosed. Patient-specific lumen anatomy of the aorta and supra-aortic arteries is estimated from medical image data of a patient, such as contrast enhanced MRI. Patient-specific aortic blood flow rates are estimated from the medical image data of the patient, such as velocity encoded phase-contrasted MRI cine images. Patient-specific inlet and outlet boundary conditions for a computational model of aortic blood flow are calculated based on the patient-specific lumen anatomy, the patient-specific aortic blood flow rates, and non-invasive clinical measurements of the patient. Aortic blood flow and pressure are computed over the patient-specific lumen anatomy using the computational model of aortic blood flow and the patient-specific inlet and outlet boundary conditions. | 09-19-2013 |
20130246034 | Method and System for Non-Invasive Functional Assessment of Coronary Artery Stenosis - A method and system for non-invasive assessment of coronary artery stenosis is disclosed. Patient-specific anatomical measurements of the coronary arteries are extracted from medical image data of a patient acquired during rest state. Patient-specific rest state boundary conditions of a model of coronary circulation representing the coronary arteries are calculated based on the patient-specific anatomical measurements and non-invasive clinical measurements of the patient at rest. Patient-specific rest state boundary conditions of the model of coronary circulation representing the coronary arteries are calculated based on the patient-specific anatomical measurements and non-invasive clinical measurements of the patient at rest. Hyperemic blood flow and pressure across at least one stenosis region of the coronary arteries are simulated using the model of coronary circulation and the patient-specific hyperemic boundary conditions. Fractional flow reserve (FFR) is calculated for the at least one stenosis region based on the simulated hyperemic blood flow and pressure. | 09-19-2013 |
20140024932 | Computation of Hemodynamic Quantities From Angiographic Data - Methods for computing hemodynamic quantities include: (a) acquiring angiography data from a patient; (b) calculating a flow and/or calculating a change in pressure in a blood vessel of the patient based on the angiography data; and (c) computing the hemodynamic quantity based on the flow and/or the change in pressure. Systems for computing hemodynamic quantities and computer readable storage media are described. | 01-23-2014 |
20140058715 | Method and System for Non-Invasive Functional Assessment of Coronary Artery Stenosis - A method and system for non-invasive assessment of coronary artery stenosis is disclosed. Patient-specific anatomical measurements of the coronary arteries are extracted from medical image data of a patient acquired during rest state. Patient-specific rest state boundary conditions of a model of coronary circulation representing the coronary arteries are calculated based on the patient-specific anatomical measurements and non-invasive clinical measurements of the patient at rest. Patient-specific rest state boundary conditions of the model of coronary circulation representing the coronary arteries are calculated based on the patient-specific anatomical measurements and non-invasive clinical measurements of the patient at rest. Hyperemic blood flow and pressure across at least one stenosis region of the coronary arteries are simulated using the model of coronary circulation and the patient-specific hyperemic boundary conditions. Fractional flow reserve (FFR) is calculated for the at least one stenosis region based on the simulated hyperemic blood flow and pressure. | 02-27-2014 |
20140088935 | VISCOELASTIC MODELING OF BLOOD VESSELS - A method for modeling a blood vessel includes: (a) modeling a first segment of the blood vessel based on medical imaging data acquired from a subject; (b) computing a first modeling parameter at an interior point of the first segment; and (c) computing a second modeling parameter at a boundary point of the first segment using a viscoelastic wall model. Systems for modeling a blood vessel are described | 03-27-2014 |
20140136174 | System and Method for Patient Specific Modeling of Liver Tumor Ablation - A method and system for tumor ablation planning and guidance based on a patient-specific model of liver tumor ablation is disclosed. A patient-specific anatomical model of the liver and circulatory system of the liver is estimated from 3D medical image data of a patient. Blood flow in the liver and the circulatory system of the liver is simulated based on the patient-specific anatomical model. Heat diffusion due to ablation is simulated based on a virtual ablation probe position and the simulated blood flow in the liver and the venous system of the liver. Cellular necrosis in the liver is simulated based on the simulated heat diffusion. A visualization of a simulated necrosis region is generated and displayed to the user for decision making and optimal therapy planning and guidance. | 05-15-2014 |
20140236547 | PATIENT-SPECIFIC AUTOMATED TUNING OF BOUNDARY CONDITIONS FOR DISTAL VESSEL TREE - Boundary conditions for a distal vessel tree are modeled and tuned to a specific patient. Measurements from the patient are used to find reference compliance and resistance for the root of the distal vessel tree model. The reference compliance and resistance are used to tune properties of a structured tree model, such as by iteratively solving for the properties while matching the compliance and resistance of the structured tree model to the patient-specific reference compliance and reference resistance. The tuned structured tree is then used to calculate boundary conditions for computing flow of a scanned vessel of the patient. | 08-21-2014 |
20140249399 | Determining Functional Severity of Stenosis - A method for determining functional severity of a stenosis includes: (a) generating a simulated perfusion map from a calculated blood flow; (b) comparing the simulated perfusion map to a measured perfusion map to identify a degree of mismatch therebetween, the measured perfusion map representing perfusion in a patient; (c) modifying a parameter in a model used in calculating the blood flow when the degree of mismatch meets or exceeds a predefined threshold; (d) computing a hemodynamic quantity from the simulated perfusion map when the degree of mismatch is less than the predefined threshold, the hemodynamic quantity being indicative of the functional severity of the stenosis; and (e) displaying the hemodynamic quantity. Systems for determining functional severity of a stenosis are described. | 09-04-2014 |
20140296842 | Patient Specific Planning and Simulation of Ablative Procedures - Patient specific temperature distribution in organs, due to an ablative device, is simulated. The effects of ablation are modeled. The modeling is patient specific. The vessel structure for a given patient, segmented from medical images, is accounted for as a heat sink in the model of biological heat transfer. A temperature map is generated to show the effects of ablation in a pre-operative analysis. Temperature maps resulting from different ablation currents and ablation device positions may be used to determine a more optimal location of the ablative device for a given patient. Other models may be included, such as accounting for the tissue damage during the ablation. | 10-02-2014 |
20150051888 | FRAMEWORK FOR PERSONALIZATION OF CORONARY FLOW COMPUTATIONS DURING REST AND HYPEREMIA - Embodiments relate to non-invasively determining coronary circulation parameters during a rest state and a hyperemic state for a patient. The blood flow in the coronary arteries during a hyperemic state provides a functional assessment of the patient's coronary vessel tree. Imaging techniques are used to obtain an anatomical model of the patient's coronary tree. Rest boundary conditions are computed based on non-invasive measurements taken at a rest state, and estimated hyperemic boundary conditions are computed. A feedback control system performs a simulation matching the rest state utilizing a model based on the anatomical model and a plurality of controllers, each controller relating to respective output variables of the coronary tree. The model parameters are adjusted for the output variables to be in agreement with the rest state measurements, and the hyperemic boundary conditions are accordingly adjusted. The hyperemic boundary conditions are used to compute coronary flow and coronary pressure variables. | 02-19-2015 |
20150063649 | Method and System for Blood Flow Velocity Reconstruction From Medical Images - A method and system for blood flow velocity reconstruction from medical image data is disclosed. Flow system geometry of a flow conduit is generated from medical image data. The flow system velocity includes an inlet, walls, and one or more outlets of the flow conduit. A measured velocity field is extracted from the medical image data. Inlet and wall fluxes are estimated based on the measured velocity field or other external measurements. Outlet fluxes are estimated such that mass conservation is constrained based on the inlet and wall fluxes. A reconstructed velocity field is calculated by solving flux-constrained Poisson (FCP) equations that are constrained by the estimated output fluxes | 03-05-2015 |
20150065864 | Method and System for Functional Assessment of Renal Artery Stenosis from Medical Images - A method and system for non-invasive assessment of renal artery stenosis is disclosed. A patient-specific anatomical model of at least a portion of the renal arteries and aorta is generated from medical image data of a patient. Patient-specific boundary conditions of a computational model of blood flow in the portion of the renal arteries and aorta are estimated based on the patient-specific anatomical model. Blood flow and pressure are simulated in the portion of the renal arteries and aorta using the computational model based on the patient-specific boundary conditions. At least one hemodynamic quantity characterizing functional severity of a renal stenosis region is calculated based on the simulated blood flow and pressure in the portion of the renal arteries and aorta. | 03-05-2015 |