Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Peter G. Barthe, Phoenix US

Peter G. Barthe, Phoenix, AZ US

Patent application numberDescriptionPublished
20080214966METHOD AND SYSTEM FOR NONINVASIVE FACE LIFTS AND DEEP TISSUE TIGHTENING - A method and system for noninvasive face lifts and deep tissue tightening are disclosed. An exemplary method and treatment system are configured for the imaging, monitoring, and thermal injury to treat the SMAS region. In accordance with an exemplary embodiment, the exemplary method and system are configured for treating the SMAS region by first, imaging of the region of interest for localization of the treatment area and surrounding structures, second, delivery of ultrasound energy at a depth, distribution, timing, and energy level to achieve the desired therapeutic effect, and third to monitor the treatment area before, during, and after therapy to plan and assess the results and/or provide feedback.09-04-2008
20080221491METHOD AND SYSTEM FOR COMBINED ENERGY THERAPY PROFILE - A method and system for treating tissue with a combined therapy profile is disclosed. In one exemplary embodiment, ultrasound energy is used to treat numerous depths of tissue within a region of interest and the spatial and temporal properties of the ultrasound energy are varied for more effective treatment. The method and system of the present invention are configured to treat all of the tissue from the surface on down and not spare intervening tissue.09-11-2008
20080275342METHOD AND SYSTEM FOR ULTRASOUND TREATMENT WITH A MULTI-DIRECTIONAL TRANSDUCER - A method and system for ultrasound treatment utilizing a multi-directional transducer to facilitate treatment, such as therapy and/or imaging or other tissue parameter monitoring, in two or more directions. In accordance with an exemplary embodiment, a multi-directional transducer comprises at least two transduction elements configured to provide for ultrasound energy, such as radiation, acoustical energy, heat energy, imaging, positional information and/or tissue parameter monitoring signals in two or more directions. The transduction elements can comprise various materials for providing ultrasound energy or radiation, such as piezoelectric materials, with and without matching layers. In addition, the transduction elements can be configured for substantially uniform, focused and/or defocused radiation patterns, as well as for single, multiple-element and/or multiple-element array configurations. In addition, an exemplary multi-directional transducer can comprise multiple elements, either side by side, stacked or in an array.11-06-2008
20080281237METHODS AND SYSTEMS FOR COUPLING AND FOCUSING ACOUSTIC ENERGY USING A COUPLER MEMBER - An exemplary system for coupling acoustic energy using an encapsulated coupler member comprises a display or indicator, a control system, a probe, and a coupler member. This invention provides a coupler member adjustably configured to perform at least one of (i) providing a standoff, (ii) focusing or defocusing energy, and (iii) coupling energy. An exemplary gel coupler member is configured to hold the shape of a lens geometry. In one aspect of the present invention, gel coupler member comprises water, glycerol, and polyvinyl alcohol, and exhibits an increased desiccation time and shelf life when compared to the prior art. The probe can comprise various probe and/or transducer configurations. In an exemplary embodiment, the probe delivers focused, unfocused, and/or defocused ultrasound energy to the region of interest. Imaging and/or monitoring may alternatively be coupled and/or co-housed with an ultrasound system contemplated by the present invention.11-13-2008
20080281255METHODS AND SYSTEMS FOR MODULATING MEDICANTS USING ACOUSTIC ENERGY - This invention provides methods and systems uniquely capable of enhancing medicant delivery and/or effectiveness through the use of energy to predictably disrupt membranes and mechanically and thermally modulate cells and tissues. In exemplary embodiments, the methods and systems disclosed herein are capable of modulating multiple layers of tissue. In an exemplary embodiment, the energy is acoustic energy (e.g., ultrasound). In other exemplary embodiments, the energy is photon based energy (e.g., IPL, LED, laser, white light, etc.), or other energy forms, such radio frequency electric currents, or various combinations of acoustic energy, electromagnetic energy and other energy forms or energy absorbers such as cooling. Medicants can be first introduced to the region of interest by diffusion, circulation, and/or injection. An exemplary system for enhancing medicant delivery and/or effectiveness comprises a control system, a probe, and a display or indicator system. Imaging and/or monitoring may alternatively be coupled and/or co-housed with an ultrasound system contemplated by the present invention.11-13-2008
20080287837ULTRASOUND MEDICAL SYSTEM AND METHOD - An ultrasound medical system includes an interstitial end effector. The interstitial end effector is interstitially insertable into patient tissue, includes at least one medical-treatment ultrasound transducer, and includes at least one end-effector-tissue-track ablation device. One method for ultrasonically treating a lesion in a patient includes the steps of obtaining the interstitial end effector and inserting it into the patient creating a tissue track which is surrounded by patient tissue and which ends at the distal end of the inserted interstitial end effector. Other steps include ultrasonically ablating the lesion using the at-least-one medical-treatment ultrasound transducer, using the at-least-one end-effector-tissue-track ablation device to ablate the patient tissue surrounding the tissue track along substantially the entire tissue track, and withdrawing the end effector from the patient.11-20-2008
20080294073METHOD AND SYSEM FOR NON-ABLATIVE ACNE TREATMENT AND PREVENTION - A method and system for non-ablative acne treatment and prevention is disclosed. The method utilizes ultrasound energy which is targeted at a region of interest to treat existing acne and prevent future acne from forming. The application of ultrasound energy causes numerous physiological effects that treat acne. Some of these physiological effects comprise reducing sebum, increasing perfusion at the region of interest, denaturing proteins at the region of interest, creating an uninhabitable environment at the region of interest, initiating programmed cell death at the region of interest and the initiation of mechanical effects at the region of interest.11-27-2008
20090198156ULTRASOUND MEDICAL TREATMENT SYSTEM AND METHOD - An ultrasound medical treatment system includes an ultrasound medical treatment transducer and a controller. Methods of the invention so control the medical treatment transducer. In one arrangement, the controller movingly controls the medical treatment transducer to emit ultrasound to thermally ablate patient tissue: 1) for a plurality of predetermined time intervals each associated with the medical treatment transducer movingly disposed at a different one of an equal number of predetermined positions, wherein a next-in-time time interval is associated with a position which is spatially non-adjacent to a position associated with a present-in-time time interval; or 2) for a predetermined time interval during which the transducer is continuously moved. In another arrangement, the transducer has an array of transducer elements and the controller activates different non-overlapping groups or different overlapping groups of transducer elements at different times.08-06-2009
20090216159METHOD AND SYSTEM FOR COMBINED ULTRASOUND TREATMENT - A non-invasive method and system for combined ultrasound treatment are provided. An exemplary combined ultrasound treatment system comprises a transducer configured to deliver ultrasound energy to provide two or more energy effects to a region of interest. The energy effects facilitate the initiation of one or more responses in the region of interest. In accordance with an exemplary embodiment of the present invention, a transducer is configured to deliver energy over varying temporal and/or spatial distributions in order to provide energy effects and initiate responses in a region of interest.08-27-2009
20090253988METHOD AND SYSTEM FOR NONINVASIVE MASTOPEXY - Methods and systems for noninvasive mastopexy through deep tissue tightening with ultrasound are provided. An exemplary method and system comprise a therapeutic ultrasound system configured for providing ultrasound treatment to a deep tissue region, such as a region comprising muscular fascia and ligaments. In accordance with various exemplary embodiments, a therapeutic ultrasound system can be configured to achieve depth from 1 mm to 4 cm with a conformal selective deposition of ultrasound energy without damaging an intervening tissue in the range of frequencies from 1 to 15 MHz. In addition, a therapeutic ultrasound can also be configured in combination with ultrasound imaging or imaging/monitoring capabilities, either separately configured with imaging, therapy and monitoring systems or any level of integration thereof.10-08-2009
20100011236METHOD AND SYSTEM FOR ENHANCING COMPUTER PERIPHERAL SAFETY - A method and system for enhancing computer peripheral safety is provided. In accordance with various aspects of the present invention, the exemplary method and system are configured to monitor and/or isolate alternating current (A.C.) supplies with and/or from any peripheral subsystems or devices. An exemplary method and system comprises an A.C. supply, a host computer system, and a peripheral subsystem or device connected to the host computer system, such as an ultrasound imaging and/or therapy peripheral, and an isolation subsystem configured for monitoring and/or isolating the A.C. supply from the peripheral subsystem or device. In accordance with an exemplary embodiment, an isolation subsystem comprises application software and associated modules and functions that when executed continuously monitors and/or polls the host computer's hardware and/or operating system for the presence of an isolated source, such as a battery, or an unisolated power source, such as through a battery charger and/or other connection path to the A.C. main supply. In accordance with other exemplary embodiments, an isolation subsystem can comprises a wireless or other safe/isolated electrical link for connecting a patient contact device, and/or a verification link or other verification mechanisms configured between an isolation transformer and host computer to monitor or observe usage to power the host computer and peripheral subsystem.01-14-2010
20100022922METHOD AND SYSTEM FOR TREATING STRETCH MARKS - Methods and systems for treating stretch marks through deep tissue tightening with ultrasound are provided. An exemplary method and system comprise a therapeutic ultrasound system configured for providing ultrasound treatment to a shallow tissue region, such as a region comprising an epidermis, a dermis and a deep dermis. In accordance with various exemplary embodiments, a therapeutic ultrasound system can be configured to achieve depth from 0 mm to 1 cm with a conformal selective deposition of ultrasound energy without damaging an intervening tissue in the range of frequencies from 2 to 50 MHz. In addition, a therapeutic ultrasound can also be configured in combination with ultrasound imaging or imaging/monitoring capabilities, either separately configured with imaging, therapy and monitoring systems or any level of integration thereof.01-28-2010
20100160782METHODS AND SYSTEMS FOR FAT REDUCTION AND/OR CELLULITE TREATMENT - A method can include targeting a region of interest below a surface of skin, which contains fat lobuli and delivering ultrasound energy to the region of interest. The ultrasound energy generates a conformal lesion with said ultrasound energy on a surface of a fat lobuli. The lesion creates an opening in the surface of the fat lobuli, which allows the draining of a fluid out of the fat lobuli and through the opening. In addition, by applying ultrasound energy to fat cells to increase the temperature to between 43 degrees and 49 degrees, cell apoptosis can be realized, thereby resulting in reduction of fat.06-24-2010
20100241035SYSTEM AND METHOD FOR ULTRA-HIGH FREQUENCY ULTRASOUND TREATMENT - A non-invasive ultra-high frequency ultrasound treatment method and system are provided. An exemplary method and system comprise a high-frequency ultrasound transducer system configured for providing ultrasound treatment to a patient such that the superficial and/or subcutaneous regions of the patient can be treated. An exemplary high-frequency ultrasound transducer system comprises a control system and a transducer configured to provide treatment to the superficial and/or subcutaneous regions of interest. The high-frequency ultrasound transducer may be configured to operate at higher frequencies and controlled power levels to provide treatment to the superficial and/or subcutaneous regions of interest. For example, higher frequencies within the range from approximately 20 MHz to 500 MHz or more may be utilized.09-23-2010
20100280420SYSTEM AND METHOD FOR VARIABLE DEPTH ULTRASOUND TREATMENT - A non-invasive variable depth ultrasound treatment method and system comprises a variable depth transducer system configured for providing ultrasound treatment to a patient. An exemplary variable depth transducer system can comprise a transducer configured to provide treatment to more than one region of interest, such as between a deep treatment region of interest and a superficial region of interest, and/or a subcutaneous region of interest. The variable depth transducer can comprise a transduction element having a piezoelectrically active layer, matching layers and/or other materials for generating radiation or acoustical energy. The variable depth transducer may be configured to operate at moderate frequencies within the range from approximately 750 kHz to 20 MHz or more. In addition, the transduction element may be configured with a variable depth device comprising one or more materials configured to allow for control and focusing/defocusing of the acoustic energy to more than one region of interest.11-04-2010
20100312150SYSTEM AND METHOD FOR MEDICAL TREATMENT USING ULTRASOUND - A system and method for medical treatment of tissue using ultrasound. The system comprises a probe having an array of transducer elements, an ultrasound waveform generator adapted to generate at least one electrical ultrasound signal, and a plurality of phase controls, each coupled to the ultrasound waveform generator and adapted to generate from the electrical ultrasound signal a phase-shifted drive signal that is coupled to an associated transducer element. The drive signal is effective to control grating lobe foci emitted by the array. The method employs the system.12-09-2010
20110040184METHOD FOR MONITORING OF MEDICAL TREATMENT USING PULSE-ECHO ULTRASOUND - A method for ultrasound imaging of anatomical tissue. A first signal is received from a first imaging ultrasound wave which has been reflected from a location in the anatomical tissue during a first time period. A second signal is received from a second imaging ultrasound wave which has been reflected from the location in the anatomical tissue during a later second time period, following a discrete medical treatment. The second signal is subtracted from the first signal to form a difference signal. The difference signal may be scaled, spatially filtered, then used to generate an indication, the indication showing the effect of the medical treatment in the location in the anatomical tissue.02-17-2011
20110112405Hand Wand for Ultrasonic Cosmetic Treatment and Imaging - Embodiments of the invention provide a dermatological cosmetic treatment and imaging system and method. In some embodiments, the system (05-12-2011
20110172530VISUAL IMAGING SYSTEM FOR ULTRASONIC PROBE - A non-invasive visual imaging system is provided, wherein the imaging system procures an image of a transducer position during diagnostic or therapeutic treatment. In addition, the system suitably provides for the transducer to capture patient information, such as acoustic, temperature, or ultrasonic images. For example, an ultrasonic image captured by the transducer can be correlated, fused or otherwise combined with the corresponding positional transducer image, such that the corresponding images represent not only the location of the transducer with respect to the patient, but also the ultrasonic image of the region of interest being scanned. Further, a system is provided wherein the information relating to the transducer position on a single patient may be used to capture similar imaging planes on the same patient, or with subsequent patients. Moreover, the imaging information can be effectively utilized as a training tool for medical practitioners.07-14-2011
20110178444METHODS AND SYSTEMS FOR GENERATING THERMAL BUBBLES FOR IMPROVED ULTRASOUND IMAGING AND THERAPY - A method and system uniquely capable of generating thermal bubbles for improved ultrasound imaging and therapy. Several embodiments of the method and system contemplates the use of unfocused, focused, or defocused acoustic energy at variable spatial and/or temporal energy settings, in the range of about 1 kHz-100 MHz, and at variable tissue depths. The unique ability to customize acoustic energy output and target a particular region of interest makes possible highly accurate and precise thermal bubble formation. In an embodiment, the energy is acoustic energy. In other embodiments, the energy is photon based energy (e.g., IPL, LED, laser, white light, etc.), or other energy forms, such radio frequency electric currents (including monopolar and bipolar radio-frequency current). In an embodiment, the energy is various combinations of acoustic energy, electromagnetic energy and other energy forms or energy absorbers such as cooling.07-21-2011
20110201975ULTRASOUND MEDICAL SYSTEM - An ultrasound medical system includes an ultrasound end effector and at least one non-ultrasound tissue-property-measuring sensor. The ultrasound end effector includes a medical ultrasound transducer assembly having at least one medical-treatment ultrasound transducer. The at-least-one non-ultrasound tissue-property-measuring sensor is supported by the ultrasound end effector and is positionable in contact with patient tissue.08-18-2011
20120004549METHOD AND SYSTEM FOR TREATING PHOTOAGED TISSUE - A method and system for ultrasound treatment of photoaged tissue are provided. An exemplary method and system are configured for first, ultrasound imaging of the region of interest for localization of the treatment area, second, delivery of ultrasound energy at a depth and pattern to achieve the desired therapeutic effects, and third to monitor the treatment area during and after therapy to assess the results and/or provide feedback. The exemplary treatment method and system can be configured for producing arrays of sub-millimeter and larger zones of thermal ablation to treat the epidermal, superficial dermal, mid-dermal and deep dermal components of photoaged tissue.01-05-2012
20120016239SYSTEMS FOR COSMETIC TREATMENT - Embodiments of a dermatological cosmetic treatment and imaging system and method can include use of a hand wand and a removable transducer module having an ultrasound transducer. The system can include a control module that is coupled to the hand wand and has a graphical user interface for controlling the removable transducer module, and an interface coupling the hand wand to the control module. In some embodiments, the cosmetic treatment system may be used in cosmetic procedures on at least a portion of a face, head, neck, body, and/or other part of a patient for a face lift, a brow lift, a chin lift, an eye treatment, a wrinkle reduction, a scar reduction, a burn treatment, a tattoo removal, a skin tightening, a vein reduction, a treatment on a sweat gland, a treatment of hyperhidrosis, a sun spot removal, a fat treatment, a vaginal rejuvenation, and/or an acne treatment.01-19-2012
20120029353Systems and methods for ultrasound treatment - Various embodiments provide a method for an extended field of view treatment. The method can include the steps of imaging a region; targeting a region with directed ultrasound energy; monitoring the region; moving the imaging, treatment, and monitoring region while spatially correlating to one or more prior regions via imaging and/or position sensing; continuing the extended field of view treatment; and, achieving an ultrasound induced biological effect in the extended field of view treatment region.02-02-2012
20120035475METHODS FOR NON-INVASIVE COSMETIC TREATMENT OF THE EYE REGION - Embodiments of a dermatological cosmetic treatment and imaging system and method can include use of a hand wand and a removable transducer module having an ultrasound transducer. The system can include a control module that is coupled to the hand wand and has a graphical user interface for controlling the removable transducer module, and an interface coupling the hand wand to the control module. In some embodiments, the cosmetic treatment system may be used in cosmetic procedures on at least a portion of a face, head, neck, body, and/or other part of a patient for a face lift, a brow lift, a chin lift, an eye treatment, a wrinkle reduction, a scar reduction, a burn treatment, a tattoo removal, a skin tightening, a vein reduction, a treatment on a sweat gland, a treatment of hyperhidrosis, a sun spot removal, a fat treatment, a vaginal rejuvenation, and/or an acne treatment.02-09-2012
20120035476Tissue Imaging And Treatment Method - Embodiments of a dermatological cosmetic treatment and imaging system and method can include use of a hand wand and a removable transducer module having an ultrasound transducer. The system can include a control module that is coupled to the hand wand and has a graphical user interface for controlling the removable transducer module, and an interface coupling the hand wand to the control module. In some embodiments, the cosmetic treatment system may be used in cosmetic procedures on at least a portion of a face, head, neck, body, and/or other part of a patient for a face lift, a brow lift, a chin lift, an eye treatment, a wrinkle reduction, a scar reduction, a burn treatment, a tattoo removal, a skin tightening, a vein reduction, a treatment on a sweat gland, a treatment of hyperhidrosis, a sun spot removal, a fat treatment, a vaginal rejuvenation, and/or an acne treatment.02-09-2012
20120046547SYSTEM AND METHOD FOR COSMETIC TREATMENT - Embodiments of a dermatological cosmetic treatment and imaging system and method can include use of a hand wand and a removable transducer module having an ultrasound transducer. The system can include a control module that is coupled to the hand wand and has a graphical user interface for controlling the removable transducer module, and an interface coupling the hand wand to the control module. In some embodiments, the cosmetic treatment system may be used in cosmetic procedures on at least a portion of a face, head, neck, body, and/or other part of a patient for a face lift, a brow lift, a chin lift, an eye treatment, a wrinkle reduction, a scar reduction, a burn treatment, a tattoo removal, a skin tightening, a vein reduction, a treatment on a sweat gland, a treatment of hyperhidrosis, a sun spot removal, a fat treatment, a vaginal rejuvenation, and/or an acne treatment.02-23-2012
20120059288METHOD AND SYSTEM FOR ULTRASOUND TREATMENT WITH A MULTI-DIRECTIONAL TRANSDUCER - A method and system for ultrasound treatment utilizing a multi-directional transducer to facilitate treatment, such as therapy and/or imaging or other tissue parameter monitoring, in two or more directions. In accordance with an exemplary embodiment, a multi-directional transducer comprises at least two transduction elements configured to provide for ultrasound energy, such as radiation, acoustical energy, heat energy, imaging, positional information and/or tissue parameter monitoring signals in two or more directions. The transduction elements can comprise various materials for providing ultrasound energy or radiation, such as piezoelectric materials, with and without matching layers. In addition, the transduction elements can be configured for substantially uniform, focused and/or defocused radiation patterns, as well as for single, multiple-element and/or multiple-element array configurations. In addition, an exemplary multi-directional transducer can comprise multiple elements, either side by side, stacked or in an array.03-08-2012
20120111339DEVICES AND METHODS FOR ACOUSTIC SHIELDING - Acoustic shielding system and method for protecting and shielding non-targeted regions or tissues that are not intended to be treated by ultrasonic procedures from acoustic energy using a shield. In some embodiments, the shield comprises multiple layers made of one or more materials with one or more acoustic impedances. In some embodiments a multilayered shield includes materials with relatively different acoustic impedance levels. In some embodiments, the shield includes active components such as energy diversion devices, heating, cooling, monitoring, and/or sensing. In some embodiments, the shield is configured to protect an eye, mouth, nose or ear while allowing the ultrasound to treat the surrounding tissue. One embodiment of an eye shield is configured to fit under at least one eyelid and over a portion of the eye.05-10-2012
20120143056Methods and systems for treating plantar fascia - Various embodiments, described herein, provide methods and systems for the treatment of plantar fascia. In some embodiments, a method of non-invasive treatment of plantar fasciacan include the steps of identifying a damage location comprising a planter fascia; directing a conformal distribution of ultrasound energy to the plantar fascia at the damage location; creating a plurality of micro lesions in the plantar fascia at the damage location; initiating healing of a plurality of micro tears in the plantar fascia at the damage location; and sparing intervening tissue between the plantar fascia and a surface of a sole of a foot.06-07-2012
20120143098METHOD AND SYSTEM FOR TREATING CELLULITE - A method and system for providing ultrasound treatment to a deep tissue that contains a lower part of dermis and proximal protrusions of fat lobuli into the dermis. The invention delivers ultrasound energy to the region creating a thermal injury and coagulating the proximal protrusions of fat lobuli, whereby eliminating the fat protrusions into the dermis. The invention can also include ultrasound imaging configurations using the same or a separate probe before, after or during the treatment. In addition various therapeutic levels of ultrasound can be used to increase the speed at which fat metabolizes. Additionally the mechanical action of ultrasound physically breaks fat cell clusters and stretches the fibrous bonds. Mechanical action will also enhance lymphatic drainage, stimulating the evacuation of fat decay products.06-07-2012
20120165668Systems and methods for treating acute and/or chronic injuries in soft tissue - Various embodiments provide a method of treating fibrous soft tissue. The method can include the steps of targeting injured fibrous soft tissue located at or near an injury location; directing therapeutic ultrasound energy to the injured fibrous soft tissue; creating a conformal region of elevated temperature in the injured fibrous soft tissue; and creating at least one thermally induced biological effect in the injured fibrous soft tissue. In various embodiments the thermally induced biological effect can be one of coagulation, increased perfusion, reduction of inflammation, generation of heat shock proteins, and initiation of healing cascade.06-28-2012
20120165848System and method for treating cartilage - Various embodiments provide systems and methods of treating damaged cartilage. In some embodiments, a method can include targeting the damaged cartilage in region of interest, directing therapeutic ultrasound energy to the damaged cartilage, ablating at least a portion of the damaged cartilage and improving the damaged cartilage. The method can include focusing therapeutic ultrasound energy to create at least one lesion in a portion of the damaged cartilage. The method can also include imaging the damaged cartilage. The method can include increasing blood perfusion to the region of interest. The method can include welding together the damaged cartilage with therapeutic ultrasound energy. The method can include cutting the damaged cartilage and removing it from the joint with therapeutic ultrasound energy. The method can include smoothing the cartilage with therapeutic ultrasound energy. The method can include regenerating cartilage.06-28-2012
20120197120METHODS FOR TREATMENT OF SWEAT GLANDS - A method and system for ultrasound treatment of sweat glands are provided. An exemplary method and system for targeted treatment of sweat glands can be configured in various manners, such as through use of therapy only, therapy and monitoring, imaging and therapy, or therapy, imaging, and monitoring, and/or through use of focused, unfocused, or defocused ultrasound through control of various spatial and temporal parameters. As a result, ablative energy can be deposited at the particular depth at which the aberrant sweat gland population is located below the skin surface.08-02-2012
20120197121CUSTOMIZED COSMETIC TREATMENT - A method and system for controlled thermal injury of human superficial tissue based on the ability to controllably create thermal lesions of variable shape, size, and depth via precise spatial and temporal control of acoustic energy deposition. The apparatus includes a control system and probes that facilitate treatment planning, control and delivery of energy, and monitoring of treatment conditions.08-02-2012
20120215105TREATMENT OF SUB-DERMAL REGIONS FOR COSMETIC EFFECTS - A method and system for noninvasive face lifts and deep tissue tightening are disclosed. An exemplary method and treatment system are configured for the imaging, monitoring, and thermal injury to treat the SMAS region. In accordance with an exemplary embodiment, the exemplary method and system are configured for treating the SMAS region by first, imaging of the region of interest for localization of the treatment area and surrounding structures, second, delivery of ultrasound energy at a depth, distribution, timing, and energy level to achieve the desired therapeutic effect, and third to monitor the treatment area before, during, and after therapy to plan and assess the results and/or provide feedback.08-23-2012
20120271294SYSTEM AND METHOD FOR TREATING MUSCLE, TENDON, LIGAMENT AND CARTILAGE TISSUE - A method and system for treating subcutaneous tissue with energy such as ultrasound energy is disclosed. In various embodiments, ultrasound energy is applied at a region of interest to affect tissue by cutting, ablating, micro-ablating, coagulating, or otherwise affecting the subcutaneous tissue to conduct numerous procedures that are traditionally done invasively in a non-invasive manner. Certain procedures can include a brow lift, a blepharoplasty, and treatment of cartilage tissue.10-25-2012
20120330197NONINVASIVE TREATMENT OF BLOOD VESSELS - A non-invasive method and system for using ultrasound energy for the treatment of conditions resulting from vascular disorders is provided. In one embodiment, an image-treatment approach can be used to locate the blood vessel to be treated and then to ablate it non-invasively, while also monitoring the progress of the treatment. In another embodiment, a transducer is configured to deliver ultrasound energy to the regions of the superficial tissue (e.g., skin) such that the energy is deposited at the particular depth at which the vascular malformations are located below the skin surface. The ultrasound transducer can be driven at a number of different frequency regimes such that the depth and shape of energy concentration can match the region of treatment.12-27-2012
20120330222METHODS FOR TREATMENT OF HYPERHIDROSIS - Methods for ultrasound treatment of hyperhidrosis are provided. Various methods and systems for targeted treatment of sweat glands can be configured in various manners, such as through use of therapy only, therapy and monitoring, imaging and therapy, or therapy, imaging, and monitoring, and/or through use of focused, unfocused, or defocused ultrasound through control of various spatial and temporal parameters. As a result, thermal and/or ablative energy can be deposited at the particular depth at which the sweat gland population is located below the skin surface. Ultrasound and non-ultrasound treatments for hyperhidrosis are provided.12-27-2012
20120330223ENERGY BASED HYPERHIDROSIS TREATMENT - A method and system for energy-based (e.g., ultrasound treatment and/or other modalities) of sweat glands are provided. An exemplary method and system for targeted treatment of sweat glands can be configured in various manners, such as through use of therapy only, therapy and monitoring, imaging and therapy, or therapy, imaging, and monitoring, and/or through use of focused, unfocused, or defocused ultrasound (or other energy) through control of various spatial and temporal parameters. As a result, ablative energy can be deposited at the particular depth at which the aberrant sweat gland population is located below the skin surface.12-27-2012
20130012816METHODS AND SYSTEMS FOR CONTROLLING ACOUSTIC ENERGY DEPOSITION INTO A MEDIUM - A method and system for acoustic treatment of tissue are provided. Acoustic energy, including ultrasound, under proper functional control can penetrate deeply and be controlled precisely in tissue. In some embodiments, methods and systems are configured for acoustic tissue treatment based on creating an energy distribution function in tissue. In some embodiments, methods and systems are configured based on creating a temperature distribution function in tissue.01-10-2013
20130012838SYSTEMS AND METHODS FOR COUPLING AN ULTRASOUND SOURCE TO TISSUE - Various embodiments provide a system for providing a constant average output of power from an ultrasound source. In some embodiments, the system comprises an ultrasound transducer coupled to a power supply; a controller in communication with the power supply; a chirp function in communication with and operable to monitor the ultrasound transducer; a feedback loop from the chirp function to the controller. In some embodiments, the controller is operable to change a parameter on the transducer based on the feedback to provide a constant average output of power from the ultrasound transducer.01-10-2013
20130012842METHODS AND SYSTEMS FOR ULTRASOUND TREATMENT - A method and system for ultrasound treatment are provided. Acoustic energy, including ultrasound, can serve as input energy to a mask with apertures, such apertures acting as secondary acoustic sources to create a modulated output acoustic energy in a treatment region and treatment effects. Under proper control output energy can be precisely placed and controlled in tissue. In some embodiments, methods and systems are configured for ultrasound treatment based on creating an output energy distribution in tissue. In some embodiments, methods and systems are configured based on creating an output temperature distribution in tissue.01-10-2013
20130024704METHOD AND SYSTEM FOR ENHANCING COMPUTER PERIPHERAL SAFETY - A method and system for enhancing computer peripheral safety are configured to monitor and/or isolate alternating current (A.C.) supplies with and/or from any peripheral subsystems or devices. An exemplary method and system comprises an A.C. supply, a host computer system, and a peripheral subsystem or device connected to the host computer system, such as an ultrasound imaging and/or therapy peripheral, and an isolation subsystem configured for monitoring and/or isolating the A.C. supply from the peripheral subsystem or device. In accordance with an exemplary embodiment, an isolation subsystem comprises application software and associated modules and functions that when executed continuously monitors and/or polls the host computer's hardware and/or operating system for the presence of an isolated source, such as a battery, or an unisolated power source, such as through a battery charger and/or other connection path to the A.C. main supply.01-24-2013
20130046209SYSTEMS AND METHODS FOR IMPROVING AN OUTSIDE APPEARANCE OF SKIN USING ULTRASOUND AS AN ENERGY SOURCE - In some embodiments, the method can comprise locating a targeted portion of skin surface; delivering ultrasound energy to subcutaneous tissue below the skin surface; producing a biological effect in at least one of the skin surface and the subcutaneous tissue; and improving the appearance of the targeted portion of the skin surface. Improving the appearance of the skin surface can be at least one of increasing skin elasticity, reducing skin oiliness, reducing skin pore size, smoothing skin texture, reducing hyperpigmentation, treating and/or preventing acne, reducing a blemish, reducing an appearance of spider veins and/or rosacea, reducing an appearance of scars, reducing an appearance of stretch marks, rejuvenating skin, increasing collagen in the subcutaneous tissue, tightening of sagging sink, rejuvenating photoaged skin, increasing a thickness of a dermal layer, reducing a wrinkle on the skin surface, generating new tissue in the subcutaneous layer, and combinations thereof.02-21-2013
20130066208METHOD AND SYSTEM FOR CONTROLLED SCANNING, IMAGING, AND/OR THERAPY - A method and system for three dimensional scanning, imaging and/or therapy are provided. In accordance with one aspect, an exemplary method and system are configured to facilitate controlled scanning within one-degree of freedom. For example, an exemplary method and system can enable multiple two-dimensional image planes to be collected in a manner to provide an accurate and computationally efficient three-dimensional image reconstruction while providing the user with a user-friendly mechanism for acquiring three-dimensional images. In accordance with an exemplary embodiment, the positioning system comprises a guide assembly configured to provide pure rectilinear or rotational motion of the probe during scanning operation, and a position sensing system configured to detect the direction and position of the probe during scanning.03-14-2013
20130072826ULTRASOUND TREATMENT OF SUB-DERMAL TISSUE FOR COSMETIC EFFECTS - A method and system for noninvasive face lifts and tissue tightening are disclosed. The method and treatment system are configured for thermal treatment of Superficial Muscular Aponeurosis System (SMAS) tissue, muscular fascia, or both. In one embodiment, a cosmetic system is configured for treating the SMAS and/or muscular fasica through delivery of ultrasound energy at a depth, distribution, timing, and energy level to achieve the desired therapeutic effect.03-21-2013
20130096471SYSTEMS AND METHODS FOR TREATING INJURIES TO JOINTS AND CONNECTIVE TISSUE - According to various embodiments, methods and systems useful for treating injuries to joints are provided herein. In some embodiments, methods and systems useful for permanent relief of pain in joints are provided herein. Various embodiments provide for combining therapeutic ultrasound energy directed to a joint with a medicant injected into the joint.04-18-2013
20130190659METHOD AND SYSTEM FOR ULTRASOUND TREATMENT OF FAT - A method and system for providing ultrasound treatment to a tissue that contains a lower part of dermis and proximal protrusions of fat lobuli into the dermis. An embodiment delivers ultrasound energy to the region creating a thermal injury and coagulating the proximal protrusions of fat lobuli, thereby eliminating the fat protrusions into the dermis. An embodiment can also include ultrasound imaging configurations using the same or a separate probe before, after or during the treatment. In addition various therapeutic levels of ultrasound can be used to increase the speed at which fat metabolizes. Additionally the mechanical action of ultrasound physically breaks fat cell clusters and stretches the fibrous bonds. Mechanical action will also enhance lymphatic drainage, stimulating the evacuation of fat decay products.07-25-2013
20130211258METHODS FOR FACE AND NECK LIFTS - Methods for treating skin and subcutaneous tissue with energy such as ultrasound energy are disclosed. In various embodiments, ultrasound energy is applied at a region of interest to affect tissue by cutting, ablating, micro-ablating, coagulating, or otherwise affecting the subcutaneous tissue to conduct numerous procedures that are traditionally done invasively in a non-invasive manner. Methods of lifting sagging tissue on a face and/or neck are described.08-15-2013
20130231567VISUAL IMAGING SYSTEM FOR ULTRASONIC PROBE - A non-invasive visual imaging system is provided, wherein the imaging system procures an image of a transducer position during diagnostic or therapeutic treatment. In addition, the system suitably provides for the transducer to capture patient information, such as acoustic, temperature, or ultrasonic images. For example, an ultrasonic image captured by the transducer can be correlated, fused or otherwise combined with the corresponding positional transducer image, such that the corresponding images represent not only the location of the transducer with respect to the patient, but also the ultrasonic image of the region of interest being scanned. Further, a system is provided wherein the information relating to the transducer position on a single patient may be used to capture similar imaging planes on the same patient, or with subsequent patients. Moreover, the imaging information can be effectively utilized as a training tool for medical practitioners.09-05-2013
20130274603SYSTEM AND METHOD FOR ULTRA-HIGH FREQUENCY ULTRASOUND TREATMENT - A non-invasive ultra-high frequency ultrasound treatment method and system are provided. An exemplary method and system comprise a high-frequency ultrasound transducer system configured for providing ultrasound treatment to a patient such that the superficial and/or subcutaneous regions of the patient can be treated. An exemplary high-frequency ultrasound transducer system comprises a control system and a transducer configured to provide treatment to the superficial and/or subcutaneous regions of interest. The high-frequency ultrasound transducer may be configured to operate at higher frequencies and controlled power levels to provide treatment to the superficial and/or subcutaneous regions of interest. For example, higher frequencies within the range from approximately 20 MHz to 500 MHz or more may be utilized.10-17-2013
20130281853NONINVASIVE TISSUE TIGHTENING FOR COSMETIC EFFECTS - Systems and methods for noninvasive tissue tightening are disclosed. Thermal treatment of tissues such as superficial muscular aponeurosis system (SMAS) tissue, muscle, adipose tissue, dermal tissue, and combinations thereof are described. In one aspect, a system is configured for treating tissue through delivery of ultrasound energy at a depth, distribution, temperature, and energy level to achieve a desired cosmetic effect.10-24-2013
20130281891NONINVASIVE AESTHETIC TREATMENT FOR TIGHTENING TISSUE - Systems and methods for noninvasive tissue tightening are disclosed. Thermal treatment of tissues such as superficial muscular aponeurosis system (SMAS) tissue, muscle, adipose tissue, dermal tissue, and combinations thereof are described. In one aspect, a system is configured for treating tissue through delivery of ultrasound energy at a depth, distribution, temperature, and energy level to achieve a desired cosmetic effect.10-24-2013
20130296697Imaging, Therapy, and Temperature Monitoring Ultrasonic system and Method - An ultrasonic system useful for providing imaging, therapy and temperature monitoring generally comprises an acoustic transducer assembly configured to enable the ultrasound system to perform the imaging, therapy and temperature monitoring functions. The acoustic transducer assembly comprises a single transducer that is operatively connected to an imaging subsystem, a therapy subsystem and a temperature monitoring subsystem. The ultrasound system may also include a display for imaging and temperature monitoring functions. An exemplary single transducer is configured such that when connected to the subsystems, the imaging subsystem can generate an image of a treatment region on the display, the therapy subsystem can generate high power acoustic energy to heat the treatment region, and the temperature monitoring subsystem can map and monitor the temperature of the treatment region and display the temperature on the display, all through the use of the single transducer. Additionally, the acoustic transducer assembly can be configured to provide three-dimensional imaging, temperature monitoring or therapeutic heating through the use of adaptive algorithms and/or rotational or translational movement. Moreover, a plurality of the exemplary single transducers can be provided to facilitate enhanced treatment capabilities.11-07-2013
20130296700ENERGY-BASED TISSUE TIGHTENING - Systems and methods for noninvasive tissue tightening are disclosed. Thermal treatment of tissues such as superficial muscular aponeurosis system (SMAS) tissue, muscle, adipose tissue, dermal tissue, and combinations thereof are described. In one aspect, a system is configured for treating tissue through delivery of ultrasound energy at a depth, distribution, temperature, and energy level to achieve a desired cosmetic effect.11-07-2013
20130310863ENERGY BASED HYPERHIDROSIS TREATMENT - A method and system for energy-based (e.g., ultrasound treatment and/or other modalities) of sweat glands are provided. An exemplary method and system for targeted treatment of sweat glands can be configured in various manners, such as through use of therapy only, therapy and monitoring, imaging and therapy, or therapy, imaging, and monitoring, and/or through use of focused, unfocused, or defocused ultrasound (or other energy) through control of various spatial and temporal parameters. As a result, ablative energy can be deposited at the particular depth at which the aberrant sweat gland population is located below the skin surface.11-21-2013
20130345562METHODS FOR PREHEATING TISSUE FOR COSMETIC TREATMENT OF THE FACE AND BODY - Methods for treating skin and subcutaneous tissue with energy such as ultrasound energy are disclosed. In various embodiments, ultrasound energy is applied at a region of interest to affect tissue by cutting, ablating, micro-ablating, coagulating, or otherwise affecting the subcutaneous tissue to conduct numerous procedures that are traditionally done invasively in a non-invasive manner. Methods of lifting sagging tissue on a face and/or neck are described. Pretreatment with heat is provided in several embodiments.12-26-2013
20140024974METHODS FOR NONINVASIVE SKIN TIGHTENING - A method and system for noninvasive face lifts and deep tissue tightening are disclosed. An exemplary method and treatment system are configured for the imaging, monitoring, and thermal injury to treat the SMAS region. In accordance with an exemplary embodiment, the exemplary method and system are configured for treating the SMAS region by first, imaging of the region of interest for localization of the treatment area and surrounding structures, second, delivery of ultrasound energy at a depth, distribution, timing, and energy level to achieve the desired therapeutic effect, and third to monitor the treatment area before, during, and after therapy to plan and assess the results and/or provide feedback.01-23-2014
20140082907Thick Film Transducer Arrays - Various embodiments provide processes of fabrication to form acoustically and electrically isolated elements of a transducer array. For example, a cutting means such as use of a dicing saw, a laser, or etching, can be used on a cylindrically-focused transducer to form acoustically and electrically isolated elements of the transducer array.03-27-2014
20140142430METHOD FOR FAT AND CELLULITE REDUCTION - A method and system for providing ultrasound treatment to a tissue that contains a lower part of dermis and proximal protrusions of fat lobuli into the dermis. An embodiment delivers ultrasound energy to the region creating a thermal injury and coagulating the proximal protrusions of fat lobuli, thereby eliminating the fat protrusions into the dermis. An embodiment can also include ultrasound imaging configurations using the same or a separate probe before, after or during the treatment. In addition various therapeutic levels of ultrasound can be used to increase the speed at which fat metabolizes. Additionally the mechanical action of ultrasound physically breaks fat cell clusters and stretches the fibrous bonds. Mechanical action will also enhance lymphatic drainage, stimulating the evacuation of fat decay products.05-22-2014
20140148834METHODS FOR TREATING SKIN LAXITY - A method and system for ultrasound treatment of skin laxity are provided. Methods and systems can include ultrasound imaging of the region of interest for localization of the treatment area, delivering ultrasound energy at a depth and pattern to achieve the desired therapeutic effects, and/or monitoring the treatment area to assess the results and/or provide feedback. The exemplary treatment method and system can be configured for producing arrays of sub-millimeter and larger zones of thermal ablation to treat the epidermal, superficial dermal, mid-dermal and deep dermal components of tissue.05-29-2014
20140180174ENERGY BASED FAT REDUCTION - Methods for non-invasive fat reduction can include targeting a region of interest below a surface of skin, which contains fat and delivering ultrasound energy to the region of interest. The ultrasound energy generates a thermal lesion with said ultrasound energy on a fat cell. The lesion can create an opening in the surface of the fat cell, which allows the draining of a fluid out of the fat cell and through the opening. In addition, by applying ultrasound energy to fat cells to increase the temperature to between 43 degrees and 49 degrees, cell apoptosis can be realized, thereby resulting in reduction of fat.06-26-2014
20140187944NONINVASIVE TISSUE TIGHTENING SYSTEM - Systems and methods for noninvasive tissue tightening are disclosed. Thermal treatment of tissues such as superficial muscular aponeurosis system (SMAS) tissue, muscle, adipose tissue, dermal tissue, and combinations thereof are described. In one aspect, a system is configured for treating tissue through delivery of ultrasound energy at a depth, distribution, temperature, and energy level to achieve a desired cosmetic effect.07-03-2014
20140188015ENERGY-BASED TISSUE TIGHTENING SYSTEM - Systems and methods for noninvasive tissue tightening are disclosed. Thermal treatment of tissues such as superficial muscular aponeurosis system (SMAS) tissue, muscle, adipose tissue, dermal tissue, and combinations thereof are described. In one aspect, a system is configured for treating tissue through delivery of ultrasound energy at a depth, distribution, temperature, and energy level to achieve a desired cosmetic effect.07-03-2014
20140188145SYSTEM FOR NONINVASIVE SKIN TIGHTENING - A method and system for noninvasive face lifts and deep tissue tightening are disclosed. An exemplary method and treatment system are configured for the imaging, monitoring, and thermal injury to treat the SMAS region. In accordance with an exemplary embodiment, the exemplary method and system are configured for treating the SMAS region by first, imaging of the region of interest for localization of the treatment area and surrounding structures, second, delivery of ultrasound energy at a depth, distribution, timing, and energy level to achieve the desired therapeutic effect, and third to monitor the treatment area before, during, and after therapy to plan and assess the results and/or provide feedback.07-03-2014
20140236049SYSTEM AND METHOD FOR VARIABLE DEPTH ULTRASOUND TREATMENT - A non-invasive variable depth ultrasound treatment method and system comprises a variable depth transducer system configured for providing ultrasound treatment to a patient. An exemplary variable depth transducer system can comprise a transducer configured to provide treatment to more than one region of interest, such as between a deep treatment region of interest and a superficial region of interest, and/or a subcutaneous region of interest. The variable depth transducer can comprise a transduction element having a piezoelectrically active layer, matching layers and/or other materials far generating radiation or acoustical energy. The variable depth transducer may be configured to operate at moderate frequencies within the range from approximately 750 kHz to 20 MHz or more. In addition, the transduction element may be configured with a variable depth device comprising one or more materials configured to allow tor control and focusing/defocusing of the acoustic energy to more than one region of interest.08-21-2014
20140243713Methods and Systems for Generating Thermal Bubbles for Improved Ultrasound Imaging and Therapy - A method and system uniquely capable of generating thermal bubbles for improved ultrasound imaging and therapy. Several embodiments of the method and system contemplates the use of unfocused, focused, or defocused acoustic energy at variable spatial and/or temporal energy settings, in the range of about 1 kHz-100 MHz, and at variable tissue depths. The unique ability to customize acoustic energy output and target a particular region of interest makes possible highly accurate and precise thermal bubble formation. In an embodiment, the energy is acoustic energy. In other embodiments, the energy is photon based energy (e.g., IPL, LED, laser, white light, etc.), or other energy forms, such radio frequency electric currents (including monopolar and bipolar radio-frequency current). In an embodiment, the energy is various combinations of acoustic energy, electromagnetic energy and other energy forms or energy absorbers such as cooling.08-28-2014
20140276055REFLECTIVE ULTRASOUND TECHNOLOGY FOR DERMATOLOGICAL TREATMENTS - Embodiments of a dermatological cosmetic treatment and imaging system and method can include use of transducer and a reflective surface to simultaneously produce multiple cosmetic treatment zones in tissue. The system can include a hand wand, a removable transducer module, a control module, a graphical user interface and/or a parabolic reflector. In some embodiments, the cosmetic treatment system may be used in cosmetic procedures, including brow lifts, fat reduction, sweat reduction, and treatment of the décolletage. Skin tightening, lifting and amelioration of wrinkles and stretch marks are provided.09-18-2014
20140323864Medical System Having an Ultrasound Source and an Acoustic Coupling Medium - An ultrasound medical system has an end effector including a medical ultrasound transducer and an acoustic coupling medium. The acoustic coupling medium has a transducer-proximal surface and a transducer-distal surface. The medical ultrasound transducer is positioned to emit medical ultrasound through the acoustic coupling medium from the transducer-proximal surface to the transducer-distal surface. The end effector is adapted to change a property (such as the shape and/or the temperature) of the acoustic coupling medium during emission, and/or between emissions, of medical ultrasound from the medical ultrasound transducer during a medical procedure on a patient. In one example, such changes are used to change the focus and/or beam angle of the emitted ultrasound during the medical procedure.10-30-2014
20150025420ULTRASOUND TREATMENT DEVICE AND METHODS OF USE - A method can include targeting a region of interest below a surface of skin, which contains fat lobuli and delivering ultrasound energy to the region of interest. The ultrasound energy generates a conformal lesion with said ultrasound energy on a surface of a fat lobuli. The lesion creates an opening in the surface of the fat lobuli, which allows the draining of a fluid out of the fat lobuli and through the opening. In addition, by applying ultrasound energy to fat cells to increase the temperature to between 43° C. and 49° C. degrees, cell apoptosis can be realized, thereby resulting in reduction of fat.01-22-2015
20150080723METHODS FOR FACE AND NECK LIFTS - Methods for treating skin and subcutaneous tissue with energy such as ultrasound energy are disclosed. In various embodiments, ultrasound energy is applied at a region of interest to affect tissue by cutting, ablating, micro-ablating, coagulating, or otherwise affecting the subcutaneous tissue to conduct numerous procedures that are traditionally done invasively in a non-invasive manner. Methods of lifting sagging tissue on a face and/or neck are described.03-19-2015
20150080771Methods and Systems for Ultrasound Treatment - A method and system for ultrasound treatment are provided. Acoustic energy, including ultrasound, can serve as input energy to a mask with apertures, such apertures acting as secondary acoustic sources to create a modulated output acoustic energy in a treatment region and treatment effects. Under proper control output energy can be precisely placed and controlled in tissue. In some embodiments, methods and systems are configured for ultrasound treatment based on creating an output energy distribution in tissue. In some embodiments, methods and systems are configured based on creating an output temperature distribution in tissue.03-19-2015
20150080874SYSTEM AND METHOD FOR FAT AND CELLULITE REDUCTION - A method and system for providing ultrasound treatment to a tissue that contains a lower part of dermis and proximal protrusions of fat lobuli into the dermis. An embodiment delivers ultrasound energy to the region creating a thermal injury and coagulating the proximal protrusions of fat lobuli, thereby eliminating the fat protrusions into the dermis. An embodiment can also include ultrasound imaging configurations using the same or a separate probe before, after or during the treatment. In addition various therapeutic levels of ultrasound can be used to increase the speed at which fat metabolizes. Additionally the mechanical action of ultrasound physically breaks fat cell clusters and stretches the fibrous bonds. Mechanical action will also enhance lymphatic drainage, stimulating the evacuation of fat decay products.03-19-2015
20150088040METHOD AND SYSTEM FOR TREATING STRETCH MARKS - Methods and systems for treating stretch marks through deep tissue tightening with ultrasound are provided. An exemplary method and system comprise a therapeutic ultrasound system configured for providing ultrasound treatment to a shallow tissue region, such as a region comprising an epidermis, a dermis and a deep dermis. In accordance with various exemplary embodiments, a therapeutic ultrasound system can be configured to achieve depth from 0 mm to 1 cm with a conformal selective deposition of ultrasound energy without damaging an intervening tissue in the range of frequencies from 2 to 03-26-2015
20150088182ENERGY BASED FAT REDUCTION - Methods for non-invasive fat reduction can include targeting a region of interest below a surface of skin, which contains fat and delivering ultrasound energy to the region of interest. The ultrasound energy generates a thermal lesion with said ultrasound energy on a fat cell. The lesion can create an opening in the surface of the fat cell, which allows the draining of a fluid out of the fat cell and through the opening. In addition, by applying ultrasound energy to fat cells to increase the temperature to between 43 degrees and 49 degrees, cell apoptosis can be realized, thereby resulting in reduction of fat.03-26-2015

Patent applications by Peter G. Barthe, Phoenix, AZ US

Website © 2015 Advameg, Inc.