Patent application number | Description | Published |
20080206598 | Light-emitting element using spirofluorene derivative and electronic appliance - It is an object to provide a light-emitting element with high luminous efficiency by using a hole transporting substance with a sufficiently high T | 08-28-2008 |
20080231177 | Light-Emitting Device and Electronic Device - The present invention provides light-emitting devices having excellent characteristics and electronic devices having excellent characteristics, having such light-emitting devices. Specifically, the present invention provides a light-emitting device includes a first light-emitting element, a second light-emitting element, and a third light-emitting element which emit light having different color from each other. The first light-emitting element includes a first anode; a first cathode; and a first light-emitting layer and a second light-emitting layer between the first anode and the first cathode, wherein the first light-emitting layer includes a first high light-emitting substance and a first organic compound, and the second light-emitting layer includes the first high light-emitting substance and a second organic compound, wherein the first light-emitting layer is in contact with the first anode side of the second light-emitting layer, and wherein the first organic compound is an organic compound having a hole-transporting property and the second organic compound is an organic compound having an electron-transporting property. The second light-emitting element includes a second anode; a second cathode; and a third light-emitting layer and a layer for controlling carrier transfer between the second anode and the second cathode, wherein the third light-emitting layer includes a second high light-transmitting substance, wherein the layer for controlling carrier transfer includes a third organic compound and a fourth organic compound, and is provided between the third light-emitting layer and the second cathode, wherein the third organic compound is an organic compound having an electron-transporting property and the fourth organic compound is an organic compound having an electron-trapping property; and wherein the third organic compound is included more than the fourth organic compound in the layer for controlling carrier transfer. The third light-emitting element includes a third anode; a third cathode; and a fourth light-emitting layer, wherein the fourth light-emitting layer includes a fifth organic compound, a sixth organic compound, and a third high light-emitting substance, wherein the fifth organic compound is an organic compound having a hole-transporting property, and the sixth organic compound is an organic compound having an electron-transporting property, and wherein the third high light-emitting substance is a substance which emits phosphorescence. | 09-25-2008 |
20080242871 | Organic compound, anthracene derivative, and light-emitting element, light-emitting device, and electronic device using anthracene derivative - Objects of the present invention are to provide novel anthracene derivatives and novel organic compounds; a light-emitting element that has high emission efficiency; a light-emitting element that is capable of emitting blue light with high luminous efficiency; a light-emitting element that is capable of operation for a long time; and a light-emitting device and an electronic device that have lower power consumption. An anthracene derivative represented by a general formula (1) and an organic compound represented by a general formula (17) are provided. A light-emitting element that has high emission efficiency can be obtained by use of the anthracene derivative represented by the general formula (1). Further, a light-emitting element that has a long life can be obtained by use of the anthracene derivative represented by the general formula (1). | 10-02-2008 |
20080261075 | Light Emitting Element, Light Emitting Device, and Electronic Device - The present invention provides a light emitting element which includes an electron transporting layer and a hole transporting layer between an anode and a cathode, and a first layer and a second layer between the electron transporting layer and the hole transporting layer, wherein the first layer includes a first organic compound and an organic compound having a hole transporting property, the second layer includes a second organic compound and an organic compound having an electron transporting property, the first layer is formed in contact with the anode side of the second layer, the first organic compound and the second organic compound are the same compound, and at least one of either the organic compound having a hole transporting property and the organic compound having an electron transporting property is a high molecular compound. | 10-23-2008 |
20080268284 | ORGANIC COMPOUND, ANTHRACENE DERIVATIVE, AND LIGHT-EMITTING ELEMENT, LIGHT-EMITTING DEVICE, AND ELECTRONIC DEVICE IN WHICH THE ANTHRACENE DERIVATIVE IS USED - An anthracene derivative represented by a general formula (1) and an organic compound represented by a general formula (8) are provided. Further, by use of the anthracene derivative represented by the general formula (1), a light-emitting element with high emission efficiency can be obtained. Furthermore, by use of the anthracene derivative represented by the general formula (1), a light-emitting element that emits blue light with high color purity can be obtained. | 10-30-2008 |
20080286607 | Triazole derivative, and light-emitting device, and electronic device with the use of triazole derivative - It is an object of the present invention to provide a novel triazole derivative. Further, it is another object of the present invention to provide a light-emitting element having high luminous efficiency with the use of the novel triazole derivative. Moreover, it is still another object of the present invention to provide a light-emitting device and electronic devices which have low power consumption. A light-emitting element having high luminous efficiency can be manufactured with the use of a triazole derivative which is a 1,2,4-triazole derivative, in which an aryl group or a heteroaryl group is bonded to each of 3-position, 4-position, and 5-position, and in which any one of the aryl group or heteroaryl group has a 9H-carbazol-9-yl group. | 11-20-2008 |
20080305361 | Organometallic Complex, and Light-Emitting Material, Light-Emitting Element, Light-Emitting Device and Electronic Device - The present invention provides a novel organometallic complex which emits green phosphorescence so as to enrich variations of phosphorescent materials for green color which is one of three primary colors. An organometallic complex comprising a structure represented by a general formula (G1) is provided. | 12-11-2008 |
20080312437 | Organometallic Complex, and Light-Emitting Element, Light-Emitting Device, and Electronic Device Using the Organometallic Complex - According to the present invention, a wider variation of organometallic complexes that can emit phosphorescence can be provided by applying, as a ligand, an organic compound from which a variety of derivatives can be easily synthesized. In particular, an organometallic complex having a sharp emission spectrum is provided. Further, an organometallic complex having high emission efficiency is provided. An organometallic complex represented by the general formula (G1) is provided. In the formula, Ar represents an aryl group, R represents an alkoxy group having 1 to 4 carbon atoms, and R | 12-18-2008 |
20090004506 | Anthracene Derivatives and Light-Emitting Devices Using the Anthracene Derivatives - The present invention provides novel anthracene derivatives. In particular, the present invention provides light-emitting elements with high luminous efficiency, and light-emitting elements with long lifetime. Further, the present invention provides light-emitting devices and electronic devices having long lifetime by using these light-emitting elements. An anthracene derivative represented by the general formula (1) is provided. In addition, since the anthracene derivative represented by the general formula (1) has high luminous efficiency, a light-emitting element using the anthracene derivative represented by the general formula (1) can also have high luminous efficiency. By using the anthracene derivative represented by the general formula (1), light-emitting elements with long lifetime can be provided. | 01-01-2009 |
20090009107 | LIGHT-EMITTING DEVICE, ELECTRONIC DEVICE, AND DRIVING METHOD OF LIGHT-EMITTING DEVICE - An object is to provide a novel driving method of a light-emitting element, particularly, an organic EL element. Another object is to provide a light-emitting device having a light-emitting element for which the driving method is employed and an electronic device having the light-emitting device as a display portion. A light-emitting device is provided, which includes: a pixel portion having a light-emitting element; a control switch connected to the pixel portion; and a sensor portion connected to the control switch. The control switch includes a unit configured to determine whether the light-emitting element emits light depending on an ambient temperature that is sensed by the sensor portion. | 01-08-2009 |
20090072718 | Quinoxaline derivative, and light-emitting element, light-emitting device, and electronic device including quinoxaline derivative - An object of the present invention is to provide a quinoxaline derivative represented by a general formula (1). Ar | 03-19-2009 |
20090140643 | LIGHT-EMITTING ELEMENT, LIGHT-EMITTING DEVICE, AND ELECTRONIC DEVICE - A light-emitting element having high emission efficiency and long lifetime is provided. By manufacturing a light-emitting device using the light-emitting element, the light-emitting device having low power consumption and long lifetime is provided. The light-emitting element is manufactured in which a light-emitting layer is included between a first electrode serving as an anode and a second electrode serving as a cathode. The light-emitting layer includes a first organic compound having a hole-transporting property, a second organic compound having an electron-transporting property, and an organometallic complex including a dibenzo[f,h]quinoxaline skeleton as a ligand. Further, a light-emitting device is manufactured using the light-emitting element. | 06-04-2009 |
20090140644 | Quinoxaline Derivative, and Light-Emitting Element, Light-Emitting Device, and Electronic Device Using the Same - The present invention provides a quinoxaline derivative rerpesented by a general formula (G1). In the formula, α | 06-04-2009 |
20090146558 | Stilbene Derivatives, Light-Emitting Element and Light-Emitting Device - The present invention provides a novel substance having an excellent color purity of blue, a light-emitting element and a light-emitting device using the novel substance. A stilbene derivative has a structure shown by the general formula (1). In the general formula (1), R | 06-11-2009 |
20090153041 | Quinoxaline Derivative, and Light Emitting Element, Light Emitting Device and Electronic Appliance Using the Same - A quinoxaline-based, new bipolar organic compound is provided, and a light emitting element using the quinoxaline-based compound is demonstrated. The quinoxaline derivative of the invention has a structure in which carbon at one or both of the 2-position and the 3-position of the quinoxaline unit are bonded, via an arylene group, with an amine unit which has a substituted or unsubstituted five-membered ring or a substituted or unsubstituted condensed ring containing a five-membered ring structure. The quinoxaline-based compound was proven to possess bipolar characteristics in view of carrier transportation, which allows the fabrication of a light emitting element and an electronic appliance with a low driving voltage and low power consumption. | 06-18-2009 |
20090160324 | Triazole Derivative, Light-Emitting Element, Light-Emitting Device, and Electronic Device - A substance having high excitation energy is provided. In particular, a substance having high triplet excitation energy is provided. Further, a light-emitting element, a light-emitting device, and an electronic device each having high emission efficiency and low driving voltage are provided. A triazole derivative to which an amino group is bonded is provided. In addition, a light-emitting element, a light-emitting device, and an electronic device each including the triazole derivative to which the amino group is bonded are provided. | 06-25-2009 |
20090168048 | Evaluation Method and Manufacturing Method of Light-Emitting Element Material, Manufacturing Method of Light-Emitting Element, and Light-Emitting Device And Electric Appliance Having Light-Emitting Element - The present invention provides an evaluation method for evaluating whether a light-emitting element material to be evaluated is suitable for a host material or a guest material. By carrying out a first step of measuring absorption intensity of a light-emitting element material and a second step of irradiating the light-emitting element material with light for a predetermined period of time, repeatedly; thereby a change in absorption intensity with time is evaluated so that whether the light-emitting material is suitable for a host material or a guest material can be distinguished. The light emitted to the light-emitting element material preferably has a wavelength component which is absorbed by a skeleton which contributes to excitation of the light-emitting element material. | 07-02-2009 |
20090174321 | ANTHRACENE DERIVATIVE, AND LIGHT-EMITTING MATERIAL, LIGHT-EMITTING ELEMENT, LIGHT-EMITTING DEVICE, AND ELECTRONIC DEVICE USING THE SAME - Novel anthracene derivatives, novel materials capable of blue light emission with high color purity, and a light-emitting element, a light-emitting device, and an electronic device using any of the novel materials. The anthracene derivative represented by general formula (1) is provided. With the anthracene derivative, a light-emitting element with high emission efficiency can be provided. With the anthracene derivative, a light-emitting element emitting blue light with high color purity can be provided. | 07-09-2009 |
20090236590 | Light-Emitting Element, Light-Emitting Device and Electronic Device - A light-emitting element with improved emission efficiency is provided. The light-emitting element includes a light-emitting layer in which a first light-emitting layer and a second light-emitting layer are stacked in contact with each other over an anode, and a first substance serving as an emission center substance in the second light-emitting layer constitutes the first light-emitting layer. A second substance serving as a host material to disperse the first substance serving as an emission center substance is included in the second light-emitting layer. In the light-emitting element, the second substance is a substance having an energy gap (or triplet energy) larger than the first substance. | 09-24-2009 |
20090236980 | Light-Emitting Element, Light-Emitting Device and Electronic Device - A light-emitting element with improved emission efficiency is provided. The light-emitting element includes a light-emitting layer in which a first light-emitting layer and a second light-emitting layer are stacked in contact with each other over an anode, and a first substance serving as an emission center substance in the second light-emitting layer is the same as a main substance in the first light-emitting layer. Note that a second substance is added to the first light-emitting layer for stabilization of film quality, and a third substance serving as a host material to disperse the first substance serving as an emission center substance is included in the second light-emitting layer. In the light-emitting element, the second substance and the third substance are substances having energy gaps (or triplet energy) larger than the first substance. | 09-24-2009 |
20090253916 | Anthracene Derivative, Light-Emitting Material, Material for Light-Emitting Element, Composition for Coating, Light-Emitting Element, Light-Emitting Device, and Electronic Appliance - A novel anthracene derivative with a large energy gap is provided. An anthracene derivative represented by General Formula (G1) below is provided. In the formula, Ar | 10-08-2009 |
20090267497 | Anthracene Derivative, Light-Emitting Material, Material for Light-Emitting Element, Composition for Coating, Light-Emitting Element, Light-Emitting Device, and Electronic Device - An anthracene derivative represented by the general formula (G1) is provided. The anthracene derivative represented by the general formula (G1) is a novel anthracene derivative having a wide band gap. Further, the anthracene derivative has a large energy gap and can be very suitably used as a material for a light-emitting element which exhibits blue light emission. | 10-29-2009 |
20090267498 | Anthracene Derivative, Light-Emitting Element, Light-Emitting Device, and Electronic Appliance - Novel anthracene derivatives are provided. Further, a light-emitting element, a light-emitting device, and an electronic appliance each using the novel anthracene derivative are provided. Anthracene derivatives represented by general formulae (G11) and (G21) are provided. The anthracene derivatives represented by the general formulae (G11) and (G21) each emit blue light with high color purity and have a carrier-transporting property. Therefore, each of the anthracene derivatives represented by the general formulae (G11) and (G21) is suitable for use in a light-emitting element, a light-emitting device, and an electronic appliance. | 10-29-2009 |
20090283757 | LIGHT-EMITTING ELEMENT, LIGHT-EMITTING DEVICE, AND ELECTRONIC DEVICE - Disclosed is a light-emitting element with a good carrier balance and manufacturing method thereof which does not require the formation of the heterostructure. The light-emitting element includes an organic compound film containing a first organic compound as the main component (base material) between an anode and a cathode, wherein the organic compound film is provided in contact with the anode and with the cathode. The first organic compound further includes a light-emitting region to which a light-emitting substance is added and includes a hole-transport region to which a hole-trapping substance is added and/or an electron-transport region to which an electron-trapping substance is added. The hole-transport region is located between the light-emitting region and the anode, and the electron-transport region is located between the light-emitting region and the cathode. | 11-19-2009 |
20090284140 | Triarylamine Derivative, Light-Emitting Substance, Light-Emitting Element, Light-Emitting Device, and Electronic Device - A triarylamine derivative represented by a general formula (G1) given below is provided. Note that in the formula, Ar represents either a substituted or unsubstituted phenyl group or a substituted or unsubstituted biphenyl group; α represents a substituted or unsubstituted naphthyl group; β represents either hydrogen or a substituted or unsubstituted naphthyl group; n and m each independently represent 1 or 2; and R | 11-19-2009 |
20100001638 | AROMATIC AMINE COMPOUND, AND LIGHT-EMITTING ELEMENT, LIGHT-EMITTING DEVICE, AND ELECTRONIC APPLIANCE USING THE AROMATIC AMINE COMPOUND - An object of the present invention is to provide a novel aromatic amine compound, and a light-emitting element, a light-emitting device, and an electronic appliance with high luminous efficiency. An aromatic amine compound expressed by General Formula (1) and a light-emitting element, a light-emitting device, and an electronic appliance formed using the aromatic amine compound expressed by General Formula (1) are provided. By the use of the aromatic amine compound expressed by General Formula (1), the light-emitting element, the light-emitting device, and the electronic appliance can have high luminous efficiency. | 01-07-2010 |
20100051926 | Anthracene Derivative, Material for Light-Emitting Element, Light-Emitting Element, Light-Emitting Device, and Electronic Appliance - An anthracene derivative represented by general formula (1) is provided. In the formula, Ar | 03-04-2010 |
20100059741 | Light-Emitting Element, Light-Emitting Device, and Electronic Device - To provide a light-emitting element with high light emission efficiency, a long lifetime, and reduced driving voltage. To provide a light-emitting element including an anode, a cathode, and a plurality of light-emitting layers which are in contact with each other so that a stacked structure is formed, between the anode and the cathode, in which the plurality of light-emitting layers are formed with a first light-emitting layer which is close to the anode and a second light-emitting layer which is close to the cathode, the first light-emitting layer and the second light-emitting layer each include a host material, a hole-transporting material, and a light-emitting material, and the concentration of the hole-transporting material in the first light-emitting layer is higher than the concentration of the hole-transporting material in the second light-emitting layer. | 03-11-2010 |
20100060154 | Benzoxazole Derivative, and Light-Emitting Element, Light-Emitting Device, and Electronic Device Using Benzoxazole Derivative - Disclosed is a novel benzoxazole derivative which has high excitation energy, particularly high triplet excitation energy, and is a bipolar substance. A benzoxazole derivative represented by the following General Formula (G1) is provided. | 03-11-2010 |
20100060155 | Organic Semiconductor Material and Light-Emitting Element, Light-Emitting Device, Lighting System, and Electronic Device Using the Same - Disclosed is a novel organic semiconductor material which has a twisted quaterphenylene skeleton as a central unit and simultaneously possesses a skeleton having an electron-transporting property and a skeleton having a hole-transporting property at the terminals of the quaterphenylene skeleton. Specifically, the organic semiconductor material has a [1,1′:2′,1″:2″,1′″]quaterphenyl-4-4′″-diyl group, and one of the terminals of the [1,1′:2′,1″:2″,1′″]quaterphenyl-4-4′″-diyl group is bonded to a skeleton having an electron-transporting property such as a benzoxazole group or an oxadiazole group. A skeleton having a hole-transporting property such as diarylamino group is introduced at the other terminal. This structure allows the formation of a compound having a bipolar property, a high molecular weight, an excellent thermal stability, a large band gap, and high triplet excitation energy. | 03-11-2010 |
20100069647 | Carbazole Derivative, Light-Emitting Element Material, Light-Emitting Element, and Light-Emitting Device - An object is to provide a carbazole derivative which has a wide band gap and with which excellent blue color purity is obtained. In addition, another object is to provide highly reliable light-emitting elements, light-emitting devices, lighting devices, and electronic devices in which the carbazole derivative is used. Carbazole derivatives represented by the general formulas (1), (P1), and (M1) are provided. Further, light-emitting elements, light-emitting devices, and electronic devices which are formed using the carbazole derivative represented any of the general formulas (1), (P1), and (M1) are provided. | 03-18-2010 |
20100076201 | Carbazole Derivative and Method for Producing the Same - To provide a method for producing a wide variety of carbazole derivatives which have a simple and uncomplicated process and in which variations in the yield, purity, etc. of a desired substance which are caused by an aryl group introduced is reduced as much as possible. A method for producing a carbazole derivative represented by General Formula (1) is provided, in which 9-[4-(10-phenyl-9-anthryl)phenyl]-9H-carbazole having an active site at the 3-position of the carbazole skeleton and an aromatic compound having an active site are coupled. | 03-25-2010 |
20100079066 | Triazole Derivative, and Light-Emitting Element, Light-Emitting Device, and Electronic Device Using Triazole Derivative - A novel triazole derivative which has a large energy gap and can be used for electron-transporting layer of a light-emitting element or as a host material. In addition, a light-emitting element which has higher emission efficiency by using the novel triazole derivative. Furthermore, a low power consumption light-emitting device and electronic device. | 04-01-2010 |
20100123127 | Light-Emitting Element and Light-Emitting Device - To provide a light-emitting element, a light-emitting device, and an electronic device each formed using the organometallic complex represented by General Formula (G1) as a guest material and a low molecule compound as a host material. | 05-20-2010 |
20100133498 | MEMORY DEVICE AND SEMICONDUCTOR DEVICE - A memory device has a pair of conductive layers and an organic compound having a liquid crystal property that is interposed between the pair of conductive layers. Data is recorded in the memory device by applying a first voltage to the pair of conductive layers and heating the organic compound, to cause a phase change of the organic compound from a first phase to a second phase. | 06-03-2010 |
20100133523 | LIGHT-EMITTING ELEMENT, LIGHT-EMITTING DEVICE, ELECTRONIC DEVICE, AND LIGHTING DEVICE - Light-emitting elements in which an increase of driving voltage can be suppressed are provided. Light-emitting devices whose power consumption is reduced by including such light-emitting elements are also provided. In a light-emitting element having an EL layer between an anode and a cathode, a first layer in which carriers can be produced is formed between the cathode and the EL layer and in contact with the cathode, a second layer which transfers electrons produced in the first layer is formed in contact with the first layer, and a third layer which injects the electrons received from the second layer into the EL layer is formed in contact with the second layer. | 06-03-2010 |
20100133573 | LIGHT-EMITTING ELEMENT, LIGHT-EMITTING DEVICE, LIGHTING DEVICE, AND ELECTRONIC DEVICE - An object is to provide a light-emitting element which exhibits light emission with high luminance and can be driven at low voltage. Another object is to provide a light-emitting device or an electronic device with reduced power consumption. Between an anode and a cathode, n (n is a natural number of two or more) EL layers are provided, where between a first EL layer and a second EL layer, a first layer containing any of an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal compound, an alkaline earth metal compound, and a rare earth metal compound, a second layer containing a material having a high electron-transporting property in contact with the first layer, and a region containing a material having a high hole-transporting property and an acceptor material in contact with the second layer are provided in this order from the anode side. | 06-03-2010 |
20100141130 | QUINOXALINE DERIVATIVE, AND LIGHT-EMITTING ELEMENT, LIGHT-EMITTING DEVICE, ELECTRONIC DEVICE USING THE QUINOXALINE DERIVATIVE - It is an object to provide a novel bipolar organic compound. In particular, it is an object to provide a bipolar organic compound excellent in thermal stability. Further, it is another object to provide a bipolar organic compound which is electrochemically stable. A quinoxaline derivative represented by a general formula (1) is provided. Further, since the quinoxaline derivative represented by the general formula (1) is bipolar, the use of the quinoxaline derivative of the present invention allows fabrication of a light-emitting element and a light-emitting device with a low driving voltage and low power consumption. Furthermore, a light-emitting element with high luminous efficiency can be obtained. | 06-10-2010 |
20100145044 | Organometallic Complex and Light-Emitting Element, Light-Emitting Device, and Electronic Device Using the Same - An organometallic complex having a structure represented by the general formula (G1) is synthesized and applied to a light-emitting element. | 06-10-2010 |
20100148165 | Light-Emitting Element, Light-Emitting Device, and Electronic Device - A light-emitting element includes a light-emitting layer having a two-layer structure in which a first light-emitting layer containing a first light-emitting substance and a second light-emitting layer containing a second light-emitting substance, which is in contact with the first light-emitting layer, are provided between an anode and a cathode. The first light-emitting layer is separated into two layers of a layer provided on the anode side and a layer provided on the cathode side. The layer provided on the anode side contains only a first light-emitting substance, or a first organic compound of less than 50 wt % and the first light-emitting substance of 50 wt % to 100 wt %. The layer provided on the cathode side contains a second organic compound and the first light-emitting substance. The second light-emitting layer, which is provided in contact with the first light-emitting layer, contains the second light-emitting substance and a third organic compound. | 06-17-2010 |
20100148166 | Light-Emitting Element, Lighting Device, Light-Emitting Device, and Electronic Apparatus - The light-emitting element comprises a first electrode, a second electrode, and a light-emitting layer between the first electrode and the second electrode, in which a first layer, a second layer, and a third layer are stacked from the first electrode side, the first layer contains a first light-emitting substance and a first organic compound, the second layer contains a second light-emitting substance and a second organic compound, the third layer contains the first light-emitting substance and a third organic compound, the amount of the first light-emitting substance is larger than the amount of the first organic compound, the amount of the second organic compound is larger than the amount of the second light-emitting substance, and the amount of the third organic compound is larger than the amount of the first light-emitting substance. A light-emitting element with such a structure can have high emission efficiency. | 06-17-2010 |
20100181905 | Organometallic Complex, and Light-Emitting Element, Light-Emitting Device, Electronic Device, and Lighting Device Using the Organometallic Complex - To provide a novel organometallic complex capable of emitting phosphorescence by using an organic compound with which a variety of derivatives can be easily synthesized as a ligand. In addition, to provide an organometallic complex which exhibits red emission. To provide an organometallic complex formed by ortho-metalation of an m-alkoxyphenyl pyrazine derivative represented by General Formula (G0) below with respect to an ion of a metal belonging to Group 9 or Group 10. In addition, to provide an organometallic complex which exhibits red emission formed by ortho-metalation of an m-alkoxyphenyl pyrazine derivative represented by General Formula (G0) below with respect to an ion of a metal belonging to Group 9 or Group 10. | 07-22-2010 |
20100190312 | SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - To provide a semiconductor device which is higher functional and reliable and a technique capable of manufacturing the semiconductor device with a high yield at low cost without complexing the apparatus or process. At least one of a first conductive layer and a second conductive layer is formed containing one kind or plural kinds of indium, tin, lead, bismuth, calcium, manganese, or zinc; or oxidation treatment is performed at least one of interfaces between an organic compound layer and the first conductive layer and between the organic compound layer and the second conductive layer. The first conductive layer, the organic compound layer, and the second conductive layer which are formed over a first substrate with a peeling layer interposed therebetween can be peeled from the first substrate with the peeling layer, and transposed to a second substrate. | 07-29-2010 |
20100200847 | ORGANIC COMPOUND, ANTHRACENE DERIVATIVE, AND LIGHT-EMITTING ELEMENT, LIGHT-EMITTING DEVICE, AND ELECTRONIC DEVICE USING ANTHRACENE DERIVATIVE - Objects of the present invention are to provide novel anthracene derivatives and novel organic compounds; a light-emitting element that has high emission efficiency; a light-emitting element that is capable of emitting blue light with high luminous efficiency; a light-emitting element that is capable of operation for a long time; and a light-emitting device and an electronic device that have lower power consumption. An anthracene derivative represented by a general formula (1) and an organic compound represented by a general formula (17) are provided. A light-emitting element that has high emission efficiency can be obtained by use of the anthracene derivative represented by the general formula (1). Further, a light-emitting element that has a long life can be obtained by use of the anthracene derivative represented by the general formula (1). | 08-12-2010 |
20100207517 | Oxadiazole Derivative, and Light-Emitting Element and Light-Emitting Device Using Oxadiazole Derivative - An object is to provide a novel oxadiazole derivative that has high excitation energy, particularly high triplet excitation energy, or to provide a new oxadiazole derivative that is a bipolar substance. An oxadiazole derivative represented by General Formula (G1) is provided. In the formula, R | 08-19-2010 |
20100237339 | Carbazole Derivative with Heteroaromatic Ring, and Light-Emitting Element, Light-Emitting Device, and Electronic Device Using Carbazole Derivative with Heteroaromatic Ring - Disclosed is a carbazole derivative and a light-emitting element, a light-emitting device, and an electronic device using thereof. The carbazole derivative possesses an oxadiazole moiety or a quinoxaline moiety as a heteroaromatic ring having an electron-transporting property and a carbazole moiety having a hole-transporting property. The ability of the carbazole derivative to transport both electrons and holes and its large excitation energy larger than a triplet excitation energy of a phosphorescent compound allow the formation of a phosphorescent light-emitting element having well-controlled carrier balance, which contributes to the formation of light-emitting devices and electronic devices that are capable of being driven at a low voltage, have a long lifetime, and consume low power. The detailed structure of the carbazole derivative is defined in the specification. | 09-23-2010 |
20100237773 | Carbazole Derivative with Heteroaromatic Ring, and Light-Emitting Element, Light-Emitting Device, and Electronic Device Using Carbazole Derivative with Heteroaromatic Ring - Disclosed is a carbazole derivative and a light-emitting element, a light-emitting device, and an electronic device using thereof. The carbazole derivative possesses an oxadiazole moiety or a quinoxaline moiety as a heteroaromatic ring having an electron-transporting property and a carbazole moiety having a hole-transporting property. The ability of the carbazole derivative to transport both electrons and holes and its large excitation energy larger than a triplet excitation energy of a phosphorescent compound allow the formation of a phosphorescent light-emitting element having well-controlled carrier balance, which contributes to the formation of light-emitting devices and electronic devices that are capable of being driven at a low voltage, have a long lifetime, and consume low power. The detailed structure of the carbazole derivative is defined in the specification. | 09-23-2010 |
20100240902 | Oxadiazole Derivative, Light-Emitting Element Material, Light-Emitting Element, Light-Emitting Device, and Electronic Device - An object is to provide a novel material having a bipolar property. Another object is to provide an oxadiazole derivative having a wide band gap. Another object is to reduce power consumption of a light-emitting element, a light-emitting device, and an electronic device. The present invention provides an oxadiazole derivative represented by General Formula (1). In the formula, Ar | 09-23-2010 |
20100243959 | Derivative With Heteroaromatic Ring, and Light-Emitting Element, Light-Emitting Device, Lighting Device, and Electronic Device Using Derivative With Heteroaromatic Ring - A derivative with a heteroaromatic ring represented by General Formula (G1) is provided. R | 09-30-2010 |
20100244669 | OXADIAZOLE DERIVATIVE, LIGHT-EMITTING ELEMENT, DISPLAY DEVICE, LIGHTING DEVICE, AND ELECTRONIC DEVICE - Provided is a bipolar substance having high excitation energy, in particular, high triplet-excitation energy. An oxadiazole derivative represented by General Formula (G1) below is provided | 09-30-2010 |
20100244670 | Heterocyclic Compound and Light-Emitting Element, Light-Emitting Device, Lighting Device, and Electronic Device Using the Same - To provide a novel heterocyclic compound having a bipolar property. To improve element characteristics of a light-emitting element by application of the novel heterocyclic compound to the light-emitting element. A heterocyclic compound represented by a general formula (G1) and a light-emitting element formed using the heterocyclic compound represented by the general formula (G1) are provided. When the heterocyclic compound represented by the general formula (G1) is used for the light-emitting element, the characteristics of the light-emitting element can be improved. | 09-30-2010 |
20100244671 | Quinoxaline Derivative, and Light-Emitting Element, Light-Emitting Device, Lighting Device, and Electronic Device Using Quinoxaline Derivative - A quinoxaline derivative represented by General Formula (G1) is provided. The quinoxaline derivative is bipolar and has excellent electron-transporting and hole-transporting properties. Also, the quinoxaline derivative has a high glass transition temperature and excellent thermal stability. By using the quinoxaline derivative, a light-emitting element and a light-emitting device with high efficiency can be obtained. | 09-30-2010 |
20100244672 | Heterocyclic Compound, and Light-Emitting Element, Light-Emitting Device, Lighting Device, and Electronic Appliance Using Heterocyclic Compound - An object is to provide a novel heterocyclic compound having a bipolar property. Another object is to provide a light-emitting element, a light-emitting device, and an electronic appliance each having high emission efficiency. A heterocyclic compound represented by a general formula (G1), a light-emitting element, a light-emitting device, and an electronic appliance each formed using the heterocyclic compound represented by the general formula (G1) are provided. By use of the heterocyclic compound represented by the general formula (G1) to a light-emitting element, a light-emitting device, and an electronic appliance, the light-emitting element, the light-emitting device, and the electronic appliance can each have high emission efficiency. | 09-30-2010 |
20100244674 | Triazole Derivative, and Light-Emitting Element, Light-Emitting Device, Lighting Device, and Electronic Device Using Triazole Derivative - An object is to provide a novel triazole derivative having a bipolar property. Another object is to provide a light-emitting element, a light-emitting device, and an electronic device each having high emission efficiency. A triazole derivative represented by a general formula (G1), a light-emitting element, a light-emitting device, and an electronic device each formed using the triazole derivative represented by the general formula (G1) are provided. By use of the triazole derivative represented by the general formula (G1) for the light-emitting element, the light-emitting device, and the electronic device, the light-emitting element, the light-emitting device, and the electronic device each having high emission efficiency can be provided. | 09-30-2010 |
20100301316 | LIGHT-EMITTING ELEMENT, LIGHT-EMITTING DEVICE, ELECTRONIC DEVICE, AND LIGHTING DEVICE - An object is to provide a light-emitting element in which suppression of a drive voltage increase is achieved. Another object is to provide a light-emitting device that has reduced power consumption by including such a light-emitting element. In a light-emitting element having an EL layer between an anode and a cathode, between the cathode and the EL layer, a first layer capable of carrier generation is formed in contact with the cathode, a second layer which accepts and transports the electrons generated in the first layer is formed in contact with the first layer, and a third layer which injects the electrons accepted from the second layer into the EL layer is formed in contact with the second layer. | 12-02-2010 |
20100301317 | LIGHT-EMITTING ELEMENT, LIGHT-EMITTING DEVICE, ELECTRONIC DEVICE, AND LIGHTING DEVICE - An object is to provide a light-emitting element capable of emitting light with a high luminance even at a low voltage, and having a long lifetime. The light-emitting element includes n EL layers between an anode and a cathode (n is a natural number of two or more), and also includes, between m-th EL layer from the anode and (m+1)-th EL layer (m is a natural number, 1≦m≦n−1), a first layer including a first donor material in contact with the m-th EL layer, a second layer including an electron-transport material and a second donor material in contact with the first layer, and a third layer including a hole-transport material and an acceptor material in contact with the second layer and the (m+1)-th EL layer. | 12-02-2010 |
20100301322 | Stilbene Derivatives, Light-Emitting Element, Display Device, and Electronic Device - A novel stilbene derivative is provided with motivation of providing a blue emissive material showing excellent color purity. The use of the stilbene derivative of the present invention allows the fabrication of a blue-emissive light-emitting element with excellent color purity. The invention also includes an electronic device equipped with a display portion in which the stilbene derivative is employed. The stilbene derivative of the present invention is represented by formula (1), in which Ar | 12-02-2010 |
20100301744 | FLUORENE DERIVATIVE, LIGHT-EMITTING ELEMENT, LIGHT-EMITTING DEVICE, ELECTRONIC DEVICE, AND LIGHTING DEVICE - An object is to provide a light-emitting element having high light-emission efficiency by provision of a novel fluorene derivative as represented by General Formula (G1) below. | 12-02-2010 |
20110001133 | ORGANOMETALLIC COMPLEX, AND LIGHT-EMITTING ELEMENT AND LIGHT-EMITTING DEVICE USING THE ORGANOMETALLIC COMPLEX - A material which can emit phosphorescence is disclosed. Further, a light-emitting element having good chromaticity is disclosed. An embodiment of the present invention is an organometallic complex including a structure as represented by the general formula (1): wherein R | 01-06-2011 |
20110024732 | LIGHT EMITTING ELEMENT AND LIGHT EMITTING - It is an object of the present invention to obtain an organometallic complex that is capable of converting an excited triplet state into luminescence, a light-emitting element that can be driven for a long time, is high in luminous efficiency, and has a favorable long lifetime, and a light-emitting device using the light-emitting element. The present invention provides a light-emitting element that has a pair of electrodes (an anode and a cathode) and a light-emitting layer between a pair of electrodes, where the light-emitting layer includes an organometallic complex represented by the following general formula (5) and one of a compound that has a larger energy gap than the organometallic complex and a compound that has a larger ionization potential and a smaller electron affinity than the organometallic complex, and provides a light-emitting device using the light-emitting device. | 02-03-2011 |
20110101854 | Organometallic Complex, Light-Emitting Element, Display Device, Electronic Device, and Lighting Device - Provided are organometallic complexes that can exhibit phosphorescence. One of the novel organometallic complexes is represented by General Formula (G1). In General Formula (G1), R | 05-05-2011 |
20110143474 | LIGHT-EMITTING ELEMENT, LIGHT-EMITTING DEVICE, ELECTRONIC APPLIANCE, AND METHOD OF MANUFACTURING THE SAME - A light-emitting element is provided which has a light-emitting layer between a first electrode and a second electrode, where the light-emitting layer has a first layer and a second layer; the first layer contains a first organic compound and a third organic compound; the second layer contains a second organic compound and the third organic compound; the first layer is provided to be in contact with the second layer on the first electrode side; the first organic compound is an organic compound with an electron transporting property; the second organic compound is an organic compound with a hole transporting property; the third organic compound has an electron trapping property; and light emission from the third organic compound can be obtained when voltage is applied to the first electrode and the second electrode so that the potential of the first electrode is higher than that of the second electrode. | 06-16-2011 |
20110147729 | Stilbene Derivatives, Light-Emitting Element and Light-Emitting Device - The present invention provides a novel substance having an excellent color purity of blue, a light-emitting element and a light-emitting device using the novel substance. A stilbene derivative has a structure shown by the general formula (1). In the general formula (1), R | 06-23-2011 |
20110147792 | Heterocyclic Compound, Light-Emitting Element, Light-Emitting Device, Electronic Device and Lighting Device - Objects of the present invention are to provide the following: a novel heterocyclic compound which can be used as a material in which a light-emitting substance of a light-emitting layer in a light-emitting element is dispersed; a novel heterocyclic compound having a high electron-transport property; a light-emitting element having high current efficiency; and a light-emitting device, an electronic device and a lighting device each having reduced power consumption. Provided are a heterocyclic compound represented by General Formula (G1-1) or (G1-2) below, and a light-emitting element, a light-emitting device, an electronic device and a lighting device each including the heterocyclic compound. Such use of the heterocyclic compound represented by General Formula (G1-1) or (G1-2) makes it possible to provide a light-emitting element having high current efficiency, and a light-emitting device, an electronic device and a lighting device each having reduced power consumption. | 06-23-2011 |
20110186825 | Quinoxaline Derivative, and Light-Emitting Element, Light-Emitting Device, and Electronic Appliance Using the Same - A quinoxaline derivative expressed by the general formula (1) is provided. (Each of R | 08-04-2011 |
20110198574 | Quinoxaline Derivative, and Light-Emitting Device, Electronic Device Using the Quinoxaline Derivative - The present invention provides a novel organic compound having excellent heat resistance. By using the novel organic compound, a light-emitting device and an electronic device having excellent heat resistance can be provided. A quinoxaline derivative represented by the general formula (1) is provided. Since the quinoxaline derivative represented by the general formula (1) has excellent heat resistance, when it is used for a light-emitting element, a light-emitting device using the light-emitting element also have excellent heat resistance. Further, electronic devices having excellent heat resistance can be provided. | 08-18-2011 |
20110210316 | HETEROCYCLIC COMPOUND, LIGHT-EMITTING ELEMENT, LIGHT-EMITTING DEVICE, ELECTRONIC DEVICE, AND LIGHTING DEVICE - An object is to provide a novel heterocyclic compound which can be used for a light-emitting element, as a host material of a light-emitting layer in which a light-emitting substance is dispersed. Other objects are to provide a light-emitting element having low driving voltage, a light-emitting element having high current efficiency, and a light-emitting element having a long lifetime. Provided are a light-emitting element including a compound in which a dibenzo[f,h]quinoxaline ring and a hole-transport skeleton are bonded through an arylene group, and a light-emitting device, an electronic device, and a lighting device each using this light-emitting element. The heterocyclic compound represented by General Formula (G1) below is provided. | 09-01-2011 |
20110210412 | MEMORY ELEMENT, MEMORY DEVICE, AND SEMICONDUCTOR DEVICE - On object of the invention is to provide a nonvolatile memory device, in which data can be added to the memory device after a manufacturing process and forgery and the like by rewriting can be prevented, and a semiconductor device including the memory device. Another object of the invention is to provide a highly-reliable, inexpensive, and nonvolatile memory device and a semiconductor device including the memory device. A memory element includes a first conductive layer, a second conductive layer, a first insulating layer with a thickness of 0.1 nm or more and 4 nm or less being in contact with the first conductive layer, and an organic compound layer interposed between the first conductive layer, the first insulating layer, and the second conductive layer. | 09-01-2011 |
20110248254 | QUINOXALINE DERIVATIVE, AND LIGHT-EMITTING ELEMENT, LIGHT-EMITTING DEVICE, ELECTRONIC DEVICE USING THE QUINOXALINE DERIVATIVE - It is an object to provide a novel bipolar organic compound. In particular, it is an object to provide a bipolar organic compound excellent in thermal stability. Further, it is another object to provide a bipolar organic compound which is electrochemically stable. A quinoxaline derivative represented by a general formula (1) is provided. Further, since the quinoxaline derivative represented by the general formula (1) is bipolar, the use of the quinoxaline derivative of the present invention allows fabrication of a light-emitting element and a light-emitting device with a low driving voltage and low power consumption. Furthermore, a light-emitting element with high luminous efficiency can be obtained. | 10-13-2011 |
20110260156 | LIGHT-EMITTING ELEMENT, LIGHT-EMITTING DEVICE, LIGHTING DEVICE, AND ELECTRONIC DEVICE - An object is to provide a light-emitting element which exhibits light emission with high luminance and can be driven at low voltage. Another object is to provide a light-emitting device or an electronic device with reduced power consumption. Between an anode and a cathode, n (n is a natural number of two or more) EL layers are provided, where between a first EL layer and a second EL layer, a first layer containing any of an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal compound, an alkaline earth metal compound, and a rare earth metal compound, a second layer containing a material having a high electron-transporting property in contact with the first layer, and a region containing a material having a high hole-transporting property and an acceptor material in contact with the second layer are provided in this order from the anode side. | 10-27-2011 |
20110284834 | Light-Emitting Element and Light-Emitting Device - To provide a light-emitting element, a light-emitting device, and an electronic device each formed using the organometallic complex represented by General Formula (G1) as a guest material and a low molecule compound as a host material. | 11-24-2011 |
20110284835 | Quinoxaline Derivative, and Light-Emitting Element, Light-Emitting Device, and Electronic Device Using the Same - The present invention provides a quinoxaline derivative represented by a general formula (G1). In the formula, α | 11-24-2011 |
20110285276 | Triazole Derivative, and Light-Emitting Element, Light-Emitting Device, Electronic Device and Lighting Device Using the Triazole Derivative - Objects are to provide the following: a substance that facilitates hole injection and has high triplet excitation energy; a light-emitting element having high emission efficiency using the substance that facilitates hole injection and has high triplet excitation energy; a light-emitting element having low driving voltage; and a light-emitting device, an electronic device, and a lighting device having low power consumption. Provided is a triazole derivative in which a dibenzothiophen-4-yl or dibenzofuran-4-yl group represented by General Formula (G2) is bonded to any one of Ar | 11-24-2011 |
20110298360 | Light Emitting Device and Electronic Appliance Using the Same - The light emitting element includes a first electrode and a second electrode, between which a light emitting layer, a hole transporting layer provide in contact with the light emitting layer, an electron transporting layer provided in contact with the light emitting layer, and a mixed layer provided between the electron transporting layer and the second electrode. The mixed layer includes an electron transporting substance and a substance showing an electron donating property with respect to the electron transporting substance. The light emitting layer includes an organometallic complex represented in General Formula (1) and a host. R | 12-08-2011 |
20110315968 | Light-Emitting Element, Light-Emitting Device, Display, and Electronic Device - In the light-emitting element in which a plurality of EL layers is separated from each other by a charge generation layer, provided are an electron relay layer in contact with an anode side of the charge generation region and an electron transport layer in contact with the electron relay layer. The electron transport layer contains an alkaline earth metal. A concentration gradient of the alkaline earth metal contained in the electron transport layer is such that the concentration of the alkaline earth metal becomes lower from an interface between the electron transport layer and the electron relay layer to the anode. | 12-29-2011 |
20120007066 | ANTHRACENE DERIVATIVE, MATERIAL FOR LIGHT EMITTING ELEMENT, LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, AND ELECTRONIC DEVICE - It is an object of the present invention to provide a novel material capable of realizing excellent color purity of blue, and a light emitting element and a light emitting device using the novel material. Further, it is an object of the present invention to provide which is highly reliable, and a light emitting element and a light emitting device using the novel material. The structure for solving the above problems in accordance with the present invention is an anthracene derivative simultaneously having a diphenylanthracene structure and a carbazole skeleton in a molecule as represented by structural formula (1): | 01-12-2012 |
20120025178 | Organometallic Complex, Light-Emitting Element, Light-Emitting Device, Electronic Device, and Lighting Device - An object is to provide a novel organometallic complex that has a broader emission spectrum in the wavelength range of green to blue. Other objects are to provide a light-emitting element using the organometallic complex, and a light-emitting device, an electronic device, and a lighting device each using the light-emitting element. Provided is an organometallic complex represented by a general formula (G1). Represented by the general formula (G1) is a novel organometallic complex that exhibits a broad emission spectrum in the wavelength range of green to blue. Further provided are a light-emitting element using the organometallic complex, and a light-emitting device, an electronic device, and a lighting device each using the light-emitting element. | 02-02-2012 |
20120025697 | Triazole Derivative, Heterocyclic Compound, Light-Emitting Element, Light-Emitting Device, Electronic Device and Lighting Device - A substance that facilitates hole injection and has high triplet excitation energy is provided. A light-emitting element having high emission efficiency is provided. A light-emitting element driven with a low voltage is provided. Or a light-emitting element having a long lifetime is provided. Provided is a light-emitting element including a triazolo[4,3-f]phenanthridine derivative or a triazolo[3,4-a]isoquinoline derivative. Provided is a triazolo[4,3-f]phenanthridine and triazolo[3,4-a]isoquinoline derivatives, which are novel and can be used for the light-emitting element. | 02-02-2012 |
20120061651 | Heterocyclic Compound, Light-Emitting Element, Light-Emitting Device, Electronic Device, and Lighting Device - A substance having a hole-transport, property and a wide band gap is provided. A heterocyclic compound represented by a general formula (G1) is provided. In the formula, α | 03-15-2012 |
20120061714 | Fluorene Compound, Light-Emitting Element, Light-Emitting Device, Electronic Device, Lighting Device, and Organic Compound - A substance having a hole-transport property and a wide band gap is provided. A fluorene compound represented by a general formula (G1) is provided. In the general formula (G1), α | 03-15-2012 |
20120071668 | Carbazole Derivative, Light-Emitting Element Material and Organic Semiconductor Material - An object is to provide a novel carbazole derivative that has an excellent carrier-transport property and can be suitably used for a transport layer or as a host material of a light-emitting element. Another object is to provide an organic semiconductor material and a light-emitting element material each using the carbazole derivative. As the carbazole derivative that can achieve the above objects, a carbazole derivative in which a carbazolyl group whose either 2- or 3-position of carbazole is substituted by the 4-position of a dibenzothiophene skeleton or a dibenzofuran skeleton is bonded to aromatic hydrocarbon that has 14 to 70 carbon atoms and includes a condensed tricyclic ring, a condensed tetracyclic ring, a condensed pentacyclic ring, a condensed hexacyclic ring, or a condensed heptacyclic ring has been able to be synthesized. | 03-22-2012 |
20120074390 | Light-Emitting Element and Electronic Device - An object is to provide a light-emitting element with high emission efficiency which includes a novel carbazole derivative that has a wide energy gap and can be used for a transport layer or a host material in a light-emitting element. A carbazole derivative in which the 4-position of dibenzothiophene or dibenzofuran is bonded to the 2- or 3-position of carbazole has been able to be provided by use of the carbazole derivative. Further, a light-emitting element having high emission efficiency has been able to be provided by use of the carbazole derivative. | 03-29-2012 |
20120077987 | ORGANIC COMPOUND, LIGHT-EMITTING ELEMENT, LIGHT-EMITTING DEVICE, ELECTRONIC DEVICE, AND LIGHTING DEVICE - A novel substance with which an increase in life and emission efficiency of a light-emitting element can be achieved is provided. A carbazole compound having a structure represented by General Formula (G1) is provided. Note that a substituent which makes the HOMO level and the LUMO level of a compound in which a bond of the substituent is substituted with hydrogen deep and shallow, respectively is used as each of substituents in General Formula (G1) (R | 03-29-2012 |
20120091442 | Light-Emitting Element, Light-Emitting Device and an Electronic Device - The present invention provides a light-emitting element including an electron-transporting layer and a hole-transporting layer between a first electrode and a second electrode; and a first layer and a second layer between the electron-transporting layer and the hole-transporting layer, wherein the first layer includes a first organic compound and an organic compound having a hole-transporting property, the second layer includes a second organic compound and an organic compound having an electron-transporting property, the first layer is formed in contact with the first electrode side of the second layer, the first organic compound and the second organic compound are the same compound, and a voltage is applied to the first electrode and the second electrode, so that both of the first organic compound and the second organic compound emit light. | 04-19-2012 |
20120091887 | Carbazole Compound, Material for Light-Emitting Element, Organic Semiconductor Material, Light-Emitting Element - To provide a novel carbazole compound that has an excellent carrier-transport property and can be used for a transport layer or as a host material in a light-emitting element. Further, to provide an organic semiconductor material and a material for a light-emitting element using the carbazole compound. A carbazole compound in which the 4-position of a dibenzothiophene skeleton or a dibenzofuran skeleton is substituted with the 2- or 3-position of a carbazole skeleton directly or via an arylene group can be synthesized. The carbazole compound is found to have a suitable carrier-transport property, a good film quality, and be used suitably as a material of a light-emitting element and an organic semicondcutor material. Note that nitrogen of the carbazole skeleton is substituted with any of a phenyl group, a biphenyl group, and a naphthyl group. | 04-19-2012 |
20120095226 | ORGANOMETALLIC COMPLEX, AND LIGHT-EMITTING ELEMENT AND DISPLAY DEVICE USING THE ORGANOMETALLIC COMPLEX - An object is to provide an organometallic complex whose phosphorescence characteristics can be adjusted by varying the structure of a ligand. Alternatively, an object is to provide an organometallic complex capable of emitting yellow phosphorescence with high luminance. Alternatively, an object is to provide a light-emitting device with high added value. An organometallic complex which has a structure represented by a general formula (G1) below and at least one substituent group represented by a general formula (G2) below as a phenyl group and is formed in such a way that a phenylpyrazine derivative represented by a general formula (G0) below is ortho-metalated by an ion of a Group 9 metal or of a Group 10 metal is provided. Alternatively, a light-emitting element and a light-emitting device formed including the organometallic complex are provided. | 04-19-2012 |
20120104369 | Phenanthrene Compound, Light-Emitting Element, Light-Emitting Device, Electronic Device, and Lighting Device - A novel compound having high triplet excitation energy and a bipolar property is provided. Specifically, a phenanthrene compound represented by General Formula (G1) is provided where R | 05-03-2012 |
20120104376 | Benzoxazole Derivative, and Light-Emitting Element, Light-Emitting Device, and Electronic Device Using Benzoxazole Derivative - Disclosed is a novel benzoxazole derivative which has high excitation energy, particularly high triplet excitation energy, and is a bipolar substance. A benzoxazole derivative represented by the following General Formula (G1) is provided. | 05-03-2012 |
20120104379 | ORGANIC COMPOUND, ANTHRACENE DERIVATIVE, AND LIGHT-EMITTING ELEMENT, LIGHT-EMITTING DEVICE, AND ELECTRONIC DEVICE USING ANTHRACENE DERIVATIVE - Objects of the present invention are to provide novel anthracene derivatives and novel organic compounds; a light-emitting element that has high emission efficiency; a light-emitting element that is capable of emitting blue light with high luminous efficiency; a light-emitting element that is capable of operation for a long time; and a light-emitting device and an electronic device that have lower power consumption. An anthracene derivative represented by a general formula (1) and an organic compound represented by a general formula (17) are provided. A light-emitting element that has high emission efficiency can be obtained by use of the anthracene derivative represented by the general formula (1). Further, a light-emitting element that has a long life can be obtained by use of the anthracene derivative represented by the general formula (1). | 05-03-2012 |
20120108029 | SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - It is an object of the present invention to provide a technique in which a high-performance and high reliable memory device and a semiconductor device provided with the memory device are manufactured at low cost with high yield. The semiconductor device includes an organic compound layer including an insulator over a first conductive layer and a second conductive layer over the organic compound layer including an insulator. Further, the semiconductor device is manufactured by forming a first conductive layer, discharging a composition of an insulator and an organic compound over the first conductive layer to form an organic compound layer including an insulator, and forming a second conductive layer over the organic compound layer including an insulator. | 05-03-2012 |
20120130081 | Oxadiazole Derivative, and Light-Emitting Element, Light-Emitting Device, Electronic Device, and Lighting Device Using the Oxadiazole Derivative - An object of one embodiment of the present invention is to provide a novel oxadiazole derivative as a substance having high excitation energy, in particular, a substance having high triplet excitation energy. One embodiment of the present invention is an oxadiazole derivative represented by General Formula (G1) below. | 05-24-2012 |
20120132896 | Benzoxazole Derivative, Light-Emitting Element, Light-Emitting Device, Electronic Device, and Lighting Device - A novel benzoxazole derivative having high excitation energy, particularly high triplet excitation energy is provided. A light-emitting element having high current efficiency is provided by application of the novel benzoxazole derivative for the light-emitting element. A light-emitting device, an electronic device, and a lighting device each having reduced power consumption are provided. The benzoxazole derivative is represented by General Formula (G1). In the formula, R | 05-31-2012 |
20120133273 | Organometallic Complex, Light-Emitting Element, Light-Emitting Device, Electronic Device, and Lighting Device - Provided is a novel organometallic complex that has an emission region in the wavelength band of green to blue and high reliability. Provided is an organometallic complex including a structure represented by a general formula (G1). The organometallic complex represented by the general formula (G1) is a novel organometallic complex that has an emission region in the wavelength band of green to blue and high reliability. Further provided is a light-emitting element including the organometallic complex, and a light-emitting device, an electronic device, and a lighting device each using the light-emitting element. | 05-31-2012 |
20120133274 | Carbazole Compound, Light-Emitting Element Material, Organic Semiconductor Material, Light-Emitting Element, Light-Emitting Device, Lighting Device, and Electronic Device - An object is to provide a novel carbazole compound that can be used for a transport layer, a host material, or a light-emitting material in a light-emitting element. A carbazole compound where nitrogen of a carbazole group, the carbazole skeleton of which whose 3-position is bonded to the 4-position of a dibenzofuran skeleton or a dibenzothiophene skeleton, is bonded to a benzimidazole skeleton through a phenylene group, is provided. The carbazole compound has a high carrier-transport property, and can be suitably used for a material for a light-emitting element or for an organic semiconductor material. | 05-31-2012 |
20120157694 | Organic Compound, Light-Emitting Element, Light-Emitting Device, Electronic Device, and Lighting Device - Provided is a novel anthracene compound represented by a general formula (G1). In the formula, Q | 06-21-2012 |
20120168738 | LIGHT-EMITTING ELEMENT, LIGHT-EMITTING DEVICE, ELECTRONIC DEVICE, AND LIGHTING DEVICE - Light-emitting elements in which an increase of driving voltage can be suppressed are provided. Light-emitting devices whose power consumption is reduced by including such light-emitting elements are also provided. In a light-emitting element having an EL layer between an anode and a cathode, a first layer in which carriers can be produced is formed between the cathode and the EL layer and in contact with the cathode, a second layer which transfers electrons produced in the first layer is formed in contact with the first layer, and a third layer which injects the electrons received from the second layer into the EL layer is formed in contact with the second layer. | 07-05-2012 |
20120168741 | Stilbene Derivatives, Light-Emitting Element, Display Device, and Electronic Device - A novel stilbene derivative is provided with motivation of providing a blue emissive material showing excellent color purity. The use of the stilbene derivative of the present invention allows the fabrication of a blue-emissive light-emitting element with excellent color purity. The invention also includes an electronic device equipped with a display portion in which the stilbene derivative is employed. The stilbene derivative of the present invention is represented by formula (1), in which Ar | 07-05-2012 |
20120184755 | Stilbene Compound, Light-Emitting Element, Light-Emitting Device, Electronic Device, and Lighting Device - An object is to provide a novel stilbene compound suitable for an organic EL light-emitting material. Provided is a novel stilbene compound represented by a general formula (G1) below. In the formula, Q | 07-19-2012 |
20120193613 | HETEROCYCLIC COMPOUND - Provided is a novel heterocyclic compound which can be used for a light-emitting element, as a host material of a light-emitting layer in which a light-emitting substance is dispersed. A heterocyclic compound represented by a general formula (G1) is provided. In the formula, A represents any of a substituted or unsubstituted dibenzothiophenyl group, a substituted or unsubstituted dibenzofuranyl group, and a substituted or unsubstituted carbazolyl group, R | 08-02-2012 |
20120194062 | Composite Material, Light-Emitting Element, Light-Emitting Device, Lighting Device, Electronic Device, and Fluorene Derivative - Provided is a composite material which makes it possible to provide a light-emitting element having at least one of the following characteristics by applying the composite material to the light-emitting element: low voltage driving, high emission efficiency, and a long life (high reliability). The composite material includes a hydrocarbon compound and an inorganic compound which exhibits an electron-accepting property with respect to the hydrocarbon compound. The hydrocarbon compound has a molecular weight of greater than or equal to 400 and less than or equal to 2000, where one or more aryl groups are bonded to a fluorene unit. | 08-02-2012 |
20120199818 | TRIAZOLE DERIVATIVE, AND LIGHT-EMITTING ELEMENT, LIGHT-EMITTING DEVICE, AND ELECTRONIC DEVICE WITH THE USE OF TRIAZOLE DERIVATIVE - It is an object of the present invention to provide a novel triazole derivative. Further, it is another object of the present invention to provide a light-emitting element having high luminous efficiency with the use of the novel triazole derivative. Moreover, it is still another object of the present invention to provide a light-emitting device and electronic devices which have low power consumption. A light-emitting element having high luminous efficiency can be manufactured with the use of a triazole derivative which is a 1,2,4-triazole derivative, in which an aryl group or a heteroaryl group is bonded to each of 3-position, 4-position, and 5-position, and in which any one of the aryl group or heteroaryl group has a 9H-carbazol-9-yl group. | 08-09-2012 |
20120199819 | Light Emitting Element, Light Emitting Device, and Electronic Device - A light emitting element with a high contrast is realized. A light emitting device with a high contrast is achieved by using the light emitting element with an excellent contrast. The light emitting element has a layer containing a light emitting substance interposed between a first electrode and a second electrode, and the layer containing the light emitting substance includes a light emitting layer, a layer containing a first organic compound, and a layer containing a second organic compound. The first electrode has a light-transmitting property, and the layer containing the first organic compound and the layer containing the second organic compound are interposed between the second electrode and the light emitting layer. Furthermore, color of the first organic compound and color of the second organic compound are complementary. | 08-09-2012 |
20120205632 | LIGHT-EMITTING ELEMENT - A light-emitting element having high external quantum efficiency is provided. A light-emitting element having a long lifetime is provided. A light-emitting element is provided which includes a light-emitting layer containing a phosphorescent compound, a first organic compound, and a second organic compound between a pair of electrodes, in which a combination of the first organic compound and the second organic compound forms an exciplex (excited complex). The light-emitting element transfers energy by utilizing an overlap between the emission spectrum of the exciplex and the absorption spectrum of the phosphorescent compound and thus has high energy transfer efficiency. Therefore, a light-emitting element having high external quantum efficiency can be obtained. | 08-16-2012 |
20120205676 | Light-Emitting Device and Display Device - A technique of manufacturing a display device with high productivity is provided. In addition, a high-definition display device with high color purity is provided. By adjusting the optical path length between an electrode having a reflective property and a light-emitting layer by the central wavelength of a wavelength range of light passing through a color filter layer, the high-definition display device with high color purity is provided without performing selective deposition of light-emitting layers. In a light-emitting element, a plurality of light-emitting layers emitting light of different colors are stacked. The closer the light-emitting layer is to the electrode having a reflective property, the longer the wavelength of light emitted from the light-emitting layer is. | 08-16-2012 |
20120205685 | Light-Emitting Element, Light-Emitting Device, and Display Device - A light-emitting element with which a reduction in power consumption and an improvement in productivity of a display device can be achieved is provided. A technique of manufacturing a display device with high productivity is provided. The light-emitting element includes an electrode having a reflective property, and a first light-emitting layer, a charge generation layer, a second light-emitting layer, and an electrode having a light-transmitting property stacked in this order over the electrode having a reflective property. The optical path length between the electrode having a reflective property and the first light-emitting layer is one-quarter of the peak wavelength of the emission spectrum of the first light-emitting layer. The optical path length between the electrode having a reflective property and the second light-emitting layer is three-quarters of the peak wavelength of the emission spectrum of the second light-emitting layer. | 08-16-2012 |
20120205686 | Light-Emitting Device and Display Device - A technique of manufacturing a display device with high productivity is provided. In addition, a high-definition display device with high color purity is provided. By adjusting the optical path length between an electrode having a reflective property and a light-emitting layer by the central wavelength of a wavelength range of light passing through a color filter layer, the high-definition display device with high color purity is provided without performing selective deposition of light-emitting layers. In a light-emitting element, a plurality of light-emitting layers emitting light of different colors are stacked. The closer the light-emitting layer is positioned to the electrode having a reflective property, the shorter the wavelength of light emitted from the light-emitting layer is. | 08-16-2012 |
20120205687 | LIGHT-EMITTING BODY, LIGHT-EMITTING LAYER, AND LIGHT-EMITTING DEVICE - An organic light-emitting element having high efficiency and long lifetime is provided. An organic light-emitting body is provided which includes a host having a high electron-transport property (n-type host), a host having a high hole-transport property (p-type host), and a guest such as an iridium complex and in which the n-type host and the p-type host are located so as to be adjacent to each other. When an electron and a hole are injected to such a light-emitting body, the electron is trapped by the n-type host and the hole is trapped by the p-type host. Then, both the electron and the hole are injected to the guest, and thus the guest is brought into an excited state. In this process, less thermal deactivation occurs and the working rate of the guest is high; thus, highly efficient light emission can be obtained. | 08-16-2012 |
20120205701 | Light-Emitting Element, Display Device, Lighting Device, and Method for Manufacturing the Same - A light-emitting element disclosed includes a first electrode layer; a second electrode layer which transmits light; and a light-emitting layer interposed between the first electrode layer and the second electrode layer. The first electrode layer includes a first conductive layer which is able to reflect light, a second conductive layer provided over the first conductive layer and including titanium, and a third conductive layer which transmits light and contains a metal oxide having work function higher than that of a material of the first conductive layer. | 08-16-2012 |
20120206035 | LIGHT-EMITTING ELEMENT - Provided is a light-emitting element with high external quantum efficiency, or a light-emitting element with a long lifetime. The light-emitting element includes, between a pair of electrodes, a light-emitting layer including a guest material and a host material, in which an emission spectrum of the host material overlaps with an absorption spectrum of the guest material, and phosphorescence is emitted by conversion of an excitation energy of the host material into an excitation energy of the guest material. By using the overlap between the emission spectrum of the host material and the absorption spectrum of the guest material, the energy smoothly transfers from the host material to the guest material, so that the energy transfer efficiency of the light-emitting element is high. Accordingly, a light-emitting element with high external quantum efficiency can be achieved. | 08-16-2012 |
20120206675 | Light-Emitting Device and Electronic Device Using Light-Emitting Device - First to third light-emitting elements each including a reflection electrode layer, a transflective electrode layer, and a light-emitting layer provided therebetween are provided. In the first light-emitting element, the light-emitting layer is in contact with the reflection electrode layer and the transflective electrode layer. In the second light-emitting element, a first transparent electrode layer is in contact with the reflection electrode layer, the light-emitting layer is in contact with the first transparent electrode layer and the transflective electrode layer. In the third light-emitting element, a second transparent electrode layer is in contact with the reflection electrode layer, the light-emitting layer is in contact with the second transparent electrode layer and the transflective electrode layer. The first transparent electrode layer is different form the second transparent electrode layer in thickness. | 08-16-2012 |
20120211738 | Quinoxaline Derivative, and Light Emitting Element, Light Emitting Device, and Electronic Appliance Using the Same - A quinoxaline derivative expressed by the general formula (1) is provided. (Each of R | 08-23-2012 |
20120217487 | Light-Emitting Device - A light-emitting element includes a light-emitting layer including a guest, an n-type host and a p-type host between a pair of electrodes, where the difference between the energy difference between a triplet excited state and a ground state of the n-type host (or p-type host) and the energy difference between a triplet excited state and a ground state of the guest is 0.15 eV or more. Alternatively, in such a light-emitting element, the LUMO level of the n-type host is higher than the LUMO level of the guest by 0.1 eV or more, or the HOMO level of the p-type host is lower than the HOMO level of the guest by 0.1 eV or more. | 08-30-2012 |
20120223298 | Triarylamine Derivative, Light-Emitting Substance, Light-Emitting Element, Light-Emitting Device, and Electronic Device - A triarylamine derivative represented by a general formula (G1) given below is provided. Note that in the formula, Ar represents either a substituted or unsubstituted phenyl group or a substituted or unsubstituted biphenyl group; α represents a substituted or unsubstituted naphthyl group; β represents either hydrogen or a substituted or unsubstituted naphthyl group; n and m each independently represent 1 or 2; and R | 09-06-2012 |
20120223346 | Display Device - To provide a display device with low power consumption. The display device includes a plurality of pixels each having a light-emitting element having a structure in which light emitted from a light-emitting layer is resonated between a reflective electrode and a light-transmitting electrode, wherein no color filter layers are provided or color filter layers with high transmittance are provided in pixels for light with relatively short wavelengths (e.g., pixels for blue and/or green), and a color filter layer is selectively provided in pixels for light with a long wavelength (e.g., pixels for red), and thereby maintaining color reproducibility and consuming less power. | 09-06-2012 |
20120235130 | Stilbene Derivatives, Light-Emitting Element and Light-Emitting Device - The present invention provides a novel substance having an excellent color purity of blue, a light-emitting element and a light-emitting device using the novel substance. A stilbene derivative has a structure shown by the general formula (1). In the general formula (1), R | 09-20-2012 |
20120235166 | LIGHT-EMITTING ELEMENT, LIGHT-EMITTING DEVICE, LIGHTING DEVICE, AND ELECTRONIC DEVICE - An object is to provide a light-emitting element which exhibits light emission with high luminance and can be driven at low voltage. Another object is to provide a light-emitting device or an electronic device with reduced power consumption. Between an anode and a cathode, n (n is a natural number of two or more) EL layers are provided, where between a first EL layer and a second EL layer, a first layer containing any of an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal compound, an alkaline earth metal compound, and a rare earth metal compound, a second layer containing a material having a high electron-transporting property in contact with the first layer, and a region containing a material having a high hole-transporting property and an acceptor material in contact with the second layer are provided in this order from the anode side. | 09-20-2012 |
20120241728 | Anthracene Derivative, Light-Emitting Material, Material for Light-Emitting Element, Composition for Coating, Light-Emitting Element, Light-Emitting Device, and Electronic Device - An anthracene derivative represented by the general formula (G1) is provided. The anthracene derivative represented by the general formula (G1) is a novel anthracene derivative having a wide band gap. Further, the anthracene derivative has a large energy gap and can be very suitably used as a material for a light-emitting element which exhibits blue light emission. | 09-27-2012 |
20120242219 | LIGHT-EMITTING ELEMENT - A light-emitting element having high external quantum efficiency is provided. A light-emitting element having low drive voltage is provided. Provided is a light-emitting element which includes a light-emitting layer containing a phosphorescent compound, a first organic compound, and a second organic compound between a pair of electrodes. A combination of the first organic compound and the second organic compound forms an exciplex (excited complex). An emission spectrum of the exciplex overlaps with an absorption band located on the longest wavelength side of an absorption spectrum of the phosphorescent compound. A peak wavelength of the emission spectrum of the exciplex is longer than or equal to a peak wavelength of the absorption band located on the longest wavelength side of the absorption spectrum of the phosphorescent compound. | 09-27-2012 |
20120242936 | Quinoxaline Derivative, and Light Emitting Element, Light Emitting Device, and Electronic Device Using the Quinoxaline Derivative - To provide a new bipolar organic compound. In particular, to provide a bipolar organic compound having excellent heat resistance and to provide a bipolar organic compound which is electrochemically stable. Further, to provide a light emitting element and a light emitting device of which a driving voltage and power consumption are reduced by using a new bipolar organic compound. Further, to provide a light emitting element and a light emitting device which have excellent heat resistance by using a new bipolar organic compound. Further, to provide a light emitting element and a light emitting device which have a long life by using a new bipolar organic compound. | 09-27-2012 |
20120267678 | LIGHT-EMITTING ELEMENT, LIGHT-EMITTING DEVICE, ELECTRONIC APPLIANCE, AND METHOD OF MANUFACTURING THE SAME - A light-emitting element is provided which has a light-emitting layer between a first electrode and a second electrode, where the light-emitting layer has a first layer and a second layer; the first layer contains a first organic compound and a third organic compound; the second layer contains a second organic compound and the third organic compound; the first layer is provided to be in contact with the second layer on the first electrode side; the first organic compound is an organic compound with an electron transporting property; the second organic compound is an organic compound with a hole transporting property; the third organic compound has an electron trapping property; and light emission from the third organic compound can be obtained when voltage is applied to the first electrode and the second electrode so that the potential of the first electrode is higher than that of the second electrode. | 10-25-2012 |
20120280220 | Organometallic Complex, and Light-Emitting Element, Light-Emitting Device, Electronic Device, and Lighting Device Using the Organometallic Complex - To provide a novel organometallic complex capable of emitting phosphorescence by using an organic compound with which a variety of derivatives can be easily synthesized as a ligand. In addition, to provide an organometallic complex which exhibits red emission. To provide an organometallic complex formed by ortho-metalation of an m-alkoxyphenyl pyrazine derivative represented by General Formula (G0) below with respect to an ion of a metal belonging to Group 9 or Group 10. In addition, to provide an organometallic complex which exhibits red emission formed by ortho-metalation of an m-alkoxyphenyl pyrazine derivative represented by General Formula (G0) below with respect to an ion of a metal belonging to Group 9 or Group 10. | 11-08-2012 |
20120302751 | Carbazole Derivative with Heteroaromatic Ring, and Light-Emitting Element, Light-Emitting Device, and Electronic Device Using Carbazole Derivative with Heteroaromatic Ring - Disclosed is a carbazole derivative and a light-emitting element, a light-emitting device, and an electronic device using thereof. The carbazole derivative possesses an oxadiazole moiety or a quinoxaline moiety as a heteroaromatic ring having an electron-transporting property and a carbazole moiety having a hole-transporting property. The ability of the carbazole derivative to transport both electrons and holes and its large excitation energy larger than a triplet excitation energy of a phosphorescent compound allow the formation of a phosphorescent light-emitting element having well-controlled carrier balance, which contributes to the formation of light-emitting devices and electronic devices that are capable of being driven at a low voltage, have a long lifetime, and consume low power. The detailed structure of the carbazole derivative is defined in the specification. | 11-29-2012 |
20120305909 | Light-Emitting Element, Light-Emitting Device, and Electronic Device - Disclosed is a light-emitting element with a good carrier balance and manufacturing method thereof which does not require the formation of the heterostructure. The light-emitting element includes an organic compound film containing a first organic compound as the main component (base material) between an anode and a cathode, wherein the organic compound film is provided in contact with the anode and with the cathode. The first organic compound further includes a light-emitting region to which a light-emitting substance is added and includes a hole-transport region to which a hole-trapping substance is added and/or an electron-transport region to which an electron-trapping substance is added. The hole-transport region is located between the light-emitting region and the anode, and the electron-transport region is located between the light-emitting region and the cathode. | 12-06-2012 |
20120309984 | ORGANIC COMPOUND, ANTHRACENE DERIVATIVE, AND LIGHT-EMITTING ELEMENT, LIGHT-EMITTING DEVICE, AND ELECTRONIC DEVICE USING ANTHRACENE DERIVATIVE - Objects of the present invention are to provide novel anthracene derivatives and novel organic compounds; a light-emitting element that has high emission efficiency; a light-emitting element that is capable of emitting blue light with high luminous efficiency; a light-emitting element that is capable of operation for a long time; and a light-emitting device and an electronic device that have lower power consumption. An anthracene derivative represented by a general formula (1) and an organic compound represented by a general formula (17) are provided. A light-emitting element that has high emission efficiency can be obtained by use of the anthracene derivative represented by the general formula (1). Further, a light-emitting element that has a long life can be obtained by use of the anthracene derivative represented by the general formula (1). | 12-06-2012 |
20120313506 | Quinoxaline Derivative, and Light-Emitting Device, Electronic Device Using the Quinoxaline Derivative - The present invention provides a novel organic compound having excellent heat resistance. By using the novel organic compound, a light-emitting device and an electronic device having excellent heat resistance can be provided. A quinoxaline derivative represented by the general formula (1) is provided. Since the quinoxaline derivative represented by the general formula (1) has excellent heat resistance, when it is used for a light-emitting element, a light-emitting device using the light-emitting element also have excellent heat resistance. Further, electronic devices having excellent heat resistance can be provided. | 12-13-2012 |
20120323015 | Oxadiazole Derivative, Light-Emitting Element Material, Light-Emitting Element, Light-Emitting Device, and Electronic Device - An object is to provide a novel material having a bipolar property. Another object is to provide an oxadiazole derivative having a wide band gap. Another object is to reduce power consumption of a light-emitting element, a light-emitting device, and an electronic device. The present invention provides an oxadiazole derivative represented by General Formula (1). In the formula, Ar | 12-20-2012 |
20130005067 | Anthracene Derivative, Material For Light Emitting Element, Light Emitting Element, Light Emitting Device, And Electronic Device - It is an object of the present invention to provide a novel material capable of realizing excellent color purity of blue, and a light emitting element and a light emitting device using the novel material. Further, it is an object of the present invention to provide which is highly reliable, and a light emitting element and a light emitting device using the novel material. The structure for solving the above problems in accordance with the present invention is an anthracene derivative simultaneously having a diphenylanthracene structure and a carbazole skeleton in a molecule as represented by structural formula (1): | 01-03-2013 |
20130009141 | Light-Emitting Element, Light-Emitting Device, and Electronic Device - A light-emitting element with improved emission efficiency is provided. The light-emitting element includes a light-emitting layer in which a first light-emitting layer and a second light-emitting layer are stacked in contact with each other over an anode, and a first substance serving as an emission center substance in the second light-emitting layer constitutes the first light-emitting layer. A second substance serving as a host material to disperse the first substance serving as an emission center substance is included in the second light-emitting layer. In the light-emitting element, the second substance is a substance having an energy gap (or triplet energy) larger than the first substance. | 01-10-2013 |
20130079516 | Organometallic Complex, and Light-Emitting Element, Light-Emitting Device and Electronic Device Using the Organometallic Complex - According to the present invention, a wider variation of organometallic complexes that can emit phosphorescence can be provided by applying, as a ligand, an organic compound from which a variety of derivatives can be easily synthesized. In particular, an organometallic complex having a sharp emission spectrum is provided. Further, an organometallic complex having high emission efficiency is provided. An organometallic complex represented by the general formula (G1) is provided. In the formula, Ar represents an aryl group, R represents an alkoxy group having 1 to 4 carbon atoms, and R | 03-28-2013 |
20130130061 | Heterocyclic Compound and Light-Emitting Element, Light-Emitting Device, Lighting Device, and Electronic Device Using the Same - To provide a novel heterocyclic compound having a bipolar property. To improve element characteristics of a light-emitting element by application of the novel heterocyclic compound to the light-emitting element. A heterocyclic compound represented by a general formula (G1) and a light-emitting element formed using the heterocyclic compound represented by the general formula (G1) are provided. When the heterocyclic compound represented by the general formula (G1) is used for the light-emitting element, the characteristics of the light-emitting element can be improved. | 05-23-2013 |
20130134406 | Light-Emitting Element, Light Emitting Device, and Electronic Device - A light-emitting element includes a light-emitting layer having a two-layer structure in which a first light-emitting layer containing a first light-emitting substance and a second light-emitting layer containing a second light-emitting substance, which is in contact with the first light-emitting layer, are provided between an anode and a cathode. The first light-emitting layer is separated into two layers of a layer provided on the anode side and a layer provided on the cathode side. The layer provided on the anode side contains only a first light-emitting substance, or a first organic compound of less than 50 wt % and the first light-emitting substance of 50 wt % to 100 wt %. The layer provided on the cathode side contains a second organic compound and the first light-emitting substance. The second light-emitting layer, which is provided in contact with the first light-emitting layer, contains the second light-emitting substance and a third organic compound. | 05-30-2013 |
20130200344 | Oxadiazole Derivative, and Light Emitting Element, Light Emitting Device, and Electronic Device Using the Oxadiazole Derivative - An oxadiazole derivative represented by the following general formula (G1) is synthesized and applied to the light emitting element, | 08-08-2013 |
20130228762 | Light-Emitting Element, Light-Emitting Device and Electronic Device - The present invention provides a light-emitting element inducing an electron-transporting layer and a hole-transporting layer between a first electrode and a second electrode; and a first layer and a second layer between the electron-transporting layer and the hole-transporting layer, wherein the first layer includes a first organic compound and an organic compound having a hole-transporting property, the second layer includes a second organic compound and an organic compound having an electron-transporting property, the first layer is formed in contact with the first electrode side of the second layer, the first organic compound and the second organic compound are the same compound, and a voltage is applied to the first electrode and the second electrode, so that both of the first organic compound and the second organic compound emit light. | 09-05-2013 |
20130228766 | LIGHT-EMITTING ELEMENT, LIGHT-EMITTING DEVICE, LIGHTING DEVICE, AND ELECTRONIC DEVICE - An object is to provide a light-emitting element which exhibits light emission with high luminance and can be driven at low voltage. Another object is to provide a light-emitting device or an electronic device with reduced power consumption. Between an anode and a cathode, n (n is a natural number of two or more) EL layers are provided, where between a first EL layer and a second EL layer, a first layer containing any of an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal compound, an alkaline earth metal compound, and a rare earth metal compound, a second layer containing a material having a high electron-transporting property in contact with the first layer, and a region containing a material having a high hole-transporting property and an acceptor material in contact with the second layer are provided in this order from the anode side. | 09-05-2013 |
20130253206 | ANTHRACENE DERIVATIVE, AND LIGHT-EMITTING MATERIAL, LIGHT-EMITTING ELEMENT, LIGHT-EMITTING DEVICE, AND ELECTRONIC DEVICE USING THE SAME - Novel anthracene derivatives, novel materials capable of blue light emission with high color purity, and a light-emitting element, a light-emitting device, and an electronic device using any of the novel materials. The anthracene derivative represented by general formula (1) is provided. With the anthracene derivative, a light-emitting element with high emission efficiency can be provided. With the anthracene derivative, a light-emitting element emitting blue light with high color purity can be provided. | 09-26-2013 |
20130264556 | LIGHT-EMITTING ELEMENT, LIGHT-EMITTING DEVICE, AND ELECTRONIC DEVICE - A light-emitting element having high emission efficiency and long lifetime is provided. By manufacturing a light-emitting device using the light-emitting element, the light-emitting device having low power consumption and long lifetime is provided. The light-emitting element is manufactured in which a light-emitting layer is included between a first electrode serving as an anode and a second electrode serving as a cathode. The light-emitting layer includes a first organic compound having a hole-transporting property, a second organic compound having an electron-transporting property, and an organometallic complex including a dibenzo[f,h]quinoxaline skeleton as a ligand. Further, a light-emitting device is manufactured using the light-emitting element. | 10-10-2013 |
20130273680 | Light-Emitting Element and Light-Emitting Device - To provide a light-emitting element, a light-emitting device, and an electronic device each fowled using the organometallic complex represented by General Formula (G1) as a guest material and a low molecule compound as a host material. | 10-17-2013 |
20130306949 | LIGHT-EMITTING ELEMENT, LIGHT-EMITTING DEVICE, ELECTRONIC DEVICE, AND LIGHTING DEVICE - An object is to provide a light-emitting element capable of emitting light with a high luminance even at a low voltage, and having a long lifetime. The light-emitting element includes n EL layers between an anode and a cathode (n is a natural number of two or more), and also includes, between m-th EL layer from the anode and (m+1)-th EL layer (m is a natural number, 1≦m≦n−1), a first layer including a first donor material in contact with the m-th EL layer, a second layer including an electron-transport material and a second donor material in contact with the first layer, and a third layer including a hole-transport material and an acceptor material in contact with the second layer and the (m+1)-th EL layer. | 11-21-2013 |
20130320368 | Light-Emitting Element, Light-Emitting Device, Display Device, Electronic Device, and Lighting Device - Disclosed is a light-emitting element comprising a plurality of light-emitting units which are separated from one another by a charge generation layer. The light-emitting units each have a light-emitting layer which is featured by a stack of two layers. Each of the two layers includes a host material and a phosphorescent material where the phosphorescent material in one of the two layers is blue emissive while the phosphorescent material in the other of the two layers exhibits a maximum emission peak in a range from 500 nm to 700 nm. The phosphorescent material exhibiting a maximum emission peak in a range from 500 nm to 700 nm may be different from light-emitting unit to light-emitting unit. An additive may be included in at least one of the two layers so that an exciplex is formed with the host material. | 12-05-2013 |
20130323870 | ORGANIC COMPOUND, ANTHRACENE DERIVATIVE, AND LIGHT-EMITTING ELEMENT, LIGHT-EMITTING DEVICE, AND ELECTRONIC DEVICE USING THE ANTHRACENE DERIVATIVE - Objects of the present invention are to provide novel anthracene derivatives and novel organic compounds; a light-emitting element that has high emission efficiency; a light-emitting element that is capable of emitting blue light with high luminous efficiency; a light-emitting element that is capable of operation for a long time; and a light-emitting device and an electronic device that have lower power consumption. An anthracene derivative represented by a general formula (1) and an organic compound represented by a general formula (17) are provided. A light-emitting element that has high emission efficiency can be obtained by use of the anthracene derivative represented by the general formula (1). Further, a light-emitting element that has a long life can be obtained by use of the anthracene derivative represented by the general formula (1). | 12-05-2013 |
20140042414 | LIGHT-EMITTING ELEMENT, LIGHT-EMITTING DEVICE, ELECTRONIC APPLIANCE, AND METHOD OF MANUFACTURING THE SAME - A light-emitting element is provided which has a light-emitting layer between a first electrode and a second electrode, where the light-emitting layer has a first layer and a second layer; the first layer contains a first organic compound and a third organic compound; the second layer contains a second organic compound and the third organic compound; the first layer is provided to be in contact with the second layer on the first electrode side; the first organic compound is an organic compound with an electron transporting property; the second organic compound is an organic compound with a hole transporting property; the third organic compound has an electron trapping property; and light emission from the third organic compound can be obtained when voltage is applied to the first electrode and the second electrode so that the potential of the first electrode is higher than that of the second electrode. | 02-13-2014 |
20140042420 | TRIAZOLE DERIVATIVE, AND LIGHT-EMITTING ELEMENT, LIGHT-EMITTING DEVICE, AND ELECTRONIC DEVICE WITH THE USE OF TRIAZOLE DERIVATIVE - It is an object of the present invention to provide a novel triazole derivative. Further, it is another object of the present invention to provide a light-emitting element having high luminous efficiency with the use of the novel triazole derivative. Moreover, it is still another object of the present invention to provide a light-emitting device and electronic devices which have low power consumption. A light-emitting element having high luminous efficiency can be manufactured with the use of a triazole derivative which is a 1,2,4-triazole derivative, in which an aryl group or a heteroaryl group is bonded to each of 3-position, 4-position, and 5-position, and in which any one of the aryl group or heteroaryl group has a 9H-carbazol-9-yl group. | 02-13-2014 |
20140046073 | Oxadiazole Derivative, and Light-Emitting Element, Light-Emitting Device, Electronic Device, and Lighting Device Using the Oxadiazole Derivative - An object of one embodiment of the present invention is to provide a novel oxadiazole derivative as a substance having high excitation energy, in particular, a substance having high triplet excitation energy. One embodiment of the present invention is an oxadiazole derivative represented by General Formula (G1) below. | 02-13-2014 |
20140056579 | ELECTRODE COVER AND EVAPORATION DEVICE - The present invention provides an evaporation device for which maintenance is readily conducted, and further, provides an electrode cover which can prevent an evaporation material from being adhered to electrodes. Moreover, the present invention provides an evaporation device including an evaporation chamber; a holding portion for holding an object to be treated; an evaporation source; an electrode; an electrode cover; and a power supply, in which the evaporation chamber includes the holding portion in an upper portion, and includes the evaporation source, the electrode, and the electrode cover in a lower portion; the electrode cover covers at least a part of an exposed surface of the electrode; the electrode and the power supply are electrically connected. | 02-27-2014 |
20140066633 | ORGANIC COMPOUND, LIGHT-EMITTING ELEMENT, LIGHT-EMITTING DEVICE, ELECTRONIC DEVICE, AND LIGHTING DEVICE - A novel substance with which an increase in life and emission efficiency of a light-emitting element can be achieved is provided. A carbazole compound having a structure represented by General Formula (G1) is provided. Note that a substituent which makes the HOMO level and the LUMO level of a compound in which a bond of the substituent is substituted with hydrogen deep and shallow, respectively is used as each of substituents in General Formula (G1) (R | 03-06-2014 |
20140070198 | LIGHT-EMITTING ELEMENT, LIGHT-EMITTING DEVICE, LIGHTING DEVICE, AND ELECTRONIC DEVICE - An object is to provide a light-emitting element which exhibits light emission with high luminance and can be driven at low voltage. Another object is to provide a light-emitting device or an electronic device with reduced power consumption. Between an anode and a cathode, n (n is a natural number of two or more) EL layers are provided, where between a first EL layer and a second EL layer, a first layer containing any of an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal compound, an alkaline earth metal compound, and a rare earth metal compound, a second layer containing a material having a high electron-transporting property in contact with the first layer, and a region containing a material having a high hole-transporting property and an acceptor material in contact with the second layer are provided in this order from the anode side. | 03-13-2014 |
20140081031 | Anthracene Derivative, Light-Emitting Element, Light-Emitting Device, and Electronic Appliance - Novel anthracene derivatives are provided. Further, a light-emitting element, a light-emitting device, and an electronic appliance each using the novel anthracene derivative are provided. Anthracene derivatives represented by general formulae (G11) and (G21) are provided. The anthracene derivatives represented by the general formulae (G11) and (G21) each emit blue light with high color purity and have a carrier-transporting property. Therefore, each of the anthracene derivatives represented by the general formulae (G11) and (G21) is suitable for use in a light-emitting element, a light-emitting device, and an electronic appliance. | 03-20-2014 |
20140084274 | Light-Emitting Element - A light-emitting element with high emission efficiency is provided. The light-emitting element includes, between a pair of electrodes, a layer containing a p-type host, a light-emitting layer containing a guest, the p-type host, and an n-type host, and a layer containing the n-type host. A combination of the p-type host and the n-type host forms an exciplex. Among the layer containing the p-type host, the light-emitting layer, and the layer containing the n-type host, the light-emitting layer has the highest secondary ion intensity of the n-type host, the layer containing the n-type host has the second-highest secondary ion intensity of the n-type host, and the layer containing the p-type host has the lowest secondary ion intensity of the n-type host in analysis by a time-of-flight secondary ion mass spectrometer. | 03-27-2014 |
20140117344 | Light-Emitting Element, Light-Emitting Device, and Electronic Device - Disclosed is a light-emitting element with a good carrier balance and manufacturing method thereof which does not require the formation of the heterostructure. The light-emitting element includes an organic compound film containing a first organic compound as the main component (base material) between an anode and a cathode, wherein the organic compound film is provided in contact with the anode and with the cathode. The first organic compound further includes a light-emitting region to which a light-emitting substance is added and includes a hole-transport region to which a hole-trapping substance is added and/or an electron-transport region to which an electron-trapping substance is added. The hole-transport region is located between the light-emitting region and the anode, and the electron-transport region is located between the light-emitting region and the cathode. | 05-01-2014 |
20140131686 | Light-Emitting Element, Light-Emitting Device, Lighting Device, and Electronic Device - To provide a light-emitting element including a novel compound, which is capable of being used for a transport layer, a host material, or a light-emitting material in a light-emitting element. A light-emitting element which includes an EL layer between a pair of electrodes. In an analysis of the EL layer by liquid chromatography mass spectrometry, an ion having a mass/charge ratio (m/z) of 772 is detected, and by collision of an argon gas with the ion at an energy greater than or equal to 30 eV and less than or equal to 100 eV, one or more of an ion having a mass/charge ratio (m/z) of 349 and an ion having a mass/charge ratio (m/z) of 425 is or are detected. | 05-15-2014 |
20140145166 | Light-Emitting Element, Light-Emitting Device, Electronic Device, and Lighting Device - To provide a light-emitting element with high emission efficiency. In a light-emitting element including an organic compound between a pair of electrodes, the molecular weight X of the organic compound is 450 or more and 1500 or less, and the absorption edge of the organic compound is at 380 nm or more. By liquid chromatography mass spectrometry in a positive mode in which an argon gas is made to collide with the organic compound subjected to separation using a liquid chromatograph at any energy higher than or equal to 1 eV and lower than or equal to 30 eV, a product ion is detected at least around m/z=(X−240). | 05-29-2014 |
20140145168 | Light-Emitting Element, Light-Emitting Device, Electronic Device, and Lighting Device - Provided is a novel light-emitting element and a light-emitting element with high light emission efficiency. A light-emitting element at least includes a first electrode, a first light-emitting layer over the first electrode, a second light-emitting layer over and in contact with the first light-emitting layer, a third light-emitting layer over and in contact with the first light-emitting layer, and a second electrode over the third light-emitting layer. One of the first light-emitting layer and the second light-emitting layer contains at least a green-light-emitting phosphorescent compound. The other of the first light-emitting layer and the second light-emitting layer contains at least an orange-light-emitting phosphorescent compound. The third light-emitting layer contains at least a blue-light-emitting hole-trapping fluorescent compound and an organic electron-transport compound that disperses the fluorescent compound. | 05-29-2014 |
20140145175 | Carbazole Derivative, Light-Emitting Element Material and Organic Semiconductor Material - An object is to provide a novel carbazole derivative that has an excellent carrier-transport property and can be suitably used for a transport layer or as a host material of a light-emitting element. Another object is to provide an organic semiconductor material and a light-emitting element material each using the carbazole derivative. As the carbazole derivative that can achieve the above objects, a carbazole derivative in which a carbazolyl group whose either 2- or 3-position of carbazole is substituted by the 4-position of a dibenzothiophene skeleton or a dibenzofuran skeleton is bonded to aromatic hydrocarbon that has 14 to 70 carbon atoms and includes a condensed tricyclic ring, a condensed tetracyclic ring, a condensed pentacyclic ring, a condensed hexacyclic ring, or a condensed heptacyclic ring has been able to be synthesized. | 05-29-2014 |
20140151662 | Light-Emitting Element, Light-Emitting Device, Electronic Appliance, and Lighting Device - A light-emitting element in which a light-emitting layer contains an organic compound capable of emitting phosphorescence is provided. A light-emitting element which can have low driving voltage, high current efficiency, or a long lifetime is provided. In a light-emitting element in which a light-emitting layer is interposed between a pair of electrodes, the light-emitting layer contains an organic compound. The organic compound has a 1,2,4-triazole skeleton, a phenyl skeleton, an arylene skeleton, and a Group 9 metal or a Group 10 metal. The nitrogen atom at the 4-position of the 1,2,4-triazole skeleton coordinates to the Group 9 metal or the Group 10 metal. The nitrogen atom at the 1-position of the 1,2,4-triazole skeleton is bonded to a phenyl skeleton. The arylene skeleton is bonded to the 3-position of the 1,2,4-triazole skeleton and the Group 9 metal or the Group 10 metal. | 06-05-2014 |
20140179920 | Organometallic Complex, and Light-Emitting Element and Display Device Using the Organometallic Complex - An object is to provide an organometallic complex whose phosphorescence characteristics can be adjusted by varying the structure of a ligand. Alternatively, an object is to provide an organometallic complex capable of emitting yellow phosphorescence with high luminance. Alternatively, an object is to provide a light-emitting device with high added value. An organometallic complex which has a structure represented by a general formula (G1) below and at least one substituent group represented by a general formula (G2) below as a phenyl group and is formed in such a way that a phenylpyrazine derivative represented by a general formula (G0) below is ortho-metalated by an ion of a Group 9 metal or of a Group 10 metal is provided. Alternatively, a light-emitting element and a light-emitting device formed including the organometallic complex are provided. | 06-26-2014 |
20140183503 | Light-Emitting Element, Light-Emitting Device, Electronic Appliance, and Lighting Device - Disclosed is a light-emitting element having high emission efficiency, capable of driving at low voltage, and showing a long lifetime. The light-emitting element contains a compound between a pair of electrodes, and the compound is configured to give a first peak of m/z around 202 and a second peak of m/z around 227 in a mass spectrum. The first and second peaks are product ions of the compound and possess compositions of C | 07-03-2014 |
20140187791 | Carbazole Derivative and Method for Producing the Same - To provide a method for producing a wide variety of carbazole derivatives which have a simple and uncomplicated process and in which variations in the yield, purity, etc. of a desired substance which are caused by an aryl group introduced is reduced as much as possible. A method for producing a carbazole derivative represented by General Formula (1) is provided, in which 9-[4-(10-phenyl-9-anthryl)phenyl]-9H-carbazole having an active site at the 3-position of the carbazole skeleton and an aromatic compound having an active site are coupled. | 07-03-2014 |
20140206887 | Light-Emitting Element and Electronic Device - An object is to provide a light-emitting element with high emission efficiency which includes a novel carbazole derivative that has a wide energy gap and can be used for a transport layer or a host material in a light-emitting element. A carbazole derivative in which the 4-position of dibenzothiophene or dibenzofuran is bonded to the 2- or 3-position of carbazole has been able to be provided by use of the carbazole derivative. Further, a light-emitting element having high emission efficiency has been able to be provided by use of the carbazole derivative. | 07-24-2014 |
20140264304 | Light Emitting Element, Light Emitting Device, and Electronic Device - It is an object of the present invention to provide a light emitting element that realizes a high contrast. It is another object of the present invention to provide a light emitting device that realizes a high contrast by using the light emitting element with an excellent contrast. The light emitting element has a layer containing a light emitting substance interposed between a first electrode and a second electrode, and the layer containing the light emitting substance includes a light emitting layer, a layer containing a first organic compound, and a layer containing a second organic compound. The first electrode has a light-transmitting property, and the layer containing the first organic compound and the layer containing the second organic compound are interposed between the second electrode and the light emitting layer. Furthermore, color of the first organic compound and color of the second organic compound are complementary. | 09-18-2014 |
20140291800 | SEMICONDUCTOR DEVICE - When a conductive layer occupying a large area is provided in a coiled antenna portion, it has been difficult to supply power stably. A memory circuit portion and a coiled antenna portion are disposed by being stacked together; therefore, it is possible to prevent a current from flowing through a conductive layer occupying a large area included in the memory circuit portion, and thus, power saving can be achieved. In addition, the memory circuit portion and the coiled antenna portion are disposed by being stacked together, and thus, it is possible to use a space efficiently. Therefore, downsizing can be realized. | 10-02-2014 |
20140299822 | Oxadiazole Derivative, and Light Emitting Element, Light Emitting Device, and Electronic Device Using the Oxadiazole Derivative - An oxadiazole derivative represented by the following general formula (G1) is synthesized and applied to the light emitting element, | 10-09-2014 |
20140299861 | Heterocyclic Compound, Light-Emitting Element, Light-Emitting Device, Electronic Device, and Lighting Device - A substance having a hole-transport property and a wide band gap is provided. A heterocyclic compound represented by a general formula (G1) is provided. In the formula, α | 10-09-2014 |
20140339533 | Organometallic Complex, Light-Emitting Element, Light-Emitting Device, Electronic Device, and Lighting Device - An object is to provide a novel organometallic complex that has a broader emission spectrum in the wavelength range of green to blue. Other objects are to provide a light-emitting element using the organometallic complex, and a light-emitting device, an electronic device, and a lighting device each using the light-emitting element. Provided is an organometallic complex represented by a general formula (G1). Represented by the general formula (G1) is a novel organometallic complex that exhibits a broad emission spectrum in the wavelength range of green to blue. Further provided are a light-emitting element using the organometallic complex, and a light-emitting device, an electronic device, and a lighting device each using the light-emitting element. | 11-20-2014 |
20140347555 | Light-Emitting Device and Camera - A small light-emitting device is provided. A light-emitting device which is less likely to produce a shadow is provided. A structure including a switching circuit for supplying a pulsed constant current and a light-emitting panel supplied with the pulsed constant current has been conceived. | 11-27-2014 |
20140364626 | Anthracene Derivative, Light Emitting Element Using the Same, and Light Emitting Device Using the Same - It is an object of the present invention to provide a light emitting element, which is resistant to repetition of an oxidation reaction. It is another object of the invention to provide a light emitting element, which is resistant to repetition of a reduction reaction. An anthracene derivative is represented by a general formula (1). In the general formula (1), R1 represents hydrogen or an alkyl group having 1 to 4 carbon atoms, R2 represents any one of hydrogen, an alkyl group having 1 to 4 carbon atoms and an aryl group having 6 to 12 carbon atoms, R3 represents any one of hydrogen, an alkyl group having 1 to 4 carbon atoms, and an aryl group having 6 to 12 carbon atoms, Ph1 represents a phenyl group, and X1 represents an arylene group having 6 to 15 carbon atoms. | 12-11-2014 |
20140374737 | LIGHT-EMITTING ELEMENT, LIGHT-EMITTING DEVICE, ELECTRONIC DEVICE, AND LIGHTING DEVICE - Light-emitting elements in which an increase of driving voltage can be suppressed are provided. Light-emitting devices whose power consumption is reduced by including such light-emitting elements are also provided. In a light-emitting element having an EL layer between an anode and a cathode, a first layer in which carriers can be produced is formed between the cathode and the EL layer and in contact with the cathode, a second layer which transfers electrons produced in the first layer is formed in contact with the first layer, and a third layer which injects the electrons received from the second layer into the EL layer is formed in contact with the second layer. | 12-25-2014 |
20150053958 | LIGHT-EMITTING ELEMENT, DISPLAY MODULE, LIGHTING MODULE, LIGHT-EMITTING DEVICE, DISPLAY DEVICE, ELECTRONIC APPLIANCE, AND LIGHTING DEVICE - A multicolor light-emitting element that utilizes fluorescence and phosphorescence and is advantageous for practical application is provided. The light-emitting element has a stacked-layer structure of a first light-emitting layer containing a host material and a fluorescent substance and a second light-emitting layer containing two kinds of organic compounds and a substance that can convert triplet excitation energy into luminescence. Note that light emitted from the first light-emitting layer has an emission peak on the shorter wavelength side than light emitted from the second light-emitting layer. | 02-26-2015 |
20150055118 | LIGHT-EMITTING DEVICE AND CAMERA - A light-emitting device that can switch between two modes: single light emission and intermittent light emission is provided. The light-emitting device includes a driver circuit that can supply a control pulse signal, a constant current power supply that is supplied with the control pulse signal and can supply a constant current pulse, and a light-emitting panel that is supplied with the constant current pulse. The driver circuit includes a start switch circuit that can supply a start signal, a pulse-interval modulation circuit that can supply a pulse-interval modulation signal, and a microcomputer that is supplied with the start signal and the pulse-interval modulation signal and can supply the control pulse signal. | 02-26-2015 |
20150073142 | Organometallic Iridium Complex, Light-Emitting Element, Light-Emitting Device, Electronic Device, and Lighting Device - An organometallic iridium complex has high emission efficiency and a long lifetime. The iridium complex includes the structure represented by Formula (G1). In the formula, Ar represents a substituted or unsubstituted arylene group having 6 to 13 carbon atoms. R | 03-12-2015 |
20150080051 | Security Device and Information Processing Device - To provide a novel security device. To provide a novel information processing device capable of maintaining information useful for confirming the occurrence of a crime. A structure including a switch that is provided so as to be operable with a hand that holds a housing, a light-emitting element that emits pulsed light in accordance with the operation of the switch, an imaging unit that performs imaging in an emission direction of the pulsed light and supplies image information, and a communication unit that transmits the image information to a communication network is provided. With the use of a security device having the structure by a user, the pulsed light can be emitted to a thug or the like, which prevents crimes. Furthermore, information including an image of a crime scene can be transmitted to the communication network. | 03-19-2015 |